

Title	On the ideal class groups of ray class fields of algebraic number fields
Author(s)	Osada, Hiroyuki
Citation	Osaka Journal of Mathematics. 2004, 41(1), p. 1-9
Version Type	VoR
URL	https://doi.org/10.18910/9557
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

ON THE IDEAL CLASS GROUPS OF RAY CLASS FIELDS OF ALGEBRAIC NUMBER FIELDS

HIROYUKI OSADA

(Received June 8, 2001)

For an algebraic number field k , $C(k)$ and \tilde{k} denote the ideal class group and the Hilbert class field of k , respectively. For an abelian group G and an integer m , G^m means the subgroup of G consisting of m -th powers of the elements of G . Let $h(k)$, $R(k)$ and $D(k)$ be the class number, the regulator and the absolute value of the discriminant of k , respectively. For an integer $m > 1$, k_m denotes the class field of k corresponding to ray modulo m . Let ζ_m be a primitive m -th root of unity. Let q be a prime and k/Q be a real cyclic extension of degree q . Let m be the conductor of k . In the paper [5], we showed that $C(Q(\zeta_m + \zeta_m^{-1}))$ has a subgroup which is isomorphic to $C(k)^q$. In this paper we generalize the above result in Theorem 1. And we show that for any given integer $n > 1$, there exist infinitely many mutually prime positive integers m such that

- (1) m has at most two different prime factors and any prime factor of m is congruent to $1 \pmod{4}$,
- (2) $C(Q(\zeta_m + \zeta_m^{-1}))$ has a subgroup which is isomorphic to $\mathbb{Z}/A_m\mathbb{Z}$ for some integer $A_m > n$

(Corollary of Theorem 3). Further we give some applications of the following Theorem 1.

Theorem 1. *Let L/k be an abelian extension and K be a subfield of L such that K/k is an extension of degree n . Then $C(L)$ has a subgroup which is isomorphic to $C(K)^{nh(k)}$.*

Proof. By Galois theory, we have the following exact sequence

$$\text{Gal}(\tilde{L}/L) \rightarrow \text{Gal}(\tilde{K}/K) \rightarrow \text{Gal}(L \cap \tilde{K}/K) \rightarrow 0.$$

Hence by class field theory, we have the following exact sequence

$$C(L)^{N_{L/K}} \rightarrow C(K)^f \rightarrow \text{Gal}(L \cap \tilde{K}/K) \rightarrow 0,$$

where $N_{L/K}$ is the norm map from $C(L)$ to $C(K)$. Now we write the class groups additively. Let $x \in C(K)$ and $G = \text{Gal}(K/k)$. Since $h(k) \cdot C(k) = 0$, we have that

$\sum_{\sigma \in G} \sigma(h(k)x) = 0$. Hence $nh(k)x = nh(k)x - \sum_{\sigma \in G} \sigma(h(k)x) = \sum_{\sigma \in G} (1 - \sigma)h(k)x$. Since $L \cap \tilde{K}/k$ is an abelian extension, the group G acts trivially on $\text{Gal}(L \cap \tilde{K}/K)$ by conjugation. From the G -homomorphism f maps each $(1 - \sigma)h(k)x$ to 0, it follows that $f(nh(k)x) = 0$. By exactness, we see that the image $C(L)$ contains $nh(k)x$. Since $N_{L/K}(C(L))$ has a subgroup $C(K)^{nh(k)}$, we see that $C(L)$ has a subgroup which is isomorphic to $C(K)^{nh(k)}$. This completes the proof. \square

EXAMPLE. Let $K = Q(\sqrt{145})$ and $L = Q(\zeta_{145} + \zeta_{145}^{-1})$. By $C(K)$ is isomorphic to $Z/4Z$ and Theorem 1, we see that $C(L)$ has a subgroup which is isomorphic to $Z/2Z$. And we see that $L \cap \tilde{K} = Q(\sqrt{5}, \sqrt{29})$.

