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Latent Crossover for Data-Driven
Multifidelity Topology Design

Topology optimization is one of the most flexible structural optimization methodologies.
However, in exchange for its high level of design freedom, typical topology optimization
cannot avoid multimodality, where multiple local optima exist. This study focuses on devel-
oping a gradient-free topology optimization framework to avoid being trapped in undesir-
able local optima. Its core is a data-driven multifidelity topology design (MFTD) method, in
which the design candidates generated by solving low-fidelity topology optimization prob-
lems are updated through a deep generative model and high-fidelity evaluation. As its key
component, the deep generative model compresses the original data into a low-dimensional
manifold, i.e., the latent space, and randomly arranges new design candidates over the
space. Although the original framework is gradient free, its randomness may lead to con-
vergence variability and premature convergence. Inspired by a popular crossover opera-
tion of evolutionary algorithms (EAs), this study merges the data-driven MFTD
framework and proposes a new crossover operation called latent crossover. We apply
the proposed method to a maximum stress minimization problem in 2D structural mechan-
ics. The results demonstrate that the latent crossover improves convergence stability com-
pared to the original data-driven MFTD method. Furthermore, the optimized designs
exhibit performance comparable to or better than that in conventional gradient-based
topology optimization using the P-norm measure. [DOI: 10.1115/1.4064979]

Keywords: topology optimization, deep generative model, latent crossover, maximum
stress minimization, data-driven design, machine learning, multiobjective optimization

1 Introduction
Topology optimization, first proposed by Bendsøe and Kikuchi

[1], enables the determination of an optimized material distribution
for a structural optimization problem and offers a high level of
design freedom [2]. While this attractive feature makes it applicable
to various structural design problems, topology optimization faces
challenges with multimodality, where multiple local optima exist
in the solution space [3]. That is, gradient-based optimizers used
in conventional topology optimization methods may fall into low-
performance local optima. This intractable characteristic is often
seen in strongly nonlinear problems, e.g., minimax problems; thus,
it is challenging to obtain structures that exhibit high levels of
performance.
One of the standard ways to overcome the problem of multi-

modality in engineering optimization applications is evolutionary
algorithms (EAs) since they are gradient-free [4]. An EA, such
as the genetic algorithm, mimics the evolutionary mechanisms
of living organisms, and solutions are represented as strings of

genes. The solution search is performed by applying three basic
genetic operations: selection, crossover, and mutation, to a pop-
ulation of individuals. Each iteration of these genetic operations
is referred to as a generation. The selection is an operation that
retains individuals with relatively better objective function values
in the population for the next generation. The crossover is an oper-
ation that partially exchanges genes between selected individuals to
generate new individuals (offspring) that inherit traits from old ones
(parents). However, if some individuals in the population have sig-
nificantly higher fitness than others in the early stages of the search,
they may weed out others by selection and crossover, leading to a
loss of diversity and a high probability of premature convergence
[5]. The mutation is an operation that introduces new genes into
the population by changing a portion of the genes of selected indi-
viduals, which helps maintain diversity in the population. Several
methods [6–9] have been proposed to solve topology optimization
problems using EAs, taking advantage of their gradient-free nature.
While they can perform a global search for strongly nonlinear prob-
lems, Sigmund [10] has pointed out issues with EA-based topology
optimization. That is, topology optimization problems often require
a large number of design variables, and the computational cost of
the EA increases exponentially with the number of design variables
due to the so-called curse of dimensionality.
As a potentially promising way to avoid the curse of dimension-

ality, some deep generative models can dramatically reduce the
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dimensionality of the topology optimization problem. Variational
autoencoders (VAEs) [11] and generative adversarial networks
(GANs) [12] are popular deep generative models. In a VAE, an
encoder is built to compress high-dimensional data into a low-
dimensional manifold, called latent space, and maps it to a probabil-
ity distribution, while a decoder reconstructs high-dimensional data
from the latent space. In a GAN, a generator creates new
data samples by starting from random noise and trying to produce
data that are indistinguishable from real data. A discriminator, on
the other hand, assesses these generated samples and tries to distin-
guish them from real data. As a review paper [13] mentioned, rele-
vant studies on deep generative models for engineering design
problems have increased dramatically in recent years. As pioneering
work, Guo et al. [14] proposed a data-driven indirect design repre-
sentation for high-dimensional design problems, which iteratively
optimizes the latent space of a VAE as the design variable field.
Oh et al. [15] proposed a design framework that iteratively trains
a GAN to generate a variety of designs. Kazemi et al. [16] proposed
a method to generate conceptual designs using a GAN for multi-
physics topology optimization problems.
On the basis of combining EAs and deep generative models, Yaji

et al. [17] proposed a data-driven multifidelity topology design
(MFTD) method that enables gradient-free topology optimization.
The basic idea of data-driven MFTD is that design candidates, gen-
erated by solving low-fidelity topology optimization problems, are
iteratively updated using an EA that guides queries to a high-fidelity
analysis model. The key to this framework builds upon data-driven
topology design [18], incorporating a VAE as a crossover-like oper-
ation for each optimization step. The effectiveness of the frame-
work was demonstrated for topology optimization problems that
are hard to solve directly with conventional methods, such as
minimax and turbulent flow problems. However, since the genera-
tive process in a VAE is based on a uniform random sampling in the
latent space, it is expected that the effectiveness of the approach can
be improved if the crossover operation is adopted based on EAs.
This article proposes a particular crossover operation based on

