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Abstract
1.	 Machine learning-based behaviour classification using acceleration data is a pow-

erful tool in bio-logging research. Deep learning architectures such as convolu-
tional neural networks (CNN), long short-term memory (LSTM) and self-attention 
mechanism as well as related training techniques have been extensively studied 
in human activity recognition. However, they have rarely been used in wild animal 
studies. The main challenges of acceleration-based wild animal behaviour classi-
fication include data shortages, class imbalance problems, various types of noise 
in data due to differences in individual behaviour and where the loggers were at-
tached and complexity in data due to complex animal-specific behaviours, which 
may have limited the application of deep learning techniques in this area.

2.	 To overcome these challenges, we explored the effectiveness of techniques for 
efficient model training: data augmentation, manifold mixup and pre-training of 
deep learning models with unlabelled data, using datasets from two species of 
wild seabirds and state-of-the-art deep learning model architectures.

3.	 Data augmentation improved the overall model performance when one of the 
various techniques (none, scaling, jittering, permutation, time-warping and ro-
tation) was randomly applied to each data during mini-batch training. Manifold 
mixup also improved model performance, but not as much as random data aug-
mentation. Pre-training with unlabelled data did not improve model performance. 
The state-of-the-art deep learning models, including a model consisting of four 
CNN layers, an LSTM layer and a multi-head attention layer, as well as its modi-
fied version with shortcut connection, showed better performance among other 
comparative models. Using only raw acceleration data as inputs, these models 
outperformed classic machine learning approaches that used 119 handcrafted 
features.

4.	 Our experiments showed that deep learning techniques are promising for 
acceleration-based behaviour classification of wild animals and highlighted some 
challenges (e.g. effective use of unlabelled data). There is scope for greater ex-
ploration of deep learning techniques in wild animal studies (e.g. advanced data 
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1  |  INTRODUC TION

1.1  |  Behaviour classification of wild animals using 
time-series sensor data

Knowing when, where and what an animal is doing is fundamental to 
understanding animal behaviour. Bio-logging is a modern research 
technique that employs animal-borne data loggers to record a variety 
of time-series sensor data such as acceleration, temperature, water 
depth and location data (Fehlmann & King, 2016; Yoda, 2019). Among 
available sensors, acceleration sensors are commonly used to recon-
struct animal behaviours, because many behaviours are characterised 
by unique patterns of acceleration signals (Yoda et al., 1999). Once the 
relationship between acceleration signals and behaviours is confirmed 
through video or direct observation (i.e. labelling or annotation), one 
can develop a ‘behaviour classifier’ through supervised learning. Then, 
it is possible to calculate behavioural time allocation (Yoda et al., 2001) 
and identify specific behaviours such as prey capture (Watanabe & 
Takahashi,  2013) from acceleration signals using these classifiers. 
Numerous techniques have been proposed to classify animal behav-
iours, including rule-based methods and machine learning.

Recently, the classic machine learning approach, that is, a non-
deep learning, machine learning approach that usually requires 
feature engineering (see Table S1 for explanations of terms in this 
study), has succeeded in classifying animal behaviour. Previous stud-
ies have used various machine learning models with acceleration 
data to classify the behaviour of various animals, including birds and 
mammals (Fehlmann et al., 2017; Nathan et al., 2012; Yu et al., 2021). 
For instance, Nathan et  al.  (2012) tested the effectiveness of five 
classic machine learning models for behaviour classification of 
griffon vultures: linear discriminant analysis (LDA), support vector 
machine (SVM), decision tree (DT), random forest (RF) and artificial 
neural network (ANN). Yu et al. (2021) tested XGBoost in addition to 
LDA, DT, SVM, RF and ANN for five species. Although they mainly 
focused on seeking a suitable model for onboard behaviour classifi-
cation, they demonstrated that SVM, RF, ANN and XGBoost gener-
ally performed better in terms of the F1-score or overall accuracy. 
Other methods have been employed, such as the k-nearest neigh-
bour (Sur et al., 2017) and the hidden Markov model (Leos-Barajas 
et al., 2017).

Only a few studies have leveraged deep learning for wild ani-
mal behaviour classification using time-series sensor data. Although 

not an acceleration-based behaviour classification, Browning 
et  al.  (2018) used a multi-layer perceptron to predict diving be-
haviour in three seabird species using GPS data. Roy et  al.  (2022) 
extended their work by using convolutional neural networks (CNNs) 
and U-Net to predict seabird diving. Recently, Hoffman et al. (2023) 
applied deep learning models such as CNN and gated recurrent unit 
to datasets of nine species. As such, there are several examples of 
deep learning applications on time-series sensor data in recent bio-
logging research; however, this area is still in the early stages of de-
velopment. The effectiveness of more advanced architectures, such 
as long short-term memory (LSTM) and self-attention mechanism, 
as well as various training techniques, such as data augmentation, 
have not yet been extensively tested on acceleration data from wild 
animals.

1.2  |  Behaviour classification techniques for 
domestic animals and humans

Deep learning-based behaviour classification techniques have been 
employed extensively in domestic animal and human studies (e.g. 
Pan et al., 2023; Singh et al., 2021). In the acceleration-based behav-
iour classification of domestic animals including horses and lactating 
sows, deep learning models such as CNN have been developed as 
a technique for automatically monitoring behaviours and obtain-
ing information about animal health and welfare (e.g. Eerdekens 
et al., 2020; Pan et al., 2023). Although these techniques success-
fully classified multiple behaviour classes (e.g. six or seven classes), 
collecting data from domestic animals appeared to be easier than for 
wild animals.

In human activity recognition (HAR), Ordóñez and Roggen (2016) 
demonstrated that DeepConvLSTM (DCL), which combines CNN 
and LSTM, achieved high performance on datasets of daily activity 
and assembly-line workers' activity. Singh et al.  (2021) proposed a 
model with an additional self-attention layer after the DCL archi-
tecture (called DeepConvLSTMSelfAttn (DCLSA) in this study) that 
could outperform DCL in various human activity datasets. More re-
cently, HAR studies have been conducted in the industrial domain, 
with a focus on more specific and complex tasks. Xia et al. (2022) pro-
posed attention-based neural networks to identify the skills of high- 
and low-performing workers. Yoshimura, Maekawa, et  al.  (2022) 
proposed a model for recognising complex, ordered and repetitive 

augmentation, multimodal sensor data use, transfer learning and self-supervised 
learning). We hope that this study will stimulate the development of deep learn-
ing techniques for wild animal behaviour classification using time-series sensor 
data.

