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0. Introduction. The purpose of the present paper is two-fold. The
first half of which is to determine the centralizer of the Laplacian A of the
complex projective space P,(C) with the Fubini-Study metric g, and the other is
to calculate explicitly the spectrum of the Grassmann manifold &, ,_,(C) with
the canonically normalized invariant metric g,, as well as to give an explicit
eigenspace decomposition of the Laplacian A~ on C*(G,,,-,(C)) as a complex
analogue of our previous paper [5].

For this purpose we begin with some preliminaries on the algebra ©*(P,(C))
of complex linear differential operators as well as the graded algebra S*(P,(C))
(resp. bigraded algebra S**(P,(C))) of complex contravariant symmetric tensor
fields on P,(C).

The centralizer of A in D*(P,(C)) is determined in 2. Theorem 2.1 asserts
that it coincides with the subalgebra of ©*(P,(C)) generated by all Killing vector
fields. The Killing algebra K*(P,(C)) is introduced as the graded subalgebra
of S*(P,(C)) generated by all Killing vector fields. We also define the Plucker
algebra: K**(P,(C))=K*(P,(C))N S**(P,(C)). In 3 the Radon-Michel trans-
form 7: S**¥(P,(C))—C=(G,,-,(C)) is introduced. It has the following re-
markable properties:

(i) ~ commutes with the Lichnerowicz operator in the sense of Theorem
3.2

(ii) The Plucker algebra K**(P,(C) is transformed by ~ onto the subalge-
bra of C*(G,,,-,(C)) generated by normalized Pliicker coordinates.

Theorem 2.1 enables us to obtain an eigenspace decomposition of the
Lichnerowicz operator restricted to K**(P,(C)) (Theorem 4.1). In virtue of
Theorem 3.2 the eigenspace decomposition of A™ is obtained by transferring
that of the Lichnerowicz operator in S**(P,(C)) to C*(G,,,-,(C)) by means of
the Radon-Michel transform (Theorem 4.2).

Finally, in the appendix we give a sequence of the differential opreators,
annihilating eigenfunctions of the Laplacian A of P,(C).
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1. Let N be the ordered monoid of non-negative integers and let N*=
NXx N be the product monoid of two copies of N. Let K=(k, /)& N? and
K'=(k’, I'YeN?. An order = is defined in N? by letting K =K' if and only
if k=k’ and I =I'. Define two order preserving maps | | and !: N> N by

def.

N'S K | K |—k+1eN and N?€ KoK=kl I1EN for K—(k, I). Put
I=(1, -, n)and I=(T, -, #). T=(4, B)=(a,*- a, By-*B)EI*x I' is called
a multi-index of bidegree K=(k, [). K is also denoted by #I". Henceforth the
convention of dummy indices will be adopted.

Let M be a complex manifold of complex dimension # and let C=(M) be
the algebra of complex valued C “-functions on M. A complex linear differential
operator of order p on M is locally expressed in terms of multi-indices as

(L) D = 5 (ETHETOR@2) (= 3 (1/(R!-1Y)
#r1<p 0<Sk+IZP

g% BBkt [ga™ .. 52"97P1.--0ZP))
@y, s 0,8y, By =1
with respect to the local coordinates 2, -+, 2". Notice that 3; and 3, are con-
fused in (1.1). Let D?(M)) be the C*(M)-module of complex linear differential
operators of order p on M. Put D¥(M)=UD*(M). Let S¥(M) (=8S*'(M))
220

be the C=(M)-module of contravariant complex symmetric tensor fields of
bidegree K=(k, I) on M. £=S%(M) is locally expressed in terms of multi-
indices as

(12)  E=((KY) 3 E@/s)

(=Q/k!- l!))a ) é Emr..a‘jf"?,a/az“m c+00[02%0 -

) .ak.pl-..pl=1

00/08P10--00[02%) = (1/(k!-1)) 31  EAF(9[z)40(0/0)

$C4,B)=Ck, 1)

with respect to the symmetric tensor product o. Henceforth we will use the
notation of summations in (1.1) and (1.2).
Put

(1.3) SHM)= 51 SXM) (direct sum).

