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To realize a brain-machine interface to assist swallowing, neural signal decoding is indispensable. Eight
participants with temporal-lobe intracranial electrode implants for epilepsy were asked. to swallow during
electrocorticogram (ECoG) recording. Raw ECoG signals or certain frequency bands of the ECoG power were
converted into images whose vertical axis was electrode number and whose horizontal .axis was time in
milliseconds, which were used as training data. These data were classified with four labels (Rest, Mouth open,
Water injection, and Swallowing). Deep transfer learning was carried out using AlexNet, and power in the high-y
band (75-150 Hz) was the training set. Accuracy reached 74.01%, sensitivity reached 82.51%, and specificity
reached 95.38%. However, using the raw ECoG signals, the accuracy obtained was 76.95%, comparable to that of
the high-y power. We demonstrated that a version of AlexNet pre-trained with visually meaningful images can be
used for transfer learning of visually meaningless images made up of ECoG signals. Moreover, we could achieve
high decoding accuracy using the raw ECoG signals, allowing us to dispense with the conventional extraction of
high-y power. Thus, the images derived from the raw ECoG signals were equivalent to those derived from the high-

vy band for transfer deep learning.
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1. Introduction

Swallowing is a fundamental function of life and its
disturbance (dysphagia) causes malnutrition and
aspiration. Moreover, the latter can lead to aspiration
pneumonia and high mortality rates.! Deaths from
pneumonia are increasing rapidly/ due to population
aging, and most cases of pneumonia in the elderly are
aspiration  pneumonia.? /Stroke>  * and neural
degenerative disease™ 4 lalso promote dysphagia.
Adopting different postures and modifying the bolus
consistency are widely accepted in clinical practice as
treatmients for dysphagia.” Peripheral electrical
stimulation® ° and/non-invasive brain stimulation!® are
also under study as emerging therapeutic strategies. The
final goal of our research is the realization of a swallow-
assisting brain-machine interface (BMI) to control a
device supporting swallowing, a novel approach to the
treatment of dysphagia.

The decoding method is a key technology in the
realization of such a swallow-assisting BMI. The
prevailing view is that the brainstem is solely
responsible for the control of swallowing.!! However,
non-invasive methods such as electroencephalography
(EEG),'> 13 positron emission tomography (PET),!
near-infrared  spectroscopy  (NIRS)", transcranial

magnetic stimulation (TMS),!® functional magnetic
resonance imaging (fMRI),!7-19 and
magnetoencephalography  (MEG),?> 2! implicate
multiple cortical sites in swallowing, including the
sensorimotor cortex, the insula, the premotor cortex, the
frontal operculum, the anterior cingulate gyrus,' 14 1721,
etc. The lateral sensorimotor cortex, which corresponds
to 'the orofacial cortex, is particularly involved.?
Therefore, cortical signals could potentially provide
features for the decoding of swallowing intention.
Previous studies have detected swallowing motor
imagery using scalp EEG signals.!? 2324

Studies with intracranial electrodes have shown that
in machine learning, classification accuracy is better
using high-y-band (> 50 Hz) activities than using lower
frequencies.”® The y band is a key oscillation that
reflects the neural processing of sensory, motor, and
cognitive events,”> 27 and shows better functional
localization than does lower-frequency activity.2® Scalp
EEG is not suitable for recording activities in high-y
band and so the high-y activities must be recorded with
intracranial electrodes that yield electrocorticograms
(ECoGs). No studies using ECoG signals for the
decoding of swallowing intention have been reported.

In previous BMI studies, a support vector machine
(SVM)® and sparse linear regression (SLiR)?® have
been used to decode hand movements from intracranial



electrode data. Recently, a deep learning method has
been used for decoding such signals,”® but the decoder
was trained on individual subjects. Thus, the ECoG
datasets available for training were small, and a
supervised learning model (i.e., an SVM) was used.
However, if we want to use a deep learning method, a
large dataset is indispensable, and deep learning from
scratch in one individual is difficult. To solve this
problem, we chose the approach of transfer learning.

The deep transfer learning method is currently used
in medical imaging fields, such as abdominal ultrasound
imaging®®, histological imaging’!, and computed
tomography (CT) of the brain.*? Deep learning from
scratch is also effective in medical imaging®. In these
studies, the training dataset is visually meaningful and
transfer learning is effective. However, when working
with ECoG signals, unaided visual inspection can detect
epileptic activities, such as spiking, but cannot
determine whether these signals contain motor or
swallowing information. The published studies on deep
learning of brain signals such as EEG and MEG have all
carried out deep learning from scratch.**° Therefore, it
remains unclear whether transfer learning is feasible
with a visually meaningless ECoG dataset that is only
formally an image. In this study, we tested whether
transfer learning for the decoding of swallowing
intention can be effective with such images.

