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Abstract
We introduced three kinds of invariants of a virtual knot called the first, second, and third
intersection polynomials in the first paper [5]. We also gave the connected sum formulae of
the intersection polynomials in the second paper [6]. In this paper, we give characterizations of
intersection polynomials.

1. Introduction

This paper is a continuation of [5, 6]. In the first paper [5], we defined three kinds of
invariants of a virtual knot, which are called the first, second, and third intersection poly-
nomials. We also studied the symmetry of a virtual knot and calculated the intersection
polynomials of virtual knots with crossing number four or less. In the second paper [6], we
gave a precise definition of a connected sum of virtual knots and the connected sum formu-
lae of the intersection polynomials. As a corollary, we showed that there are infinitely many
connected sums of any pair of virtual knots.

It is known that the writhe polynomial Wk(#) of a virtual knot K satisfies Wk(1) =
Wi (1) = 0. Conversely, for any Laurent polynomial f(r) with f(1) = f’(1) = 0, there
is a virtual knot K with Wi (¢) = f(¢) [13].

In this paper, we study fundamental properties of the intersection polynomials and char-
acterizations of the polynomials. For the first intersection polynomial Ix(t), we will prove
Ix(1) = I},(1) = 0. This property characterizes the first intersection polynomial as follows.

Theorem 1.1. For f(t) € Z[t,t™"], there is a virtual knot K with Ix(t) = f(t) if and only
if f()=f(1)=0.

For the second intersection polynomial Hx(?), it holds that Hg(¢) = Hx(t™"), Hx(1) = 0,
and II/(1) = 0 (mod 4). This property characterizes the second intersection polynomial as
follows.

Theorem 1.2. For f(1) € Z[t,t™", there is a virtual knot K with lIx(t) = f(t) if and only
if f(t) = £, f(1) = 0, and f"'(1) = 0 (mod 4).

A characterization of the third intersection polynomial l/ x(¥) is similarly obtained.
This paper is organized as follows. In Section 2, we review the definitions of the intersec-
tion polynomials, the connected sum formulae, and the calculation of intersection numbers
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by using a Gauss diagram. In Sections 3 and 4, we study the fundamental properties of the
first intersection polynomial (Theorem 3.2), the second intersection polynomial (Theorem
3.3), and the third intersection polynomial (Theorem 4.1). Section 5 is devoted to giving
characterizations of the intersection polynomials (Theorems 5.1, 5.5, and 5.9). Theorem 1.1
is a combination of Theorems 3.2 and 5.1, and Theorem 1.2 is a combination of Theorems
3.3 and 5.5. In Section 6, we characterize the intersection polynomials of a connected sum
of trivial knots.

2. Preliminaries

In this section, we review the definitions of the writhe polynomial and the three kinds
of intersection polynomials of a virtual knot. They are defined by using the intersection
number of curves on a surface.

We consider the set of pairs of a closed, connected, oriented surface X and a knot dia-
gram D on X with classical crossings. Two knot diagrams D on X and D’ on X’ are said to
be equivalent if D and D’ are related to each other by a finite sequence of an orientation
preserving homeomorphism of the underlying surface, a (de)stabilization which changes the
genus of the surface by +1, and a Reidemeister move R1, R2, or R3 on the surface. Such
an equivalence class of knot diagrams on surfaces is called a virtual knot (cf. [1, 7]). Here,
a stabilization/destabilization is a 1-handle addition/deletion on a surface missing a knot
diagram as shown in Fig.1. We remark that the notion of a virtual knot was originally in-
troduced by Kauffman [9] as an equivalence class of knot diagrams in a plane with classical
and virtual crossings under seven kinds of generalized Reidemeister moves.

stabilization
destabl lization

Fig.1

Let D be a diagram of a virtual knot K on X, and ¢y, ¢y, ..., ¢, the crossings of D. For
each i, we perform smoothing at ¢; to obtain a pair of cycles y; and y; on X such that y; is
oriented from the over to the under at ¢;, and ‘y; the other one. The sum 7y; + 7y, coincides
with the cycle yp presented by D. See Fig.2.

Fig.2

The writhe polynomial of K is defined by

n n

Wi(t) = ) &7 = 1) = > & — 1) e Zl1,1" '],

i=1 i=1
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where g; is the sign of ¢;, and v; - ; is the intersection number between y; and y; on X (cf.
[2, 3, 11, 13]). Similarly, we consider the polynomials

fuDsn= Y e - 1),

1<i,j<n

Joo(D; 1) = Z gi€j(1 - 1), and
1<7j<n

Su(Ds1) = Z gig;(1i = 1).
1<7,j<n

The first, second, and third intersection polynomials of K are defined by

Ix(@®) = for(D;1) — wpWk(1),
I = foD;0) + fit(D; 1) — wpWk (1), and
Mx(t) = foo(D;t) (mod Wk (7).