=»
Define a map o?: D(M)—S?(M) by a-"D=l > \ >) ET(8/02)T, where D& (M)
K|=p §V=K

is as in (1.1). Let ¢*: D*"Y(M)—D?(M) be the canonical inclusion for p=0.
Put fr=o?*, gp=¢*' and L¥(M)=UL* M), where L(M)=D*"(M) for
20

p=—1, L*(M)={0} for p<—2. Then the sequence of C*(}M)-modules:

0> L=y & o) L 500y > 0
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is exact. As L*(M) is a filtered Lie algebra (cf. [5], 2), S"‘(M)(:—f')é}0 S*(M)
(direct sum) is viewed as the graded Lie algebra assoicated with L¥(M). S*(M)
is also regarded as a bigraded algebra S**(IW):E SE(M) (direct sum) with
E=0

respect to the symmetric tensor product, where K=0 means (&, [)=(0, 0).
Notice that Eop=g?*%(D,D,) for £ S*(M) and n=8S*(M) with D,&D?(M) and
D,e®(M) such that ¢?D,=¢£ and ¢?D,=7. The bracket product of S*(M)
inherited from that of L*(M) is given by [, n]=a?"*"'[D,, D,] for E€S*(M),
nESYM) and D,(i=1, 2) as above (cf. [5], 1). The componentwise expression
of Eoy for £ SX(M) and =S¥ (M) (K=(k, 1) and K'=(k’, ') is

(1.4) gon=_ 33 (LK")(Eon)"(2/0s)",

where the summation is as in (1.2) for K”=K+K'=(k+Fk’, [+1") and (Eon)'=

(1/ (K I K’!)) 2] N g“,,(,)--~¢,,(,,),ﬂ;,(1)--~3',,(,) . ﬂ“n(k +1)""”¢(n+»')'5a'(:+1)"'5n'(l+l’>, de-
TECy tES

noted by &, (resp. &) the symmetric group of order k" (resp. /”’).
The componentwise loacl expression of [£, ] for £ and 5 as in (1.4) is

£ 7] = (/&) 2 15 n]f’(alaz)r’+(1/Kz!)w2§‘:K2 [€, 7]z2(0/02)"2,

where the summation is as in (1.2) for K,=(k-+k'—1,14+1"), K,=(k+Fk’,14+1'—1)

and

[E, 7", = é [ N > {(R/(K!-K'))) £ty ®ech-13Pr'cry Brrcry

TECy - T'EC 4y

56—“ e e -vPesn Prary — (R [(K1-K'))
2

ﬂw’f(l)"'”u(lr’—1>'5¢’(1)"'3vz’(l’)i., E®ay Pucw +h- 1 B s Peain} ]
02

The local expression of [&, 5]Iz is similar.
Notice that
[S*(M), S{(M)]|<S S (M),
[SX(M), SK’(M)] c SK+K’—(1,0)(M)®SK+K'—(0,1)(M) .
From now on we assume that (3, g) is a compact Kihlerian manifold with

the Kihlerian metric ds?*=2g,3dz"dz".
Put

g* = g™ 0/02%20/02° ,

where (g") is the inverse matrix of (g,5). Define a linear operator T*: S**(M)
—S8**(M) of bidegree (1.1) by
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(1.5) T*E = g*oteS*(M)

for EeS¥-D(M). S**(M) is equipped with the Hermitian inner product of
symmetric tensor fields:

(16) (& m) = K[ <& ndo,

where < , > is the pointwise Hermitian inner product of S**(M) and do is
the volume element of (M, g). Let T be the adjoint operator of T'* with respect
to the Hermitian inner product above. T is a linear operator: S**(M)—
S**(M) of bidegree (—1, —1). The componentwise local expression of T*£&
SE(M) for Ee S¥~®D(M) and that of TE SX(M) for £ SEFD(M) are

(1.7) Tt =3 (1K!)(T*E)7(9/02)",

$r=K=C&,D

where the summation is as in (1.2) with

(T*F = 33 gPgorarowbofyhi

©,0=6G,HNSK

for I‘:(al...ab BIBI)
and

(1.8) Te=_ > (TE)7(0/02)",

$r=K=C,D

where the summation is as in (1.2) with
(TEF = gay™ P,
fOr F——‘(al"'a,,, BI"'BI)‘

Lemma 1.1. (i) [T, T*]=(n+p)1, on S*(M), where 1, is the identity
operator on S*(M). (ii) [T™, T*|=m(n+p—m+1) T™* on S***»¥M).

