<table>
<thead>
<tr>
<th>Title</th>
<th>Pseudo-orbit tracing property and strong transversality of diffeomorphisms on closed manifolds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Sakai, Kazuhiro</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 31(2) P.373-P.386</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1994</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/9551</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/9551</td>
</tr>
</tbody>
</table>
PSEUDO-ORBIT TRACING PROPERTY AND STRONG TRANSVERSALITY OF DIFFEOMORPHISMS ON CLOSED MANIFOLDS

KAZUHIRO SAKAI

(Received February 8, 1993)

1. Introduction

We are interested in the dynamical property of a diffeomorphism f having the pseudo-orbit tracing property of a closed manifold M. Let d be a metric for M. A sequence of points $\{x_i\}_{i \in \mathbb{Z}}$ of M is called a δ-pseudo-orbit of f if $d(f(x_i), x_{i+1}) < \delta$ for $i \in \mathbb{Z}$. A sequence $\{x_i\}_{i \in \mathbb{Z}}$ is said to be f-ε-traced by $y \in M$ if $d(f^i(y), x_i) < \varepsilon$ for $i \in \mathbb{Z}$.

We say that f has the pseudo-orbit tracing property (abbrev. POTP) if for every $\varepsilon > 0$ there is $\delta > 0$ such that every δ-pseudo-orbit of f can be f-ε-traced by some point.

In [5] Robinson proved that every Axiom A diffeomorphism satisfying strong transversality has POTP. Thus it will be natural to ask whether POTP implies Axiom A and strong transversality. For this problem we have partial results that are answered in [4] for dim $M=2$ and in [7] for dim $M=3$. However we have no answer for higher dimensions.

Our aim is to prove the following

Theorem. The C^1 interior of all diffeomorphisms having POTP of a closed manifold M, $\mathcal{P}(M)$, coincides with the set of all Axiom A diffeomorphisms satisfying strong transversality.

We say that f has the C^1 uniform pseudo-orbit tracing property (abbrev. C^1-UPOTP) if there is a C^1 neighborhood $\mathcal{U}(f)$ of f with the property that for $\varepsilon > 0$ there is $\delta > 0$ such that every δ-pseudo-orbit of $g \in \mathcal{U}(f)$ is g-ε-traced by some point. Since every Axiom A diffeomorphism satisfying strong transversality has C^1-UPOTP (see [6, Theorem]), if we establish our theorem, then the following corollary is obtained.

Corollary. The set of all diffeomorphism having C^1-UPOTP is characterized as the set of all Axiom A diffeomorphisms satisfying strong transversality.
It was proved in [4] that all periodic points of \(f \in \mathcal{P}(M) \) are hyperbolic. From this we can prove that each \(f \) belonging to \(\mathcal{P}(M) \) satisfies Axiom A with no-cycle. Recently it was shown in general by Aoki [1]. Therefore, to conclude our theorem it remains only to prove the following proposition.

Proposition. Every \(f \in \mathcal{P}(M) \) satisfies strong transversality.

Unfortunately this can not be proved by the techniques mentioned in [4] and [7]. Thus we need a new technique for the proof of the proposition.

2. Proof of Proposition

Let \(\text{Diff}(M) \) denote the set of all diffeomorphisms of \(M \) endowed with \(C^1 \) topology, and let \(p = f^n(p) \) \((n > 0)\) be a hyperbolic periodic point of \(f \in \text{Diff}(M) \). Even if \(p \) is hyperbolic, when \(\dim M \geq 3 \), it is not easy to construct an \(f^n \)-invariant foliation in a neighborhood of \(p \) that is compatible with the local stable manifold (i.e. the leaf passing through \(p \) is the local stable manifold of \(p \)). In this paper, by using Franks's lemma we make a new diffeomorphism \(g \) \((g^n(p) = p)\), arbitrarily near to \(f \) in \(C^1 \) topology, which has a \(g^n \)-invariant compatible foliation in a neighborhood of \(p \) (see lemmas 1 and 2). This foliation will play an essential role in the proof of the proposition.

Let \(f \in \text{Diff}(M) \) satisfy Axiom A with no-cycle. The non-wandering set \(\Omega(f) \) of \(f \) is expressed as a finite disjoint union of basic sets \(\{ \Lambda_i(f) \} \), and for a sufficiently small \(\varepsilon_0 > 0 \) and \(x \in \Omega(f) \) there are a local stable manifold \(W^s_{\varepsilon_0}(x, f) \) and a local unstable manifold \(W^u_{\varepsilon_0}(x, f) \). Let \(\Lambda(f) \) be a basic set of \(f \). Since \(\dim W^s_{\varepsilon_0}(x, f) = \dim W^u_{\varepsilon_0}(y, f) \) \((x, y \in \Lambda(f))\), we denote by \(\text{Ind} \Lambda(f) \) the dimension of \(W^s_{\varepsilon_0}(x, f) \) for \(x \in \Lambda(f) \). If \(g \in \text{Diff}(M) \) is \(C^1 \) close to \(f \), then the number of basic sets \(\{ \Lambda_i(g) \} \) of \(g \) coincides with that of basic sets \(\{ \Lambda_i(f) \} \) since \(f \) is \(\Omega \)-stable.

