

Title	Hierarchy of coherent vortices in developed turbulence
Author(s)	Goto, Susumu; Motoori, Yutaro
Citation	Reviews of Modern Plasma Physics. 2024, 8(1), p. 382
Version Type	AM
URL	https://hdl.handle.net/11094/95701
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Hierarchy of coherent vortices in developed turbulence

Susumu Goto and Yutaro Motoori

Graduate School of Engineering Science, Osaka University, 1-3,
Machikaneyama, Toyonaka, 560-8531, Osaka, Japan.

*Corresponding author(s). E-mail(s): s.goto.es@osaka-u.ac.jp;
y.motoori.es@osaka-u.ac.jp;

Abstract

We review our recent studies on the hierarchy of coherent vortices in high-Reynolds-number turbulence of an incompressible neutral fluid, which were conducted through analyses of data obtained by direct numerical simulations of the Navier–Stokes equation. We show results on turbulence under four different boundary conditions: namely, turbulence in a periodic cube, turbulent wake behind a circular cylinder, turbulence between a pair of parallel planes (i.e. turbulent plane Poiseuille flow), and a zero-pressure gradient turbulent boundary layer. By decomposing each of these turbulent fields into different length scales, we show that turbulence is composed of the hierarchy of coherent vortices with different sizes. More concretely, in a region apart from solid walls, each level of the hierarchy consists of tubular vortices and they tend to form counter-rotating pairs. It is a strain-rate field around them that stretches and amplifies smaller vortices. In other words, the energy cascade in turbulence away from walls is not caused by breakups of larger eddies, but vortex stretching of smaller eddies in larger-scale strain-rate fields. In near-wall regions, the sustaining mechanism of vortices depends on their scale, which we need to consider depending on the distance from a wall. Large vortices (i.e. wall-attached eddies), whose diameter is as large as the distance from a wall, are sustained by the mean-flow stretching, whereas smaller vortices (i.e. wall-detached eddies), whose diameter is smaller than the distance, are created by being stretched by larger vortices. The latter mechanism corresponds to the energy cascade similarly observed in wall-free turbulence. Scale decomposition can also reveal the largest vortices in each turbulence, which depends on the boundary condition. It is particularly important that the largest wall-attached eddies in the turbulent boundary layer are hairpin vortices even in downstream regions.

047 **1 Introduction**

048 **1.1 Kolmogorov similarity and energy cascade**

050 The Reynolds number defined as

051

$$052 \quad Re = U_0 L_0 / \nu \quad (1)$$

053

054 determines flow state under a fixed flow condition. Here, ν , U_0 , and L_0 denote the
 055 kinematic viscosity of the fluid, the representative velocity and length of the boundary
 056 condition or the external forcing. In general, when Re is larger than a few thousands,
 057 flow becomes turbulent; and for larger Re , turbulence becomes fully developed. The
 058 energy spectrum $E(k)$ of developed turbulence is broad over a range of wavenumber k .
 059 More precisely, according to [Kolmogorov \(1941\)](#)'s similarity hypothesis ([Frisch, 1995](#),
 060 § 6), the energy spectrum obeys a power-law,
 061

062

$$063 \quad E(k) = C \bar{\epsilon}^{2/3} k^{-5/3}, \quad (2)$$

064

065 in the wavenumber range

066

$$067 \quad 2\pi/L \ll k \ll 2\pi/\eta \quad (\text{inertial range}) \quad (3)$$

068

069 corresponding to the length-scale range between the viscous scale (i.e. the Kolmogorov
 070 length),

071

$$070 \quad \eta = \bar{\epsilon}^{-1/4} \nu^{3/4}, \quad (4)$$

072

073 where $\bar{\epsilon}$ denotes the average dissipation rate of the turbulent kinetic energy per unit
 074 mass, and the velocity correlation length (i.e. the integral length), L . The constant C
 075 in (2) is called the Kolmogorov constant, which is universal irrespective of the kinds
 076 of turbulence ([Sreenivasan, 1995](#)).

077 The power law (2) of the energy spectrum implies that developed turbulence is
 078 statistically self-similar in scales between η and L , and it is composed of vortices with
 079 various sizes. By substituting [Taylor \(1935\)](#)'s dissipation law ([Tennekes and Lumley,
 080 1972](#), § 1.5),

081

$$080 \quad \bar{\epsilon} \sim u'^3/L, \quad (5)$$

082

083 where u' is the standard deviation of a component of turbulent velocity, into (4), we
 084 express the scale ratio between the largest and smallest scales as

085

$$084 \quad L/\eta \sim Re^{3/4} \quad (6)$$

086

087 in terms of the Reynolds number Re . Here, we define Re , (1), by using u' and L for U_0
 088 and L_0 , respectively. The relation (6) means that the number of levels in the hierarchy
 089 of vortices increases with Re .

090 We usually understand that the origin of [Kolmogorov \(1941\)](#)'s similarity is in the
 091 so-called energy cascade. [Richardson \(1922](#), p. 66)'s famous verse,

092 *big whirls have little whirls that feed on their velocity, and little whirls have lesser whirls
 093 and so on to viscosity,*

adequately describes the cascade (i.e. inter-scale transfer) of energy in turbulence: that is, energy injected by external force or mean flow to largest scales (i.e. the integral length L) transfers to smaller scales in a scale-by-scale manner, and the energy reached at the smallest scale (i.e. the Kolmogorov length η) is dissipated due to the viscosity. Since Richardson (1922)'s verse gives only qualitative description of the energy cascade, there were numerous studies on the process. For example, it was numerically shown that the energy transfers from low-wavenumber Fourier modes to higher-wavenumber modes in turbulence in a periodic cube (Domaradzki and Rogallo, 1990; Ohkitani and Kida, 1992). It is also well-known that the cascade models such as shell models (Yamada and Ohkitani, 1987; Biferale, 2003), which were developed to mimic the energy transfer in the wavenumber space, successfully describe important statistics of turbulence such as Kolmogorov's similarity and its corrections due to intermittency (Frisch, 1995, Chap. 8).

1.2 Mechanisms of energy cascade in real space

As mentioned above, Kolmogorov (1941)'s similarity is explained by the concept of energy cascade, i.e. the scale-by-scale energy transfer from larger to smaller scales in turbulence. Although many researchers tried to reveal a concrete image of the hierarchy of vortices of various sizes, which is described by Richardson (1922)'s verse and depicted by the frequently used schematic (Frisch, 1995, Fig. 7.2), and to explain the physical mechanism of energy cascade, there is still a large room to conclude its elementary mechanism in real space (Sagaut and Cambon, 2018, § 4.11.2). In fact, several mechanisms describing energy cascade have been proposed, and here we summarize them.

First, we introduce the mechanism in terms of vortex stretching. Since Taylor (1938) pointed out the importance of vortex stretching in turbulence generation, the picture of energy cascade by vortex stretching has been a classical view. For example, the textbook by Tennekes and Lumley (1972, § 8.2) describes energy cascade in terms of this mechanism. Furthermore, recent direct numerical simulations (DNS), in which the equation of motion for fluid is numerically integrated without modeling, helped us to demonstrate the evidence that vortex stretching contributes to the cascade (Davidson et al, 2008; Leung et al, 2012; Lozano-Durán et al, 2016; Doan et al, 2018). We also conducted a series of studies (Goto, 2008, 2012; Goto et al, 2017) from this viewpoint. Although this mechanism seems reasonable as described in the rest of the present article, there is no consensus that this is the only mechanism describing the cascade (Davidson, 2004, § 5.1.2).

Another important picture of the energy cascade is due to vortex reconnections. Since smaller vortices can be created during the reconnection of a counter-rotating pair of vortex tubes, this may be a primary mechanism of the cascade. Hussain and his coworkers have developed this picture since the last century (Melander and Hussain, 1988; Hussain and Duraisamy, 2011; Yao and Hussain, 2020), and, in particular, Yao and Hussain (2020) recently showed by DNS that successive reconnections can lead to the energy cascade. Brenner et al (2016) also referred to this mechanism in the study on the singularity formation in an inviscid fluid. In laboratory experiments on the collision of two vortex rings (McKeown et al, 2018, 2020) and the related study

139 (McKeown et al, 2023), concrete processes of vortex reconnections on different scales
140 were captured. Furthermore, Kerr (2013) also suggested another mechanism of the
141 cascade in terms of vortex reconnections.

142 Here, it is important to note that the strain rate, rather than the vorticity, is
143 responsible for the energy flux and dissipation. In fact, Tsinober (2001, Chap. 6)
144 pointed out the importance of amplification of not only the vorticity but also the
145 strain rate, and several recent studies (Paul et al, 2017; Carbone and Bragg, 2020;
146 Johnson, 2020; Vela-Martín and Jiménez, 2021) claimed the importance of the strain-
147 rate self-amplification. However, this is also under debate as Johnson (2021) concluded
148 that the strain-rate amplification and the vortex stretching are equally important for
149 inter-scale energy transfer.

150

151 1.3 Current status of DNS of turbulence

152

153 The preceding subsection describes that there is no consensus on the physical mech-
154 anism of energy cascade in real space. However, this situation is changing in recent
155 years as DNS studies of turbulence have led to more detailed data analysis [see Yao
156 et al (2024) for a recent example]. Since, in principle, DNS can provide time-series of
157 three-dimensional structures and detailed information on interactions between scales,
158 we expect that the actual hierarchy of vortices and the physical mechanism of energy
159 cascade will be understood in the near future.

160 We have emphasized at the beginning of this article that the Reynolds number
161 characterizes flow. Therefore, the current status of DNS study of turbulence is also
162 quantified by the Reynolds number. However, Re in (1) is defined in terms of the
163 velocity and length scale characterizing boundary conditions or external force. It is
164 therefore more appropriate that we use another Reynolds number characterizing the
165 state of turbulence to quantify its degree of development. In this subsection, we intro-
166 duce the appropriate definition of Reynolds number for each of four kinds of turbulent
167 flows treated in the present article, and show the achievement of the state-of-the-art
168 DNS of turbulence. In addition to this, basic concept of turbulence is also summarized
169 so that even non-experts can understand discussion in the following.

170

171 1.3.1 Turbulence in a periodic cube

172

173 First, we describe DNS of turbulence in the simplest case: namely, statistically homo-
174 geneous isotropic turbulence under periodic boundary conditions in three orthogonal
175 directions. The first DNS of this kind of turbulence was conducted by Orszag and Pat-
176 terson (1972). For a half century since then, many DNS of the turbulence at higher
177 and higher Re were conducted thanks to the continuous development of supercom-
178 puters. In particular, at the beginning of the present century, Kaneda et al (2003)
179 conducted the DNS of the turbulence by the spectral method (see § 2.1) using a large
180 number 4093^3 of Fourier modes. Then, they numerically realized turbulence at the
181 Taylor-length Reynolds number, which is defined as

182

$$Re_\lambda = u' \lambda / \nu \quad (7)$$

183

184

with the Taylor length

$$\lambda = \sqrt{15\nu u'^2/\bar{\epsilon}}, \quad (8)$$

to be $Re_\lambda \approx 1000$. Recently, [Ishihara et al \(2020\)](#) conducted further larger DNS with 12288^3 Fourier modes to simulate turbulence at $Re_\lambda = 2250$.

Substituting [Taylor \(1935\)](#)'s dissipation law (5) into (8), we obtain $\lambda \sim \sqrt{L\nu/u'}$. Then, substituting this into (7), we can see that Re and Re_λ are related by

$$Re \sim Re_\lambda^2. \quad (9)$$

Since the scale separation L/η in the inertial range gets larger as Re increases [see (6)], Re_λ also indicates the width of the inertial range (3). Though the definition of Re depends on boundary conditions, the Taylor length λ , and therefore Re_λ , can be estimated according to flow state. Hence, Re_λ appropriately indicates the development of turbulence. In fact, according to [Dimotakis \(2000\)](#), turbulence is accompanied with a sufficient scale separation when

$$Re_\lambda \gtrsim 100\text{--}140. \quad (10)$$

Therefore, we call the flow satisfying (10) developed turbulence. In this review, we show results of the analysis of turbulence which satisfies (10).

1.3.2 Free shear flow turbulence

Turbulence in a periodic box is artificial flow which is a model of flow away from solid walls. Numerous DNS of more realistic turbulence were also conducted. Turbulent wake, which is sustained behind an obstacle immersed in uniform flow, is an extensively studied example of free shear flows. In fact, DNS and large-eddy simulations (LES) ([Tomboulides et al, 1993](#)) of turbulent wake behind a circular cylinder were already conducted in 1990's. At the beginning of the present century, [Ma et al \(2000\)](#) conducted the DNS of developed turbulence in the wake behind a cylinder at the Reynolds number

$$Re_D = U_\infty D / \nu \quad (11)$$

defined by the uniform upstream velocity U_∞ and cylinder diameter D to be $Re_D = 3900$. Since then, many DNS were conducted and we also conducted DNS of turbulence at $Re_D = 5000$ ([Fujino et al, 2023](#)). In this article, we review results of this DNS. As will be shown in § 2.2 (see Fig. 3), the Taylor-length Reynolds number (7) in this turbulence exceeds 100 within the distance $10D$ behind the cylinder. Thus, it satisfies the criterion (10), which is discussed in the previous subsection, of developed turbulence, and we expect that there is a hierarchy of vortices in the simulated turbulence.

