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For an algebraic number field , ( ) and˜ denote the ideal class group and the
Hilbert class field of , respectively. For an abelian group and an integer ,
means the subgroup of consisting of -th powers of the elements of . Let ( ),

( ) and ( ) be the class number, the regulator and the absolute value of the dis-
criminant of , respectively. For an integer > 1, denotes the class field of
corresponding to ray modulo . Letζ be a primitive -th root of unity. Let be a
prime and / be a real cyclic extension of degree . Let be the conductor of .
In the paper [5], we showed that ( (ζ + ζ−1)) has a subgroup which is isomorphic
to ( ) . In this paper we generalize the above result in Theorem1. And we show
that for any given integer > 1, there exist infinitely many mutually prime positive
integers such that
(1) has at most two different prime factors and any prime factor of is congruent
to 1 (mod 4),
(2) ( (ζ + ζ−1)) has a subgroup which is isomorphic to/ for some integer

>

(Corollary of Theorem 3). Further we give some applicationsof the following Theo-
rem 1.

Theorem 1. Let / be an abelian extension and be a subfield of such
that / is an extension of degree . Then( ) has a subgroup which is isomorphic
to ( ) ( ).

Proof. By Galois theory, we have the following exact sequence

Gal(˜ / )→ Gal( ˜ / )→ Gal( ∩ ˜ / )→ 0

Hence by class field theory, we have the following exact sequence

( ) / → ( ) → Gal( ∩ ˜ / )→ 0

where / is the norm map from ( ) to ( ). Now we write the class groups
additively. Let ∈ ( ) and = Gal( / ). Since ( )· ( ) = 0, we have that
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∑
σ∈ σ( ( ) ) = 0. Hence ( ) = ( ) −∑σ∈ σ( ( ) ) =

∑
σ∈ (1− σ) ( ) .

Since ∩ ˜ / is an abelian extension, the group acts trivially on Gal(∩ ˜ / )
by conjugation. From the -homomorphism maps each (1− σ) ( ) to 0, it fol-
lows that ( ( ) ) = 0. By exactness, we see that the image ( ) contains ( ) .
Since / ( ( )) has a subgroup ( )( ), we see that ( ) has a subgroup which
is isomorphic to ( ) ( ). This completes the proof.

EXAMPLE. Let = (
√

145 ) and = (ζ145 + ζ−1
145). By ( ) is isomorphic

to /4 and Theorem 1, we see that ( ) has a subgroup which is isomorphic to
/2 . And we see that ∩ ˜ = (

√
5
√

29 ).

Lemma 1. For any given integer > 1, let (1 ≦ ≦ − 1) be odd primes
such that 1 < 2 < · · · < −1. Let > 1 be an integer and = (2 1 2 · · · −1)2 +
1. If is a square-free integer, then ( (

√
)) has a subgroup which is isomorphic

to / for some integer > .

Proof. Let = (
√

) and = 2 1 2 · · · −1. Since > 1 and 1 < 2 <

· · · < −1, we see that 1 < /2. Since ≡ 1 (mod 1), we have that (1) = ßß′ and
ß 6= ß′, where ß and ß′ are prime ideals in . Now we assume that ß is a principal
ideal in for some positive integer . Then there exist integers and such that

ß =

(
+
√

2

)
and ≡ (mod 2)

Hence we have

1 =

∣∣∣∣
2 − 2

4

∣∣∣∣

that is,

±4 1 = 2 − 2

If = 0, then we have 2 = 4 1. Hence is necessarily 2 for some integer . Since
= ±2 1, we have

ß2 = ( 1) = ß ß′

Therefore we have ß = ß′. This contradicts ß6= ß′. Hence we have 6= 0. Let 0 be an
integer and 0 be the smallest positive integer satisfying

ß =

(
0 + 0

√

2

)
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that is,

ß =

(±| 0| + 0
√

2

)

Let ε = ± +
√

. Sinceε are units of , we have

ß =

(
(±| 0| + 0

√
)(∓ +

√
)

2

)

that is,

ß =

(−| 0| + 0 ± (| 0| − 0 )
√

2

)