Put \(B_\varepsilon(x) = \{ y \in M | d(x, y) \leq \varepsilon \} \) for \(\varepsilon > 0 \) and let \(\rho \) be a usual \(C^1 \) metric of \(\text{Diff}(M) \). Then we have the following

Lemma 1. Let \(\varepsilon_0 > 0 \) be as above and let \(\Lambda(f) \) be a basic set such that \(1 \leq \text{Ind} \Lambda(f) \leq \dim M - 1 \). Then, for a periodic point \(p \in \Lambda(f) \) \((f^n(p) = p, n > 0)\), a neighborhood \(\mathcal{U}(f) \subseteq \text{Diff}(M) \) and a number \(\gamma > 0 \) there are \(0 < \varepsilon_1 < \varepsilon_0/2 \), \(g \in \mathcal{U}(f) \) and a basic set \(\Lambda(g) \) for \(g \) such that

(i) \(B_{4\varepsilon_1}(f^i(p)) \cap B_{4\varepsilon_1}(f^j(p)) = \phi \) for \(0 \leq i \neq j \leq n - 1 \),
(ii) \(g(x) = \begin{cases}
\exp_{f^i(p)} \circ D_{f^i(p)} f \circ \exp_{f^i(p)}^{-1}(x) & \text{if } x \in B_{4\varepsilon_1}(f^i(p)) \text{ for } 0 \leq i \leq n-1, \\
f(x) & \text{if } x \notin \bigcup_{i=0}^{n-1} B_{4\varepsilon_1}(f^i(p)), \end{cases} \)

(iii) \(g^n(p) = p \in \Lambda(g) \) and \(\rho(W^\sigma_{\varepsilon_0}(p, f), W^\sigma_{\varepsilon_0}(p, g)) < \gamma \) for \(\sigma = s, u \) (i.e. there is a \(C^1 \) diffeomorphism \(\xi^\sigma : W^\sigma_{\varepsilon_0}(p, f) \to W^\sigma_{\varepsilon_0}(p, g) \) such that \(\rho(\xi^\sigma, \text{id}) < \gamma \) (\(\sigma = s, u \)).

Proof. Since \(\Lambda(f) \) is hyperbolic, there is \(\varepsilon > 0 \) such that \(d(f^n(x), f^n(y)) < \varepsilon \) \((x, y \in \Lambda(f) \) and \(n \in \mathbb{Z}\)) implies \(x = y \) (see [5]). By \(\Omega \)-stability theorem, there exists a neighborhood \(\mathcal{U}_0(f) \subset \mathcal{U}(f) \) of \(f \) such that for every \(g \in \mathcal{U}_0(f) \) there is a homeomorphism \(h_g \), which maps \(\Omega(f) \) onto the non-wandering set \(\Omega(g) \) of \(g \), satisfying

\[
\begin{align*}
&g \circ h_g = h_g \circ f, \\
d(h_g, \text{id}|_{\Omega(f)}) < \varepsilon, \\
&\rho(W^\sigma_{\varepsilon_0}(p, f), W^\sigma_{\varepsilon_0}(h_g(p), g)) < \gamma \text{ for } \sigma = s, u.
\end{align*}
\]

By Franks's lemma [2, lemma 1.1], we can find \(g \in \mathcal{U}_0(f) \) and \(0 < \varepsilon_1 < \varepsilon_0 / 2 \) such that

\[
B_{4\varepsilon_1}(f^i(p)) \cap B_{4\varepsilon_1}(f^j(p)) = \emptyset \text{ (0 \leq i \neq j \leq n-1)} \text{ and}
\]

\[
g(x) = \begin{cases}
\exp_{f^i(p)} \circ D_{f^i(p)} f \circ \exp_{f^i(p)}^{-1}(x) & \text{if } x \in B_{4\varepsilon_1}(f^i(p)) \text{ for } 0 \leq i \leq n-1, \\
f(x) & \text{if } x \notin \bigcup_{i=0}^{n-1} B_{4\varepsilon_1}(f^i(p)), \end{cases}
\]

We write \(\Lambda(g) = h_g(\Lambda(f)) \) for simplicity. Then \(h_g(p) \in \Lambda(g) \) and \(\text{Ind } \Lambda(f) = \text{Ind } \Lambda(g) \). Clearly \(g(f^i(p)) = \exp_{f^i(p)} \circ D_{f^i(p)} f \circ \exp_{f^i(p)}^{-1}(f^i(p)) = f^{i+1}(p) \) for \(0 \leq i \leq n-1 \) and so \(g(p) = f(p), g^2(p) = f^2(p), \ldots, g^n(p) = f^n(p) = p \). Since

\[
d(f^i(h_g^{-1}(p)), f^i(p)) = d(h_g^{-1}(g^i(p)), f^i(p)) = d(h_g^{-1}(f^i(p)), f^i(p)) < \varepsilon \text{ (i \in \mathbb{Z})},
\]

we have \(h_g(p) = p \). Therefore \(\rho(W^\sigma_{\varepsilon_0}(p, f), W^\sigma_{\varepsilon_0}(p, g)) < \gamma \) (\(\sigma = s, u \)) and \(p \in \Lambda(g) \).

Since \(f \) satisfies Axiom A, by definition there is a \(Df \)-invariant continuous splitting \(T_{\Omega(f)} M = E^s \oplus E^u \) and a constant \(0 < \lambda < 1 \) such that
\[\|Df\|_{E^m} \leq \lambda^m \text{ and } \|Df\|_{E^m} \leq \lambda^m \text{ for } m > 0. \] We denote by \(E^s_\varepsilon \) a fiber of \(E^s \) at \(x \in \Omega(f) (\sigma = s, u) \), and put \(E^s_\varepsilon = \{ v \in E^s_\varepsilon \| v \| \leq \varepsilon \} \) for \(\varepsilon > 0. \)

Let \(g \in \text{Diff}(M), p = g^n(p) \in \Lambda(g) (n > 0) \) and \(\varepsilon_1 > 0 \) be as in lemma 1. Then it is easily checked that for \(0 < \varepsilon \leq \varepsilon_1 \), we have \(\exp_p(E^s_\varepsilon) = W^s_\varepsilon(p, g) \) and \(\dim \exp_p(E^s_\varepsilon) = \dim W^s_\varepsilon(p, g) (\sigma = s, u) \).