Proof. Let £E&S*(M) be as in (1.2). Connecting (1.7) and (1.8), we have
(TT*E)I‘ =g7§( 2 Z gaiﬁjwlu":imdh‘sﬁlmEi"'ﬂ_l—}— E ga‘_s—gyal...f‘_...a_g

1Si<k 1Sj= 1Sisk

s gyp-j,g.ggl...éj...yl_}_gys'gA,E) ,

15551
where 4 and B are partial multi-indices as

EA,E — Ewl"'“b'é _ §A'731'"§t _ Eal...ahj‘.‘.ﬁl ]
Then

TT*E = T*TEH(IK | +n)E,

from which (i) follows. (ii) is proved by induction on 7. Q.E.D.
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Define a linear differential operator §*: S?~'(M)—S?(M) of degree 1 by
(1.9) 8*¢ = [g*, £] = (1/2)¢’[D, A],

where o?Y(D)=EcS?"Y(M),DeD*~{(M) and A=—2¢"*V,V, is the Laplacian
of (M, g) expressed in terms of the Kahlerian connection V. &*£ is indepen-
dent of the choice of D. Let §: S**Y(M)—S?(M) be the adjoint operator of
8* with respect to the Hermitian inner product (1.6). & is a linear differential
operator: S?*Y(M)— S*(M) of degree —1.

Lemma 1.2, Decompose as §*=0*--0* and §=0-1-0, where 0%, 3*, 0 and
9 are linear differential operators: S**(M)~> S**(M) of bidegree (1, 0), (0, 1),
(—1, 0) and (0, —1), respectively. 0 (resp. d) is the adjoint operator of 8* (resp. 0*).
They have the following componentwise local expressions

k - _
O = 30 3 3 g 1B (0[0x)4e(0)02)

— 1 l _ o
kE __ Y8 4,8 g B 4o B
%€ =2 |x21=p MK!,Zjlg iV yE4Pr 85 Pi(0[02)40(0/0%)

Jfor E€ SP~Y(M), rdespectively.
k=3 ;{—}v,f“"r""»f(a/az)ﬂo(a/az)s,

T |Kj=¢

=3 > %vasA'gﬂ"'ﬂ(alaz)‘°(6/62‘)”

I |K|=¢
for E€S?7Y(M), respectively and ‘I‘,;‘, is as in (1.4) (T=(4, B)=(a,*** &, Br*-*B)))-
The proof of Lemma 1.2 is easy and is omitted.

Lemma 1.3. (i) [T, 8]=0, (i)* [T*, §*]=0,
(i) [T, 8]=0, (ii)* [T*, 8*]=0,
(;) [T, 0]=0, (i—i)* [T*, 9%]=0,
(i) [T, 8¥]=—38, (iii)* [T*, 8]=38%,
(iv) [T, 0%]1=—0, (iv)* [T*, 8]=0%,
(TV—) [T’ 5*]='—6: (i—")* [T*, 5]:6*,
(v) [9,0%]=0, (v)* [9%, 8]=0.
Proof. (i), (i)*, (iii) and (iii)* were proved in [5]. (ii)~(ii)* follow trom
(i) or (i)*. (iv)~(iv)* follow from (iii) or (iii)*. (v) (resp. (v)*) follows from

the identity R,gy;=0 (resp. R;z7;=0) for the Kihlerian connection. Q.E.D.

Lemma 1.4. &% 0* and 3* are derivations on S*(M) with respect to the
symmetric tensor product.
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Proof. As for 8* the assertion was proved in our previous paper [5].
It follows easily that 0%(resp. 9*) is also a derivation on S*(M). Q.E.D.

Define
(1.10) O =18, 8*], 0O =1Jo, %], [O'= I8, 8*].

Evidently [] is a linear differential operator: S*(M)— S*(M) of degree 0. [’
and [J’ are linear differential operators: S**(M)—S**(M) of bidegree (0, 0).