When a fully deep network structure such as a
convolutional neural network (CNN) is trained with
small numbers of data, problems of overfitting occur,
leading to low performance metrics and /low
generalization power.*! In the field of machine learning
for the interpretation of medical images, the amount of
data available for research is limited—a very common
issues This problem is solved by transfer learning. The
concept of transfer learning is that a model already
trained with larger datasets is re-used for a new but
smaller dataset with which its pretrained learning
parameters are shared. During adaptation to the new
dataset, only the last fully connected layers are re-
trained on the new dataset with initial random weights.
Transfer learning can reduce training calculations and
memory cost, and provide a new model with powerful
feature extraction.’> Transfer learning on medical
images shows efficacies in accuracy, training time, and
error rate.’® 3 In this study, we used AlexNet for
transfer learning to subsequently classify swallowing-
related ECoG signals.

AlexNet is the first convolutional neural network to
achieve the highest classification accuracy, which was
recorded at the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) in 2012.** This deep
structure has eight main layers. First five layers are
convolutional layers, where the features of images are
extracted. Each convolutional layer is followed by a
layer of rectified linear units. (ReLU), which apply an
activation function. After each convolutional layer, a
max pooling is used to reduce the network size. The last
three layers are fully connected, and the output of the
last layer produces 1000.class labels.

In this study, we aimed to decode swallowing
intention using ECoG signals. We asked participants to
swallow a water bolus at their own pace, and recorded
their ECoG. signals during this activity. To ensure a
clear ECoG without contamination from myoelectric
signals, we asked the participants to avoid all
movements during the test except swallowing. We used
a transfer learning method based on AlexNet for the
investigation of swallowing decoding, where the last
layer was replaced by four output layers, signaling rest,
mouth opening, water injection, and swallowing,
respectively. The ECoG signals were converted into 227
x 227 x 3 pixels, which were used as the training
dataset. We explored several dataset options, such as
using all implanted electrodes versus orofacial
electrodes only and using raw ECoG signals versus the
power in certain frequency bands. We hypothesized that
AlexNet-based transfer learning using ECoG signals
would be effective for the classification of swallowing
intention (confirmed), and that if we selected the
orofacial ECoG signals as features for classification
rather than using all electrodes, the decoding accuracy
would improve  (confirmed). = Moreover, we
hypothesized that the y band would be better for
decoding than the raw ECoG signal (disconfirmed) or
the lower-frequency bands (confirmed).

2. Methods

2.1. Participants

Eight patients with intractable epilepsy were recruited
for this study (four males and four females, 15-51 years
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Clinical profiles

Number of
= . . K Number of Number of Number of
Participant Age/sex Diagnosis Orofacial electrodes ! ; o
Swallowing Instances Mouth Openings Water Injections
(Total Electrodes)
P1 36y /F LTLE 18 (68) 31 31 31
P2 30y /F L TLE 20 (84) 41 41 41
P3 18y /F RTLE 18 (55) 27 27 27
P4 24y /M LTLE 15 (69) 34 34 34
P5 51y /M LTLE 20 (72) 38 38 38
P6 28y /M RTLE 20 (96) 27 27 27
P7 20y /M LTLE 20 (94) 33 33 33
P8 15y /F LTLE 20 (68) 37 37 37
M, Male; F, Female; R, Right; L, Left; TLE, Temporal lobe epilepsy
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Fig. 1. Clinical profiles. (a) Numbers of orofacial and total electrodes and numbers of three different triggers in each participant are
shown in the table. (b) The placements of the implanted electrodes are indicated. Black color indicates electrodes excluded from the
analyses because of contamination such as severe noise or epileptic discharges. The central sulcus is indicated by the white dashed line.
A, anterior; P, posterior.

of age: 27.8 + 11.6 y) (Fig. 1a) from April 2014 to
August 2019. All participants and their guardians were 2.2. Electrode types and implantation sites
informed of the purpose and possible consequences of
this study, and written, informed consent was obtained.
The present study was approved by the Ethics
Committee of Osaka University Hospital (Nos. 08061
and 16469).

Several types of electrodes (Unique Medical Co. Ltd.,
Tokyo, Japan), including grid, stripe, and depth types,
were implanted in the subdural space during a
conventional craniotomy that was part of clinical
surgery for epilepsy. We selected patients with planar-
surface platinum grid electrodes (4 x 5 array) placed



over the lateral portion of the central sulcus, which
could be used as orofacial electrodes (Fig. 1b). The
numbers of total implanted electrodes and orofacial
electrodes in each participant are given in Fig. la
(orofacial electrodes, 18.9 + 1.8; all electrodes, 75.8 +
14.3). The diameter of the electrodes was three or five
mm, and the inter-electrode center-to-center distance
was five, seven, or ten mm.

Preoperative structural magnetic resonance imaging
(MRI) was obtained at 1.5 or 3.0 Tesla. Three-
dimensional brain renderings were then created by
FreeSurfer (https://surfer.nmr.mgh.harvard.edu) using
the MRI volume. Images of the implanted electrodes
were obtained from postoperative CT scans and were
overlaid onto the 3D brain renderings, and the Montreal
Neurological Institute (MNI) coordinates of the
implanted electrodes were obtained with Brainstorm
software (http:/neuroimage.usc.edu/brainstorm/). The
locations of the implanted electrodes were confirmed by
intraoperative photographs.

