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ABSTRACT The ExtendedHand interface displays computer graphics (CG) hand images in real space from
a projector, allowing the user to visually point at and touch real objects that are out of their physical reach.
Furthermore, when the projected CG hand (extended hand) touches an object, the user can feel the tactile
sensation of the object through pseudo-haptics by giving the extended hand visual effects that emphasize
the action. In the previous psychological study, the human operator had to manually assign the location and
shape of objects and the intensities of their visual effects in advance in order to emphasize the appropriate
visual effect for the object touched by the extended hand. To increase practical feasibility, we propose an
adaptive system that utilizes an RGB-D camera and deep neural networks to generate the appropriate visual
effects automatically and apply them to the projected extended hand. By employing U-Net to generate the
appropriate intensities of the visual effects from the captured color and depth images, the system can estimate
the appropriate visual effects for objects without pre-setting them. The user evaluation results showed that
the proposed system allowed users to naturally perceive the tactile sensation of objects at a rate of 44%,
instead of the manual rate of 49%.

INDEX TERMS Augmented reality, body augmentation, deep neural network, pseudo-haptics.

I. INTRODUCTION
Various initiatives are underway to utilize technology to
enhance human physical and perceptual capabilities, enabling
individuals to accomplish tasks and possess abilities that were
previously unattainable [1], [2]. One such initiative is Extend-
edHand, which visually extends the user’s hand in everyday
situations [3], [4]. This interface amplifies and reflects the

The associate editor coordinating the review of this manuscript and

approving it for publication was Zeev Zalevsky .

user’s hand movements in the movements of a computer
graphics (CG) hand and projects them into real space using
a projector. As a result, users can intuitively point to objects
that are out of reach through the projected CG hand (referred
to as the projected extended hand). Several applications of
ExtendedHand have been proposed, such as facilitating com-
munication between people and interacting with appliances
by employing Internet of Things [4]. However, the user only
receives visual information that the extended hand is pro-
jected onto objects (referred to as the projected extended hand
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touching objects). If the user could also perceive the tactile
information of the objects, they would be able to experience
previously impossible things, such as touching objects that
are typically inaccessible, like museum exhibits.

Onemethod of addressing the difference in tactile informa-
tion between the projected extended hand and the actual hand
is to use a haptic feedback device. This device can provide
the same tactile stimulation as touching an object with actual
hands [5], [6]. However, this approach requires preparing and
wearing a dedicated haptic device, which limits the situations
in which it can be used. As an alternative, Sato et al. [7]
proposed a method that does not require haptic feedback
devices. They introduced a technique for generating pseudo-
haptics [8] by incorporating visual effects, such as vibrating
the fingertips of the extended hand when it comes into contact
with an object. They found that these visual effects can be
used to perceive an object’s unevenness, smoothness, and
softness. However, their research was conducted as a psy-
chological experiment to induce pseudo-tactile sensations;
the position and properties of objects were known, and the
application to practical situations where objects with various
properties exist in various locations was not considered.

In this paper, we introduce a new function that senses
the usage scene, recognizes information about the location
and type of objects online, and adaptively applies the appro-
priate visual effect to the object touched by the projected
extended hand. This enables the user to naturally perceive
the tactile sensation of the touched object, even without prior
information about the objects in the scene. We call the pro-
posed system Responsive-ExtendedHand, which enhances
the real-world applicability of ExtendedHand. To realize this
system, we use an RGB-D camera to observe objects’ shape
and surface texture near the extended hand. We then employ
U-Net [9] to estimate appropriate visual effects online based
on the RGB-D images obtained. In this paper, we present
the construction of Responsive-ExtendedHand and clarify its
performance through a user study.

II. RELATED WORK
A. TACTILE FEEDBACK OF UNTOUCHABLE OBJECTS
Several studies have been conducted to make people feel as
if they are touching objects that they cannot touch with their
physical hands, such as remote or distant objects, by combin-
ing a substitute hand, such as CG hands or robotic hands, with
haptic feedback devices [10], [11]. In the context of Extend-
edHand, which is the focus of this study, Tanabe et al. [5] and
Watanabe et al. [6] provided tactile stimuli to the user’s hand
using a haptic feedback device when the projected extended
hand comes into contact with objects, thereby making the
user perceive a sense of touch. Furthermore, Matsui et al. [12]
and Sato et al. [7] have applied pseudo-haptic feedback [8],
which generates haptic information from visual information,
to ExtendedHand and have proposed a method to present
tactile sensations of objects without the need for haptic feed-
back devices. These studies applied visual effects such as
vibrating the fingertips or increasing the movement speed