Lemma 1.5. [(=[1'-+1'". [ is a linear differential operator on S**(M)
of bidegree (0, 0).

Proof. From Lemma 1.2 and Lemma 1.3 (v), (v)*
[8, 8*] = (84-0)(8*4-8*)—(0*+8%)(8+-0)=[1"+1".

Thus the first assertion is proved. The second one follows from the first one
immediately. Q.E.D.

Put
(1.11) A=2A—[0, Ap= —(V*VatV*V;)

with V*=g"V; and V*=g™V,. A and A are called the Lichnerowicz operator
and the rough Laplacian of (M, g), respectively. The componentwise local ex-
presseion of [} and A satisfy the formulae:

(1.12) D = AR—M y A= AR+IC N

where « is the linear operator on S**(M) of bidegree (0, 0) given in terms of
components of curvature tensor and of Ricci tensor by

k - ! - _—_ = =
(ICE)P — Zl Rdi-ygy"l""ff"'w*’B—}-g RﬂjggA’spl...gi...Bl

-2 2 Rm‘.ysﬁ_jgyal...?i...ak,551..?;...51
(€ PPN

_2 2 Rdi.,’s“jfvsal'"fi"'?]'"alr'B
1Si<jsk

2 = Rgiﬁpj,g%; 5By BB B
15i<ist

for £ SX(M) as in (1.2) (K=(k, I)).
Theorem 1.1 (i) [[J, T]=0, (ii) [, T*]=0,

(iii) [A, T]=0, (iv) [A, T*]=0.
If (M, g) is locally symmetric, then
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V) [A, 8%]=0, (vi) [A, 8§]=0,
(vii) [4, 8%]=0, (vii) [4, 3*]=0,
(viii) [A, 8]=0, (viii) [A, 3]=0.
Proof. (i)~(vi) were proved in our previous paper for a Riemannian

manifold [5]. (vii)~(viii) follow from the decompositions in Lemma 1.2.
Q.E.D.

Let (P,(C), g,) be the complex projective space of complex dimension 7
with the Fubini-Study metric g,.

Theroem 1.2.
) A = 4(2kn+ 3R+ 12—2kl—p)1, ,—8T*T+2[7’

— 420+ 3P+ B—2kl—p)1, ,—8T*T+207"
= 4(pn-+ 2K+ 22— 2kl—p)1, ,—8T*T+[]

on S*(P,(C)) (k+1=p), where 1, , is the identity operator on S*'(P,(C)).
Gi) [8, Bl=4(k—D)T, (i)* [0% B*|=HI—K)T* on S(P,(C)).

Proof. If (M, g) is of constant holomorphic sectional curvature with scalar
curvature 2(n-+1), then

(1.13) Rapvs = 2(8apgvi+8a18v5) -
On the other hand, (1.12) gives rise to
(1.14) AE = 2£E+1E.

Subsituting (1.13) into (1.14) we obtain the third equality of (i). The first and
the second ones of (i) will be obtained if we express []’ and ]’ in terms of the
curvature tensor, respectively. (ii) and (ii)’ are also easily obtained making use

of (1.13). Q.E.D.

2. Let g, be the canonical Hermitian metric on the punctured complex space
C"*'— {0} of complex dimension n. Let z: C**'—{0} — P,(C) be the Hopf

fibering. Then with respect to the conformally related metric r~2g, (ﬂ:i‘, AV A
a=0

for Z=(2°, -+, Z"ye C**'—{0}) and the Fubini-Study metric g, on P,(C) = is a
Riemannian submersion. Let P=P(M, G) be a principal bundle on a manifold
M with a Lie group G as its fibre. Denote by D¢(P) the subalgebra of D(P)
consisting of all G-invariant differential operators on P.