2.3. ECoG recording and data preprocessing

The ECoG signals were measured with a 128-channel
digital EEG system (EEG 2000; ~Nihon Kohden
Corporation, Tokyo, Japan) and digitized at a_sampling
rate of 10,000 Hz. At this point, electrodes providing
data contaminated with external noise or epileptic
discharges were excluded from further analysis.

The ECoG signals were then down-sampled to 1,000
Hz using-BESA Research software (BESA GmbH,
Grafelfing, Germany), which was combined with
passage through a/ bandpass filter. (0.3-333 Hz) to
prevent aliasing and a 60-Hz notch filter to eliminate the
AC line noise: In each participant, the ECoG signals
were then digitally re-referenced to a common potential
averaged across all implanted electrodes.

2.4. Behavioral procedure

The experiments were performed approximately one
week after surgical electrode placement when all
participants had fully recovered from surgery. The
participants were asked to sit in a chair and to remain

still, and without moving their mouth in particular, for
three minutes. We defined this period as the rest state.
The participants were then instructed to open their
mouths, and the examiner injected 2 mL of water into
the mouth with a syringe. We requested that the
participants swallow the water bolus at their own pace
and without external cueing, to prevent erroneous
volitional water swallowing. (aspiration). To ensure
acquisition of clear ECoGs without contamination from
myoelectric signals, we asked.the participants to avoid
all movements during the test except swallowing. After
we had confirmed that_the participants had completed
one swallowing moyement, the next water bolus was
administered.

2.5. Monitoring of swallowing

To “ensure noninvasive monitoring, we used an
electroglottograph (EGG), a microphone, and a motion-
tracking system. Our EGG was a laryngograph
(Laryngograph Ltd, London, UK) configured to record
the '‘meck impedance change due to swallowing
movements (Fig. 2a).** A pair of electrodes was placed
on' the neck skin below the thyroid cartilage at an
interelectrode center-to-center distance of 25 mm and
was held in place by an elastic band. Sounds of
swallowing due to the bolus passing through the
pharynx were detected by a throat microphone (Fig.
2b).* We connected the throat microphone (Inkou
mike; SH-12iK, NANZU, Shizuoka, Japan) to the
laryngograph to record the swallowing sounds on the
same trace. The shape of the microphone was arched to
fit around the participant’s neck. The sampling rate of
the laryngograph and throat microphone was 24 kHz.
We captured the motion of the participants at 30
frames per second with a motion-tracking system newly
developed by us using Kinect v2 (Microsoft, Redmond,
Washington, USA), which we termed the simple
swallow-tracking system (SSTS).* The participants
were seated facing Kinect v2, which was placed on a
tripod at a distance of one meter, and their mouth and
throat movements were captured. An electric stimulator
(NS-101; Unique Medical, Tokyo, Japan) supplied
digital synchronizing signals to the laryngograph and a
128-channel digital EEG system. The signals were also
converted into light flashes by an LED, which were
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Fig. 2. Across-trials averaged impedance waveforms of an
electroglottograph (a) and a throat microphone (b), all from one
participant (P1).  For analysis, the onset of swallowing was
defined as the peak time of an impedance waveform that had
been marked as a swallow. (c) The graphical user interface we
used for synchronizing multimodal data during display.

captured by the RGB camera of the Kinect v2 system.
The digital triggers and LED flashes enabled us to place
in time registry the multimodal data streams produced
by the EGG, microphone, motion-tracking system, and
ECoG. To facilitate this operation, we programmed an
original graphical user interface (GUI) in MATLAB
(MathWorks, Natick, MA, USA) that enabled us
synchronize the multimodal data streams and display
them at the same time (Fig. 2c).

2.6. Signal segmentation based on swallowing-
related events

2.6.1. Mouth-open triggers

All swallowing-related events were captured by the
Kinect v2 camera.*® Bécause~ of the precise
synchronization of the video and ECoG signals, we
could use the video to detect the time at which the
participant opened their mouth, and we inserted mouth-
open triggers into the ECoG data at that time.

2.6.2. Water-injection triggers

Using the video, we could also detect the time when the
examiner injected water into the participants’ mouth,
and we inserted water-injection triggers into the ECoG
data at that time.

2.6.3. Swallow triggers

Swallowing activities caused swallowing-related
impedance changes in the neck, and this impedance
waveform was clearly associated with the swallowing
activities.** The laryngograph was used to identify the
signal most reliably related to swallowing.** The
swallowing onset time was determined visually at the
time when the impedance waveform reached the peak
(Fig. 2a). Swallowing sounds occurred frequently as the
bolus of water passed through the pharynx,* and their
evaluation in conjunction with the EGG helped us to
judge whether the impedance change was caused by
swallowing. Additionally, we confirmed that the
changes in impedance and the sounds corresponded to
water swallowing using the video stream captured by
the Kinect v2. Based on these convergent data, we
inserted swallow triggers, which were taken as the
swallowing onset times, into the ECoG data.