Lemma 1. *For any given integer $r > 1$, let q_i ($1 \leq i \leq r - 1$) be odd primes such that $q_1 < q_2 < \dots < q_{r-1}$. Let $n > q_1$ be an integer and $m = (2nq_1q_2 \dots q_{r-1})^2 + 1$. If m is a square-free integer, then $C(Q(\sqrt{m}))$ has a subgroup which is isomorphic to $Z/S_m Z$ for some integer $S_m > r$.*

Proof. Let $F = Q(\sqrt{m})$ and $u = 2nq_1q_2 \dots q_{r-1}$. Since $n > q_1$ and $q_1 < q_2 < \dots < q_{r-1}$, we see that $q_1^r < u/2$. Since $m \equiv 1 \pmod{q_1}$, we have that $(q_1) = \mathfrak{B}\mathfrak{B}'$ and $\mathfrak{B} \neq \mathfrak{B}'$, where \mathfrak{B} and \mathfrak{B}' are prime ideals in F . Now we assume that \mathfrak{B}^s is a principal ideal in F for some positive integer s . Then there exist integers x and y such that

$$\mathfrak{B}^s = \left(\frac{x + y\sqrt{m}}{2} \right) \quad \text{and} \quad x \equiv y \pmod{2}.$$

Hence we have

$$q_1^s = \left| \frac{x^2 - y^2m}{4} \right|,$$

that is,

$$\pm 4q_1^s = x^2 - y^2m.$$

If $y = 0$, then we have $x^2 = 4q_1^s$. Hence s is necessarily $2t$ for some integer t . Since $x = \pm 2q_1^t$, we have

$$\mathfrak{B}^{2t} = (q_1^t) = \mathfrak{B}^t \mathfrak{B}'^t.$$

Therefore we have $\mathfrak{B} = \mathfrak{B}'$. This contradicts $\mathfrak{B} \neq \mathfrak{B}'$. Hence we have $y \neq 0$. Let x_0 be an integer and y_0 be the smallest positive integer satisfying

$$\mathfrak{B}^s = \left(\frac{x_0 + y_0\sqrt{m}}{2} \right),$$

that is,

$$\mathfrak{B}^s = \left(\frac{\pm|x_0| + y_0\sqrt{m}}{2} \right).$$

Let $\varepsilon = \pm u + \sqrt{m}$. Since ε are units of F , we have

$$\mathfrak{B}^s = \left(\frac{(\pm|x_0| + y_0\sqrt{m})(\mp u + \sqrt{m})}{2} \right),$$

that is,

$$\mathfrak{B}^s = \left(\frac{-|x_0|u + y_0m \pm (|x_0| - y_0u)\sqrt{m}}{2} \right).$$

From $||x_0| - y_0u| > 0$ and the definition of y_0 , we have

$$||x_0| - y_0u| \geq y_0.$$

Hence either $|x_0| - y_0u \geq y_0$ or $-|x_0| + y_0u \geq y_0$. So either

$$\pm 4q_1^s = x_0^2 - y_0^2m \geq y_0^2(u+1)^2 - y_0^2(u^2+1) = 2uy_0^2 \geq 2u.$$

or

$$\pm 4q_1^s = x_0^2 - y_0^2m \leq y_0^2(u-1)^2 - y_0^2(u^2+1) = -2uy_0^2 \leq -2u.$$

Therefore in each case $4q_1^s \geq 2u$, that is, $q_1^s \geq u/2$. If $r \geq s$, then this contradicts $q_1^r < u/2$. So if $r \geq s$, \mathfrak{B}^s is not a principal ideal in F . Now we assume that $t = S_m$ is the smallest positive integer such that \mathfrak{B}^t is a principal ideal in F . From the above argument, we see that $C(F)$ has a subgroup which is isomorphic to Z/S_mZ for some integer $S_m > r$. This completes the proof. \square

Lemma 2. *Let $G(n) = an^2 + bn + c$ be an irreducible polynomial with $a > 0$ and $c \equiv 1 \pmod{2}$. Then there exist infinitely many integers n such that $G(n)$ has at most two prime factors (see Iwaniec [2, Theorem]).*

Theorem 2. *For any given integer $r > 1$, there exist infinitely many mutually prime positive integers m such that*

- (1) *m has at most two different prime factors and any prime factor of m is congruent to $1 \pmod{4}$,*
- (2) *$C(Q(\sqrt{m}))$ has a subgroup which is isomorphic to Z/S_mZ for some integer $S_m > r$.*

Proof. For any given integer $r > 1$, let $m = (2nq_1q_2 \cdots q_{r-1})^2 + 1$, where $q_i (1 \leq i \leq r-1)$ are odd primes such that $q_1 < q_2 < \cdots < q_{r-1}$ and $n > q_1$ is an integer.