Lemma 2.1 (cf. [5],2). D(M)=DC(P)|4, more precisely D*(M)=D(P)N
DP)(F NDP)), where J is the two-sided ideal in D(P) generated by
G-invariant vertical vector fields on P.
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Applying Lemma 2.1 to the Hopf fibering, we see that
(2.1) De(er—{h)/(€, H)=D(P,(C)),
where C*= C— {0} and D¢*(C"*'—{0})={DeDC"**'—{0}|[D, {]=[D, {]=
0} for t=312°3/0Z° and E=3) Z°9/0Z* with the bracket as in 1. Here (¢, )
a=0 a=0

denotes the two-sided ideal in D*(C**'—{0}) generated by ¢ and £. From
(2.1) we have also

2.1y (SEYHC—A01)/(E, §) = S*(P.(C)),

where (S¢)*(C**'—{0}) is the graded subalgebra of S*(C**'— {0}) consisting
of all C* invariant symmetric tensor fields. Here we denote also by (&, ) the
ideal in (S¢*)*(C**'— {0}) generated by ¢ and £ by abuse of notation.

Let ¢; S**'—C"*'— {0} be the canonical imbedding whose image is the

unit sphere {Z e C""'— {0} Ié |Z?|2=1}. C*"'—{0} is regarded as a product
a=0
bundle on S%*! with R* as its fibre. We have an isomorphism:
(22) @l(SZnH) ~ @(Sz::ﬂ) ,

where (8% is given by {De®(C***— {0} | [D, r*]=0 and [D, 8/0r]=0} (cf.
[4] Lemma 1 and (1.4), p. 651). Notice that 7rd/or=&-+E. On the other hand,
applying Lemma 2.1 to the principal bundle $**'—P,(C) with the fibre S*, we
obtain the isomorphism:

(i) D(S™)F =D(P,(C)),

2.3 1
@) () (S)H(S™H)g = SHPLC)).

Connecting the two isomorphism (2.3) (i) and (2.2), we obtain an isomorphism:
(2.4) DP,(C))/(7) = DP,C)),

where DI(P,(C)) is the subalgebra of D(C***— {0}) corresponding to D¥(S**")
via (2.2) and (7) is the two-sided principal ideal in D'(P,(C)) generated by the
invariant vertical vector field

(2.5) ™=1—1¢-5)eD(P,(C)).

Notice that 7 is tangent to fibres of the S'-bundle: S***'—(P,(C)) (under the
identification (2.2)) and is an element of the center in ®'(P,(C)). Moreover,
D'(P,(C))={DeD(C"'—{0})|[D, *]=0, [D, t]=0, and [D, &]=0}.

ReMaRk, Let Di(resp. D}) be a representative of D,(resp. D,) €D(P,(C)).
If D! is the adjoint operator in D(C**'—{0}) to D}, then D, is adjoint to D, in
dD(P,(C)).
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Put
(SH*(P,(C)) = > (e(D)(P,(C)) (direct sum) ,
where (o')? is the restriction of the symbol map o? of D?(C**'—{0}) to
(D)(P,(C)). Then we obtain
(2.4) (SN*(PA(C))/(7) = S*(P,(C)),

where (7) is the principal ideal in (S")*(P,(C)) generated by 7.

Notice that S*(P,(C)) and (S€)* (C**'—{0}) have natural bigradations,
while (S")*(P,(C)) has no natural one.

Put

(SVH(P,(C)) = (SH'*(P,(C)) N S¥(C*'—{0})
for bidegree K and put
(SH**(P,(C)) = KEZ}O(S')K(P,,(C )) (direct sum) .

A representative in D'(P,(C)) of DD(P,(C)) under the identification (2.4)
(resp. a representative in (S")*(P,(C)) of £ S§* (P,(C)) under (2.4)") will be de-
signated as D' (resp. &) in the following. From the construction of (S")*(P,(C))
it follows that

(2-6) [E” rz] =0, [‘EY’ §] =0, [‘EY) ﬁ =0
for E'e(ST)*(P,(C)).

Lemma 2.2. Let £'&(S")(P,(C)). Its components (E"Y4'B are bi-homoge-
neous functions of bidegree K=(k, I)=#(A, B) for each K(p=|K |) with respect to
the variables (Z°, +++, Z", Z°, ---, Z"). Moreover,

(2.7) b z'} (Zf(gf)ul---a,,.i_‘_ZC(gr)A,?EfJ,) —0.

k+l=p-1¢=0

Proof. The first assertion follows from the second and the third equalities
of (2.6) directly, while the second assertion (2.7) follows from the first equality
of (2.6) Q.E.D.