1.3.3 Wall turbulence

Numerous DNS of turbulence near a solid wall were conducted. In particular, turbulence between a pair of parallel planes (i.e. turbulent plane Poiseuille flow), which we call the turbulent channel flow in the following, has been intensively studied as one of

231 the canonical wall-bounded turbulence. For channel flow, the Reynolds number (1) is
 232 defined by using the central velocity U_c and the channel half width h in the places of
 233 U_0 and L_0 as

$$234 \quad Re_h = U_c h / \nu. \quad (12)$$

235 Though the critical Reynolds number for the linear instability of the laminar flow is
 236 $Re_h = 5772$ (Orszag, 1971), it is known that turbulence is sustained at even lower
 237 Re_h . The DNS of turbulent channel flow was first conducted by Kim et al (1987)
 238 at $Re_h = 3300$. Since then, many authors conducted DNS. In this century, DNS of
 239 turbulent channel flow at high Reynolds numbers became possible (Abe et al, 2001;
 240 del Álamo and Jiménez, 2003; Tanahashi et al, 2004), Jiménez and his coworkers have
 241 been extensively conducting large-scale DNS (del Álamo and Jiménez, 2003; del Álamo
 242 et al, 2004; Hoyas and Jiménez, 2006; Lozano-Durán and Jiménez, 2014; Hoyas et al,
 243 2022).

244 We define x and y axes in the streamwise and wall-normal directions, respectively
 245 [Fig. 2(b)] to introduce the friction velocity as

$$247 \quad 248 \quad u_\tau = \sqrt{\nu \left. \frac{\partial \bar{u}_x}{\partial y} \right|_{\text{wall}}}. \quad (13)$$

250 Here, \bar{u} denotes the mean velocity, and in the following we denote the fluctuation
 251 velocity by \tilde{u} ($= \mathbf{u} - \bar{\mathbf{u}}$). Then, the friction Reynolds number defined as

$$253 \quad 254 \quad Re_\tau = u_\tau h / \nu \quad (14)$$

255 is an indicator of the hierarchy of vortices in wall turbulence. This is because Re_τ is
 256 the scale ratio between the smallest length in the vicinity of solid walls (i.e. the friction
 257 length $\ell_\tau = \nu/u_\tau$) and the size of the largest structure in the flow (i.e. the channel
 258 half width h); namely, $Re_\tau = h/\ell_\tau = h^+$. Hereafter, superscript $+$ denotes the length
 259 normalized by ℓ_τ .

260 It is known (Tennekes and Lumley, 1972, § 5.2) that in wall turbulence at suffi-
 261 ciently high Re_τ , the mean streamwise velocity \bar{u}_x normalized by the friction velocity
 262 is a linear function of $\log y^+$ as

$$264 \quad 265 \quad \bar{u}_x/u_\tau = B + \kappa^{-1} \log y^+ \quad (15)$$

266 in the layer

$$268 \quad 269 \quad 30-100 \lesssim y^+ \lesssim 0.2h^+ = 0.2Re_\tau \quad (\text{logarithmic layer}). \quad (16)$$

270 In (15), B and κ (≈ 0.4) are constants and the latter is called the Kármán constant.
 271 In the near-wall region (i.e. $5 \lesssim y^+ \lesssim 30-100$, which is called the buffer layer), there
 272 is only single-scale structures, whereas there exists multiple scales in the logarithmic
 273 layer, in particular, for large y^+ . This can be understood, if we recall that the largest
 274 eddies at the distance y from the wall are as large as y , and that the smallest eddies are
 275 as small as the Kolmogorov length η , (4). Note that we may estimate η as a function

of y as follows. To this, we estimate the mean energy dissipation rate $\bar{\epsilon}$ at the distance y from the wall, under the assumption that it is balanced with the energy input rate. Then, in the logarithmic layer (16),

$$\bar{\epsilon} \approx -\widetilde{u}_x \widetilde{u}_y \frac{\partial \bar{u}_x}{\partial y} \approx -\frac{u_\tau^3}{\kappa y} . \quad (17)$$

Therefore, we may estimate the Kolmogorov length (4) normalized by the friction length ℓ_τ as

$$\eta^+ \approx (\kappa y^+)^{\frac{1}{4}} . \quad (18)$$

See Fig. 4 in § 2.3 for numerical evidence of the estimation (18). Hence, the scale ratio between the largest ($L \approx y$) and smallest (η) eddies at the distance y from the wall is estimated as $L/\eta \approx \kappa^{-\frac{1}{4}} (y^+)^{\frac{3}{4}}$. Since $\kappa^{-\frac{1}{4}} \approx 1.3$, $L/\eta = 16\text{--}40$ at the bottom $y^+ = 30\text{--}100$ of the logarithmic layer. Recalling that the diameter of the smallest eddies is about 10η , we may see that there exists a hierarchy of vortices in the logarithmic layer (16). Since the layer enlarges, in wall unit, with Re_τ , we expect clearer hierarchical structures at higher Reynolds numbers.

The Reynolds number of turbulent channel flow achieved by DNS was $Re_\tau = 550$ (del Álamo and Jiménez, 2003) about 20 years ago, $Re_\tau = 2003$ (Hoyas and Jiménez, 2006) about 15 years ago, $Re_\tau = 4200$ (Lozano-Durán and Jiménez, 2014) about 10 years ago. Recently, it further increases, and Yamamoto and Tsuji (2018) conducted DNS at $Re_\tau = 8000$ and Hoyas et al (2022) at $Re_\tau = 10000$. Through these large DNS, the scale separation in the turbulence gets much clearer, and coexistence of large flow structures experimentally known as the (very) large scale motion (Kim and Adrian, 1999) and fine-scale structures are also captured by DNS. In other words, data for the investigation of the hierarchy of vortices are available. In this article, we review our analysis (Motoori and Goto, 2021) of the data at $Re_\tau = 4200$ obtained by Lozano-Durán and Jiménez (2014).

Another intensively investigated wall turbulence is the boundary layer on a flat plane. In this article, we investigate a turbulent boundary layer developing on a plane when uniform flow at the velocity U_∞ exists in the direction parallel to the plane. Since the seminal DNS by Spalart (1988) in the last century, many researchers conducted DNS of this canonical flow. Since the boundary layer thickness, which is often defined by the momentum thickness θ , develops in downstream, the Reynolds number (1) defined by θ ,

$$Re_\theta = U_\infty \theta / \nu , \quad (19)$$

also increases in downstream. It is numerically shown by Schlatter and Örlü (2010) that Re_θ and Re_τ are related as $Re_\tau = 1.13 \times Re_\theta^{0.843}$. At the beginning of this century, large DNS were conducted by Komminaho and Skote (2002) ($Re_\theta \lesssim 750$) and Khujadze and Oberlack (2004) ($Re_\theta \lesssim 2800$). Since then, the Reynolds number of turbulent boundary layer achieved by DNS is increasing, and the recent DNS are $Re_\theta \lesssim 6680$ (Sillero et al, 2013) and $Re_\theta \lesssim 8300$ (Eitel-Amor et al, 2014), which correspond to $Re_\tau \lesssim 2000$ and $Re_\tau \lesssim 2300$, respectively. Thus, we can obtain DNS data of developed turbulent boundary layers in which, similarly to the turbulent channel flow, we may expect hierarchical structures of vortices with different sizes in the logarithmic layer.

323 We also conducted DNS of turbulent boundary layer at $Re_\theta \lesssim 4600$, which correspond
 324 to $Re_\tau \lesssim 1380$ and $Re_\lambda \lesssim 75$ (Motoori and Goto, 2020). In the following sections, we
 325 show results of the analysis of this DNS data. There is also a dispute, which is related
 326 to the hierarchy of vortices, on the largest-scale vortices in turbulent boundary layer. It
 327 was experimentally shown by many authors (Head and Bandyopadhyay, 1981; Adrian
 328 et al, 2000) that largest-scale eddies in the developed turbulent boundary layer are
 329 hairpin-shaped. However, in DNS, the existence of large-scale hairpin-like structures
 330 were not emphasized. On the contrary, there were studies (Schlatter et al, 2014, e.g.)
 331 to conclude that hairpin vortices disappear in downstream region of high-Reynolds-
 332 number turbulence. Hence, there is a room for better understanding the hierarchy of
 333 vortices in turbulent boundary layers.

334

335 1.4 Aim of this article

336

337 As described in § 1.3, many DNS of developed turbulence at sufficiently high Reynolds
 338 numbers in canonical flow geometries have been already conducted. Nevertheless, as
 339 mentioned in § 1.2, there is no consensus on the concrete image and sustaining mech-
 340 anism of the hierarchy of vortices in developed turbulence. This situation is partly
 341 caused by the fact that we cannot capture the hierarchy of vortices by simply using the
 342 vorticity, the squared vorticity (i.e. enstrophy), or the second invariant of the velocity
 343 gradient tensor, for example. We explain in detail this point in § 3. To overcome this
 344 situation, we have been developing simple methods to identify the hierarchy of vor-
 345 tices and to investigate its sustaining mechanism (i.e. energy cascade) in the series of
 346 our studies (Goto, 2008, 2012; Goto et al, 2017; Motoori and Goto, 2019, 2020, 2021;
 347 Fujino et al, 2023). Therefore, the aim of this article is to review our studies in a unified
 348 manner. To this end, in the following, we review our knowledge, which was obtained
 349 through the data analysis of DNS, on the concrete pictures and the sustaining mecha-
 350 nism of the hierarchy of coherent vortices in four different kinds of turbulence: namely,
 351 turbulence in a periodic cube (Goto, 2008, 2012; Goto et al, 2017), turbulent wake
 352 behind a circular cylinder (Fujino et al, 2023), turbulence between a pair of parallel
 353 plates Motoori and Goto (2021), and zero-pressure gradient turbulent boundary layer
 354 on a flat plate (Motoori and Goto, 2019, 2020).

355

356 2 Direct numerical simulations

357

358 In this section, we summarize the numerical methods and parameters of DNS and
 359 basic statistics of simulated turbulence in the four different geometries.

360

361 2.1 Turbulence in a periodic cube

362

363 For turbulence in a periodic cube, we numerically integrate the Navier–Stokes
 364 equation,

$$365 \quad \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho_f} \nabla p + \nu \nabla^2 \mathbf{u} + \mathbf{f}, \quad (20)$$

366

367 and the continuity equation,

$$368 \quad \nabla \cdot \mathbf{u} = 0 \quad (21)$$

under periodic boundary conditions in all the three orthogonal directions. We use the Fourier spectral method (Canuto et al, 2006, § 3.3). The advantage of the spectral method is that we can precisely estimate spatial derivatives and integrate (20) with the solenoidal condition (21) being accurately satisfied. 369
370
371
372

The concrete numerical procedure is as follows. We numerically solve the vorticity equation, 373
374

$$\frac{\partial \boldsymbol{\omega}}{\partial t} + \mathbf{u} \cdot \nabla \boldsymbol{\omega} = \boldsymbol{\omega} \cdot \nabla \mathbf{u} + \nu \nabla^2 \boldsymbol{\omega} + \nabla \times \mathbf{f}, \quad (22) \quad 375
376$$

which is the rotation of the Navier–Stokes equation (20). Here, 377
378

$$\boldsymbol{\omega} = \nabla \times \mathbf{u} \quad (23) \quad 379
380$$

is the vorticity field. By using (21), we rewrite the nonlinear terms in (22) as 381
382

$$\frac{\partial \omega_i}{\partial t} = -\epsilon_{ijm} \frac{\partial^2 u_m u_\ell}{\partial x_j \partial x_\ell} + \nu \nabla^2 \omega_i + \epsilon_{ijm} \frac{\partial f_m}{\partial x_j}. \quad (24) \quad 383
384$$

Here, we denote the Fourier transforms of the velocity and vorticity fields as $\hat{\mathbf{u}}(\mathbf{k}, t)$ and $\hat{\boldsymbol{\omega}}(\mathbf{k}, t)$, respectively. Then, since the former can be expressed by the latter as 385
386
387

$$\hat{\mathbf{u}} = i \mathbf{k} \times \hat{\boldsymbol{\omega}}/k^2, \quad (25) \quad 388
389$$

the Fourier transform of the vorticity equation (24) is closed only by $\hat{\boldsymbol{\omega}}$. Thus, we numerically integrate it by the fourth-order Runge–Kutta–Gill method. In the Fourier spectral method, we compute the nonlinear terms in (24) in real space, by using the fast Fourier transform (FFT), instead of computing it through the estimation of the convolution in wavenumber space. In this procedure, we remove the aliasing errors by the combination of the phase shift and spherical truncation (Canuto et al, 2006, § 3.3.2). 391
392
393
394
395
396
397

In this article, we show results of DNS of turbulence driven by two different kinds of external forces. The first one (Goto et al, 2017) is steady force expressed as 398
399

$$\mathbf{f}^{(v)} = \begin{pmatrix} -\sin x \cos y \\ +\cos x \sin y \\ 0 \end{pmatrix}. \quad (26) \quad 400
401
402
403$$

This force drives a four parallel vortex tubes, whose axis is parallel to z direction, in a periodic cube. In fact, when the Reynolds number is low, the flow becomes steady flow with these vortex columns, which we call the Taylor–Green vortices in this article. As will be seen in § 4.1, even in turbulence at higher Reynolds numbers, these Taylor–Green vortices exist at fixed positions. Although this is advantageous to investigate the hierarchy of coherent vortices, it is difficult to examine its universality only with this specific forcing. Thus, we also examine another case of turbulence in a periodic cube 404
405
406
407
408
409
410
411
412
413
414

415 with another force (Lamorgese et al, 2005), whose Fourier transform is expressed as
 416

417

$$418 \quad \widehat{\mathbf{f}^{(i)}}(\mathbf{k}, t) = \begin{cases} \frac{P}{2E_f(t)} \widehat{\mathbf{u}}(\mathbf{k}, t) & \text{if } 0 < |\mathbf{k}| \leq k_f, \\ 419 \quad 0 & \text{otherwise.} \end{cases} \quad (27)$$

420

421 Here,

422

$$423 \quad E_f = \sum_{0 < |\mathbf{k}| \leq k_f} \frac{1}{2} |\widehat{\mathbf{u}}|^2 \quad (28)$$

424

425 is the energy contained in the forcing wavenumber range ($0 < |\mathbf{k}| \leq k_f = 2.5$). By
 426 construction, the energy input rate P due to this force is constant in time; we set
 427 $P = 0.1$ in our DNS. It is important that the forcing is statistically homogeneous
 428 and isotropic and therefore it induces no specific coherent structures at the forcing
 429 scale. In other words, coherent structures observed in turbulence driven by (27) are
 430 all self-organized.

