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Abstract

We review our recent studies on the hierarchy of coherent vortices in high-
Reynolds-number turbulence of an incompressible neutral fluid, which were
conducted through analyses of data obtained by direct numerical simulations of
the Navier–Stokes equation. We show results on turbulence under four differ-
ent boundary conditions: namely, turbulence in a periodic cube, turbulent wake
behind a circular cylinder, turbulence between a pair of parallel planes (i.e. tur-
bulent plane Poiseuille flow), and a zero-pressure gradient turbulent boundary
layer. By decomposing each of these turbulent fields into different length scales,
we show that turbulence is composed of the hierarchy of coherent vortices with
different sizes. More concretely, in a region apart from solid walls, each level of
the hierarchy consists of tubular vortices and they tend to form counter-rotating
pairs. It is a strain-rate field around them that stretches and amplifies smaller
vortices. In other words, the energy cascade in turbulence away from walls is not
caused by breakups of larger eddies, but vortex stretching of smaller eddies in
larger-scale strain-rate fields. In near-wall regions, the sustaining mechanism of
vortices depends on their scale, which we need to consider depending on the dis-
tance from a wall. Large vortices (i.e. wall-attached eddies), whose diameter is
as large as the distance from a wall, are sustained by the mean-flow stretching,
whereas smaller vortices (i.e. wall-detached eddies), whose diameter is smaller
than the distance, are created by being stretched by larger vortices. The lat-
ter mechanism corresponds to the energy cascade similarly observed in wall-free
turbulence. Scale decomposition can also reveal the largest vortices in each tur-
bulence, which depends on the boundary condition. It is particularly important
that the largest wall-attached eddies in the turbulent boundary layer are hairpin
vortices even in downstream regions.
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1 Introduction

1.1 Kolmogorov similarity and energy cascade

The Reynolds number defined as

Re = U0L0/ν (1)

determines flow state under a fixed flow condition. Here, ν, U0, and L0 denote the
kinematic viscosity of the fluid, the representative velocity and length of the boundary
condition or the external forcing. In general, when Re is larger than a few thousands,
flow becomes turbulent; and for larger Re, turbulence becomes fully developed. The
energy spectrum E(k) of developed turbulence is broad over a range of wavenumber k.
More precisely, according to Kolmogorov (1941)’s similarity hypothesis (Frisch, 1995,
§ 6), the energy spectrum obeys a power-law,

E(k) = C ϵ
2
3 k−

5
3 , (2)

in the wavenumber range

2π/L ≪ k ≪ 2π/η (inertial range) (3)

corresponding to the length-scale range between the viscous scale (i.e. the Kolmogorov
length),

η = ϵ−
1
4 ν

3
4 , (4)

where ϵ denotes the average dissipation rate of the turbulent kinetic energy per unit
mass, and the velocity correlation length (i.e. the integral length), L. The constant C
in (2) is called the Kolmogorov constant, which is universal irrespective of the kinds
of turbulence (Sreenivasan, 1995).

The power law (2) of the energy spectrum implies that developed turbulence is
statistically self-similar in scales between η and L, and it is composed of vortices with
various sizes. By substituting Taylor (1935)’s dissipation law (Tennekes and Lumley,
1972, § 1.5),

ϵ ∼ u′3/L , (5)

where u′ is the standard deviation of a component of turbulent velocity, into (4), we
express the scale ratio between the largest and smallest scales as

L/η ∼ Re
3
4 (6)

in terms of the Reynolds number Re. Here, we define Re, (1), by using u′ and L for U0

and L0, respectively. The relation (6) means that the number of levels in the hierarchy
of vortices increases with Re.

We usually understand that the origin of Kolmogorov (1941)’s similarity is in the
so-called energy cascade. Richardson (1922, p. 66)’s famous verse,

big whirls have little whirls that feed on their velocity, and little whirls have lesser whirls
and so on to viscosity,
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adequately describes the cascade (i.e. inter-scale transfer) of energy in turbulence:
that is, energy injected by external force or mean flow to largest scales (i.e. the inte-
gral length L) transfers to smaller scales in a scale-by-scale manner, and the energy
reached at the smallest scale (i.e. the Kolmogorov length η) is dissipated due to the
viscosity. Since Richardson (1922)’s verse gives only qualitative description of the
energy cascade, there were numerous studies on the process. For example, it was
numerically shown that the energy transfers from low-wavenumber Fourier modes to
higher-wavenumber modes in turbulence in a periodic cube (Domaradzki and Rogallo,
1990; Ohkitani and Kida, 1992). It is also well-known that the cascade models such
as shell models (Yamada and Ohkitani, 1987; Biferale, 2003), which were developed
to mimic the energy transfer in the wavenumber space, successfully describe impor-
tant statistics of turbulence such as Kolmogorov’s similarity and its corrections due
to intermittency (Frisch, 1995, Chap. 8).

1.2 Mechanisms of energy cascade in real space

As mentioned above, Kolmogorov (1941)’s similarity is explained by the concept of
energy cascade, i.e. the scale-by-scale energy transfer from larger to smaller scales in
turbulence. Although many researchers tried to reveal a concrete image of the hierar-
chy of vortices of various sizes, which is described by Richardson (1922)’s verse and
depicted by the frequently used schematic (Frisch, 1995, Fig. 7.2), and to explain the
physical mechanism of energy cascade, there is still a large room to conclude its ele-
mentary mechanism in real space (Sagaut and Cambon, 2018, § 4.11.2). In fact, several
mechanisms describing energy cascade have been proposed, and here we summarize
them.

First, we introduce the mechanism in terms of vortex stretching. Since Taylor
(1938) pointed out the importance of vortex stretching in turbulence generation, the
picture of energy cascade by vortex stretching has been a classical view. For exam-
ple, the textbook by Tennekes and Lumley (1972, § 8.2) describes energy cascade in
terms of this mechanism. Furthermore, recent direct numerical simulations (DNS), in
which the equation of motion for fluid is numerically integrated without modeling,
helped us to demonstrate the evidence that vortex stretching contributes to the cas-
cade (Davidson et al, 2008; Leung et al, 2012; Lozano-Durán et al, 2016; Doan et al,
2018). We also conducted a series of studies (Goto, 2008, 2012; Goto et al, 2017) from
this viewpoint. Although this mechanism seems reasonable as described in the rest of
the present article, there is no consensus that this is the only mechanism describing
the cascade (Davidson, 2004, § 5.1.2).

Another important picture of the energy cascade is due to vortex reconnections.
Since smaller vortices can be created during the reconnection of a counter-rotating
pair of vortex tubes, this may be a primary mechanism of the cascade. Hussain and his
coworkers have developed this picture since the last century (Melander and Hussain,
1988; Hussain and Duraisamy, 2011; Yao and Hussain, 2020), and, in particular, Yao
and Hussain (2020) recently showed by DNS that successive reconnections can lead
to the energy cascade. Brenner et al (2016) also referred to this mechanism in the
study on the singularity formation in an inviscid fluid. In laboratory experiments on
the collision of two vortex rings (McKeown et al, 2018, 2020) and the related study
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(McKeown et al, 2023), concrete processes of vortex reconnections on different scales
were captured. Furthermore, Kerr (2013) also suggested another mechanism of the
cascade in terms of vortex reconnections.

Here, it is important to note that the strain rate, rather than the vorticity, is
responsible for the energy flux and dissipation. In fact, Tsinober (2001, Chap. 6)
pointed out the importance of amplification of not only the vorticity but also the
strain rate, and several recent studies (Paul et al, 2017; Carbone and Bragg, 2020;
Johnson, 2020; Vela-Mart́ın and Jiménez, 2021) claimed the importance of the strain-
rate self-amplification. However, this is also under debate as Johnson (2021) concluded
that the strain-rate amplification and the vortex stretching are equally important for
inter-scale energy transfer.

1.3 Current status of DNS of turbulence

The preceding subsection describes that there is no consensus on the physical mech-
anism of energy cascade in real space. However, this situation is changing in recent
years as DNS studies of turbulence have led to more detailed data analysis [see Yao
et al (2024) for a recent example]. Since, in principle, DNS can provide time-series of
three-dimensional structures and detailed information on interactions between scales,
we expect that the actual hierarchy of vortices and the physical mechanism of energy
cascade will be understood in the near future.

We have emphasized at the beginning of this article that the Reynolds number
characterizes flow. Therefore, the current status of DNS study of turbulence is also
quantified by the Reynolds number. However, Re in (1) is defined in terms of the
velocity and length scale characterizing boundary conditions or external force. It is
therefore more appropriate that we use another Reynolds number characterizing the
state of turbulence to quantify its degree of development. In this subsection, we intro-
duce the appropriate definition of Reynolds number for each of four kinds of turbulent
flows treated in the present article, and show the achievement of the state-of-the-art
DNS of turbulence. In addition to this, basic concept of turbulence is also summarized
so that even non-experts can understand discussion in the following.

1.3.1 Turbulence in a periodic cube

First, we describe DNS of turbulence in the simplest case: namely, statistically homo-
geneous isotropic turbulence under periodic boundary conditions in three orthogonal
directions. The first DNS of this kind of turbulence was conducted by Orszag and Pat-
terson (1972). For a half century since then, many DNS of the turbulence at higher
and higher Re were conducted thanks to the continuous development of supercom-
puters. In particular, at the beginning of the present century, Kaneda et al (2003)
conducted the DNS of the turbulence by the spectral method (see § 2.1) using a large
number 40933 of Fourier modes. Then, they numerically realized turbulence at the
Taylor-length Reynolds number, which is defined as

Reλ = u′λ/ν (7)
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with the Taylor length
λ =

√
15νu′2/ϵ , (8)

to be Reλ ≈ 1000. Recently, Ishihara et al (2020) conducted further larger DNS with
122883 Fourier modes to simulate turbulence at Reλ = 2250.