K E Y W O R D S
acceleration sensor, animal behaviour classification, bio-logging, data augmentation, deep 
learning, machine learning
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activities during line production systems and packaging tasks in the 
logistics domain. As such, the application of deep learning tech-
niques in HAR is more varied and advanced than that in wild animals.

1.3  |  Challenges and our approach

The following key challenges may have prevented the use of deep 
learning models in acceleration-based behaviour classification of 
wild animals. First, although deep learning models generally benefit 
from more training data, it is difficult to collect ground truth data for 
supervised learning, such as annotations acquired from video data, 
from wild animals. Second, the data are often imbalanced in terms of 
behaviour class. For example, the proportion of foraging behaviours 
in our target animals (streaked shearwaters and black-tailed gulls) is 
much lower than that of flying or stationary behaviour (Figures S1–
S3). Third, there may be various types of noise in acceleration data 
due to differences in individual behaviour and where the loggers 
were attached. These three problems are also common in domes-
tic animals and humans but may be more severe in wildlife. Fourth, 
acceleration data have complexity due to difficult animal-specific 
behaviours, such as those consisting of micro-actions (e.g. prey cap-
ture) and those likely requiring consideration of temporal depend-
encies for classification (e.g. foraging dive of streaked shearwaters, 
which consists of a sequence of actions such as diving underwater, 
following a school of fish and ascending to the sea surface (Tanigaki 
et al., 2024)). In this study, we explored the effectiveness of state-
of-the-art deep learning architectures and related techniques for 
acceleration-based behaviour classification of wild animals, which 
may overcome the above-mentioned challenges, using datasets from 
two wild seabird species.

First, we explored the effects of data augmentation and mani-
fold mixup. Data augmentation refers to techniques that transform 
data to increase their quantity and variation. Manifold mixup (Verma 
et al., 2019) generates a new training instance (a set of new features 
and label) by mixing intermediate features and labels of randomly 
sampled two existing training instances in an intermediate layer (see 
Section 2.4 for more details). These techniques are considered to im-
prove generalisation performance, robustness to various noises and 
recognition performance of minor classes, and are thus expected to 
overcome the above challenges.

Second, we tested the effects of pre-training CNN-based 
Autoencoder (CNN-AE) with a large amount of unlabelled data, 
which is expected to be effective when using a small amount of la-
belled data. The CNN-AE can be either simply trained with labelled 
data or first pre-trained with unlabelled data and then fine-tuned 
with labelled data.

Finally, we explored various deep learning model architectures: 
CNN, LSTM, DCL, DCLSA, ResNet version of DCLSA (DCLSA-RN), 
Transformer and CNN-AE. Convolution layers in CNN, CNN-AE and 
DCL-based models are good at extracting local, specific features or 
patterns. An LSTM layer in LSTM and DCL-based models can incor-
porate short- and long-term temporal dependencies, which seems 

essential for time-series sensor data. Multi-head attention layer 
(Vaswani et al., 2017) in DCLSA, DCLSA-RN and Transformer learns 
which parts of the data to prioritise, considering global information. 
Thus, LSTM and multi-head attention layers could overcome the 
fourth challenge. We expected that this comparison will provide 
a better understanding of the performance of each of these com-
ponents and/or their combinations. We also compared these deep 
learning models with classic machine learning approaches such as 
XGBoost, which achieved high performance in a previous study but 
required feature engineering.

2  |  MATERIAL S AND METHODS

2.1  |  Datasets

Since 2018, our research team has developed custom-made bio-
loggers with AI that perform real-time behaviour classification using 
low-power sensors and start camera recording, thus enabling the 
efficient recording of videos of target behaviours, such as seabird 
foraging (Korpela et al., 2020). Through this project, we collected ac-
celeration, GPS and water pressure data as well as more than 20 h of 
video data (excluding those labelled as unknown) from two seabird 
species in the wild: streaked shearwaters (Calonectris leucomelas) and 
black-tailed gulls (Larus crassirostris). Data from 28 streaked shearwa-
ters were collected on Awashima Island, Japan, from 2018 to 2022, 
and data from 27 black-tailed gulls were collected on Kabushima 
Island, Japan, in 2018, 2019 and 2022 (Table S2; Figures S1–S3). For 
streaked shearwaters, all the loggers were attached to the animals' 
backs (Figure S2), whereas for black-tailed gulls, 18 were attached 
to the animals' abdomens and the remainder were attached to their 
backs (Figure S3).

The fieldwork on streaked shearwaters was carried out with 
the permission of the Animal Experimental Committee of Nagoya 
University (GSES2018–2022) and the Ministry of the Environment, 
Japan. The fieldwork on black-tailed gulls was carried out with the 
permission of the Hachinohe City Board of Education (2018-237, 
2019-329, 2022-301) and Aomori Prefecture (2018-4036, 2019-
3033, 2022-3050) as well as from the Ministry of the Environment, 
Japan, to instal the structure (1803201, 1804042, 1903281) with 
approval from the Nagoya University Animal Experiment Committee 
(GSES2018, 2019 and 2022).

Using video data, we defined six behaviour classes (station-
ary, bathing, take-off, cruising flight, foraging dive and dipping) for 
streaked shearwaters and six behaviour classes (stationary, ground 
active, bathing, active flight, passive flight and foraging) for black-
tailed gulls (Figures  S1–S5). See Table  S3 for more descriptions of 
each behaviour.

Acceleration data were recorded at 25 or 31 Hz. Those at 31 Hz 
were first up-sampled to 1000 Hz using the linear interpolation 
method and then down-sampled to 25 Hz because 31 Hz is not a multi-
ple of 25 Hz, making it difficult to directly employ down-sampling while 
preserving the shape of the original signal. The time windows were 
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    |  719OTSUKA et al.

extracted using a sliding window size of 50 samples (2 s) and an over-
lap rate of 50%. We labelled the data primarily using video data from 
animal-borne cameras, but also using GPS and water pressure data 
when the video footage was not very clear. Labelling was performed in 
consultation with ecologists who studied each target species. To avoid 
complexity, windows containing two or more unique behaviour class 
labels were discarded. In addition, we did not use windows with many 
missing data. We obtained 42,526 labelled windows from 28 streaked 
shearwaters and 32,391 from 27 black-tailed gulls. The number of 
labelled windows for each class was heavily imbalanced (Figures S1–
S3). Figures  S4 and S5 show examples of typical windows for each 
behaviour class in streaked shearwaters and black-tailed gulls, respec-
tively. Acceleration values greater than +8G or smaller than −8G were 
clipped to address measurement errors. We did not perform other data 
pre-processing such as standardisation because pipelines and hyper-
parameters of pre-processing heavily rely on domain-specific knowl-
edge and we wanted to eliminate the effect of it on our experiments.

