

Title	Von Wright-Anderson's decision procedures for Lewis's systems S2 and S3
Author(s)	Ohnishi, Masao
Citation	Osaka Mathematical Journal. 1961, 13(1), p. 139- 142
Version Type	VoR
URL	https://doi.org/10.18910/9565
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Von Wright-Anderson's Decision Procedures for Lewis's Systems S2 and S3

By Masao Ohnishi

In [1] A. R. Anderson described decision procedures for Lewis's system S4 and for von Wright's system M. In this note similar procedures for Lewis's systems S2 and $S3^{1)2}$ will be developed.

By virtue of the application of the results of my previous paper [4] not only the proof which shows the adequacy of our decision procedures will be considerably simplified comparing with [1], but also intrinsic interrelations between Gentzen's and von Wright-Anderson's methods will be made clear.

Familiarity with [1] and [4] will be presupposed.

§ 1. Preliminaries.

- 1.1. Definition of constituent of a (modal) formula α is as follows:
- (1) A propositional variable contained in α is a constituent of α .
- (2) A subformula (of α) of the form $\Box \beta$ is a constituent of α .
- 1.2. Construction of a truth-table for α , denoted by $\mathfrak{T}(\alpha)$, the notion of *T-rows* and of *F-rows* of it, and the *value* of a subformula of α in Row(i) etc. are just the same as in [1].

§ 2. A decision procedure for S2.

- 2.1. Definition. The number of the logical symbols \square contained in a formula α is called the *order* of α .
- 2.2. Definition. α is an E2-tautology if and only if every F-row of $\mathfrak{T}(\alpha)$, denoted by Row(i), satisfies at least one of the following two conditions:
- I. Some constituent of the form $\square \beta$ has the value T in Row(i), where β has the (assigned or calculated) value F in Row(i).
 - II. Some constituents of the form $\Box \gamma_1, \Box \gamma_2, \cdots, \Box \gamma_n \ (n \ge 1)$, all have

¹⁾ Lewis and Langford [3].

²⁾ Anderson reported in [1] (without detail) that he also solved the decision problem of S3 in a similar way as [2]. But checking his unpublished solution the author is of opinion that it is incorrect.

140 M. Ohnishi

the value T in Row(i), and some constituent of the form $\square \beta$ has the value F in Row(i), where the formula $(\gamma_1 \& \gamma_1 \& \cdots \& \gamma_n) \supset \beta$ is an E2-tautology.

- 2.3. Definition. α is an S2-tautology if and only if every F-row of $\mathfrak{T}(\alpha)$, Row(i), satisfies at least one of the following three conditions:
 - I. and II. are just the same as in Definition 2.2.
- III. Some constituent of the form $\Box \beta$ has the value F in Row(i), where β is an E2-tautology.
- 2.4. Remark. Both the formula $(\gamma_1 \& \gamma_2 \& \cdots \& \gamma_n) \supset \beta$ appearing in the above condition II and the formula β in the condition III, are clearly of less order than α , hence by induction on the order we can effectively determine whether or not a formula α is an E2-tautology as well as an S2-tautology.
 - 2.5. **Theorem.** If α is an S2-tautology, then α is provable in S2.

Proof. It is sufficient to show that under the assumption of the theorem the sequent $\rightarrow \alpha$ is provable in $S2^{*3}$. When α is of order zero, S2-tautology clearly coincides with LK-tautology therefore $\rightarrow \alpha$ is provable with LK-rules only, hence provable a fortiori in $S2^*$. When α is of positive order we may assume that for any formula of less order than α S2-tautologyhood entails S2-provability. Now we define a formula λ_i for every F-row of $\mathfrak{T}(\alpha)$, Row(i), for $i=1,2,\cdots,r$, such that the sequent $\rightarrow \lambda_i$ is provable in $S2^*$.

In case Row(i) satisfies condition I, let λ_i be the formula $\square\beta \supset \beta$. In case Row(i) satisfies II, let λ_i be $(\square\gamma_1 \& \cdots \& \square\gamma_n) \supset \square\beta$; because of the hypothesis of induction the sequent $\rightarrow (\gamma_1 \& \cdots \& \gamma_n) \supset \beta$, or what is the same, the sequent $\gamma_1, \cdots, \gamma_n \rightarrow \beta$ is provable in $E2^*$, hence the sequent $\rightarrow \lambda_i$ is surely provable in $S2^*$ by $(\rightarrow \square)$ -rule. In case Row(i) satisfies III, let λ_i be $\square\beta$; $\rightarrow\beta$ being provable in $E2^*$, $\rightarrow\square\beta$ is certainly provable in $S2^*$ by (RT).