Substituting Taylor (1935)’s dissipation law (5) into (8), we obtain λ ∼
√

Lν/u′.
Then, substituting this into (7), we can see that Re and Reλ are related by

Re ∼ Reλ
2 . (9)

Since the scale separation L/η in the inertial range gets larger as Re increases [see
(6)], Reλ also indicates the width of the inertial range (3). Though the definition of
Re depends on boundary conditions, the Taylor length λ, and therefore Reλ, can be
estimated according to flow state. Hence, Reλ appropriately indicates the development
of turbulence. In fact, according to Dimotakis (2000), turbulence is accompanied with
a sufficient scale separation when

Reλ ≳ 100–140 . (10)

Therefore, we call the flow satisfying (10) developed turbulence. In this review, we
show results of the analysis of turbulence which satisfies (10).

1.3.2 Free shear flow turbulence

Turbulence in a periodic box is artificial flow which is a model of flow away from solid
walls. Numerous DNS of more realistic turbulence were also conducted. Turbulent
wake, which is sustained behind an obstacle immersed in uniform flow, is an extensively
studied example of free shear flows. In fact, DNS and large-eddy simulations (LES)
(Tomboulides et al, 1993) of turbulent wake behind a circular cylinder were already
conducted in 1990’s. At the beginning of the present century, Ma et al (2000) conducted
the DNS of developed turbulence in the wake behind a cylinder at the Reynolds number

ReD = U∞D/ν (11)

defined by the uniform upstream velocity U∞ and cylinder diameter D to be ReD =
3900. Since then, many DNS were conducted and we also conducted DNS of turbulence
at ReD = 5000 (Fujino et al, 2023). In this article, we review results of this DNS. As
will be shown in § 2.2 (see Fig. 3), the Taylor-length Reynolds number (7) in this tur-
bulence exceeds 100 within the distance 10D behind the cylinder. Thus, it satisfies the
criterion (10), which is discussed in the previous subsection, of developed turbulence,
and we expect that there is a hierarchy of vortices in the simulated turbulence.

1.3.3 Wall turbulence

Numerous DNS of turbulence near a solid wall were conducted. In particular, turbu-
lence between a pair of parallel planes (i.e. turbulent plane Poiseuille flow), which we
call the turbulent channel flow in the following, has been intensively studied as one of
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the canonical wall-bounded turbulence. For channel flow, the Reynolds number (1) is
defined by using the central velocity Uc and the channel half width h in the places of
U0 and L0 as

Reh = Uch/ν . (12)

Though the critical Reynolds number for the linear instability of the laminar flow is
Reh = 5772 (Orszag, 1971), it is known that turbulence is sustained at even lower
Reh. The DNS of turbulent channel flow was first conduced by Kim et al (1987)
at Reh = 3300. Since then, many authors conducted DNS. In this century, DNS of
turbulent channel flow at high Reynolds numbers became possible (Abe et al, 2001;
del Álamo and Jiménez, 2003; Tanahashi et al, 2004), Jiménez and his coworkers have
been extensively conducting large-scale DNS (del Álamo and Jiménez, 2003; del Álamo
et al, 2004; Hoyas and Jiménez, 2006; Lozano-Durán and Jiménez, 2014; Hoyas et al,
2022).

We define x and y axes in the streamwise and wall-normal directions, respectively
[Fig. 2(b)] to introduce the friction velocity as

uτ =

√
ν
∂ux

∂y

∣∣∣∣
wall

. (13)

Here, u denotes the mean velocity, and in the following we denote the fluctuation
velocity by ũ (= u− u). Then, the friction Reynolds number defined as

Reτ = uτh/ν (14)

is an indicator of the hierarchy of vortices in wall turbulence. This is because Reτ is
the scale ratio between the smallest length in the vicinity of solid walls (i.e. the friction
length ℓτ = ν/uτ ) and the size of the largest structure in the flow (i.e. the channel
half width h); namely, Reτ = h/ℓτ = h+. Hereafter, superscript + denotes the length
normalized by ℓτ .

It is known (Tennekes and Lumley, 1972, § 5.2) that in wall turbulence at suffi-
ciently high Reτ , the mean streamwise velocity ux normalized by the friction velocity
is a linear function of log y+ as

ux/uτ = B + κ−1 log y+ (15)

in the layer

30–100 ≲ y+ ≲ 0.2h+ = 0.2Reτ (logarithmic layer) . (16)

In (15), B and κ(≈ 0.4) are constants and the latter is called the Kármán constant.
In the near-wall region (i.e. 5 ≲ y+ ≲ 30–100, which is called the buffer layer), there
is only single-scale structures, whereas there exists multiple scales in the logarithmic
layer, in particular, for large y+. This can be understood, if we recall that the largest
eddies at the distance y from the wall are as large as y, and that the smallest eddies are
as small as the Kolmogorov length η, (4). Note that we may estimate η as a function
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of y as follows. To this, we estimate the mean energy dissipation rate ϵ at the distance
y from the wall, under the assumption that it is balanced with the energy input rate.
Then, in the logarithmic layer (16),

ϵ ≈ −ũxũy
∂ux

∂y
≈ −u3

τ

κy
. (17)

Therefore, we may estimate the Kolmogorov length (4) normalized by the friction
length ℓτ as

η+ ≈ (κy+)
1
4 . (18)

See Fig. 4 in § 2.3 for numerical evidence of the estimation (18). Hence, the scale ratio
between the largest (L ≈ y) and smallest (η) eddies at the distance y from the wall is
estimated as L/η ≈ κ− 1

4 (y+)
3
4 . Since κ− 1

4 ≈ 1.3, L/η = 16–40 at the bottom y+ = 30–
100 of the logarithmic layer. Recalling that the diameter of the smallest eddies is
about 10η, we may see that there exists a hierarchy of vortices in the logarithmic layer
(16). Since the layer enlarges, in wall unit, with Reτ , we expect clearer hierarchical
structures at higher Reynolds numbers.

The Reynolds number of turbulent channel flow achieved by DNS was Reτ = 550
(del Álamo and Jiménez, 2003) about 20 years ago, Reτ = 2003 (Hoyas and Jiménez,
2006) about 15 years ago, Reτ = 4200 (Lozano-Durán and Jiménez, 2014) about 10
years ago. Recently, it further increases, and Yamamoto and Tsuji (2018) conducted
DNS at Reτ = 8000 and Hoyas et al (2022) at Reτ = 10000. Through these large
DNS, the scale separation in the turbulence gets much clearer, and coexistence of
large flow structures experimentally known as the (very) large scale motion (Kim and
Adrian, 1999) and fine-scale structures are also captured by DNS. In other words,
data for the investigation of the hierarchy of vortices are available. In this article, we
review our analysis (Motoori and Goto, 2021) of the data at Reτ = 4200 obtained by
Lozano-Durán and Jiménez (2014).

Another intensively investigated wall turbulence is the boundary layer on a flat
plane. In this article, we investigate a turbulent boundary layer developing on a plane
when uniform flow at the velocity U∞ exists in the direction parallel to the plane. Since
the seminal DNS by Spalart (1988) in the last century, many researchers conducted
DNS of this canonical flow. Since the boundary layer thickness, which is often defined
by the momentum thickness θ, develops in downstream, the Reynolds number (1)
defined by θ,

Reθ = U∞θ/ν , (19)

also increases in downstream. It is numerically shown by Schlatter and Örlü (2010) that
Reθ and Reτ are related as Reτ = 1.13×Re0.843θ . At the beginning of this century, large
DNS were conducted by Komminaho and Skote (2002) (Reθ ≲ 750) and Khujadze
and Oberlack (2004) (Reθ ≲ 2800). Since then, the Reynolds number of turbulent
boundary layer achieved by DNS is increasing, and the recent DNS are Reθ ≲ 6680
(Sillero et al, 2013) and Reθ ≲ 8300 (Eitel-Amor et al, 2014), which correspond to
Reτ ≲ 2000 and Reτ ≲ 2300, respectively. Thus, we can obtain DNS data of developed
turbulent boundary layers in which, similarly to the turbulent channel flow, we may
expect hierarchical structures of vortices with different sizes in the logarithmic layer.
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We also conducted DNS of turbulent boundary layer at Reθ ≲ 4600, which correspond
to Reτ ≲ 1380 and Reλ ≲ 75 (Motoori and Goto, 2020). In the following sections, we
show results of the analysis of this DNS data. There is also a dispute, which is related
to the hierarchy of vortices, on the largest-scale vortices in turbulent boundary layer. It
was experimentally shown by many authors (Head and Bandyopadhyay, 1981; Adrian
et al, 2000) that largest-scale eddies in the developed turbulent boundary layer are
hairpin-shaped. However, in DNS, the existence of large-scale hairpin-like structures
ware not emphasized. On the contrary, there were studies (Schlatter et al, 2014, e.g.)
to conclude that hairpin vortices disappear in downstream region of high-Reynolds-
number turbulence. Hence, there is a room for better understanding the hierarchy of
vortices in turbulent boundary layers.

1.4 Aim of this article

As described in § 1.3, many DNS of developed turbulence at sufficiently high Reynolds
numbers in canonical flow geometries have been already conducted. Nevertheless, as
mentioned in § 1.2, there is no consensus on the concrete image and sustaining mech-
anism of the hierarchy of vortices in developed turbulence. This situation is partly
caused by the fact that we cannot capture the hierarchy of vortices by simply using the
vorticity, the squared vorticity (i.e. enstrophy), or the second invariant of the velocity
gradient tensor, for example. We explain in detail this point in § 3. To overcome this
situation, we have been developing simple methods to identify the hierarchy of vor-
tices and to investigate its sustaining mechanism (i.e. energy cascade) in the series of
our studies (Goto, 2008, 2012; Goto et al, 2017; Motoori and Goto, 2019, 2020, 2021;
Fujino et al, 2023). Therefore, the aim of this article is to review our studies in a unified
manner. To this end, in the following, we review our knowledge, which was obtained
through the data analysis of DNS, on the concrete pictures and the sustaining mecha-
nism of the hierarchy of coherent vortices in four different kinds of turbulence: namely,
turbulence in a periodic cube (Goto, 2008, 2012; Goto et al, 2017), turbulent wake
behind a circular cylinder (Fujino et al, 2023), turbulence between a pair of parallel
plates Motoori and Goto (2021), and zero-pressure gradient turbulent boundary layer
on a flat plate (Motoori and Goto, 2019, 2020).

2 Direct numerical simulations

In this section, we summarize the numerical methods and parameters of DNS and
basic statistics of simulated turbulence in the four different geometries.

