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A B S T R A C T   

The phase-field (PF) method can effectively predict the formation of microstructures of eutectic alloys. However, 
numerous simulation parameters must be determined correctly for each alloy system to reproduce the experi-
mentally observed microstructures. In this study, we present a data assimilation method based on an ensemble 
Kalman filter to determine PF simulation parameters for the directional solidification of eutectic alloy by opti-
mizing the conditions for data assimilation. Numerical twin experiments revealed that eutectic microstructures 
can be reproduced, although four PF simulation parameters remained unknown. We also investigated appro-
priate experimental observation conditions for estimating the simulation parameters and found that the sufficient 
frequency of observations can be determined from the solid–liquid interfacial velocity. Our results provide 
guidance for data assimilation combined with the PF simulations of eutectic alloys. Moreover, our study provides 
a deeper understanding of the formation mechanisms of various types of eutectic microstructures.   

1. Introduction 

Eutectic alloys can exhibit various microstructures, such as lamellar 
[1,2], rod-like [3,4], and spiral [5,6] forms and the morphology 
significantly affect the mechanical [7,8], optical [9,10], and magnetic 
properties [11]. In eutectic solidification, multiphase and multicompo-
nent are synergistic solidified under a complicated physical phenome-
non involving thermal diffusions, solute diffusions, and coupled growth 
of different phases [12–14]. Therefore, it has long been investigated by 
both experimental [15–17] and computational approaches [18–21]. 

Phase-field (PF) simulations [22] are widely used to predict micro-
structure formation in various alloys [23–30] to elucidate the funda-
mental mechanisms of the eutectic solidification; however, many 
simulation parameters such as interfacial energies, interfacial mobil-
ities, and their anisotropies must be determined through trial-and-error 
to reproduce experimentally observed microstructures [12–14]. In 
addition, the PF simulations of eutectic alloys require various simulation 
parameters compared to those of single-phase solidifications. Although 
determining such simulation parameters requires considerable time and 
effort, there is no guarantee that these determined simulation parame-
ters are correct. Therefore, an efficient and reliable determination 

method is required to gain a deeper understanding of the formation 
mechanisms of the various types of eutectic microstructures. 

Recently, data assimilation (DA) methods have attracted consider-
able research attention for the inverse estimation of simulation param-
eters from observational data. Thus far, sequential and nonsequential 
DA have been developed. The former follows the time evolution of the 
ensemble, e.g., an ensemble Kalman filter (EnKF) [31], and the latter 
finds initial values most consistent with the observation data, e.g., a 
four-dimensional variational method (4D-Var) [32]. Sequential DA 
methods have been applied to various PF simulations, such as dendrite 
growth [33], solidification [34], and grain growth [35], and they have 
been used for estimating PF simulation parameters and evaluating 
estimation uncertainty. The latter has a significant advantage over 
nonsequential DA. Yamanaka et al. [36] applied an EnKF-based DA to 
multi-PF simulations of polycrystalline grain growth and succeeded in 
estimating the grain boundary energies. The EnKF-based DA can 
determine uncertainties in estimates such as interface energy and kinetic 
coefficient [37]. The importance of each parameter on a microstructure 
formation can also be evaluated from the trends of parameter changes 
during the estimation [35]. The DA method is effective for estimating 
various factors involved in the formation of complex eutectic 
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microstructures. 
In this study, we performed DA-combined PF simulations of eutectic 

alloys using numerical results as synthetic observational data (i.e., twin 
experiments [38]) to demonstrate that the DA method can be applied to 
an eutectic solidification, which requires more parameters for PF 
simulation and more complex microstructures than those of single-phase 
solidification. In addition, we also investigated the effect of observation 
conditions on the microstructure estimation by twin experiments to 
propose the appropriate observation conditions toward a DA with 
experimental data such as the in-situ observation data of solidification 
[12–14]. 

2. Method 

2.1. PF model and computational conditions 

PF simulations of the directional solidification of the MoSi2/Mo5Si3 
eutectic alloy were performed using a custom-made program [39,40]. 
The PF model comprises two field variables: (1) PF variable ϕ, which 
distinguishes solid and liquid phases, and (2) concentration field c, 
which differs from one solid to another. ϕ was set to 0, 1, and 0.5 for the 
MoSi2, Mo5Si3, and liquid phases, respectively; c ranges from 0 to 1 and 
represents the mole fraction of Si in the Mo–Si system. We defined these 
variables as ϕ(r, t) and c(r, t), respectively, because they are determined 
by position r = (x, y, z) and time t in inhomogeneous microstructures. 