Here wp = i, &; is the writhe of D, Wk(t) = Wg(t) + Wr(t™"), and £(r) = g(r) (mod h(r))
means f(t) = g(t) + mh(t) for some m € Z. These polynomials do not depend on a particular
choice of D of K [5].

Let —K, K*, and K* denote the reverse, the vertical mirror image, and the horizontal
mirror image of a virtual knot K, respectively.

Lemma 2.1 (cf. [2, 5, 11, 13]). For a virtual knot K, we have the following.
(i) W_g(t) = Wx(t™") and Ws(1) = Wi-() = —Wg(t™).
(ii) I_g (1) = Igs(t) = Ix-(t) = Ix (™).
(itl) Mg (2) = Ug#(t) = Hg-(1) = Uk (2).
(v) Ml g(t) = W g+(t) = Hx (1) — Wk (2) and Mg (1) = M g(2).

We review a connected sum of virtual knots and its intersection polynomials. Refer to [6]
for more details. A dotted virtual knot T is a virtual knot equipped with a base point p. Let
(D, p) be a diagram of T, and cy, ¢z, . .., ¢, the crossings of D. The set of indices 1,2,...,n
is divided into

My(D) = {i| p lies ony;} and M (D) = {i | p lies on y;}.
Then we define two polynomials

Wi(t) = Z (Y — 1) and Wh(r) = Z (7 — 1),
ieMo(D) eArD)

which do not depend on a particular choice of (D, p). The closure T of T is the virtual knot
by forgetting p of 7. By definition, it holds that

W2(1) + Wi (t) = Wo(r) and Wi(1) = Wp(1) = 0.
The following proposition plays an important role in this paper.

Proposition 2.2 ([6]). Let K be a virtual knot, and f(t) a Laurent polynomial with f(1) =
0. Then there is a dotted virtual knot T such that
() T =K,
(i) W) = f(1), and



232 R. Higa, T. NAKAMURA, Y. NAKANISHI AND S. SATOH

(iii) Wp(1) = Wk () = f(0).

For a pair of dotted virtual knots 7" and 7”7, we denote by T + T’ the one obtained by
connecting 7" and 7’ at their base points as shown in Fig.3. A connected sum of virtual
knots K and K’ is a virtual knot in the set

C(K,K') = {ﬂ?’ | T, T': dotted virtual knots with 7 = K and T’ = K'}.

We remark that there are infinitely many connected sums of any pair (K, K”) [6].

T}(T' ST~
|\

Fig.3

The writhe polynomial is additive under a connected sum; that is, Wi~ () = Wi (¢)+ Wk (¢)
holds for any K”” € C(K, K") (cf. [2, 3, 13]). On the other hand, the intersection polynomials
are not additive in general.

Theorem 2.3 ([6]). For K” € C(K,K’), let T and T’ be dotted virtual knots such that
T=K,T =K,andT+T' =K".

(1) The first intersection polynomial satisfies
Ixn(t) = Ix(t) + I (1) + WOWL () + W) Wi (D).
(i) The second intersection polynomial satisfies

() = Hg@)+ Ug (1)
+WAOWR ) + WHOWL(")
+WoE YW (1) + Wi (YW (b).

(iii) Suppose that Wk(©) = 0 or Wi (7) = 0. The third intersection polynomial satisfies
() = W () + W () + Wrt)Wr, () + Wi YWy (1) (mod Wi (£)).

A diagram D of a virtual knot is presented by a Gauss diagram: it consists of an oriented
circle and a finite number of oriented and signed chords corresponding to the crossings of
D. The orientation of a chord is from the over to the under, and the sign comes from that of
the crossing. For a chord, the terminal endpoint is given the same sign as that of the chord,
and the initial is given the opposite.

The intersection number of a pair of cycles on D is interpreted by using a Gauss diagram.
The endpoints of a chord divide the circle of a Gauss diagram into two arcs. Let @ and 5
be such arcs obtained from two chords ¢ and ¢’, respectively, and S(a, 8) the sum of signs
of endpoints of chords on inta whose opposite endpoints lie on int3. Then the intersection
number of cycles corresponding to the ordered pair («, ) is equal to S(a, ) = 1 in the four
cases in Fig.4, and otherwise S(«, ). Therefore the intersection polynomials are calculated
from a Gauss diagram [5, 6].
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a B a B
— % - L%-F + % + L%
B a B a
S(a,B)+1 S(a,B)+1 S(a,B)—1 S(a,B)—1

Fig.4

3. Fundamental properties of /x(7) and /()
The writhe polynomial W(¢) is characterized by the following property.

Theorem 3.1 ([13]). Any virtual knot K satisfies Wi(1) = W(1) = 0. Conversely, if a
Laurent polynomial f(t) € Z[t,t"] satisfies f(1) = f'(1) = 0, then there is a virtual knot K
with f(t) = Wg(?).