of the projected extended hand when it touched an object.
This created the perception of tactile sensations, such as
unevenness or smoothness, for the user. By providing tactile
sensations of objects in ExtendedHand, users can not only
perceive the characteristics of objects that are physically out
of reach but also enhance their sense of ownership towards
the projected extended hands [6].
In order to provide appropriate visual effects and haptic

feedback based on the objects that the virtual hand interacts
with, the system needs to have prior information about the
positions, types, and characteristics of objects in the scene.
In virtual reality (VR) spaces, this information is pre-modeled
and stored as a scene model. However, the ExtendedHand
interface running in mixed reality (MR) spaces requires
online recognition and acquisition of object information at
different locations in the real environment. Previous studies
on ExtendedHandmainly focused on the user’s psychological
aspects, assuming that both information about object posi-
tions and suitable feedback are already known. However,
these studies did not consider its applicability in practical
situations where objects are present in different locations
within an MR scene.

B. SCENE RECOGNITION USING DEEP LEARNING
When recognizing scene information, it is common to create
an observation system using a sensor such as an RGB camera.
The sensor values obtained are then used to extract and esti-
mate the desired target information. Deep learning methods
have gained significant attention in recent years for these pur-
poses. Various approaches have been proposed to utilize deep
learning to estimate object categories in RGB images. These
approaches include methods that predict a single category for
the entire image [13], methods that estimate categories for
multiple objects in the image [14], and methods that esti-
mate categories for each pixel in the image [9]. Furthermore,
diverse estimation methods have been developed for specific
categories. For example, some methods predict a universal
set of 1,000 categories [13], while others focus on narrower
domains, such as estimating 23 types of materials [15]. This
diversity allows for a wide range of estimation possibili-
ties, depending on the system’s specific needs, as long as
large-scale training datasets are available.

For ExtendedHand, it may be possible to estimate appro-
priate feedback based on the object touched by the projected
extended hand using a deep learning framework. In particular,
for tactile stimulus feedback [5], [6], vibration data from
tracing an object can be used as appropriate tactile stimulus
feedback based on the findings of previous studies [16],
[17]. Several studies have already published large datasets
of objects and vibration data when tracing them [18], [19].
However, in the case of visual effect feedback [7], [12], there
is currently no dataset available that combines objects and
visual effects. Additionally, research findings and the data
collection experiment described in Section IV-B indicate that
suitable visual effects for the same object highly rely on user
preferences. Thus, creating a large dataset with multiple users
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and training the network on that dataset does not guarantee
high accuracy.

In this paper, we present a personal user system that aims
to estimate appropriate visual effects for an object and apply
them to the projected extended hand when it touches the
object. To achieve this, we utilize RGB-D images and train
a network on customized datasets consisting of object and
visual effect data for each individual. While we rely on
established deep learning techniques and a dataset of approx-
imately 100 images per individual, we realize the system
that can make users naturally perceive the tactile sensation
of the object touched by the projected hand without prior
information about various objects.

III. RESPONSIVE-EXTENDEDHAND
A. SYSTEM DESIGN
We present an overview and system flow of Responsive-
ExtendedHand in Fig. 1. When the user moves their hand on
a touch panel, the movement is amplified and reflected in the
motion of the extended hand. The extended hand is projected
onto a real scene using a video projector. An RGB-D camera
captures the area surrounding the projected extended hand.
When the system detects that the projected extended hand
is overlapping an object in the RGB-D image, it adds visual
effects suitable for the object to the projected extended hand
and its surrounding area. The user can experience the tactile
sensation of the object by seeing the projected extended hand
with the visual effects, even though their hand is touching the
touch panel [7].
Although the appropriate visual effects for object charac-

teristics vary depending on user preferences, the proposed
system fundamentally focuses on the following four situa-
tions based on previous studies [7], [12], as illustrated in
Fig. 2:
(a) Bending-finger effect for an object’s height difference,
(b) Shaking-finger effect for an uneven object,
(c) Increasing-speed effect for a slippery object,
(d) Deforming-object effect for a soft object.