Corollary. Let E'<(S")5(P,(C)). Then
i Zc(gf)cal-na,,_l.f =0 , i Z‘(E*)A'7’71""71—1 —0
for K=(k, 1),

Notice that C=(P,(C))=3(P,(C)) is isomorphic to (D"°(P,(C)) which we
also denote (C*~)'(P,(C)). It consists of homogeneous functions of degree 0.
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Denote by 7, the canonical projection: (S")*(P,(C))— S**(P,(C)) defined
by €2.4)" and denote by = its restriction to (S")**(P,(C)).

Lemma 2.3. 7z: (S")**(P,(C))— S**(P,(C)) is an isomorphism of bigraded
algebras.

Proof. In order to prove the surjectivity of 7 it is sufficient to show that
for any §'e(S")*(P,(C)) there is ' €(S"**(P,(C)) such that &'—y'e(7). Let
E'e(S")*(P,(C)) be a representative of £ S*(P,(C)), which can be rewritten as

E= i oﬁr"x‘pfif'""fip by f;,...;,€C~(P,(0)) and vector fields &;;’s (j=1, - p).
iy
If (§;,)" 1s a representative of £;; (j=1, -+- p), it is obvious that
£ 3 fleafiyerobl, ()
Ty =0
for a representative f} .; €(C~)"(P,(C)) of f;.;. Hence the question is
reduced to the case when &' is a vector field. Put p'=E&"++/ :T(é(f*)c Z'|ryr
for E*=io((f*)ta/GZ‘-{—(E’)EG/GZC). By virtue of Corollary of Lemma 2.2 it is

easily verified that »'=75'+»!, where »'&(8")"(P,(C)) and nl€(S")*(P,(C)).
This proves the surjectivity of 7.

Let E*Eg (SH**(P,(C)) be such that &'=700" with 0" (S")*(P,(C)).
1EI=»

From the proof of the surjectivity above we can see that &' can be expressed as

E’:f‘_,lr"‘m,, with 6}, &(S")**(P,(C)). Then it follows easily that §'=0 (m=

1, -+ p) by virtue of Lemma 2.2 and its Corollary. Thus the kernel of = is
trivial. Q.E.D.

We introduce three linear differential operators §*/, 8’ and 3: S*(Cc—{0})
—S8*(C**'—{0}) and a linear differential operator exp(—38’/2): S¥(C**'— {0})
—>P(C"*'— {0}) as follows.

'_def. & 6Ea1-..2‘....ak_5 aEA’Fl...E}...E',
28) S*E= ST (2%K! [ OB & -————]
(2.8) o m%( r*|K1) § Py —i—}g 57

(0/8Z)4o(8/0Z)% = 8*(C***— {0})
for Ee 8#(C*'— {0}).

29) 9E=2(-1/Kl

KI=5

GE“’I“T"E 8EA'CTIFI]
[ YA T 0Z°
(8/0Z)4(3/0Z) = S?(C**'—{0})

for E SP(C*1— {0}).
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a'Ecalu-a,.E aEA,?ITl-nb,]

~ def.
(2.10) 6==”§p(1/K!)[ oz 7
(8/8Z)4o(0/0Z)2 = S*(C***— {0})
for &SP (C*—{0}).

def.

(2.11) exp(—8'[2)E = ﬁ: (—12° 3 « IRy By~
0?7202 Z"---0 25 ED(CH—{0})
for E€S?(C**'—{0}). Recall that
(2.12) 0 — D€+ —{0}) 4 DH(C—{0})

a?
= S#(C"—{0}) > 0

is an exact sequence of C~(C"**'—{0})-modules. exp(—3’/2) gives a splitting
of (2.12) as a sequence of C-modules.

Lemma 2.4. Let £'e(S")*(P,(C)). (i) exp(—38'[2)E'eD'(P,(C)). (i) If
S*'E'=0, then [A, exp(—8'[2)ET]=0 (A'=—4(r?8°— Z°Z?)6*[0Z°0 Z+ 2n(L +E)).
(iil) exp(—3&'/2) induces a splitting of the short exact sequence:

0 — (DY~(P,(C)) “1 (DN (P,(C)) i (8 (P,(C)) — 0

as a sequence of C-modules.