Then by Lemma 2, there exist infinitely many integers n such that m has at most two different prime factors. It is easy to see that any prime factor of m is congruent to 1 (mod 4). Hence by Lemma 1, we have this theorem. \square

Theorem 3. *Let k be an algebraic number field. Then for any given integer $n > 1$, there exist infinitely many mutually prime positive integers m such that*

- (1) *m has at most two different prime factors and any prime factor of m is congruent to 1 (mod 4),*
- (2) *$C(k_m)$ has a subgroup which is isomorphic to $Z/A_m Z$ for some integer $A_m > n$.*

Proof. By Theorem 2, for any given integer $r > 1$, there exists a positive integer m such that

- (1) *m has at most two different prime factors and any prime factor of m is congruent to 1 (mod 4),*
- (2) *$C(Q(\sqrt{m}))$ has a subgroup which is isomorphic to $Z/S_m Z$ for some integer $S_m > r$.*

Let $F = Q(\sqrt{m})$, $(D(k), m) = 1$ and $K = kF$. Then $C(K)$ has a subgroup which is isomorphic to $C(F)$. By k_m contains K , $[K : k] = 2$ and Theorem 1, we see that $C(k_m)$ has a subgroup which is isomorphic to $C(K)^{2h(k)}$. Hence by Theorem 2, for any given integer $r > 1$, there exist infinitely many mutually prime positive integers m such that

- (1) *m has at most two different prime factors and any prime factor of m is congruent to 1 (mod 4),*
- (2) *$C(k_m)$ has a subgroup which is isomorphic to $2h(k)(Z/S_m Z)$ for some integer $S_m > r$.*

Let $r \geq 2nh(k)$ for any given integer $n > 1$ and $2h(k)(Z/S_m Z) = Z/A_m Z$. Then we have $A_m > n$. Thus this theorem is proved. \square

Putting $k = Q$ in Theorem 3, we have

Corollary. *For any given integer $n > 1$, there exist infinitely many mutually prime positive integers m such that*

- (1) *m has at most two different prime factors and any prime factor of m is congruent to 1 (mod 4),*
- (2) *$C(Q(\zeta_m + \zeta_m^{-1}))$ has a subgroup which is isomorphic to $Z/A_m Z$ for some integer $A_m > n$.*

Theorem 4. *Let k be an algebraic number field and $t > 1$ be an integer. Then for any given integer $n_i > 1$ ($1 \leq i \leq t$), there exist infinitely many mutually prime positive integers m_1, m_2, \dots, m_t such that*

- (1) *m_i has at most two different prime factors and any prime factor of m_i is congruent to 1 (mod 4),*

(2) $C(k_{m_1 m_2 \dots m_t})$ has a subgroup which is isomorphic to $\bigoplus_{i=1}^t Z/A_{m_i} Z$ for some integer $A_{m_i} > n_i$.

Proof. By Theorem 2, for any given integer $r_i > 1$ ($1 \leq i \leq t$), there exist mutually prime positive integers m_i such that

(1) m_i has at most two different prime factors and any prime factor of m_i is congruent to $1 \pmod{4}$,

(2) $C(Q(\sqrt{m_i}))$ has a subgroup which is isomorphic to $Z/S_{m_i} Z$ for some integer $S_{m_i} > r_i$.

Let $F = Q(\sqrt{m_1}, \sqrt{m_2}, \dots, \sqrt{m_t})$. Then $C(F)$ has a subgroup which is isomorphic to $\bigoplus_{i=1}^t Z/S_{m_i} Z$. Let $(D(k), m_i) = 1$ ($1 \leq i \leq t$) and $K = kF$. Then $C(K)$ has a subgroup which is isomorphic to $C(F)$. By $k_{m_1 m_2 \dots m_t}$ contains K , $[K : k] = 2^t$ and Theorem 1, we see that $C(k_{m_1 m_2 \dots m_t})$ has a subgroup which is isomorphic to $C(K)^{2^t h(k)}$. Hence by Theorem 2, for any given integer $r_i > 1$ ($1 \leq i \leq t$), there exist infinitely many mutually prime positive integers m_1, m_2, \dots, m_t such that

(1) m_i has at most two different prime factors and any prime factor of m_i is congruent to $1 \pmod{4}$,

(2) $C(k_{m_1 m_2 \dots m_t})$ has a subgroup which is isomorphic to $\bigoplus_{i=1}^t 2^t h(k)(Z/S_{m_i} Z)$ for some integer $S_{m_i} > r_i$.

