
Title
On the classification of simple modules for
cyclotomic Hecke algebras of type G(m,1,n) and
Kleshchev multipartitions

Author(s) Ariki, Susumu

Citation Osaka Journal of Mathematics. 2001, 38(4), p.
827-837

Version Type VoR

URL https://doi.org/10.18910/9564

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Ariki, S.
Osaka J. Math.
38 (2001), 827–837

ON THE CLASSIFICATION OF SIMPLE MODULES
FOR CYCLOTOMIC HECKE ALGEBRAS OF TYPE G(m, 1, n)

AND KLESHCHEV MULTIPARTITIONS

SUSUMU ARIKI

(Received March 2, 2000)

1. Introduction

After Hecke algebras appeared, unexpectedly deep applications and results have
been found in the representation theory of these algebras. Concerned with ordinary
representations, Lusztig’s cell theory is the main driving force. But we do not consider
it here. The other interest is about the modular representation theory of these algebras.
We are mainly working with Hecke algebras of type and type , and this research
is driven by Dipper and James [5, 6]. Recently, a new type of Hecke algebras was in-
troduced. We call them cyclotomic Hecke algebras of type ( 1 ) following [4].
Hecke algebras of type and type are special cases of these algebras. The author
studied modular representations of the algebra in the case that parameters are roots of
unity in the field of complex numbers [1]. In particular, it gives a classification of sim-
ple modules. Removal of the restriction on base fields was achieved in [3]. In the pa-
per [3], we gave a classification of the simple modules of cyclotomic Hecke algebras
in terms of the crystal graphs of integrable highest weight modules of certain quantum
algebras. The result turns out to be useful for verifying a conjecture of Vigneras [30].

On the other hand, another approach was already proposed in [10, 7]. Main results
in the theory are that we can define “Specht modules”, and that each Specht module

λ has a natural bilinear form, and each ofλ := λ/ rad λ is an absolutely irre-
ducible or zero module. Further, the theory claims that the set of non-zeroλ is a
complete set of simple modules.

But there is one drawback. The theory does not tell whichλ are actually
non-zero. We conjectured in [3] that the crystal graph description gave the criterion.
Namely, we conjectured that λ 6= 0 if and only if λ is a Kleshchev multipartition.
The purpose of this paper is to prove the conjecture. It is achieved by interpreting the
conjecture into a problem about canonical bases in Fock spaces. This part is based on
[1] and [3]. Then the conjecture is easily verified by using a recent result of Uglov
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[26, 27].
The author is grateful to A.Mathas for discussion he had at the early stage of the

research. He also thanks B.Leclerc, Varagnolo and Vasserot.

2. Preliminaries

Let be an integral domain,1 . . . be elements in , andζ be an invertible
element. The Hecke algebra of type ( 1 ) is the -algebra associated with these
parameters defined by the following defining relations for generators (1≤ ≤ ).
We denote this algebra byH .

( 1 − 1) · · · ( 1 − ) = 0 ( − ζ)( + ζ−1) = 0 ( ≥ 2)

1 2 1 2 = 2 1 2 1 = ( ≥ + 2)

−1 = −1 −1 (3 ≤ ≤ )

It is known that this algebra is -free of rank ! as an -module. This algebra
is also known to be cellular in the sense of Graham and Lehrer [10], and thus has
Specht modules. Following [7], we shall explain the theory. Apartiton λ of size is a
sequence of non-negative integersλ1 ≥ λ2 ≥ · · · such that

∑
λ = . We write |λ| = .

A multipartiton of size is a sequence of partitionsλ = (λ(1) . . . λ( )) such that∑
=1 |λ( )| = . If = 0, we denote the multipartition by∅. The set of multipartitions

of a given size has a poset structure. The partial order is thedominance order, which
is defined as follows.

