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1. Introduction

After Hecke algebras appeared, unexpectedly deep applications and results have
been found in the representation theory of these algebras. Concerned with ordinary
representations, Lusztig's cell theory is the main driving force. But we do not consider
it here. The other interest is about the modular representation theory of these algebras.
We are mainly working with Hecke algebras of tyge  and type , and this research
is driven by Dipper and James [5, 6]. Recently, a new type of Hecke algebras was in-
troduced. We call them cyclotomic Hecke algebras of type:, (n 1 ) following [4].
Hecke algebras of typd and typge  are special cases of these algebras. The author
studied modular representations of the algebra in the case that parameters are roots of
unity in the field of complex numbers [1]. In particular, it gives a classification of sim-
ple modules. Removal of the restriction on base fields was achieved in [3]. In the pa-
per [3], we gave a classification of the simple modules of cyclotomic Hecke algebras
in terms of the crystal graphs of integrable highest weight modules of certain quantum
algebras. The result turns out to be useful for verifying a conjecture of Vigneras [30].

On the other hand, another approach was already proposed in [10, 7]. Main results
in the theory are that we can define “Specht modules”, and that each Specht module
S2 has a natural bilinear form, and each bR := S2/radS2 is an absolutely irre-
ducible or zero module. Further, the theory claims that the set of non{2éris a
complete set of simple modules.

But there is one drawback. The theory does not tell whigh are actually
non-zero. We conjectured in [3] that the crystal graph description gave the criterion.
Namely, we conjectured thab2 # 0 if and only if \ is a Kleshchev multipartition.

The purpose of this paper is to prove the conjecture. It is achieved by interpreting the
conjecture into a problem about canonical bases in Fock spaces. This part is based on
[1] and [3]. Then the conjecture is easily verified by using a recent result of Uglov
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[26, 27].
The author is grateful to A.Mathas for discussion he had at the early stage of the
research. He also thanks B.Leclerc, Varagnolo and Vasserot.

2. Preliminaries

Let R be an integral domainyy, ..., u,, be elements iR , and be an invertible
element. The Hecke algebra of tygem,(,nl ) is tRe -algebra associated with these
parameters defined by the following defining relations for generators < (1< n).

We denote this algebra bt,.

(a1 —u1)--- (a1 —un) =0, @—Q@+¢ =0 (=2
a1ara1d = axaiaxas, aiaj =aja; (j>i+2)
a;ai—1a; = a;—1a;a;—1 (3 <1 < n)

It is known that this algebra i® -free of ramk’'n ! as &1 -module. This algebra
is also known to be cellular in the sense of Graham and Lehrer [10], and thus has
Specht modules. Following [7], we shall explain the theorypaktiton A of sizen is a
sequence of non-negative integess> X\, > - -- such thaty " \; = n. We write |A\| = n.

A multipartiton of sizen is a sequence of  partitions= (\Y, ..., \() such that
> iy MO =n. If n=0, we denote the multipartition b§. The set of multipartitions
of a given size has a poset structure. The partial order iddtiminance orderwhich

is defined as follows.

Derinmion 2.1, Let A and p be multipartitions of a same size. We say that
dominatesy, and write A > p if we have for all j, k& that

k—1 ] k=1 j
)SIEUES DECED DRSS
1 i=1 =1 i=1

[=

With each multipartition\ of sizen , we can associate &t,-moduleS2. Its con-
crete construction is explained in [7, (3.28)]. It is easy to see from the construction
that it is free as arR -module. These modules are capeicht module€Each Specht
module is naturally equipped with a bilinear form. We et = $2/rads2, where
radS2 is the radical of the bilinear form. It can be zero, but non-zero ones exhaust all
simple H,-modules. We denote the projective coverot by P2.

We remark that Graham and Lehrer have introduced the notion of cellular alge-
bras and have developped general theory for classifying simple modules using “cell
modules”. In [10], the cellular bases for the cell modules are given by Kazhdan-
Lusztig bases. Here, different cellular bases are used, but the strategy to classify sim-
ple modules is the same. Hence we call the following parametrization the Graham-
Lehrer parametrization.
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Theorem 2.2 ([7, Theorem 3.30]). Suppose thaik is a field. Then
(1) Non-zeroD2 form a complete set of non-isomorphic simpig-modules. Further
these modules are absolutely irreducible.
(2) Let A and p be multipartitions of sizen and suppose th&“ # 0 and
[S2: D¥] #0. Then we have\ > .
(3) [S2: D2]=1.