Proof. To prove (i) it is enough to show
[exp(—38'/2)E", ] =0, [exp(—&'/2)&',0/6r] =0.

The first equality follows by straightforward calculations, while the other is
clear from the homogeneity of components of exp(—&’/2)&". (ii) follows from
the equality

[AY, exp(—8'/2)E1] = —4r[3] %020 Z", exp(—¥'[2)F']
= 8r°(exp(—8'/2)(8*'E")r") ,

the proof of which is essentially the same as in our previous paper (cf. [5], 1;
the proof of Theorem 2.1 and Theorem 2.2). (iii) is clear from (i) and (2.12).
Q.E.D.

exp(—8’/2) is a pseudo-connection introduced in our previous paper (cf.

(51, 2).

Lemma 2.5. Let §'e(S"Y(P,C)). Assume §*'&E'<(7)(s=1). Then
there exists £y (8" ~(P,(C)) such that
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(i) &—&le(r), (@) *Ele(r)*.
Proof. 'The assumption is expressed as
g[S 0 e | L A
@13) 3 /K')[ it ]
= 21 2 > > (1KY

|KI=p c4+d=s 15§ S SicSk 1SS Sigst

--,7" A‘l A'z 8 1.f'l bbl . }1...9\12...'5.“ l...ijd...],'l

(V1 Z) e (VT 25— =T ZR)(— v —1 Z2)

for some n&(S")?~(P,(C)).
Applying § to (2.13), by direct calculations we see that there exists
7' (SN~ (P,(C)) such that

(272/K|)[ 6(6&) 18 O _{_é (BEN ATy b,]

IK=p-1 0Z"% j=1 02°
= > 2 > (1/K1)
IB|=p-1 €+d=5 1<i)SSicSk lsils ‘Sias!
. ﬂal"'f-’{" 9, 8, - 1'"'3\-':'",\b'bl“'fi,""Ziz"'Aid- 1"",’:1,“‘”_1
— 8, —— a8, — 5b; e
.(\/__1 VA '1)...(\/_1 VA ")(—\/—IZ")"'(—\/—I\/Z fd)
+N >
|K|=p €+d=3-1 15§ < Si Sk 157, S <jgst
,n"l"‘:‘q“'ﬁ-’c—x"'ﬁf wag By 11 B3, Fia-1Big

(VT ZM) (V1 29—V =1 25 (- =1 2%)
for a certain integer N. We can conclude that
§*(8'—(1/N)(8E"em)) (7).

On the other hand, evidently we have 8€'or&(7). Thus Ej=E'"—(1/N)(8E'o7)
has the required preperties. Q.E.D.

Lemma 2.6. Suppose that [A', D'| =0 (mod (7)) for D'e(D)*(P,(C)).
Then (i) there exists E}e(S")*(P,(C)) such that Ej— (") *D'e(7) and §*E{=0.
(1) There exists D'' < (D)*(P,(C)) such that

[A', D'"]=0, D'—D"'=0 (mod (7)).
Proof. Applying Lemma 2.5 successively, we find &} such that
Ei—(eN*(DYe(r) and ¥Ele(r),

where ¢ is strictly greater than the order of D'. It follows that §*'&j=0
(i) Put D}=exp(—8&’/2)€}. By virtue of Lemma 2.4 (ii) we obtain [A', D§]=0.
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The existence of D! required is proved by induction on the order of D. Q.E.D.
Define
E =\/—1(2°0[02°—Z*3[0Z"),
E = Z°[0Z*—Z%|0Z°,
2.14) Y5 >
(2.14) £ — Z9j0z>—Z%0JoZ" ,
aéf — EloE' _Eloft

ab,cd ad be ca ad
Notice that £'(S')!(P,(C)) and £ &(S)"(P,(C)).

Lemma 2.7. &' = Eo¢.

ab,cd ab cd

Proof is obvious from the definition. Q.E.D.

Lemma 2.8. The centralizer of A" in D(P,(C)) is generated by 2;':3.