B. SYSTEM FLOW
Responsive-ExtendedHand consists of two components:
(A) Reflecting the user’s hand movement and gestures onto
the projected extended hand (green color area of the process
flow in Fig. 1); and (B) Adding the appropriate visual effects
to the extended hand by analyzing the scene (pink color area
in Fig. 1). For component (A), we utilize ExtendedHand [4],
whichmeasures the user’s handmovement from a touch panel
input. Component (B) is further divided into the following
four processes:
(B)-1 Visual sensing of the scene area around the projected

extended hand,
(B)-2 Extraction of objects’ physical properties from the

sensor values,
(B)-3 Estimation of the appropriate visual effect based on the

object’s physical properties,

(B)-4 Modulation of the virtual hand image according to the
estimated visual effect.

Here, processes (B)−2 and (B)−3 can be combined into a
single process using a deep learning approach, if data on the
relationship between the sensor values and the appropriate
visual effect are available. These processes are explained in
detail in the following.

1) AREA SENSING
We use an RGB-D camera as a sensor to capture the scene,
which can measure the area around the projected extended
hand without physical contact. This camera can extract mate-
rial information from RGB color images. Additionally, it can
gather information about objects’ shapes and surface struc-
tures unaffected by texture or shading from Depth images.
These features are essential for distinguishing object regions
and determining the appropriate visual effects.

It is important to note that solely relying on RGB-D images
makes it impossible to differentiate objects with similar
appearances and shapes but varying hardness. The system
prioritizes making users feel they are naturally touching
objects rather than conveying the proper physical properties.
Therefore, the system configuration solely depends on an
RGB-D camera, which plays a role similar to the user’s eyes.

The system clips only the projection area after geomet-
rically transforming the captured RGB-D image using a
pre-prepared pixel-to-pixel correspondence matrix between
the RGB-D camera and the projector. This study limits the tar-
get object to a thin planar object and employs a homography
transformation matrix as the correspondence matrix.

2) VISUAL EFFECT MAP GENERATION
The proposed system utilizes a deep learning framework to
generate visual effect maps from the clipped RGB-D image.
These maps determine the intensities of the visual effects for
each pixel of the clipped RGB-D image (see Fig. 1). In this
system,we utilize U-Net [9] to generate the visual effect maps
(referred to as the visual effect generation networks). U-Net is
a neural network that performs pixel-by-pixel segmentation
of image input. Notable features of U-Net include its skip-
connection structure, which accurately preserves boundary
information for objects in the image. Additionally, U-Net can
achieve high precision in identification even with limited data
by utilizing data augmentation [9]. Considering that these
features align with the requirements of the proposed system,
we have chosen U-Net. This system uses separate networks
for each visual effect to ensure easy scalability for potential
additional types of visual effects in the future. In this system,
the encoder and decoder layers of U-Net consist of eight
layers each. The output layer uses a Sigmoid function to
output values in the range of [0,+1].
First, we resize the clipped RGB-D image to 256 × 256

pixels and then normalize the pixel values to the range of
[−1, +1]. This normalized image is then used as the input for
each network. Each network generates a visual effectmap that
holds the intensity values [0, +1] of the corresponding visual
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FIGURE 1. Overview and process flow of Responsive-ExtendedHand. The system generates visual effects suitable for the object being touched by
the user-operated projected extended hand by employing an RGB-D camera and deep learning framework. This enables the user to feel the tactile
sensation of the object through pseudo-haptics by viewing the projected extended hand with the visual effects, even without prior object
information in the scene.

FIGURE 2. Visual effects that are applied when the projected extended hand touches an object. (a) Bending-finger effect for an object’s height
difference [12], [20], (b) Shaking-finger effect for an uneven object [7], (c) Increasing-speed effect for a slippery object [7], and (d) Deforming-object
effect for a soft object [7].

effect for each pixel. The methodology for collecting training
data and the training process is explained in Section III-C.

3) VISUAL EFFECT ADDITION
To apply visual effects to the projected extended hand, the
system retrieves the pixel value from each visual effect map
that corresponds to the fingertip position of the projected
extended hand. The system then applies the correspond-
ing visual effect with an intensity that matches the pixel
value to the extended hand. If there are multiple types of
visual effects with non-zero intensity values, the proposed
system combines them. The Bending-finger effect is specif-
ically designed to be applied only at object boundaries.
This is accomplished by applying the effect only when the
pixel value corresponding to the fingertip position of the
extended hand changes by more than a threshold value (set
empirically to 0.1) compared to its value in the previous
frame.