DEFINITION 2.1. Let λ and µ be multipartitions of a same size. We say thatλ

dominatesµ, and writeλ D µ if we have for all that

−1∑

=1

|λ( )| +
∑

=1

λ( ) ≥
−1∑

=1

|µ( )| +
∑

=1

µ( )

With each multipartitionλ of size , we can associate anH -module λ. Its con-
crete construction is explained in [7, (3.28)]. It is easy to see from the construction
that it is free as an -module. These modules are calledSpecht modules. Each Specht
module is naturally equipped with a bilinear form. We setλ = λ/ rad λ, where
rad λ is the radical of the bilinear form. It can be zero, but non-zero ones exhaust all
simpleH -modules. We denote the projective cover ofλ by λ.

We remark that Graham and Lehrer have introduced the notion of cellular alge-
bras and have developped general theory for classifying simple modules using “cell
modules”. In [10], the cellular bases for the cell modules are given by Kazhdan-
Lusztig bases. Here, different cellular bases are used, but the strategy to classify sim-
ple modules is the same. Hence we call the following parametrization the Graham-
Lehrer parametrization.
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Theorem 2.2 ([7, Theorem 3.30]). Suppose that is a field. Then,
(1) Non-zero λ form a complete set of non-isomorphic simpleH -modules. Further,
these modules are absolutely irreducible.
(2) Let λ and µ be multipartitions of size and suppose thatµ 6= 0 and
[ λ : µ] 6= 0. Then we haveλ D µ.
(3) [ λ : λ] = 1.

Note that (2) is equivalent to the following (2’).
(2’) Let λ and µ be multipartitions of size and suppose thatµ 6= 0 and
[ µ : λ] 6= 0. Then we haveλ D µ.

It is obvious since we have [µ : λ] = dim HomH ( µ λ) = [ λ : µ].
As is explained in [3, 1.2], the classification of simpleH -modules is reduced to

the classification in the case that1 . . . are powers ofζ2. This is a consequence
of a result in [28, 2.13] (see also [9]). We can also assume thatζ2 6= 1, since the case
ζ2 = 1 is well understood. In the rest of the paper throughout, we assume that

= ζ2γ ( = 1 . . . ) ζ2 6= 1

If ζ2 is a primitive th root of unity for a natural number ,γ take values inZ/ Z.
Otherwise, these take values inZ.

Next we recall the notion of Kleshchev multipartitions associated with
(γ1 . . . γ ). To do this, we explain the notion of good nodes first.

We identify a multipartitionλ = (λ(1) . . . λ( )) with the associated Young dia-
gram, i.e. an -tuple of the Young diagrams associated withλ(1) . . . λ( ). Let be
a node on the Young diagram which is located on the th row and the th col-
umn of λ( ). If ζ2( − ) = ζ2 , we say that the node hasresidue (with respect
to γ = (γ1 . . . γ )). We denote the residue byγ( ). A node is called an-node if its
residue is . Letλ andµ be multipartitions. We first assume that|λ|+ 1 = |µ|, and the
node :=µ/λ has γ( ) ≡ . We then call anaddable -nodeof λ. If |λ| − 1 = |µ|
and :=λ/µ has γ( ) ≡ , we call aremovable -nodeof λ.

For each residue , we have the notion of normal -nodes and good -nodes. To
define these, We read addable and removable -nodes ofλ in the following way. We
start with the first row ofλ(1), and we read rows inλ(1) downward. We then move
to the first row ofλ(2), and repeat the same procedure. We continue the procedure to
λ(3) . . . λ( ). If we write for an addable -node, and similarly for a removable
-node, we get a sequence of and . We then delete as many as possible. For

example, if the sequence is , it ends up with−−−− −
−−−−− . The remaining removable -nodes in this sequence are callednormal -
nodes. The node corresponding to the leftmost is called thegood -node. If is a
good -node for some , we simply say that is agood node. We can now define the
set of Kleshchev multipartitions associated withγ = (γ1 . . . γ ).
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DEFINITION 2.3. We declare that∅ is Kleshchev. Assume that we have already de-
fined the set of Kleshchev multipartitions of size .