2.2  |  Model architectures and hyperparameters

We implemented the CNN, LSTM, DCL, DCLSA, DCLSA-RN, 
Transformer and CNN-AE, as shown in Figure 1. See the fourth para-
graph of Section 1.3 for the reasons why we used these models in 
this study.

•	 CNN: CNN has four convolution layers, the number of convolu-
tion filters is 128, the kernel size is 5, the stride length is 1, and 
the amount of padding is 2. Batch normalisation and ReLU layers 
followed each convolution layer.

•	 LSTM: LSTM has one LSTM layer and one dropout layer; the num-
ber of LSTM hidden units is 128, and the dropout rate is 0.5.

•	 DCL: The original DCL has two LSTM layers after four convo-
lution layers (Ordóñez & Roggen,  2016), but our DCL has one 
LSTM layer, following Singh et al. (2021) and Yoshimura, Morales, 
et  al.  (2022). Our DCL is a combination of the above CNN and 
LSTM, and the parameters are the same as above.

•	 DCLSA: The original DCLSA has an additional self-attention layer 
after the LSTM layer (Singh et  al.,  2021), but our DCLSA has a 
multi-head attention layer with four heads after the above DCL 
architecture.

•	 DCLSA-RN: DCLSA-RN is a modified version of DCLSA, with the 
latter three convolution layers replaced by four residual blocks 
with shortcut connections (He et al., 2016). The kernel size is 5, 
and the numbers of convolution filters of the first and second 
convolution layers in a residual block are 64 and 128, respectively.

•	 Transformer: Transformer has four transformer encoder blocks, 
each consisting of layer normalisation, multi-head attention and 
feedforward neural network layers.

•	 CNN-AE: CNN-AE mainly consists of three convolution layers as 
an encoder block and three transposed convolution layers as a de-
coder block. The kernel size is 5 in all convolution and transposed 
convolution layers. The number of convolution filters is 128 in 

the convolution layers and the first two transposed convolution 
layers, and 3 in the last transposed convolution layer. The time 
dimension of the data is gradually down-sampled in the encoder 
block using the max-pooling layer (from 50 to 26, 14 and 8), and 
up-sampled in the decoder block using the max-unpooling layer 
(from 8 to 14, 26 and 50).

See the source code (https://​github.​com/​ryoma​-​otsuka/​dl-​
wabc) and Table  S4 for further details on model architectures, 
hyperparameters and the numbers of parameters. The imple-
mentations of the Transformer and CNN-AE were heavily based 
on those in Qian et al.  (2022) but were slightly modified for this 
study. All deep learning models were implemented using Python 
(version 3.10.8) and PyTorch (version 1.13.1) on Ubuntu 18.04.6 
LTS. The deep learning models were trained using Docker (ver-
sion 20.10.22), Kubernetes (version 1.26.0) and a GPU cluster 
(Table S5).

The raw acceleration data of the three axes (x, y and z) were 
used as inputs to the deep learning models. Note that the ‘features’ 
in Figure 1 were fed into the flatten and linear layers to output an 
estimate per behaviour class for each window, but they were fed 
into the linear (for adjusting the data shape), dropout, flatten and 
linear layers for CNN-AE. We then applied a softmax function to 
obtain the prediction probability of each class and obtained one 
predicted class label with the maximum probability, resulting in one 
prediction label per window. Given that our datasets were imbal-
anced, we used the WeightedRandomSampler in Pytorch to ob-
tain a class balance within each training batch. The batch size was 
128. We used the cross-entropy loss as the loss function. We used 
Adam as the optimiser, set the initial learning rate to 0.001 and the 
weight decay to 0.0001, and gradually decreased the learning rate 
using the CosineLRScheduler in the ‘timm’ library. Unless otherwise 
stated, the minimum and maximum number of training epochs were 
70 and 100, respectively. The patience parameter for early stopping 
was 10.

2.3  |  Evaluation methods

We evaluated model performance by conducting leave-one-ID-out 
cross-validation (LOIO-CV). In each LOIO-CV fold, only one bird was 
excluded as a test individual and the model was trained on the re-
maining individuals. In each fold, the remaining data were divided 
into training and validation datasets (8:2 random split). The valida-
tion dataset was only used for early stopping.

We used the macro and class F1-score as performance metrics 
because our datasets were imbalanced. The F1-score is a harmonic 
mean of precision and recall. The precision, recall and F1-score are 
calculated as below:

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,
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where TP is the number of true positives, FP is the number of false 
positives, and FN is the number of false negatives. The class F1-
score is an F1-score calculated for each behaviour class, and the 
macro F1-score is the mean of the class F1-scores for all behaviour 
classes.

Note that because many individuals do not have data windows 
from some behaviour classes, F1-scores for such missing classes 
become zero when we calculate them for each of the individuals. 
Therefore, we calculated F1-scores by aggregating the predic-
tion results of all the folds. To ensure robustness, we repeated 
LOIO-CV 10 times by changing the random seeds (seed = 0, 1, 
…, 9). The F1-score was presented as the mean and the standard 
deviation.

2.4  |  Experiment 1: Data augmentation and 
manifold mixup

In the following experiments, we used only DCL or DCLSA and fewer 
test individuals because our focus was to better understand how and 
to what extent each data augmentation technique and manifold mixup 
affected the prediction performance. For both species, we selected 
six individuals to cover all classes and reflect the differences in year 
and attachment position (OM1807, OM1901, OM2003, OM2102, 
OM2212 and OM2213 for streaked shearwaters, and UM1803, 
UM1807, UM1901, UM1908, UM1913 and UM2203 for black-tailed 
gulls). We performed LOIO-CV on six test birds and calculated the 
F1-scores as described above. This was repeated 10 times with 10 
random seeds for each of the conditions described below.