Fix \(\varepsilon_2 \) with \(0 < \varepsilon_2 = \varepsilon_2(g, n) < \varepsilon_1 \) such that \(x \in B_{\varepsilon_2}(p) \) implies \(g^n(x) \in B_{\varepsilon_2}(g^n(p)) \) for \(0 \leq i \leq n-1 \), and define

\[\tilde{W}^s_{\varepsilon_2}(x, g) = \exp_p \left(E^s_\varepsilon + \exp_p^{-1}(x) \right) \]

for \(x \in \exp_p(E^s_\varepsilon) \). Then, since \(\bigcup_{\varepsilon \in E^s_\varepsilon} (E^s_\varepsilon + v) \) is a foliation defined in a neighborhood of \(O_p \in T_pM \) and since \(\exp_p \) is a local diffeomorphism, we have that \(\{ \tilde{W}^s_{\varepsilon_2}(x, g) : x \in \exp_p(E^s_\varepsilon) \} \) is a foliation defined in a neighborhood of \(p \) in \(M \) such that \(\tilde{W}^s_{\varepsilon_2}(p, g) = W^s_{\varepsilon_2}(p, g) \).

Lemma 2.

(i) \(\tilde{W}^s_{\varepsilon_2}(x, g) \) is a \(C^1 \) manifold and \(\dim \tilde{W}^s_{\varepsilon_2}(x, g) = \dim \tilde{W}^s_{\varepsilon_2}(p, g) \).

(ii) \(g^n(\tilde{W}^s_{\varepsilon_2}(x, g)) \subset \tilde{W}^s_{\varepsilon_2}(g^n(x), g) \) for \(x \in \exp_p(E^s_\varepsilon) \cap g^{-n}(\exp_p(E^s_\varepsilon)) \).

(iii) there exists \(C > 0 \) such that if \(\{ x, g^n(x), \cdots, g^{nk}(x) \} \subset \exp_p(E^s_\varepsilon) \) for some \(k > 0 \), then \(d(g^{nk}(x), g^{nk}(y)) \leq C \lambda^k d(x, y) \) for \(y \in \tilde{W}^s_{\varepsilon_2}(x, g) \).

Proof. Assertion (i) is clear, and (ii) is easily obtained. To show (iii) put \(T_p(\varepsilon_2) = \{ v \in T_pM \| v \| \leq \varepsilon_2 \} \). Since \(\exp_p : T_pM \to M \) and \(\exp_p^{-1} : B_{\varepsilon_2}(p) \to T_pM \) are into diffeomorphisms there is \(K > 0 \) such that

\[d(\exp_p(v), \exp_p(w)) \leq K\|v - w\| \quad (v, w \in T_p(\varepsilon_2)), \]

\[\|\exp_p^{-1}(x) - \exp_p^{-1}(y)\| \leq Kd(x, y) \quad (x, y \in B_{\varepsilon_2}(p)). \]

If \(\{ x, g^n(x), \cdots, g^{nk}(x) \} \subset \exp_p(E^s_\varepsilon) \) for some \(k > 0 \), then for \(y \in \tilde{W}^s_{\varepsilon_2}(x, g) \) there is \(v_y \in E^s_\varepsilon(\varepsilon_2) \) such that \(y = \exp_p(v_y + \exp_p^{-1}(x)) \). Thus we have

\[g^n(y) = \exp_p \left(D_pf^n(v_y) + \exp_p^{-1}(g^n(x)) \right) \]

(since \(D_pf^n(\exp_p^{-1}(x)) = \exp_p^{-1}(g^n(x)) \)), and so

\[\left(D_pf^n \circ \exp_p^{-1} \circ g^n \right)(y) = D_pf^n(v_y) + D_pf^n(\exp_p^{-1}(g^n(x))). \]
from which
\[g^{2n}(x) = \exp_p(D_pf^{2n}(v_x) + D_pf(\exp_p^{-1}(g^{2n}(x)))]. \]
Since \(g^n(x) \in B_{\epsilon_1}(p) \), we have \((\exp_p \circ D_pf^n \circ \exp_p^{-1})(g^n(x)) = g^{2n}(x) \); i.e. \(D_pf^n(\exp_p^{-1}(g^n(x))) = \exp_p^{-1}(g^{2n}(x)) \). Thus \(g^{2n}(y) = \exp_p(D_pf^{2n}(v_y) + \exp_p^{-1}(g^{2n}(x))) \). By repetition we have
\[g^{nk}(y) = \exp_p(D_pf^{nk}(v_y) + \exp_p^{-1}(g^{nk}(x))). \]
from which
\[d(g^{nk}(x), g^{nk}(y)) \leq \frac{K}{\exp_p^{-1}(g^{nk}(x)) - \exp_p^{-1}(g^{nk}(y))} \]
\[= \frac{K}{\exp_p^{-1}(g^{nk}(v_y))} \]
\[\leq K\lambda^{nk}||v_y||. \]
Clearly, \(||v_y|| = ||\exp_p^{-1}(x) - \exp_p^{-1}(y)|| \leq Kd(x, y) \) since \(\exp_p^{-1}(y) = v_y + \exp_p^{-1}(x) \). Therefore, \(d(g^{nk}(x), g^{nk}(y)) \leq K^2\lambda^{nk}d(x, y) \). Assertion (iii) was proved.