431 Since the aim of DNS is to show the hierarchy of vortices in turbulence, it is
 432 important to resolve the smallest scale eddies. When we use N Fourier mode in each
 433 direction, the maximum wavenumber k_{\max} is $\sqrt{2}N/3$ because of the de-aliasing method
 434 (Canuto et al, 2006, § 3.3.2). The resolution of the Fourier spectral method is often
 435 evaluated by the product of k_{\max} and the Kolmogorov length η . Since the diameter
 436 of the smallest eddies is known to be about 10η (see Fig. 5 in § 3), and since the
 437 numerical resolution is $2\pi/k_{\max}$, $k_{\max}\eta$ must be larger than 1 so that such small eddies
 438 are well resolved. Therefore, we appropriately choose the kinematic viscosity ν so that
 439 this condition is satisfied for the given number N^3 of Fourier modes. In the following,
 440 we show the DNS results with $N^3 = 1024^3$ and $k_{\max}\eta = 1.4$ for forcing (26) and
 441 $k_{\max}\eta = 1.5$ for forcing (27). Accordingly, the Taylor-length Reynolds number (7) is
 442 250 and 330 for each forcing scheme. These values sufficiently satisfy the criterion (10)
 443 of the developed turbulence.

444 To further verify the development of the simulated turbulence, we plot the energy
 445 spectrum in Fig. 1 with solid curves; thin and thick lines correspond to the cases with
 446 forcing (26) and forcing (27), respectively. In this figure, we show the one-dimensional
 447 longitudinal spectrum E_{\parallel} ¹. Since E_{\parallel} is expressed as

448

$$449 \quad E_{\parallel}(k_1) = \frac{1}{2} \int_{k_1}^{\infty} \frac{E(k)}{k} \left(1 - \frac{k_1^2}{k^2}\right) dk \quad (30)$$

450

451 in terms of the (three-demoniacal) spectrum E (Batchelor, 1953, p 50), we evaluate
 452 E_{\parallel} through (30). Since the derivative of (30) leads to $E(k) = k^3 d(k^{-1} dE_{\parallel}/dk)/dk$,
 453

454

455

456

457 ¹We use the definition of E_{\parallel} as

458

$$459 \quad \frac{1}{2} u'^2 = \int_0^{\infty} E_{\parallel}(k) dk, \quad (29)$$

460 which is different from ϕ_1 adopted by Sreenivasan (1995) with a factor 2; $\phi_1 = 2E_{\parallel}$.

Fig. 1 One-dimensional longitudinal energy spectrum E_{\parallel} , (29), of four different kinds of turbulence: thin and thick lines, turbulence in periodic cube driven by (26) and (27), respectively; \bullet , turbulent channel flow at the wall-normal location $y^+ = 630 \approx 0.15h^+$; \circ , turbulent wake behind a cylinder at the streamwise location ($x/D = 1$); \square , turbulent boundary layer at the streamwise location corresponding to $Re_{\theta} = 3600$ and the wall-normal location $y^+ = 165 \approx 1.2\theta^+$. For turbulence in a periodic cube, we use (30) to estimate E_{\parallel} from E , while for the other kinds of turbulence, we estimate E_{\parallel} by the Fourier transform in z direction of z component \hat{u}_z of the fluctuating velocity; see Fig. 2 for the definition of the coordinate. Blue dashed line indicates power-law spectrum, $E_{\parallel}(k) = 0.25\epsilon^{2/3}k^{-5/3}$.

E_{\parallel} is expressed as

$$E_{\parallel}(k) = \frac{9C}{55} \epsilon^{-2/3} k^{-5/3} \quad \left(\Leftrightarrow \frac{E_{\parallel}}{\epsilon^{1/4} \nu^{5/4}} = \frac{9C}{55} \frac{k}{\epsilon^{1/4} \nu^{-3/4}} \right) \quad (31)$$

in the inertial range (3). The dotted blue line in Fig. 1 denotes this power law with the coefficient $\frac{9C}{55} = 0.25$. We have chosen this value according to the experimental value Sreenivasan (1995) of the Kolmogorov constant. The Reynolds number Re_{λ} is large enough for the spectrum to obey a power law which is consistent with the Kolmogorov spectrum (31) for $k \lesssim 0.1\eta^{-1}$. Therefore, we expect a self-similar hierarchy of vortices in the corresponding length scales.

461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506

526 **Fig. 2** Configuration of DNS of (a) turbulent wake behind cylinder, where the length is normalized
 527 by cylinder diameter D , (b) turbulent channel flow, and (c) turbulent boundary layer, where the
 528 length is normalized by the displacement thickness at the inlet.

529 2.2 Turbulent wake behind a cylinder

531 In this subsection, we summarize the method and parameters of DNS of turbulent
 532 wake behind a circular cylinder. The data examined here is the same as the one used
 533 by Fujino et al (2023), which was obtained by DNS using the following method. In this
 534 DNS, we solve the Navier–Stokes equations (20) and continuity equation (21) under
 535 the boundary conditions shown in Fig. 2(a); namely, we set the uniform flow $U_\infty \mathbf{e}_x$ at
 536 the inlet and impose the convective condition,
 537

$$538 \quad \frac{\partial \mathbf{u}}{\partial t} + U_m \frac{\partial \mathbf{u}}{\partial x} = \mathbf{0}, \quad (32)$$

540 at the outlet. Here, U_m denotes the mean convective velocity at the outlet, which we
 541 determine by the method proposed by Simens et al (2009) so that the mass conser-
 542 vation is globally ensured. We impose the periodic boundary condition for the other
 543 two directions.
 544

545 Since the streamwise direction is not periodic, we do not use the Fourier spectral
 546 method shown in the previous subsection. Instead, we adopt standard finite difference
 547 method. More concretely, we evaluate spatial derivatives by the second-order finite
 548 difference. One of the difficulties in the DNS of incompressible flow is to conduct
 549 temporal integration with accurately satisfying the continuity equation (21). In the
 550 present study, we use the Simplified Marker and Cell (SMAC) method (Kajishima
 551 and Taira, 2017, § 3.3.2) to achieve this; we use the first-order Euler method for the
 552 pressure term the second-order Adams–Bashforth method for the convection term,

and the second-order Crank–Nicolson method for the viscous term to integrate the Navier–Stokes equations by the following four steps: 553
554
555

$$\mathbf{u}^P - \Delta t \frac{\nu}{2} \nabla^2 \mathbf{u}^P = \mathbf{u}^n + \Delta t \left(-\nabla P^{n+1} - \frac{3(\mathbf{u} \cdot \nabla \mathbf{u})^n - (\mathbf{u} \cdot \nabla \mathbf{u})^{n-1}}{2} + \frac{\nu}{2} \nabla^2 \mathbf{u}^n \right), \quad (33)$$

$$\nabla^2 \phi = \frac{\nabla \cdot \mathbf{u}^P}{\Delta t}, \quad (34)$$

$$\mathbf{u}^{n+1} = \mathbf{u}^P - \Delta t \nabla \phi, \quad (35)$$

$$P^{n+1} = P^n + \phi - \frac{\nu}{2} \Delta t \nabla^2 \phi. \quad (36)$$

Here, $P = p/\rho_f$, Δt denotes the time increment, superscript n indicates the value at the n -th time step, and \mathbf{u}^P and ϕ are the velocity at the prediction step and correctional pressure. Since when we eliminate ϕ , \mathbf{u}^P and P^{n+1} from (33)–(36) we obtain the discrete form of the Navier–Stokes equation (20) and continuity equation (21), we may integrate the velocity field which satisfies (21). Incidentally, we use FFT for the two periodic directions when we solve the Poisson equation (34) for ϕ so that we can employ the direct method. We use the immersed boundary method (Uhlmann, 2005; Kempe and Fröhlich, 2012) to impose the nonslip boundary condition on the cylinder surface. We have validated the DNS by the Strouhal number of the shedding vortices and the mean flow profile (Fujino et al., 2023). 565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598

We use the uniform staggered grid (Kajishima and Taira, 2017, § 3.4). Using $8192 \times 2560 \times 1024$ grid points, we simulate turbulence at the Reynolds number (11), which is defined by the upstream uniform flow velocity U_∞ and the cylinder diameter D , equal to 5000. We have confirmed that the grid spacing is always smaller than 2.6η implying that the smallest eddies are well resolved. On the other hand, the diameter D , which corresponds to the size of the largest eddies, is 128 times larger than the grid width. We expect therefore the existence of hierarchy of vortices with various sizes in the simulated turbulence. 565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598

To evaluate the degree of the development of the simulated turbulence, we estimate the Taylor-length Reynolds number (7), which is averaged over the axial direction, as a function of the streamwise position along the center-line. Here, the Taylor length λ was evaluated by 565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598

$$\lambda = \sqrt{\frac{\tilde{u}_z^2}{(\partial \tilde{u}_z / \partial z)^2}}, \quad (37)$$

where z is the axial coordinate [Fig. 2(a)] and \tilde{u} denotes the velocity fluctuation. Thus evaluated Re_λ is shown by open circles in Fig. 3. We can see that Re_λ is about 100, which just satisfies the criterion (10) of developed turbulence. 565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598

We also show the one-dimensional longitudinal energy spectrum E_{\parallel} , which is estimated by the Fourier transform in the axial direction of the axial component of fluctuating velocity, by open circles in Fig. 1. Although the wavenumber range is limited because of the smallness of the Reynolds number ($Re_\lambda \approx 100$), we may observe 565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598

599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618 **Fig. 3** Spatial distribution of Taylor-length Reynolds number (7) in turbulent wake behind a cylinder
619 (○), turbulent channel flow (●), and turbulent boundary layer (□). For the turbulent wake, we plot
620 the value averaged in the axial (z) direction as a function of the streamwise location x . For the channel
621 flow, we plot the value averaged in the spanwise (z) and streamwise (x) directions as a function of
622 the distance y from the wall. For the boundary layer, we plot the value average in the spanwise (z)
623 direction as a function of the distance y from the wall, at the streamwise location corresponding to
624 $Re_\theta = 3600$.

625 power-law spectrum which is consistent with the Kolmogorov similarity (31). Inciden-
626 tally, we have estimated the mean energy dissipation rate $\bar{\epsilon}$ by $2\nu\tilde{S}_{ij}\tilde{S}_{ij}$ with \tilde{S}_{ij} being
627 the rate-of-strain tensor of the fluctuation velocity.

628 It is also interesting to observe in Fig. 1 that all the energy spectra of the periodic
629 turbulence (solid lines), turbulent wake (open circles), turbulent channel flow (closed
630 circles) and turbulent boundary layer (squares) collapse onto a single universal function
631 in the dissipation range ($k \gtrsim 0.1\eta^{-1}$), if they are normalized by using the mean
632 dissipation rate $\bar{\epsilon}$ and kinematic viscosity ν of each flow. This collapse supports of
633 Kolmogorov (1941)'s similarity hypothesis.

634 2.3 Turbulent channel flow

635 Next, in this subsection, we describe the method and parameters of DNS of turbu-
636 lant channel flow [Fig. 2(b)]. We impose the nonslip boundary condition on the two
637 parallel plane walls, and periodic boundary condition in the other two (spanwise and
638 streamwise) directions. The flow is driven by uniform and steady streamwise external
639 force, and therefore the flow rate fluctuates in time.

640 The data of turbulent channel flow analyzed in the present article was obtained by
641 the DNS conducted by Lozano-Durán and Jiménez (2014). They conducted the DNS
642 using the method proposed by Kim et al (1987). More concretely, they first rewrite

the Navier–Stokes equation (20) and the continuity equation (21) as the governing equations [Eqs. (3) and (4) in [Kim et al \(1987\)](#)] for the wall-normal components u_y and ω_y of the velocity and vorticity. Then, they numerically integrated these governing equations by the third-order semi-implicit Runge–Kutta method. The spatial derivatives are evaluated by the combination of the Fourier spectral method in the streamwise and spanwise directions and the finite difference method, more precisely a seven-point compact finite difference ([Lele, 1992](#)) in the wall-normal direction.

In the present article, we show the analysis of the DNS data with 3072^2 Fourier modes, which correspond to 2048^2 effective modes under the de-aliasing with the $2/3$ rule, and the 1081 grid points in the wall-normal direction (i.e. y direction). The grid width in the y direction is non-uniform, which is determined so that the eddies of the Kolmogorov length $\eta(y)$ at the distance y from a wall are well resolved. Recall that, as was estimated in (18) in § 1, $\eta^+ \sim (\kappa y^+)^{1/4}$. We verify this estimation in Fig. 4. Then, according to (18), the grid width in y direction was determined. Thus, the grid widths normalized by the friction length ℓ_τ in each direction are $\Delta x^+ = 12.8$, $\Delta z^+ = 6.4$, $\Delta y^+ = 0.314\text{--}10.7$. In the center (i.e. $y = h$) of the channel, $\Delta y/\eta = 1.38$. This implies that even the smallest eddies are well resolved.