The total free energy of the system is the integral of the local free 
energy density 

Gsys =

∫

V

(
gchem + ggrad

)
dV (1)  

where gchem and ggrad represents the chemical free energy and the 
gradient energy, respectively. The gchem is expressed based on the 
Landau theory [41–43] as 

gchem(ϕ, c) =
A1

2
(c − c1)

2
+

A2

2
(c − c2)ϕ2 −

A3

4
ϕ4 +

A4

6
ϕ6 (2)  

where c1, c2, and Ai represent fitting parameters. The fitted parameters 
are c1 = 0.643, c2 = 0.405, A1 = 3.6 × 105, A2 = 2.05 × 105, A3 = 1.26 ×
105, and A4 = 1.16 × 105. The gchem included a term to represent the 
double-well potential and show the local minimums of the MoSi2 and 
Mo5Si3 phases with the fitted parameters, as shown in Fig. S1. 

The ggrad is expressed using the gradients of both the concentration 
field and the PF variable as 

ggrad =
1
2

κ2
c(∇c)2

+
1
2

κϕ(θ)2
(∇ϕ)2 (3)  

where κc and κϕ represent the gradient energy coefficients for concen-
tration and PF variables, respectively. We assumed that κϕ includes 
anisotropic interface energy depending on the interfacial normal angle 
from the x-axis (θ), which can be expressed as 

κϕ(θ) = κ0[1+ εcos{k(θ − θ0) } ] (4)  

tanθ =
∂ϕ
∂z
/
∂ϕ
∂x

, θ = tan− 1
(

∂ϕ
∂z
/
∂ϕ
∂x

)

(5)  

where κ0, ε, k, and θ0 represent the mean value of the gradient energy 
coefficient, strength of anisotropy, order of rotational symmetry, and 
original angle of the rotation, respectively [39,40]. 

The time evolution of the concentration and PF variables is calcu-
lated using the Cahn–Hilliard (Eq. (6)) and Allen–Cahn (Eq. (7)) 
equations [44,45] 

∂c
∂t

= ∇

[

Mc

(

∇
δGsys

δc

)]

, (6)  

∂ϕ
∂t

= − mϕ
δGsys

δϕ
(7)  

where Mc and mϕ represent the mobilities for the order parameters of c 
and ϕ, respectively. It is noted that the mϕ is phase-field mobility, which 
is a component of interface mobility given by 2 mϕκ, where κ is the 
gradient energy coefficient. 

The simulation domain is two-dimensional (128 μm × 128 μm and 
128 × 128 meshes; Δx = 1 μm). Table 1 lists the PF simulation pa-
rameters; all parameters used in the PF simulations are non-
dimensionalized in terms of the gas constant (8.3145 J⋅K− 1⋅mol− 1), 
eutectic temperature (2173 K), mesh size (Δx = 1 μm), and diffusion 
coefficient in the liquid phase (DL = 2.46 × 10− 8 m2⋅s− 1). Neumann and 
Dirichlet boundary conditions are set for the bottom and top of the so-
lidification direction, i.e., y = 0 μm and y = 128 μm, respectively, and 
the periodic boundary conditions are set for the others. The domain is set 
to the liquid phase (ϕ = 0.5) with c = 0.55, and the temperature of the 
bottom of the domain is set to the eutectic temperature (2173 K). The 
computational domain is solidified directionally under the conditions of 
the temperature gradient G = 1.57 × 105 K⋅m− 1 and solidification rate R 
= 34.8 mm⋅h− 1. 

2.2. DA based on EnKFs 

Fig. 1 schematically illustrates the EnKF calculation process. In 
sequential DA methodologies [33–38], we define a state vector ξt con-
taining all state variables at t as 

ξt =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ϕ1,1

⋮
ϕN,M

c1,1

⋮

cN,M

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(8)  

where ϕn,m(1 ≤ n ≤ 128,1 ≤ m ≤ 128) represents the PF variable on a 
different grid point (n,m) at t. In this study, ξt represents a vector con-
taining ϕ and c on each grid point of the whole computational domain. 
The numerical simulation was updated using ξt from a state vector at 
time tn-1 to a state vector at tn. 