Let \(f \) be as before, and denote by \(W^s(x, f) \) the stable manifold and by \(W^u(x, f) \) the unstable manifold for \(x \in \Omega(f) \) respectively.

\textbf{Lemma 3.} Let \(\Lambda_1(f) \) and \(\Lambda_2(f) \) be two distinct basic sets for \(f \). Suppose that there are \(p = f^n(p) \in \Lambda_1(f) \) \((n > 0)\), \(q \in \Lambda_2(f) \) and \(x \in M \setminus \Omega(f) \) such that \(x \in W^s(p, f) \cap W^u(q, f) \). Then, for neighborhood \(\mathcal{U}(f) \subset \text{Diff} (M) \) there are \(0 < \epsilon_1 < \epsilon_0/2, g \in \mathcal{U}(f) \) and two distinct basic sets \(\Lambda_1(g) \) and \(\Lambda_2(g) \) for \(g \) such that
\[
\begin{align*}
\text{(I)} & \quad B_{4\epsilon_2}(f^j(p)) \cap B_{4\epsilon_2}(f^j(p)) = \phi \quad \text{for} \quad 0 \leq i \neq j \leq n-1, \\
\text{(II)} & \quad g(z) = \begin{cases}
\exp_{f^i(p)} \circ D_{f^i(p)} \circ \exp_{f^i(p)}^{-1}(z) & \text{if} \quad z \in B_{\epsilon_1}(f^i(p)) \quad \text{for} \quad 0 \leq i \leq n-1, \\
\emptyset & \text{if} \quad z \notin \bigcup_{i=0}^{n-1} B_{4\epsilon_2}(f^i(p)), \\
f(z) & \text{if} \quad z \notin \bigcup_{i=0}^{n-1} B_{4\epsilon_2}(f^i(p)), \end{cases} \\
\text{(III)} & \quad p = g^n(p) \in \Lambda_1(g) \quad q \in \Lambda_2(g), \\
x \in W^s(p, g) \cap W^u(q, g), \\
T_x W^s(p, g) = T_x W^s(p, f) \quad \text{and} \quad T_x W^u(q, g) = T_x W^u(q, f).
\end{align*}
\]
Proof. Fix \(\mathcal{U}(f) \subset \text{Diff} (M) \). By lemma 1, for any \(\gamma > 0 \) there are
0 < \varepsilon_1 < \varepsilon_0 / 2, \ g \in \mathcal{U}(f) \) and a basic set \(\Lambda_1(g) \) satisfying properties (i), (ii) and (iii) of lemma 1. Put \(\Lambda_2(g) = \Lambda_2(f) \). Then \(q \in \Lambda_2(g) \). Since \(\gamma \) is arbitrarily small, by (iii) there are a new diffeomorphism \(\tilde{g} \in \mathcal{U}(f) \) and a small neighborhood \(U(x) \) of \(x \) such that \(\tilde{g}(y) = g(y) \) for all \(y \notin U(x) \) and such that

\[
\begin{cases}
 x \in W^u(p, \tilde{g}) \cap W^u(q, \tilde{g}), \\
 T_x W^u(p, \tilde{g}) = T_x W^u(p, f), \\
 T_x W^u(q, \tilde{g}) = T_x W^u(q, f),
\end{cases}
\]

For simplicity we identify \(\tilde{g} \) with \(g \). Thus (I), (II) and (III) are concluded.

Let \(g \in \mathcal{U}(f), \ p = g^n(p) \in \Lambda_1(g) \) and \(\varepsilon_1 > 0 \) be as in lemma 3 and suppose that \(\dim M - \text{Ind} \Lambda_1(f) > 2 \). Take \(0 < \varepsilon_2 \leq \varepsilon_1 \) be as in lemma 2, and fix \(\alpha > 0 \) such that \(D_p f^2_p(E^u_p(\alpha)) \subset E^u_p(\varepsilon_2) \). Put \(D^u(p) = \exp_p(E^u_p(\alpha)) \). Then we have

\[
d(\tilde{W}_{\varepsilon_2}(g^{2n}(F^u(p, g)), g), \tilde{W}_{\varepsilon_2}(F^u(p, g), g)) > 0,
\]

\[
d(\tilde{W}_{\varepsilon_2}(F^u(p, g), g), \tilde{W}_{\varepsilon_2}(g^{-2n}(D^u(p)), g)) > 0
\]

where

\[
F^u(p, g) = D^u(p) \setminus g^{-n}(D^u(p))
\]

is a fundamental domain of \(W^u_{\varepsilon_2}(p, g) \) (recall that \(\exp_p(E^u_p(\varepsilon)) = W^u_{\varepsilon}(p, g) \) for \(0 < \varepsilon \leq \varepsilon_2 \)).
Let G be a linear subspace of E_p such that $1 \leq \dim G < \dim E_p$ and write $B_r^G(E) = B_r(E) \cap \exp_p(E_p(\varepsilon_2))$ for a subset E of M. Then we can find $0 < r_0 < \varepsilon_2$ such that

$$F^w(p, g) \setminus B_{r_0}(\exp_p(G \cap E_p(\varepsilon_2)) \cap F^w(p, g)) \neq \emptyset$$

for every G. Since

$$r_0' = d(\bar{W}_{\varepsilon_2}(g^{2n}(F^w(p, g)), g), \bar{W}_{\varepsilon_2}(F^w(p, g), g)) > 0,$$
$$r_0'' = d(\bar{W}_{\varepsilon_2}(F^w(p, g), g), \bar{W}_{\varepsilon_2}(g^{-2n}(D^w(p)), g)) > 0,$$

we define a positive number $r_1 = \frac{1}{4} \min\{r_0, r_0', r_0''\}$.