Let λ be a multipartition of size + 1. We say thatλ is Kleshchev if and only if
there is a good node ofλ such thatµ := λ \ { } is a Kleshchev multipartition.

We denote the set of Kleshchev multipartitions of size byγKP , and setγKP =
⊔ ≥0

γKP . The following theorem provides us another way to parametrize simpleH -
modules.

Theorem 2.4 ([3, Theorem C]). Suppose thatζ2 and satisfy the above condi-
tion 2 6= 1 and = 2γ (1 ≤ ≤ ). Then, the irreducibleH -modules are indexed
by the set of Kleshchev multipartitions.

Hence we have two parametrizations. One given in Theorem 2.2 and one given in
Theorem 2.4. It is natural to ask, if these coincide. The main observation is the follow-
ing conjecture, which will be proved in the last section. The conjecture was formulated
by Mathas.

Conjecture ([3, 2.12]). These two parametrizations coincide. In particular,λ 6=
0 if and only if λ is a Kleshchev multipartition.

To prove this, we use certain Fock spaces, which are modules of a quantum
algebra∗. In the next section, we recall necessary ingredients of these Fock spaces.

3. Fock spaces

Recall that the multiplicative order ofζ2 is ≥ 2. We denote by the quantum
algebra of type (1)

−1 if is finite, and of type ∞ if = ∞. Let Fγ be the combina-
torial Fock space: it is a -module, whose basis elements are indexed by the set of
all multipartitions. We identify the basis elements with the multipartitions. The size of
multipartitions naturally makes it into a graded vector space.

We consider the -submoduleMγ of Fγ generated by the empty multiparti-
tion ∅. It is isomorphic to an irreducible highest weight module with highest weight

= γ1 + · · · + γ , where are fundamental weights. To describe its basis in a
combinatorial way, we need the crystal graph theory of Kashiwara. In our particular
setting, we can prove the following theorem using argument in [22]. The theorem ex-
plains the representation theoretic meaning of Kleshchev multipartitions.

∗The idea to use such Fock spaces to study the modular representation theory of cyclotomic
Hecke algebras first appeared in [1], generalizing and verifying a conjecture of Lascoux, Leclerc and
Thibon [18].
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Theorem 3.1 ([3, Theorem 2.9, Corollary 2.11]).Let be the localized ring of
Q[ ] with respect to the prime ideal( ). We consider the -lattice ofFγ generated
by all multipartitions, and denote it byLγ . We set

( ) = Lγ ∩Mγ , and ( ) = {λ (mod Lγ) |λ ∈ γKP }

Then, ( ( ) ( )) is a (lower) crystal base ofMγ in the sense of Kashiwara.

It is known that the canonical basis of− multiplied by the empty multiparti-
tion gives a crystal base ofMγ [11], which is unique up to a scalar multiple [13].
More precisely, the crystal lattice ( ) is the -lattice generated by these canoni-
cal basis elements ofMγ , and ( ) consists of the canonical basis elements modulo

( ). Hence, this theorem says that for each Kleshchev multipartitionν, there exists
a unique canonical basis element ( ) ofMγ such that

( ) (mod ( )) =ν (mod Lγ)

and vice-versa.
To explain the -module structure given toFγ , we first fix notations. Letλ be a

multipartition and let be a node on the associated Young diagram which is located
on the th row and the th column ofλ( ). Then we say that a node isabove if
it is on λ( ) for some < , or if it is on λ( ) and its row number is strictly smaller
than . We denote the set of addable (resp. removable) -nodes ofλ which are above

by ( ) (resp. ( )). In a similar way, we say that a node isbelow if it is on
λ( ) for some > , or if it is on λ( ) and its row number is strictly greater than .
We denote the set of addable (resp. removable) -nodes ofλ which are below by

( ) (resp. ( )). The set of all addable (resp. removable) -nodes ofλ is denoted
by (λ) (resp. (λ)).