EAs, called latent crossover, for the data-driven MFTD framework.
Specifically, simplex crossover (SPX) [19]—a crossover operator
of real-coded genetic algorithms (RCGAs) [20]—is used for
latent crossover. We apply the proposed method to a maximum
stress minimization problem of an L-bracket and verify the effec-
tiveness of latent crossover, comparing it with the original data-
driven MFTD. We also discuss its usefulness by comparing the
results of the proposed method with those of gradient-based topol-
ogy optimization (GTO) using the P-norm measure for the
maximum stress minimization problem.

2 Latent Crossover
In data-driven MFTD [17], whose details are described in Sec. 3,

the high-dimensional material distribution data of the design
candidates are encoded by a VAE into low-dimensional real-valued

latent variables that correspond to EA genes, making the framework
similar to the RCGA among EAs. Its high representation flexibility
makes crossover more important in the RCGA than in the binary
GA, and it has been the subject of various studies. For example,
Kita and Yamamura [21] proposed a theory called the function spe-
cialization hypothesis concerning the selection and crossover oper-
ators in RCGAs, which includes the following ideas:

• The selection operator eliminates individuals with low fitness
and, meanwhile, selects and replicates those with high fitness.
Therefore, it is designed to narrow the population distribution
gradually.

• The crossover operator transforms the distribution by combin-
ing parent individuals to generate offspring and is designed to
retain the ability to generate new offspring for a finite popula-
tion, but not to change the population distribution.

The design guideline for RCGA crossover operators uses statistics
to concretize the aforementioned theory [22–24]. Specifically, the
crossover operator should be designed to inherit statistics such as
the mean vector and variance/covariance matrix of the population.
In data-driven MFTD, candidate solutions are generated through

random sampling from the latent space of a VAE, so in terms of the
genetic distribution and statistics of the population, we consider the
probability distribution of the generated offspring. Figure 1 shows
an example of the probability distribution for generating offspring
in a two-dimensional latent space in the range from −2 to +2 for
each dimension. The darker areas have a higher probability of gen-
erating offspring. Assuming that the distribution of the parent pop-
ulation, as shown in Fig. 1(a), is given, data-driven MFTD performs
sampling based on a uniform distribution in the latent space, regard-
less of the distribution of the parent population. The resulting prob-
ability distribution of the generated offspring becomes the one
shown in Fig. 1(b). It cannot be said that the statistics of the
parent population are inherited. Although the use of a VAE as a
deep generative model enables a crossover-like operation in the
original data-driven MFTD, it is similar to crossover but cannot
be considered strictly performing crossover because of random
sampling. Since the input data follow a normal distribution in the
latent space due to the nature of VAEs [11], generating offspring
through sampling based on a normal distribution rather than a
uniform distribution can be considered reasonable. However, as
shown in Fig. 1(c), the probability of generated offspring does
not follow the distribution of the parent population; therefore, the
statistics of the parent population are not inherited in this case
either. Based on the EA concept, preserving the diversity of the pop-
ulation helps prevent premature convergence, but crossover-like
sampling from the latent space using random sampling can lead
to an early loss of diversity in the population. This results in fluctu-
ation in convergence and, in the worst case, failures to perform a
global search, leading to the possibility of getting stuck in local
optima.
As mentioned earlier, it is impossible to strictly inherit the statis-

tical characteristics of the parent population through random

Fig. 1 Probability distribution for generating offspring in 2D latent space. For the dots that are encoded parents, the darker
shaded areas have a higher probability of generating offspring: (a) Parent individuals, (b) uniform random sampling,
(c) normal random sampling, and (d) latent crossover.
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sampling. According to its nature, a crossover operation generates
offspring by targeting small areas for parents who are close together
and large areas for those who are far apart [25]. Thus, applying
latent crossover to the parent population in Fig. 1(a), the probability
distribution of generated offspring is expected to become the one
shown in Fig. 1(d ). Therefore, it can be said that a crossover oper-
ation in the latent space, i.e., the latent crossover, is promising.

