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1. Introduction

In this paper, we explicitly determine the algebraic structure of Zhu's algebra for
a lattice vertex operator superalgebra which is constructed from a rank one odd lattice,
and give a proof of rationality.

Y. Zhu introduced an associative algebra associated to a vertex operator algebra in
order to study the structure of its modules [11]. Such an associative algebra is now
called Zhu's algebra. Roughly speaking, the structure of such a module is determined
from the action of the weight 0 component operator on the lowest weight space, which
is described through the action of Zhu's algebra and the structure of the vertex op-
erator algebra. Then, for instance, we have one to one correspondence between the
classes of inequivalent admissible modules of a vertex operator algebra and the classes
of inequivalent modules of Zhu's algebra [11].

The notion of Zhu's algebra has been vastly used to classify all simple modules
for vertex operator algebras (affine vertex operator algebras [7], Virasoro vertex opera-
tor algebras [10] and lattice vertex operator algebras associated to even lattices of rank
one [5], etc.). In this paper, we will study Zhu's algebra A(VL) associated to a vertex
operator superalgebra VL for a rank one odd lattice L.

Zhu's algebra A(VL) of VL for an even lattice is studied in [5] and the classi-
fication of the simple modules for VL is given, which provides another proof of the
classification results known in [2]. In our odd lattice case, VL is a vertex operator su-
peralgebra, and by virtue of super symmetries in some sense, the structure of its Zhu's
algebra is much simpler comparing to the even lattice case. It is a quotient algebra of
the polynomial ring with one variable. By using the explicit structure of Zhu's alge-
bra we can easily classify all simple modules for VL. Though the classification of the
simple modules for VL for an even lattice L has been known in [2] and the method
given in [2] can be applied to noneven case including our case, it is worthy to study
the reason of such simpleness appeared in super case.

For an even lattice L, the rationality, more precisely, the regularity of VL is
proved in [4] by the method deeply depending on the one in [2]. In this paper, we
will give a rough sketch of the proof of the regularity of VL for a rank one odd lat-
tice L emphasizing the differences between the super and nonsuper case.
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Now we state the precise structure of Zhu's algebra A(VL) which is constructed
from a rank one odd lattice L. Let L = Za be an integral lattice of rank one generated
by a such that (a\a) = k, where k is a positive odd integer, and let VL be the vertex
operator superalgebra associated to L. Zhu's algebra A(VL) in our case is isomorphic
to the following quotient algebra of the polynomial ring C[JC]:

A(VL) = C[x]/(Fk(x)),

where Fk(x) = Y\n€lk(x-n) and Ik = {0, ± 1 , . . . , ±(k-l)/2}. This enables us to obtain
a complete list of the simple VL-modules.

We note that VL is isomorphic to the charged free fermions for k = 1, and to the
N = 2 superconformal vertex algebra with central charge C = 1 for k = 3 [8].

This paper is organized as follows. In Section 2.1 we define vertex operator super-
algebras, their modules, and the notions of rationality and regularity. The definition of
Zhu's algebra corresponding to vertex operator superalgebras is given in Section 2.2.
We construct vertex operator superalgebras VL in Section 3.1 and determine Zhu's al-
gebra A(VL) in Section 3.2. The proof of regularity of VL is given in Section 3.3. In
Applications we consider vertex operator superalgebras VL in special cases k = 1 and
k = 3.

2. Vertex operator superalgebras and their Zhu's algebra

2.1. Vertex operator superalgebras and modules A vertex operator superal-
gebra is a (l/2)Z-graded vector space V = ΘMG(i/2)zV« = Vb Θ V\, (VQ = ®nezVn, V\ =
θn<=z+(i/2)Vn) such that dim Vn < oo for n e (1/2)Z and Vn = 0 for sufficiently small
n e (1/2)Z, equipped with a linear map

V -> (βndV)[[z,z-ι]\

neZ

and with two distinguished homogeneous elements 1 e Vb (called the vacuum vector),
ω e Vι (called the Virasoro element) satisfying the following conditions (VI) ~ (V6):
for a,b e V,

(VI) anb = 0 for sufficiently large n e Z ,

(V2) zόιδ ( ^ ^ ) y(α, zι)Y(b9 zi) - {-l?W* ί^1^) YΦ, z2)Y(a, zύ
V ^ / V -zo /

where a = 0 (resp. a = 1) according to α e V5 (resp. α € V\), and the formal ί
function δ(z) is defined to be δ(z) = Σnez ^ a n c* anY binomial expressions are
expanded into non-negative powers of the second variable,
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(V3) Y(l, z) = id v , Y(a, z)\ e V[[z]], lim Y(a, z)\ = α, and
z->0

(V4) set y(ω, z) = £ Lnz""-2, then

m3 — m
[Lm, Ln] = (m - rc)Lm+n + ———c v δ m + n , 0 (cv e C, m, n e Z),

(V5) Loa = na for a e Vn Ine-Z),

(V6) — Y(a,z) = Y(L-ιa, z).