We remark that the equation W.(1) = 0 is equivalent to

n n

Dlei-¥) =D &yi-yp) =0

i=1 i=1
by definition.

The first intersection polynomial /x(#) satisfies the same property as W (t), which charac-
terizes a Laurent polynomial to be coincident with the first intersection polynomial of some
virtual knot. The characterization will be given in Section 5.

Theorem 3.2. Any virtual knot K satisfies Ix(1) = I;.(1) = 0.

Proof. We have Ig(1) = 0 by definition. Since Wy(1) = 0 holds by Theorem 3.1, we
obtain

(D) Jor(D; 1) = wpWi(1) = f5,(D; 1)

= D e ¥) = (i 8m) ' (Zn: o7 )

1<i,j<n i=1 j=1

= (Zn: 81%) : (Zn: gj(yp — 7]‘))

i=1 j=1

= (an 8,-7,-) . (wD?’D - Zn: 3171')

i=1 j=1

= wp zn: &iyi-yp) = (zn: sm) : (Zn: Sm)

i=1 i=1 j=1
= wpWi(1)-0=0. o

A Laurent polynomial f(f) is reciprocal if it satisfies f(t"') = f(¢). The second intersec-
tion polynomial g (¢) satisfies different properties from Ik (#) as follows. These properties



234 R. Higa, T. NAKAMURA, Y. NAKANISHI AND S. SATOH

characterize a Laurent polynomial to be coincident with the second intersection polynomial
of some virtual knot. The characterization will be given in Section 5.

Theorem 3.3. For any virtual knot K, the second intersection polynomial ll(t) is recip-
rocal with

Ig(1) =0and (1) =0 (mod 4).
To prove this theorem, we prepare Lemmas 3.4 and 3.5 as follows.

Lemma 3.4. Let f(t) = 37 ait* be a Laurent polynomial in Z[t,1™"].

@ If f/(1) = 0, then f(1) = X.oaa ax (mod 4).
(i) If f(¢) is reciprocal, then (1) = Y j.oqq ar (mod 4).

Proof. (i) It holds that
F0 =) kad ™ and £7(1) = " k(k = Dagt 2.
keZ keZ
Then we have

(1) = Zk(k — Day = Zkzak — (1) = Zkzak = Z a;  (mod 4).

keZ keZ keZ k:odd

(i) We may take f(t) = Yoy ax(t* + %) + ap. Since f/(t) = Yoy kap (! — 7571) holds,
we have f’(1) = 0. By (i), we have the conclusion. m]

Lemma 3.5. For a Laurent polynomial f(t), the following are equivalent.
(1) f() is reciprocal, f(1) =0, and f”(1) = 0 (mod 4).
(i) f(£) = Spo1 ar(* + 7% = 2) for some a; € Z (k > 1) with ¥ .0q41 @ = 0 (mod 2).
(iii) There is a Laurent polynomial g(t) € Z[t,t™'] such that g(1) = ¢’(1) = 0 and
fO =g +g™).

Proof. ()=(ii). Since f() is reciprocal, we may take f(¢) = Xis; ai(t* + t7%) + ay. Since
f(1) =0, we have ag = —2 Y4 a; to obtain f(f) = 3o ar(t* + % — 2). Furthermore, the
sum of the coeflicients of odd terms of f() is equal to 2 }’.0qq>1 . it follows by Lemma 3.4
(i1) that

2 Z ar=f’(1)=0 (mod4).

k:odd>1
(i1)=(iii). We have

o = Y ad+rt-2
k>1
- Zak(tk—kt+k— 1)+ Zak(fk k4 k=1)
k>2 k>2
+ Z kap(t+ 17" = 2).
k>1

By assumption, we may put ;- kay = 2m for some m € Z. Consider the Laurent polyno-
mial
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g(t) = Zak(z‘k —kt+k—1D+mt+1"=2).
k=2
Then it satisfies that g(1) = ¢’(1) = 0 and f(t) = g(¢t) + g(t™").
(iii)=(i). Since g(1) = ¢’(1) = 0, we can take g(f) = (t — 1)>h(¢) for some h(f) € Z[t,17"].
Then the reciprocal polynomial f() = g(t) + g(t™") satisfies

F(1)=2g(1)=0and f’(1) =2¢"(1) = 4h(1) =0 (mod 4). O

Proof of Theorem 3.3.  Since y; - y; = —y;-y;and ¥, - y; = —¥; - ¥, hold, the Laurent
polynomials fyo(D; 1), fi1(D;t), and Wk (1) are reciprocal by definition. Therefore k(%) is
also reciprocal. We have lIx(1) = 0 by definition.