C. TRAINING OF VISUAL EFFECT GENERATION NETWORKS
As mentioned in Section III-B2, training the visual effect
generation networks requires a dataset of RGB-D images
and their corresponding visual effect maps. The four visual
effects shown in Fig. 2 are exaggerated representations of the

physical phenomena that occur when an object is touched
by a physical hand, which differ from the actual physical
phenomena. Furthermore, the dataset collection experiment
described in Section IV-B shows that the appropriate visual
effect for the same object varies depending on the user’s
preference. Therefore, in this study, the system is configured
for each user, and a dataset is prepared for each individual
user.

A user follows a specific process to create the dataset,
as illustrated in Fig. 3(a). They creates visual effect maps
based on their preference for each object on the projec-
tion surface. This involves defining the object regions in
the RGB-D images and setting appropriate visual effects
intensities. The user replaces the objects on the projection
surface with different types of objects for a limited number of
iterations to complete the dataset. Subsequently, the dataset is
expanded through the use of data augmentation [21]. During
network training, the RGB-D images are inputs, while the
corresponding visual effect maps serve as the ground truth
(Fig. 3(b)).

IV. SYSTEM IMPLEMENTATION
We implemented the prototype system of Responsive-
ExtendedHand based on Section III.
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FIGURE 3. Procedure for training visual effect generation networks. (a) Creation of the training dataset. The user places different objects in the
scene and configures the object area and appropriate visual effects for each object. The system stores the paired data of the captured RGB-D image
and the user-created visual effect maps. (b) Training of the visual effect generation networks. The system trains each network using the RGB-D
images as input and the user-created visual effect maps as ground truth.

FIGURE 4. Appearance of the implemented system. The extended hand is
projected onto a white table from a projector mounted on the ceiling.
An RGB-D camera mounted next to the projector captures an RGB-D
image of the projection area.

A. HARDWARE CONFIGURATION
Fig. 4 shows the appearance of the implemented system. The
user used the projected extended hand on a white tabletop in
this system. A projector (NEC, NP-L51WJD) was mounted
on the ceiling and projected images onto a 540mm× 910mm
area on the tabletop at 60 fps. An RGB-D camera (Intel,
RealSense L515) next to the projector captured the projection
surface at 30 fps. A touch panel (Microsoft, Surface Pro 3)
placed beneath the tabletop enabled the user tomanipulate the
projected extended hand. The C/D (control-display) ratio was
empirically set at 1:5. In other words, when a user moved their
hand by 10 mm on the touch panel, the projected extended
hand on the tabletop would move by 50 mm. Another PC
(Microsoft, Surface Book 3) was employed to generate visual
effect maps, control the extended hand’s movements, and
render the projection images.

B. CREATION OF TRAINING DATASET
In this implementation, 15 participants, aged 21 to 24, created
datasets for training the visual effect generation networks.
Each participant created 105 data points.

The experiments conducted in this section and Section V
were approved by the Research Ethics Committee of Osaka
University (No. R2-28). Additionally, we obtained written
informed consent from each participant.

1) VISUAL EFFECT
We linearly normalized the intensity (degree of change)
for each of the four visual effects shown in Fig. 2 within
the range of [0, +1]. We refer to these intensities as
tB−F , tS−F , tI−S , and tD−O, respectively. At the minimum
intensity (t = 0), the corresponding visual effect was
not applied. On the other hand, at the maximum inten-
sity (t = 1), the corresponding visual effect change
was overemphasized. In this case, almost all participants
perceived the change in the projected extended hand as
being caused by factors other than the characteristics of
the touched object. The specific changes produced at min-
imum and maximum intensity were determined in Table 1
using the design parameters format from previous studies
[7], [20].

2) TARGET OBJECT
Based on relevant research [15], [22], we selected seven
commonly used indoor materials: ceramic, fabric, metal,
paper, plastic, stone, and wood. For each material, we chose
five objects with distinct surface textures. As a result, the
35 objects shown in Fig. 5 were prepared as objects that the
projected extended hand touched. In this study, we excluded
objects with low reflectance or significant height varia-
tions that cannot be effectively corrected using homography
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TABLE 1. Design parameter values for the visual effects [7], [20] at
mavimum and minimum intensity.