Ψ t is a vector consisting of estimated parameters, and we define an 
augmented state vector xt, including the state vectors containing ξt and 
Ψ t,. This vector is expressed as 

xt =

[
ξt
Ψ t

]

(9)  

The time evolution of xt is calculated by solving 

xt = ft(xt− 1)+ vt (10)  

where ft represents a nonlinear operator that corresponds to the time 
evolution equations of the two field variables, that is, Eqs. (6) and (7), 

Table 1 
Parameters used of the phase-field simulation.  

Parameter Value 

Si concentration of initial liquid phase, c0 55 at.% 
Simulation area 128 μm × 128 μm 
Grid number 128 × 128 
Time step, Δt 0.001 s* (6.6 × 10− 4 s) 
Interface thickness, λ 2 nm 
Temperature, T 2173 K 
Solidification rate, R 34.8 mm⋅h− 1 

Temperature gradient, G 3.13 × 105 K⋅m− 1  

Y. Seguchi et al.                                                                                                                                                                                                                                 
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respectively. The additional term vt is called the system noise and rep-
resents the imperfectness of the simulation. 

We define an observation vector yt containing the observation data, 
which can be expressed as 

yt = Htxt +wt (11)  

where Ht represents an observation operator that transforms the state 
variable vector of the model xt into an observation equivalent vector yt 
of the same dimension as the observation vector yobs

t that lines up the 
observed data, and wt represents the observation noise which is an error 
included in the experimental data. 

2.3. EnKF 

An EnKF is adapted in this study to handle nonlinear simulation 
models [39,40]. Several simulations with different simulation parame-
ters are executed in parallel to compute the time evolution of the 
probability density function (PDF) p(xt), which is approximated using an 
ensemble approximation as 

p(xt) ≅
1

Nens

∑Nens

i=1
δ
(
xt − x(i)

t

)
(12)  

where δ(x) represents the Dirac delta function, and Nens represents the 
number of model states (also called ensemble size). The ensemble size in 
the EnKF-based DA corresponds to the number of parallel-running PF 
simulations. 

The predictive PDF is updated by phase field simulations of indi-
vidual ensemble members. The time evolution to time t of the state 
vector x(i)

t|t− 1 for the i-th ensemble member assimilated with the observed 
data up to t-1 is expressed as 

x(i)
t|t− 1 = ft

(
x(i)

t− 1|t− 1

)
+ v(i)t (13)  

where v(i)t denotes the system noise of the i-th ensemble and ft represents 
the function to forward in time (i.e., Eqs. (6) and (7)). 

When the observed data exist, the filter PDF is updated based on 
Bayes’ theorem using the likelihood function corresponding to the 
observation data and the predictive PDF. Meanwhile, individual 
ensemble members are filtered by the observation data based on Bayes’ 
theorem. 

x(i)
t|t = x(i)

t|t− 1 + Kt

(
yobs

t +
̃w(i)

t − Htx(i)
t|t− 1

)
(14)  

where yobs
t +

̃w(i)
t corresponds to the perturbed observation. The param-

eter ̃w(i)
t is added to prevent underestimating the filter PDF covariance 

matrix Pt|t when using the same observation state vector yobs
t for each 

ensemble member. Eq. (14) represents a modification of each ensemble 
member x(i)t|t− 1 using the observation data. Kt is called the Kalman gain 
and is given by 

Kt = Pt|t− 1HT
t

(
HtPt|t− 1HT

t + Rt
)− 1 (15)  

where Pt|t− 1 represents a predictive PDF covariance matrix, which can 
be calculated as 

Pt|t− 1 =
1

Nens − 1
∑Nens

i=1

̃x(i)
t|t− 1

(
̃x(i)
t|t− 1

)T

, (16)  

̃x(i)
t|t− 1 = x(i)

t|t− 1 −
1

Nens

∑Nens

i=1
x(i)

t|t− 1 (17)  

The time evolution of the sample covariance matrix Pt|t− 1 is given as 

Pt|t = Pt|t− 1 − KtHtPt|t− 1. (18)  

The observation error covariance matrix Rt is given as 

Rt =
1

Nens − 1
∑Nens

i=1

̃w(i)
t

(
̃w(i)

t

)T
. (19)  

̃w(i)
t = w(i)

t −
1

Nens

∑Nens

i=1
w(i)

t (20)  