2.1 Turbulence in a periodic cube

For turbulence in a periodic cube, we numerically integrate the Navier–Stokes
equation,

∂u

∂t
+ u ·∇u = − 1

ρf
∇p+ ν∇2u+ f , (20)

and the continuity equation,
∇ · u = 0 (21)

8
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under periodic boundary conditions in all the three orthogonal directions. We use the
Fourier spectral method (Canuto et al, 2006, § 3.3). The advantage of the spectral
method is that we can precisely estimate spatial derivatives and integrate (20) with
the solenoidal condition (21) being accurately satisfied.

The concrete numerical procedure is as follows. We numerically solve the vorticity
equation,

∂ω

∂t
+ u ·∇ω = ω ·∇u+ ν ∇2ω +∇× f , (22)

which is the rotation of the Navier–Stokes equation (20). Here,

ω = ∇× u (23)

is the vorticity field. By using (21), we rewrite the nonlinear terms in (22) as

∂ωi

∂t
= −ϵijm

∂2umuℓ

∂xj∂xℓ
+ ν ∇2ωi + ϵijm

∂fm
∂xj

. (24)

Here, we denote the Fourier transforms of the velocity and vorticity fields as û(k, t)
and ω̂(k, t), respectively. Then, since the former can be expressed by the latter as

û = i k × ω̂/k2 , (25)

the Fourier transform of the vorticity equation (24) is closed only by ω̂. Thus, we
numerically integrate it by the fourth-order Runge–Kutta–Gill method. In the Fourier
spectral method, we compute the nonlinear terms in (24) in real space, by using the
fast Fourier transform (FFT), instead of computing it through the estimation of the
convolution in wavenumber space. In this procedure, we remove the aliasing errors
by the combination of the phase shift and spherical truncation (Canuto et al, 2006,
§ 3.3.2).

In this article, we show results of DNS of turbulence driven by two different kinds
of external forces. The first one (Goto et al, 2017) is steady force expressed as

f (v) =

− sinx cos y
+cosx sin y

0

 . (26)

This force drives a four parallel vortex tubes, whose axis is parallel to z direction, in a
periodic cube. In fact, when the Reynolds number is low, the flow becomes steady flow
with these vortex columns, which we call the Taylor–Green vortices in this article. As
will be seen in § 4.1, even in turbulence at higher Reynolds numbers, these Taylor–
Green vortices exist at fixed positions. Although this is advantageous to investigate the
hierarchy of coherent vortices, it is difficult to examine its universality only with this
specific forcing. Thus, we also examine another case of turbulence in a periodic cube

9
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with another force (Lamorgese et al, 2005), whose Fourier transform is expressed as

f̂ (i)(k, t) =


P

2Ef (t)
û(k, t) if 0 < |k| ≤ kf ,

0 otherwise.

. (27)

Here,

Ef =
∑

0<|k|≤kf

1

2
|û|2 (28)

is the energy contained in the forcing wavenumber range (0 < |k| ≤ kf = 2.5). By
construction, the energy input rate P due to this force is constant in time; we set
P = 0.1 in our DNS. It is important that the forcing is statistically homogeneous
and isotropic and therefore it induces no specific coherent structures at the forcing
scale. In other words, coherent structures observed in turbulence driven by (27) are
all self-organized.

Since the aim of DNS is to show the hierarchy of vortices in turbulence, it is
important to resolve the smallest scale eddies. When we use N Fourier mode in each
direction, the maximum wavenumber kmax is

√
2N/3 because of the de-aliasing method

(Canuto et al, 2006, § 3.3.2). The resolution of the Fourier spectral method is often
evaluated by the product of kmax and the Kolmogorov length η. Since the diameter
of the smallest eddies is known to be about 10η (see Fig. 5 in § 3), and since the
numerical resolution is 2π/kmax, kmaxη must be larger than 1 so that such small eddies
are well resolved. Therefore, we appropriately choose the kinematic viscosity ν so that
this condition is satisfied for the given number N3 of Fourier modes. In the following,
we show the DNS results with N3 = 10243 and kmaxη = 1.4 for forcing (26) and
kmaxη = 1.5 for forcing (27). Accordingly, the Taylor-length Reynolds number (7) is
250 and 330 for each forcing scheme. These values sufficiently satisfy the criterion (10)
of the developed turbulence.

To further verify the development of the simulated turbulence, we plot the energy
spectrum in Fig. 1 with solid curves; thin and thick lines correspond to the cases with
forcing (26) and forcing (27), respectively. In this figure, we show the one-dimensional
longitudinal spectrum E∥

1. Since E∥ is expressed as

E∥(k1) =
1

2

∫ ∞

k1

E(k)

k

(
1− k21

k2

)
dk (30)

in terms of the (three-demoniacal) spectrum E (Batchelor, 1953, p 50), we evaluate
E∥ through (30). Since the derivative of (30) leads to E(k) = k3d(k−1dE∥/dk)/dk),

1We use the definition of E∥ as
1

2
u
′2

=

∫ ∞

0

E∥(k)dk , (29)

which is different from ϕ1 adopted by Sreenivasan (1995) with a factor 2; ϕ1 = 2E∥.
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Fig. 1 One-dimensional longitudinal energy spectrum E∥, (29), of four different kinds of turbulence:
thin and thick lines, turbulence in periodic cube driven by (26) and (27), respectively; •, turbulent
channel flow at the wall-normal location y+ = 630 ≈ 0.15h+; ⃝, turbulent wake behind a cylinder
at the streamwise location (x/D = 1); □, turbulent boundary layer at the streamwise location corre-
sponding to Reθ =3600 and the wall-normal location y+ = 165 ≈ 1.2θ+. For turbulence in a periodic
cube, we use (30) to estimate E∥ from E, while for the other kinds of turbulence, we estimate E∥ by
the Fourier transform in z direction of z component ũz of the fluctuating velocity; see Fig. 2 for the

definition of the coordinate. Blue dashed line indicates power-law spectrum, E∥(k) = 0.25ϵ
2
3 k−

5
3 .

E∥ is expressed as

E∥(k) =
9C

55
ϵ−

2
3 k−

5
3

(
⇔

E∥

ϵ
1
4 ν

5
4

=
9C

55

k

ϵ
1
4 ν−

3
4

)
(31)

in the inertial range (3). The dotted blue line in Fig. 1 denotes this power law with the
coefficient 9C

55 = 0.25. We have chosen this value according to the experimental value
Sreenivasan (1995) of the Kolmogorov constant. The Reynolds number Reλ is large
enough for the spectrum to obey a power law which is consistent with the Kolmogorov
spectrum (31) for k ≲ 0.1η−1. Therefore, we expect a self-similar hierarchy of vortices
in the corresponding length scales.
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Fig. 2 Configuration of DNS of (a) turbulent wake behind cylinder, where the length is normalized
by cylinder diameter D, (b) turbulent channel flow, and (c) turbulent boundary layer, where the
length is normalized by the displacement thickness at the inlet.

2.2 Turbulent wake behind a cylinder

In this subsection, we summarize the method and parameters of DNS of turbulent
wake behind a circular cylinder. The data examined here is the same as the one used
by Fujino et al (2023), which was obtained by DNS using the following method. In this
DNS, we solve the Navier–Stokes equations (20) and continuity equation (21) under
the boundary conditions shown in Fig. 2(a); namely, we set the uniform flow U∞ex at
the inlet and impose the convective condition,

∂u

∂t
+ Um

∂u

∂x
= 0 , (32)

at the outlet. Here, Um denotes the mean convective velocity at the outlet, which we
determine by the method proposed by Simens et al (2009) so that the mass conser-
vation is globally ensured. We impose the periodic boundary condition for the other
two directions.

Since the streamwise direction is not periodic, we do not use the Fourier spectral
method shown in the previous subsection. Instead, we adopt standard finite difference
method. More concretely, we evaluate spatial derivatives by the second-order finite
difference. One of the difficulties in the DNS of incompressible flow is to conduct
temporal integration with accurately satisfying the continuity equation (21). In the
present study, we use the Simplified Marker and Cell (SMAC) method (Kajishima
and Taira, 2017, § 3.3.2) to achieve this; we use the first-order Euler method for the
pressure term the second-order Adams–Bashforth method for the convection term,
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and the second-order Crank–Nicolson method for the viscous term to integrate the
Navier–Stokes equations by the following four steps:

uP −∆t
ν

2
∇2uP = un +∆t

(
−∇Pn+1 − 3(u ·∇u)n − (u · ∇u)n−1

2
+

ν

2
∇2un

)
,

(33)

∇2ϕ =
∇ · uP

∆t
, (34)

un+1 = uP −∆t∇ϕ , (35)

Pn+1 = Pn + ϕ− ν

2
∆t∇2ϕ . (36)

Here, P = p/ρf , ∆t denotes the time increment, superscript n indicates the value
at the n-th time step, and uP and ϕ are the velocity at the prediction step and
correctional pressure. Since when we eliminate ϕ, uP and Pn+1 from (33)–(36) we
obtain the discrete form of the Navier–Stokes equation (20) and continuity equation
(21), we may integrate the velocity field which satisfies (21). Incidentally, we use FFT
for the two periodic directions when we solve the Poisson equation (34) for ϕ so that
we can employ the direct method. We use the immersed boundary method (Uhlmann,
2005; Kempe and Fröhlich, 2012) to impose the nonslip boundary condition on the
cylinder surface. We have validated the DNS by the Strouhal number of the shedding
vortices and the mean flow profile (Fujino et al, 2023).

We use the uniform staggered grid (Kajishima and Taira, 2017, § 3.4). Using 8192×
2560× 1024 grid points, we simulate turbulence at the Reynolds number (11), which
is defined by the upstream uniform flow velocity U∞ and the cylinder diameter D,
equal to 5000. We have confirmed that the grid spacing is always smaller than 2.6η
implying that the smallest eddies are well resolved. On the other hand, the diameter
D, which corresponds to the size of the largest eddies, is 128 times larger than the grid
width. We expect therefore the existence of hierarchy of vortices with various sizes in
the simulated turbulence.