Put

$$\Gamma(p) = \bigcup_{y \in \exp_p(E_p(\varepsilon_2))} \bar{W}_{\varepsilon_2}(y, g).$$

Then, for any $z \in \Gamma(p)$, we can find only one point $y \in \exp_p(E_p(\varepsilon_2))$ such that $z \in \bar{W}_{\varepsilon_2}(y, g)$, and so we write

$$\pi(z) = y.$$

Then $\pi: \Gamma(p) \to \exp_p(E_p(\varepsilon_2))$ is differentiable and which plays an essential role in the proof of the proposition. For $z \in \Gamma(p) \setminus \bar{W}_{\varepsilon_2}(p, g)$, there is an integer $N_z > 0$ such that $g^{ni}(\pi(z)) \in D^w(p)$ for $0 \leq i \leq N_z$ (especially $g^{nN_z}(\pi(z)) \in F^w(p, g)$) and $g^{n(N_z+1)}(\pi(z)) \notin D^w(p)$.

Lemma 4. Under the above notations, there is $0 < \varepsilon_3 < r_1$ such that $\text{diam } \pi(B_\varepsilon(g^{nN_z}(z))) < r_1$ for every $z \in \left(\bigcup_{y \in \bar{W}_{\varepsilon_2}(y, g)} \bar{W}_{\varepsilon_2}(y, g) \right) \setminus \bar{W}_{\varepsilon_2}(p, g)$.

Proof. If this is false, for $k > 0$ there are

$$z_k \in \left(\bigcup_{y \in \bar{W}_{\varepsilon_2}(y, g)} \bar{W}_{\varepsilon_2}(y, g) \right) \setminus \bar{W}_{\varepsilon_2}(p, g)$$

and $N_k = N_{z_k} > 0$ such that $\text{diam } \pi(B_{\varepsilon_k}(g^{nN_k}(z_k))) \geq r_1$. Since $z_k \in \bar{W}_{\varepsilon_2}(\pi(z_k), g)$, we have $N_k \to \infty$ as $k \to \infty$ (because of $\pi(z_k) \in \bar{W}_{\varepsilon_2}(p, g)$). From $g^{ni}(\pi(z_k)) \in D^w(p) \cap \exp_p(E_p(\varepsilon_2))$ for $0 \leq i \leq N_k$, we have

$$d(g^{nN_k}(\pi(z_k)), g^{nN_k}(z_k)) \leq C \lambda^{nN_k}d(\pi(z_k), z_k) \to 0 \text{ as } k \to \infty.$$
by lemma 2 (iii).

For \(k > 0 \) there are \(w_k, w'_k \in \exp_p(E^u_p(\varepsilon_2)) \), \(v_k \in \tilde{W}^s_{\varepsilon_2}(w_k, g) \cap B_{\frac{1}{k}}(g^{nNk}(z_k)) \) and \(v'_k \in \tilde{W}^s_{\varepsilon_2}(w'_k, g) \cap B_{\frac{1}{k}}(g^{nNk}(z_k)) \) such that \(dv_k, dv'_k \geq r_1 \). If \(w_k \to w \) and \(w'_k \to w' \) \((k \to \infty)\), then \(w, w' \in \exp_p(E^u_p(\varepsilon_2)) \) and \(d(w, w') \geq r_1 \). When \(v_k \to v \) and \(v'_k \to v' \) as \(k \to \infty \), we have \(v = v' \in \exp_p(E^u_p(\varepsilon_2)) \) by the properties

\[
\begin{align*}
g^{nNk}(z_k) &\in \exp_p(E^u_p(\varepsilon_2)), \\
d(g^{nNk}(z_k), g^{nNk}(z_k)) &\to 0 \text{ as } k \to \infty, \\
d(v_k, g^{nNk}(z_k)) &< \frac{1}{k} \quad \text{and} \quad d(v'_k, g^{nNk}(z_k)) < \frac{1}{k}.
\end{align*}
\]

Since \(\tilde{W}^s_{\varepsilon_2}(y, g) \) \((y \in \exp_p(E^u_p(\varepsilon_2))\) is continuous with respect to \(y \), we have \(v \in \tilde{W}^s_{\varepsilon_2}(w, g) \). Thus \(v = w \) since \(\tilde{W}^s_{\varepsilon_2}(w, g) \cap \exp_p(E^u_p(\varepsilon_2)) \) is a single point and \(v, w \in \exp_p(E^u_p(\varepsilon_2)) \). In this way we get \(w = v = v' = w' \), thus contradicting.

We are in a position to prove the proposition. Hereafter let \(\dim M \geq 4 \) and \(f \in \mathcal{P}(M) \). Notice that \(f \) satisfies Axiom A with no-cycle.

Fix \(x \in M \setminus \Omega(f) \). Then \(f \) has distinct basic sets \(\Lambda_i(f) \) \((i=1, 2)\) such that \(x \in W^s(\Lambda_1(f), f) \cap W^u(\Lambda_2(f), f) \). If \(\text{Ind} \Lambda_1(f) = \dim M \) or \(\dim M - 1 \), then by the proof of [4, Theorem 2] we have \(T_xM = T_xW^u(x, f) + T_xW^s(x, f) \). Thus it is enough to prove the above equality for the case when \(1 \leq \text{Ind} \Lambda_1(f) \leq \dim M - 2 \).

Since \(\Omega(f) = \overline{\mathcal{P}(f)} \), there is \(f' \in \mathcal{P}(M) \) arbitrarily near to \(f \) in a \(C^1 \) topology satisfying

(a) \(f(y) = f'(y) \) for all \(y \) outside of a small neighborhood of \(x \),

(b) there are \(p = f^n(p) \in \Lambda_1(f) \) for some \(n > 0 \) and \(q \in \Lambda_2(f) \) such that \(x \in W^s(p, f') \cap W^u(q, f') \), \(T_xW^s(p, f') = T_xW^s(x, f) \) and \(T_xW^u(q, f') = T_xW^u(x, f) \).