In this study, a true state is estimated by repeating the filtering processes 
and comparing the observation data and predicted states calculated by 
the PF simulation using the predicted parameters. For comparison, the 
means and standard deviations (SDs) of the ensemble of the observation 
data and predicted states are evaluated. The means were calculated as 

x̄t|t− 1 =
1

Nens

∑Nens

i=1
x(i)

t|t− 1. (21)  

On the other hand, SD of the ensemble is the square root of the diagonal 
elements of the covariance matrix represented by 

Pt|t− 1 =
1

Nens − 1
∑Nens

i=1

(
x(i)

t|t− 1 − x̄t|t− 1

)(
x(i)

t|t− 1 − x̄t|t− 1

)T
(22)  

2.4. Twin experiments 

Twin experiments were conducted to validate the DA method. Fig. 2 
shows the flowchart of the twin experiment in the present study. Orig-
inally, DA is performed using experimentally observed data. In the twin 
experiments, simulation results are used instead of experimental data. 
First, the PF simulation was performed using the true values of the 

Fig. 1. (a) Ensemble approximation of probability density function and (b) 
approximating the probability density function (PDF) from the sparsity of 
ensemble members. Track the time evolution of the PDF by solving the time 
evolution equation for each ensemble member (Prediction) and correct it using 
observation data estimation (Filtering). The true state is estimated by iteratively 
performing prediction and filtering. 
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parameters to be estimated, and time series data of the phase distribu-
tion were obtained. The EnKFs were performed using the pseudo- 
observed data: the time evolution of the predicted PDF was calculated 
by the PF simulations for each ensemble member, and the predicted PDF 
was filtered using the pseudo-observation data. Finally, we evaluate the 
estimation accuracy of the DA by comparing the estimated parameter 
with the true values of the parameters and the estimated state with the 
pseudo-observed data, respectively. 

PF simulations were performed assuming a priori true values and 
used as synthetic observations. The parameters were then estimated by 
data assimilation, assuming that the true values were unknown. For the 
PF simulations generating the pseudo-observational data, we configured 
the dimensionless computational parameters as follows: PF mobility 
mϕ = 2.5, solute mobility Mc = 2.5, anisotropy strength ε = 0.3, 
gradient energy coefficient κ0 = 0.82. In this study, the above four 
computational parameters were inversely estimated from the phase 
distribution. We used the pre-computed PF variables ϕ(r, t) as pseudo- 
observation data and PF variables ϕ(r, t) and concentration field c(r, t) 
are used as the true state for validation by comparing it with simulation 
results obtained using the estimated simulation parameters. The obser-
vation matrix Ht used in this study has a dimension of 1 × (2 × 128 ×
128 + 4), and its first 128 × 128 components are 1 and the others are 
zeros. The observation vector yt is expressed as 

yt =
[

ϕ1,1 ⋯ ϕn,m ⋯ ϕ128,128
]T
. (23)  

This parameter is a real number with values between 0 and 1. This can 
be considered the phase of each observation point in the actual experi-
mental data. The argument state vector of the i-th ensemble member is 
given by 

x(i)
t =

[
ξ(i)t

Ψ (i)
t

]

, (24)  

where ξt
(i) and Ψ (i)

t are calculated using 

Ψ (i)
t =

[

m(i)
ϕ, t M(i)

c, t κ(i)t ε(i)t

]T
, (25)  

where mϕ, Mc, κ(= κ0 = κc), and ε represent the PF interface mobility, 
solute mobility, gradient energy coefficient, and anisotropy intensity of 
gradient energy coefficient, respectively. The time evolution of the PF 
interface mobility m(i)

ϕ,t can be expressed as 

m(i)
ϕ, t = m(i)

ϕ, t− 1 + v(i)t, mϕ
. (26)  

v(i)t, mϕ is given by 

v(i)t, mϕ
N
(

0, σmϕ
sys

2
)

(27)  

where N indicates the Gaussian distribution. Eq. (26) indicates that v(i)t, mϕ 

represents the system noise of mϕ, which is a random variable following 
a Gaussian distribution with mean zero and standard deviation σmϕ

sys . The 
other parameters are described in the same manner. 

EnKF has seven DA conditions: ensemble size Nens, filtering interval 
Δtfilt, number of simulation parameters to estimate npara, initial mean 
µinit and initial standard deviation σinit of the DA conditions, system 
noise σsys, and observation noise σobs. In this study, npara and σobs are 
fixed at 4 and 0.01, respectively. The initial standard deviations σinit of 
DA conditions and system noise σsys are set to 10 % and 1 % of the initial 
means µinit, respectively. The initial mean values of parameters were set 
as follows: PF mobility mϕ,init = 2, solute mobility Mc,init = 2, anisotropy 
strength εinit = 0.2, gradient energy coefficient κ0,init = 1.4. Among the 
DA conditions of EnKF, Nens and Δtfilt are optimized because they 
directly determine the accuracy of the estimation. 