To evaluate the degree of the development of the simulated turbulence, we estimate
the Taylor-length Reynolds number (7), which is averaged over the axial direction, as
a function of the streamwise position along the center-line. Here, the Taylor length λ
was evaluated by

λ =

√
ũ2
z

(∂ũz/∂z)2
, (37)

where z is the axial coordinate [Fig. 2(a)] and ũ denotes the velocity fluctuation. Thus
evaluated Reλ is shown by open circles in Fig. 3. We can see that Reλ is about 100,
which just satisfies the criterion (10) of developed turbulence.

We also show the one-dimensional longitudinal energy spectrum E∥, which is esti-
mated by the Fourier transform in the axial direction of the axial component of
fluctuating velocity, by open circles in Fig. 1. Although the wavenumber range is lim-
ited because of the smallness of the Reynolds number (Reλ ≈ 100), we may observe
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Fig. 3 Spatial distribution of Taylor-length Reynolds number (7) in turbulent wake behind a cylinder
(⃝), turbulent channel flow (•), and turbulent boundary layer (□). For the turbulent wake, we plot
the value averaged in the axial (z) direction as a function of the streamwise location x. For the channel
flow, we plot the value averaged in the spanwise (z) and streamwise (x) directions as a function of
the distance y from the wall. For the boundary layer, we plot the value average in the spanwise (z)
direction as a function of the distance y from the wall, at the streamwise location corresponding to
Reθ = 3600.

power-law spectrum which is consistent with the Kolmogorov similarity (31). Inciden-

tally, we have estimated the mean energy dissipation rate ϵ by 2νS̃ijS̃ij with S̃ij being
the rate-of-strain tensor of the fluctuation velocity.

It is also interesting to observe in Fig. 1 that all the energy spectra of the periodic
turbulence (solid lines), turbulent wake (open circles), turbulent channel flow (closed
circles) and turbulent boundary layer (squares) collapse onto a single universal function
in the dissipation range (k ≳ 0.1η−1), if they are normalized by using the mean
dissipation rate ϵ and kinematic viscosity ν of each flow. This collapse supports of
Kolmogorov (1941)’s similarity hypothesis.

2.3 Turbulent channel flow

Next, in this subsection, we describe the method and parameters of DNS of turbu-
lent channel flow [Fig. 2(b)]. We impose the nonslip boundary condition on the two
parallel plane walls, and periodic boundary condition in the other two (spanwise and
streamwise) directions. The flow is driven by uniform and steady streamwise external
force, and therefore the flow rate fluctuates in time.

The data of turbulent channel flow analyzed in the present article was obtained by
the DNS conducted by Lozano-Durán and Jiménez (2014). They conducted the DNS
using the method proposed by Kim et al (1987). More concretely, they first rewrite
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the Navier–Stokes equation (20) and the continuity equation (21) as the governing
equations [Eqs. (3) and (4) in Kim et al (1987)] for the wall-normal components uy

and ωy of the velocity and vorticity. Then, they numerically integrated these gov-
erning equations by the third-order semi-implicit Runge–Kutta method. The spatial
derivatives are evaluated by the combination of the Fourier spectral method in the
streamwise and spanwise directions and the finite difference method, more precisely a
seven-point compact finite difference (Lele, 1992) in the wall-normal direction.

In the present article, we show the analysis of the DNS data with 30722 Fourier
modes, which correspond to 20482 effective modes under the de-aliasing with the 2/3
rule, and the 1081 grid points in the wall-normal direction (i.e. y direction). The grid
width in the y direction is non-uniform, which is determined so that the eddies of the
Kolmogorov length η(y) at the distance y from a wall are well resolved. Recall that, as
was estimated in (18) in § 1, η+ ∼ (κy+)

1
4 . We verify this estimation in Fig. 4. Then,

according to (18), the grid width in y direction was determined. Thus, the grid widths
normalized by the friction length ℓτ in each direction are ∆x+ = 12.8, ∆z+ = 6.4,
∆y+ = 0.314–10.7. In the center (i.e. y = h) of the channel, ∆y/η = 1.38. This implies
that even the smallest eddies are well resolved.

The friction Reynolds number (14) of thus simulated turbulence is Reτ = 4179,
which is high enough to investigate hierarchy of vortices. To quantify the development
of the turbulence, we estimate Taylor-length Reynolds number (7) averaged over the
streamwise and spanwise directions. We show the results by closed circles in Fig. 3
as a function of the distance from the wall. Rλ is about 110 at y+ = 630 ≈ 0.15h+,
i.e. at the upper bound of the logarithmic layer (16), and about 145 at y+ ≈ 2400,
i.e. in the core region in the channel. Therefore, according to the criterion (10), this
turbulence is well developed. To further verify the development, we plot the one-
dimensional longitudinal energy spectrum E∥ at y+ = 630 by closed circles in Fig. 1.
Here, the spectrum is estimated by the spanwise Fourier transform of ũz. We observe
the power-law scaling (2) in the energy spectrum, E∥, of this turbulence.

2.4 Turbulent boundary layer

In this subsection, we describe the method of DNS of turbulent boundary layer devel-
oping on a flat plane. Here, we examine the case that flow is uniform U∞ex without
pressure gradient in the region sufficiently apart from the plane. The data analyzed
in the present study is the same as the one used by Motoori and Goto (2020). This
data was obtained by the method similar to the DNS of turbulent wake shown in § 2.2.
However, we directly impose the nonslip boundary condition on the plane without
using the immersed boundary method.

As shown in Fig. 2(c), in order to save numerical cost, we conduct two separate
DNS for upstream and downstream regions. We impose the Blasius laminar solution
as the inlet condition of the upstream DNS. Using the tripping forcing proposed by
Eitel-Amor et al (2015), we trigger transition to turbulence in the upstream DNS.
Then, we save the time-series data of turbulent velocity at the streamwise location
corresponding to Reθ = 994, which we use the inlet condition of the downstream DNS.

The number of grid points in the downstream main DNS is 8064× 640× 768. The
resolution at the outlet, that is, the location with the most developed turbulence is

15



691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736

1 10 10
2

10
3

1

10

y
+

η
+

Fig. 4 Kolmogorov length η+, normalized by the friction length ℓτ as a function of the distance

y+ = y/ℓτ from the wall in the turbulent channel flow. Gray line indicates η+ = (κy+)
1
4 with κ = 0.4.

∆+
x = 10, ∆+

z = 5.2, and ∆y+min = 0.29 Note that we use non-uniform grid in the y
direction. These grid widths are fine enough to resolve the smallest eddies. In fact,
∆y/η = 1.5 at y = θ/δ99. Here, δ99 is the boundary layer thickness at which the mean
streamwise velocity is equal to 0.99U∞.

By using a large number (about 4×109) of grid points and the combination of two
DNS, we can simulate turbulence at the Reynolds number (19), defined by the momen-
tum thickness, to be 400 ≲ Reθ ≲ 4600, which correspond to 180 ≲ Reτ ≲ 1380.
To evaluate the degree of development of turbulence, we estimate the Taylor-length
Reynolds number (7) at the streamwise direction corresponding to Reθ = 3600, where
the outlet condition is less effective. We show the results by squares in Fig. 3. In this
figure, we see that Reλ ≲75 at y+ ≈ 500 in the most developed region. Although,
according to the criterion (10) by Dimotakis (2000), this is not fully developed tur-
bulence, as will be shown in the following sections (see Fig. 14 in § 4.4), we may
observe apparent scale separation between the largest and smallest (i.e. Kolmogorov-
scale) eddies. In fact, we estimate the one-dimensional longitudinal energy spectrum
E∥ for ũz to show results by squares in Fig. 1 for the location at Reθ =3600 and
y+ = 165 ≈ 1.18θ+. Though we do not observe any scaling range because of the small-
ness of Reλ, we do observe a broad spectrum. Thus, we expect a hierarchy of vortices,
though they are not self-similar.

3 Forest of small-scale eddies

Let us visualize vortices in turbulence simulated by the methods described in the
previous section. Various kinds of vortex identification methods were proposed, and
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many of them are based on the velocity gradient tensor,

Vij =
∂ui

∂xj
. (38)

Here, we decompose this tensor into the symmetric part Sij = (Vij + Vji)/2, i.e. the
rate-of-strain tensor, and the anti-symmetric part Ωij = (Vij − Vji)/2, i.e. vorticity
tensor,

Ω =
1

2

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , (39)

where ω is the vorticity (23). We often use the isosurface of the enstrophy,

e = |ω|2 , (40)

or the second invariant,
Q = (ΩijΩij − SijSij) /2 , (41)

of the velocity gradient tensor to visualize vortices.
We show in Fig. 5 results of such visualizations. Figs. 5(a) and (b) show the vortices

identified by isosurfaces of enstrophy (40) in turbulence in a periodic cube driven by the
Taylor–Green forcing (26) and the isotropic forcing (27), respectively. We also visualize
vortices in other turbulence by using the second invariant (41) of Vij . Figs. 5(c), (d),
and (e) show results for turbulent wake behind the cylinder, turbulent channel flow,
and turbulent boundary layer, respectively. Concerning the turbulent boundary layer,
Fig. 5(e-i) shows the upstream region (Reθ ≈ 180), whereas Fig. 5(e-ii) visualizes the
downstream region (Reθ ≈ 3200–3800).