By (a) there are basic sets \(\Lambda_i(f') \) \((i=1, 2)\) for \(f' \) such that \(\Lambda_i(f') = \Lambda_i(f) \) \((i=1, 2)\) since \(f \) is \(\Omega \)-stable. We shall prove that \(T_xM = T_xW^s(p, f') + T_xW^u(q, f') \) for the case when \(1 \leq \text{Ind} \Lambda_1(f) \leq \dim M - 2 \). For simplicity we identify \(f' \) with \(f \).

Let \(\mathcal{U}(f) \) be a small neighborhood of \(f \) such that \(\mathcal{U}(f) \subset \mathcal{P}(M) \). Then, by lemma 3 there are \(g \in \mathcal{U}(f) \) and basic sets \(\Lambda_i(g) \) \((i=1, 2)\) satisfying lemma 3 (I), (II) and (III). Thus \(T_xW^s(p, g) = T_xW^s(x, f) \) and \(T_xW^u(q, g) = T_xW^u(x, f) \). Let \(\varepsilon_3 > 0 \) be as in lemma 4 and define

\[
V_k(p) = \bigcup_{y \in g^{-n_k(E^u_p(p, g))}} \tilde{W}^s_{\varepsilon_3}(y, g) \text{ for } k \geq 0
\]
where \(F^w(p, g) \) is the fundamental domain of \(W_{v_3}^w(p, g) \) (see (1)). Notice that \(V_k(p) \subset \Gamma(p) \) for \(k \geq 0 \) and that \(V_k(p) \rightarrow W_{v_3}^\omega(p, g) = W_{v_3}^\omega(p, g) \) as \(k \rightarrow \infty \) since \(g^{-nk}(F^w(p, g)) \rightarrow \{p\} \) as \(k \rightarrow \infty \). Thus there is \(k_0 > 0 \) such that

\[
V_{k_0}(p) \subset \bigcup_{y \in W_{v_3}^\omega(p, g)} W_{v_3}^\omega(y, g).
\]

Obviously \(\bigcup_{k \geq k_0} V_k(p) \) is a neighborhood of \(p \) in \(M \).

Pick \(l > 0 \) such that \(g^l(x) \in \text{int} \left(\bigcup_{k \geq k_0} V_k(p) \right) \) and \(g^{-l}(x) \in W_{v_0/2}^\omega(g^{-l}(q), g) \), and denote by \(C^w(g^l(x)) \) the connected component of \(g^l(x) \) in \(W^\omega(g^l(q), g) \)

\[
\cap \left(\bigcup_{k \geq k_0} V_k(p) \right).
\]

Clearly, \(\exp_p^{-1}(C^w(g^l(x))) \subset T_p M \).

For a linear subspace \(E \) of \(T_p M \) and \(v > 0 \) we write

\[
E_v(g^l(x)) = \{ v + \exp_p^{-1}(g^l(x)) \mid v \in E \text{ with } \|v\| \leq v \}.
\]

Then there are a linear subspace \(E' \) of \(T_p M \) and a number \(0 < v_0 \leq v_3 \) such that

\[
T_{g^l(x)} \exp_p(E_v(g^l(x))) = T_{g^l(x)} C^w(g^l(x))
\]
and \(\exp_p(E'_v(g'(x))) \subseteq \bigcup_{k \geq k_0} V_k(p) \) for \(0 < v \leq v_0 \).

Since \(g'(x) \notin \Omega(g) \), there exists \(0 < v_1 \leq v_0 \) such that \(B_{v_1}(g'(x)) \cap g'(B_{v_1}(g'(x))) = \emptyset \) for \(i \in \mathbb{Z} \setminus \{0\} \). Let \(\mathcal{U}(g) \) be a neighborhood of \(g \) such that \(\mathcal{U}(g) \subset \mathcal{U}(f) \). By (4) there are \(0 < v_2 < v_1 \) and \(\varphi \in \text{Diff}(M) \) such that

\[
\begin{align*}
\varphi|_{B_{v_2}(g'(x))} &= \text{id}, \\
\varphi(g'(x)) &= g'(x), \\
\varphi(\exp_p(E'_{v_2}(g'(x)))) &\subset C^\infty(g'(x)), \\
\dim \varphi(\exp_p(E'_{v_2}(g'(x)))) &= \dim C^\infty(g'(x)), \\
g' \in \mathcal{U}(g) \text{ where } g' = \varphi^{-1} \circ g.
\end{align*}
\]

We denote \(\exp_p(E'_{v_2}(g'(x))) \) by \(\exp_p(E'_{v_2}(g''(x))) \) because of \(g''(x) = g'(x) \).

It is clear that there are two distinct basic sets \(\Lambda_i(g') \) \((i = 1, 2)\) such that \(\Lambda_i(g') = \Lambda_i(g) \) \((i = 1, 2)\) since \(g \) is \(\Omega \)-stable, and that

\[
\begin{align*}
W^s_{\varepsilon_0}(p, g') &= W^s_{\varepsilon_0}(p, g), \\
W^s_{\varepsilon_0}(q, g') &= W^s_{\varepsilon_0}(q, g), \\
T_x W^s(x, g') &= T_x W^s(x, g) \quad (\sigma = s, u), \\
\exp_p(E'_{v_2}(g''(x))) &\subset W^u(g''(q), g') \cap \Gamma(p),
\end{align*}
\]

\[
\dim \exp_p(E'_{v_2}(g''(x))) = \dim W^u(q, g') = \dim C^\infty(g'(x)).
\]

Lemma 5. Under the above notations, \(\exp_p(E'_{v_2}(g''(x))) \) meets transversely \(W^s_{\varepsilon_3}(p, g') \) at \(g''(x) \).