From || 0| − 0 | > 0 and the definition of 0, we have

|| 0| − 0 | ≧ 0

Hence either| 0| − 0 ≧ 0 or −| 0| + 0 ≧ 0. So either

±4 1 = 2
0 − 2

0 ≧ 2
0( + 1)2 − 2

0( 2 + 1) = 2 2
0 ≧ 2

or

±4 1 = 2
0 − 2

0 ≦ 2
0( − 1)2− 2

0( 2 + 1) =−2 2
0 ≦ −2

Therefore in each case 41 ≧ 2 , that is, 1 ≧ /2. If ≧ , then this contradicts

1 < /2. So if ≧ , ß is not a principal ideal in . Now we assume that =
is the smallest positive integer such that ß is a principal ideal in . From the above
argument, we see that ( ) has a subgroup which is isomorphic to/ for some
integer > . This completes the proof.

Lemma 2. Let ( ) = 2 + + be an irreducible polynomial with > 0 and
≡ 1 (mod 2). Then there exist infinitely many integers such that( ) has at most

two prime factors(see Iwaniec[2, Theorem]).

Theorem 2. For any given integer > 1, there exist infinitely many mutually
prime positive integers such that
(1) has at most two different prime factors and any prime factor of is congruent
to 1 (mod 4),
(2) ( (

√
)) has a subgroup which is isomorphic to/ for some integer >

.

Proof. For any given integer > 1, let = (2 1 2 · · · −1)2 + 1, where (1≦
≦ − 1) are odd primes such that1 < 2 < · · · < −1 and > 1 is an integer.
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Then by Lemma 2, there exist infinitely many integers such that has at most two
different prime factors. It is easy to see that any prime factor of is congruent to 1
(mod 4). Hence by Lemma 1, we have this theorem.

Theorem 3. Let be an algebraic number field. Then for any given integer>
1, there exist infinitely many mutually prime positive integers such that
(1) has at most two different prime factors and any prime factor of is congruent
to 1 (mod 4),
(2) ( ) has a subgroup which is isomorphic to/ for some integer > .

Proof. By Theorem 2, for any given integer> 1, there exists a positive integer
such that

(1) has at most two different prime factors and any prime factor of is congruent
to 1 (mod 4),
(2) ( (

√
)) has a subgroup which is isomorphic to/ for some integer >

.
Let = (

√
), ( ( ) ) = 1 and = . Then ( ) has a subgroup which is

isomorphic to ( ). By contains , [ : ] = 2 and Theorem 1, we see that ( )
has a subgroup which is isomorohic to ( )2 ( ). Hence by Theorem 2, for any given
integer > 1, there exist infinitely many mutually prime positive integers such that
(1) has at most two different prime factors and any prime factor of is congruent
to 1 (mod 4),
(2) ( ) has a subgroup which is isomorphic to 2 ( )(/ ) for some integer

> .
Let ≧ 2 ( ) for any given integer > 1 and 2 ( )( / ) = / . Then we
have > . Thus this theorem is proved.

Putting = in Theorem 3, we have

Corollary. For any given integer > 1, there exist infinitely many mutually
prime positive integers such that
(1) has at most two different prime factors and any prime factor of is congruent
to 1 (mod 4),
(2) ( (ζ + ζ−1)) has a subgroup which is isomorphic to/ for some integer

> .

Theorem 4. Let be an algebraic number field and> 1 be an integer. Then
for any given integer > 1 (1 ≦ ≦ ), there exist infinitely many mutually prime
positive integers 1, 2 . . . such that
(1) has at most two different prime factors and any prime factor of is congru-
ent to 1 (mod 4),
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(2) ( 1 2··· ) has a subgroup which is isomorphic to
⊕

=1 / for some inte-
ger > .