The scalar cv is called central charge. We say an element a e Vn homogeneous with

weight n, denoted n - wt(α).

The notion of a module for a vertex operator superalgebra is defined in the fol-

lowing way. A weak V-module M is a vector space equipped with a linear map

(End M)[[z,z'1]]

satisfying the following conditions (Ml) ~ (M3): for any α, b e V and u e M,

(Ml) anu = 0 for sufficiently large « e Z ,

(M2)

(M3) zoxδ (Z-±^\ YM{a, Zx)YMQ>, z2) - (-ifh^δ ( ^ ^ ) YM(b, z2)YM(a9 zύ

(a, zo)b, z2).

An admissible V-module M is a weak V-module M which carries a (l/2)Z>o-

grading M = (Bne(i/2)z>0Mn subject to the conditions: for m e Z, n e (l/2)Z>0 and

homogeneous a e V,

amMn c M w t ^ ^ . ^ . i .

Let M be a weak V-module such that Lo is semisimple on M and M = θ λ e c ^ λ

the eigenspace decomposition with respect to Lo. If dimM λ < oo for all λ e C and

for fixed λ € C, Mχ+n = 0 for sufficiently small n e (1/2)Z, Λf is called an (or-

dinary) V-module. An admissible V-module M is called simple if 0 and M are the

only (l/2)Z>0-graded admissible V-submodules.
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DEFINITION 2.1 ([4]). A vertex operator superalgebra V is called rational if any

admissible V-module is a direct sum of simple admissible V-modules. A vertex oper-

ator superalgebra V is called regular if any weak V-module is a direct sum of simple

ordinary V-modules.

2.2. Zhu's algebra We review the definition of Zhu's algebra for a vertex op-

erator superalgebra [9].

Let V = Θ«e(i/2)zVn be a vertex operator superalgebra. Let us define binary oper-

ations * , o : V x V — ^ V a s follows: for homogeneous a e V and b G V,

a * b =

a o b = <

(
Res, Y(a, z)-

0

Resz Y(a, z) = b == >

(a or b e V-x),

(a eV-0, be V),

We extend both operations *,o to V by linearity. Let O(V) be the linear span of

elements of the form a o b in V. The space A(V) is defined by the quotient space

V/O(V). In the following, we set [a] = a + O(V) e A(V) for a e V.

For any homogeneous a e VQ and Z? G V, we have (cf. [9])

(2.1) Resz

If a G VΪ, then

a o 1 = Resz Y(a, z)-

zn+2

1 = α_il = α G

Since O(V) is a Z2-graded subspace, we see O(V) = OQ(V) + Vj where OQ(V) =

O(V) Π VQ Thus we have A(V) = VQ/OQ(V).

It follows from [9] that O(V) is a two-sided ideal of V with respect to * and the

operation * induces an associative algebra structure on A(V). Moreover the image [1]

of the vacuum in A(V) becomes the identity element of A(V). We call the associative

algebra A(V) Zhu's algebra of V.

For any homogeneous a e VQ, we denote o(a) by the weight 0 component op-

erator αwt(f l)_i. Clearly, for any admissible V-module M = ΘnG(i/2)Z>0̂ n> o(a) pre-

serves each homogeneous space Mn. The action of operators o(a) on the lowest weight

spaces of admissible V-modules leads to the following fundamental theorem (see The-

orem 1.2, Theorem 1.3 of [9]):
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Theorem 2.1. (1) If M - Θne(i/2)Z>0^n ™ a n admissible V-module, then Mo
is an A(V)-module under the action [a] ι-> o(a) for a e VQ.

(2) If W is an A(V)-module, then there exists an admissible V-module M =

θne(i/2)Z>0^n su°h tnat Mo = W as an A(V)-module.

(3) The map M h> Mo gives a bijection between the set of inequivalent simple ad-

missible V-modules and the set of inequivalent simple A(V)-modules.