3 Framework
3.1 Data-Driven MFTD With Latent Crossover. Data-

driven MFTD focuses on solving the following general multiobjec-
tive topology optimization problem:

minimize
γ

[J1(γ), J2(γ), . . . , Jr0 (γ)]

subject to Gj(γ) ≤ 0,
γe ∈ {0, 1}, e = 1, 2, . . . , N

(1)

Here, Ji (i = 1, 2, . . . , ro) and Gj (j = 1, 2, . . . , rc) are the objective
and constraint functions, respectively. The optimization problem
defined by Eq. (1) is a 0-1 optimization problem with γ composed
of N design variables. Since such a problem is a nonlinear mathe-
matical optimization problem with a massive number of design var-
iables, we adopt the concept of MFTD [26] and divide the problem
of Eq. (1) into two procedures: low-fidelity optimization and high-
fidelity evaluation. The low-fidelity optimization is formulated as an
easily solvable pseudo-problem and is used to generate a variety of
candidate solution structures by employing artificial parameters. On
the other hand, the high-fidelity evaluation is used to evaluate the
performance of candidate solutions using objective and constraint
functions formulated by Eq. (1).
By using the MFTD approach and a deep generative model, data-

driven MFTD iteratively updates solution candidates in a gradient-
free manner similar to EAs. Note that the latent space is updated at

every optimization step. The schematic flow of the proposed data-
driven MFTD with latent crossover is shown in Fig. 2, and the
details of each step are explained here.

Initial Data Generation: For the original optimization problem
of Eq. (1), we solve a low-fidelity optimization problem formulated
as follows, which can be easily solved as a simple pseudo-problem:

minimize
γ(k)

J̃i(γ(k))

subject to G̃ j(γ(k), s(k)) ≤ 0,
γ(k)e ∈ [0, 1], e = 1, 2, . . . , N

for given s(k), k = 1, 2, . . . , K

(2)

Here, J̃i and G̃ j are the objective and constraint functions for the low-
fidelity optimization problem, respectively, which can be easily
computed by pseudo-functions. In addition, s = [s1, s2, . . . , sNsd ] rep-
resents the set of Nsd types of artificial design parameters called
seeding parameters, and s(k) is the sample point of s. For instance,
the seeding parameters are defined as the maximum limit of con-
straints and optimization parameters such as the filter radius. By
solving the relaxed low-fidelity optimization problem of Eq. (2)
under various seeding parameter settings, where γ(k)e is relaxed to
[0, 1], K kinds of promising and diverse material distributions are
prepared as initial solutions.

Evaluation: The performance of candidate solutions is evaluated
using a high-fidelity analysis model, which is used to compute the
original multiple objective functions Ji and Gj in Eq. (1) with dis-
crete γe binarized to {0, 1}.

Selection: As mentioned in Sec. 2, selection is a critical genetic
operation in RCGAs. For problems as in Eq. (1), it is necessary to
evaluate solutions using multiple objective functions and select

Fig. 2 Schematic illustration of data-driven MFTD with latent crossover
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those to be preserved in the next generation. This article uses the
nondominated sorting genetic algorithm II (NSGA-II) [27] strategy
as a selection algorithm, which selects candidates in a multi-
objective manner by ranking them based on the Pareto dominance
relation using distances in the objective function space. The nondo-
minated candidate solutions are selected based on performance
evaluation values from the high-fidelity model, and then a set of
Pareto solutions is constructed.

Crossover: A VAE is trained with the Pareto solution set as
input to construct a latent space, where high-dimensional material
distributions are encoded into low-dimensional latent variables.
Here, it is important to note that the learning data are not accumu-
lated iteratively but rather, a fixed number of data to be selected is
predetermined, and a VAE is trained anew in each iteration. Latent
crossover is performed using these latent variables to generate off-
spring in the latent space. Decoding the offspring generated by
latent crossover yields new material distributions that inherit the
characteristics of the input data, and candidate solutions are gener-
ated. The details of the VAE and the latent crossover operation are
described in Secs. 3.2 and 3.3, respectively.

Mutation: The latent space of the VAE is constructed using the
Pareto solution set of the current generation and corresponds to a
subspace in which the solutions are distributed. Even if the mutation
method of RCGAs, such as the nonuniform mutation operator [28],
is applied in the latent space, its outcome is limited to a specific sub-
space against the whole solution space. This limitation exists
because such a mutation only performs a local search in the sub-
space around the solutions distributed in the whole solution
space. Thus, it cannot be expected to maintain the diversity of the
population and prevent premature convergence, as discussed in
Sec. 1.
Therefore, under the following constraint function, the low-

fidelity optimization problem is solved using the same method as
when generating initial data:

G̃mut(γ
(m)) =

∑N
e=1

veγ
(m)
e γref(m)

e ≤ G̃max
mut |D| (3)

where m = 1, 2, . . . , Nmut is the number of mutants, ve is the ele-
mental volume, G̃

max
mut is a parameter that controls the degree of

overlap between the reference material distribution γref(m) and the
design variable γ(m), and |D| =∑N

e=1 ve is the volume of D. In
brief, the role of the constraint of Eq. (3) is to generate a different
material distribution from γref(m)

e .
This article uses the average value of material distributions in a

given generation as a reference structure. This average distribution
can be considered to be representative of the material distributions
of the population. By solving the low-fidelity optimization problem
with the constraint function of Eq. (3) and the reference structure,
promising candidate solutions can be generated with unique fea-
tures that are not present in the population. This approach enables
a mutation-like operation, similar to the mutation in EAs, to main-
tain diversity and prevent premature convergence. It should be
noted that the mutants added to the population through this opera-
tion are still limited to a specific subspace and may not search the
whole solution space comprehensively.