3. Results and discussion 

3.1. Applicability of the DA combined PF model to eutectic solidification 
verified by twin experiments 

The validity of the DA for eutectic alloy solidification was investi-
gated by a twin experiment using the different ensemble sizes, Nens, 
which is the number of parallel-running simulations required to 
approximate the PDF and is one of the hyperparameters of the EnKF- 

Fig. 2. Flowchart of the twin experiment using the EnKF.  
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based DA. The resulting eutectic microstructures colored according to 
the values of Φ(r, t) and c(r, t) are shown in Fig. 3 The averaged phase 
distribution largely depends on the Nens. In the simulation with Nens =

20, the eutectic microstructure growth stopped before solidifying the 
entire domain in the simulation. Furthermore, the simulation collapsed 
when Nens was 50. In contrast, simulations with Nens = 100 and 200 
reproduced the assumed true state. 

Fig. 3(b1)–(b4) show the time variations of the mean and standard 
deviations (SDs) of the estimated simulation parameters during DA. The 
estimated values for Nens = 20 and 50 deviated significantly from the 
true values; however, the estimated values for Nens = 100 and 200 
approached the true values at the beginning of the simulation and 
remained near the true values throughout the simulations. Filter diver-
gence, which is a phenomenon of bias in the extracted samples when 
approximating a PDF with an ensemble, occurred in simulations with 
Nens = 20 and 50. Sasaki et al. [38] suggested that filter divergence can 
be avoided by increasing Nens. This is because the larger Nens is, the less 
likely the extracted samples will be biased and the more accurate the 
PDF approximation will be. However, an appropriate Nens is required, 

given that the computational cost is limited in practical use. These twin 
experiments revealed that estimation through the DA for eutectic so-
lidification is possible for ensemble sizes Nens = 100 or larger. In pre-
vious studies on DA-combined PF simulations of single-phase 
solidifications [34,37], Nens = 100 is sufficient to estimate the param-
eters of the PF simulation. This implies that the required Nens of this 
study for the DA of the eutectic alloy solidification is the same as that of 
single-phase solidifications [34,37]. 

Fig. 4(a) shows the SD of the estimated concentration field at 9,000 
steps under different ensemble size conditions. As indicated in Fig. 4(a), 
increasing the ensemble size leads to higher accuracy in parameter 
estimation. The SD of the concentration field estimation for Nens = 100 is 
smaller than that for Nens = 200. It is suggested [46,47] that the diffu-
sion distance of solute atoms per time step is required to be smaller than 
the square of Δx for calculating the time evolution of the concentration 
field stably; increasing solute mobility Mc under constant Δt and Δx 
causes the calculation to become unstable. Fig. 4(b) shows the concen-
tration field obtained in PF simulations without EnKF applied using 
various Mc. Discontinuous regions appear in the concentration field, i.e., 

Fig. 3. (a) Distributions of PF variables and concentration at 9000 steps of synthetic observation data (true state) and EnKF estimated states with Nens = 20, 50, 100, 
and 200. Time variations of ensemble mean and SD of (b1) phase-field mobility, (b2) solute mobility, (b3) anisotropy strength, and (b4) gradient energy coefficient 
during DA. 

Y. Seguchi et al.                                                                                                                                                                                                                                 



Computational Materials Science 237 (2024) 112910

6

the calculation is unstable when using a larger Mc than 3.0. Comparing 
the solute mobility distributions for Nens = 100 and 200 at 9,000 steps 
indicated in Fig. 4(c), only Nens = 200 has ensemble members with an Mc 
larger than 3.0. Therefore, it is suggested that the concentration field 
was unstable for these ensemble members and caused the larger SD in 
the concentration field estimation for Nens = 200 compared to Nens =

100. 