3. Zhu's algebra A(VL) for a rank one odd lattice L

3.1. The structure of VL Let L = Zα be a rank one integral lattice with the

symmetric nondegenerate bilinear form ( | ) given by (α|α) = k, where A: is a positive

odd integer.

Set \) = C (8>z L and extend the bilinear form ( | ) on L to ί) by C-linearity. Let

f) = C[t, t~ι] <g)l) (B CK be the affinization of ί) regarding ί) as an abelian Lie algebra.

Lie bracket on ϊ) is given by

[tm ®h,tn ®ti]=m(h\ti)δm+n,0K, [tm®h,K]=0 (A, h' e ί), m, neZ).

Let £)~ = f^Ctf" 1 ] (8) ί), b = C[ί] ® f) φ CiSΓ, which are commutative subalgebras

of ί). The relations K 1 = 1, (C[ί] ® fj) 1 = 0 define the one dimensional module C

of b. We set M(l) = Ind|J C and denote this ^-module by π\. Remark that

M(l) = U{\)) ®u(b) C = S(i)~) as a linear space,

where U( ) denotes the corresponding universal enveloping algebra and S( ) the corre-

sponding symmetric algebra.

Let C[L] the group algebra of the additive group L. Thus C[L] has a basis

{e^}βeL- The space C[L] has a natural ^-module structure 7Γ2 by letting

π2<X) = 0, 7T2(tn 0 A)^^ = δn^o(h\β)e^ (A e ί), « G Z , /3 G L).

Let us define the ^-module structure on VL = M{\) 0 c C[L] by π = πi ® 1 + 1 ® π2

Here we give the definition of the vertex operator Y(a, z) for a e VL. For A G f),

we set hn = tn <g> h (n e Z) and A(z) = Σ n G Z A^z"""1. Let α = α_Πl α_n r 0 ^ G V L

( « I , . . . , nr G Z>o, β G L). The vertex operator Y(a, z) is defined as

Y(a, z) =

where

1 J/2 / a ~n \ / o —n

V )exp E — -. A^ « / \^"^ —n\n>0 / \n>0

and e$ is the operator of left multiplication by 1 ® e^. The normal ordering procedure

° ° follows the definition in [81.
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Theorem 3.1 ([6]). VL is a simple vertex operator superalgebra with the vacuum

vector 1 = 1 0 1 and the Virasoro element ω = (1/(2/:)) a2_x\.

Note that for a = α_Λl α_«r ® eβ (= α_n i a-nre
βl) e VL (nu . . . , nr e Z > 0 , β €

L), its weight is

We next discuss modules for the vertex operator superalgebra VL. Let L° D L be the
dual lattice of L. Then one has the coset decomposition

L° = U/€/t

where Ik = {0, ± 1 , . . . , (ik - l)/2}. Let C[f)] be the group algebra and set C[S]
for any subset S of f). We define the vector space

(i) = Λf(l)® c C|

for i e Ik-

Theorem 3.2 ([6]). V(i) (i e h) are inequivalent simple VL-modules.

3.2. Zhu's algebra A(VL) NOW we state one of the main results in this paper.

Theorem 3.3. Zhu's algebra A(VL) of the vertex operator superalgebra VL is

isomorphic to the following quotient algebra of the polynomial ring C[x]:

A(VL) = C[x]/(Fk(x)),

where Fk(x) = Y[neh(x - n).

As a corollary, we have

Corollary 3.1. The set of the simple modules {V(i)}ieIk gives the complete list

of the simple V\-modules.

The proof of Theorem 3.3 is given after we establish several lemmas.

Let n > 0, a e VL. Note that

Res, {γ(a-ιl,z)^aλ e O(VL),
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by (2.1). Thus we have α_π_i<z + α_n_2« = 0 (mod O(VL)), and then

(3.2) a.na = {-lf-la.xa (mod O(VL)) (n > 1, a e VL).

Let Pn(xι,X2, ) be the elementary Schur polynomials

817

\ n = l / n=0

and pn(x\, X2, •) = 0 for n e Z<o For any operator x, we define

1

n!
1

0
(π = 0),

(n 6 Z< 0).

Then one can easily see that

(3.3) pn(x, - x , x, -x, . . .) = ί X \ .

Let /?, 7 G L, / G Z and Γβ(z) = Σ / e z ^ f ^ ' 1 - Since

exp I
n=l

n=0

(3.2) and (3.3) show that

efeΊl = n

(3.4)

From the definition of the operation *, we have α_il * a = ot-\a + aQa (a e VL) and

then

(3.5) a ^ l = α _ j l * * α _ j l = ( α _ i l ) * π ( n > 1 ) .

n—th
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Lemma 3.1. (1) ("-i-K*"1)/2)! = o (mod O(VL)).