We will prove II(1) = 0 (mod 4). Since Wk(f) = W)+ Wi (t™") with Wg(1) = Wi(l) =
0, we have W;(l) = 0 (mod 4) by Lemma 3.5. Let S be the sum of the coefficients of odd
terms of foo(D; 1) + f11(D; ). Since foo(D; 1) + f11(D; 1) is reciprocal, it is sufficient to prove
that § = 0 (mod 4) by Lemma 3.4 (i1).

By definition, we have

S = Z 8,’8j+ Z 858j=2( Z 858J'+ Z 8,'8j)
y;7y;:0dd ¥, jrodd Yiryjiodd,i<j Yy jrodd,i<j
= 2( D vyt D) 7i-7]-)(mod4).
1<i<j<n 1<i<j<n

On the other hand, we have

Z Yit ¥+ Z Yi'Yj Z (7’i‘7j+(70—7i)'(’}’0—7j))

1<i<j<n 1<i<j<n 1<i<j<n

= Z Qyi-vi=vi¥p=7p"7})

1<i<j<n

= Z (vi-yp+v;-vyp) (mod2)
1<i<j<n

= Z (vi-yp) + Z (vj-vp)
I<i<j<n 1<i<j<n

= D n=d0i-yp)+ Y (= D v0)

i=1 j=1
n

= (n- I)Z%"VD
i=1

(n=1) > &y yp) (mod2)
i=1

= (- 1)@(1) =0.

Therefore we have S = 0 (mod 4). m|
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4. Fundamental properties of Il k(¢)

As seen in the proof of Theorem 3.3, we have W;(l) = 0 (mod 4). Therefore if two
Laurent polynomials f(¢) and g(¢) satisfy f(¢) = g(¢) (mod Wk (7)), then it holds that () =
g”(1) (mod 4). This induces the well-definedness of III’;(1) (mod 4). Then the third inter-
section polynomial Il x(¢) satisfies the following properties. The characterization of Il k(¢)
will be given in Section 5.

Theorem 4.1. For any virtual knot K, the third intersection polynomial lll x(t) is recipro-
cal with

M g(1) =0and M(1) = WE(1) (mod 4).

Recall that an upper (or lower) forbidden move changes the positions of consecutive over-
crossings (or under-crossings) which is known as an unknotting operation [8, 12]. In a Gauss
diagram, an upper (or lower) forbidden move changes the positions of consecutive initial (or
terminal) endpoints of chords.

In this section, we will use a Gauss diagram to calculate intersection numbers. Let
€1,C2,...,cy be the chords of a Gauss diagram. The endpoints of ¢; divide the circle of
the Gauss diagram into two arcs. The arc from the initial endpoint of ¢; to the terminal
is corresponding to the cycle v;, and the other ;. We denote the arcs also by y; and 7;,
respectively.

Our proof of the congruence in Theorem 4.1 is divided into two steps. First we will prove

W) -Wi(hy= Y &gj— > & (mod4)
viyj:odd vi7y;odd

in Lemma 4.2. Next we will show that the right hand side in this congruence is invariant
under a forbidden move in Proposition 4.3. Since the forbidden move is an unknotting
operation, we see that the right hand side is congruent to zero.

Lemma 4.2. Iy (1) - Wg(1) = X, .0dd €i€j — Xy 5:00a & (mod 4).

Proof. Since we have lllx(t) = foo(D; 1) + mWg(f) (m € Z), W;(l) = 0 (mod 4), and
Joo(D; 1) = lei’jgn ggj(t" — 1), it holds that

my) = fi(D;1) (mod4)
= D, &8 Y0y = D)
1<i,j<n
= Z &iei(yi- ) - Z &igj(yi-vj)
1<i,j<n 1<i,j<n
= Z Ei&j (mod4)
vivy,:odd

We remark that (y; - y j)2 =0 (mod4)ify;-y;jiseven,andy; -y; = —y, - y; holds.
On the other hand, since we have Wk (t) = 3| &% — 1), it holds that

n

Wi = > ai Yoo ¥i- 1)
i=1
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n n

e ¥ - D &7

i=1 i=1

D& 7D = Wie(1)

i=1

Z & (mod4).