Note that (2) is equivalent to the following (2").

(2) Let A and p be multipartitions of sizen and suppose th&“ # 0 and
[PX: SA] #0. Then we have > W

It is obvious since we havePl : §2] = dim Homy, (PX, S2) = [S2 : D4].

As is explained in [3, 1.2], the classification of simgtg,-modules is reduced to
the classification in the case that, ..., u, are powers off2. This is a consequence
of a result in [28, 2.13] (see also [9]). We can also assumedthat 1, since the case
¢? =1 is well understood. In the rest of the paper throughout, we assume that

w; = (i=1,...,m), C2#1

If ¢2 is a primitiver th root of unity for a natural number ; take values inZ/rZ.
Otherwise, these take values

Next we recall the notion ofKleshchev multipartitions associated with
(71, ---,vm)- To do this, we explain the notion of good nodes first.

We identify a multipartitionA = (\®, ..., A\") with the associated Young dia-
gram, i.e. anm -tuple of the Young diagrams associated With ..., A", Let x be
a node on the Young diagram which is located on ¢he th row andbthe th col-
umn of X9, If u.¢?¢=a) = (% we say that the node hassiduei (with respect
to v = (1, - .-, vm)). We denote the residue by, (x). A node is called ari-nodeif its
residue isi . Let\ and . be multipartitions. We first assume th@t| +1 = ||, and the
nodex :=u/A hasr,(x) =i. We then callx araddablei -nodeof A. If [A] — 1 =]yu|
andx :=\/p hasr,(x) =i, we callx aremovablei -nodef \.

For each residu¢ , we have the notion of normal -nodes and good -nodes. To
define these, We read addable and removable -nodesiofthe following way. We
start with the first row ofA®, and we read rows in® downward. We then move
to the first row ofA®, and repeat the same procedure. We continue the procedure to
X®, . A If we write A for an addablé -node, and similarR  for a removable
i-node, we get a sequence af aRd . We then dekete as many as possible. For
example, if the sequence BRAAAARRRAARAR it ends up with-— — AAR —
77777 R. The remaining removable -nodes in this sequence are catiedal i -
nodes The node corresponding to the leftmagt is called dgoed i -node If x is a
goodi -node for someé , we simply say that ig@od node We can now define the
set of Kleshchev multipartitions associated with= (v1, ..., Ym)-
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DerinimioN 2.3. We declare thdt is Kleshchev. Assume that we have already de-
fined the set of Kleshchev multipartitions of size

Let A be a multipartition of sizex + 1. We say thatis Kleshchev if and only if
there is a good node  of such thaty := A\ {x} is a Kleshchev multipartition.

We denote the set of Kleshchev multipartitions of size #WP,, and set! KXP =
U,>0"KP,. The following theorem provides us another way to parametrize siftiple
modules.

Theorem 2.4([3, Theorem CJ). Suppose that? and u; satisfy the above condi-
tion $? # 1 and u; = $?(1 < i < m). Then the irreducible ,-modules are indexed
by the set of Kleshchev multipartitions.

Hence we have two parametrizations. One given in Theorem 2.2 and one given in
Theorem 2.4. It is natural to ask, if these coincide. The main observation is the follow-
ing conjecture, which will be proved in the last section. The conjecture was formulated
by Mathas.

Conjecture ([3, 2.12]). These two parametrizations coincide. In particulz¥, 7
0 if and only if A is a Kleshchev multipartition.

To prove this, we use certain Fock spaces, which are modules of a quantum
algebrd. In the next section, we recall necessary ingredients of these Fock spaces.

3. Fock spaces

Recall that the multiplicative order af is r > 2. We denote by, the quantum
algebra of typeAﬁl_)l if ris finite, and of typeA, if r= oco. Let F; be the combina-
torial Fock space: it is &/, -module, whose basis elements are indexed by the set of
all multipartitions. We identify the basis elements with the multipartitions. The size of
multipartitions naturally makes it into a graded vector space.

We consider theU, -submodula1) of F) generated by the empty multiparti-
tion (. It is isomorphic to an irreducible highest weight module with highest weight
A=A,+---+A,, whereA; are fundamental weights. To describe its basis in a
combinatorial way, we need the crystal graph theory of Kashiwara. In our particular
setting, we can prove the following theorem using argument in [22]. The theorem ex-
plains the representation theoretic meaning of Kleshchev multipartitions.