3.2 Variational Autoencoder. Figure 3 shows the architecture
of the VAE used in the numerical examples in Sec. 4. A total of 6400
input/output elements are combined into two eight-dimensional
layers, μ and σ, through a hidden layer of 512 dimensions. μ is the
mean vector, and σ is the variance vector of the latent variables z.
The following equation defines the latent variable vector z:

z = μ + σ ⊙ ε (4)

where ⊙ is the operator that calculates the element-wise product and
ε is a vector of random numbers from the standard normal

distribution. In VAEs, unsupervised learning is performed using
the same dataset for both input and output, constructing the latent
space. The following loss function LVAE is used for the training:

LVAE = Lrecon + ϱLKL (5)

LKL = −
1
2

∑Nlt

i=1

1 + log(σ2i ) − μ2i − σ2i
( )

(6)

where Nlt is the dimension of the latent space and μi and σi are the ith
elements of μ and σ, respectively. Lrecon is a reconstruction loss using
mean squared error, and LKL is known as the Kullback–Leibler (KL)
divergence. ϱ is the weight parameter that controls the influence of
the KL divergence to regularize the latent space to the standard
normal distribution.
Here, the VAE trained with the architecture shown in Fig. 3 and

the loss function of Eq. (5) constructs a latent space following a
single standard normal distribution. In contrast, there are advanced
generative models such as Gaussian mixture VAEs [29] whose
latent space follows multiple distributions. For instance, on the
basis of this idea, Tsumoto et al. [30] have proposed a clustering
method for solutions obtained through topology optimization. Due
to the search mechanism of evolutionary algorithms, data-driven
MFTD could involve the training data being distributed into
several clusters, and Gaussian mixture VAEs might provide better
learning accuracy compared to the standard VAEs in such cases.
However, as mentioned in Sec. 3, since VAEs are trained anew at
each iteration in the optimization process, this study employs the
aforementioned standard VAEs in terms of computational cost and
learning stability.
Compared to simple dimensionality reduction using autoenco-

ders, VAEs are trained by incorporating probabilistic variation
through ε, allowing for the estimation of the given dataset distribu-
tion, and can be used as a deep generative model for continuous data
generation. When using material distributions as a dataset for topol-
ogy optimization, essential features within the dataset are extracted
by compressing them into dramatically smaller latent variables.
According to the standard normal distribution, latent variables do
not take extremely large or small values. To represent all material
distributions without excessive randomness, original data-driven
MFTD [17] generates offspring by sampling uniform random
numbers in [−4, 4], which covers 99.7% of the data within ±4σ,
for each latent variable. However, as mentioned in Sec. 2, generat-
ing offspring with a uniform probability distribution in the latent
space, as shown in Fig. 1(b), regardless of the distribution of
parent individuals, can be problematic. In this article, we perform
latent crossover using the crossover operator explained in Sec. 3.3.

3.3 Simplex Crossover. Due to the high degree of freedom of
representing genes as real-valued vectors, the RCGA has limited
offspring that can be generated from selected parent individuals
using crossover operators, such as the single-point crossover

Fig. 3 Architecture of VAE
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commonly used in binary evolutionary algorithms. Several cross-
over operators for RCGAs [19,31,32] have been proposed to
address this issue. This article uses the simplex crossover (SPX)
[19] for a latent crossover operator. SPX is one of the multiparent
crossover operators for RCGAs that generates offspring using
three or more parent individuals and is consistent with the crossover
design guidelines [22–24] as it inherits the average value and
covariance matrix of the population.
When the search space is defined as the real n-dimensional space

Rn, where individuals are represented as vectors of real numbers,
the algorithm for SPX is as follows:

(1) Randomly select (n + 1) parent individuals P0, P1, . . . , Pn

from the population.
(2) Calculate the centroid G of the parent individuals as follows:

G =
1
n

∑n
i=0

Pi (7)

(3) Calculate variables xk and Ck for k = 0, 1, . . . , n as follows:

xk = G + ε(Pk − G) (8)

Ck =
0 (k = 0)
rk−1(xk−1 − xk + Ck−1) (k = 1, . . . , n)

{
(9)

Here, ε is the expansion rate parameter, and
						
n + 2

√
is the

recommended value for inheriting population statistics
[19]. rk is obtained by transforming a uniform random
number u(0, 1) in the interval [0, 1] as follows:

rk =
u(0, 1)

1
k+1 (k = 0, . . . , n − 1)

1 (k = n)

{
(10)

(4) Generate a child individual C as follows:

C = xn + Cn (11)

With these procedures, SPX generates offspring uniformly within
the enclosed space of the ε-extended polytope P′

0, P
′
1, . . . , P

′
n cen-

tered at the centroid of the parent individuals P0, P1, . . . , Pn, as
shown in Fig. 4. Therefore, SPX is a crossover operator that
achieves a balance between exploration and exploitation [33].