It is evident in Fig. 5 that we observe a forest of small eddies in all the cases. In
other words, we only observe the forest of fine-scale structures, and it is difficult to
capture the hierarchy of vortices of different sizes. Recall that Figs. 5(a) and (b) show
turbulence with sufficiently high Reynolds numbers, Reλ = 250 and 320, respectively.
However, even if we magnify the visualizations, Figs. 5(a-ii) and (b-ii), we only observe
complex tubular structures, which are sometimes called worms. These worm-like struc-
tures have diameters of about 10η and length much longer than η. Though we observe
apparent inhomogeneous spatial distribution of these fine-scale structures, which is
indeed evidence of spatial intermittency (Frisch, 1995, § 8), we must emphasize that,
as will be discussed in the next section, the cluster of fine-scale structures do not corre-
spond to larger-sale eddies. Looking at the forest of fine-scale eddies in turbulent wake
[Fig. 5(c)], although we may imagine that these small eddies exist around the shedding
vortices, we cannot describe the hierarchy of vortices only from this visualization. This
observation is similar to the case of turbulent channel flow [Fig. 5(d)], where we only
observe small-scale eddies. As for the turbulent boundary layer, we notice interest-
ing phenomena. In the upstream region [Fig. 5(e-i)], vortices triggered by the forcing
(Eitel-Amor et al, 2015) are hairpin vortices. Such hairpin-shaped vortices are not
artificial due to the specific tripping, but also observed in many experiments (Kline
et al, 1967, e.g.). In contrast, in the visualization in the logarithmic and outer layer
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Fig. 5 Forest of smallest-scale vortices in turbulence identified by the isosurface of enstrophy (a, b)
or the second invariant of the velocity gradient tensor (c–e). (a) Turbulence in a periodic cube driven
by the Taylor–Green force (26). (a-i) shows the entire computational domain; whereas (a-ii) is the
magnification of a sub-domain shown in (a-i) with the red lines. (b) Turbulence in a periodic cube
driven by the force (27). Similarly to (a), (b-i) shows the entire domain, and (b-ii) is the magnification
of a sub-domain. (c) Turbulent wake behind a cylinder. (d) Turbulent channel flow. We show full
domain in the streamwise direction and the half domain in the spanwise and wall-normal directions.(e-
i) An upstream region (Reθ ≈ 180)and (e-ii) downstream regions (Reθ ≈ 3200–3800) of the turbulent
boundary layer.

in the downstream region [Fig. 5(e-ii)], we only observe, similarly to the other turbu-
lence, fine-scale structures. In other words, we cannot identify large-scale structures
of the boundary layer only from this visualization [Fig. 5(e-ii)].

As observed in Fig. 5, irrespective of the kind of turbulence, we can only identify
smallest scale vortices by the quantities, such as the enstrophy (40) or the second
invariant (41), related to the velocity gradient. We may explain this observation as
follows. First, recall that the energy spectrum of the developed turbulence is expressed
as (2) in the inertial range (3), i.e. 2π/L ≪ k ≪ 2π/η. Therefore, the enstrophy
spectrum Eω(k) is expressed as

Eω(k) = k2 E(k) = C ϵ
2
3 k

1
3 (42)
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Fig. 5 (continued.)

in the range. Then, the spatial average K of the turbulent energy is estimated by

K =

∫ ∞

0

E(k)dk ≈
∫ 2π/η

2π/L

E(k)dk =
3C

2
ϵ

2
3

(
L

2π

) 2
3
[
1−

( η

L

) 2
3

]
∼ ϵ

2
3 L

2
3 , (43)

which implies that the energy is determined by the largest-scale (i.e. L) vortices. In
the above estimation, we have assumed that L ≫ η because the Reynolds number is
sufficiently high; see (6). In contrast, the spatial average e of the enstrophy may be
estimated by

e =

∫ ∞

0

Eω(k)dk ≈
∫ 2π/η

2π/L

Eω(k)dk =
3C

4
ϵ

2
3

( η

2π

)− 4
3

[
1−

( η

L

) 4
3

]
∼ ϵ

2
3 η−

4
3 , (44)

which implies that the smallest-scale (i.e. η) vortices are relevant to determine e 2.
Therefore, the enstrophy, and velocity gradient, are predominantly determined by

2Incidentally, since the spatial average ϵ of the energy dissipation rate is equal to νe, (44) is consistent
with the definition (4) of the Kolmogorov length.
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Fig. 5 (continued.)

the smallest eddies. This feature is essential to investigate the hierarchy of vortices
in developed turbulence. To conclude, the isosurface of the velocity-gradient related
quantities, namely, the enstrophy (40) or the second invariant (41) of the tensor, only
capture the smallest vortices.

Since the −5/3 power law (2) of the energy spectrum is universal, the above feature
is also independent of the kind of turbulence. Therefore, when we use velocity gradient
to identify vortices, we always observe only smallest-scale structures. Thus, we need an
additional procedure to capture the hierarchy of vortices which must exist in developed
turbulence with a broad energy spectrum. In the next section, we can easily achieve
this by introducing a scale decomposition.
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4 Hierarchy of coherent vortices

As was demonstrated in the previous section, isosurfaces of the enstrophy (40),
Figs. 5(a, b), or of the second invariant (41) of the velocity gradient tensor, Figs. 5(c–
e), only identify smallest vortices. Therefore, we need one more step to identify the
hierarchy of vortices with different sizes in turbulence.

This step is made by the coarse-graining or scale decomposition. In particular, the
former was often employed in turbulence research because it is fundamental concept
for the LES and extensively investigated since the seminal study by Borue and Orszag
(1998). In fact, apart from our studies (Goto, 2008, 2012; Goto et al, 2017; Motoori
and Goto, 2019, 2020, 2021; Fujino et al, 2023), there are many other studies (Leung
et al, 2012; Cardesa et al, 2017; Doan et al, 2018; Lee et al, 2014; Hwang et al, 2016;
Lee et al, 2017; Lozano-Durán et al, 2016, e.g.). in which coarse-graining or scale
decomposition are used to investigate flow structures. In the following subsections,
we demonstrate that scale decomposition is simple but powerful to identify vortical
structures at different scales.

4.1 Turbulence in a periodic cube

In this subsection, we investigate turbulence in a periodic cube. It is easy to implement
the coarse-graining by using Fourier transform. More concretely, the low-pass filtering
with the cut-off wavenumber,

kc = 2π/σ , (45)

corresponds to the coarse-graining at the scale σ. According to an argument similar to
the one leading to (44), we can see that thus coarse-grained enstrophy is predominantly
determined by flow structures at the scale σ. In fact, such a low-pass filter can capture
the hierarchy of vortices with different scales (Goto, 2008; Motoori and Goto, 2019).
However, the kinetic energy in the low-pass filtered velocity field is still determined by
the integral length, rather than the coarse-graining scale. Therefore, to identify flow
structures at scale σ, it is more appropriate to introduce a scale decomposition by
using the band-pass filter, which is defined as

û(kc)
c (k, t) =

{
û(k, t) if |k| ∈ [kc/

√
2,
√
2kc)

0 otherwise
(46)

for the Fourier transform ûi(k, t) of ui(x, t). The corresponding real-space band-pass

velocity field u
(σ)
c (x, t) is obtained by the inverse Fourier transform of û

(kc)
c (k). This

procedure is known also as Littlewood–Paley decomposition.

We then define the scale-decomposed vorticity as ω
(σ)
c = ∇×u

(σ)
c to estimate the

enstrophy |ω(σ)
c |2 at each scale σ. Isosurfaces of this quantity are shown in Fig. 6. In

these figures, the red objects are vortices at the scale of the forcing, i.e. σ = 1600η
[Fig. 6(a)] for the Taylor–Green forcing (26) and σ = 1500η [Fig. 6(b)] for the forcing
(27). Yellow and blue objects are isosurfaces of enstrophy decomposed at the 1/4 and
1/16 scales, respectively. Incidentally, the reason why we have chosen the scales with
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Fig. 6 Scale-decomposed vortical structures in turbulence in a periodic cube driven by (a) the
Taylor–Green force (26) and (b) the homogeneous isotropic force (27). Red, blue, and yellow vortices
are visualized by isosurface of enstrophy (40) scale-decomposed at (a) σ = 2π/kc = 1600η, 400η, and
100η, and at (b) 1500η, 360η, and 90η, respectively. We visualize the entire cubic domain of size (a)
(2200η)3 and (b) (2100η)3.

factor 1/4 is that vortices tend to align to the most extensional direction of the rate-
of-strain tensor on the 3–5 times larger scale (Leung et al, 2012). We can see that there
exist coherent vortices at each scale, even for scales much larger than the Kolmogorov
length η in both turbulence. It is difficult to observe relations between vortices at
different scales only from the global visualization (Fig. 6). However, as shown in the
following, vortices in successive length scales do have characteristic correlations.

First, let us examine, in detail, the hierarchy (Fig. 7) of vortices in turbulence
driven by the Taylor–Green forcing (26). As shown in Fig. 7(a), the largest vortices
(the red objects at σ = 1600η) are those directly sustained by the force (26). Though
we cannot see these four columns in the visualization [Fig. 5(a)] of the raw enstrophy
without the scale decomposition, they do exist in the turbulence. It is further interest-
ing to observe the next generation of coherent vortices (yellow objects at σ = 400η)
around these red vortices [Fig. 7(a)]. In this figure, we visualize the yellow vortices
only in the domain denoted by the yellow dashed lines, where four conspicuous vortex
tubes exist. Note that their axis is parallel to the stretching direction in the velocity
field induced by the red vortices [see also Fig. 3 of Goto et al (2017)]. This means that
yellow vortices at scale 400η are stretched and amplified by the strain rate around the
red ones at 1600η. We also observe that the yellow vortices tend to form the counter-
rotating pairs. This tendency can be quantitatively verified in turbulence in a periodic
cube irrespective of forcing (Goto et al, 2017, Fig. 8).

Fig. 7(b) shows a magnification of the subdomain indicated by the solid yellow
lines in Fig. 7(a). We may observe the relationship between them and smaller (blue)
vortices at scale 100η. Since there exist strain-rate field around the pair of yellow
vortices, the smaller blue vortices are stretched and amplified by the strain-rate field.
This explains the observation that blue vortices are perpendicular to the yellow ones.
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Fig. 7 Hierarchy of vortices in turbulence driven by Taylor–Green force (26). Red, yellow, blue, and
white objects are vortices identified by isosurface of enstrophy scale-decomposed at σ = 2π/kc =
1600η, 400η, 100η, and 25η, respectively. (a) We visualize red vortices in the entire computational
domain of size (2200η)3 and yellow vortices in a subdomain (770η × 900η × 2200η) indicated by the
yellow dashed lines. (b) Magnified view of the subdomain (540η × 900η × 490η) indicated by the
yellow solid lines in (a). (c) Magnified view of the subdomain (440η × 190η × 340η) indicated by the
white solid lines in (b).