The friction Reynolds number (14) of thus simulated turbulence is $Re_\tau = 4179$, which is high enough to investigate hierarchy of vortices. To quantify the development of the turbulence, we estimate Taylor-length Reynolds number (7) averaged over the streamwise and spanwise directions. We show the results by closed circles in Fig. 3 as a function of the distance from the wall. R_λ is about 110 at $y^+ = 630 \approx 0.15h^+$, i.e. at the upper bound of the logarithmic layer (16), and about 145 at $y^+ \approx 2400$, i.e. in the core region in the channel. Therefore, according to the criterion (10), this turbulence is well developed. To further verify the development, we plot the one-dimensional longitudinal energy spectrum E_{\parallel} at $y^+ = 630$ by closed circles in Fig. 1. Here, the spectrum is estimated by the spanwise Fourier transform of \tilde{u}_z . We observe the power-law scaling (2) in the energy spectrum, E_{\parallel} , of this turbulence.

2.4 Turbulent boundary layer

In this subsection, we describe the method of DNS of turbulent boundary layer developing on a flat plane. Here, we examine the case that flow is uniform $U_\infty \mathbf{e}_x$ without pressure gradient in the region sufficiently apart from the plane. The data analyzed in the present study is the same as the one used by [Motoori and Goto \(2020\)](#). This data was obtained by the method similar to the DNS of turbulent wake shown in § 2.2. However, we directly impose the nonslip boundary condition on the plane without using the immersed boundary method.

As shown in Fig. 2(c), in order to save numerical cost, we conduct two separate DNS for upstream and downstream regions. We impose the Blasius laminar solution as the inlet condition of the upstream DNS. Using the tripping forcing proposed by [Eitel-Amor et al \(2015\)](#), we trigger transition to turbulence in the upstream DNS. Then, we save the time-series data of turbulent velocity at the streamwise location corresponding to $Re_\theta = 994$, which we use the inlet condition of the downstream DNS.

The number of grid points in the downstream main DNS is $8064 \times 640 \times 768$. The resolution at the outlet, that is, the location with the most developed turbulence is

691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709 **Fig. 4** Kolmogorov length η^+ , normalized by the friction length ℓ_τ as a function of the distance
710 $y^+ = y/\ell_\tau$ from the wall in the turbulent channel flow. Gray line indicates $\eta^+ = (\kappa y^+)^{\frac{1}{4}}$ with $\kappa = 0.4$.
711

712 $\Delta_x^+ = 10$, $\Delta_z^+ = 5.2$, and $\Delta y_{\min}^+ = 0.29$ Note that we use non-uniform grid in the y
713 direction. These grid widths are fine enough to resolve the smallest eddies. In fact,
714 $\Delta y/\eta = 1.5$ at $y = \theta/\delta_{99}$. Here, δ_{99} is the boundary layer thickness at which the mean
715 streamwise velocity is equal to $0.99U_\infty$.

716 By using a large number (about 4×10^9) of grid points and the combination of two
717 DNS, we can simulate turbulence at the Reynolds number (19), defined by the momen-
718 tum thickness, to be $400 \lesssim Re_\theta \lesssim 4600$, which correspond to $180 \lesssim Re_\tau \lesssim 1380$.
719 To evaluate the degree of development of turbulence, we estimate the Taylor-length
720 Reynolds number (7) at the streamwise direction corresponding to $Re_\theta = 3600$, where
721 the outlet condition is less effective. We show the results by squares in Fig. 3. In this
722 figure, we see that $Re_\lambda \lesssim 75$ at $y^+ \approx 500$ in the most developed region. Although,
723 according to the criterion (10) by Dimotakis (2000), this is not fully developed tur-
724 bulence, as will be shown in the following sections (see Fig. 14 in § 4.4), we may
725 observe apparent scale separation between the largest and smallest (i.e. Kolmogorov-
726 scale) eddies. In fact, we estimate the one-dimensional longitudinal energy spectrum
727 E_\parallel for \tilde{u}_z to show results by squares in Fig. 1 for the location at $Re_\theta = 3600$ and
728 $y^+ = 165 \approx 1.18\theta^+$. Though we do not observe any scaling range because of the small-
729 ness of Re_λ , we do observe a broad spectrum. Thus, we expect a hierarchy of vortices,
730 though they are not self-similar.

731

732 **3 Forest of small-scale eddies**

733

734 Let us visualize vortices in turbulence simulated by the methods described in the
735 previous section. Various kinds of vortex identification methods were proposed, and
736

many of them are based on the velocity gradient tensor, 737
738

$$V_{ij} = \frac{\partial u_i}{\partial x_j}. \quad (38) \quad 739
740$$

Here, we decompose this tensor into the symmetric part $S_{ij} = (V_{ij} + V_{ji})/2$, i.e. the rate-of-strain tensor, and the anti-symmetric part $\Omega_{ij} = (V_{ij} - V_{ji})/2$, i.e. vorticity tensor, 741
742
743
744

$$\Omega = \frac{1}{2} \begin{pmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{pmatrix}, \quad (39) \quad 745
746
747$$

where ω is the vorticity (23). We often use the isosurface of the enstrophy, 748
749

$$e = |\omega|^2, \quad (40) \quad 750
751$$

or the second invariant, 752
753

$$Q = (\Omega_{ij}\Omega_{ij} - S_{ij}S_{ij})/2, \quad (41) \quad 754
755$$

of the velocity gradient tensor to visualize vortices. 756
757

We show in Fig. 5 results of such visualizations. Figs. 5(a) and (b) show the vortices identified by isosurfaces of enstrophy (40) in turbulence in a periodic cube driven by the Taylor–Green forcing (26) and the isotropic forcing (27), respectively. We also visualize vortices in other turbulence by using the second invariant (41) of V_{ij} . Figs. 5(c), (d), and (e) show results for turbulent wake behind the cylinder, turbulent channel flow, and turbulent boundary layer, respectively. Concerning the turbulent boundary layer, Fig. 5(e-i) shows the upstream region ($Re_\theta \approx 180$), whereas Fig. 5(e-ii) visualizes the downstream region ($Re_\theta \approx 3200$ –3800). 758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782

It is evident in Fig. 5 that we observe a forest of small eddies in all the cases. In other words, we only observe the forest of fine-scale structures, and it is difficult to capture the hierarchy of vortices of different sizes. Recall that Figs. 5(a) and (b) show turbulence with sufficiently high Reynolds numbers, $Re_\lambda = 250$ and 320, respectively. However, even if we magnify the visualizations, Figs. 5(a-ii) and (b-ii), we only observe complex tubular structures, which are sometimes called worms. These worm-like structures have diameters of about 10η and length much longer than η . Though we observe apparent inhomogeneous spatial distribution of these fine-scale structures, which is indeed evidence of spatial intermittency (Frisch, 1995, § 8), we must emphasize that, as will be discussed in the next section, the cluster of fine-scale structures do *not* correspond to larger-sale eddies. Looking at the forest of fine-scale eddies in turbulent wake [Fig. 5(c)], although we may imagine that these small eddies exist around the shedding vortices, we cannot describe the hierarchy of vortices only from this visualization. This observation is similar to the case of turbulent channel flow [Fig. 5(d)], where we only observe small-scale eddies. As for the turbulent boundary layer, we notice interesting phenomena. In the upstream region [Fig. 5(e-i)], vortices triggered by the forcing (Eitel-Amor et al, 2015) are hairpin vortices. Such hairpin-shaped vortices are not artificial due to the specific tripping, but also observed in many experiments (Kline et al, 1967, e.g.). In contrast, in the visualization in the logarithmic and outer layer

Fig. 5 Forest of smallest-scale vortices in turbulence identified by the isosurface of enstrophy (a, b) or the second invariant of the velocity gradient tensor (c–e). (a) Turbulence in a periodic cube driven by the Taylor–Green force (26). (a-i) shows the entire computational domain; whereas (a-ii) is the magnification of a sub-domain shown in (a-i) with the red lines. (b) Turbulence in a periodic cube driven by the force (27). Similarly to (a), (b-i) shows the entire domain, and (b-ii) is the magnification of a sub-domain. (c) Turbulent wake behind a cylinder. (d) Turbulent channel flow. We show full domain in the streamwise direction and the half domain in the spanwise and wall-normal directions. (e-i) An upstream region ($Re_\theta \approx 180$) and (e-ii) downstream regions ($Re_\theta \approx 3200$ –3800) of the turbulent boundary layer.

in the downstream region [Fig. 5(e-ii)], we only observe, similarly to the other turbulence, fine-scale structures. In other words, we cannot identify large-scale structures of the boundary layer only from this visualization [Fig. 5(e-ii)].

As observed in Fig. 5, irrespective of the kind of turbulence, we can only identify smallest scale vortices by the quantities, such as the enstrophy (40) or the second invariant (41), related to the velocity gradient. We may explain this observation as follows. First, recall that the energy spectrum of the developed turbulence is expressed as (2) in the inertial range (3), i.e. $2\pi/L \ll k \ll 2\pi/\eta$. Therefore, the enstrophy spectrum $E_\omega(k)$ is expressed as

$$E_\omega(k) = k^2 E(k) = C \bar{\epsilon}^{\frac{2}{3}} k^{\frac{1}{3}} \quad (42)$$

Fig. 5 (continued.)

in the range. Then, the spatial average \bar{K} of the turbulent energy is estimated by

$$\bar{K} = \int_0^\infty E(k)dk \approx \int_{2\pi/L}^{2\pi/\eta} E(k)dk = \frac{3C}{2} \bar{\epsilon}^{\frac{2}{3}} \left(\frac{L}{2\pi}\right)^{\frac{2}{3}} \left[1 - \left(\frac{\eta}{L}\right)^{\frac{2}{3}}\right] \sim \bar{\epsilon}^{\frac{2}{3}} L^{\frac{2}{3}}, \quad (43)$$

which implies that the energy is determined by the largest-scale (i.e. L) vortices. In the above estimation, we have assumed that $L \gg \eta$ because the Reynolds number is sufficiently high; see (6). In contrast, the spatial average \bar{e} of the enstrophy may be estimated by

$$\bar{e} = \int_0^\infty E_\omega(k)dk \approx \int_{2\pi/L}^{2\pi/\eta} E_\omega(k)dk = \frac{3C}{4} \bar{\epsilon}^{\frac{2}{3}} \left(\frac{\eta}{2\pi}\right)^{-\frac{4}{3}} \left[1 - \left(\frac{\eta}{L}\right)^{\frac{4}{3}}\right] \sim \bar{\epsilon}^{\frac{2}{3}} \eta^{-\frac{4}{3}}, \quad (44)$$

which implies that the smallest-scale (i.e. η) vortices are relevant to determine \bar{e} ². Therefore, the enstrophy, and velocity gradient, are predominantly determined by

²Incidentally, since the spatial average \bar{e} of the energy dissipation rate is equal to $\nu\bar{e}$, (44) is consistent with the definition (4) of the Kolmogorov length.

829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

906 **Fig. 5** (continued.)
907

908 the smallest eddies. This feature is essential to investigate the hierarchy of vortices
909 in developed turbulence. To conclude, the isosurface of the velocity-gradient related
910 quantities, namely, the enstrophy (40) or the second invariant (41) of the tensor, only
911 capture the smallest vortices.

912 Since the $-5/3$ power law (2) of the energy spectrum is universal, the above feature
913 is also independent of the kind of turbulence. Therefore, when we use velocity gradient
914 to identify vortices, we always observe only smallest-scale structures. Thus, we need an
915 additional procedure to capture the hierarchy of vortices which must exist in developed
916 turbulence with a broad energy spectrum. In the next section, we can easily achieve
917 this by introducing a scale decomposition.

918
919
920

4 Hierarchy of coherent vortices	921
	922
	923
	924
	925
	926
	927
	928
	929
	930
	931
	932
	933
	934
	935
	936
	937
	938
	939
	940
	941
	942
	943
	944
	945
	946
	947
	948
	949
	950
	951
	952
	953
	954
	955
	956
	957
	958
	959
	960
	961
	962
	963
	964
	965
	966
$\hat{\mathbf{u}}_c^{(k_c)}(\mathbf{k}, t) = \begin{cases} \hat{\mathbf{u}}(\mathbf{k}, t) & \text{if } \mathbf{k} \in [k_c/\sqrt{2}, \sqrt{2}k_c] \\ \mathbf{0} & \text{otherwise} \end{cases}$	(46)
for the Fourier transform $\hat{u}_i(\mathbf{k}, t)$ of $u_i(\mathbf{x}, t)$. The corresponding real-space band-pass velocity field $\mathbf{u}_c^{(\sigma)}(\mathbf{x}, t)$ is obtained by the inverse Fourier transform of $\hat{\mathbf{u}}_c^{(k_c)}(\mathbf{k})$. This procedure is known also as Littlewood–Paley decomposition.	956
We then define the scale-decomposed vorticity as $\boldsymbol{\omega}_c^{(\sigma)} = \nabla \times \mathbf{u}_c^{(\sigma)}$ to estimate the enstrophy $ \boldsymbol{\omega}_c^{(\sigma)} ^2$ at each scale σ . Isosurfaces of this quantity are shown in Fig. 6. In these figures, the red objects are vortices at the scale of the forcing, i.e. $\sigma = 1600\eta$ [Fig. 6(a)] for the Taylor–Green forcing (26) and $\sigma = 1500\eta$ [Fig. 6(b)] for the forcing (27). Yellow and blue objects are isosurfaces of enstrophy decomposed at the 1/4 and 1/16 scales, respectively. Incidentally, the reason why we have chosen the scales with	957
	958
	959
	960
	961
	962
	963
	964
	965
	966

967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982 **Fig. 6** Scale-decomposed vortical structures in turbulence in a periodic cube driven by (a) the
983 Taylor-Green force (26) and (b) the homogeneous isotropic force (27). Red, blue, and yellow vortices
984 are visualized by isosurface of enstrophy (40) scale-decomposed at (a) $\sigma = 2\pi/k_c = 1600\eta$, 400η , and
985 100η , and at (b) 1500η , 360η , and 90η , respectively. We visualize the entire cubic domain of size (a)
986 $(2200\eta)^3$ and (b) $(2100\eta)^3$.
987

988 factor 1/4 is that vortices tend to align to the most extensional direction of the rate-
989 of-strain tensor on the 3–5 times larger scale (Leung et al, 2012). We can see that there
990 exist coherent vortices at each scale, even for scales much larger than the Kolmogorov
991 length η in both turbulence. It is difficult to observe relations between vortices at
992 different scales only from the global visualization (Fig. 6). However, as shown in the
993 following, vortices in successive length scales do have characteristic correlations.