(2) A(VL) is spanned by vectors [ α ^ l ] where n > 0.

Proof. (1) Since eal is an odd element, we have

-i

by (3.4) and the formula

y ^ ( . I ( . 1 = f ) (m > n > 0, m, n G Z>0, and JC: an operator).

(2) Let 2L = {2na\n € Z}. Then 2L is a sublattice of L. Since the vertex operator
algebra V̂ z, f°Γ m e lattice 2L is a vertex operator subalgebra of VL, we have a homo-

morphism v : A(V2L) " ^ A(VL). The map ẑ  is surjective as [£nc*l] = 0 in A(V^) for

any odd integer «.

Therefore Theorem 3.2 of [5] shows A(VL) is generated by [e2aί\, [β" 2 α l ] and

[α-il]

Let m ^ 0. We note that

α_i l * ^ 2 m Ω ! l = (α_i + α o > 2 m α l ^ ^m^2 m Q ίl (mod

as α_iβ 2 m α l = -kme2mal (mod O(VL)). Then, by (1), we have

o s ("-1 + (* 1 ) / 2 ) i * J»"i s

- ( •

(mod

Thus we see that e2mal = 0 (mod (9(VL)).

Since e2al = 0 and e~2al = 0 (mod O(VL)), A(VL) is generated by [α_il].

Therefore it implies this lemma. D

It follows from Lemma 3.1 (1) that we have a relation

(3.6, 0 = „,

in A(VL) NOW we can prove Theorem 3.3. Let φ be the C-linear map defined by

φ : C[x] -• A(VL)
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xn H> [ α _ i l ] * \

Then the map φ is a homomorphism of an associative algebra by (3.5) and it is sur-

jective by Lemma 3.1 (2). From (3.6), it is enough to show that kerφ is generated by

F*([α_il]). Suppose kerφ φ (F*([α_il])), then dimc C[x]/(Fk(x)) < k. Therefore, the

number of the simple modules of the associative algebra A(VL) must be strictly less

than k, which gives a contradiction as A(VL) has the k inequivalent simple modules

which correspond to the simple modules V(ί) (i e Ik) of VL by Theorem 2.1. D

3.3. Regularity of VL The regularity of VL can be shown in the same way

given in [4], in which the regularity of lattice vertex operator algebras associated to

even lattices is proved. However, in order to describe the difference between odd and

even cases, we will give the outline of the proof of the regularity of VL.

The following lemma is fundamental in our proof, whose proof is suggested by C.

Dong (one can see the same statement in the proof of Lemma 3.15 of [4]. Also see

[3], Proposition 11.9):

Lemma 3.2. Let V be a vertex operator superalgebra and M be a nonzero weak

VL-module. If V is simple, then for any nonzero vectors a e V and u e M, Y(a, z)u φ

0.

Proof. Set I = {b e V\Y(b,z)u = 0}. Suppose that Y(a,z)u = 0, then / φ {0}.

First of all, we prove that / is an ideal of V. By the associativity, which is a result

of the Jacobi identity, we have for any b e V, c e I and some m e Z>o,

(zo + z2)
mY(Yφ, zo)c, zi)u = (zo + ziTYψ, zo + Z2)Y(c, zi)u = 0

as F(c, z)u = 0. Thus we have Y(Y(b, zo)c, zi)u = 0, which implies bnc e / for all

n e Z. Since V is simple, we see / = V. Therefore, Y(b, z)u = 0 for all b e V. This

gives us a contradiction because 7(1, z)u = u φ 0. D

Now we return to the case of V = VL> For any nonzero weak VL -module M, let

us define the vacuum space of M by

Ω M = {u e M\anu = 0 for n > 0}.

Using Lemma 3.2, we can prove that Ω^ φ 0 by argument similar to Lemma 3.15 of

[4]. For β G L, the following operator on M is called the Z-operator (cf. [2]):

Z(β, z) = exp ( Σ ^f) Γ>(z)exp
/
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For the odd lattice L, the following identities are proved in the same way as in [2]:

(3.7) [An, Z(7, /i)] = 5w,o(/3|7)Z(7, Ό .