It is also interesting to observe that two counter-rotating blue vortices form a pair.
Fig. 7(c) is a magnification of the field around this counter-rotating pair. We may
observe further smaller (white) vortices at scale σ = 25η are, again, stretched and
amplified in the strain-rate field around the pair of blue vortices. Moreover, we observe
that the white vortices also form a counter-rotating pair. Therefore, they would stretch
and amplify further smaller vortices in the strain-rate field around them. However,
as discussed in the next paragraph, since at their scale (σ = 25η) the viscous effects
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Fig. 8 Hierarchy of vortices in turbulence driven by the homogeneous isotropic force (27). Yellow,
blue, and white objects are vortices identified by isosurface of enstrophy scale-decomposed at σ =
2π/kc = 360η, 90η , and 23η, respectively. We crop the subdomains in the same snapshot of size (a)
590η × 400η × 480η, (b) 120η × 140η × 180η, and (c) 110η × 120η × 80η.

dominate the stretching, the cascading process due to the vortex stretching terminate
at this scale in the examined turbulence.

We consider the observed scale-by-scale vortex stretching process in terms of its
timescales. According to the argument similar to the one leading to (44), vortices with

size σ have enstrophy proportional to ϵ
2
3σ− 4

3 . This implies that their vorticity and
strain rate is scaled as ϵ

1
3σ− 2

3 . Thus, these vortices can create smaller vortices in the
timescale,

τs ∼ ϵ−
1
3σ

2
3 . (47)

On the other hand, the viscous timescale of these vortices is

τv ∼ σ2

ν
(48)

Therefore, if τs ≲ τv, they can create smaller vortices by stretching before they die
due to the viscosity. In fact, we may show that τs ∼ τv for σ comparable with the
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Kolmogorov length η, (4), which corresponds to the size of the smallest vortices. We
have also quantitatively shown that this scale-by-scale vortex stretching explains the
scale-local energy transfer in turbulence (Yoneda et al, 2022, Fig. 1).

Next, let us observe the case (Fig. 8) with the other forcing (27). Similarly to the
previous case, we only need to employ the band-pass filter (46) to observe the hierarchy
of vortices with different sizes. Recall that though the external force (27) inputs the
energy to the system, it does not prescribe coherent structures. This explains the
reason why no characteristic flow structures exist at the forcing scale; see the red
objects in Fig. 6(b), which are isosurfaces of the enstrophy at the scale σ = 1500η. In
contrast, we may observe coherent tubular vortices at smaller scales. We demonstrate
this in Fig. 8. Panel (a) of this figure shows a typical example, where the yellow vortices
at scale σ = 360η form a counter-rotating pair. In the figure, we also show smaller
vortices: namely, blue vortices at σ = 90η and white ones at σ = 23η. It is evident
that blue vortices are perpendicular to the yellow vortex pair because they align to
the stretching direction in the rate-of-strain field at the scale of yellow vortices. We
also observe that further smaller vortices, i.e. white objects at σ = 23η, are cratered
around the blue vortices. Moreover, we may easily find many examples [Figs. 8(b, c)] of
counter-rotating pairs of blue vortices (σ = 90η) in the same snapshot and the creation
of smaller white vortices (σ = 23η) around them. In contrast to the case (Fig. 7) with
the Taylor–Green forcing, largest vortices are random in turbulence driven by the
homogeneous isotropic force (27). Nevertheless, smaller-scale vortices spontaneously
become coherent, and they seem to have common features independent of the forcing.

Since visualizations like Figs. 7 and 8 depend on the isosurface threshold, they have
ambiguity. However, the answer to the frequently asked question “Can we observe
larger-scale structures if we decrease the threshold for smaller-scale vortices?” is “no”.
Recall that smaller vortices are created around larger vortices, and therefore we cannot
observe larger vortices even for a smaller threshold. In other words, a large vortex is not
a cluster of smaller vortices. This can be demonstrated by an objective identification
of vortices. Here, we use the low-pressure method (Miura and Kida, 1997; Kida and
Miura, 1998) as a threshold-free identification scheme. We extend this method for the
scale-decomposed velocity field (Goto et al, 2017) to objectively identify the axis of
tubular vortices on each level in the hierarchy. We show thus identified vortex axes
in Fig. 9. In this figure, we may see that the vortex axes are space-filling (Tsuruhashi
et al, 2022) and a large-scale vortex axis is not a bundle of smaller-scale vortex axes.
We also observe that though the characteristics of large-scale vortex axes depend on
forcing [Figs. 9(a-i, b-i)], they are similar at smaller scales [Figs. 9(a-iii, b-iii)].

We have explained the creation of smaller-scale eddies (i.e. the energy cascade) in
terms of the scale-by-scale vortex stretching. This picture is, in fact, a classical view
(Tennekes and Lumley, 1972, § 8.2), and not only ourselves (Goto, 2008, 2012; Goto
et al, 2017) but also many other authors (Hussain, 1986; Melander and Hussain, 1993;
Leung et al, 2012; Doan et al, 2018, e.g.) discussed the role of vortex stretching in the
energy cascade. We must emphasize that we have to look for typical examples such as
shown in Figs. 7 and 8 which explain the role of vortex stretching in the cascade. This
is because, as shown in Fig. 9, in statistically steady turbulence, vortices at each scale
are space-filling and they are sometimes weakened and sometimes strengthened. In
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Fig. 9 Hierarchy of vortex axes identified by the extended low-pressure method in turbulence in a
periodic cube driven by (a) Taylor–Green force (26) and (b) the homogeneous isotropic force (27).
Panels (a) and (b) are the same snapshots as in Fig. 6(a) and Fig. 6(b). The scale of the decomposition
is (a-i) 1600η, (a-ii) 400η, (a-iii) 100η, (b-i) 1500η, (b-ii) 360η, and (b-iii) 90η.

other words, vortices at different ages coexist. Therefore, we need to find the moment
of the birth of smaller vortices to show clear examples such as Figs. 7 and 8. This is
not the case in evolving flow. We may easily observe events of smaller vortices creation
by vortex stretching in the downstream region (Fig. 11) of turbulent wake behind a
cylinder, which is examined in the next subsection, or in turbulent flow created by a
collision of two vortex rings (McKeown et al, 2020) because the moment of birth of
smaller vortices is apparent in these flows.

4.2 Turbulent wake behind a cylinder

In this subsection, we examine the hierarchy of vortices in turbulent wake behind a
circular cylinder. As was demonstrated in Fig. 5(c), we only observe fine vortices when
we identify vortices by isosurface of the second invariant (41) of velocity gradient
tensor. However, as shown in Fig. 3, Reλ is about 100, which marginally satisfies the
criterion (10) for developed turbulence, and the energy spectrum E∥ shown in Fig. 1
also exhibits a power law indicating the existence of self-similar hierarchy of vortices.
Hence, we introduce a scale decomposition similarly to the case of periodic turbulence
examined in the previous subsection. However, since we do not impose a periodic
boundary condition in the streamwise direction, we cannot use the Fourier band-pass
filter (46) for scale decomposition.
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Fig. 10 Hierarchy of vortices in the recirculation region of the turbulent wake behind a cylinder.
Yellow and blue objects are vortices identified by isosurface of the second invariant (41) of the velocity
gradient tensor scale-decomposed at scale σ = L∗/4 and L∗/16. Here, L∗ (≈ 0.8D) is defined by
(52). (a) Visualization in the domain 0 ≤ x/D ≤ 1, −0.6 ≤ y/D ≤ 0.6, 0.5 ≤ z/D ≤ 2. The origin
is set at the center of the cylinder shown with the white surface. (b) Visualization of the subdomain
indicated by white thin lines in (a).

Thus, we introduce a scale-decomposition method in real space. To this, we first
define the mean and fluctuation velocities as

u(x, t) = u(x) + ũ(x, t) . (49)

Then, we coarse-grain the fluctuating velocity ũ(x, t) by the Gaussian filter

u[σ](x, t) =
1

(
√
2πσ)3

∫
ũ(xp, t) exp

[
−|x− xp|2

2σ2

]
dxp (50)

at scale σ. Since u[σ](x, t) contains the flow information at scales larger than σ, we
define

u(σ)(x, t) = u[σ](x, t)− u[2σ](x, t) (51)

which contains flow structures scales between σ and 2σ. We expect thus defined veloc-

ity field u(σ) has similar property with the one u
(σ)
c defined by using the Fourier

band-pass filter (46).
As discussed by Fujino et al (2023) in detail, the sustaining mechanism of turbulent

wake behind a cylinder is different in three distinct regions: namely, the separation
shear layer, the recirculation region just behind the cylinder, and the downstream
region. Since the hierarchy of vortices in the separation shear layer is not clear at the
present Reynolds number (ReD = 5000), in the following, we examine the hierarchy
of vortices in the latter two regions.

First, we show in Fig. 10(a) the hierarchy of vortices identified by the scale decom-
position by (51). In this figure, yellow and blue objects are isosurfaces of the second
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invariant (41) of velocity gradient tensor at the scale σ = L∗/4 and σ = L∗/16,
respectively. Here,

L∗ = U∞/(2πf∗) (52)

denotes the scale of the largest vortices (i.e. the shedding vortices identified as red
objects in Fig. 11) which is defined in terms of the shedding frequency f∗ (Yasuda et al,
2020). Incidentally, we have estimated f∗ by the peak of the power spectrum (Fujino
et al, 2023, Fig. 2). In this recirculation region, the stationary twin vortices exist, and
its fluctuation are captured by the yellow vortices at scale σ = L∗/4. Since they are
a counter-rotating pair, a strain-rate field whose stretching direction is in y direction
[see Fig. 2(a)] exists in the region between them and the cylinder. It is this straining
field that stretches and amplifies smaller (σ = L∗/16) blue vortices whose axis is
parallel to the y direction. The process that yellow counter-rotating vortices stretch
and create smaller blue vortices is similar to those observed in turbulence driven by
the Taylor–Green vortices [Fig. 7(a)]. Incidentally, however, we must note that there
coexist blue vortices created in the nearby shear layer in the visualization (Fig. 10) as
more carefully discussed by Fujino et al (2023). Furthermore, we show in Fig. 10(b)
a subdomain of Fig. 10(a) together with the white isosurfaces of the second invariant
(41) of velocity gradient tensor without the scale decomposition. It is evident that,
due to the stretching in the strain-rate field in front of the blue vortex pair, smaller
white vortices are created. This event is also similar to those observed in turbulence
in a periodic cube (Figs. 7 and 8).