In the similar way, we define the notion that a node isleft to (resp.right to ).
We denote the set of addable -nodes which are left to (resp. right to ) by ( )
(resp. ( )). The set of removable -nodes which are left to (resp. right to ) is
denoted by ( ) (resp. ( )). We then set

( ) = | ( )| − | ( )| ( ) = | ( )| − | ( )|
(λ) = | (λ)| − | (λ)|

( ) and ( ) are similarly defined. Finally, we denote the number of all 0-nodes
in λ by (λ). Then the -module structure ofFγ (called Hayashi action) is defined
as follows.

λ =
∑

γ (λ/µ)≡

− (λ/µ)µ λ =
∑

γ (µ/λ)≡

(µ/λ)µ

λ = (λ)λ λ = − (λ)λ
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To compare it with other Fock spaces, we introduce another -moduleF−γ
−1. It

is also the space with basis indexed by multipartitions, but the action is given by the
following.

λ =
∑

−γ (λ/µ)≡

(λ/µ)µ λ =
∑

−γ (µ/λ)≡

− (µ/λ)µ

λ = (λ)λ λ = − (λ)λ

Multipartitions constitute “basis at =∞” in the sense of Lusztig. We denote by
M−γ

−1 its -submodule generated by∅.
For each partitionλ we denote its transpose byλ′. For a multipartitionλ, we de-

note (λ(1)′ . . . λ( )′) by λT and call it thetransposeof λ.
Let ξ : Fγ → F−γ

−1 be a semilinear map which sendsλ to λT. Then an addable
(resp. removable) -node ofλ corresponds to an addable (resp. removable)− -node of
λT. Hence, the action of onFγ corresponds to the action of− on F−γ

−1. Since
the involution 7→ − of − permutes the canonical basis elements, we have that if

( ) is a canonical basis element ofFγ , then ξ( ( )) is a canonical basis element of
F−γ

−1.
We now recall Takemura-Uglov Fock spaces. In [25], Takemura and Uglov have

constructed higher level Fock spaces generalizing [14, Proposition 1.4]. Let{ } ∈Z be
the basis vectors of an infinite dimensional space. More precisely, the space is origi-
nally Q( ) ⊗ Q( ) [ −1], and if we denote the basis elements by⊗ , we
identify with ⊗ through = + ( − 1 − ) as in [27]. We warn that
there are differences between definitions in [25], [26] and [27]. We follow [27] here.
SinceQ( ) [ −1] is naturally a ′-module, this space is also a′-module. We now
consider semi-infinite wedges of the form =1 ∧ 2 ∧ · · · with = − + 1 for
all ≫ 0. These are called semi-infinite wedges of charge . The space spanned by
semi-infinite wedges of charge is denoted byF . To makeF into a -module, we
use the following coproduct. (Compare it with [27, 3.5])

( )( ) = ⊗ 1 + − ⊗

A wedge is callednormally orderedif the indices are in descending order.
Straightening laws are given in [27, Proposition 3.16], and the normally ordered semi-
infinite wedges of charge form a basis ofF [27, Proposition 4.1].

For a normally ordered wedge, we locate its indices on an abacus with run-
ners. On each runner, larger numbers appear in upper location, and the row contain-
ing 1 is read 1. . . from left to right. We divide the set of these runners into
blocks. Then we have abacuses each of which has runners. By reading ’s in
each block, we have semi-infinite wedges. We now assume that these are of the
form ( ) := ( )

1
∧ ( )

2
∧ · · · such that ( ) = −γ̃ − + 1 for all and ≫ 0. We then

identify ( ) with a multipartitionλ( ) by ( ) = −γ̃ +λ( ) − +1. We consider the sub-
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space ofF ( = −∑ γ̃ ) spanned by the wedges whose( ) have this form, and
denote it byF−γ̃

−1. This is a -submodule ofF . We call it Takemura-Uglov Fock
space. This Fock space is not isomorphic toF−γ

−1, but we again have that multiparti-
tions constitute “basis at =∞”. We denote byM−γ̃

−1 the - submodule generated
by ∅. To clarify the relation betweenF−γ̃

−1 and F−γ
−1, we introduce the following no-

tion.