Let $r_i \geq 2^t n_i h(k)$ for any given integer $n_i > 1$ and $2^t h(k)(Z/S_{m_i} Z) = Z/A_{m_i} Z$. Then we have $A_{m_i} > n_i$. Thus we have this theorem. \square

Putting $k = Q$ in Theorem 4, we have

Corollary. *Let $t > 1$ be an integer. Then for any given integer $n_i > 1$ ($1 \leq i \leq t$), there exist infinitely many mutually prime positive integers m_1, m_2, \dots, m_t such that*

(1) m_i has at most two different prime factors and any prime factor of m_i is congruent to $1 \pmod{4}$,

(2) $C(Q(\zeta_{m_1 m_2 \dots m_t} + \zeta_{m_1 m_2 \dots m_t}^{-1}))$ has a subgroup which is isomorphic to $\bigoplus_{i=1}^t Z/A_{m_i} Z$ for some integer $A_{m_i} > n_i$.

Lemma 3. *Let $n > 1$ be an integer. For given finite sets S_1, S_2, S_3 of primes satisfying $S_i \cap S_j = \emptyset$ if $i \neq j$, there exist infinitely many imaginary (resp. real) quadratic number fields F such that*

(a) *the ideal class group of F has a subgroup which is isomorphic to $Z/nZ \oplus Z/nZ$ (resp. Z/nZ),*

(b) *all primes contained in S_i $\begin{cases} \text{are decomposed in } F & (i = 1), \\ \text{remain prime in } F & (i = 2), \\ \text{are ramified in } F & (i = 3) \end{cases}$*

(see Yamamoto [8, Theorem 2]).

Theorem 5. *Let k be an algebraic number field and A be any finite abelian group. Then there exist infinitely many mutually prime positive square-free integers t such that*

- (1) $t \equiv 1 \pmod{4}$,
- (2) $C(k_t)$ has a subgroup which is isomorphic to A .

Proof. Let A be any finite abelian group. Then A is isomorphic to $\bigoplus_{i=1}^s \mathbb{Z}/n_i \mathbb{Z}$ for some integers $n_i > 1$ and $s \geq 1$. It suffices to prove this theorem for the case $s > 1$. By Lemma 3, for given integer n_i ($1 \leq i \leq s$), there exist mutually prime positive square-free integers m_i such that

- (1) $m_i \equiv 1 \pmod{4}$,
- (2) $C(Q(\sqrt{m_i}))$ has a subgroup which is isomorphic to $\mathbb{Z}/2^s h(k) n_i \mathbb{Z}$.

Now we put $t = m_1 m_2 \cdots m_s$. Let $F = Q(\sqrt{m_1}, \sqrt{m_2}, \dots, \sqrt{m_s})$. Let $(D(k), D(F)) = 1$ and $K = kF$. Then $C(K)$ has a subgroup which is isomorphic to $C(F)$ and $C(F)$ has a subgroup which is isomorphic to $\bigoplus_{i=1}^s \mathbb{Z}/2^s h(k) n_i \mathbb{Z}$. By k_t contains K , $[K : k] = 2^s$ and Theorem 1, we see that $C(k_t)$ has a subgroup which is isomorphic to $C(K)^{2^s h(k)}$. Hence $C(k_t)$ has a subgroup which is isomorphic to $\bigoplus_{i=1}^s \mathbb{Z}/n_i \mathbb{Z}$. Therefore by Lemma 3, we have this theorem. \square

Putting $k = Q$ in Theorem 5, we have

Corollary. *Let A be any finite abelian group. Then there exist infinitely many mutually prime positive square-free integers t such that*

- (1) $t \equiv 1 \pmod{4}$,
- (2) $C(Q(\zeta_t + \zeta_t^{-1}))$ has a subgroup which is isomorphic to A .