Proof. Let \(\varepsilon_2 > 0 \) be as in lemma 2. Since \(W^s_{\varepsilon_3}(p, g') \subset \exp_p(E'_{\varepsilon_2}(g''(x))) \) and \(W^s_{\varepsilon_3}(p, g') \subset \exp_p(E'_{\varepsilon_2}(g''(x))) \), to get the conclusion it is enough to prove

\[
\dim \pi(\exp_p(E'_{v_2}(g''(x)))) \geq \dim W^s_{\varepsilon_3}(p, g').
\]

Here \(\pi: \Gamma(p) \to \exp_p(E'_{v_2}(g''(x))) \) is the map defined as in (3).

Assume that \(\dim \pi(\exp_p(E'_{v_2}(g''(x)))) < \dim W^u_{\varepsilon_3}(p, g') \) and put \(C^s_{\varepsilon}(g''(x)) = B_\varepsilon(g''(x)) \cap g''^2(W^u_{\varepsilon_0}(g''^{-1}(q), g')) \) for \(\varepsilon > 0 \). Take \(0 < \varepsilon < v_2 \) such that \(C^s_{\varepsilon}(g''(x)) \) is the connected component of \(g''(x) \) in \(B_\varepsilon(g''(x)) \cap g''^2(W^u_{\varepsilon_0}(g''^{-1}(q), g')) \) for \(0 < \varepsilon \leq \varepsilon \), and such that \(B_\varepsilon(g''(x)) \cap g''^2(W^u_{\varepsilon_0}(g''^{-1}(q), g')) \subset \exp(E'_{v_2}(g''(x))). \)
Claim 1. Let $0 < \varepsilon \leq \tilde{\varepsilon}$. If $d(g_i^{-i}(g^{il}(x)), g_i^{-i}(w)) < \varepsilon$ for $i \geq 0$, then $w \in C_{\varepsilon}(g^{il}(x))$.

It is clear that $d(g_i^{-1}(x), g_i^{-1}(q)) < \varepsilon_0/2$ for all $i \geq 0$. On the other hand, since $d(g_i^{-1}(x), g_i^{-1}(q)) < \varepsilon_0/2$ ($i \geq 0$),

$$d(g_i^{-2i}(w), g_i^{-1}(q)) \leq d(g_i^{-2i}(w), g_i^{-1}(x)) + d(g_i^{-1}(x), g_i^{-1}(q)) < \varepsilon_0$$

for all $i \geq 0$, and so $g_i^{-2i}(w) \in W_{\varepsilon_0}(g_i^{-1}(q), g_i')$. Thus $w \in C_{\varepsilon}(g^{il}(x)) = B_{\varepsilon}(g^{il}(x)) \cap g^{2i}(W_{\varepsilon_0}(g_i^{-1}(q), g_i'))$ since $d(g^{il}(x), w) < \varepsilon$.

We divide the proof of this lemma into two cases:

Case 1. $C_{\varepsilon}(g^{il}(x)) \subset W_{\varepsilon_3}(p, g')$,

Case 2. $C_{\varepsilon}(g^{il}(x)) \not\subset W_{\varepsilon_3}(p, g')$.

For case 1, put $\varepsilon = \tilde{\varepsilon}/2$ and let $0 < \delta = \delta(\varepsilon, g') < \varepsilon$ be the number in the definition of POTP of g'. Recall that $F^u(p, g') = F^u(p, g)$ and fix $y \in \bigcup_{y \in B_{\varepsilon}(g^{il}(x)) \cap W_{\varepsilon_3}(p, g')}$ such that $W_{\varepsilon_3}(y, g') \cap B_{\delta}(g^{il}(x)) \neq \emptyset$. For $z \in W_{\varepsilon_3}(y, g') \cap B_{\delta}(g^{il}(x))$,

$$\{\cdots, g_i^{-1}(x), x, g^{i}(x), \cdots, g^{i-1}(x), z, g^{i}(z), g^{i+1}(z), \cdots\}$$

is a δ-pseudo-orbit of g'. Thus there exists $w \in M$ such that $d(g_i^{il}(w), g^{il}(z)) < \varepsilon$ ($i \geq 0$) and $d(g_i^{-i}(w), g_i^{-i}(g^{il}(x))) < \varepsilon$ ($i \geq 1$). Since $d(w, z) < \varepsilon$ and $d(z, g^{il}(x)) < \delta < \varepsilon / 2$, we have $d(g^{il}(x), w) < \tilde{\varepsilon}$. Therefore $d(g_i^{-i}(w), g_i^{-i}(g^{il}(x))) < \varepsilon$ for all $i \geq 0$, and so $w \in C_{\varepsilon}(g^{il}(x))$ by claim 1.

Obviously, there is $\tilde{k} = \tilde{k}(z) > 0$ such that $g^{nk}(z) \in V_{\varepsilon}(p) = \bigcup_{y \in F^u(p, g')} W_{\varepsilon_3}(y, g')$. By the choice of ε and by the definition of $F^u(p, g)$ we have $B_{\varepsilon}(g^{nk}(z)) \cap W_{\varepsilon_3}(p, g') = \emptyset$. However, $w \in C_{\varepsilon}(g^{il}(x)) \subset W_{\varepsilon_3}(p, g')$ implies $(g^{nk}(w)) \in W_{\varepsilon_3}(p, g')$. Thus $g^{nk}(w) \in B_{\varepsilon}(g^{nk}(z)) \cap W_{\varepsilon_3}(p, g') \neq \emptyset$ (since $d(g^{nk}(w), g^{nk}(z)) < \varepsilon$). This is a contradiction and so the lemma is proved for case 1.