Yi-yiodd

Therefore we have the conclusion. O

Proposition 4.3. ) .11 &i€j — Xy.5:0aa & (mod 4) is invariant under a forbidden
move.

We will prove this proposition for an upper forbidden move only. The invariance under a
lower forbidden move can be proved similarly.

Assume that a Gauss diagram G’ is obtained from G by an upper forbidden move involv-
ing a pair of chords ¢; and ¢, of G as shown in Fig.5. For 1 <i < n, let ¢} be the chord of
G’ corresponding to ¢;, &; the sign of ¢!, and y; the cycle at c. Let x; and x; be the terminal

endpoints of ¢; and c;, respectively. We classify the chords c3,...,c, of G into four sets
such that

P = {c;|both x| and x; lie on y,},

Q = {c;|both x; and x; lie on vy},

R = {ci| x; liesony; and x; lies on y;}, and

S = {ci | x; lies on y; and x; lies on y;}.

Fig.5

Lemma 4.4. (i) Xicicjcn(¥; -V = Vi 7)) E#R +#S + (1 + &2)/2  (mod 2).

(ii)) #R+#S = y1 -y, + y2 - ¥, (mod 2).

(iii) Zy;.y}:odd £ = Dyyrodd €€ = 2Y1 Y1 + 272 Yo+ €1 + & (mod 4).
Proof. (i) Since it holds that y; - y} =7v;-y;(3<i<j<n), wehave

DOy = DOy ) Y=y
I<i<j<n 3<j<n 3<j<n
+(Y1 Y5 = Y1 Y2)-

The first sum in the right hand side have the same parity as #Q +#R. In fact, if ¢; € PUS,

then we have y] -y} = ¥1-Y,. On the other hand, if ¢; € QUR, it holds that ] -7} =y1-yj+en.
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Similarly, the second sum have the same parity as #Q +#S. In fact, if c; € PUR, then we
have ¥ - y}. =72 - y;. On the other hand, if ¢; € Q U S, it holds that ), -y} =YY — €l

Finally it holds that ¥} - ¥, = y1 - y2 — (&1 + &€2)/2.

(i1) Let my, my, and ms be the numbers of endpoints of chords as shown in Fig.6. Since it
holds that

Yi-Y = mi, Y2+ Y, = my, and my +my +m3 = 0 (mod 2),

we see that y; -y, + y2 - y, has the same parity as ms3.
On the other hand, a chord belongs to RUS if and only if it is linked with exactly one of c;
and c;. Since the number of such chords has the same parity as ms, we have the conclusion.

ms
m { } m;

G

Fig.6
(iii) It holds that
Z 81'6‘]':2 Z 8[8/'52 Z Yi* VY (mod4)
Yi-yj:odd Yiyj:odd,i<j 1<i<j<n
Then we have the conclusion by (i) and (ii). ]

Lemma 4.5. >,/ 5044 & = Xy, 7,0da € = (=D& + (=) 28,

Proof. We see that y; - ; and ! - ¥} have opposite parity for i = 1,2 and coincide for
3 <i < n. Since g; = g holds, we have

g +é& fory -y =vy-7=0 (mod2),

Z , _ ) e —& fory1-y=0,72-y,=1 (mod2),
E — Ei = — —
< ! yA —e1+¢& fory -y, =Ly-% =0 (mod?2), and
7;7vi:odd yi'yi:odd _ —
—&1—¢& fory -y, =y,-y,=1 (mod?2). |

Proof of Proposition 4.3.  Assume that a Gauss diagram G’ is obtained from G by an
upper forbidden move. Then it follows by Lemmas 4.4 (iii) and 4.5 that

PRI —[ DS 8,.]

Y; -y’,. :odd Y i:odd viyj-odd vi7y;odd
2yt i+ 2y tert e — (=1)"e = (1) 28
0 (mod 4).

In other words, ., 0dd €i€j — 2y,3,:0dd & (mod 4) is invariant under an upper forbidden
move. O
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Proof of Theorem 4.1. Since fyo(D;¢) and W(t) are reciprocal, so is Hlx(t). We have
(1) = 0 by foo(D; 1) = Wg(1) = 0. The congruence follows by Lemma 4.2 and Proposi-
tion 4.3 immediately. m|

ReMARK 4.6. The odd writhe [10] of a virtual knot K is the sum of the coefficients of odd
terms of W(#), and denoted by J(K) € Z. We have W{(1) = J(K) (mod 4) by Lemma 3.4.
Therefore the congruence in Theorem 4.1 is equivalent to (1) = J(K) (mod 4).