Data augmentation is a technique that transforms data to in-
crease its quantity and variation. Data augmentation techniques 

F1-score =
2 × Precision × Recall

Precision + Recall
,

F I G U R E  1  Deep learning model architectures: convolutional neural network (CNN), long short-term memory (LSTM), DeepConvLSTM 
(DCL), DeepConvLSTMSelfAttn (DCLSA), ResNet version of DCLSA (DCLSA-RN), Transformer and CNN-based Autoencoder (CNN-AE). 
Inputs were raw triaxial acceleration data. The features were fed into the flatten layer and the linear layer with the number of classes as the 
output dimension (the linear, dropout, flatten and linear layers for CNN-AE).
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    |  721OTSUKA et al.

are expected to help models avoid overfitting, make them ro-
bust to various types of noise in acceleration data and improve 
the classification accuracy of minor behaviour classes. We 
tested the impacts of the following data augmentation tech-
niques: scaling, jittering, permutation, time-warping (t-warp) 
and rotation following Um et al. (2017). Scaling samples a scaling 
factor from a Gaussian distribution (mean = 1.0, standard devi-
ation = 0.2) and multiplies the factor with input data, changing 
the scale of the acceleration signal. Jittering randomly samples 
noise signals from a Gaussian distribution (mean = 0, standard 
deviation = 0.05) and adds the noise to input data. Permutation 
randomly splits input data into short segments (maximum num-
ber of segments = 10) and changes their orders. T-warp stretches 
and warps the acceleration signal in the temporal dimension 
(see Supplementary Explanation S1). Rotation applies a rotation 
matrix to input data with a randomly selected angle � ∈ [ − �,�]

, around random axes in 3D space. An example visualisation of 
these data augmentation techniques is shown in Figure  2 and 
see the source code for more details. We implemented these 
data augmentation techniques following Qian et  al.  (2022) but 
modified the parameters of scaling and jittering for our data. We 
also implemented random data augmentation which randomly 
applies one of the six data augmentation types (i.e. none and the 
five data augmentation techniques) to each window in a training 
batch. We compared seven data augmentation scenarios (none, 
scaling, jittering, permutation, t-warp, rotation and random) 
using DCL and DCLSA.

We also performed a grid search experiment to understand how 
hyperparameters of data augmentation techniques (e.g. standard 
deviation parameter for scaling) influence the performance of DCL. 
See Supplementary Experiment S1 in the supporting information for 
more details.

Mixup (Zhang et al., 2018) is a data augmentation technique that 
generates a new training instance by mixing two existing training 
instances. Manifold mixup (Verma et  al.,  2019) performs mixup in 
an intermediate layer. Where 

(

xi, yi
)

 and 
(

xj, yj
)

 are intermediate fea-
tures and labels of two example instances randomly sampled from 
a training batch, a set of new features and label 

(

x̂, ŷ
)

 are generated 
as below:

The mixing coefficient, � ∈
[

0, 1
]

, is sampled from the following Beta 
distribution.

where � ∈
[

0, ∞
]

 (mixup alpha hereafter) is a hyperparameter that we 
explored its impact in this study. The distribution of � will be skewed 
near zero or one when mixup alpha is 0.1, while it will be uniform distri-
bution when mixup alpha is 1.0 (Figure S6). Please refer to the original 
papers (Verma et al., 2019; Zhang et al., 2018) for more details.

We expected that manifold mixup to regularise the model, and 
smooth the decision boundaries between behaviour classes, and 
improve the classification accuracy of minor behaviour classes. To 
test the effects of manifold mixup, we implemented manifold mixup 
before the LSTM layer in the DCL and compared the following six 
conditions: no mixup and with mixup (mixup alpha = 0.1, 0.2, 0.5, 
1.0 and 2.0) for both species in the same manner as described in 
the first paragraph of this section. Usually, the reweighted class 
probabilities are used; however, we applied the argmax function 
to the reweighted probabilities and subsequently fed the output 
into the cross-entropy loss function. This was done because the 
latter approach showed superior performance in our preliminary 

x̂ = �xi + (1 − �)xj ,

ŷ = �yi + (1 − �)yj .

� ∼ Beta(�, �),

F I G U R E  2  Examples of data augmentation types (a) none, (b) scaling, (c) jittering, (d) permutation, (e) t-warp and (f) rotation on an ‘active 
flight’ window from a black-tailed gull.

(a) (b) (c)

(d) (e) (f)
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722  |    OTSUKA et al.

experiments. To investigate whether the combination of data aug-
mentation and manifold mixup can improve the model performance, 
we performed experiments with and without random data augmen-
tation. To examine the impact of manifold mixup position in the DCL 
architecture on the prediction performance, we also implemented 
manifold mixup after the LSTM layer without data augmentation.

2.5  |  Experiment 2: Pre-training of CNN-AE

When there is much more unlabelled data than labelled data, pre-
training with unlabelled data (unsupervised pre-training) may be 
effective (e.g. Le Paine et al., 2015). We tested the impact of unsu-
pervised pre-training on CNN-AE using 1,546,440 and 1,398,580 
instances from 33 streaked shearwaters and 29 black-tailed gulls, 
respectively (more than 36 and 43 times greater than the number 
of labelled data). We used the mean squared error to calculate the 
reconstruction loss during pre-training. We used the same optimiser 
and scheduler for supervised training. The extracted unlabelled win-
dows were randomly shuffled for each individual. The batch size was 
600. The maximum number of epochs was 100 and the patience pa-
rameter for early stopping was 10, but the median value of the actual 
number of epochs for unsupervised pre-training was 22.0 and 25.5 
for streaked shearwaters and black-tailed gulls, respectively.

We compared the following four conditions: ‘w/o’, ‘w/’, ‘w/ soft’ 
and ‘w/ hard’. The ‘w/o’ indicates that the model encoder was trained 
using only labelled data and cross-entropy loss function without pre-
training. The ‘w/’ indicates that the model was pre-trained with un-
labelled data, and then simply fine-tuned. The ‘w/ soft’ or ‘w/ hard’ 
indicates that the learning rate for the encoder parameters during 
the fine-tuning phase was a smaller value (0.00001) or frozen, re-
spectively. For all conditions in Experiment 2, we applied random 
data augmentation and did not perform manifold mixup during un-
supervised pre-training or supervised training.

2.6  |  Experiment 3: Model comparison

We compared the performance of seven deep learning models: 
CNN, LSTM, DCL, DCLSA, DCLSA-RN, Transformer and CNN-AE 
w/o (see Sections 2.2 and 2.5), following the evaluation methods de-
scribed in Section 2.3. In Experiment 3, LOIO-CV was repeated for 
all individuals (i.e. 28-fold for streaked shearwaters and 27-fold for 
black-tailed gulls). We applied random data augmentation and did 
not perform manifold mixup.