Next, we examine the hierarchy of vortices in the downstream region of the wake.
The hierarchy in this region sufficiently apart from the obstacle is similar to the
turbulence in the periodic cube. As discussed in the previous subsection, the creation
process of smaller vortices in the periodic turbulence is sometimes unclear because
there coexist vortices at different ages in a snapshot. In contrast, since smaller and
smaller vortices are created successively in downstream of the wake, the process is
rather clear. We show results of the scale decomposition in Fig. 11. We immediately
notice that shedding roller vortices, which correspond to the Kármán vortex street,
are identified as red objects even in this turbulent regime at ReD = 5000. These
red objects are the isosurfaces of the second invariant of the velocity gradient tensor
scale-decomposed at σ = L∗. Even though we observe some smaller-scale yellow and
blue vortices inside a roller vortex, its circulation is determined mainly by the largest
scale L∗. Since the nearest-neighbor roller vortices are counter-rotating, there exists
strain-rate field between them. Therefore, smaller (i.e. σ = L∗/4) vortices, which are
called the rib vortices are stretched, amplified, and created in the strain-rate field
[Fig. 11(a)]. We emphasize that there are characteristics in the swirling directions of
the created (yellow) rib vortices; namely, they form counter-rotating pairs which induce
compression on the side of roller vortices [Fig. 11(b)]. This explains that the (yellow)
rib vortices weaken roller vortices (their parents) by vortex compression, whereas they
stretch and create smaller (blue, σ = L∗/16) vortices in the strain-rate field in front
of the pairs. In fact, we quantitatively demonstrated that rib vortices compress and
weaken roller vortices (Fujino et al, 2023, § 5.5). In summary, in the downstream region
of the wake, the energy cascading process starting from the shedding roller vortices
sustains the hierarchy of vortices.
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Fig. 11 Hierarchy of vortices at scales σ = L∗ (red), σ = L∗/4 (yellow), and σ = L∗/16 (blue) in
the downstream region of turbulent wake behind a cylinder. (a) Visualization in the whole compu-
tational domain, which may be compared with the one without the scale decomposition [Fig. 5(c)].
(b) Visualization in the subdomain (2.8 ≤ x/D ≤ 7, −2.5 ≤ y/D ≤ 2.5, 2.5 ≤ z/D ≤ 6) indicated by
white lines in (a).

4.3 Turbulent channel flow

In this subsection, we consider the hierarchy of vortices (Fig. 12) and its sustaining
mechanism in turbulent channel flow. In Fig. 12, red, yellow, and blue objects are
vortices identified by the isosurface of the second invariant of the velocity gradient
tensor scale-decomposed at σ+ = 960, 240, and 60, respectively. We visualize a global
field in Fig. 12(a), which shows the entire computation domain in the streamwise
direction and the half domain in the spanwise and wall-normal directions. The largest
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Fig. 12 Hierarchy of coherent vortices in turbulent channel flow. Red, yellow, and blue vortices are
identified by the isosurface of the second invariant (41) of velocity gradient tensor scale-decomposed at
σ+ = 960, 240, and 60. Note that σ+ = 60 corresponds to σ/η = 10–20 for y+ ≳ 100. Visualizations
in (a) the same domain as in Fig. 5(d) and (b) a subdomain at the distance 1230 ≤ y+ ≤ 1920 from
the wall with the streamwise and spanwise size of δx+ = 1150 and δz+ = 1450.

(red) vortices tend to form a streetwise longitudinal vortex tube. We expect from the
energy cascade picture that smaller vortices (say, yellow ones at σ+ = 240 and blue
ones at σ+ = 60) are successively created. Though it is rather difficult to observe such
events in the global visualization in Fig. 12(a), we may find examples in a magnified
view such as shown in Fig. 12(b). In this panel, we see that (blue) smaller (σ+ =
60) vortices are stretched and amplified in the strain-rate field sustained around the
counter-rotating pair of (yellow) larger (σ+ = 240) vortices. This observation is similar
to those in the periodic turbulence (Figs. 7 and 8) and in the turbulent wake (Figs. 10
and 11).
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However, since there coexist vortices with different ages in this turbulence
[Fig. 12(a)], relations between the two different scales are not always as clear as in
Fig. 12(b). This is similar to the observation in the periodic turbulence, and in con-
trast to the downstream of the turbulent wake (Fig. 11), where smaller vortices are
successively created. Nevertheless, we emphasize that we can observe similar events
like in Fig. 12(b) for turbulent channel, in Figs. 7(b, c) and Fig. 8 for periodic turbu-
lence, and in Figs. 10(b) and 11(b) for turbulent wake. This may imply the common
feature of the sustaining mechanism of small vortices in regions away from solid walls.
We also emphasize that the mechanism of energy cascade in terms of vortex stretch-
ing is not only based on these visualizations but also on the quantification developed
by Yoneda et al (2022, Fig. 1) and Fujino et al (2023, Fig. 10).

It may be obvious that the largest eddies in turbulence in a periodic cube are
sustained by external force and those are shedding vortices or stationary twin vortices
in turbulent wake behind an obstacle. Then, how are the largest eddies [i.e. red vortices
in Fig. 12(a)] sustained in the turbulent channel flow? We must consider this issue
depending on the distance y from the wall because, at the distance y, the largest
eddies (i.e. wall-attached eddies) have size comparable with y. Then, by a simple
quantification in the following, we may show that wall-attached eddies are created by
the stretching due to the mean shear flow.

Taking the inner product of the vorticity equation (22) and ω, we see that the
production of the enstrophy (41) due to the vortex stretching is expressed as ωiSijωj .
Then, we consider the contributions to this production rate of enstrophy of vortices
with scale σ from two effects. One is the contribution from the twice-larger-scale rate-

of-strain S
(2σ)
ij , and the other is contribution from the mean flow. Note that the former

is contribution of an energy cascading process. Then, we define the ratio,

Γ(σ) =

〈
ω
(σ)
i S

(2σ)
ij ω

(σ)
j

ω
(σ)
i ω

(σ)
i

〉
xz

/〈
ω
(σ)
i Sijω

(σ)
j

ω
(σ)
i ω

(σ)
i

〉
xz

(53)

between the two contributions. In (53), ⟨·⟩xz denotes the average over the plane parallel
to the wall, S

(σ)
ij is the rate-of-strain tensor estimated from the velocity field u(σ) scale-

decomposed at σ, and Sij = (∂ui/∂xj + ∂uj/∂xi)/2 is the rate-of-strain tensor of the
mean flow u. We estimate (53) as a function of y and σ and show results in Fig. 13(a).

By definition of Γ, when Γ < 1, vortices are directly created by the mean flow.
In Fig. 13(a), the blue line indicates Γ = 1. In this figure, the red line denotes the
0.7Lc(y), where Lc(y) is the Corrsin length at the distance y from the wall; and the
black dotted line denotes 0.7κy. We can see these three lines coincide in the logarithmic
layer. This coincidence can be explained as follows. First, we recall that Lc is defined
by the length scale of vortices accompanied with a strain rate comparable with the
mean shear rate,

∂ux

∂y
≈ uτ

κy
. (54)
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Fig. 13 Ratio Γ defined by (53) of the contributions to the enstrophy production rate at scale σ

from the twice larger strain rate S
(2σ)
ij and the mean flow shear Sij as a function of the distance

y from the wall and σ. Blue, red, and black dotted curves denote Γ = 1 and 0.7Lc(y), and 0.7κy.
Here, Lc(y) is the Corrsin length. (a) Averaged value over the spanwise and streamwise directions
in turbulent channel flow. (b) Averaged value in the spanwise direction at the streamwise location
corresponding to Reθ = 3600 in the turbulent boundary layer.

Here, we have used the logarithmic law (15) of the mean flow. Then, since the strain
rate around vortices with size ℓ is estimated as(

ϵ

ℓ2

) 1
3

≈
(

u3
τ

κyℓ2

) 1
3

(55)

because the mean energy dissipation rate in the logarithmic layer is estimated as (15).
Then, requiring that (54) and (55) are balanced at ℓ = Lc, we obtain Lc(y) = κy.

Thus, Fig. 13(a) implies that small vortices (i.e. wall-detached eddies), which satisfy

σ < Lc(y) (≈ y) (56)

are created through energy cascade by being stretched and amplified by larger vortices.
On the other hand, larger (i.e. σ > Lc(y) ≈ y) vortices (i.e. wall-attached eddies)
are directly created by being stretched by mean shear. Although wall-detached eddies
smaller than Lc (≈ y) are also stretched by the mean shear, the timescale is slower
than the stretching due to larger vortices. This explains the reason why these smaller
eddies are created by the energy cascading process.

In summary, at the distance y from a solid wall, eddies larger than Lc (≈ y) are
directly created by mean-flow stretching, whereas eddies smaller than Lc (≈ y) are
created in strain-rate field sustained around larger vortices. In other words, in the
logarithmic layer (16) of wall turbulence, the largest eddies which acquire energy from
the mean flow create smaller vortices through similar process to those in periodic
turbulence and downstream of turbulent wake. Fig. 13(a) clearly implies that “in
region (y+ ≳ 30–100) away from solid walls, small (σ ≲ Lc(y)) vortices are created
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(a)

(b)

Fig. 14 (a) Coherent vortices in turbulent boundary layer at the location corresponding to Reθ =
3200–3800. Red and yellow vortices are identified by isosurface of enstrophy at scale σ = 200ℓτ ≈
0.18δ99 ≈ 1.4θ and σ = 40ℓτ , respectively. (b) Only the large-scale vortices are visualized.

through energy cascade.” This is consistent with the Kolmogorov–Richardson view of
the energy cascade.