3.2. Consideration of effects of observation conditions on the 
microstructure estimation 

In the previous studies, in-situ observation of microstructure for-
mations has been performed using optical microscope [12,48–52], X-ray 
imaging [15,53–57], and dynamic transmission electron microscope 
(DTEM) [58–61]. Optical microscopes are most commonly used tool for 
observations and can observe a several mm-squared space with a spatial 
resolution on the order of µm and temporal resolution on the order of 
tens fps. Witusiewicz et al. [50,51] observed the solidification of eutectic 
alloys with the low-eutectic temperatures such as the neopentylglycol- 

(D)camphor eutectic alloy and the Al-based alloy using the optical mi-
croscope. X-ray imaging allows in-situ observation in higher tempera-
ture conditions. In addition, concentration distribution changes can also 
be tracked by X-ray fluorescence spectroscopy [55,56]. Yasuda et al. 
[57] observed the solidification of the low carbon steel with a spatial 
resolution of 5 µm and a temporal resolution of 32 fps using the X-ray 
imaging. On the other hand, DTEM can track nanosecond order tem-
poral changes with a spatial resolution on the order of nm, while the 
observation field of view is limited up to 100 µm and it is applicable only 
to thin film samples [59]. Microstructure formation of the Al eutectic 
alloys under the fast solidification conditions considering the additive 
manufacturing process has been studied using the DTEM technique 
[59–61]. The field of view and spatiotemporal resolutions differ greatly 
depending on the method, and an appropriate method is necessary to be 
chosen for the structural morphology to be observed. 

In this study, we investigated the applicability of the DA combined 
PF simulation to a two-dimensional optical microscope observation of 
the eutectic solidification such as that by Chuang et al. [52]. We 
considered the effect of filtering interval Δtfilt on microstructure 

Fig. 4. (a) SDs in concentration fields estimated with ensemble size estimated Nens as 20, 50, 100, and 200. (b) Concentration fields calculated using solute mobility 
Mc = 1.0–3.5. The variation of estimated (c1) phase-field mobility, (c2) solute mobility, (c3) anisotropy strength, and (c4) gradient energy coefficient at 9000 steps. 
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estimation; the estimation accuracy in DA improves because of more 
opportunities for modifications based on observation data when the 
frequency of observations is high. However, in actual experiments, the 
frequency of observations remains limited. Chuang et al. [52] observed 
the in-situ directional solidification of the eutectic alloy with a spatial 
resolution of 1.56 µm and a frame rate of 30 fps (temporal resolution =
33 ms). To revealed the effect of Δtfilt on the estimation accuracy, we 
performed the DA combined PF simulations with a spatial resolution of 
1 µm for different Δtfilt steps of 30, 50, 100, and 200, which correspond 
to 19.8, 33, 66, and 132 ms, respectively. The PF simulations are per-
formed again using the estimated values, and the obtained ϕ(r, t) and c 
(r, t) are compared with the true values. The ensemble size Nens was 
fixed to 100 for all twin experiments. 

Fig. 5(a) shows the simulated eutectic microstructures using 
different Δtfilt of 200, 100, 50, and 30 steps. The assumed true state was 
reproduced in the simulations using Δtfilt of 100, 50, and 30 steps 
(except for Δtfilt = 200 steps). The time variations of the mean and 
standard deviation for the estimated simulation parameters during DA 
were calculated, as shown in Fig. 5(b1)–(b4). The estimated values for 

Δtfilt = 200 deviated significantly from the true values. However, the 
estimated values with Δtfilt = 100, 50, and 30 steps remained closer to 
the true values during the entire simulation. The estimated simulation 
parameters at 9000 steps were compared to evaluate the effect of Δtfilt 
on the estimation of the simulation parameters. The Δtfilt is the time 
interval during which the simulation results are modified with obser-
vation data, and its inverse corresponds to the frequency of experimental 
observations. The estimation accuracy improves as the observation 
frequency increases. Therefore, by obtaining observation data at a 
higher frequency and modifying the simulation results successively with 
more observation data, the parameters can be inversely estimated from 
the microstructure time series data with higher accuracy. 

The PF simulations were performed again using the estimated 
simulation parameters at 9000 steps (Table 1) to verify the reproduc-
ibility of the assumed true state. Fig. 6(a) shows the resulting eutectic 
microstructures colored according to the values of ϕ(r, t) and c(r, t). The 
measured area ratios and lamellar spacings of each model are shown in 
Fig. 6(b1)–(b3). No lamellar structure was formed in the simulation 
with Δtfilt = 200 steps, and thus, this simulation was excluded from the 

Fig. 5. (a) Distributions of PF variables and concentration at 9000 steps of synthetic observation data and EnKF estimated states with filtering interval Δtfilt = 200, 
100, 50, and 30 steps. Time variations of ensemble mean and SD of (b1) phase-field mobility, (b2) solute mobility, (b3) anisotropy strength, and (b4) gradient energy 
coefficient during DA. 