For case 2, take $k_1 k_0$ such that $k_1 \geq k_1$ implies $C_{\varepsilon}(g^{il}(x)) \cap V_{\varepsilon}(p) \neq \emptyset$. By the choice of ε,
for all $k \geq k_1$ since $\dim \pi(C^u_{\varepsilon}(g^l(x))) < \dim W^u_{\varepsilon_3}(p, g')$ (see (2)). To simplify we write

$$W_k(p) = \bigcup_{y \in g' - nk(\pi(B_\varepsilon(g^n((C^u_{\varepsilon}(g^l(x)) \cap V_k(p))))))} \mathcal{W}^u_{\varepsilon_3}(y, g'),$$

$$W(p) = \bigcup_{k \geq k_1} W_k(p) \cup W^u_{\varepsilon_3}(p, g').$$

Then $W(p) \subset \Gamma(p)$ and

$$\pi(W(p)) = \bigcup_{k \geq k_1} \pi(W_k(p)) \cup \{p\}$$

$$= \bigcup_{k \geq k_1} g'^{-nk}(\pi(B_\varepsilon(g^{nk}(C^u_{\varepsilon}(g^l(x)) \cap V_k(p)))))) \cup \{p\}$$

is not a neighborhood of p in $W^u_{\varepsilon_3}(p, g')$.

Claim 2. Put $\varepsilon = \varepsilon/2$ and let $\delta = \delta(\varepsilon, g') < \varepsilon$ be the number in the definition of POTP of g'. Then we have $B_\delta(g^l(x)) \subset W(p)$.
For every \(z \in B_\delta(g'^i(x)) \setminus W^s_w(p, g) \), there exists \(w \in M \) such that \(d(g'^i(w), g'^i(z)) < \epsilon \) and \(d(g'^{-i-1}(w), g'^{-i-1}(g'^i(x))) < \epsilon \) for all \(i \geq 0 \) since

\[
\{\cdots, g'^{-1}(x), x, g'(x), \cdots, \\
g'^{-1}(x), z, g'(z), g'^2(z), \cdots\}
\]
is a \(\delta \)-pseudo-orbit of \(g' \). Thus \(d(g'^{-i}(w), g'^{-i}(g'^i(x))) < \epsilon \) for all \(i \geq 0 \) (since \(d(g'^i(x), w) \leq d(g'^i(x), z) + d(z, w) < \epsilon + \delta < \epsilon \)), and so \(w \in C_\epsilon^\delta(g'^i(x)) \) by claim 1. Fix \(\overline{k} = \overline{k}(w) \geq k_1 \) such that \(w \in V_{\overline{k}}(p) \cap C_\epsilon^\delta(g'^i(x)) \). Then \(g'^{nk}(z) \in B_\epsilon(V_0(p) \cap g'^nk(C_\epsilon^\delta(g'^i(x)))) \) since \(d(g'^{nk}(w), g'^{nk}(z)) < \epsilon \). Thus we have \(z \in W_{\overline{k}}(p) \subset W(p) \).

By claim 2 we have \(\pi(B_\delta(g'^i(x))) \subset \pi(W(p)) \). If we establish that \(\pi(B_\delta(g'^i(x))) \) is a neighborhood of \(p \) in \(W^u_\epsilon(p, g') \), then we get a contradiction and therefore the proof of this lemma is completed.

If \(\pi(B_\delta(g'^i(x))) \) is not a neighborhood of \(p \) in \(W^u_\epsilon(p, g') \), then for every \(i > 0 \) there is \(y_i \in W^u_\epsilon(p, g') \) such that \(y_i \notin \pi(B_\delta(g'^i(x))) \) and \(d(y_i, p) < \frac{1}{i} \). Since \(\overline{W}^s_\epsilon(y_i, g') \to W^s_\epsilon(p, g') \) as \(i \to \infty \),

\[
\overline{W}^s_\epsilon(y_i, g') \cap B_\delta(g'^i(x)) \neq \emptyset
\]
for sufficiently large \(i \) and thus \(y_i \in \pi(B_\delta(g'^i(x))) \). This is a contradiction and so \(\pi(W(p)) \) is a neighborhood of \(p \) in \(W^u_\epsilon(p, g') \). For any case lemma 5 was proved.

The proof of the transversality at \(x \) for case \(1 \leq \text{Ind } \Lambda_1(f) \leq \dim M - 2 \) follows from lemma 5. Indeed, since \(\exp_p(E'_{v_2}(g'^i(x))) \) meets transversely \(W^s_\epsilon(p, g') \) at \(g'^i(x) \), we have

\[
T_{g'^i(x)}M = T_{g'^i(x)}\exp_p(E'_{v_2}(g'^i(x))) + T_{g'^i(x)}W^s_\epsilon(p, g')
= T_{g'^i(x)}W^s(g'^i(q), g') + T_{g'^i(x)}W^s_\epsilon(p, g')
\]
by (4). Thus

\[
T_xM = T_xW^s(p, g') + T_xW^s(q, g')
= T_xW^s(x, g) + T_xW^s(x, g)
= T_xW^s(x, f) + T_xW^s(x, f).
\]
Therefore the proof of the proposition is completed.
References

Department of Mathematics
Kanagawa University
Rokkakubashi, Kanagawa-ku
Yokohama 221, Japan