994 First, let us examine, in detail, the hierarchy (Fig. 7) of vortices in turbulence
995 driven by the Taylor-Green forcing (26). As shown in Fig. 7(a), the largest vortices
996 (the red objects at $\sigma = 1600\eta$) are those directly sustained by the force (26). Though
997 we cannot see these four columns in the visualization [Fig. 5(a)] of the raw enstrophy
998 without the scale decomposition, they do exist in the turbulence. It is further interesting
999 to observe the next generation of coherent vortices (yellow objects at $\sigma = 400\eta$)
1000 around these red vortices [Fig. 7(a)]. In this figure, we visualize the yellow vortices
1001 only in the domain denoted by the yellow dashed lines, where four conspicuous vortex
1002 tubes exist. Note that their axis is parallel to the stretching direction in the velocity
1003 field induced by the red vortices [see also Fig. 3 of Goto et al (2017)]. This means that
1004 yellow vortices at scale 400η are stretched and amplified by the strain rate around the
1005 red ones at 1600η . We also observe that the yellow vortices tend to form the counter-
1006 rotating pairs. This tendency can be quantitatively verified in turbulence in a periodic
1007 cube irrespective of forcing (Goto et al, 2017, Fig. 8).

1008 Fig. 7(b) shows a magnification of the subdomain indicated by the solid yellow
1009 lines in Fig. 7(a). We may observe the relationship between them and smaller (blue)
1010 vortices at scale 100η . Since there exist strain-rate field around the pair of yellow
1011 vortices, the smaller blue vortices are stretched and amplified by the strain-rate field.
1012 This explains the observation that blue vortices are perpendicular to the yellow ones.

Fig. 7 Hierarchy of vortices in turbulence driven by Taylor–Green force (26). Red, yellow, blue, and white objects are vortices identified by isosurface of enstrophy scale-decomposed at $\sigma = 2\pi/k_c = 1600\eta, 400\eta, 100\eta$, and 25η , respectively. (a) We visualize red vortices in the entire computational domain of size $(2200\eta)^3$ and yellow vortices in a subdomain $(770\eta \times 900\eta \times 2200\eta)$ indicated by the yellow dashed lines. (b) Magnified view of the subdomain $(540\eta \times 900\eta \times 490\eta)$ indicated by the yellow solid lines in (a). (c) Magnified view of the subdomain $(440\eta \times 190\eta \times 340\eta)$ indicated by the white solid lines in (b).

It is also interesting to observe that two counter-rotating blue vortices form a pair. Fig. 7(c) is a magnification of the field around this counter-rotating pair. We may observe further smaller (white) vortices at scale $\sigma = 25\eta$ are, again, stretched and amplified in the strain-rate field around the pair of blue vortices. Moreover, we observe that the white vortices also form a counter-rotating pair. Therefore, they would stretch and amplify further smaller vortices in the strain-rate field around them. However, as discussed in the next paragraph, since at their scale ($\sigma = 25\eta$) the viscous effects

1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086 **Fig. 8** Hierarchy of vortices in turbulence driven by the homogeneous isotropic force (27). Yellow,
1087 blue, and white objects are vortices identified by isosurface of enstrophy scale-decomposed at $\sigma =$
1088 $2\pi/k_c = 360\eta$, 90η , and 23η , respectively. We crop the subdomains in the same snapshot of size (a)
1089 $590\eta \times 400\eta \times 480\eta$, (b) $120\eta \times 140\eta \times 180\eta$, and (c) $110\eta \times 120\eta \times 80\eta$.

1090

1091 dominate the stretching, the cascading process due to the vortex stretching terminate
1092 at this scale in the examined turbulence.

1093 We consider the observed scale-by-scale vortex stretching process in terms of its
1094 timescales. According to the argument similar to the one leading to (44), vortices with
1095 size σ have enstrophy proportional to $\bar{\epsilon}^{\frac{2}{3}}\sigma^{-\frac{4}{3}}$. This implies that their vorticity and
1096 strain rate is scaled as $\bar{\epsilon}^{\frac{1}{3}}\sigma^{-\frac{2}{3}}$. Thus, these vortices can create smaller vortices in the
1097 timescale,

$$1098 \quad \tau_s \sim \bar{\epsilon}^{-\frac{1}{3}}\sigma^{\frac{2}{3}}. \quad (47)$$

1099 On the other hand, the viscous timescale of these vortices is

$$1100 \quad \tau_v \sim \frac{\sigma^2}{\nu} \quad (48)$$

1102

1103 Therefore, if $\tau_s \lesssim \tau_v$, they can create smaller vortices by stretching before they die
1104 due to the viscosity. In fact, we may show that $\tau_s \sim \tau_v$ for σ comparable with the

Kolmogorov length η , (4), which corresponds to the size of the smallest vortices. We have also quantitatively shown that this scale-by-scale vortex stretching explains the scale-local energy transfer in turbulence (Yoneda et al, 2022, Fig. 1). 1105
1106
1107

Next, let us observe the case (Fig. 8) with the other forcing (27). Similarly to the previous case, we only need to employ the band-pass filter (46) to observe the hierarchy of vortices with different sizes. Recall that though the external force (27) inputs the energy to the system, it does not prescribe coherent structures. This explains the reason why no characteristic flow structures exist at the forcing scale; see the red objects in Fig. 6(b), which are isosurfaces of the enstrophy at the scale $\sigma = 1500\eta$. In contrast, we may observe coherent tubular vortices at smaller scales. We demonstrate this in Fig. 8. Panel (a) of this figure shows a typical example, where the yellow vortices at scale $\sigma = 360\eta$ form a counter-rotating pair. In the figure, we also show smaller vortices: namely, blue vortices at $\sigma = 90\eta$ and white ones at $\sigma = 23\eta$. It is evident that blue vortices are perpendicular to the yellow vortex pair because they align to the stretching direction in the rate-of-strain field at the scale of yellow vortices. We also observe that further smaller vortices, i.e. white objects at $\sigma = 23\eta$, are cratered around the blue vortices. Moreover, we may easily find many examples [Figs. 8(b, c)] of counter-rotating pairs of blue vortices ($\sigma = 90\eta$) in the same snapshot and the creation of smaller white vortices ($\sigma = 23\eta$) around them. In contrast to the case (Fig. 7) with the Taylor–Green forcing, largest vortices are random in turbulence driven by the homogeneous isotropic force (27). Nevertheless, smaller-scale vortices spontaneously become coherent, and they seem to have common features independent of the forcing. 1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150

Since visualizations like Figs. 7 and 8 depend on the isosurface threshold, they have ambiguity. However, the answer to the frequently asked question “Can we observe larger-scale structures if we decrease the threshold for smaller-scale vortices?” is “no”. Recall that smaller vortices are created around larger vortices, and therefore we cannot observe larger vortices even for a smaller threshold. In other words, a large vortex is not a cluster of smaller vortices. This can be demonstrated by an objective identification of vortices. Here, we use the low-pressure method (Miura and Kida, 1997; Kida and Miura, 1998) as a threshold-free identification scheme. We extend this method for the scale-decomposed velocity field (Goto et al, 2017) to objectively identify the axis of tubular vortices on each level in the hierarchy. We show thus identified vortex axes in Fig. 9. In this figure, we may see that the vortex axes are space-filling (Tsuruhashi et al, 2022) and a large-scale vortex axis is not a bundle of smaller-scale vortex axes. We also observe that though the characteristics of large-scale vortex axes depend on forcing [Figs. 9(a-i, b-i)], they are similar at smaller scales [Figs. 9(a-iii, b-iii)]. 1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150

We have explained the creation of smaller-scale eddies (i.e. the energy cascade) in terms of the scale-by-scale vortex stretching. This picture is, in fact, a classical view (Tennekes and Lumley, 1972, § 8.2), and not only ourselves (Goto, 2008, 2012; Goto et al, 2017) but also many other authors (Hussain, 1986; Melander and Hussain, 1993; Leung et al, 2012; Doan et al, 2018, e.g.) discussed the role of vortex stretching in the energy cascade. We must emphasize that we have to look for typical examples such as shown in Figs. 7 and 8 which explain the role of vortex stretching in the cascade. This is because, as shown in Fig. 9, in statistically steady turbulence, vortices at each scale are space-filling and they are sometimes weakened and sometimes strengthened. In 1141
1142
1143
1144
1145
1146
1147
1148
1149
1150

1151 (a-i)
1152 (a-ii)
1153 (a-iii)
1154
1155
1156
1157
1158
1159
1160
1161 (b-i)
1162 (b-ii)
1163 (b-iii)
1164
1165
1166
1167
1168
1169
1170
1171
1172 **Fig. 9** Hierarchy of vortex axes identified by the extended low-pressure method in turbulence in a
1173 periodic cube driven by (a) Taylor–Green force (26) and (b) the homogeneous isotropic force (27).
1174 Panels (a) and (b) are the same snapshots as in Fig. 6(a) and Fig. 6(b). The scale of the decomposition
1175 is (a-i) 1600η , (a-ii) 400η , (a-iii) 100η , (b-i) 1500η , (b-ii) 360η , and (b-iii) 90η .
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185

1176 other words, vortices at different ages coexist. Therefore, we need to find the moment
1177 of the birth of smaller vortices to show clear examples such as Figs. 7 and 8. This is
1178 not the case in evolving flow. We may easily observe events of smaller vortices creation
1179 by vortex stretching in the downstream region (Fig. 11) of turbulent wake behind a
1180 cylinder, which is examined in the next subsection, or in turbulent flow created by a
1181 collision of two vortex rings (McKeown et al., 2020) because the moment of birth of
1182 smaller vortices is apparent in these flows.
1183

1184 4.2 Turbulent wake behind a cylinder

1185 In this subsection, we examine the hierarchy of vortices in turbulent wake behind a
1186 circular cylinder. As was demonstrated in Fig. 5(c), we only observe fine vortices when
1187 we identify vortices by isosurface of the second invariant (41) of velocity gradient
1188 tensor. However, as shown in Fig. 3, Re_λ is about 100, which marginally satisfies the
1189 criterion (10) for developed turbulence, and the energy spectrum E_\parallel shown in Fig. 1
1190 also exhibits a power law indicating the existence of self-similar hierarchy of vortices.
1191 Hence, we introduce a scale decomposition similarly to the case of periodic turbulence
1192 examined in the previous subsection. However, since we do not impose a periodic
1193 boundary condition in the streamwise direction, we cannot use the Fourier band-pass
1194 filter (46) for scale decomposition.
1195

Fig. 10 Hierarchy of vortices in the recirculation region of the turbulent wake behind a cylinder. Yellow and blue objects are vortices identified by isosurface of the second invariant (41) of the velocity gradient tensor scale-decomposed at scale $\sigma = L_*/4$ and $L_*/16$. Here, L_* ($\approx 0.8D$) is defined by (52). (a) Visualization in the domain $0 \leq x/D \leq 1$, $-0.6 \leq y/D \leq 0.6$, $0.5 \leq z/D \leq 2$. The origin is set at the center of the cylinder shown with the white surface. (b) Visualization of the subdomain indicated by white thin lines in (a).

Thus, we introduce a scale-decomposition method in real space. To this, we first define the mean and fluctuation velocities as

$$\mathbf{u}(\mathbf{x}, t) = \bar{\mathbf{u}}(\mathbf{x}) + \tilde{\mathbf{u}}(\mathbf{x}, t). \quad (49)$$

Then, we coarse-grain the fluctuating velocity $\tilde{\mathbf{u}}(\mathbf{x}, t)$ by the Gaussian filter

$$\mathbf{u}^{[\sigma]}(\mathbf{x}, t) = \frac{1}{(\sqrt{2\pi}\sigma)^3} \int \tilde{\mathbf{u}}(\mathbf{x}_p, t) \exp\left[-\frac{|\mathbf{x} - \mathbf{x}_p|^2}{2\sigma^2}\right] d\mathbf{x}_p \quad (50)$$

at scale σ . Since $\mathbf{u}^{[\sigma]}(\mathbf{x}, t)$ contains the flow information at scales larger than σ , we define

$$\mathbf{u}^{(\sigma)}(\mathbf{x}, t) = \mathbf{u}^{[\sigma]}(\mathbf{x}, t) - \mathbf{u}^{[2\sigma]}(\mathbf{x}, t) \quad (51)$$

which contains flow structures scales between σ and 2σ . We expect thus defined velocity field $\mathbf{u}^{(\sigma)}$ has similar property with the one $\mathbf{u}_c^{(\sigma)}$ defined by using the Fourier band-pass filter (46).

As discussed by Fujino et al (2023) in detail, the sustaining mechanism of turbulent wake behind a cylinder is different in three distinct regions: namely, the separation shear layer, the recirculation region just behind the cylinder, and the downstream region. Since the hierarchy of vortices in the separation shear layer is not clear at the present Reynolds number ($Re_D = 5000$), in the following, we examine the hierarchy of vortices in the latter two regions.