DEFINITION 3.2. We say that ˜γ = (γ̃1 . . . γ̃ ) is a lift of γ = (γ1 . . . γ ) if
γ̃ (mod ) =γ for all . If = ∞, we set ˜γ = γ.

We then have the following lemma. It follows from the definition of the coproduct
( ). The size of a canonical basis element∈ − is by definition the height of its

root.

Lemma 3.3. For ∈ N, we take a liftγ̃ of γ such that−γ̃ ≪ −γ̃ +1 for all .
Then for any canonical basis element∈ − of size less than , two canonical basis
elements ∅ ∈ F−γ̃

−1 and ∅ ∈ F−γ
−1 are identical as linear combination of multiparti-

tions.

Proof. Let be two nodes such that is located on the ( )-th entry ofλ( )

and is located on the (′ ′)-th entry of λ( ′). Then we write < if one of the
following holds.

−γ̃ − + < −γ̃ ′ − ′ + ′ −γ̃ − + = −γ̃ ′ − ′ + ′ and < ′

Assume thatµ appears in λ in F−γ̃
−1. Then its coefficient has the form− >( )

where =µ/λ and >( ) is the number of addable -nodes> minus the number

of removable -nodes > . By comparing it with the action of onF−γ
−1, we have

the result.

The use of the notationF−γ̃
−1 is not misleading, since these are in fact modules of

the quantum algebra of type∞ as is previously defined. There is a standard way to
make them into −-modules [31].

The advantage to use Takemura-Uglov Fock spaces is that we have bar operations
on these Fock spaces. This is a generalization of the bar operation on level one mod-
ules introduced in [16, Proposition 3.1], [17, 5.1–5.9].

We state the properties of the bar operation due to Uglov. For level one modules,
these are stated in [16, Theorem 3.2, Theorem 3.3]. (The proof is given in [17, 7.1–
7.4].)

Note that if we transfer the dominance order onFγ to F−γ
−1, it reads columns of

multipartitions from left to right. If we read the columns from right to left, we have
the reversed dominance order. We denote it byλ ≥ µ.
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Theorem 3.4. There exists a semilinear endomorphism ofF−γ̃
−1, called the bar

operation onF−γ̃
−1, such that it has the following properties.

(1) λ = λ, and ∅ = ∅.
(2) For ∈ N, we take a lift γ̃ of γ such that−γ̃ ≪ −γ̃ +1 for all . Then for any
multipartition λ of size less than , λ has the formλ +

∑
µ<λ λ µ( )µ.

Proof. (1) See [27, Lemma 4.10] for the welldefinedness of the bar operation.
In the same page,∅ = ∅ is also proved. See [27, Proposition 4.12] forλ = λ.
(2) Let be a normally ordered wedge of charge corresponding toλ. We asso-
ciate a partitionλ by setting = +λ − + 1. The definition of the bar operation
and the straightening laws imply thatλ has termsµ corresponding toµ E λ. By our
assumption, it implies thatµ ≤ λ.

4. The proof of the conjecture

We first interprete the conjecture into a problem about canonical bases on Fock
spaces. To do this, we use the direct sum of the Grothendieck groups of projective
H -modules ( = 0 1. . . ). We always assume that the coefficients are extended to the
field of rational numbers. IfH is semisimple, all λ are irreducible, and we iden-
tify the direct sum withFγ

=1, which is by definition a basedQ-vector space whose
basis elements are indexed by multipartitions, and nodes of multipartitions are given
residues. IfH is not semisimple, we have a proper subspace ofFγ

=1 by lifting idem-
potents argument. It is proved in [1] that it coincides withMγ