Proof. By Theorem 2, for any given integer > 1 (1 ≦ ≦ ), there exist
mutually prime positive integers such that
(1) has at most two different prime factors and any prime factor of is congru-
ent to 1 (mod 4),
(2) ( (

√
)) has a subgroup which is isomorphic to/ for some integer

> .
Let = (

√
1
√

2 . . .
√

). Then ( ) has a subgroup which is isomorphic to⊕
=1 / . Let ( ( ) ) = 1 (1≦ ≦ ) and = . Then ( ) has a subgroup

which is isomorphic to ( ). By 1 2··· contains [ : ] = 2 and Theorem 1,
we see that ( 1 2··· ) has a subgroup which is isomorphic to ( )2 ( ). Hence by
Theorem 2, for any given integer > 1 (1 ≦ ≦ ), there exist infinitely many
mutually prime positive integers 1, 2 . . . such that
(1) has at most two different prime factors and any prime factor of is congru-
ent to 1 (mod 4),
(2) ( 1 2··· ) has a subgroup which is isomorphic to

⊕
=1 2 ( )( / ) for

some integer > .
Let ≧ 2 ( ) for any given integer > 1 and 2 ( )( / ) = / . Then
we have > . Thus we have this theorem.

Putting = in Theorem 4, we have

Corollary. Let > 1 be an integer. Then for any given integer > 1 (1 ≦

≦ ), there exist infinitely many mutually prime positive integers 1, 2 . . . such
that
(1) has at most two different prime factors and any prime factor of is congru-
ent to 1 (mod 4),
(2) ( (ζ 1 2··· + ζ−1

1 2··· )) has a subgroup which is isomorphic to
⊕

=1 /

for some integer > .

Lemma 3. Let > 1 be an integer. For given finite sets1, 2, 3 of primes sat-
isfying ∩ = φ if 6= , there exist infinitely many imaginary(resp. real) quadratic
number fields such that
(a) the ideal class group of has a subgroup which is isomorphic to/ ⊕ /

(resp. / ),

(b) all primes contained in





are decomposed in ( = 1)

remain prime in ( = 2)

are ramified in ( = 3)
(see Yamamoto[8, Theorem 2]).
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Theorem 5. Let be an algebraic number field and be any finite abelian
group. Then there exist infinitely many mutually prime positive square-free integers
such that
(1) ≡ 1 (mod 4),
(2) ( ) has a subgroup which is isomorphic to .

Proof. Let be any finite abelian group. Then is isomorphic to
⊕

=1 /

for some integers > 1 and ≧ 1. It suffices to prove this theorem for the case
> 1. By Lemma 3, for given integer (1≦ ≦ ), there exist mutually prime

positive square-free integers such that
(1) ≡ 1 (mod 4),
(2) ( (

√
)) has a subgroup which is isomorphic to/2 ( ) .

Now we put = 1 2 · · · . Let = (
√

1,
√

2 . . .
√

). Let ( ( ) ( )) = 1
and = . Then ( ) has a subgroup which is isomorphic to ( ) and ( )
has a subgroup which is isomorphic to

⊕
=1 /2 ( ) . By contains , [ :

] = 2 and Theorem 1, we see that ( ) has a subgroup which is isomorphic to
( )2 ( ). Hence ( ) has a subgroup which is isomorphic to

⊕
=1 / . There-

fore by Lemma 3, we have this theorem.

Putting = in Theorem 5, we have

Corollary. Let be any finite abelian group. Then there exist infinitely many
mutually prime positive square-free integers t such that
(1) ≡ 1 (mod 4),
(2) ( (ζ + ζ−1)) has a subgroup which is isomorphic to .

REMARK. ∩ = ˜, if ( ) = 1.

The Brauer-Siegel theorem. Let be a normal algebraic number field of degree
over . Then

log( ( ) ( ))

log
√

( )
→ 1 as

log ( )
→ 0

(see Lang[3, Chapter IX]).

Theorem 6. Let be a totally imaginary algebraic number field and( ) = 2
for an integer ≧ 0. Let be an odd prime such that ≡ 3 (mod 4). Then there
exist infinitely many primes such that for any given integer> 1, ( ) has a
subgroup which is isomorphic to ( (

√− )) with ( (
√− )) > .