5. Characterizations of intersection polynomials

We first give a characterization of the first intersection polynomials. Let | denote the set
of Laurent polynomials defined by P, = {Ix(¢) | K : virtual knots}.

Theorem 5.1. For f(t) € Z[t,t™'], the following are equivalent.
@ f()eP.
(i) f(1) = f(1) = 0.
(i) f(1) = Xrzoa ap(t* =kt + k — 1) for some a; € Z (k # 0, 1).
This characterization is exactly the same as that of the writhe polynomial given in Theo-
rem 3.1. To prove Theorem 5.1, we prepare Lemmas 5.2-5.4 as follows.

Lemma 5.2. For any f(1), g(t) € Py, we have the following.

() fa en.
(i) f(n) +g(1) € Py.

Proof. Let K and K’ be virtual knots with Ix(7) = f(¢) and Ix (1) = g(2).
(i) It holds that I_g(¢) = f(+') € P, by Lemma 2.1.
(ii) By Proposition 2.2, there are dotted virtual knots 7 and 7" such that

T=K Wr)= Wk, W =0, and
T" =K', Wi(t)=Wg@), W) =D0.

Let K” be the virtual knot T + T By Theorem 2.3 (i), we have

T (1)

Ix(D) + I () + WR(OW1 (1) + WHOWE,(D)
Ix (1) + Ix (1)
f(®) +g@) € Py. o

The table of virtual knots up to crossing number four are given by Green [4]. In what
follows, we denote by K(n.k) the virtual knot labeled n.k in his table. The calculations of
the intersection polynomials of these virtual knots are given in [5].

Lemma 5.3. Let n > 2 be an integer.
(i) There are integers a; (0 < k < n — 1) such that t* + ZZ;(I) ait* € Py.
(i) There are integers a; (0 < k < n — 1) such that —t" + ZZ;& a,’(tk € P.
Proof. (i) For n = 2, we have Ix4.44)(t) = (t — 12 ep.
For n > 3, we consider the trivial virtual knot O and the virtual knot K(3.4) with W3 .4)()
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=(-1)Yand] k3.4)(t) = 0. By Proposition 2.2, there are dotted virtual knots 7" and 7" such
that

T =0, Wo(r) = —(t — "3, Wh(t) = (t— "3, and
T =K@34), WO =@-1)7> WLt = 0.
Let K” be the virtual knot T + 7. By Theorem 2.3 (i), we have
I () = Ix(0) + [ (0) + WAOW, () + Wr@OWL(1) = (1 — 1)’ e Py,

(i) For n = 2, we have Ig3 1y(t) = —(t - 1)? € P;. For n > 3, we consider the trivial knot
O and the virtual knot —K(3.4)*. We remark that W_kizap(t) = =Wkaa() = —( - 1)? and
I_g 3.4y (1) = Ig3.4)(t) = 0. Then we have —(7 - )33 € P; similarly to the proof of (i). O

Lemma 5.4. Let n < —1 be an integer.

(1) There are integers ar (n + 1 < k < 1) such that t* + Zi:nﬂ ait* € Py.
(i) There are integers aj (n+ 1 < k < 1) such that —t" + 3 - att € Py.

Proof. For n = —1, we have
I[((4.9)(I) = l_l —2+te€P;and I]((g.])([) = —t_l +2—-t€eP.
Assume that n < —2. By Lemmas 5.2 (i) and 5.3, we have

0 0
7+ Z aktkepland—t”+ Z a;tkepl

k=n+1 k=n+1

for some ay,a; € Z (n+1 <k <0). O

Proof of Theorem 5.1. (i)=(ii). This follows by Theorem 3.2.
(ii)=(iii). Assume that f(f) = Yz art® satisfies f(1) = f(1) = 0. Then we have

ap = Z(k—l)akanda] :—Zkak

k+0,1 k+0,1

to obtain
fo= > el +at+ay= ) a —ki+k-1).
k#0,1 k#0,1
(ii))=(i). For the coefficients a; (k # 0, 1) of f(#), there are integers a(, and @ such that
art* + ajt+ay e P
k#0,1

by Lemmas 5.2 (ii), 5.3, and 5.4. Put this polynomial by ¢g(¢#). Since g(¢r) € P;, we have
g(1) = ¢g’(1) = 0 by Theorem 3.2. Then it holds that

al = Z(k— Day and d) = — Z kay.

k+0,1 k+0,1

Therefore we have f(¢) = g(t) € P;. ]

Next we give a characterization of the second intersection polynomials. Let 7, denote
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the set of Laurent polynomials defined by P, = {llx(?) | K : virtual knots}.