First, we show in Fig. 10(a) the hierarchy of vortices identified by the scale decomposition by (51). In this figure, yellow and blue objects are isosurfaces of the second

1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242

1243 invariant (41) of velocity gradient tensor at the scale $\sigma = L_*/4$ and $\sigma = L_*/16$,
 1244 respectively. Here,

$$1245 \quad L_* = U_\infty / (2\pi f_*) \quad (52)$$

1246 denotes the scale of the largest vortices (i.e. the shedding vortices identified as red
 1247 objects in Fig. 11) which is defined in terms of the shedding frequency f_* (Yasuda et al,
 1248 2020). Incidentally, we have estimated f_* by the peak of the power spectrum (Fujino
 1249 et al, 2023, Fig. 2). In this recirculation region, the stationary twin vortices exist, and
 1250 its fluctuation are captured by the yellow vortices at scale $\sigma = L_*/4$. Since they are
 1251 a counter-rotating pair, a strain-rate field whose stretching direction is in y direction
 1252 [see Fig. 2(a)] exists in the region between them and the cylinder. It is this straining
 1253 field that stretches and amplifies smaller ($\sigma = L_*/16$) blue vortices whose axis is
 1254 parallel to the y direction. The process that yellow counter-rotating vortices stretch
 1255 and create smaller blue vortices is similar to those observed in turbulence driven by
 1256 the Taylor–Green vortices [Fig. 7(a)]. Incidentally, however, we must note that there
 1257 coexist blue vortices created in the nearby shear layer in the visualization (Fig. 10) as
 1258 more carefully discussed by Fujino et al (2023). Furthermore, we show in Fig. 10(b)
 1259 a subdomain of Fig. 10(a) together with the white isosurfaces of the second invariant
 1260 (41) of velocity gradient tensor without the scale decomposition. It is evident that,
 1261 due to the stretching in the strain-rate field in front of the blue vortex pair, smaller
 1262 white vortices are created. This event is also similar to those observed in turbulence
 1263 in a periodic cube (Figs. 7 and 8).

1264 Next, we examine the hierarchy of vortices in the downstream region of the wake.
 1265 The hierarchy in this region sufficiently apart from the obstacle is similar to the
 1266 turbulence in the periodic cube. As discussed in the previous subsection, the creation
 1267 process of smaller vortices in the periodic turbulence is sometimes unclear because
 1268 there coexist vortices at different ages in a snapshot. In contrast, since smaller and
 1269 smaller vortices are created successively in downstream of the wake, the process is
 1270 rather clear. We show results of the scale decomposition in Fig. 11. We immediately
 1271 notice that shedding roller vortices, which correspond to the Kármán vortex street,
 1272 are identified as red objects even in this turbulent regime at $Re_D = 5000$. These
 1273 red objects are the isosurfaces of the second invariant of the velocity gradient tensor
 1274 scale-decomposed at $\sigma = L_*$. Even though we observe some smaller-scale yellow and
 1275 blue vortices inside a roller vortex, its circulation is determined mainly by the largest
 1276 scale L_* . Since the nearest-neighbor roller vortices are counter-rotating, there exists
 1277 strain-rate field between them. Therefore, smaller (i.e. $\sigma = L_*/4$) vortices, which are
 1278 called the rib vortices are stretched, amplified, and created in the strain-rate field
 1279 [Fig. 11(a)]. We emphasize that there are characteristics in the swirling directions of
 1280 the created (yellow) rib vortices; namely, they form counter-rotating pairs which induce
 1281 compression on the side of roller vortices [Fig. 11(b)]. This explains that the (yellow)
 1282 rib vortices weaken roller vortices (their parents) by vortex compression, whereas they
 1283 stretch and create smaller (blue, $\sigma = L_*/16$) vortices in the strain-rate field in front
 1284 of the pairs. In fact, we quantitatively demonstrated that rib vortices compress and
 1285 weaken roller vortices (Fujino et al, 2023, § 5.5). In summary, in the downstream region
 1286 of the wake, the energy cascading process starting from the shedding roller vortices
 1287 sustains the hierarchy of vortices.
 1288

Fig. 11 Hierarchy of vortices at scales $\sigma = L_*$ (red), $\sigma = L_*/4$ (yellow), and $\sigma = L_*/16$ (blue) in the downstream region of turbulent wake behind a cylinder. (a) Visualization in the whole computational domain, which may be compared with the one without the scale decomposition [Fig. 5(c)]. (b) Visualization in the subdomain ($2.8 \leq x/D \leq 7$, $-2.5 \leq y/D \leq 2.5$, $2.5 \leq z/D \leq 6$) indicated by white lines in (a).

4.3 Turbulent channel flow

In this subsection, we consider the hierarchy of vortices (Fig. 12) and its sustaining mechanism in turbulent channel flow. In Fig. 12, red, yellow, and blue objects are vortices identified by the isosurface of the second invariant of the velocity gradient tensor scale-decomposed at $\sigma^+ = 960$, 240, and 60, respectively. We visualize a global field in Fig. 12(a), which shows the entire computation domain in the streamwise direction and the half domain in the spanwise and wall-normal directions. The largest

1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334

1365 **Fig. 12** Hierarchy of coherent vortices in turbulent channel flow. Red, yellow, and blue vortices are
1366 identified by the isosurface of the second invariant (41) of velocity gradient tensor scale-decomposed at
1367 $\sigma^+ = 960, 240$, and 60 . Note that $\sigma^+ = 60$ corresponds to $\sigma/\eta = 10-20$ for $y^+ \gtrsim 100$. Visualizations
1368 in (a) the same domain as in Fig. 5(d) and (b) a subdomain at the distance $1230 \leq y^+ \leq 1920$ from
1369 the wall with the streamwise and spanwise size of $\delta x^+ = 1150$ and $\delta z^+ = 1450$.

1370 (red) vortices tend to form a streetwise longitudinal vortex tube. We expect from the
1371 energy cascade picture that smaller vortices (say, yellow ones at $\sigma^+ = 240$ and blue
1372 ones at $\sigma^+ = 60$) are successively created. Though it is rather difficult to observe such
1373 events in the global visualization in Fig. 12(a), we may find examples in a magnified
1374 view such as shown in Fig. 12(b). In this panel, we see that (blue) smaller ($\sigma^+ =$
1375 60) vortices are stretched and amplified in the strain-rate field sustained around the
1376 counter-rotating pair of (yellow) larger ($\sigma^+ = 240$) vortices. This observation is similar
1377 to those in the periodic turbulence (Figs. 7 and 8) and in the turbulent wake (Figs. 10
1378 and 11).

1379
1380

However, since there coexist vortices with different ages in this turbulence [Fig. 12(a)], relations between the two different scales are not always as clear as in Fig. 12(b). This is similar to the observation in the periodic turbulence, and in contrast to the downstream of the turbulent wake (Fig. 11), where smaller vortices are successively created. Nevertheless, we emphasize that we can observe similar events like in Fig. 12(b) for turbulent channel, in Figs. 7(b, c) and Fig. 8 for periodic turbulence, and in Figs. 10(b) and 11(b) for turbulent wake. This may imply the common feature of the sustaining mechanism of small vortices in regions away from solid walls. We also emphasize that the mechanism of energy cascade in terms of vortex stretching is not only based on these visualizations but also on the quantification developed by Yoneda et al (2022, Fig. 1) and Fujino et al (2023, Fig. 10).

It may be obvious that the largest eddies in turbulence in a periodic cube are sustained by external force and those are shedding vortices or stationary twin vortices in turbulent wake behind an obstacle. Then, how are the largest eddies [i.e. red vortices in Fig. 12(a)] sustained in the turbulent channel flow? We must consider this issue depending on the distance y from the wall because, at the distance y , the largest eddies (i.e. wall-attached eddies) have size comparable with y . Then, by a simple quantification in the following, we may show that wall-attached eddies are created by the stretching due to the mean shear flow.

Taking the inner product of the vorticity equation (22) and ω , we see that the production of the enstrophy (41) due to the vortex stretching is expressed as $\omega_i S_{ij} \omega_j$. Then, we consider the contributions to this production rate of enstrophy of vortices with scale σ from two effects. One is the contribution from the twice-larger-scale rate-of-strain $S_{ij}^{(2\sigma)}$, and the other is contribution from the mean flow. Note that the former is contribution of an energy cascading process. Then, we define the ratio,

$$\Gamma(\sigma) = \left\langle \frac{\omega_i^{(\sigma)} S_{ij}^{(2\sigma)} \omega_j^{(\sigma)}}{\omega_i^{(\sigma)} \omega_i^{(\sigma)}} \right\rangle_{xz} / \left\langle \frac{\omega_i^{(\sigma)} \bar{S}_{ij} \omega_j^{(\sigma)}}{\omega_i^{(\sigma)} \omega_i^{(\sigma)}} \right\rangle_{xz} \quad (53)$$

between the two contributions. In (53), $\langle \cdot \rangle_{xz}$ denotes the average over the plane parallel to the wall, $S_{ij}^{(\sigma)}$ is the rate-of-strain tensor estimated from the velocity field $\mathbf{u}^{(\sigma)}$ scale-decomposed at σ , and $\bar{S}_{ij} = (\partial \bar{u}_i / \partial x_j + \partial \bar{u}_j / \partial x_i) / 2$ is the rate-of-strain tensor of the mean flow $\bar{\mathbf{u}}$. We estimate (53) as a function of y and σ and show results in Fig. 13(a).

By definition of Γ , when $\Gamma < 1$, vortices are directly created by the mean flow. In Fig. 13(a), the blue line indicates $\Gamma = 1$. In this figure, the red line denotes the $0.7L_c(y)$, where $L_c(y)$ is the Corrsin length at the distance y from the wall; and the black dotted line denotes $0.7\kappa y$. We can see these three lines coincide in the logarithmic layer. This coincidence can be explained as follows. First, we recall that L_c is defined by the length scale of vortices accompanied with a strain rate comparable with the mean shear rate,

$$\frac{\partial \bar{u}_x}{\partial y} \approx \frac{u_\tau}{\kappa y}. \quad (54)$$

Fig. 13 Ratio Γ defined by (53) of the contributions to the enstrophy production rate at scale σ from the twice larger strain rate $S_{ij}^{(2\sigma)}$ and the mean flow shear \bar{S}_{ij} as a function of the distance y from the wall and σ . Blue, red, and black dotted curves denote $\Gamma = 1$ and $0.7L_c(y)$, and $0.7\kappa y$. Here, $L_c(y)$ is the Corrsin length. (a) Averaged value over the spanwise and streamwise directions in turbulent channel flow. (b) Averaged value in the spanwise direction at the streamwise location corresponding to $Re_\theta = 3600$ in the turbulent boundary layer.

1445

1446 Here, we have used the logarithmic law (15) of the mean flow. Then, since the strain
1447 rate around vortices with size ℓ is estimated as

1448

$$1449 \quad \left(\frac{\bar{\epsilon}}{\ell^2} \right)^{\frac{1}{3}} \approx \left(\frac{u_\tau^3}{\kappa y \ell^2} \right)^{\frac{1}{3}} \quad (55)$$

1450 because the mean energy dissipation rate in the logarithmic layer is estimated as (15).
1451 Then, requiring that (54) and (55) are balanced at $\ell = L_c$, we obtain $L_c(y) = \kappa y$.

1452 Thus, Fig. 13(a) implies that small vortices (i.e. wall-detached eddies), which satisfy
1453

$$1454 \quad \sigma < L_c(y) \quad (\approx y) \quad (56)$$

1455 are created through energy cascade by being stretched and amplified by larger vortices.

1456 On the other hand, larger (i.e. $\sigma > L_c(y) \approx y$) vortices (i.e. wall-attached eddies)
1457 are directly created by being stretched by mean shear. Although wall-detached eddies
1458 smaller than $L_c (\approx y)$ are also stretched by the mean shear, the timescale is slower
1459 than the stretching due to larger vortices. This explains the reason why these smaller
1460 eddies are created by the energy cascading process.

1461 In summary, at the distance y from a solid wall, eddies larger than $L_c (\approx y)$ are
1462 directly created by mean-flow stretching, whereas eddies smaller than $L_c (\approx y)$ are
1463 created in strain-rate field sustained around larger vortices. In other words, in the
1464 logarithmic layer (16) of wall turbulence, the largest eddies which acquire energy from
1465 the mean flow create smaller vortices through similar process to those in periodic
1466 turbulence and downstream of turbulent wake. Fig. 13(a) clearly implies that “in
1467 region ($y^+ \gtrsim 30$ – 100) away from solid walls, small ($\sigma \lesssim L_c(y)$) vortices are created
1468

1469

1470

1471

1472

Fig. 14 (a) Coherent vortices in turbulent boundary layer at the location corresponding to $Re_\theta = 3200\text{--}3800$. Red and yellow vortices are identified by isosurface of enstrophy at scale $\sigma = 200\ell_\tau \approx 0.18\delta_{99} \approx 1.4\theta$ and $\sigma = 40\ell_\tau$, respectively. (b) Only the large-scale vortices are visualized.

through energy cascade.” This is consistent with the Kolmogorov–Richardson view of the energy cascade.

Incidentally, Fig. 13(a) also shows that in the near wall region (i.e. in the buffer layer, $y^+ \lesssim 30\text{--}100$), $L_c(y) \lesssim 10\eta$. This implies that there is no hierarchy of vortices in the buffer layer, and the vortices directly interact with mean flow. In fact, it is well-known as the self-sustaining process [SSP, [Hamilton et al \(1995\)](#)] that the single-scale streamwise vortices and streak structures interact each other to sustain themselves in the buffer layer. Therefore, we may speculate that the largest wall-attached eddies at each distance from the wall can be sustained by SSP-like process. In other words, there may exist a hierarchy of SSP [[Hwang and Bengana \(2016\)](#); see also [Marusic and Monty \(2019, § 4.1\)](#)] in the logarithmic layer of wall turbulence at high Reynolds numbers.