(3.8) Z(/3, /i)A) = (-π - 1)Z(/J, π)

for β, 7 G L, m,ΛZ G Z. Lemma 3.2, (3.7) and (3.8) show:

Lemma 3.3. Let M be a nonzero weak VL-module. Then there exist a nonzero

vector w e ΩM and λ G L° such that

βow = λ(β)w for any β G f).

Proof. Let u be a nonzero vector of Ω w . By Lemma 3.2, we have Γa(z)u φ 0.

Since

(z) = exp
\«>0 / \n>0

Z(a, z)u f 0, i.e., Z(a, n)u φ 0 for some n e Z. Then, from (3.7) and (3.8), we obtain

Z(α, ή)u G Ω M and

αoZ(α, ή)u = ([αo, Z(α, «)] + Z(α,

= ((α|α) — n —

= (k-n- l)Z(a,n)u.

Put if = Z(a, ή)u. Let λ G ί)* such that ceoif = λ(a)w. By the nondegenerate form ( | )

on ί), we have

Λ k-n-l

under the identification ί)* with ί). We see that (λ\β) G Z for any β e L, and then

XeL°. D

Let u; be a nonzero vector of ΩM subject to the condition in Lemma 3.3. It is

not difficult to prove that the VL-submodule generated by w is simple and isomorphic

to V(ί) for some / G 4 In particular, if M is a simple weak VL-module, then M is

isomorphic to V(i) for some / G 4

REMARK 3.1. The proof of the fact that λ G L° given in [2] does not work for

our odd lattice (see the proof of Lemma 3.5 of [2]). However, the proof of Lemma

3.4 of [2] implicitly shows this as we have seen in Lemma 3.3.
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We prove the following theorem in the same way as in Theorem 3.16 of [4].

Theorem 3.4. The vertex operator superalgebra VL is regular. In particular, VL

is rational.

Proof. It suffices to prove that any weak VL -module is completely reducible,

since any simple VL-module is an ordinary VL-module. Let M be a nonzero weak

VL-module. Let W be the sum of all simple ordinary VL-submodules in M. Suppose

M' = M/W ί 0. Let u (^ 0) e ΩM\ΩW. It follows from Lemma 3.2 that there ex-

ists n G Z such that Z(a, n)(u + W) ^ 0 in M\ and then Z(a, ή)u φ W. Taking

w = Z(a, ή)u, we see that w (^ 0) e

βow = X(β)w for any β e ί),

and X e L° from Lemma 3.3. Then the VL-submodule generated by w is simple and

is not contained in W. This gives us a contradiction. D

3.4. Applications: Rationality of vertex operator superalgebras associated to

the charged free fermions and the N = 2 superconformal algebra It is known that,

if (a\a) = 1, then VL is isomorphic to the charged free fermions F [8], and if

(α|α) = 3, then VL is isomorphic to the N = 2 superconformal vertex algebra with

central charge C = 1 [8]. The rationality of the charged free fermions F is shown in

Theorem 4.1 of [9].

Let us consider the N = 2 superconformal algebra. It is a graded superalgebla

spanned by the basis Ln, Tn, Gf, C {n eZ,r e Z+(l/2)}, and has (anti)-commutation

relations given by

[L m , Ln] = (m - n)Lm+n ———

, Tn] = —

[Tm, Gf] =

{G+

r, GJ) = 2Lr+s + (r - s)Tr+s + | (r2 - Λ δr+sβ,

[La, C] = [Tn, C] = [Gf, C] = {G+

r, G,+} = {G-, GJ} = 0

for all m, n € Z and r ,ίE Z+(l/2). Given complex numbers h, q and c, we denote the

Verma module generated by the highest weight vector \h,q,c) with LQ eigenvalue h,

TQ eigenvalue q and central charge c by Λ4(h, q, c). Note that the highest weight vec-

tor \h, q, c) is annihilated by Ln, Tn, and G^r for n e Z > 0 , r e Z>0 + (1/2). It follows
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from [8] that the vertex algebra M(0, 0, c) has a unique simple quotient L(0, 0, c) and

if (a\a) = 3, then the lattice vertex operator superalgebra VL is isomorphic to the

N = 2 superconformal vertex algebra L(0, 0, 1). The classification results of its sim-

ple modules are given by the Kac determinant of the TV = 2 superconformal algebra in

[1].

As a consequence of a particular case k = 3 of Corollary 3.1 and Theorem 3.4,

we have

Theorem 3.5. The N = 2 superconformal vertex algebra L(0, 0, 1) is rational,

and its simple modules are only L(0, 0, 1) and L(l/6, ±1/3, 1).
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