FIGURE 5. 35 different objects used in training and evaluation. The size
of each image is approximately 500 mm in width and 300 mm in height.
The numerical values indicate the maximum thickness of the objects.

transformation. The white tabletop was also considered the
background and not included as part of the target objects.

3) COLLECTION PROCEDURE
Participants were given the task of adjusting the appropriate
intensities of visual effects for objects. To perform this task,
participants used their index finger to operate the projected
extended hand at a speed of approximately 200 mm/s. Ample
practicewas provided beforehand to ensure participants could
achieve this speed.

At the beginning of each trial, an experimenter placed
two or three objects on the white tabletop. These objects
belonged to the same group, as indicated in Fig. 5, and their
placement locations were randomly determined by the system
to avoid overlap. The system then instructed the participant
to trace one of the objects using the projected extended hand.
As the projected extended hand overlapped with the object,

FIGURE 6. Distribution of the intensities of the visual effects set by the
participants for each of the 35 objects. Each dot represents an individual
participant. The median values are used since each participant sets visual
effects three times for each object.

four visual effects were added. The participant adjusted the
intensity of each of the four visual effects by operating the
position of the four sliders on the MIDI controller (Worlde,
EasyControl.9). The goal was for the participant to set the
four intensities at which they felt most natural touching the
object with the projected extended hand.

Once the participant decided on the visual effects, the
system recorded the RGB-D image and the intensities of
the set visual effects. After the recording, the participant
was instructed to perform the same task on the remaining
objects on the table. This process continued until the task was
completed for all the objects. Then, a new set of objects was
placed for the next round of tasks.

Each participant performed this task three times for each of
the 35 objects, resulting in a total of 105 trials. The entire task,
including explanation time and breaks, took approximately
two hours to complete. The order in which the objects were
touched and the combinations of objects placed on the table
were randomized.

4) CREATED DATASET
We collected 105 RGB-D images and their corresponding
visual effect maps per participant. Fig. 6 shows the distri-
bution of the intensities of the four visual effects that each

38252 VOLUME 12, 2024



Y. Sato et al.: Responsive-ExtendedHand: Adaptive Visuo-Haptic Feedback Recognizing Object Property

participant set for each object. Since each participant set the
intensities three times for each object, we used the median
value as a representative measure. These results highlight
significant variations in the intensities set by each participant
for the same object, especially for the Increasing-speed effect.

C. TRAINIG OF VISUAL EFFECT GENERATION NETWORKS
We trained the visual effect generation networks using
the dataset created in Section IV-B. As mentioned in
Section III-C, for this study, we trained separate networks
tailored to each participant using datasets created by each
participant.

Considering the practical application scenarios of the pro-
posed system, it is not feasible to require users to pre-set
appropriate visual effects for all objects in the scene. There-
fore, the system needs to accommodate two categories of
objects: known objects, which were included in the data
for network training, and unknown objects, which were not
included in the network training. To evaluate both known and
unknown objects in the user study in Section V, we used
data from 28 out of 35 objects for network training. The
remaining seven objects were kept unknown for the purpose
of evaluation.

1) TRAINING CONDITION
For each participant’s 105 data points, we utilized 84 data
from three evaluations of 28 out of 35 objects for training.
We selected these 28 objects from four out of the five groups
shown in Fig. 5. Therefore, our training data consisted of
four instances of each of the seven materials. The selection
of the four groups was balanced across participants and
randomized.

We expanded the dataset from 84 to 2,520 data points,
increasing it thirty-fold using data augmentation tech-
niques [21], such as brightness modulation and geometric
transformations. Next, we trained each of the four visual
effect generation networks using the expanded dataset.
We used a batch size of 10 and employed the Adam optimiza-
tion algorithmwith a learning rate of 10−3. We used theMean
Absolute Error (MAE) loss function and ran the training for
50 epochs. During each epoch, we used 20% of the training
data as validation data.

2) PREDICTION RESULTS FOR UNKNOWN OBJECTS
We generated visual effect maps from RGB-D images of
21 data points (seven objects, each evaluated three times)
excluded from the training using the trained networks for each
participant. Fig. 7 illustrates examples of the generated visual
effect maps. We computed the Mean Absolute Error (MAE)
between the generated maps and the ground truth maps cre-
ated by the participants. Additionally, we separated the MAE
calculations into the the background area (where the white
table appears in the RGB-D images) and the target object
area (where the target objects appear in the RGB-D images).
Table 2 presents these results. Furthermore, we computed the
MAE for each of the 35 objects. Fig. 8 presents the results.