4 Numerical Examples
4.1 Problem Setting. Data-driven MFTD, as mentioned in

Sec. 3.1, is a framework for multimodal optimization problems
with high nonlinearity and targets problems where the low-fidelity

optimization problem is formulated as an easily solvable pseudo-
problem for the original one to be solved.
This study applies the proposed method to the design problem of

a two-dimensional L-bracket. It is widely used as a benchmark for
stress-based topology design [34–37] and is a minimax problem
with its high nonlinearity caused by the stress singularity at the
reentrant, inner corner. It is formulated as the following multi-
objective optimization problem:

minimize
γ

J1 =max σvM( ),

J2 =
∑N
e=1

veγe

subject to γe ∈ {0, 1}, e = 1, 2, . . . , N

(12)

Here, σvM is the von Mises stress, the maximum of which is an
objective function, and the volume is the other objective function.
Note that the design variables are defined as discrete values, 0 or
1, to deal with the ideal topology optimization problem with high-
fidelity evaluation, and ve is the elemental volume.
The design domain and boundary conditions for the L-bracket, as

shown in Fig. 5, include fixing the upper edge and applying a ver-
tical downward distributed load at the top right corner to avoid
stress concentration. The length of the bracket is set to L = 2, and
the design domain is divided into 6400 square elements
(N = 6400). Young’s modulus of the structural material is set to
1, one of the voids is set to 1 × 10−9 instead of 0 to avoid the sin-
gular stiffness matrix, and Poisson’s ratio is set to 0.3.
It is necessary to formulate the low-fidelity optimization problem

as a simple problem that can be easily solvable. In previous studies
[17,26], the focus was on the fidelity of physical phenomena, and
the governing equations of the flow model were modified. In this
study, we also refer to this method and formulate the minimum
compliance problem as a low-fidelity optimization problem under
the assumption that a promising solution can be obtained even
with stiffness maximization [35]:

minimize
γ(k)

J̃1 = fTu

subject to J̃2 =
∑N
e=1

veγ
(k)
e ≤ s(k),

γ(k)e ∈ [0, 1], e = 1, 2, . . . , N
for given s(k)

(13)

Here, f and u are vectors in the equilibrium equation, namely,
Ku = f, with the global stiffness matrix K. In Eq. (13), the
volume is converted from an objective function to a constraint func-
tion based on the ε-constraint method for the original optimization

Fig. 4 SPX offspring generation area for 2D Fig. 5 Design problem of L-bracket
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problem of Eq. (12), and since γ(k)e is relaxed to [0, 1], this problem
can be easily solved using the density-based method [2]. Note that
the density filter [38,39] is applied to ensure the smoothness of γ in
D, and we use the method of moving asymptotes (MMA) [40] as the
gradient-based optimizer.
As for the parameters set based on preliminary studies related to

the overall procedure, the number of initial data and Pareto solu-
tions from the selection operation are set to 100 and 300, respec-
tively. Regarding the parameters related to the mutation
operation, Nmut is set to 16, and G̃max

mut is set to 0.01. During the
latent crossover, nine parent individuals are used by the SPX
method because the dimension of the VAE latent space is 8.

4.2 Verification of Variational Autoencoder Model. First,
we verify the VAE model and parameters, which play a central
role in data-driven MFTD. After preliminary studies on the hyper-
parameters, we establish the VAE architecture as shown in Fig. 3.
The VAE is trained with 100 material distribution samples with
500 epochs, a batch size of 20, and a learning rate of 0.001. The
training is terminated if the loss function LVAE of Eq. (5) is not
improved in every iteration for a total of 50 iterations.
Figure 6 shows the history of the loss function in Eq. (5) during

training using the material distribution data at iteration 0 described
in Sec. 4.4 as an example. The number of epochs is represented on a
logarithmic scale to highlight the areas with significant changes in
the loss function. The loss function converges smoothly, indicating
that the VAE is appropriately trained under the investigated
condition.

