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Von Wright-Anderson9s Decision Procedures
for Lewis's Systems S2 and S3

By Masao OHNISHI

In [ϊ] A. R. Anderson described decision procedures for Lewis's sys-
tem S4 and for von Wright's system M. In this note similar procedures
for Lewis's systems S2 and S3Ό2:> will be developed.

By virtue of the application of the results of my previous paper [4]
not only the proof which shows the adequacy of our decision procedures
will be considerably simplified comparing with [1], but also intrinsic
interrelations between Gentzen's and von Wright-Anderson's methods
will be made clear.

Familiarity with [1] and [4] will be presupposed.

§ 1. Preliminaries.

1.1. DEFINITION of constituent of a (modal) formula oc is as follows:
(1) A propositional variable contained in oc is a constituent of oc.
(2) A subformula (of oc) of the form [Jβ is a constituent of oc.
1.2. Construction of a truth-table for ocy denoted by %{pc)y the notion

of T-rows and of F-rows of it, and the value of a subformula of a in
Row (i) etc. are just the same as in [1] .

§ 2 A decision procedure for S2.

2.1. DEFINITION. The number of the logical symbols • contained
in a formula oc is called the order of oc.

2.2. DEFINITION, a is an E2-tautology if and only if every F-row
of £(<*), denoted by Row(i), satisfies at least one of the following two
conditions:

I. Some constituent of the form [Jβ has the value T in Row (/),
where β has the (assigned or calculated) value F in Row (i).

II. Some constituents of the form ΠΎI, D7 2 , ••• > Dτ« ( ^ ^ 1 ) , all have

1) Lewis and Langford [3].
2) Anderson reported in £1] (without detail) that he also solved the decision problem of

S3 in a similar way as [2]. But checking his unpublished solution the author is of opinion
that it is incorrect.
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the value T in Row (ί), and some constituent of the form [Jβ has the
v a l u e F i n Row{ϊ), w h e r e t h e f o r m u l a (y1 & yλ& ~- & yn)~^>β i s a n E2-
tautology.

2.3. DEFINITION, a is an S2-tautology if and only if every F-row
of £(#), Row (i), satisfies at least one of the following three conditions:

1. and II. are just the same as in Definition 2.2.
III. Some constituent of the form •/? has the value F in Row (/),

where β is an E£-tautology.

2.4. REMARK. Both the formula (γx & y2 & ••• & yn)^β appearing
in the above condition II and the formula β in the condition III, are
clearly of less order than ccy hence by induction on the order we can
effectively determine whether or not a formula a is an /^-tautology as
well as an S2-tautology.

2. 5. Theorem. If a is an S2-tautologyy then a is provable in S2.

Proof. It is sufficient to show that under the assumption of the
theorem the sequent -»a is provable in S2*3). When a is of order zero,
S2-tautology clearly coincides with LK-tautology4), therefore -+<x is pro-
vable with LK-rύles only, hence provable a fortiori in S2*. When <x is
of positive order we may assume that for any formula of less order than
a SIMautologyhood entails S2-ρrovability. Now we define a formula λ,
for every F-row of Z(oc)y Row (i), for ί = l, 2, ••• ,r, such that the sequent
->λf is provable in S2*.

In case Row (i)" satisfies condition I, let λz be the formula [Jβ^β-
In case Row(i) satisfies II, let λ, be (Π7i <&•••<£ D Ύ J ^ Π / ^ ; because of
the hypothesis of induction the sequent -^(y1 & ••• & yn)^>β> or what is
the same, the sequent y19 ••• , yn->β is provable in E2*y hence the sequent
->λf. is surely provable in S2* by (^Π)-rule. In case Row (i) satisfies
III, let λ,. be •/#; ->β being provable in £2*, ->•£ is certainly provable
in £2* by (RT).

Now the formula (λx & ••• & Xr)~^)a is clearly an LK-tautology, and
so the sequent \, ••• , Xr-+a is provable in S2*. On the other hand every
sequent ->λ, (ί = l, 2, ••• , r) is provable in S2*, therefor - > ^ is provable
in S2*, what was to be shown.

2. 6. Theorem. If a is provable in S2, then a is an S2-tautology.

3) See [4].
4) A formula is an L/Γ-tautology if and only if there exists no .F-row at all in its truth-

table.
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Proof. We shall prove more generally that if a sequent is provable
in S2* its interpretation^ is an S2-tautology. To prove this we must
show that for every rule of inference of S2* tautologyhood(s) of the
upper sequent(s) entails tautologyhood of the lower sequent. But as to
the rule (•->), (RM) and (RT), the conditions I, II and III guarantees
the fact respectively as to ZϋΓ-rules with the only exception of cut-rule
we find no difficulty at all. The cut-elimination theorem for S2*, how-
ever, enables us to do without the cut-rule. Thus we have proved our
Theorem 2. 6.5)

By 2. 4., 2. 5. and 2. 6. we can get a decision procedure for S2.

§ 3. A decision pocedure for S3

3.1. DEFINITION, a is an E3-tautology if and only if every F-row
of %{oL)y Row (/), satisfies at least one of the following two conditions :

I. Some constituent of the form [Jβ has the value T in Row (i)r

where β has the value F in Row (i).
II. Some constituents of the form ΠTi, D72> ••• > ΠΎM (»^1), all

have the value T in Row (i)y and some constituent of the form \Z\β has
the the value F in Row(i), where 1° for some constituents Π#i> Π#2>
.. , Uθm (ro^O) the formula ( 7 l & y2 & - & yn)>β v ( D ^ v Uθ2 v ...
v \JΘJ is an ZJf-tautology 2° the formula (Π7i & — & Πyn)Z>β is of
less order than tf6) and is an Z?3-tautology.

3.2. DEFINITION, Q: is an S3-tautology if and only if every F-row
of £(<*), ifow (0> satisfies at least one of the following three conditions :

I. and II. are just the same as in Definition 3.1.
III. Some constituent of the form \Z\β has the value F in Row (i)>

where 1° for some constituents Π#i, ••• , D#w (m^O) the formula
v ... v Q 0 j i s a n L/Γ-tautology 2° /3 itself is an E3-tautology.

3. 3. Theorem. If and only if oc is an S3-tautology, a is provable
in S3.

Proof. By methods analogous to the proofs of Theorems 2. 5. and
2.6.

Thus we have got a decision procedure for S3.

(Received February 27, 1961)

5) Anderson's proof for the fact that the rule of detachment preserves tautologyhood cor-
responds, we might say, to the proof for the cut-elimination theorem. See [4].

6) This condition is necessary. Surely the order of (Qyi & ••• & Π7») D £ i s l ess than that
°f (tZfai &•••& D?«)Z)D8, but it may be greater than that of a. For instance, let oc be
• D Π ^ Z ) Π A where p is a propositional variable. The order of a is 4. But the formula
(DD/> & Π D D Λ D A which might appear in the condition II as the above formula, is of
order 5.
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