=1.
Recall that simple modules are obtained as factor modules of Specht modules. To

distinguish between simple modules over different base rings, we writeλ when the
base ring is . Let ( ) be a modular system. We assume that there is an in-
vertible elementζ ∈ such that its multiplicative order in and is the same.
Then λ is obtained from λ by extension of coefficients, andλ is obtained from

λ by taking the unique simple factor module ofλ ⊗ . The proof of Theorem 2.4
implies that these give the correspondence between simple modules over fields of pos-
itive characteristics and fields of characteristic 0, andλ 6= 0 if and only if λ 6= 0.
Further, still assuming that the multiplicative order is the same, the proof given in [3]
also shows that λ 6= 0 if and only if λ

C 6= 0. In particular, to know which λ are
non-zero, it is enough to consider the case that the base field isC.

Now assume that we are in the case that the base field isC. We identify the di-
rect sum of the Grothendieck groups of projectiveH -modules withMγ

=1 as before.
The main theorem in [1] asserts that the canonical basis evaluated at = 1 consists
of indecomposable projectiveH -modules ( = 0 1. . . ). Hence we have a bijection
between canonical basis elements ofMγ and indecomposable projectiveH -modules

λ for various , and thus a bijection between canonical basis elements ofMγ and
simpleH -modules λ for various .

Then Theorem 3.1 asserts that with each canonical basis element ( ), we can
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uniquely associate a multipartitionν ∈ γK . To summarize, we have the following.
For each non-zero λ, there exists a unique canonical basis element( ) ∈ Fγ

such that we have ( ) =1 = λ and ( ) ≡ ν.
This is the way to compare two parametrizations. Hence our aim to show thatν =

λ holds in general.

Lemma 4.1. Assume that for every canonical basis element( ) ∈ Fγ , there
exists a unique maximal element among the multipartitions appearing inξ( ( )) with
respect to the reversed dominance order, and assume that it has coefficient1. Then we
have that two parametrizations coincide andλ 6= 0 if and only if λ is a Kleshchev
multipartition.

Proof. Recall thatMγ
=1, the sum of Grothendieck groups of projectiveH -

modules, is embedded intoFγ
=1 by sending λ to λ. Hence, Theorem 2.2 implies that

ξ( λ) has the formξ( λ) = λT +
∑

µ<λT µ µ. In particular, among multipartitons ap-

pearing inξ( λ), λT is the maximal element with respect to the reversed dominance
order.

We take the canonical basis element ( ) satisfyingλ = ( ) =1. By applying
the assumption toξ( ( )), we know that multipartitions appearing inξ( ( )) has a
unique maximal element with coefficient 1. Sinceξ( ( )) is a canonical basis element
and the coefficient of the maximal element is 1, this maximal element must be the
transpose of a Kleshchev multipartitonν with ( ) ≡ ν. We specializeξ( ( )) to

= 1. Note thatνT does not vanish. Since bothλT and νT are maximal elements, we
have ν = λ. Hence the two parametrizations given in Theorem 2.2 and Theorem 2.4
coincide.

Hence it is enough to know that the assumption of the lemma holds. Recall that
we are given a bar operation which has the properties stated in theorem 3.4(1). Its
consequence is that each canonical basis element ofM−γ̃

−1 is fixed by the bar oper-
ation. We also have that it coincides with the transpose of a Kleshchev multipartition
modulo −1. It is well-known and easy to see that these two properties uniquely deter-
mine the canonical basis element. Combined with theorem 3.4(2), it implies that Gaus-
sian elimination algorithm computes the canonical basis element, and it has the form

λ +
∑

µ<λ

λ µ( )µ

if we take a lift γ̃ of γ such that−γ̃ ≪ −γ̃ +1 for all . By Lemma 3.3, it gives the
required property of the canonical basis elementsξ( ( )). Therefore, we have reached
the following theorem, which verifies the conjecture.

Theorem 4.2. λ 6= 0 if and only if λ is a Kleshchev multipartition.
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