*The idea to use such Fock spaces to study the modular representation theory of cyclotomic
Hecke algebras first appeared in [1], generalizing and verifying a conjecture of Lascoux, Leclerc and
Thibon [18].
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Theorem 3.1([3, Theorem 2.9, Corollary 2.11]).Let R, be the localized ring of
Q[v] with respect to the prime idedb). We consider theR, -lattice aof;’ generated
by all multipartitions and denote it byC). We set

L(A)=L]NM], and B(A) ={A (modvL])|A€"KP}.
Then (L(A), B(A)) is a (lower) crystal base ofM] in the sense of Kashiwara.

It is known that the canonical basis &, multiplied by the empty multiparti-
tion gives a crystal base af1]) [11], which is unique up to a scalar multiple [13].
More precisely, the crystal latticé A( ) is the, -lattice generated by these canoni-
cal basis elements of1), and B (A ) consists of the canonical basis elements modulo
vL(A). Hence, this theorem says that for each Kleshchev multipartitjotmere exists
a unigue canonical basis elemetitb ( ).bt) such that

G() (modvL(A))=v (modvL])

and vice-versa.

To explain theU, -module structure given #), we first fix notations. Let be a
multipartition and letx be a node on the associated Young diagram which is located
on thea th row and thé th column of9). Then we say that a node @bovex if
it is on A\® for somek < ¢, or if it is on A\€) and its row number is strictly smaller
thana . We denote the set of addable (resp. removable) -nodgswifich are above
x by Af(x) (resp.R{ ¢ )). In a similar way, we say that a nodeb&ow x if it is on
A®) for somek > ¢, or if it is on A©) and its row number is strictly greater than
We denote the set of addable (resp. removable) -nodes which are belowx by
Ab(x) (resp.R? §)). The set of all addable (resp. removalle) -nodes isf denoted
by A;() (resp.R; Q).

In the similar way, we define the notion that a noddeift to x (resp.right to x).

We denote the set of addable -nodes which are left to  (resp. right to 3'by ()
(resp. A & )). The set of removable -nodes which are lefitto  (resp. right to ) is
denoted byR! £ ) (respR! x( )). We then set

Ni(x) =A@ = [RE®)],  NP(x) = A7 (x)]| — R (%),
Ni(Q) = |A; Q)] = |[Ri(Q)].

N!(x) and N7 () are similarly defined. Finally, we denote the number of all 0-nodes
in A by N;(}). Then theU, -module structure of,) (called Hayashi action) is defined
as follows.

eA= Z v_fol()‘/ﬁ)E, fid= Z UN’!)(H/A)E,
QW= Py 1/ N=i

vhiA — vNi(A)A’ UdA =y II(A)A.
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To compare it with other Fock spaces, we introduce another -moﬁg,l"é. It
is also the space with basis indexed by multipartitions, but the action is given by the
following.

e\ = Z UN[’(A/E)H’ fid= Z U—N,"(ﬁ/A)E
r—y(A/p)=i r—~(u/N=i

vhi) = UN,-(A)A’ vid= v~ d(&)A

Multipartitions constitute “basis ab  =0” in the sense of Lusztig. We denote by
M its U,-submodule generated iy

For each partitiom\ we denote its transpose by. For a multipartition), we de-
note 0@, ..., A™") by AT and call it thetransposeof A.

Let¢ : F) — ]—'U’_Z be a semilinear map which sendsto AT, Then an addable
(resp. removable) -node of corresponds to an addable (resp. removablenode of
AT, Hence, the action off; owF, corresponds to the action of ; on F “I. Since
the involution f; — f_; of U, permutes the canonical basis elements, we have that if
G (D) is a canonical basis element 8f), then{(G(b)) is a canonical basis element of
F .