Incidentally, Fig. 13(a) also shows that in the near wall region (i.e. in the buffer
layer, y+ ≲ 30–100), Lc(y) ≲ 10η. This implies that there is no hierarchy of vortices
in the buffer layer, and the vortices directly interact with mean flow. In fact, it is well-
known as the self-sustaining process [SSP, Hamilton et al (1995)] that the single-scale
streamwise vortices and streak structures interact each other to sustain themselves in
the buffer layer. Therefore, we may speculate that the largest wall-attached eddies at
each distance from the wall can be sustained by SSP-like process. In other words, there
may exist a hierarchy of SSP [Hwang and Bengana (2016); see also Marusic and Monty
(2019, § 4.1)] in the logarithmic layer of wall turbulence at high Reynolds numbers.
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4.4 Turbulent boundary layer

In this subsection, we consider the vortices in the turbulent boundary layer. Since this
flow is developing in the streamwise direction, it is more difficult to numerically simu-
late flow at sufficiently high Reynolds numbers than turbulent channel flow. Although
we have employed numerical techniques (§ 2.4) such as a combination of two DNS
[Fig. 2(c)] to overcome this difficulty, the achieved Taylor-length Reynolds number (7)
of the simulated turbulence is Reλ ≲ 75 shown by squares in Fig. 3 even in the devel-
oped region where Reθ = 3600. Therefore, this is not fully developed turbulence (10)
and the we cannot observe a power law of the energy spectrum shown by squares in
Fig. 1.

We show the scale-decomposed vortices in Fig. 14(a), which was obtained by the
method similar to those used for the turbulent wake (Figs. 10 and 11) and turbulent
channel flow (Fig. 12). In Fig. 14(a), the red and yellow objects are vortices identified
by isosurface of the second invariant (41) of velocity gradient tensor scale-decomposed
at σ+ = 200 and σ+ = 50, respectively. Though we can observe coherent vortices at
these two distinct scales, we cannot observe simple relationships, like in the turbulent
channel flow [Fig. 12(b)], between vortices at these scales in the narrow logarithmic
layer because of the smallness of the Reynolds number (Reλ ≲ 75 and Reτ ≲ 1380).

Nevertheless, it is interesting to examine the quantity Γ defined by (53) in the
previous subsection in this flow [Fig. 13(b)]. We can see the similar observations to the
turbulent channel flow, though the logarithmic range is rather narrow (say, 100 ≲ y+ ≲
150). More precisely, vortices smaller than the Corrsin length Lc(y) ≈ κy (i.e. wall-
detached eddies) are created by stretching by larger vortices, whereas vortices larger
than Lc (i.e. wall-attached eddies) are directly created by mean flow. This implies that
the hierarchy of vortices in turbulent channel flow and turbulent boundary layer may
be sustained in a similar manner. Therefore, analyzing turbulence at higher Reynolds
numbers (say, twice larger Rλ, which corresponds to about four times larger Reθ),
we may observe a hierarchical structure of coherent vortices even in the turbulent
boundary layer.

It is further interesting to observe largest wall-attached eddies in the turbulent
boundary layer. Red vortices shown in Fig. 14 are at the scale of σ = 200ℓτ ≈ 0.18δ99 ≈
1.4θ. In other words, the vortices in Fig. 14 are the largest wall-attached eddies,
which are obviously hairpin-shaped. Recall that, similarly to other turbulence, we
cannot observe large-scale vortices by the visualization without scale decomposition
[Fig. 5(e)]. Once we use the scale decomposition, it is easy to identify larger vortices.
The difference is obvious by comparing the (red) large vortices shown in Fig. 14 and
the fine vortices shown in Fig. 5(e); note that we visualize same flow at same location
corresponding to Reθ = 3200–3800. Though there is no hairpin vortices at the smallest
scale [Fig. 5(e)], there are many hairpins in largest scales (Fig. 14). Incidentally, the
largest vortices in turbulent channel flow (i.e. red vortices shown in Fig. 12(a)) are
not hairpin-like but many of them look like large streamwise longitudinal vortices.
Although as examined in Fig. 13, these largest vortices are sustained by the direct
action of the mean shear in both of these wall turbulence, their shape is different. This
may be caused by the difference in the flow in the outer layer; namely, it is laminar in
boundary layers and turbulent in channel flow.
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5 Conclusions

From the beginning of this century, direct numerical simulations (DNS) of developed
turbulence at high Reynolds numbers were extensively conducted by many authors.
In this article, on the basis of our previous studies on the analysis of DNS data of
turbulence in a periodic cube (Goto, 2008, 2012; Goto et al, 2017), turbulent wake
behind a circular cylinder (Fujino et al, 2023), turbulent channel flow (Motoori and
Goto, 2021), and turbulent boundary layer (Motoori and Goto, 2019, 2020), we have
reviewed the knowledge about the hierarchy of coherent vortices in these turbulent
flows.

In these DNS, a sufficiently large number of degrees of freedom are employed
(10243 ≈ 109 for the periodic turbulence, 8192 × 2560 × 1024 ≈ 2 × 1010 for the
wake, 20482 × 1081 ≈ 4 × 109 for the channel flow, and 8064 × 640 × 768 ≈ 4 ×
109 for the boundary layer) so that we can numerically realize developed turbulence.
More concretely, the Taylor-length Reynolds number (7), which is an indicator of the
development of turbulence, is Reλ ≈ 250–320 (turbulence in a periodic cube), Reλ ≲
140 (turbulent channel flow), Reλ ≈ 100 (turbulent wake behind a cylinder), Reλ ≲ 75
(turbulent boundary layer) see Fig. 3. According to the criterion (10), by Dimotakis
(2000), examined flows are developed turbulence except for the boundary layer. In
fact, we observe broad energy spectra (Fig. 1) for these flow, in which, therefore, there
is a hierarchy of vortices with different sizes.

However, if we identify vortices in terms of the quantities related to the velocity
gradient tensor, such as the enstrophy (40) or its second invariant (41), we always
observe forests of fine-scale vortices (Fig. 5). This observation is explained by a sim-
ple argument given in § 3; since the energy spectrum obeys the −5/3 power law
(2) of wavenumber in the inertial range (3), the velocity gradient is predominantly
determined by the smallest scale eddies.

Therefore, as demonstrated in § 4, to capture the hierarchy of vortices with different
sizes, we need scale decomposition of velocity fields. In the present study, we have
shown that we use Fourier band-pass filter (46) for the periodic turbulence and the
combination (51) of two Gaussian filters (50) in real space for the other cases to identify
the hierarchy of coherent vortices shown in Figs. 6, 10, 11, 12, and 14. In other words,
we only need a scale decomposition to observe the hierarchy of vortices.

In the periodic turbulence, the largest vortices are sustained by external force and
their features depend on the force. Smaller vortices acquire their energy due to vortex
stretching from larger vortices (Yoneda et al, 2022, Fig. 1). Created vortices are tubular
and they tend to form counter-rotating pairs (Goto et al, 2017, Fig. 8). In fact, we
can observe concrete examples that smaller vortices are created, by being stretched,
in strain-rate field around a counter-rotating pair of larger vortex tubes (Figs. 7 and
8). Here, we reemphasize that since there coexist numerous vortices at different ages
(Fig. 9) in statistically stationary turbulence, we observe clear events such as in these
figures only when the moment of the birth of smaller vortices.

The sustaining mechanism of hierarchy of vortices in the turbulent wake behind a
cylinder depends on the regions. In the recirculation region just behind the cylinder,
turbulent twin vortices are stationary and they play a role similar to the turbulent
Taylor–Green vortices in the flow examined in Fig. 7. This is the reason why we
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observe similar hierarchy of coherent vortices in the recirculation region (Fig. 10). In
the downstream region (Fig. 11), we observe clear successive creations of rib vortices
around roller, i.e. shedding, vortices; and those of smaller vortices around rib vortices.
We may also understand these events by the process of vortex stretching in strain-rate
fields around larger counter-rotating vortex pairs. Since the moment of birth of smaller
vortices is clear, these events are also clear in the downstream region of the wake.

For wall turbulence, we must consider the hierarchy of vortices depending on the
distance y from the wall. We have demonstrated this by using the data (Fig. 13)
of developed turbulent channel flow. The largest vortices (i.e. wall-attached eddies)
at the distance y from the wall have a size comparable to y, and these vortices are
directly created by being stretched by mean shear. On the other hand, smaller vortices
(i.e. wall-detached eddies) are created by the similar process in turbulent in a periodic
cube; namely, vortex stretching in strain-rate field around larger vortices. In fact we
can find concrete events to support this picture (Fig. 12). We may also see that in the
near-wall regions (y+ ≲ 30–100, the buffer layer), there exist only large vortices, which
are sustained by interaction with mean flow fluctuation (i.e. streaks). Therefore, the
energy cascade only takes place in logarithmic and outer layers, y+ ≳ 30–100. This
is consistent with the classical view that Kolmogorov (1941)’s similarity hypothesis
holds for small vortices in regions away from solid walls.

We may explain the hierarchy of vortices and its sustaining mechanism in turbu-
lent boundary layer in a similar manner to turbulent channel flow. More concretely,
wall-attached eddies are directly created by mean shear flow, whereas smaller wall-
detached eddies are created by the energy cascade process from larger eddies. Since the
Reynolds number of examined turbulent boundary layer is low (Reλ ≲ 75), we can-
not observe a self-similar hierarchical structure of vortices. Nevertheless, the Reynolds
number is large enough to observe the scale separation between the smallest vortices
[Fig. 5(e)] and the largest ones (Fig. 14). It is of importance to observe that the largest
wall-attached eddies, which are captured by the scale-decomposition, are hairpin-
shaped vortices (Fig. 14) even in the developed region. This obviation is consistent
with previous experiments (Head and Bandyopadhyay, 1981; Adrian et al, 2000).

As demonstrated above, for many kinds of canonical flows, DNS of fully developed
turbulence, which satisfy the criterion (10), are feasible. Thanks to this situation, we
may develop detailed analysis which may reveal the origin of small-scale universality
(Kolmogorov, 1941). Recall that we can also confirm this small-scale similarity in the
energy spectrum shown in Fig. 1. In next a few decades, DNS of turbulence at further
higher Reynolds numbers will be conducted to show these similarity more clearly. In
other words, such DNS may not change the demonstrated picture in a qualitative
manner. Therefore, the next targets of turbulence research are shifting to turbulence
of more complex fluids such as magneto-hydrodynamic, non-Newtonian, or multiphase
fluids.
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