4.3 Verification of Latent Crossover Effect. For the problem
setup in Sec. 4.1, we compare the original and proposed data-driven
MFTD frameworks. Since both methods involve random effects,
we evaluate and compare them using the hypervolume indicator
[41] over ten trials, which is normalized using the initial one. The
hypervolume is a measure of the convergence performance of multi-
objective optimization. In the case of two objectives, it is repre-
sented by the area formed by the reference point and the Pareto
front in the objective space as shown in Fig. 7, so a larger hypervo-
lume value means that the Pareto front has progressed. Although
mutation is usually performed at regular intervals of iterations, we
confirmed that in the case of this design problem, the mutants are
selected only once at the beginning, and no mutants are selected
as elite solutions thereafter. Therefore, we used the initial data
composed of the mutants and initial solutions to compare them
with the search performance by crossover without mutation. As
this validation involves multiple computations due to the inclusion
of randomness, the number of Pareto solutions created through
selection has been set to 100 for computational efficiency.

Figure 8 shows the iteration history of the hypervolume indicator
over ten trials. Note that its value of each iteration is relative hyper-
volume normalized by the initial one. In terms of the value at 100
iterations, random sampling in Fig. 8(a) shows a considerable var-
iation in the range from 1.38 to 1.52, while the latent crossover in
Fig. 8(b) remains stable in the range from 1.48 to 1.54. The
average values of each hypervolume indicator in the ten trials are
plotted in Fig. 9. Up to iteration 30, the value of random sampling
is higher than that of latent crossover. However, after iteration 30,
this relationship is reversed, and at iteration 100, the average
value of random sampling is 1.45, while that of latent crossover
is 1.50, indicating a difference of 5%. In addition, at iteration
100, the lower limit of the 95% prediction intervals for the latent
crossover case exceeds the upper limit for the random sampling
case. A t-test was performed on the hypervolume values at iteration
100, and the p-value was 0.00180, which is less than 0.05. There-
fore, it can be considered statistically significant that the latent
crossover outperforms the random sampling.
In addition, we compare the performance of the best and worst

cases among the ten trials shown in Fig. 9 in terms of the relative
hypervolume value. Figure 10 presents a comparison of their perfor-
mance. It is evident from Fig. 10 that the best case with latent cross-
over achieved the most advanced Pareto front. Even in the worst
case with latent crossover, the Pareto front exhibits a spread in
the objective function space, whereas in the worst case with
random sampling, the Pareto front is highly contracted and fails
to maintain diversity. This issue could be serious regarding the
nature of EAs [5], as there is an increased risk that the optimized
structures are local optima with poor performance.
The SPX operator used as the latent crossover operator gradually

changes the population distribution while inheriting the statistics, so
the increase in hypervolume is slower in the early stages of the
search (up to iteration 30) compared to the random sampling. There-
fore, this approach maintains diversity and prevents premature con-
vergence, which leads to a more advanced Pareto front in the final
iteration (at iteration 100) in Fig. 10. This improvement can be
explained based on the theory that the balance between exploration
and exploitation [33], i.e., expanding the Pareto front and advancing
it, respectively, is significant in EAs. From these results and discus-
sions, it can be concluded that data-driven MFTD achieved stable
and high search performance with the latent crossover based on
the theory of RCGAs.

4.4 Validity of Optimized Structure. Next, we compare the
structures obtained through data-driven MFTD with structures

Fig. 6 Learning history at iteration 0 of our VAE, where the
architecture is shown in Fig. 3, the loss function is defined as
Eq. (5), and the training data is described in Sec. 4.4

Fig. 7 Illustration of hypervolume in the case of two-objective
optimization
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obtained through direct optimization using a gradient-based
approach without relying on MFTD principles. Despite only
solving the mean compliance minimization problem of Eq. (13)
as the low-fidelity optimization problem, we investigate how
closely the structures obtained by data-driven MFTD can approach
the performance of structures obtained by conventional gradient-
based optimization. In addition, we examine the differences
between these structures.
Here, we set various conditions for gradient-based topology opti-

mization. First, given that J1 represents the maximum value of von
Mises stress and γe takes a discrete value in {0, 1}, sensitivity anal-
ysis becomes impractical for the formulation of the optimization
problem in Eq. (12). Therefore, we use the P-norm measure
[42,43], commonly used in stress-based topology optimization
[35,36], and relax γe to [0, 1], as follows:

minimize
γ

J = 1
N

∑N
e=1

(σvM)
P

( )1
P

subject to G =
∑N
e=1

veγe ≤ Vmax|D|,

γe ∈ [0, 1], e = 1, 2, . . . , N

(14)