The numbers of each type of trigger were the same
for a given participant, as shown in Fig. la (average:
33.5+ 5.1 times per participant for all triggers).
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used for transfer deep learning with AlexNet. The swallowing decoder classified the unlabeled data to four labels. The performance of

transfer learning was evaluated by ten-fold cross-validation.

2.6.4. Training images

AlexNet assumes that the input data are images.
Therefore, we converted the waveform data into color-
scale images using the imagesc.m function in MATLAB
R2019b. The vertical axis of an image is electrode
number and the horizontal axis is time (Fig. 3a). The
data were z-normalized. Data epochs 250 ms long were
extracted starting 250 ms before each trigger and after
each 100-ms interval thereafter. Five data.of 250 ms
were acquired at each trigger. One datum consisted of n
electrodes x 250 data points. This' was converted by
MATLAB R2019b into a color-scaled image using the
imagesc.m function and saved as a .jpg file of 875 x
1167 x 3 pixels (Fig. 3a). We prepared. three image
datasets using-the mouth-open, swallow, and water-
injection triggers, respectively. Moreover, the same
number of images was also created from the rest-state
data. Therefore, four types of labels (Mouth-open, Rest,
Swallow, and Water-injection) were used. The number
of images created were: 620 in participant one (P1); 820,
P2; 540, P3; 680, P4; 760, P5; 540, P6; 660, P7; and
740, P8 (mean + standard deviation (SD), 670 £ 101.4).
Two types of features were used for preparing the
training images, namely the raw ECoG signals and the
power in certain frequency bands. A bandpass filter
using a two-way least-squares finite impulse response
(FIR) filter (pop_eegfiltnew.m in the EEGLAB toolbox)
was applied to the total ECoG signal before data
extraction (6 band, 1-4 Hz; 8 band, 4-8 Hz; o band, 8—
13 Hz; B band, 13-30 Hz; low-y band, 30-50 Hz; high-y
band, 75-150 Hz). To power signals, we used the

Hilbert transform.** We created several alternative

decoders trained with all.implanted electrodes, with
only /the orofacial. electrodes, or with the orofacial
electrodes less one.

2.7. Spectral analysis

The/ECoG signals of each participant were time-locked
to'each trigger, defined as 0 s, and extracted. A time—
frequency analysis of the time-locked ECoG signals was
performed in EEGLAB version 14.1.2b
(http://sccn.ucsd.edu/eeglab/) with the frequency range
set at 1-200 Hz and the spectral power in dB calculated
in 1-Hz bins with 200 data points (i.e., from -1.5 to 2.0 s
in every 17-ms window). The baseline for the time—
frequency analysis of each electrode was the initial 0.5 s.
The power spectrum was computed using the short-time
Fourier transform*’ over a sliding latency window and
averaged across data trials.

2.8. Deep transfer learning with AlexNet

2.8.1. Transfer learning

We used the open source deep learning framework
AlexNet* with MATLAB for training and testing the
neural networks. All training and testing were



performed on a Windows 64-bit workstation with a 2.3
GHz six-core Inter Xeon central processing unit, 48 GB
of memory, and an NVIDIA GeForce GTX 1080
graphical processing unit.

We used publicly available weights for AlexNet.
The final fully connected layer was replaced with four
outputs layers corresponding to the four image
categories (i.e., mouth open, rest, swallow, and water

injection) (Fig. 3b), and initialized with random weights.

The final layer was replaced with a classification output
layer. For training, the weights for the five
convolutional layers were frozen to extract features, and
the learning rates for the fully connected layers were
fixed at 0.001.

The training images of 875 x 1167 x 3 pixels were
re-sized to 227 x 227 x 3 pixels for data input. For
transfer learning, we re-trained the network with
MATLAB. We used the stochastic gradient descent with
momentum optimizer.* Swallowing decoders were
trained either with the image data sets of individual
participants or with the total image data set of all
participants.

2.8.2. Model testing

The performances of the swallowing decoders were
evaluated by 10-fold cross-validation, that is, by
randomly splitting the image-datasets into training data
and testing data. In each wvalidation, we calculated
accuracy, and sensitivity:.

2.9. Comparison with an SVM decoding model

To compare the accuracy of transfer learning with a
reference method, we used a multi-class SVM to
classify the high-y power images to the four labels.
From the high-y power signals calculated by the Hilbert
transform, 250-ms-long data epochs were extracted
starting 250 ms before each trigger and after each 100-
ms interval thereafter. The epochs for each orofacial
electrode were summed and the result treated as a
decoding feature. The number of decoding features were
744 in P1, 984 in P2, 648 in P3, 816 in P4, 912 in P5,
648 in P6, 792 in P7, and 888 in P8 (mean + SD, 804 +
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Fig. 4. Oscillatory activities evoked by mouth opening, water
injection, and swallowing in the cerebral cortex in a
representative participant (P1). (a) Shown is the reconstructed
MRI with orofacial electrodes. The numbers correspond to the
electrode numbers. The central sulcus is indicated by the white
dashed line. (b) Time—frequency maps are shown from -1.5 to
2.0. s around the mouth-open, water-injection, and swallow
triggers. The mouth-open-triggered time—frequency plot from
Ch 7, which was attached to the precentral gyrus, shows
decreases in -band power at 0 s. Notable power increases in
the high-y band are also observed at 0 s in the water-injection-
triggered time—frequency plot from Ch 3, which was attached
to the postcentral gyrus. High-y power increases specific to
swallowing appear from -1.5 s to 0 s in Ch 9, which was
attached to the subcentral area. A, anterior; P, posterior; Ch,
channel.