To compare deep learning models with classic machine learning 
models that require feature engineering, we implemented LightGBM 
(Ke et al., 2017) and XGBoost (Chen & Guestrin, 2016). Tree-based 
ensemble models, such as Random Forest and XGBoost, often out-
perform other classic machine learning models such as LDA or DT in 
various species (Nathan et al., 2012; Yu et al., 2021). LightGBM and 
XGBoost were implemented using lightgbm (version 3.3.3), xgboost 
(version 1.7.1) and scikit-learn (version 1.2.1). XGBoost models were 

trained on GPUs for fast training. The inputs of these models were 
119 handcrafted features extracted from raw data. These features 
were designed based on previous studies (Fehlmann et  al.,  2017; 
Nathan et  al.,  2012; Yu et  al.,  2021). These features included the 
statistics (e.g. mean and variance) of the raw data, static components 
and dynamic components of each axis. They also included statistics 
of pitch, roll, ODBA, and main frequencies and their amplitudes. 
Note that calculation methods for some features are not exactly 
identical to previous studies. See the source code and list of fea-
tures (Table S6) for further details. We used the synthetic minority 
over-sampling technique (SMOTE) (Chawla et  al.,  2002) to obtain 
class-balanced training data. The parameters for both models are as 
follows: number of estimators was 10,000, 10 early stopping rounds 
and a learning rate of 0.01.

We also performed a grid search experiment to understand how 
hyperparameters associated with model architectures, such as the 
number of convolution layers or the number of attention heads, in-
fluence the model performance of DCLSA and CNN-AE w/o, using a 
smaller number of test individuals (same as Experiment 1) and three 
random seeds. See Supplementary Experiment S2 in the supporting 
information for more details.

3  |  RESULTS

3.1  |  Experiment 1: Data augmentation and 
manifold mixup

We first examined the impact of data augmentation techniques on 
DCL (Figure  3). For streaked shearwaters, permutation and ran-
dom data augmentation improved the macro F1-score (Figure  3a). 
Random data augmentation improved the macro F1-score by an 
average of 4.7% compared with those without data augmentation. 
Improvements by random data augmentation were observed in the 
class F1-scores for stationary, bathing, cruising flight, foraging dive 
and dipping (Figure 3b), while scaling, permutation, t-warp and rota-
tion decreased the class F1-score for take-off, as did random aug-
mentation which included these four types (Figure  3b). Example 
t-SNE visualisation of features for streaked shearwaters is shown in 
Figure  3e,f (for one test individual) and Figure  S7 (for six test in-
dividuals). Similarly, random data augmentation was effective for 
DCLSA (Figure S8a,b), improving the macro F1-score by an average 
of 3.3%, but data augmentation types except for jittering decreased 
the class F1-score of take-off, as did random data augmentation. For 
both DCL and DCLSA, rotation had a negative effect on the class F1-
score for foraging dive (Figure 3b; Figure S8b), indicating that pos-
tural information was critical for this behaviour and may be obscured 
by rotation.

For black-tailed gulls, rotation and random data augmentation 
improved the macro F1-score (Figure  3c). Rotation may be useful 
for learning feature representations that are independent of de-
vice attachment positions. This is crucial when the dataset contains 
data from different attachment positions (e.g. abdomen and back). 
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    |  723OTSUKA et al.

Although the impacts of other data augmentation techniques ex-
cept for rotation were smaller, random data augmentation contrib-
uted to the improvement of the macro F1-score by 12.8% in DCL and 
12.3% in DCLSA (Figure S8c) on average. Improvements by random 
data augmentation were observed in the class F1-scores for station-
ary, ground active, bathing, passive flight and foraging (Figure  3d; 
Figure S8d). Example t-SNE visualisation of features for black-tailed 
gulls is shown in Figure 3g,h (for one test individual) and Figure S7 (for 
six test individuals).

When no data augmentation was applied, DCLSA outper-
formed DCL by 1.0% and 0.7% in terms of the macro F1-score for 
streaked shearwaters and black-tailed gulls, respectively. However, 
DCL achieved performance almost equivalent to or even better 
than DCLSA when random data augmentation was used (Figure 3; 
Figure S8).

Experiment S1 showed that data augmentation parameters influ-
ence the model performance and the top-ranked parameters were 
different between the two species except for t-warp and rotation. 

F I G U R E  3  Impacts of data augmentation on DeepConvLSTM (DCL). Impacts of data augmentation on DCL for streaked shearwaters 
(SS) (a, b) and black-tailed gulls (BG) (c, d). A type ‘random’ indicates a random application of six data augmentation types. Example t-SNE 
visualisation of features (i.e. features before the output layer) when no or random data augmentation was applied (only when the random 
seed = 0), for SS (OM1901) (e, f) and BG (UM1803) (g, h). See Figure S7 for example t-SNE visualisation of all test individuals.

(a) (b)

(c)

(e) (f) (g) (h)

(d)
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724  |    OTSUKA et al.

In addition, random data augmentation that used the top-ranked 
parameters slightly outperformed random data augmentation that 
used the default parameters. The results also showed that there 
were clear relationships between the parameters of some data 
augmentation types and the class F1-scores of several specific be-
haviour classes (e.g. the larger jittering parameters decreased the 
class F1-score of stationary behaviour). For more detailed results, 
see Experiment S1.

Figure  4 shows the effect of manifold mixup on DCL. 
Manifold mixup improved the macro F1-scores by up to 2.5% 
(mixup alpha = 1.0) and 0.7% (mixup alpha = 0.2) for streaked 
shearwaters and black-tailed gulls, respectively. However, the 
combination of manifold mixup and random data augmentation 
did not further improve the performance. When random data 
augmentation was combined with manifold mixup, the models 
outperformed those with manifold mixup alone (Figure 4). These 
results indicated that the impact of random data augmentation 
was much higher than that of manifold mixup for our datasets. 
Manifold mixup after the LSTM layer of DCL also improved the 
macro F1-scores by up to 2.0% (mixup alpha = 0.1) and 2.3% 
(mixup alpha = 0.2) for streaked shearwaters and black-tailed 
gulls, respectively; however, again, the improvements were 

smaller than those achieved with random data augmentation 
(Figure S9).

3.2  |  Experiment 2: Pre-training of CNN-AE

Pre-training using unlabelled data did not improve model perfor-
mance for either species. Rather, the condition ‘w/o’ (CNN-AE was 
trained with labelled data without pre-training) performed the best, 
and followed by ‘w/’, ‘w/ soft’, ‘w/ hard’ in decreasing order of per-
formance (Figure 5).