We now recall Takemura-Uglov Fock spaces. In [25], Takemura and Uglov have
constructed higher level Fock spaces generalizing [14, Proposition 1.4{ul.&t-7 be
the basis vectors of an infinite dimensional space. More precisely, the space is origi-
nally Q(v)" ® Q(v)"[z,z~ 1], and if we denote the basis elements y® e,z", we
identify u; with e, ® e,z" throughk =a +r p — 1 — mN) as in [27]. We warn that
there are differences between definitions in [25], [26] and [27]. We follow [27] here.
Since Q(v)'[z, z~1] is naturally aU!-module, this space is also-module. We now
consider semi-infinite wedges of the form  usz Aw;, A --- with iy = ¢ —k+1 for
all k > 0. These are called semi-infinite wedges of charge . The space spanned by
semi-infinite wedges of charge is denoted By To makeF, into a U, -module, we
use the following coproduct. (Compare it with [27, 3.5])

A= fiol+v e f

A wedgeu; is callednormally orderedif the indicesi, are in descending order.
Straightening laws are given in [27, Proposition 3.16], and the normally ordered semi-
infinite wedges of charge form a basis Bf [27, Proposition 4.1].

For a normally ordered wedge, we locate its indices on an abacusrwith run-
ners. On each runner, larger numbers appear in upper location, and the row contain-
ing 1 is read 1...,rm from left to right. We divide the set of these runners imto
blocks. Then we haven abacuses each of which/has runners. By reading 's in
each block, we haven semi-infinite wedges. We now assume that these are of the
form u® := U Nty A\ - such thatj®) = -5, —i +1 for all k andi > 0. We then

1

identify «) with a multipartition\®) by j* = —5,+X®, —i+1. We consider the sub-
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space ofF,. (c = —>_ ) spanned by the wedges whosg) have this form, and
denote it by]—'u’j. This is aU, -submodule ofF.. We call it Takemura-Uglov Fock
space. This Fock space is not isomorphic&Q ], but we again have that multiparti-
tions constitute “basis at  =0". We denote byM , the U, - submodule generated

by 0. To clarify the relation betweetF | and 7 "I, we introduce the following no-
tion.

DerinimioN 3.2, We say thaty ™= (Y1,..., %) is alift of v = (y1,...,v,) if
5 (modr)=~; for all i. If r=co, we sety'=~.

We then have the following lemma. It follows from the definition of the coproduct
AD. The size of a canonical basis elemént U, is by definition the height of its
root.

Lemma 3.3. For n € N, we take a lifty of v such that—4; < —¥+1 for all k.
Then for any canonical basis element U, of size less tham, two canonical basis
elementsh) € 7,7} andb () € F, | are identical as linear combination of multiparti-
tions.

Proof. Letx,y be two nodes such that is located on theb( )-th entry(of
and y is located on thea(, »')-th entry of ). Then we writex < y if one of the
following holds.

~Fe—a+b< —Ho —a' +b, —-H.—a+b=—-7,—d +b andc <

Assume thatu appears inf; A in f,j- Then its coefficient has the formr"" )
wherex =u/\ and N7 (x) is the number of addable -nodgs> x minus the number
of removablei -nodes > x. By comparing it with the action of; otF, _}, we have
the result. [

The use of the notatiod-‘l;:{ is not misleading, since these are in fact modules of
the quantum algebra of type., as is previously defined. There is a standard way to
make them intoU,”-modules [31].

The advantage to use Takemura-Uglov Fock spaces is that we have bar operations
on these Fock spaces. This is a generalization of the bar operation on level one mod-
ules introduced in [16, Proposition 3.1], [17, 5.1-5.9].

We state the properties of the bar operation due to Uglov. For level one modules,
these are stated in [16, Theorem 3.2, Theorem 3.3]. (The proof is given in [17, 7.1-
7.4].)

Note that if we transfer the dominance order &1 to ]-"U’l, it reads columns of
multipartitions from left to right. If we read the columns from right to left, we have
the reversed dominance order. We denote it\oy ..
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Theorem 3.1}. There exists a semilinear endomorphism;’bvﬂ, called the bar
operation on]—'v’_Z, such that it has the following properties.
(1) fiA=fiA and§=90.
(2) For n € N, we take a lifty of v such that—4; < —4+1 for all k. Then for any
multipartition \ of size less tham, X has the form\ + Zu@ cA,ﬁ(v)H.