REMARK. $k_m \cap k_n = \tilde{k}$, if $(m, n) = 1$.

The Brauer-Siegel theorem. *Let k be a normal algebraic number field of degree n over Q . Then*

$$\frac{\log(h(k)R(k))}{\log \sqrt{D(k)}} \rightarrow 1 \quad \text{as} \quad \frac{n}{\log D(k)} \rightarrow 0$$

(see Lang [3, Chapter IX]).

Theorem 6. *Let k be a totally imaginary algebraic number field and $h(k) = 2^s$ for an integer $s \geq 0$. Let p be an odd prime such that $p \equiv 3 \pmod{4}$. Then there exist infinitely many primes p such that for any given integer $n > 1$, $C(k_p)$ has a subgroup which is isomorphic to $C(Q(\sqrt{-p}))$ with $h(Q(\sqrt{-p})) > n$.*

Proof. We assume that $D(k) < p$. Let $F = Q(\sqrt{-p})$ and $K = kF$. Then $C(K)$ has a subgroup which is isomorphic to $C(F)$. By k_p contains K , $[K : k] = 2$ and

Theorem 1, $C(k_p)$ has a subgroup which is isomorphic to $C(K)^{2h(k)}$. From $h(k) = 2^s$ for an integer $s \geq 0$ and $2 \nmid h(F)$, we see that $C(F)^{2h(k)} = C(F)$. Therefore $C(k_p)$ has a subgroup which is isomorphic to $C(F)$. On the other hand, we see that $R(F) = 1$ and $D(F) = p$. Hence by the Brauer-Siegel theorem, we have

$$\frac{\log h(F)}{\log \sqrt{p}} \rightarrow 1 \quad \text{as } p \rightarrow \infty.$$

So by Dirichlet's theorem on prime numbers in arithmetic progressions, there exist infinitely many primes p such that for any given integer $n > 1$, $C(k_p)$ has a subgroup which is isomorphic to $C(F)$ with $h(F) > n$. This completes the proof. \square

Lemma 4. *There exist infinitely many primes p such that $p|h(Q(\zeta_p))$, that is, $p|B_{2s}$ for some integer s ($2 \leq 2s \leq p-3$), where B_{2s} are the Bernoulli numbers (see [1]).*

Lemma 5. *Let p be an odd prime such that $p|h(Q(\zeta_p))$. Let f_p be the number of s satisfying $p|B_{2s}$ ($2 \leq 2s \leq p-3$). Then $C(Q(\zeta_p))$ has a subgroup which is isomorphic to $\bigoplus_{i=1}^{f_p} \mathbb{Z}/p\mathbb{Z}$ (see Ribet [6, Main Theorem]).*

Theorem 7. *Let k be a totally imaginary algebraic number field and p be an odd prime such that $p|h(Q(\zeta_p))$. Let f_p be as in Lemma 5. Then there exist infinitely many primes p such that $C(k_p)$ has a subgroup which is isomorphic to $\bigoplus_{i=1}^{f_p} \mathbb{Z}/p\mathbb{Z}$.*

Proof. Let $D(k) < p$ and $h(k) < p$. Let $F = Q(\zeta_p)$ and $K = kF$. Then $C(K)$ has a subgroup which is isomorphic to $C(F)$. By k_p contains K , $[K : k] = p-1$ and Theorem 1, $C(k_p)$ has a subgroup which is isomorphic to $C(K)^{(p-1)h(k)}$. So by Lemma 4, Lemma 5 and $(h(k)(p-1), p) = 1$, there exist infinitely many primes p such that $C(k_p)$ has a subgroup which is isomorphic to $\bigoplus_{i=1}^{f_p} \mathbb{Z}/p\mathbb{Z}$. This completes the proof. \square

Lemma 6. *Let p be an odd prime such that $p \equiv 2^{a+1} + 1 \pmod{2^{a+2}}$ with $a \geq 1$. Let k and k_0 be the subfields of $Q(\zeta_p)$ such that $[k : Q] = 2^{a+1}$ and $[k_0 : Q] = 2^a$, respectively. And let $h_1 = h(k)/h(k_0)$. Then*

$$\frac{\log h_1}{2^{a-1} \log p} \rightarrow 1 \quad \text{as } p \rightarrow \infty.$$