121.7). The performances of the SVM decoders were
evaluated by 10-fold cross-validation.

2.10. Statistics

For the statistical evaluation of the swallowing decoders,
we used the single-sided Wilcoxon rank-sum test in
individual analyses, and the single-sided Wilcoxon



signed-rank test in group analyses. We applied a
conservative Bonferroni correction to correct for
multiple comparisons and used a corrected significance
threshold of p < 0.05.

3. Results

3.1. Time—frequency analyses

The time—frequency maps (TFM) were calculated from
the orofacial electrodes using mouth-open, water-
injection, and swallow triggers in a representative
participant (P1). The third electrode (Channel 3; Ch 3),
Ch 7, and Ch 9 were placed on the postcentral gyrus, the
precentral gyrus, and the subcentral area, respectively.
The last is a narrow gyrus between the caudolateral
extreme of the central sulcus and the lateral sulcus (Fig.
4a). In the P1 mouth-open data, the low frequency
bands of less than 30 Hz were depressed in the
precentral gyrus at 0 s (Fig. 4b: TFM of Ch 7 with the
mouth-open trigger). When the water bolus was injected
into the mouth, obvious high-y activities were observed
in the postcentral gyrus at 0 s (Fig. 4b: TEM of Ch 3
with the water-injection trigger). High=y activities were
localized in the subcentral area immediately before the
swallow trigger (Fig. 4b: TFM of Ch 9 with the swallow
trigger).

From mouth opening to swallowing, several
oscillatory activities were observed with different
timings in different locations. Almost all participants
exhibited generally the same spatiotemporal profiles.
This result implies’ that the orofacial electrodes were
informative for decoding the timing of mouth opening,
water injection, and swallowing.

3.2. Decoding using the raw ECoG signal from
orofacial electrodes

3.2.1. Orofacial electrodes vs. all electrodes

N.S.

N.S.

100 * corrected p = 0.0117

76.95+4.12

75}

50

251
0

Orofacial

73.37+£5.60 73.52+4.67

Random Transposed

62.35£3.58

All

Fig. 5. Classification accuracy for raw ECoG signals. The
inclusion ofonly orofacial electrodes in creating the training
image dataset allows significantly higher accuracy than using
all electrodes (single-sided Wilcoxon signed-rank test with
Bonferroni correction, corrected p < 0.05). Changing the order
in which the electrodes are presented on the vertical axis
(“Random”) and transposing the vertical and horizontal axes
(“Transposed”) has no influence on decoding accuracy
(single-sided Wilcoxon signed-rank test with Bonferroni
correction). N.S., not significant.

Accuracy (%)

Training images generated from the raw ECoG signal
were used to prepare four types of dataset. Two of them
were derived from orofacial electrodes only and from all
electrodes. Transfer learning was carried out with each
participant, and the individual classification accuracies
for labelling the four different types of images were
calculated. The average accuracy of the orofacial-
electrodes group was significantly higher than that of
the all-electrodes group (76.95 + 4.12 vs. 62.35 + 3.58,
mean * standard error (SE), corrected p = 0.0117,
single-sided Wilcoxon signed-rank test) (Fig. 5).
Therefore, the exclusion of the non-orofacial electrodes
from the dataset results in more effective classification
than using all electrodes.

3.2.2. Changing the order of the electrodes

The vertical axis of the training images indexed the
electrodes used (Fig. 3a). By default, the electrodes
were arranged in ascending order from the top of the
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Fig. 6. A performance comparison between use of high-y power and raw ECoG signals for training. (a) No significant accuracy
difference is observed between the high-y power and raw ECoG groups (single-sided Wilcoxon signed-rank test). (b) No significant
sensitivity difference is observed in any labeling group between high-y power and raw ECoG signals (single-sided Wilcoxon signed-
rank test with Bonferroni correction). (¢) A significant specificity difference is observed in the swallowing group between high-y
power and raw ECoG (single-sided Wilcoxon signed-rank test with Bonferroni correction, corrected p < 0.05).

vertical axis (Normal order). We evaluated whether
electrode order was meaningful for decoding. The
accuracy calculated from the normal-order dataset
(“Orofacial” in Fig. 5) was compared with that
calculated from a random-order dataset (“Random’” in
Fig. 5). Raw ECoG signals were used, and transfer
learning was done in each participant individually. We
found no significant differences. Therefore; the order of
arrangement of the electrode data in the training images
does not influence decoding accuracy.