Y. Seguchi et al.                                                                                                                                                                                                                                 



Computational Materials Science 237 (2024) 112910

8

comparison. The fractions of solid phases (Fig. 6(b1)) were smaller than 
those simulated using the true simulation parameters because PF 
mobility mϕ and solute diffusion mobility Mc could be underestimated 
(Table 2). Small mobilities slowed the solid–liquid interfacial migration 
and solute diffusion, as shown in Fig. 6(c). Thus, the interface has a 
convex shape, which decreases the solid-phase fraction. The lamellar 
spacings obtained from simulations using the estimated PF simulation 
parameters with Δtfilt = 50 and 30 steps were almost the same as the true 
values, while those obtained from simulations with Δtfilt = 100 steps 
were larger than the true value (Fig. 6(b3)). This was because κ is 
slightly larger than those in the other two simulations at Δtfilt = 100 
steps (Table 1). Owing to the overestimated κ, the interfacial energy of 
the microstructure became large and energetically unstable in the early 
stages of solidification. Thus, the microstructure disappeared, and the 
lamellar spacing increased. Therefore, it was determined that Δtfilt =

100 steps was not sufficient for accurate parameter estimation to 
reproduce microstructure formation, and Δtfilt should be less than 50 
steps. Here, 50 steps in the calculation is 0.033 s in real time, and a 
filtering interval of 0.033 s corresponds experimentally to 31 observa-
tions per second. 

Based on the simulation results obtained using different Δtfilt, an in- 
situ observation movie with an observation frequency of above 31 fps 
was suggested for use in the EnKF-based DA combined PF simulations to 
reproduce an actual microstructure formation of eutectic alloys. Chuang 

et al. [52] observed the directional solidification of the eutectic alloy 
with a frame rate of 30 fps. DA-combined PF simulations with experi-
mental in-situ observation data were suggested to reproduce an exper-
imental microstructure and estimate parameters for PF simulations. 

The results of this study with different Δtfilt were compared with the 
results of previous studies [34,37], in which the same DA method was 
used to provide a guideline to determine Δtfilt for DA. Table 3 lists the 
estimation conditions used in this study and in the previous studies 
[34,37]. The values of Δtfilt used in previous studies were 10 times larger 
than those used in this study. The speeds of the solid–liquid interfacial 
migration (Vinterface) in this study and previous studies were different. 
Therefore, we defined Vfilt = Δtfilt × Vinterface, where Vfilt represents the 
distance where the solid–liquid interface moves from one filter to 

Fig. 6. (a) Distributions of PF variables and concentration at 10,000 steps obtained by PF simulations using the initial and determined parameters of DA combined PF 
simulations. (b) Area fraction of (b1) Mo5Si3 and (b2) MoSi2 phases and (b3) average lamella spacing of the eutectic microstructures. (c) Comparison of the simulated 
solid–liquid interface positions for the cases with Δtfilt = 30, 50, and 100 steps. 

Table 2 
Parameters used for phase-field simulation to reproduce the observation data 
with estimated parameters.  

Parameter Δtfilt  

= 30 steps 
Δtfilt  

= 50 steps 
Δtfilt  

= 100 steps 

PF mobility,mϕ  2.46  2.45  2.49 
Solute mobility,Mc  2.44  2.37  1.83 
Anisotropy strength, ε  0.302  0.302  0.287 
Gradient energy coefficient, κ0  0.827  0.845  1.07  

Table 3 
Comparison of estimation conditions between the present and previous studies.  

Parameter This study Ref. 34 Ref. 37 

Alloy system Eutectic alloy Pure metal Pure metal 
Computational 

Domain 
128 × 128 100 × 100 128 × 128 

Number of state 
variables 

2 1 1 

Estimated 
parameters 

PF mobility mϕ,  
solute mobility Mc,  
gradient energy 
coefficient κ0, and its 
anisotropy ε 