Proof. Let $R(k) = R$ and $R(k_0) = R_0$. Then it is known that $R = 2^{2^a-1}R_0$. By $D(k) = p^{2^{a+1}-1}$, $D(k_0) = p^{2^a-1}$ and the Brauer-Siegel theorem, we have

$$\frac{\log(h(k)R)}{\log \sqrt{D(k)}} \rightarrow 1 \quad \text{and} \quad \frac{\log(h(k_0)R_0)}{\log \sqrt{D(k_0)}} \rightarrow 1 \quad \text{as } p \rightarrow \infty.$$

Since

$$\frac{\log(h(k)R)}{\log \sqrt{D(k)}} = \frac{\log h_1}{\log \sqrt{D(k)}} + \frac{\log(h(k_0)R_0)}{(2^a - 1/2) \log p} + \frac{(2^a - 1) \log 2}{(2^a - 1/2) \log p}$$

and

$$\frac{\log(h(k_0)R_0)}{(2^a - 1/2) \log p} = \frac{\log(h(k_0)R_0)}{\log \sqrt{D(k_0)}} \cdot \frac{2^a - 1}{2^{a+1} - 1},$$

it follows that

$$\frac{\log h_1}{2^{a-1} \log p} \rightarrow 1 \quad \text{as} \quad p \rightarrow \infty.$$

This completes the proof. \square

Theorem 8. *Let k be a totally imaginary algebraic number field and $h(k) = 2^s$ for an integer $s \geq 0$. Let p be an odd prime such that $p \equiv 2^{a+1} + 1 \pmod{2^{a+2}}$ with $a \geq 1$. Let F be the subfield of $Q(\zeta_p)$ such that $[F : Q] = 2^{a+1}$. Then for any given integer $n > 1$, there exist infinitely many primes p such that $C(k_p)$ has a subgroup which is isomorphic to $C(F)$ with $h(F) > n$.*

Proof. Let $D(k) < p$ and $K = kF$. Then $C(K)$ has a subgroup which is isomorphic to $C(F)$. By k_p contains K , $[K : k] = 2^{a+1}$ and Theorem 1, $C(k_p)$ has a subgroup which is isomorphic to $C(K)^{2^{a+1}h(k)}$. By genus theory, we see that $2 \nmid h(F)$. From $h(k) = 2^s$ for an integer $s \geq 0$ and $2 \nmid h(F)$, we see that $C(F)^{2^{a+1}h(k)} = C(F)$. Hence $C(k_p)$ has a subgroup which is isomorphic to $C(F)$. By Lemma 6 and Dirichlet's theorem on prime numbers in arithmetic progressions, for any given integer $n > 1$, there exist infinitely many primes p such that $C(k_p)$ has a subgroup which is isomorphic to $C(F)$ with $h(F) > n$. This completes the proof. \square

References

- [1] Z.I. Borevich and I.R. Shafarevich: Number Theory, Academic Press, London and New York, 1966.
- [2] H. Iwaniec: *Almost-primes represented by quadratic polynomials*, Invent. Math. **47** (1978), 171–188.
- [3] S. Lang: Algebraic numbers, Addison-Wesley, 1964.
- [4] H. Osada: *Note on the class-number of the maximal real subfield of a cyclotomic field*, Manuscripta Math. **58** (1987), 215–227.
- [5] H. Osada: *Note on the class-number of the maximal real subfield of a cyclotomic field, II*, Nagoya Math. J. **113** (1989), 147–151.
- [6] K. Ribet: *A modular construction of unramified p -extensions of $Q(\mu_p)$* , Invent. Math. **34** (1976), 151–162.

- [7] T. Takagi: *Über eine Theorie des relativ-Abel'schen Zahlkörpers*, J. Coll. Sci. Imp. Univ. Tokyo. **41** (1920), 1–133.
- [8] Y. Yamamoto: *On unramified Galois extensions of quadratic number fields*, Osaka J. Math. **7** (1970), 57–76.

2-14 Kamiitabashi 2-chome
Itabashi-ku, Tokyo
174-0076, Japan