3.2.3. Effect of transposing the axes of the training
images

By default, the vertical axis indexed the electrodes used
and the horizontal axis was time in milliseconds (Fig.
3a). We evaluated whether image orientation was
meaningful for. decoding. We transposed the vertical
and horizontal axes (“Transposed” in Fig. 5) and
compared the resulting accuracy with that of the default
dataset (“Orofacial” in Fig. 5). Raw ECoG signals were
used, and transfer learning was performed in each
participant individually. We found no significant
differences. Therefore, whether the wvertical or
horizontal axis is an electrode index or time in
milliseconds does not influence decoding accuracy.

3.3. High-y power vs. raw ECoG signal

Accuracy calculated after training with high-y power
datasets was compared with that calculated after
training with datasets derived from the raw ECoG
signals. Transfer learning was done in each participant.
We found no significant differences (Fig. 6a). We then
evaluated the two groups for sensitivity for each label
and found no significant differences using a Bonferroni
correction (Fig. 6b). Next, we evaluated the two groups
for specificity and found a significant difference in the
Swallowing label (corrected p = 0.0469, single-sided
Wilcoxon signed-rank test with Bonferroni correction)
(Fig. 6c¢). The sensitivity and specificity for swallowing
calculated from high-y power were higher than those
calculated from the raw ECoG.

3.4. Frequency band analyses

The results calculated with datasets derived from the
power feature in six different frequency bands were
compared for accuracy. Transfer learning was done in
each participant individually. The maximum values of
accuracy were obtained from the high-y band (74.01% +
2.07% [mean + SE]) and the differences from the other
bands were significant (p = 0.0195, single-sided
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Fig. 7. Shown are the results of transfer learning using images
derived from the high-y band. The accuracy of classification
resulting from transfer learning using images derived from the
power feature of the high-y band is significantly higher than
that of the power feature in other bands (single-sided
Wilcoxon signed-rank test with a Bonferroni correction).

Wilcoxon signed-rank test with a Bonferroni correction)
(Fig. 7). Therefore, high-y power was informative for
decoding.

3.5. Electrodes informative for classification, by
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For mouth-open, water-injection, and swallow labels in
each participant, we compared sensitivities between two
image datasets calculated from high-y power. One
dataset comprised images derived from the orofacial
electrode data, and the other comprised images derived
from all orofacial electrodes.but one. We repeated this
analysis for each possible choice of the deleted
electrode. In P1, for example, the participant had 18
implanted electrodes, leading to 18 comparisons. In
each label, we evaluated how much the sensitivities
were affected by the deletion, using the single-sided
Wilcoxon rank-sum test with a Bonferroni correction to
decide significance.

35.1. Results for a representative participant (P1)

In P1, electrode deletions resulting in decreased mouth-
open label sensitivity were located mainly on the
superior temporal gyrus (STG) and anterior to the
central sulcus. For the water-injection label, the
important electrodes were located on the lateral
postcentral gyrus, and for the swallow label, along or
close to the Sylvian fissure (Fig. 8a). There were no
significant changes in all label, however. The data
indicated the different distribution patterns of electrodes

(b)

Swallow

(%)

Fig. 8. Shown are electrodes informative for decoding. (a) In representative participant 1, the percent decrease in sensitivity resulting
from exclusion of a given electrode’s data from the analysis is shown on that electrode’s location. In mouth-open decoding, a greater
than ten percent decrease is observed in the superior temporal gyrus in regions anterior to the central sulcus. In water-injection
decoding, greater than ten percent decreases are confined to the postcentral gyrus. In swallow decoding, greater than ten percent
decreases are observed in regions along the Sylvian fissure. (b) Electrodes showing greater than ten percent decreases or the greatest
decrease of all participants in each label are shown in overlay on the MNI standard brain. Top row, left hemisphere; bottom row, right.
The distribution of electrodes informative for mouth opening is diffuse. Four out of nine electrodes informative for water injection are
located on the postcentral gyrus. Electrodes informative for swallowing lie along the Sylvian fissure. Significant electrodes are
indicated with white circles (single-sided Wilcoxon rank-sum test with Bonferroni correction).



informative for classification among the three labels.

3.5.2. Electrodes informative for classification in
terms of the MNI standard brain

In each participant, the electrodes informative for
classification, defined as those resulting in a greater
than ten percent decrease or the greatest decrease in
sensitivity when excluded from the analysis, were
overlain on the Montreal Neurological Institute (MNI)
standard brain (Fig. 8b). The MNI coordinates of the
electrodes were obtained for all participants. For mouth
opening, the distribution of informative electrodes was
diffuse. One electrode located on the STG showed
significance (p = 0.0313, single-sided Wilcoxon rank-
sum test with a Bonferroni correction). Four electrodes
out of nine informative for water injection were located
on the postcentral gyrus, and two electrodes showing
significance were located on the precentral and
postcentral gyri (p = 0.0026 and 0.0313, respectively;
single-sided Wilcoxon rank-sum test with a Bonferroni
correction). The electrodes informative for swallowing
distributed along the Sylvian fissure, including the
subcentral area and the frontal operculum. However, no
significant changes in sensitivity were observed for this
label type.