Kinetic 
coefficient β0 

and its 
anisotropy εk, 
interfacial 
energy σ0 

and its 
anisotropy εc 

Kinetic 
coefficient β0 

and its 
anisotropy εk, 
interfacial 
energy σ0 

and its 
anisotropy εc 

Dimension of state 
vector 

32,772 10,004 16,386 

Ensemble number, 
Nens 

100 100 512 

Time step, Δt 6.6 × 10− 4 s 1.00 × 10− 14 s 1.00 × 10− 14 s 
Filtering step, Δtfilt 6.6 × 10− 2 s 1.00 × 10− 11 s 1.00 × 10− 11 s 
Filtering step, Δtfilt 

/Δt 
100 steps 1000 steps 1000 steps  
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another. In this study, 16,000 steps were required for the solid–liquid 
interface to pass through the 128 × 128 computational domains. The 
corresponding Vinterface was 8.0 × 10− 3 grid⋅step− 1, and Vfilt were 
calculated to be the 1.6, 0.8, 0.4, and 0.24 grid filtering step− 1 for the 
Δtfilt of 200, 100, 50, and 30 steps, respectively. Vinterface and Vfilt in the 
previous studies [34,37] were 8 × 10− 4 and 5 × 10− 4 grid⋅step− 1 and 0.8 
and 0.5 grid filtering step− 1, respectively. Fig. 7 shows the relationship 
between the estimation accuracy and Vfilt. The estimation accuracy 
changes significantly around Vfilt = 1, and a correct estimation is ach-
ieved when Vfilt < 1. Therefore, the condition Vfilt < 1 is necessary for 
estimating the PF simulation parameters governing the interfacial 
migration using the growing phase morphology as the observation data. 

The coefficient of variation (CVs) and ratio of standard deviation to 
the mean of the estimated PF simulation parameters were calculated to 
evaluate the contribution of each parameter to the microstructure for-
mation. Fig. 8 shows the CV over time for the simulations with Δtfilt =

100, 50, and 30 steps. The CVs of Mϕ and κ coefficients exhibited almost 
the same values. Moreover, the CV of the solute mobility was the largest 
through each simulation, and that of the anisotropy strength was the 
smallest. Miyoshi et al. [35] noted that the uncertainty of the estimate is 
large for grain boundary mobility of relatively immobile grain bound-
aries. This suggests that the smaller the contribution of a parameter to 
the phenomenon, the larger the uncertainty of the estimate. In this 
study, the CV corresponds to the uncertainty, suggesting that the 
anisotropy strength with the smallest CV has the largest contribution to 
microstructure formation. From another perspective, a parameter with a 
significant contribution to the observation data should be appropriately 
determined to apply the DA method to experimental observations. 

Selecting in-situ observation data largely affected by DA conditions to be 
determined is necessary. 

4. Conclusion 

A twin experiment was conducted to demonstrate the verification of 
EnKF applied to a PF simulation of eutectic solidification. The PF 
mobility, solute mobility, gradient energy coefficient, and anisotropic 
strength were estimated simultaneously using the optimized DA 
conditions. 

The PF simulations of eutectic alloys require more phases and com-
plex shapes than those of a single-phase solidification. Estimating the 
parameters of a eutectic solidification PF model is more difficult than 
estimating the parameters of a solidification PF model with a simple 
geometry using DA. Therefore, we compared the DA conditions with 
those in previous studies [34,37], in which DA for the solidification PFM 
of isomorphous alloys was conducted. 

We applied the EnKF to unidirectional solidification PF simulations 
of eutectic alloys and demonstrated its effectiveness in the twin exper-
iments. The simultaneous estimation of four PF simulation parameters 
(i.e., PF interface mobility, solute mobility, anisotropy strength, and 
gradient energy coefficient) was possible using appropriate DA condi-
tions (Nens = 100; filtering interval Δtfilt = 50, 30 steps). Recalculation 
using the PF simulation parameters estimated by EnKF reproduced the 
results of the PF calculations using the true values. The results of the 
twin experiments suggested that the observation frequency of the 
observation data is necessary for the DA. The eutectic system had almost 
no effect on the estimation conditions of the DA. Further, parameter 

Fig. 7. Estimation accuracy of (a) phase-field mobility, (b) solute mobility, (c) anisotropy strength, and (d) gradient energy coefficient as a function of Vfilt. The 
dashed and dotted lines represent Vfilt in Refs. [34,37], respectively. 
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estimation by the DA could be performed under the same conditions as 
those for other systems reported in previous studies. We found that the 
optimum Δtfilt can be understood in terms of solid–liquid interfacial 
velocity. In the future, PF simulation parameters will be estimated 
through DA using in-situ observation images as observation data. 
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