Proof. (1) See [27, Lemma 4.10] for the welldefinedness of the bar operation.
In the same pagd) = () is also proved. See [27, Proposition 4.12] fOR = f;\.
(2) Let u; be a normally ordered wedge of charge corresponding.téVe asso-
ciate a partition\ by settingi, =c +)\. — k + 1. The definition of the bar operation
and the straightening laws imply that has termsy corresponding tqu < A. By our
assumption, it implies that < ). [

4. The proof of the conjecture

We first interprete the conjecture into a problem about canonical bases on Fock
spaces. To do this, we use the direct sum of the Grothendieck groups of projective
H,-modules £ =0 1...). We always assume that the coefficients are extended to the
field of rational numbers. IfH, is semisimple, alls® are irreducible, and we iden-
tify the direct sum withZ_,, which is by definition a base@®-vector space whose
basis elements are indexed by multipartitions, and nodes of multipartitions are given
residues. IfH, is not semisimple, we have a proper subspaceé gf by lifting idem-
potents argument. It is proved in [1] that it coincides with_,.

Recall that simple modules are obtained as factor modules of Specht modules. To
distinguish between simple modules over different base rings, we \mﬁtewhen the
base ring isR . LetK, R, F ) be a modular system. We assume that there is an in-
vertible element( € R such that its multiplicative order ik an& is the same.
Then D} is obtained fromDj by extension of coefficients, anB) is obtained from
Dg by taking the unique simple factor module Df/\R ® F. The proof of Theorem 2.4
implies that these give the correspondence between simple modules over fields of pos-
itive characteristics and fields of characteristic 0, dmj:i # 0 if and only if D,A(- # 0.
Further, still assuming that the multiplicative order is the same, the proof given in [3]
also shows thaiD,A{- # 0 if and only if D(’C\- # 0. In particular, to know whichD* are
non-zero, it is enough to consider the case that the base fidld is

Now assume that we are in the case that the base fieldl /e identify the di-
rect sum of the Grothendieck groups of projectidg-modules with M, as before.
The main theorem in [1] asserts that the canonical basis evaluated at = 1 consists
of indecomposable projectivél,-modules £ = 0 1..). Hence we have a bijection
between canonical basis elements./of] and indecomposable projectivi,-modules
P> for variousn , and thus a bijection between canonical basis elementgpfand
simple H,,-modules D* for variousn .

Then Theorem 3.1 asserts that with each canonical basis elethént ( ), we can
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uniquely associate a multipartitian€ /CP. To summarize, we have the following.
For each non-zeraD?2, there exists a unique canonical basis eleméitb) € F,
such that we have (b),-1 = P2 and G(b) = v.
This is the way to compare two parametrizations. Hence our aim to show that
A holds in general.

Lemma 4.1. Assume that for every canonical basis eleméifp) € F,), there
exists a unique maximal element among the multipartitions appearirggGi)) with
respect to the reversed dominance ordend assume that it has coefficieht Then we
have that two parametrizations coincide afd* # 0 if and only if ) is a Kleshchev
multipartition.

Proof. Recall thatM]_;, the sum of Grothendieck groups of projecti¢é,-
modules, is embedded int5_, by sendingS2 to A\. Hence, Theorem 2.2 implies that
£(P2) has the formg(P2) = AT + ZNQT cu p- In particular, among multipartitons ap-
pearing in&(P2), AT is the maximal element with respect to the reversed dominance
order.

We take the canonical basis elementh () satisfy®y = G(b),=1. By applying
the assumption tg(G(d)), we know that multipartitions appearing (G (b)) has a
unigue maximal element with coefficient 1. Singg5 (b)) is a canonical basis element
and the coefficient of the maximal element is 1, this maximal element must be the
transpose of a Kleshchev multipartitan with G(b) = v. We specialize¢(G (b)) to
v = 1. Note thaty" does not vanish. Since bothl and " are maximal elements, we
have v = \. Hence the two parametrizations given in Theorem 2.2 and Theorem 2.4
coincide. []

Hence it is enough to know that the assumption of the lemma holds. Recall that
we are given a bar operation which has the properties stated in theorem 3.4(1). Its
consequence is that each canonical basis elemevﬁt/l,@il&1 is fixed by the bar oper-
ation. We also have that it coincides with the transpose of a Kleshchev multipartition
modulov~?. It is well-known and easy to see that these two properties uniquely deter-
mine the canonical basis element. Combined with theorem 3.4(2), it implies that Gaus-
sian elimination algorithm computes the canonical basis element, and it has the form

At Z C/\.H(U)H

B<A

if we take a lift ¥ of v such that—%; < —4;+1 for all k. By Lemma 3.3, it gives the
required property of the canonical basis eleme{s(b)). Therefore, we have reached
the following theorem, which verifies the conjecture.

Theorem 4.2. DA #0 if and only if \ is a Kleshchev multipartition.
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