Proof. We assume that ( )< . Let = (
√− ) and = . Then ( )

has a subgroup which is isomorphic to ( ). By contains , [ : ] = 2 and
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Theorem 1, ( ) has a subgroup which is isomorphic to ( )2 ( ). From ( ) = 2
for an integer ≧ 0 and 2∤ ( ), we see that ( )2 ( ) = ( ). Therefore ( ) has
a subgroup which is isomorphic to ( ). On the other hand, we seethat ( ) = 1
and ( ) = . Hence by the Brauer-Siegel theorem, we have

log ( )
log
√ → 1 as →∞

So by Dirichlet’s theorem on prime numbers in arithmetic progressions, there exist in-
finitely many primes such that for any given integer> 1, ( ) has a subgroup
which is isomorphic to ( ) with ( )> . This completes the proof.

Lemma 4. There exist infinitely many primes such that| ( (ζ )), that is,
| 2 for some integer (2 ≦ 2 ≦ − 3), where 2 are the Bernoulli numbers

(see[1]).

Lemma 5. Let be an odd prime such that| ( (ζ )). Let be the number
of satisfying | 2 (2 ≦ 2 ≦ − 3). Then ( (ζ )) has a subgroup which is

isomorphic to
⊕

=1 / (see Ribet[6, Main Theorem]).

Theorem 7. Let be a totally imaginary algebraic number field and be an
odd prime such that | ( (ζ )). Let be as inLemma 5. Then there exist infinitely

many primes such that ( ) has a subgroup which is isomorphic to
⊕

=1 / .

Proof. Let ( )< and ( )< . Let = (ζ ) and = . Then ( ) has
a subgroup which is isomorphic to ( ). By contains , [ : ] =−1 and The-
orem 1, ( ) has a subgroup which is isomorphic to ( )( −1) ( ). So by Lemma 4,
Lemma 5 and ( ( )(−1) ) = 1, there exist infinitely many primes such that ( )

has a subgroup which is isomorphic to
⊕

=1 / . This completes the proof.

Lemma 6. Let be an odd prime such that≡ 2 +1 + 1 (mod 2+2) with ≧

1. Let and 0 be the subfields of (ζ ) such that[ : ] = 2 +1 and [ 0 : ] = 2 ,
respectively. And let 1 = ( )/ ( 0). Then

log 1

2 −1 log
→ 1 as →∞

Proof. Let ( ) = and (0) = 0. Then it is known that = 22 −1
0. By

( ) = 2 +1−1, ( 0) = 2 −1 and the Brauer-Siegel theorem, we have

log( ( ) )

log
√

( )
→ 1 and

log( ( 0) 0)

log
√

( 0)
→ 1 as →∞
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Since

log( ( ) )

log
√

( )
=

log 1

log
√

( )
+

log( ( 0) 0)
(2 − 1/2) log

+
(2 − 1) log 2

(2 − 1/2) log

and

log( ( 0) 0)
(2 − 1/2) log

=
log( ( 0) 0)

log
√

( 0)
· 2 − 1

2 +1− 1

it follows that

log 1

2 −1 log
→ 1 as →∞

This completes the proof.

Theorem 8. Let be a totally imaginary algebraic number field and( ) = 2
for an integer ≧ 0. Let be an odd prime such that≡ 2 +1 + 1 (mod 2+2) with

≧ 1. Let be the subfield of (ζ ) such that[ : ] = 2 +1. Then for any given
integer > 1, there exist infinitely many primes such that( ) has a subgroup
which is isomorphic to ( ) with ( ) > .

Proof. Let ( )< and = . Then ( ) has a subgroup which is isomor-
phic to ( ). By contains , [ : ] = 2+1 and Theorem 1, ( ) has a subgroup
which is isomorphic to ( )2

+1 ( ). By genus theory, we see that 2∤ ( ). From
( ) = 2 for an integer ≧ 0 and 2∤ ( ), we see that ( )2 +1 ( ) = ( ). Hence
( ) has a subgroup which is isomorphic to ( ). By Lemma 6 and Dirichlet’s the-

orem on prime numbers in arithmetic progressions, for any given integer > 1, there
exist infinitely many primes such that ( ) has a subgroup whichis isomorphic to

( ) with ( ) > . This completes the proof.
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