Now the formula $(\lambda_1 \& \cdots \& \lambda_r) \supset \alpha$ is clearly an LK-tautology, and so the sequent $\lambda_1, \dots, \lambda_r \to \alpha$ is provable in $S2^*$. On the other hand every sequent $\to \lambda_i$ $(i=1, 2, \dots, r)$ is provable in $S2^*$, therefor $\to \alpha$ is provable in $S2^*$, what was to be shown.

2.6. **Theorem.** If α is provable in S2, then α is an S2-tautology.

³⁾ See [4].

⁴⁾ A formula is an LK-tautology if and only if there exists no F-row at all in its truthtable.

Proof. We shall prove more generally that if a sequent is provable in $S2^*$ its interpretation³⁾ is an S2-tautology. To prove this we must show that for every rule of inference of $S2^*$ tautologyhood(s) of the upper sequent(s) entails tautologyhood of the lower sequent. But as to the rule $(\square \rightarrow)$, (RM) and (RT), the conditions I, II and III guarantees the fact respectively; as to LK-rules with the only exception of cut-rule we find no difficulty at all. The cut-elimination theorem for $S2^*$, however, enables us to do without the cut-rule. Thus we have proved our Theorem $2.6.5^{5}$

By 2.4., 2.5. and 2.6. we can get a decision procedure for S2.

§ 3. A decision pocedure for S3.

- 3.1. Definition. α is an *E3-tautology* if and only if every *F*-row of $\mathfrak{T}(\alpha)$, Row(i), satisfies at least one of the following two conditions:
- I. Some constituent of the form $\square \beta$ has the value T in Row(i), where β has the value F in Row(i).
- II. Some constituents of the form $\Box \gamma_1, \Box \gamma_2, \cdots, \Box \gamma_n$ $(n \ge 1)$, all have the value T in Row(i), and some constituent of the form $\Box \beta$ has the the value F in Row(i), where 1° for some constituents $\Box \theta_1, \Box \theta_2, \cdots, \Box \theta_m$ $(m \ge 0)$ the formula $(\gamma_1 & \gamma_2 & \cdots & \gamma_n) > \beta \lor (\Box \theta_1 \lor \Box \theta_2 \lor \cdots \lor \Box \theta_m)$ is an LK-tautology; 2° the formula $(\Box \gamma_1 & \cdots & \Box \gamma_n) > \beta$ is of less order than $\alpha^{(6)}$ and is an E3-tautology.
- 3.2. Definition. α is an S3-tautology if and only if every F-row of $\mathfrak{T}(\alpha)$, Row(i), satisfies at least one of the following three conditions: I. and II. are just the same as in Definition 3.1.
- III. Some constituent of the form $\square \beta$ has the value F in Row (i), where 1° for some constituents $\square \theta_1, \dots, \square \theta_m$ ($m \ge 0$) the formula $\beta \lor (\square \theta_1 \lor \dots \lor \square \theta_m)$ is an LK-tautology; 2° β itself is an E3-tautology.
- 3.3. **Theorem.** If and only if α is an S3-tautology, α is provable in S3.

Proof. By methods analogous to the proofs of Theorems 2.5. and 2.6.

Thus we have got a decision procedure for S3.

(Received February 27, 1961)

⁵⁾ Anderson's proof for the fact that the rule of detachment preserves tautologyhood corresponds, we might say, to the proof for the cut-elimination theorem. See [4].

6) This condition is necessary. Surely the order of $(\Box \gamma_1 \& \cdots \& \Box \gamma_n) \supset \beta$ is less than that

of $(\Box \gamma_1 \& \cdots \& \Box \gamma_n) \supset \Box \beta$, but it may be greater than that of α . For instance, let α be $\Box \Box \Box p \supset \Box p$, where p is a propositional variable. The order of α is 4. But the formula $(\Box \Box p \& \Box \Box \Box p) \supset p$, which might appear in the condition II as the above formula, is of order 5.

Bibliography

- [1] A. R. Anderson: Decision procedures for Lewis's calculus S3 and three extentions thereof, J. Symb. Logic 19 (1954), 154.
- [2] A. R. Anderson: Improved decision procedures for Lewis's calculus S4 and von Wright's calculus M, J. Symb. Logic 19 (1954), 201-214.
- [3] C. I. Lewis and C. H. Langford: Symbolic Logic, New York (1932).
- [4] M. Ohnishi: Gentzen decision procedures for Lewis's systems S2 and S3, Osaka Math. J. 13 (1961), 125-137.