Theorem 5.5. For f(t) € Z[t,t™'], the following are equivalent.

1) f@) € P,
(ii) f(1) is reciprocal, f(1) =0, and f”(1) = 0 (mod 4).

To prove this theorem, we prepare Lemmas 5.6-5.8 as follows.
Lemma 5.6. For any f (1), g(t) € P>, we have f(t) + g(t) € P;.

Proof. Let K and K’ be virtual knots with lIx(t) = f(¢) and g (t) = g().
By Proposition 2.2, there are dotted virtual knots 7 and 7" such that
T=K Wn=0, Wh(r) = Wk(p), and
T' =K, Wi(t) =Wk, W@ =0.

Let K" be the virtual knot T + 7" By Theorem 2.3 (ii), we have

/0 Hg(t) + g (D) + W)W, (™) + Wre)Wa, (171
+WRE YW () + Wit HWy.(1)
Uk (t) + Uk (1)

f@) +g@) € Ps. o

Lemma 5.7. Let n > 2 be an integer.
(1) There are integers a; (0 < k < n — 1) such that

n—1

(" +1")+ Z ay(* + 1% + ag € Ps.
=1

(ii) There are integers a; (0 < k < n — 1) such that
n—1

—("+ ") + Z a,(t* + %) +a) e P,
k=1

Proof. (i) We consider the trivial virtual knot O and the virtual knot K(4.20) with
Wk.20)() = (t - 1)? and II k420)(f) = 0. By Proposition 2.2, there are dotted virtual knots T
and T’ such that

T=0, Wo(t) = (r— D', W) = =t — D*™', and
T = K(420), Wi =@-1?%  WnL@=0.

Let K” be the virtual knot T + 7. By Theorem 2.3 (ii), we have

(1)

- =D+ - DX = D!
=D+ =D e P

(ii) We consider the trivial knot O and the virtual knot —K(4.20)*. We remark that
W_K(4.20)#(l) = —W[((4.20)(t) = —(t- 1)2 and H_K(4420)#(l) = H]((4.20)(l) = 0. Then we have
—(t = 1*"3 — (17" = 1’3 € P, similarly to the proof of (i). o

Lemma5.8. 2t — 4 +2r' e Pyand -2t +4 -2t € P.
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Proof. We have Il 1)(t) = —2t+4-2¢"! € P,. Furthermore, since II K(4.56) = 4t-8+417 1 e
P,, we have

20-4+2 = (=2t+4 -2+ 4t-8+4rH e,
by Lemma 5.6. =

Proof of Theorem 5.5. (i)=(ii). This follows by Theorem 3.3.

(ii)=(i). By Lemma 3.5, we may take f(t) = Y ax(t* + 1% = 2) for some a; € Z (k > 1)
with 3.044>1 ax = 0 (mod 2). For the coefficients a; (k > 2) of f(¢), there are integers a;, and
a; such that

Z a+ 1 +ait+1) +a)e P,
k>2

by Lemmas 5.6 and 5.7. We denote this polynomial by g(¢). Since g(f) € P,, we have
g’ (1) =Y 2k2ak+2al = 0 (mod 4) by Theorem 3.3. Then it holds that }’;.,qq>3 ax+a} =0
(mod 2) and hence a| = a; (mod 2). Therefore for the coefficients a; (k > 1) of f(7), there
is an integer a; such that

Z a+t"+a) eP,
=1

by Lemmas 5.6 and 5.8. We denote this polynomial by A(f). Since h(f) € P,, we have
h(1) = 0 by Theorem 3.3. Then it holds that aff = =2 ;> ax and f(1) = h(?) € P,. ]

Let 75 denote the set of pairs of Laurent polynomials defined by

f() = Wk(t) and }

Ps= {(f(t)’ 9(0) ‘ g(t) = M k(t) (mod WK(I)) for some virtual knot K

A pair of Laurent polynomials in the set 75 is characterized as follows.

Theorem 5.9. For f(t) and g(t) € Z[t,t™"], the following are equivalent.

@) (f(0),9(1) € P5.
(ii) g(1) is reciprocal, f(1) = f'(1) = g(1) =0, and f"'(1) = g"’ (1) (mod 4).

Proof. (i)=(ii). This follows by Theorems 3.1 and 4.1.

(i1)=(i1). By Theorem 3.1, there is a virtual knot K with Wi (#) = f(¢). We take a Laurent
polynomial A(#) with Il x(¢) = h(f) (mod Wk(D)). By Theorem 4.1, h(¢) is reciprocal, h(1) =
0, and 2”’(1) = f”(1) (mod 4).