Here, P is the stress norm parameter, and J is called P-norm stress.
For the multi-objective problem formulated in Eq. (12), the volume
is set as the constraint function based on the ε-constraint method.
When the stress norm parameter P � ∞, the P-norm stress
approaches themaximum stress valuemax(σvM), but the smoothness
is lost. On the other hand, whenP = 1, the smoothness is maintained,
but it approaches the average stress value, resulting in an optimized
structure closer to the complianceminimum design. Previous studies
[35,37] have shown that P = 8 yields the most reasonable designs,
and we also use this value in this study. The optimization problem
formulated in Eq. (14) is solved using the density-based method
[2]with the densityfilter [38,39], following the commonly employed
gradient-based topology optimization approach. A filter radius is set
to 0.05, which corresponds to 2.5 element sizes. In addition, in order
to binarize γe and translate the solution as the original optimization
problem of Eq. (12), the heaviside projection [44] is applied to
remove the grayscale generated by the density filter. A threshold
parameter η is set to 0.5, and the sharpness parameter β is doubled
at each constant step, employing a continuation approach. The
final result and convergence behavior can be influenced by the con-
tinuation threshold. Hence,multiple thresholds of 100, 50, and 20 are
used, including the method without the continuation. We use the
MMA [40] as the gradient-based optimizer and the move limit is

Fig. 8 Hypervolume for ten trials of random sampling versus latent crossover operations for data-driven MFTD: (a) random
sampling and (b) latent crossover

Fig. 9 Comparison of hypervolume for randomsampling versus
latent crossover operations for data-driven MFTD

Fig. 10 Objective space represented as volume versus
maximum von Mises stress for random sampling versus latent
crossover for data-driven MFTD
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set to 0.05. The initial value for γe is set to match the volume fraction
Vmax used as the constraint function in Eq. (14). For example, for a
volume constraint of 30%, the initial value will be set to 0.3.
Varying Vmax from 0.2 to 0.5 in increments of 0.005 to generate mul-
tiple solutions, binarizing γe at 0.5 to create a Pareto solution set for
the original problem of Eq. (12), and then we compare it with the
solutions obtained using the proposed method. The maximum
number of steps is set to 300.
Figure 11 illustrates the structures and performance comparison

of results obtained through GTO and data-driven MFTD. First,
we discuss the optimization results of data-driven MFTD.

Figure 12 shows the initial dataset obtained by solving the low-
fidelity optimization problem in Eq. (13). The initial dataset,
which consists of compliance minimization designs, has structures
that cause stress concentration at their reentrant corners, whereas
the optimized structures shown in Fig. 11 have rounded shapes
with their reentrant corners smoothed out. The improved perfor-
mance and reduced volume can be seen by comparing the plots
of iteration 0 and iteration 400 in the objective function space
shown in Fig. 11.
When comparing the optimization results of GTO and data-

driven MFTD in Fig. 11, it can be confirmed that the solutions

Fig. 11 Objective space represented as volume versus maximum von Mises stress and corresponding optimized structures
for GTO versus data-driven MFTD (for GTO, an excerpt showcasing the optimized designs with a threshold of 50 is provided.)

Fig. 12 Initial data generated by solving a mean compliance minimization problem under various volume constraint settings as
the low-fidelity topology optimization problem

051713-8 / Vol. 146, MAY 2024 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/146/5/051713/7323161/m
d_146_5_051713.pdf by O

saka D
aigaku, Kentaro Yaji on 30 M

arch 2024



obtained from data-driven MFTD exhibit performance comparable
to or better than those from GTO. This is particularly notable in the
volume fraction range of 0.3 to 0.5. In the range of lower volume
fractions from 0.2 to 0.3, GTO exhibits significant variations in
structural performance due to the parameter of continuation thresh-
olds. This suggests that it might be getting trapped in local minima
with poor structural performance, likely due to the multimodality
caused by the strong nonlinearity of the objective function in
Eq. (14). In addition, even with the application of the Heaviside pro-
jection, complete removal of the grayscale is not achievable, and
especially for low-volume structures, there is a tendency for discon-
tinuities, leading to significant changes in maximum stress values

before and after the binarization of γe, as pointed out by Kato
et al. [45]. These effects result in the solutions obtained by GTO
having a sparse distribution in the objective space. On the other
hand, as described in Sec. 3, data-driven MFTD employs an evolu-
tionary algorithm, enabling gradient-free solution updates. This
means it is less affected by the multimodality of the objective func-
tion. In addition, using Eq. (12) for high-fidelity evaluation of the
maximum stress itself with discrete γe, rather than using the
P-norm stress with continuous γe in Eq. (14), allows the obtained
solutions to dorm an orderly Pareto front. Here, the poor perfor-
mance of the data-driven MFTD solutions in the range of volume
fractions from 0.2 to 0.3 may attributed to the mutation method.