TABLE 2. MAEs were calculated for the entire map, as well as for the
regions corresponding to the background and target object areas of the
input RGB-D images, respectively. The values represent the mean and
standard deviation.

The average MAE for the background area across all four
visual effects generation networks was 0.01. This suggests
that the networkswere capable of recognizing the background
region (the white tabletop). On the other hand, the average
MAE for the target object area ranged between 0.12 and
0.21 across the four networks. For the target object area, the
networks must not only identify the object’s presence but also
recognize its characteristics and determine the appropriate
intensities of the visual effects. Therefore, it is inevitable that
the MAE for the target object area was worse than that of the
background area.

Focusing on individual objects, the average MAE values
for most objects ranged from 0.1 to 0.3 across the four
networks, shown in Fig. 8. Since there were no materials
with notably large or small MAE values, it is suggested that
the four networks do not exhibit a particular proficiency or
deficiency for specific object material types.

However, the MAE for objects in Group C, particularly
paper, metal, and plastic materials, was notably poorer than
that of other objects in the Shaking-finger generation net-
work. One potential explanation for this observation is that
there were relatively many objects with uneven surfaces in
Group C. In contrast, other groups had fewer objects with
such uneven surfaces (such as stone materials in Groups
A and B, metal materials in Group A, and wood materials
in Group E). The MAE values might have been compro-
mised because the Shaking-finger’s intensity was estimated
for uneven objects that were not extensively contained in the
training data of the network.

Comparing the types of visual effects, the MAE values of
the deforming object generation network were notably better
than the others. This would occur because the intensity of the
Deforming-object effect set by participants for each object
was mostly 0.5 or below (see Fig. 6). As a result, the variance
of the set Deforming-object’s intensity for different objects
was smaller than that of the other visual effects.

In this section, we have discussed the generation accuracy
of the visual effect generation networks in terms of MAE
values. However, how much these MAE values influence
user perception is still unclear. This study aims to determine
whether the proposed system can naturally convey the tactile
sensation of objects to the user without prior object infor-
mation. We will verify this aspect through the user study in
Section V.
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FIGURE 7. Examples of the generated visual effect maps. These maps were generated by the trained visual effect
generation networks using RGB-D images that were not included in the training.

FIGURE 8. MAE results for each of the 35 objects. The values represent
the mean.

D. ONLINE PROCESSING
We integrated the visual effect generation networks, trained
in the previous section, into the prototype system shown in
Fig. 4. Subsequently, we conducted evaluations in the envi-
ronment depicted in Fig. 4. The time it took for the user’s
hand movement to be reflected in the motion of the projected
extended hand was 150 ms. Shimada et al. [23] reported that
users do not consciously notice delays below 200 ms, so the
implemented system met this requirement.

In the implemented system (using a GPU: NVIDIA,
GeForce GTX 1650), it took approximately 200 ms to gener-
ate a visual effect mapwith an image size of 256× 256 pixels.
The motion generation process for the projected extended
hand and the visual effect generation process were handled
in separate threads. Therefore, this delay did not affect the
motion of the projected extended hand. This means that while

providing visual effects to rapidlymoving objects in the usage
scene may be challenging, it is possible to provide suitable
visual effects for relatively stationary objects with occasional
changes in position or shape, even on less powerful PCs.

V. USER EVALUATION
We conducted a user study to assess the performance of the
proposed system in a typical scenario where there is no prior
information available about objects in the scene. This study
aimed to determine whether users can naturally perceive
the tactile sensations of objects touched by the projected
extended hand.

A. CONDITION
1) PARTICIPANT
The participants in this experiment were the same 15 indi-
viduals who participated in the dataset creation described in
Section IV-B.

2) VISUAL EFFECT ADDITION
We used the system implemented in Section IV-C to generate
visual effects. Specifically, we trained the visual effect gen-
eration networks using data from 28 objects (four groups),
as shown in Fig. 5. We will refer to this condition as the Prop
condition.