1519 **4.4 Turbulent boundary layer**

1520 In this subsection, we consider the vortices in the turbulent boundary layer. Since this
 1521 flow is developing in the streamwise direction, it is more difficult to numerically simu-
 1522 late flow at sufficiently high Reynolds numbers than turbulent channel flow. Although
 1523 we have employed numerical techniques (§ 2.4) such as a combination of two DNS
 1524 [Fig. 2(c)] to overcome this difficulty, the achieved Taylor-length Reynolds number (7)
 1525 of the simulated turbulence is $Re_\lambda \lesssim 75$ shown by squares in Fig. 3 even in the devel-
 1526 oped region where $Re_\theta = 3600$. Therefore, this is not fully developed turbulence (10)
 1527 and the we cannot observe a power law of the energy spectrum shown by squares in
 1528 Fig. 1.

1529 We show the scale-decomposed vortices in Fig. 14(a), which was obtained by the
 1530 method similar to those used for the turbulent wake (Figs. 10 and 11) and turbulent
 1531 channel flow (Fig. 12). In Fig. 14(a), the red and yellow objects are vortices identified
 1532 by isosurface of the second invariant (41) of velocity gradient tensor scale-decomposed
 1533 at $\sigma^+ = 200$ and $\sigma^+ = 50$, respectively. Though we can observe coherent vortices at
 1534 these two distinct scales, we cannot observe simple relationships, like in the turbulent
 1535 channel flow [Fig. 12(b)], between vortices at these scales in the narrow logarithmic
 1536 layer because of the smallness of the Reynolds number ($Re_\lambda \lesssim 75$ and $Re_\tau \lesssim 1380$).
 1537

1538 Nevertheless, it is interesting to examine the quantity Γ defined by (53) in the
 1539 previous subsection in this flow [Fig. 13(b)]. We can see the similar observations to the
 1540 turbulent channel flow, though the logarithmic range is rather narrow (say, $100 \lesssim y^+ \lesssim$
 1541 150). More precisely, vortices smaller than the Corrsin length $L_c(y) \approx \kappa y$ (i.e. wall-
 1542 detached eddies) are created by stretching by larger vortices, whereas vortices larger
 1543 than L_c (i.e. wall-attached eddies) are directly created by mean flow. This implies that
 1544 the hierarchy of vortices in turbulent channel flow and turbulent boundary layer may
 1545 be sustained in a similar manner. Therefore, analyzing turbulence at higher Reynolds
 1546 numbers (say, twice larger R_λ , which corresponds to about four times larger Re_θ),
 1547 we may observe a hierarchical structure of coherent vortices even in the turbulent
 1548 boundary layer.

1549 It is further interesting to observe largest wall-attached eddies in the turbulent
 1550 boundary layer. Red vortices shown in Fig. 14 are at the scale of $\sigma = 200\ell_\tau \approx 0.18\delta_{99} \approx$
 1551 1.4θ . In other words, the vortices in Fig. 14 are the largest wall-attached eddies,
 1552 which are obviously hairpin-shaped. Recall that, similarly to other turbulence, we
 1553 cannot observe large-scale vortices by the visualization without scale decomposition
 1554 [Fig. 5(e)]. Once we use the scale decomposition, it is easy to identify larger vortices.
 1555 The difference is obvious by comparing the (red) large vortices shown in Fig. 14 and
 1556 the fine vortices shown in Fig. 5(e); note that we visualize same flow at same location
 1557 corresponding to $Re_\theta = 3200\text{--}3800$. Though there is no hairpin vortices at the smallest
 1558 scale [Fig. 5(e)], there are many hairpins in largest scales (Fig. 14). Incidentally, the
 1559 largest vortices in turbulent channel flow (i.e. red vortices shown in Fig. 12(a)) are
 1560 not hairpin-like but many of them look like large streamwise longitudinal vortices.
 1561 Although as examined in Fig. 13, these largest vortices are sustained by the direct
 1562 action of the mean shear in both of these wall turbulence, their shape is different. This
 1563 may be caused by the difference in the flow in the outer layer; namely, it is laminar in
 1564 boundary layers and turbulent in channel flow.

5 Conclusions	1565
From the beginning of this century, direct numerical simulations (DNS) of developed turbulence at high Reynolds numbers were extensively conducted by many authors. In this article, on the basis of our previous studies on the analysis of DNS data of turbulence in a periodic cube (Goto, 2008, 2012; Goto et al, 2017), turbulent wake behind a circular cylinder (Fujino et al, 2023), turbulent channel flow (Motoori and Goto, 2021), and turbulent boundary layer (Motoori and Goto, 2019, 2020), we have reviewed the knowledge about the hierarchy of coherent vortices in these turbulent flows.	1566
In these DNS, a sufficiently large number of degrees of freedom are employed ($1024^3 \approx 10^9$ for the periodic turbulence, $8192 \times 2560 \times 1024 \approx 2 \times 10^{10}$ for the wake, $2048^2 \times 1081 \approx 4 \times 10^9$ for the channel flow, and $8064 \times 640 \times 768 \approx 4 \times 10^9$ for the boundary layer) so that we can numerically realize developed turbulence. More concretely, the Taylor-length Reynolds number (7), which is an indicator of the development of turbulence, is $Re_\lambda \approx 250\text{--}320$ (turbulence in a periodic cube), $Re_\lambda \lesssim 140$ (turbulent channel flow), $Re_\lambda \approx 100$ (turbulent wake behind a cylinder), $Re_\lambda \lesssim 75$ (turbulent boundary layer) see Fig. 3. According to the criterion (10), by Dimotakis (2000), examined flows are developed turbulence except for the boundary layer. In fact, we observe broad energy spectra (Fig. 1) for these flow, in which, therefore, there is a hierarchy of vortices with different sizes.	1567
However, if we identify vortices in terms of the quantities related to the velocity gradient tensor, such as the enstrophy (40) or its second invariant (41), we always observe forests of fine-scale vortices (Fig. 5). This observation is explained by a simple argument given in § 3; since the energy spectrum obeys the $-5/3$ power law (2) of wavenumber in the inertial range (3), the velocity gradient is predominantly determined by the smallest scale eddies.	1568
Therefore, as demonstrated in § 4, to capture the hierarchy of vortices with different sizes, we need scale decomposition of velocity fields. In the present study, we have shown that we use Fourier band-pass filter (46) for the periodic turbulence and the combination (51) of two Gaussian filters (50) in real space for the other cases to identify the hierarchy of coherent vortices shown in Figs. 6, 10, 11, 12, and 14. In other words, we only need a scale decomposition to observe the hierarchy of vortices.	1569
In the periodic turbulence, the largest vortices are sustained by external force and their features depend on the force. Smaller vortices acquire their energy due to vortex stretching from larger vortices (Yoneda et al, 2022, Fig. 1). Created vortices are tubular and they tend to form counter-rotating pairs (Goto et al, 2017, Fig. 8). In fact, we can observe concrete examples that smaller vortices are created, by being stretched, in strain-rate field around a counter-rotating pair of larger vortex tubes (Figs. 7 and 8). Here, we reemphasize that since there coexist numerous vortices at different ages (Fig. 9) in statistically stationary turbulence, we observe clear events such as in these figures only when the moment of the birth of smaller vortices.	1570
The sustaining mechanism of hierarchy of vortices in the turbulent wake behind a cylinder depends on the regions. In the recirculation region just behind the cylinder, turbulent twin vortices are stationary and they play a role similar to the turbulent Taylor–Green vortices in the flow examined in Fig. 7. This is the reason why we	1571
	1572
	1573
	1574
	1575
	1576
	1577
	1578
	1579
	1580
	1581
	1582
	1583
	1584
	1585
	1586
	1587
	1588
	1589
	1590
	1591
	1592
	1593
	1594
	1595
	1596
	1597
	1598
	1599
	1600
	1601
	1602
	1603
	1604
	1605
	1606
	1607
	1608
	1609
	1610

1611 observe similar hierarchy of coherent vortices in the recirculation region (Fig. 10). In
1612 the downstream region (Fig. 11), we observe clear successive creations of rib vortices
1613 around roller, i.e. shedding, vortices; and those of smaller vortices around rib vortices.
1614 We may also understand these events by the process of vortex stretching in strain-rate
1615 fields around larger counter-rotating vortex pairs. Since the moment of birth of smaller
1616 vortices is clear, these events are also clear in the downstream region of the wake.

1617 For wall turbulence, we must consider the hierarchy of vortices depending on the
1618 distance y from the wall. We have demonstrated this by using the data (Fig. 13)
1619 of developed turbulent channel flow. The largest vortices (i.e. wall-attached eddies)
1620 at the distance y from the wall have a size comparable to y , and these vortices are
1621 directly created by being stretched by mean shear. On the other hand, smaller vortices
1622 (i.e. wall-detached eddies) are created by the similar process in turbulent in a periodic
1623 cube; namely, vortex stretching in strain-rate field around larger vortices. In fact we
1624 can find concrete events to support this picture (Fig. 12). We may also see that in the
1625 near-wall regions ($y^+ \lesssim 30$ –100, the buffer layer), there exist only large vortices, which
1626 are sustained by interaction with mean flow fluctuation (i.e. streaks). Therefore, the
1627 energy cascade only takes place in logarithmic and outer layers, $y^+ \gtrsim 30$ –100. This
1628 is consistent with the classical view that [Kolmogorov \(1941\)](#)’s similarity hypothesis
1629 holds for small vortices in regions away from solid walls.

1630 We may explain the hierarchy of vortices and its sustaining mechanism in turbu-
1631 lent boundary layer in a similar manner to turbulent channel flow. More concretely,
1632 wall-attached eddies are directly created by mean shear flow, whereas smaller wall-
1633 detached eddies are created by the energy cascade process from larger eddies. Since the
1634 Reynolds number of examined turbulent boundary layer is low ($Re_\lambda \lesssim 75$), we can-
1635 not observe a self-similar hierarchical structure of vortices. Nevertheless, the Reynolds
1636 number is large enough to observe the scale separation between the smallest vortices
1637 [Fig. 5(e)] and the largest ones (Fig. 14). It is of importance to observe that the largest
1638 wall-attached eddies, which are captured by the scale-decomposition, are hairpin-
1639 shaped vortices (Fig. 14) even in the developed region. This obviation is consistent
1640 with previous experiments ([Head and Bandyopadhyay, 1981](#); [Adrian et al, 2000](#)).

1641 As demonstrated above, for many kinds of canonical flows, DNS of fully developed
1642 turbulence, which satisfy the criterion (10), are feasible. Thanks to this situation, we
1643 may develop detailed analysis which may reveal the origin of small-scale universality
1644 ([Kolmogorov, 1941](#)). Recall that we can also confirm this small-scale similarity in the
1645 energy spectrum shown in Fig. 1. In next a few decades, DNS of turbulence at further
1646 higher Reynolds numbers will be conducted to show these similarity more clearly. In
1647 other words, such DNS may not change the demonstrated picture in a qualitative
1648 manner. Therefore, the next targets of turbulence research are shifting to turbulence
1649 of more complex fluids such as magneto-hydrodynamic, non-Newtonian, or multiphase
1650 fluids.

1651

1652 Acknowledgments

1653

1654 We thank Dr Lozano-Durán and Prof Jiménez for providing us with their turbulent
1655 channel data. The DNS were conducted under the supports of the NIFS Col-
1656 laboration Research Programs (08KTBL006, 11KNSS023, 13KNSS043, 15KNSS066,

17KNSS101, 18KNSS108, 20KNSS145, 22KISS010) and the HPCI System Research projects (hp210207, hp210075, hp220232). Our studies were partly supported by JSPS Grants-in-Aids for Scientific Research (16H04268, 20H02068, 20H01819, 20J10399, 21K20403, 23K13253).	1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
Declarations	1662 1663 1664 1665 1666 1667 1668 1669
On behalf of all authors, the corresponding author states that there is no conflict of interest.	1669
References	1670 1671 1672 1673
Abe H, Kawamura H, Matsuo Y (2001) Direct numerical simulation of a fully developed turbulent channel flow with respect to the reynolds number dependence. <i>J Fluids Eng</i> 123:382–393	1674 1675 1676
Adrian RJ, Meinhart CD, Tomkins CD (2000) Vortex organization in the outer region of the turbulent boundary layer. <i>J Fluid Mech</i> 422:1–54	1677 1678
Batchelor GK (1953) The theory of homogeneous turbulence. Cambridge Univ. Press.	1679 1680
Biferale L (2003) Shell models of energy cascade in turbulence. <i>Ann Rev Fluid Mech</i> 35:441–468	1681 1682 1683
Borue V, Orszag SA (1998) Local energy flux and subgrid-scale statistics in three-dimensional turbulence. <i>J Fluid Mech</i> 366:1–31	1684 1685 1686
Brenner MP, Hormoz S, Pumir A (2016) Potential singularity mechanism for the euler equations. <i>Phys Rev Fluids</i> 1:084503	1687 1688
Canuto C, Hussaini MY, Quarteroni A, et al (2006) Spectral Methods. Springer	1689 1690 1691
Carbone M, Bragg AD (2020) Is vortex stretching the main cause of the turbulent energy cascade? <i>J Fluid Mech</i> 883:R2	1692 1693 1694
Cardesa JI, Alberto VM, Jiménez J (2017) The turbulent cascade in five dimensions. <i>Science</i> 357:782	1695 1696 1697
Davidson PA (2004) Turbulence—An introduction for scientists and engineers. Oxford Univ. Press.	1698 1699 1700
Davidson PA, Morishita K, Kaneda Y (2008) On the generation and flux of enstrophy in isotropic turbulence. <i>J Turb</i> p N42	1701 1702
del Álamo JC, Jiménez J (2003) Spectra of the very large anisotropic scales in turbulent channels. <i>Phys Fluids</i> 15:L41–L44	

1703 del Álamo JC, Jiménez J, Zandonade P, et al (2004) Scaling of the energy spectra of
1704 turbulent channels. *J Fluid Mech* 500:135–144

1705

1706 Dimotakis PE (2000) The mixing transition in turbulent flows. *J Fluid Mech* 409:69–98

1707

1708 Doan NA, Swaminathan N, Davidson PA, et al (2018) Scale locality of the energy
1709 cascade using real space quantities. *Phys Rev Fluids* 3:084601.