3.3  |  Experiment 3: Model comparison

A comparison of the macro and class F1-scores is shown in Figure 6. 
For streaked shearwaters, CNN, DCL, DCLSA, DCLSA-RN and 
CNN-AE w/o outperformed LightGBM and XGBoost in terms of the 
macro F1-score (Figure 6a). For black-tailed gulls, CNN, DCL, DCLSA 
and DCLSA-RN outperformed LightGBM and XGBoost in terms of 
the macro F1-score (Figure 6c). As the best model, DCLSA-RN out-
performed XGBoost by approximately 4.3% and 1.7% on average 

F I G U R E  4  Impacts of manifold mixup (no mixup, mixup alpha = 0.1, 0.2, 0.5, 1.0 and 2.0, with and without random data augmentation) on 
DeepConvLSTM for streaked shearwaters (a, b) and black-tailed gulls (c, d).

(a) (b)

(c) (d)
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    |  725OTSUKA et al.

in terms of the macro F1-score for streaked shearwaters and black-
tailed gulls, respectively.

Looking into each behaviour, the class F1-scores of bathing, forag-
ing dive and dipping for streaked shearwaters, and those of foraging 
for black-tailed gulls were better in CNN, DCL, DCLSA, DCLSA-RN and 
CNN-AE w/o than in LightGBM and XGBoost (Figure 6b,d). The confu-
sion matrix of DCLSA-RN for streaked shearwaters (Figure 7a) showed 
that some cruising flight windows were misclassified as take-off, which 
reduced the F1-score of take-off. Classifying dipping was the most 
difficult and dipping windows were often misclassified as stationary 
windows and vice versa. The confusion matrix of DCLSA-RN for black-
tailed gulls (Figure 7b) showed that the classification of ground active 
and foraging was more difficult than that of the other classes. Ground 
active windows were often misclassified as stationary windows and 
vice versa. Foraging windows were misclassified as bathing or station-
ary windows and vice versa (bathing and stationary windows were also 
misclassified).

Figures S10 and S11 show comparisons of the confusion matrix 
of each model for streaked shearwaters and black-tailed gulls, re-
spectively. For the feature importance of XGBoost, see Figure S12. 
The impact of the number of features and SMOTE on XGBoost is 
shown in Figures S13 and S14, respectively.

Experiment S2 showed that the better model hyperparameters 
were not the same across the two species (see Experiment S2 for more 
results).

4  |  DISCUSSION

4.1  |  Experiment 1: Data augmentation and 
manifold mixup

Collecting and labelling large amounts of time-series sensor data is 
difficult; it is more difficult for humans, domestic animals and wild-
life studies, in that order. Data augmentation techniques have been 
extensively studied for HAR (Um et al., 2017; Wen et al., 2021) and 
gradually for domestic animals (e.g. Eerdekens et  al.,  2020; Pan 
et al., 2023). This study explored and confirmed the effectiveness of 
data augmentation in wild animal behaviour classification using time-
series sensor data.

Experiment 1 indicated that each data augmentation type may 
have a positive or negative impact on each behaviour, and the im-
pact may also vary depending on architecture; however, apply-
ing random data augmentation to each sample during mini-batch 

F I G U R E  5  Impacts of unsupervised pre-training on CNN-based Autoencoder (CNN-AE) for streaked shearwaters (a, b) and black-tailed 
gulls (c, d). The following four conditions were compared: ‘w/o’ (pre-training), ‘w/’, ‘w/ soft’ (smaller learning rate for encoder parameters) and 
‘w/ hard’ (with encoder parameters frozen).

(a) (b)

(c) (d)
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726  |    OTSUKA et al.

F I G U R E  6  Comparison of model performance (mean and standard deviation of macro and class F1-score) for streaked shearwaters (a, b) 
and black-tailed gulls (c, d).

(a) (b)

(c) (d)

F I G U R E  7  Confusion matrix of ResNet version of DeepConvLSTMSelfAttn (DCLSA-RN) for streaked shearwaters (a) and black-tailed 
gulls (b) when the random seed was 0.

(a) (b)
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training appears to improve overall performance. Combinations of 
data augmentation techniques can improve the model performance 
for HAR (Um et  al.,  2017). A recent bird-sound recognition study 
(Lauha et al., 2022) also demonstrated the effectiveness of random 
combinations of data augmentation techniques, although they were 
applied to spectrogram images. We believe that random data aug-
mentation is effective against data shortages and imbalance prob-
lems in wild animal studies.

In addition to data shortages and class imbalance problems, de-
vices, attachment positions and attachment procedures have an im-
pact on acceleration data in bio-logging studies (Garde et al., 2022). 
If a classification model is not robust to this noise, it may cause sys-
tematic biases that undermine the foundation of the research when 
biologists or ecologists utilise the models. Similar to the HAR study 
(Um et al., 2017), Experiment 1 also showed that differences in at-
tachment position could be handled by data augmentation, rotation 
for black-tailed gulls in particular.

The results of Experiment S1 highlighted the importance of 
searching the better data augmentation parameters for different 
datasets, while implying that random data augmentation might be 
robust to parameter selection. The results also indicated that not 
only data augmentation types but also their parameter choices may 
have different effects depending on the nature of target behaviour 
class. See Experiment S1 for more discussion.

Although the model performance improved by manifold mixup 
for both species, the overall effects of manifold mixup were smaller 
than those of random data augmentation. These two techniques 
were expected to play common roles; however, the random data 
augmentation was more effective for our dataset, and their combi-
nation did not contribute to further improvement. The effects may 
vary depending on the dataset and model architecture, and manifold 
mixup is worth trying in different settings.

4.2  |  Experiment 2: Pre-training of CNN-AE

Unsupervised pre-training has been generally considered to improve 
the model performance in image classification (Le Paine et al., 2015). 
However, some studies have advocated that it does not necessarily 
improve the generalisation performance of classification models in 
any case (Alberti et al., 2017; Le Paine et al., 2015). For instance, the 
effect of pre-training was significant when the ratio of unlabelled to 
labelled data was large (e.g. 50:1), but the performance was poorer 
when the ratio was 1:1 (Le Paine et al., 2015). In our case, the amount 
of our unlabelled data was approximately 36 and 43 times larger 
than the labelled data for streaked shearwaters and black-tailed 
gulls, respectively; however, the pre-training of CNN-AE with unla-
belled data did not improve performance, rather it degraded perfor-
mance under some conditions.