Furthermore, for comparison, we introduced the following
two conditions requiring the prior object information:

a: PERFECT CONDITION
In this condition, when the projected extended hand touched
an object, the system provided the visual effects that were set
by the respective participant for the object during the dataset
creation in Section IV-B.We used themedian value since each
participant set the visual effects three times for each object.

b: CONST CONDITION
In this condition, when the projected extended hand touched
an object, the system provided the same visual effects
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regardless of the type of the touched object. The visual effects
were the average values set by each participant for all objects
during the dataset creation in Section IV-B.

3) TARGET OBJECT
As mentioned in section IV-C, we prepared two categories
of objects to be touched by the projected extended hand:
Known objects, which were included in the training data of
the visual effect generation networks, andUnknown objects,
which were not included.

Each category consisted of seven objects (corresponding
to one group in Fig. 5), one for each of the seven materials.
For known objects, one group was chosen from the four
groups used during training. For unknown objects, one group
that was not used during training was selected. The selection
of each group was randomized to ensure balance among
participants.

B. PROCEDURE
The experiment was conducted in the same environment
described in Section IV-B, shown in Fig. 4. Initially, partic-
ipants practiced manipulating the projected extended hand.
Similar to Section IV-B, they used a single index finger to
control the projected extended hand at a speed of approxi-
mately 200 mm/s. They received ample practice to become
proficient in this operation. Following the practice session,
participants repeated the following task:

Step 1: The experimenter arranged two or three objects
on the white tabletop, ensuring that they did not overlap.
The system randomly determined the types and placement of
these objects.

Step 2: The system instructed the participant to touch one
of the objects. The participant used the projected extended
hand to touch and trace the indicated object. During this inter-
action, visual effects were applied to the projected extended
hand under one of three conditions: Prop, Perfect, or Const.
After the interaction, participants responded to the following
two questions on a 7-point Likert scale (−3: Strongly disagree
— +3: Strongly agree):
Q1: Did you feel as though you were touching the object

naturally with the projected extended hand?
Q2: Did you perceive the tactile sensation of the object?
For Q1, participants were instructed to evaluate whether the
appearance and movement of the projected hand overlap-
ping the object were acceptable, rather than whether they
resembled the appearance and movement of an actual hand
touching the object. As mentioned at the beginning of this
section, this study aimed to determine onwhether participants
could naturally perceive the tactile sensation of the object.
We selected these questions because this criterion could be
examined by analyzing the frequency of high scores for both
Q1 and Q2.

Step 3: After answering the questions, participants were
instructed to perform the same task on another object on
the tabletop that they had yet to assess. When participants

performed the task for all objects on the tabletop, they started
from Step 1 for another set of objects.

Each participant touched 14 objects (seven known and
seven unknown) under each of the three visual effect addi-
tion conditions, resulting in a total of 42 times performing
this task. The order of conditions was randomized and bal-
anced across the participants. After completing all the tasks,
participants verbally provided their impressions.

C. RESULTS
Fig. 9 presents the evaluation results for Q1 and Q2 in each
condition. In this figure, the horizontal axis represents the
scores for Q1 (−3 to +3), and the vertical axis represents
the scores for Q2 (−3 to +3). Each cell shows the number
of votes corresponding to the respective scores.

1) VISUAL EFFECT ADDITION FACTOR (Fig. 9(a))
This user study aimed to determine whether participants
naturally perceived the tactile sensation of objects touched
by the projected extended hand. Therefore, as described in
Section V-B, we examined the rate of each participant who
scored one or higher on both Q1 and Q2 in each condition
(highlighted in the green box in Fig. 9(a)). Themean and stan-
dard deviation were as follows: Prop: 44.3%±22.8%, Perfect:
49.0%±23.7%, Const: 35.7%±24.2%. We performed an
ANOVA with the visual effect addition as a factor. The
ANOVA result showed a significant difference (F(2, 14) =

3.51, p < 0.05). Post-hoc multiple comparisons with Bonfer-
roni correction revealed that the rate in the Perfect condition
was significantly higher than in the Const condition (p <

0.05).

2) TARGET OBJECT FACTOR (Fig. 9(b))
We performed the same analysis of results for the target
object factor, and the results were as follows: Known objects:
47.6%±30.1%, Unknown objects: 41.0%±21.4%. The t-test
result did not reveal any significant differences (t(14) = 0.97,
p > 0.05).