1710 Domaradzki JA, Rogallo RS (1990) Local energy transfer and nonlocal interactions in
1711 homogeneous, isotropic turbulence. *Phys Fluids A* 2:413–426

1712

1713 Eitel-Amor G, Örlü R, Schlatter P (2014) Simulation and validation of a spatially
1714 evolving turbulent boundary layer up to $Re_\theta=8300$. *Int J Heat Fluid Flow* 47:57–69

1715

1716 Eitel-Amor G, Örlü R, Schlatter P, et al (2015) Hairpin vortices in turbulent boundary
1717 layers. *Phys Fluids* 27:025108

1718

1719 Frisch U (1995) Turbulence, The Legacy of A. N. Kolmogorov. Cambridge Univ. Press

1720

1721 Fujino J, Motoori Y, Goto S (2023) Hierarchy of coherent vortices in turbulence behind
1722 a cylinder. *J Fluid Mech* 975

1723

1724 Goto S (2008) A physical mechanism of the energy cascade in homogeneous isotropic
1725 turbulence. *J Fluid Mech* 605:355–366

1726

1727 Goto S (2012) Coherent structures and energy cascade in homogeneous turbulence.
1728 *Prog Theo Phys Suppl* 195:139–156

1729

1730 Goto S, Saito Y, Kawahara G (2017) Hierarchy of antiparallel vortex tubes in spatially
1731 periodic turbulence at high reynolds numbers. *Phys Rev Fluids* 2:064603

1732

1733 Hamilton JM, Kim J, Waleffe F (1995) Regeneration mechanisms of near-wall
1734 turbulence structures. *J Fluid Mech* 287:317–348

1735

1736 Head M, Bandyopadhyay P (1981) New aspects of turbulent boundary-layer structure.
1737 *J Fluid Mech* 107:297–338

1738 Hoyas S, Jiménez J (2006) Scaling of the velocity fluctuations in turbulent channels
1739 up to $Re_\tau = 2003$. *Phys Fluids* 18:011702

1740

1741 Hoyas S, Oberlack M, Alcántara-Ávila F, et al (2022) Wall turbulence at high friction
1742 Reynolds numbers. *Phys Rev Fluids* 7:014602

1743

1744 Hussain F (1986) Coherent structures and turbulence. *J Fluid Mech* 173:303–356

1745

1746 Hussain F, Duraisamy K (2011) Mechanics of viscous vortex reconnection. *Phys Fluids*
1747 23:021701

1748

Hwang J, Lee J, Sung HJ, et al (2016) Inner-outer interactions of large-scale structures in turbulent channel. <i>J Fluid Mech</i> 790:128–157	1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
Hwang Y, Bengana Y (2016) Self-sustaining process of minimal attached eddies in turbulent channel flow. <i>J Fluid Mech</i> 795:708–738	
Ishihara T, Kaneda Y, Morishita K, et al (2020) Second-order velocity structure functions in direct numerical simulations of turbulence with R_λ up to 2250. <i>Phys Rev Fluids</i> 5:104608	
Johnson PL (2020) Energy transfer from large to small scales in turbulence by multiscale nonlinear strain and vorticity interactions. <i>Phys Rev Lett</i> 124:104501	
Johnson PL (2021) On the role of vorticity stretching and strain self-amplification in the turbulence energy cascade. <i>J Fluid Mech</i> 922:A3	
Kajishima T, Taira K (2017) Computational Fluid Dynamics: Incompressible Turbulent flows. Springer	
Kaneda Y, Ishihara T, Yokokawa M, et al (2003) Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box. <i>Phys Fluids</i> 15:L21–L24	
Kempe T, Fröhlich J (2012) An improved immersed boundary method with direct forcing for the simulation of particle laden flows. <i>J Comput Phys</i> 231:3663	
Kerr RM (2013) Swirling, turbulent vortex rings formed from a chain reaction of reconnection events. <i>Phys Fluids</i> 25:065101	
Khujadze G, Oberlack M (2004) DNS and scaling laws from new symmetry groups of ZPG turbulent boundary layer flow. <i>Theo Comput Fluid Dyn</i> 18:391–411	
Kida S, Miura H (1998) Swirl condition in low-pressure vortex. <i>J Phys Soc Japan</i> 67:2166–2169	
Kim J, Moin P, Moser R (1987) Turbulence statistics in fully developed channel flow at low reynolds number. <i>J Fluid Mech</i> 177:133–166	
Kim KC, Adrian RJ (1999) Very large-scale motion in the outer layer. <i>Phys Fluids</i> 11:417–422	
Kline SJ, Reynolds WC, Schraub F, et al (1967) The structure of turbulent boundary layers. <i>J Fluid Mech</i> 30:741–773	
Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers. <i>Dokl Akad Nauk SSSR</i> 30:301–305. English translation in <i>Proc. Roy. Soc. London, Ser. A</i> 434 , 9–13 (1991)	

1795 Komminaho J, Skote M (2002) Reynolds stress budgets in Couette and boundary layer
1796 flows. *Flow, Turbulence and Combustion* 68:167–192
1797

1798 Lamorgese AG, Caughey DA, Pope SB (2005) Direct numerical simulation of
1799 homogeneous turbulence with hyperviscosity. *Phys Fluids A* 17:015106
1800

1801 Lee J, Lee JH, Choi JI, et al (2014) Spatial organization of large- and very-large-scale
1802 motions in a turbulent channel flow. *J Fluid Mech* 749:818–840
1803

1804 Lee J, Sung HJ, Zaki TA (2017) Signature of large-scale motions on turbulent/non-
1805 turbulent interface in boundary layers. *J Fluid Mech* 819:165–187
1806

1807 Lele SK (1992) Compact finite difference schemes with spectral-like resolution. *J
1808 Comput Phys* 103:16–42
1809

1810 Leung T, Swaminathan N, Davidson PA (2012) Geometry and interaction of structures
1811 in homogeneous isotropic turbulence. *J Fluid Mech* 710:453–481
1812

1813 Lozano-Durán A, Jiménez J (2014) Effect of the computational domain on direct
1814 simulations of turbulent channels up to $Re_\tau = 4200$. *Phys Fluids* 26:011702
1815

1816 Lozano-Durán A, Holzner M, Jiménez J (2016) Multiscale analysis of the topological
1817 invariants in the logarithmic region of turbulent channels at a friction Reynolds
1818 number of 932. *J Fluid Mech* 803:356–394
1819

1820 Ma X, Karamanos GS, Karniadakis G (2000) Dynamics and low-dimensionality of a
1821 turbulent near wake. *J Fluid Mech* 410:29–65
1822

1823 Marusic I, Monty JP (2019) Attached eddy model of wall turbulence. *Ann Rev Fluid
1824 Mech* 51:49–74
1825

1826 McKeown R, Ostilla-Mónico R, Pumir A, et al (2018) Cascade leading to the
1827 emergence of small structures in vortex ring collisions. *Phys Rev Fluids* 3:124702
1828

1829 McKeown R, Ostilla-Mónico R, Pumir A, et al (2020) Turbulence generation through
1830 an iterative cascade of the elliptical instability. *Science Advances* 6:eaaz2717
1831

1832 McKeown R, Pumir A, Rubinstein SM, et al (2023) Energy transfer and vortex
1833 structures: visualizing the incompressible turbulent energy cascade. *New J Phys*
1834 25:103029
1835

1836 Melander MV, Hussain F (1988) Cut-and-connect of two antiparallel vortex tubes.
1837 Stanford Univ, *Proceedings of the 1988 Summer Program* pp 257–286
1838

1839 Melander MV, Hussain F (1993) Coupling between a coherent structure and fine-scale
1840 turbulence. *Phys Rev E* 48:2669–2689

Miura H, Kida S (1997) Identification of tubular vortices in turbulence. <i>J Phys Soc Japan</i> 66:1331–1334	1841 1842 1843
Motoori Y, Goto S (2019) Generation mechanism of a hierarchy of vortices in a turbulent boundary layer. <i>J Fluid Mech</i> 865:1085–1109	1844 1845
Motoori Y, Goto S (2020) Hairpin vortices in the largest scale of turbulent boundary layers. <i>Int J Heat Fluid Flow</i> 86:108658	1846 1847 1848
Motoori Y, Goto S (2021) Hierarchy of coherent structures and real-space energy transfer in turbulent channel flow. <i>J Fluid Mech</i> 911:A27	1849 1850 1851
Ohkitani K, Kida S (1992) Triad interactions in a forced turbulence. <i>Phys Fluids A</i> 4:794–802	1852 1853 1854
Orszag SA (1971) Accurate solution of the orr–sommerfeld stability equation. <i>J Fluid Mech</i> 50:689–703	1855 1856 1857
Orszag SA, Patterson GS (1972) Numerical simulation of three-dimensional homogeneous isotropic turbulence. <i>Phys Rev Lett</i> 28:76–79	1858 1859 1860
Paul I, Papadakis G, Vassilicos J (2017) Genesis and evolution of velocity gradients in near-field spatially developing turbulence. <i>J Fluid Mech</i> 815:295–332	1861 1862
Richardson LF (1922) Weather Prediction by Numerical Process. Cambridge Univ. Press.	1863 1864 1865
Sagaut P, Cambon C (2018) Homogeneous turbulence dynamics, 2nd Edition. Springer	1866 1867
Schlatter P, Örlü R (2010) Assessment of direct numerical simulation data of turbulent boundary layers. <i>J Fluid Mech</i> 659:116–126	1868 1869 1870
Schlatter P, Li Q, Örlü R, et al (2014) On the near-wall vortical structures at moderate Reynolds numbers. <i>European J Mech B/Fluids</i> 48:75–93	1871 1872 1873
Sillero JA, Jiménez J, Moser RD (2013) One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to $\delta^+ \approx 2000$. <i>Phys Fluids</i> 25:105102	1874 1875
Simens MP, J. J. S. H, et al (2009) A high-resolution code for turbulent boundary layers. <i>J Comput Phys</i> 228:4218–4231	1876 1877 1878
Spalart PR (1988) Direct simulation of a turbulent boundary layer up to $R_\theta = 1410$. <i>J Fluid Mech</i> 187:61–98	1879 1880 1881
Sreenivasan KR (1995) On the universality of the kolmogorov constant. <i>Phys Fluids</i> 7:2778–2784	1882 1883 1884 1885 1886

1887 Tanahashi M, Kang SJ, Miyamoto T, et al (2004) Scaling law of fine scale eddies in
1888 turbulent channel flows up to $Re_\tau = 800$. International journal of heat and fluid flow
1889 25:331–340

1890

1891 Taylor GI (1935) Statistical theory of turbulence. Proc Roy Soc A 151:421–444

1892

1893 Taylor GI (1938) Production and dissipation of vorticity in a turbulent fluid.
1894 Proc Roy Soc London A 164:15–23

1895

1896 Tennekes H, Lumley JL (1972) A First Course in Turbulence. M.I.T. Press, Cambridge,
1897 Mass.

1898

1899 Tomboulides A, Orszag S, Karniadakis G (1993) Direct and large-eddy simulations of
1900 axisymmetric wakes. In: 31st Aerospace Sciences Meeting, p 546

1901

1902 Tsinober A (2001) An informal introduction to turbulence. Kluwer Academic Publishers

1903

1904 Tsuruhashi T, Goto S, Oka S, et al (2022) Self-similar hierarchy of coherent tubular
1905 vortices in turbulence. Phil Tran Roy Soc A 380:20210053

1906

1907 Uhlmann M (2005) An immersed boundary method with direct forcing for the
1908 simulation of particulate flows. J Comput Phys 209:448

1909

1910 Vela-Martín A, Jiménez J (2021) Entropy, irreversibility and cascades in the inertial
1911 range of isotropic turbulence. J Fluid Mech 915:A36

1912

1913 Yamada M, Ohkitani K (1987) Lyapunov spectrum of a chaotic model of three-
1914 dimensional turbulence. J Phys Soc Japan 56:4210–4213

1915

1916 Yamamoto Y, Tsuji Y (2018) Numerical evidence of logarithmic regions in channel
1917 flow at $Re_\tau = 8000$. Phys Rev Fluids 3:012602

1918

1919 Yao H, Schnaubelt M, Szalay AS, et al (2024) Comparing local energy cascade rates
1920 in isotropic turbulence using structure-function and filtering formulations. J Fluid
1921 Mech 980:A42

1922

1923 Yao J, Hussain F (2020) A physical model of turbulence cascade via vortex reconne-
1924 cation sequence and avalanche. J Fluid Mech 883:A51

1925

1926 Yasuda T, Goto S, Vassilicos JC (2020) Formation of power-law scalings of spectra
1927 and multiscale coherent structures in near-field of grid-generated turbulence. Phys
1928 Rev Fluids 5:014601

1929

1930 Yoneda T, Goto S, Tsuruhashi T (2022) Mathematical reformulation of the
1931 Kolmogorov-Richardson energy cascade in terms of vortex stretching. Nonlinearity
1932 35:1380–1401