Consider the Laurent polynomial p(t) = g(¢#) — h(t). Then p(¢) is reciprocal, p(1) =
g(1) —h(1) =0, and p”(1) = ¢”’(1) — K”’(1) = 0 (mod 4). By Lemma 3.5, there is a Laurent
polynomial g(¢) such that

p@) = (=D = Dg) + ¢ =Dt = Dg(t™).
It follows by Proposition 2.2 that there are dotted virtual knots 7" and 7’ such that

T=K WXt =Wk~ (- Dq(t), W) = (- Dg(t), and
=0, Won=—(@-1), Wh=1-1.
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Then we have p(t) = W}(t)Wl,(t‘l) + W}(r")Wl,(t). Let K"’ be the virtual knot T + 7" By
Theorem 2.3 (iii), it holds that

Wi (1)
M g (1)

Wi(t) + Wi (2) = f(¢) and
h(®) + p(t) = g(?) (mod W (1)). O

6. Connected sums of trivial knots

In [6], we prove that there are infinitely many connected sums of any pair of virtual knots.
In particular, the intersection polynomials of a connected sum of two trivial virtual knots are
characterized as shown in Propositions 6.1-6.3. Here, we use the notations 2P; = {2f(¢) |

f() € Pi}and 2P, = {2f(1) | f(2) € P>}
Proposition 6.1. For f(t) € Z[t,t™"], the following are equivalent.
(1) There is a virtual knot K € C(O, O) with f(t) = Ix(?).
(i) f(z) € 2P.

Proof. (i)=(ii). Let 7' and 7" be dotted virtual knots with K = T+T andT =T = O.
By Theorem 3.2, we have f(1) = f’(1) = 0. Furthermore, since

Wr(t) = —W(2) and Wy, (£) = =W, (2),

we have Ix(?) = —2W¥(t)W?,(t) by Theorem 2.3 (i). Therefore all the coefficients of f(¢) are
even.

(i))=(i). By Theorem 5.1, there is a Laurent polynomial ¢g(r) € Z[t,t"'] with f(¢) =
2(t — 1)?g(1). By Proposition 2.2, there are dotted virtual knots 7 and T’ such that

{ f: 0, Wt)=—(@-1), Wh=t-1, and
T"=0, W) =(—Dg®), W@ =—-1DgQ.

Then the connected sum K = T + T" € C (0, O) satisfies

Ix(t) = 22WR(OW.(1) = 2(1 = 1)’g(1) = f(0). O

Proposition 6.2. For f(t) € Z[t,t™"], the following are equivalent.
(1) There is a virtual knot K € C(O, O) with f(t) = lk(t).
(1) f(r) € 2P;.
Proof. (i)=>(ii). Let T and 7" be dotted virtual knots with K = T+ 1" and T = T’ = O.

By Theorem 3.3, f(¢) is reciprocal, f(1) = 0, and f”(1) = 0 (mod 4). Furthermore, since we
may take

Wi(t) = =Wp(0) = (t = Dp(@) and Wy, (1) = =Wy, (1) = (1 = Dg(0)
for some p(1), q(t) € Z[t,t~'], we have

@) = k()

2WAOWY, (™ + W HW. (1))
= 20— (" = D(pOq™") + ptHg(®)).

Therefore all the coefficients of f(¢) are even.
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(i))=(@1). Put f(t) = f(t)/2 € Z[t,1"]. By Theorem 3.3, it satisfies that jT(t) is reciprocal,
]7(1) =0, and ]7”(1) = 0 (mod 4). It follows by Lemma 3.5 that there is a Laurent polynomial
g(?) such that

f@) = @t = D" =g + @' = D - g™,
By Proposition 2.2, there are dotted virtual knots 7" and 7’ such that

T=0, Wlt)=(-1gt), Wt =—(- g, and
T'=0, WO, =1-1, Wh(t) = —(t - 1).

Then the connected sum K = 7 + 1" € C (0, O) satisfies
Hg(r) =20t = D™ = D(G(n) +g™") = (). O
Proposition 6.3. For f(t) € Z[t,t™'], the following are equivalent.

(1) There is a virtual knot K € C(O, O) with f(t) = Il (1).
(i) f(¢) € Ps.

Proof. By Theorem 2.3 (iii) and Proposition 2.2, the condition (i) is equivalent to

f@) € {pq(®) + p(~ g™ | p(0), q(1) € ZI1, 171, p(1) = ¢(1) = 0},

This set is coincident with

g+ g™y | g(t) € ZIt, '], 9(1) = ¢’ (1) = 0}.

Therefore (i) is equivalent to (ii) by Lemma 3.5 and Theorem 5.5. m|
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