3) RESULTS FOR EACH OBJECT (Fig. 10)
We evaluated each of the 35 objects. We counted instances
where both Q1 and Q2 received scores of 1 or higher. The
results are shown in Fig. 10. Each object was evaluated twice
by three participants under the Prop, Perfect, and Const con-
ditions (For the Prop condition, three participants evaluated
the objects once under the Known object condition and once
under the Unknown object condition). Therefore, each object
had a maximum of six assessments per condition.

4) PARTICIPANTS’ COMMENTS
In the verbal feedback from the participants, all of them men-
tioned that the appearance of visual effects that matched the
objects enhanced the sensation of touching them. However, in
12 cases, participants reported that the appearance of visual
effects that did not match the objects felt unnatural (e.g.,
it was unnatural for the Deforming-object to appear when
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FIGURE 9. Results of participant evaluations. Each cell value represents the number of times the corresponding Q1 and Q2 were answered. The
green percentages indicate the rate of participants who naturally perceived the tactile sensation of the objects (Q1>0 and Q2>0).

FIGURE 10. Results of participant evaluations for each of the 35 objects.
The vertical axis on each graph represents the number of times
participants naturally perceive the object’ tactile sensation (Q1>0 and
Q2>0). Each object was evaluated a total of six times under each
condition, so the maximum value on the vertical axis is six.

touching a hard stone; or it was unnatural that the shaking
finger did not appear for objects with uneven surfaces). Addi-
tionally, there were four reports indicating that the visual
effect appeared in places where no object existed.

D. DISCUSSION
The proposed system aims to enable users to naturally per-
ceive the tactile sensations of different objects touched by the
projected extended hand without prior information about the
objects. To assess this, we analyzed the rate of scores one
or higher in both Q1 and Q2. The Perfect condition used
the visual effects set by the participants for each object in
Section IV-B. As a natural consequence, the Perfect con-
dition had the highest average value of 49.0% among the
three conditions. On the other hand, the average difference
between the Prop and Perfect conditions was 4.7%, which

was not statistically significant. This means that we cannot
definitively conclude that there is no difference between the
two conditions. It suggests that the proposed system (Prop
condition) may perform worse than when object information
is pre-set (Perfect condition).

However, the typical usage scenario for ExtendedHand
does not provide information about the location and types of
various objects in the scene. In these scenarios, the results
showed that the proposed system could naturally make users
perceive the tactile sensation of objects touched by the
projected extended hand with high validity, with the prepa-
ration of about 100 data points. This is compared to the
scenario where object information is provided in advance
(Prop/Unknown Object condition: 41.0%, Perfect condition:
49.0%). Although the proposed system may be inferior to
manually setting visual effects, it is considered the first
example of generating pseudo-haptic sensations for unknown
objects by incorporating online object recognition.

Examining the results for each object (Fig. 10), it is evi-
dent that several objects consistently obtained low scores
regardless of the visual effect addition factor, such as the
metal object in Group D and the wood object in Group A.
This suggests that there is a limitation to the range of tactile
sensations expressed by the four visual effects used in this
study.

Although there are exceptions due to the small number of
data, the results shown in Fig. 10 also indicate the follow-
ing tendency: the Prop condition generally obtained slightly
lower scores compared to the Perfect condition for all objects,
rather than significantly lower for a specific material. This
finding aligns with the results presented in Section IV-C2,
where the MAE values ranged from 0.1 to 0.3 for all objects.
In light of this, potential improvements could be achieved
by refining the data augmentation techniques in the training
data [24] or utilizing transfer learning approaches [21].

VI. CONCLUSION
In this paper, we proposed Responsive-ExtendedHand, which
integrates scene observation using an RGB-D camera and
online object recognition using deep learning techniques
into ExtendedHand to adaptively estimate appropriate visual
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effects for objects touched by the projected extended hand.
The system aimed to allow the user to perceive the tactile
sensations of the objects, even without prior information
about the objects in the scene. The user evaluation results
indicated that the proposed system performed slightly worse
than the Perfect condition, which requires complete infor-
mation about the location and type of the objects. However,
it successfully enabled users to naturally perceive the tactile
sensation satisfactorily without needing such information.

Future work will focus on generating appropriate visual
effects for unspecified users by considering not only the
RGB-D image but also the user’s preferences. Additionally,
this paper primarily addressed situations where few objects
are sparsely distributed. However, we intend to expand our
system’s capabilities to handle situations where objects are
densely distributed.
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