One possible reason for this is the extreme imbalance in unla-
belled data. Our labelled data were heavily class-imbalanced, but the 
unlabelled data could be even more imbalanced. This is because la-
belled data includes data collected by bio-loggers with AI, which can 

efficiently collect data on target behaviours (Korpela et al., 2020). 
Besides, we could not use the WeightedRandomSampler of PyTorch 
in unsupervised pre-training as we did in supervised learning. 
Therefore, the data in a training batch during pre-training are con-
sidered to be extremely imbalanced (e.g. mostly stationary and/or 
flying). This may also become a major problem when conducting 
self-supervised learning. In a recent HAR study (Yuan et al., 2022), 
for example, the acceleration data windows were sampled in propor-
tion to their standard deviation during self-supervised learning. This 
approach would reduce the frequency of sampling small-amplitude 
acceleration data, which is prevalent in a large portion of real-world 
datasets. In our case, for example, reducing the sampling frequency 
of similar signals (e.g. stationary or flying) that exist in large numbers 
but are less informative may improve the results.

4.3  |  Experiment 3: Model comparison

In Experiment 3, DCL slightly outperformed CNN and clearly out-
performed LSTM for both species, indicating that adding an LSTM 
layer after CNN layers is also effective for wildlife behaviour classifi-
cation, as shown for human datasets in Ordóñez and Roggen (2016). 
DCLSA slightly outperformed DCL for black-tailed gulls, which is 
consistent with Singh et  al.  (2021), but not for streaked shearwa-
ters. Yet, our data augmentation experiment (Experiment 1) on DCL 
and DCLSA revealed that adding a multi-head attention layer slightly 
improved the performance for both species, when no data augmen-
tation was applied (Figure 3; Figure S8). This suggests that, for our 
datasets, both data augmentation and the additional multi-head at-
tention layer have positive impacts, but the former may have a larger 
impact. Residual blocks with shortcut connection (He et al., 2016) in 
the DCLSA-RN may also slightly improve the performance, as shown 
in Figure  6. Transformer has achieved great success, especially in 
natural language processing (Vaswani et al., 2017), and is extensively 
used as the basis for well-known models. Although we used only 
the encoder block of transformer, it did not achieve a higher per-
formance in this study or when used as a backbone network in con-
trastive learning in the HAR study (Qian et al., 2022). CNN-AE w/o 
performed comparably to CNN, probably because the encoder of 
CNN-AE w/o shares a very similar architecture with CNN, except for 
the max pooling layers that gradually compress the time dimension.

DCL, DCLSA and DCLSA-RN achieved slightly higher overall per-
formance than the simple CNN, but did not show the great improve-
ment in the class F1-score of complex behaviours, such as foraging of 
black-tailed gulls, that we had expected. Besides, these three models 
have more trainable parameters than CNN and the number of pa-
rameters is larger in this order (Table S4). When data augmentation 
is effective (e.g. to the extent that the performance difference be-
tween DCL and DCLSA almost disappears), simpler models may be a 
better choice in terms of the balance between the performance and 
training time and/or computational cost.

Experiment S2 suggested the importance of performing 
model hyperparameter tuning for different datasets. However, 
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hyperparameter tuning requires enormous time and computational 
resources, and see Experiment S2 for more discussion on this point.

Using only raw triaxial acceleration data as inputs, deep learning 
architectures, such as CNN, DCL, DCLSA and DCLSA-RN, outper-
formed LightGBM and XGBoost, which used 119 handcrafted fea-
tures. Note that our feature list covers most features used in the 
previous studies we referenced, and the number of features is larger 
than those previous studies (e.g. 38 features in Nathan et al., 2012; 
25 in Fehlmann et  al.,  2017; 78 in Yu et  al.,  2021). We also used 
SMOTE, which improved the macro F1-scores (Figure S14). The clas-
sic machine learning approach usually requires feature engineering, 
which often requires specialised knowledge and time. Our results 
indicate that deep learning may enable end-to-end classification of 
wildlife behaviour using time-series sensor data.

It should be noted that simply comparing the F1-scores in this 
study with those of previous studies is meaningless. This is because 
the target species, number and types of behaviours, data amount, 
evaluation methods, etc., have an impact on performance metrics. 
If the target behaviours are basic, such as stationary, walking and 
running, the macro F1-score tends to be higher, even with a naive 
approach. In general, the greater the number of target behaviour 
classes and the greater the degree of class imbalance, the lower the 
macro F1-score would be. Regarding evaluation methods, some may 
use only the train/test or train/validation split (i.e. two datasets) 
rather than the train/validation/test split (i.e. three datasets); the 
former may tend to return a higher accuracy or F1-score if test or 
validation data are also used during training (e.g. for early stopping). 
More importantly, if one randomly splits the time-series sensor data 
into training, validation and test data (e.g. a 7:2:1 random split), these 
three datasets will include data segments from the same individuals 
or the same behavioural sequences. To avoid the above problems, 
we recommend using LOIO-CV, which is stricter and more robust 
and thus tends to produce lower scores than the above evaluation 
methods. However, note that we calculated F1-scores by aggregat-
ing the prediction results of all the folds because calculating an F1-
score for each individual and behaviour class is not realistic when 
only a few individuals have completed sets of all target classes.

4.4  |  Future directions

Finally, we discuss interesting future directions for the behaviour 
classification of wild animals using time-series sensor data. Although 
data augmentation is promising, searching for optimal data aug-
mentation techniques and/or their combinations and parameters is 
time-consuming and requires considerable computational resources 
(see also Discussion of Experiment S1). Developing a method spe-
cifically for wildlife that automatically finds the optimal data aug-
mentation techniques and their parameters would be interesting, as 
would other data augmentation approaches such as deep generative 
models (see Cubuk et al., 2020; Wen et al., 2021). Domain adapta-
tion techniques such as domain adversarial neural networks (Ganin 
et al., 2016) can be explored to further reduce F1-score variations 

between individuals. The development of a new model architec-
ture for more specific tasks (Xia et al., 2022; Yoshimura, Maekawa, 
et  al.,  2022), the use of a specific loss function to deal with class 
imbalance (e.g. Park et al., 2021) and the use of multimodal sensor 
data (e.g. acceleration, gyroscope, magnetometer, GPS and depth) 
are also exciting approaches.