Fig. 13 Optimized structures with volume fractions of 0.2 to 0.3: (a) GTO (continuation off), (b) GTO (threshold 100), (c) GTO
(threshold 50), (d) GTO (threshold 20), and (e) data-driven MFTD
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As described in Sec. 3.1, in data-driven MFTD, we introduce an
overlap constraint as a mutation method to solve the LF optimiza-
tion problem, generating promising structures different from the ref-
erence design. The parameter G̃max

mut , which controls the degree of
overlap, uses a constant value independent of the volume. There-
fore, while larger structures may be effectively mutated, smaller
structures might face challenges in obtaining valid solutions. Due
to the reduced effect of the mutation in low-volume regions, it is
speculated that the method has led to a kind of local optimum.
This suggests that there is room for improvement in the mutation
strategy.
Comparing the optimized structures in Fig. 11, the designs

obtained by GTO successfully avoid stress concentration at their
reentrant corners. However, they consist of straight members and
often have triangular or rectangular voids. One of the advantages
of data-driven MFTD is that material distributions are represented
as vectors and updated using a VAE, eliminating the need for sen-
sitivity analysis. Therefore, as in Eq. (12), the maximum stress can
be used directly as the objective function. This feature leads to
overall curved structures with rounded appearances at their reen-
trant corners and elsewhere, as shown in Fig. 11, suggesting that
stress concentration is further avoided. In addition, the optimized
designs obtained through GTO exhibit various patterns, suggesting
entrapment in local minima due to the multimodality of the P-norm
stress in Eq. (14). On the other hand, the optimized designs obtained
through data-driven MFTD exhibit nearly identical topologies
regardless of volume, differing mainly in member thickness. Com-
pared to GTO, data-driven MFTD achieves global search and
appears to reach a promising structural topology. Optimized struc-
tures with volume fractions of 0.2–0.3, where these trends are
clearly reflected, are shown in Fig. 13. In the case of GTO, it is
evident that regardless of continuation thresholds, structures differ
significantly even with only a 0.005 difference in volume fraction
constraint. This confirms that solutions obtained through GTO are
merely local solutions due to multimodality. On the other hand,
the optimized structure obtained through data-driven MFTD in
Fig. 13(e) maintains a consistent topology regardless of volume.
This demonstrates an effective optimization, even for low-volume
structures, where conventional GTO struggles, indicating resilience
against the influence of multimodality.
As described earlier, it has been demonstrated that the data-

driven MFTD framework can address the complex problem of
maximum stress minimization by solving the simple problem of
mean compliance minimization as a low-fidelity optimization
problem. Compared to the solutions by conventional gradient-
based optimization, the obtained structures exhibit comparable or
better performance and have similar characteristics in terms of
avoiding the stress concentration at reentrant corners. This
finding suggests that data-driven MFTD may be capable of deriv-
ing promising solutions in a gradient-free manner, even in cases
of strong multimodal problems where gradient-based optimization
is more challenging or potentially infeasible. Note that using mul-
tiple initial values in gradient-based topology optimization might
yield the optimized structures similar to or better than those
obtained with data-driven MFTD. However, it is unclear which
initial values should be employed, or whether better solutions
exist in the first place. Compared to conventional gradient-based
topology optimization, the result indicates that the data-driven
MFTD method is likely to yield a unique set of Pareto solutions
through an extensive search process.
To generate the data in Fig. 11, we run both data-driven MFTD

and GTO codes over a 2.7GHz AMD Ryzen Threadripper PRO
3995WX 64-Cores CPU. The VAE code for data-driven MFTD
was run on a NVIDIA RTX A6000 GPU. The time required to gen-
erate the optimized structures in Fig. 11 was 33.7min for GTO,
while data-driven MFTD took 6.8 h. It should be noted that there
are potential future improvements to accelerate data-driven
MFTD, such as training a VAE every fixed iteration instead of
every iteration and utilizing surrogate models for structural perfor-
mance evaluation.

5 Conclusion
This article proposed a latent crossover strategy that performs

crossover in the latent space of the VAE for the data-driven
MFTD framework. Since the latent space is constructed with con-
tinuous real numbers, this article employed the SPX as a latent
crossover operator based on the theoretical aspects of crossover in
RCGAs. The results showed that the proposed method improves
the search performance compared to the original method, which
performs random sampling in the latent space. As an interesting
aspect, this article confirms that the proposed method achieves
almost the same performance as that of gradient-based topology
optimization using the P-norm measure for the maximum stress
minimization problem, despite only solving the mean compliance
minimization problem as the low-fidelity topology optimization
problem. Furthermore, it was found that the final results of the pro-
posed method tend to achieve a similar topology, while the opti-
mized results of the gradient-based method exhibit various
patterns due to the multimodality caused by the strong nonlinearity
of the P-norm measure. Hence, the data-driven MFTD approach is
expected to yield a unique set of Pareto solutions through gradient-
free searching.
The concept of latent crossover enables the integration of evolu-

tionary algorithms and machine learning methods. In our future
work, we plan to incorporate various types of evolutionary algo-
rithms other than RCGAs, as well as VAE-based advanced
machine learning methods into the proposed framework. In addi-
tion, to verify the efficacy of the proposed framework on different
optimization problems, we consider developing a systematic formu-
lation method for the low-fidelity optimization problem and plan to
apply it to other multimodal problems involving strongly nonlinear
physical phenomena.
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