3.6. Individual decoder vs. total decoder

Using -high-y power, we compared the classification
accuracy of transfer learning between that in an
individual and that in the total participant sample. The
average accuracy obtained from the individualized
decoders was greater than that obtained from training
one decoder with the all-images dataset. However, the
observed difference did not reach significance (single-
sided Wilcoxon rank-sum test) (Fig. 9).

The decoder in this study took average 0.02 s to decode
one image file.
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Fig. 9.“Comparison of classification = accuracy between
individualized transfer learning and transfer learning using all
images. No significant difference is observed (single-sided
Wilcoxon rank-sum test with Bonferroni correction). N.S., not
significant. The accuracy obtained from the SVM model was
significantly less than that obtained from individual transfer
learning. (single-sided “Wilcoxon signed-rank test with
Bonferroni correction, corrected p < 0.05)
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Fig. 10. (a) Type II error rate, Swallowing label. (b) Type I
error rate, Swallowing label. (single-sided Wilcoxon signed-
rank test with Bonferroni correction) N.S., not significant.

3.7. The deep learning decoder versus an SVM
decoder

Using high-y power calculated from orofacial electrodes,
we compared classification accuracy between transfer
learning (“Individual” in Fig. 9) and the SVM model.
The accuracy obtained from transfer learning was
significantly greater than that of the SVM (corrected p =
0.004, single-sided Wilcoxon signed-rank test with
Bonferroni correction) (Fig. 9).



3.8. False labeling and false prediction for
swallowing

Using a decoder trained on high-y power recorded from
orofacial electrodes, we evaluated the type II error rate
for Swallowing (the decoder misses the swallowing
event). Figure 10a shows the percentage of swallowing
data that were incorrectly labeled as Mouth, Rest, or
Water. Figure 10b shows the percentage incorrect
among swallowing predictions, where Mouth, Rest, or
Water labels are misclassified as Swallowing (type I
errors). The results show a tendency for the decoder to
incorrectly label Swallowing as Mouth open and Mouth
open as Swallowing. However, these tendencies did not
reach significance (single-sided Wilcoxon signed-rank
test with Bonferroni correction).

4. Discussion

In this study, deep transfer learning by AlexNet was
used for classification of ECoG signals by four data
labels, namely Rest, Mouth open, Water injection; and
Swallowing. First, we selected raw ECoG signals as
training features, and using only the orofacial electrodes,
achieved higher accuracy than we did using all
electrodes. We confirmed that in the training images,
the order of the electrodes indexed by the vertical axis,
and which variable, time or electrode, was plotted on
the vertical axis, had no influence on decoding accuracy
(Fig. 5). Next, we compared between raw ECoG signals
and power in the high-y band. Accuracy was equivalent
in the two groups. However, using high-y power yielded
higher sensitivity and specificity for the Swallowing and
Water labels (Fig. 6). High-y power also yielded
significantly greater accuracy than did lower-frequency
power bands (Fig. 7). The above results were obtained
with individual-specific transfer learning. Finally, with
high-y power, transfer learning with the all-participants
dataset showed accuracy equivalent to that of
individual-specific transfer learning. Our transfer-
learning model also demonstrated significantly higher
accuracy than did an SVM (Fig. 9).

AlexNet was intended to be trained by meaningful
images. However, the study showed that nonvisual
images derived from ECoG signals were suitable as
training images for transfer learning. Moreover,

including only data from electrodes on the orofacial
cortex in the images yielded significantly greater
decoding accuracy than using the data from all
electrodes. The interesting finding of this study is that
the accuracy achieved using raw ECoG signals for
deriving the images was comparable to that achieved
when using only the power feature of the high-y band
(75-150 Hz).

Previous studies have established the feasibility of
transfer learning for classification of medical images,
such as those obtained with ultrasound,*® MRIL* and
CT.3? These training images-are meaningful and can be
classified visually. However, the training images used in
this study were derived from ECoG signals had no
visually »meaningful content. Our study showed that
AlexNet-based transfer learning works well with
visually meaningless images.

If‘an individual-specific decoder based on a CNN is
trained up from scratch for use as a BMI, the small
dataset will be a problem. Even if that problem were
overcome, the relatively long training time would still
be an issue. Transfer learning has the potential to solve
both these problems.

The orofacial cortex, a lateral region of the central
sulcus, is activated by mouth movements,>® 3! tongue
movements,?” 2232 and swallowing.!™1-3* In the present
study, participants first opened the mouth, then the
experimenter injected a water bolus into the mouth, then
the participants swallowed. Our time—frequency maps
showed dynamic oscillatory changes in the orofacial
cortex from the time of mouth opening to swallowing.
Suppression of lower-frequency bands, including the
band, were observed in the precentral gyrus at mouth
opening. Obvious high-y activities appeared in the
postcentral gyrus when the water bolus was injected,
and swallowing was accompanied by high-y activities in
the subcentral area. Since the different activities
involved in swallowing were all evoked in the orofacial
arca, we inferred that exclusion of non-orofacial
electrodes from the training data for transfer learning
could potentially achieve higher accuracy than using all
electrodes.