We trained our deep learning models using relatively large data-
sets; however, such a situation may be rare in wild animal research. In 
addition, labelling enormous amounts of sensor data is labour inten-
sive and time-consuming. In data-scarce scenarios, transfer learning 
and self-supervised learning may be promising, in addition to data 
augmentation. For example, in transfer learning, a model can be 
pre-trained on a large dataset of different individuals from different 
study sites or different but similar species and fine-tuned on the tar-
get data. Self-supervised learning, such as contrastive learning (Chen 
et al., 2020; Qian et al., 2022), uses unlabelled data to train the fea-
ture extractor, and then, the classifier or whole network can be fine-
tuned with fewer labelled data. Contrastive learning such as SimCLR 
with ResNet-50 as the backbone network has succeeded in image 
classification task (Chen et  al.,  2020) and an exploratory study on 
contrastive learning has already been conducted in HAR using accel-
eration data (Qian et al., 2022). These approaches have the potential 
to be not only effective against data shortages and class imbalance 
problems but also robust against various types of noise. If estab-
lished, researchers can easily use behaviour classification techniques 
for various animals without much effort to collect and label the data.

5  |  CONCLUSIONS

Acceleration-based behaviour classification using deep learning 
models has only been extensively studied in humans and domestic 
animals and has rarely been applied to wildlife research. Challenges 
include data shortages, class-imbalanced problems, various types 
of noise due to differences in individual behaviour and where the 
loggers were attached, and complexity in acceleration data due to 
difficult animal-specific behaviours. This study explored the effec-
tiveness of data augmentation and manifold mixup, pre-training of 
CNN-AE with unlabelled data and state-of-the-art deep learning 
model architectures to overcome these challenges. We demon-
strated that data augmentation is effective and that deep learn-
ing models such as DCL, DCLSA and DCLSA-RN are promising for 
wildlife behaviour classification using time-series sensor data. We 
believe that deep learning approaches have great potential for de-
velopment, and we discussed their future directions. These include 
more advanced approaches for data augmentation, domain adapta-
tion, model architectures and loss functions development, the use of 
multimodal sensor data, transfer learning and self-supervised learn-
ing. We hope that this study will fill the gap between acceleration-
based behaviour classification studies of wild animals and humans or 
domestic animals and stimulate the development of deep learning 
techniques in behaviour classification using time-series sensor data 
for wild animals.
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for black-tailed gulls.
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before the output layer) when no or random data augmentation 
was applied (only when the random seed = 0) during the training of 
DeepConvLSTM (DCL) models, for streaked shearwaters (SS) and 
black-tailed gulls (BG).
Figure S8: Impacts of data augmentation on DeepConvLSTMSelfAttn 
(DCLSA) models for streaked shearwaters (a, b) and black-tailed gulls (c, d).
Figure S9: Impacts of manifold mixup after the LSTM layer of 
DeepConvLSTM (DCL) (no mixup, mixup alpha = 0.1, 0.2, 0.5, 1.0 
and 2.0, without data augmentation) for streaked shearwaters (a, b) 
and black-tailed gulls (c, d).
Figure S10: A comparison of confusion matrix of (a) LightGBM, 
(b) XGBoost, (c) CNN, (d) LSTM, (e) DeepConvLSTM (DCL), 
(f) DeepConvLSTMSelfAttn (DCLSA), (g) ResNet version of 
DeepConvLSTMSelfAttn (DCLSA-RN), (h) Transformer and (i) 
CNN-AE w/o pretraining, for streaked shearwaters.
Figure S11: A comparison of confusion matrix of (a) LightGBM, 
(b) XGBoost, (c) CNN, (d) LSTM, (e) DeepConvLSTM (DCL), 
(f) DeepConvLSTMSelfAttn (DCLSA), (g) ResNet version of 
DeepConvLSTMSelfAttn (DCLSA-RN), (h) Transformer and (i) 
CNN-AE w/o pretraining, for black-tailed gulls.
Figure S12: Feature importance of top 30 features in XGBoost for 
streaked shearwaters (a) and black-tailed gulls (b).
Figure S13: Comparison of performance when different numbers 
of handcrafted features were given as inputs (25, 78 and 119) to 
XGBoost for streaked shearwaters (a, b) and black-tailed gulls (c, d).
Figure S14: Impacts of Synthetic Minority Over-sampling Technique 
(SMOTE) on XGBoost with 119 features as inputs for streaked 
shearwaters (a, b) and black-tailed gulls (c, d).

Table ExS1-1: Impacts of data augmentation (DA) parameters on the 
macro F1-scores of DCL for streaked shearwaters.
Table ExS1-2: Impacts of data augmentation (DA) parameters on the 
macro F1-scores of DCL for black-tailed gulls.
Figure ExS1-1: Impacts of scaling parameters (0.1, 0.2, 0.4 and 0.8) 
on the macro and class F1-scores of DeepConvLSTM for streaked 
shearwaters (a, b) and black-tailed gulls (c, d).
Figure ExS1-2: Impacts of jittering parameters (0.05, 0.1, 0.2 and 0.3) 
on the macro and class F1-scores of DeepConvLSTM for streaked 
shearwaters (a, b) and black-tailed gulls (c, d).
Figure ExS1-3: Impacts of permutation parameters (5, 10 and 15) 
on the macro and class F1-scores of DeepConvLSTM for streaked 
shearwaters (a, b) and black-tailed gulls (c, d).
Figure ExS1-4: Impacts of t-warp parameters (0.1, 0.2, 0.4 and 0.8) 
on the macro and class F1-scores of DeepConvLSTM for streaked 
shearwaters (a, b) and black-tailed gulls (c, d).
Figure ExS1-5: Impacts of rotation parameters (45, 90 and 180) 
on the macro and class F1-scores of DeepConvLSTM for streaked 
shearwaters (a, b) and black-tailed gulls (c, d).
Figure ExS1-6: Streaked shearwaters' individual differences in the 
mean of the maximum difference for each axis for all windows of 
each behaviour class.
Figure ExS1-7: Black-tailed gulls' individual differences in the mean 
of the maximum difference for each axis for all windows of each 
behaviour class.
Table ExS2-1: Impacts of hyperparameters on the macro F1-scores 
of DCLSA for streaked shearwaters.
Table ExS2-2: Impacts of hyperparameters on the macro F1-scores 
of DCLSA for black-tailed gulls.
Table ExS2-3: Impacts of hyperparameters on the macro F1-scores 
of CNN-AE w/o for streaked shearwaters.
Table ExS2-4: Impacts of hyperparameters on the macro F1-scores 
of CNN-AE w/o for black-tailed gulls.
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