Previous studies have shown that decoding using
high-y ECoG activity is more accurate than using ECoG
bands of lower frequency,? 3* which agrees with our
results. Transfer learning using high-y power showed
significantly greater accuracy than using lower-
frequency power bands, and we consider that this result



reflects a relatively more focal spatiotemporal
distribution and functional localization of the high-y
activity 2%

Contrary to our expectations, transfer learning using
high-y features showed no greater decoding accuracy
than that using the raw ECoG signals. In this study,
signals to be used as training data were converted into
images, and we infer that the images derived from the
raw ECoG signals contained all the information of the
high-y band. Therefore, the achievement of high
decoding accuracy without preprocessing for extraction
of high-y features is feasible.

Moreover, we investigated for each label the percent
decrease in classification sensitivity occasioned by the
exclusion of the data from a particular electrode. We
inferred that the higher the percent decrease, the more
important the removed electrode was for classification
of a certain label, and we term the most important
electrodes the informative electrodes. The distribution

of informative electrodes was different for each labeling.

Electrodes informative for water injection and
swallowing were distributed mainly on the postcentral
gyrus and in regions along the Sylvian fissure,
respectively, and these distributions agreed with  the
somatotopy of water injection and swallowing.?” These
results were obtained after training on the power feature
of the high-y band, indicating that specific. high-y
activities were evoked in these regions by water
injection and swallowing, respectively, and<that these
activities are effective for classification. Moreover, the
sensitivities of swallowing and water injection after
transfer learning using high-y power were higher than
those obtained using the raw ECoG signal. This result
might also indicate that swallowing and water injection
evoked specific high-y activities \in the cortex. We
demonstrated that the order of presentation of the
electrode. data along the vertical axis of the training
images had no influence on decoding accuracy. When
we transposed the vertical and horizontal axes, we
likewise observed no change in accuracy. However, for
achieving high accuracy, it is important that the
informative electrodes be included in the training
images.

On the other hand, the distribution of electrodes
informative for mouth opening was diffuse (i.e., not
localized). This result indicates that the high-y activities
related to mouth opening are not better localized than
those related to water injection or swallowing. The

number of electrodes informative for classification of
mouth opening events was greater than for water
injection or swallowing, and we infer from this that the
decoding of mouth opening using high-y power is not
robust and is relatively difficult compared with
analogous classifications to the other labels.

Moreover, our results showed a tendency for the
decoder to confuse swallowing with mouth opening.
This result may reflect the overlap of neural function
between mouth opening and swallowing because the
same oral muscles are used for both. In daily situations,
we usually swallow.after mastication, . which
underscores the need for a precise classification of
swallowing and mouth movement in a swallow-assisting
BMI. Moreover, chewing causes noise contamination of
brain signals because of masticatory muscular activity.
However, we infer that this problem may be solved if
the decoder could distinguish myoelectric from brain
signals, using a training set of electromyographic
recordings. The oral muscles are also involved
whenever. we speak or make a facial expression. The
orofacial cortex is also activated by speaking®® 7. The
problem of distinguishing between speech and
swallowing will be our future theme and we consider
that the transfer learning approach has potential in that
area.

Transfer learning using all 5360 training images
showed a decoding accuracy equivalent to that using
individual images (670 + 101.4 per participant). This
indicates that obtaining a generalized swallowing
decoder is feasible. However, our results were obtained
with data from the ECoG, which is an invasive
technology. For realizing a swallow-assisting BMI, a
non-invasive method of recording brain signals is
indispensable. Moreover, our results were obtained by
offline analysis, and the next step will be to move to
online analysis, which is needed for evaluating the
feasibility of this BMI project. Moreover, deep learning
models are data-driven systems; that is, accuracy
improves with the number of training images. In this
study, the training images were few. Therefore, further
studies with greater numbers of training images are
needed. We confirmed that transfer learning with ECoG
training datasets and based on AlexNet is effective.
However, use of a higher-performance CNN such as
VGG® might enable the achievement of still higher
decoding accuracies.



5. Conclusions

In this study, we first demonstrated that deep transfer
learning trained by ECoG signals enables classification
of signals indicating either rest, mouth opening, water
injection, or swallowing. We also demonstrated that
AlexNet, which has been trained with a large dataset of
visually meaningful images, can be used for transfer
learning trained by visually meaningless images derived
from ECoG signals. When high-y power time series and
raw ECoG signals were converted into training images,
the best accuracy achieved was 74—76%, and our study
showed that the raw ECoG signal is comparable to the
high-y activities for this purpose. In particular, the best
sensitivity and specificity of swallowing classification
that we obtained (82% and 95% respectively) was
achieved using high-y power training images. In
conclusion, transfer learning trained by signals obtained
from the ECoG is efficient for classification of
swallowing.
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