Proof. Let [A", D']=0 for D'e®'(P,(C)). Notice that for D' (D')?
(P,(C)), [A', D=0 is equivalent to [(4,), D']=0, where A, is the Laplacian
of the standard sphere with the canonical metric and (4,)’ is the image of A, by
the isomorphism in (2.2). In virtue of the result of our previous paper (cf. [5],
Theorem 2.3), the symbol tensor field £'=(g")?D' can be expressed as a linear

combination of symmetric tensor product of the vector fields &Vs, £’s and &’s.
ab ab ab

Notice that &;"s, bf’s and &’s (0<a<b=<n) are regarded as the canonical basis
a @ ab

of the vector space of Killing vector fields on the standard sphere. It follows
that

n n n
@15 F= 3 5 3
al,-u.a“bl.---,bt:o a;,....aé,b‘i.... ’17:‘:0 Ei/,...,a_:/,bi/,...'b;/=o

< Qo Borbybes0 8 BB 5 a7 by

cElowioEloF o Eo £ oweo E
ab; ache  apb] LAYV A
with coefficients C%% & C(c-+d+e=p, a}<b} and a}’ <b}’). From Lemma 2.2
we see that b=¢ in (2.15). By Lemma 2.7 £' must be a linear combination of
symmetric tensor products of %’s. From this follows the existence of D''e

(®D)(P,(C)) such that &'=(¢")(D'") and [A!,D'']=0. As D'-D''e
(DN)?~Y(P,(C)) belongs to the centralizer of A', our assertion follows by induc-
tion on the order of D'. Q.E.D.

Theorem 2.1. The centralizer of the Laplacian A in D(P,(C)) is the sub-
algebra generated by Killing vector fields.
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Proof. From Lemma 2.3 the centralizer of A is generated by Killing vector
fields represented by E;’s. Q.E.D.

Theorem 2.2. Let §=8*(P,(C)). The following three conditions are
equivalent:

(1) & is a linear combination of symmetric tensor products of Killing vector
fields. (ii) 8*£=0. (iii) There exists D= D*(P,(C)) such that [D, A]=0 and
E=qo?(D).

Proof. The implication (i)—(ii) is obtained from (2.9). (ii)—(iii) tollows
from Lemma 2.4 (ii). (iii)—(i) is essentially contained in the proof of Theorem
2.1. Q.E.D.

A bigraded subalgebra (K')**(P,,(C))zhéo(K')”"(P,,(C’)) (direct sum) of
(S')**(P,(C)) is defined by '
(K)(P,(€)) = (K'Y (P,(C)) N (S (PC))
where (K')*(P,(C)) is the subalgebra of (S")*(P,(C)) generated by E[:’s.

Theorem 2.3. (i) (K"*!(P,(C))=0 for k1. (ii) (K")**(P,(C)) is gene-
rated by bE*d ’s.

Proof. Let E'e(K') (P,(C)). There exists 7' E(Kt)k_l']_l(P”(C))
(a=b, c=d) such that abyed

B = (D), 3 o o £
la;t:;r,('::kd ’ '

In fact 7;*4 ’s defined by
ab,c

B 62(57)"“1"'%—1'_”_”1"‘71—1 62(57)"'1"“'1:—1'—“7'1"'—51—1

t\A,B
G YA YA 02%Z°
_ 82(§t)da1~-a,,_I,EFI-»F,_1 _ 62(§f)cal~--a,,_l,ﬁlmi,_1
0Z%Z° YAGYAL

satisfy the required properties. By the induction on the degree of £' it can
be proved that &' vanishes unless 2=/ &' must be a linear combination of
symmetric tensor products of bf*d ’s.  This proves (i) and (ii). Q.E.D.

On account of Lemma 2.3, we can confuse (K")**(P,(C)) with its image
K**(P,(C))CS**(P,(C)) by =. An element of K**(P,(C)) is called a Killing
tensor field on P,(C) and K*(P,(C)) is called the Killing algebra. An element
of K**(P,(C)) is called a Plticker tensor field on P,(C) and K**(P,(C)) is called
the Plticker algebra.



CENTRALIZER OF THE LAPLACIAN OF P,(C) 137

Let p: S**(P,(C))—S**(P,(C)) be a linear differential operator of bidegree
(4,7)- A linear differential operator p': S**(C**'— {0})— S**¥(C"*'—{0}) is
called a Zft of p if the following two conditions are satisfied.

(i) p' preserves (S")**(P,(C)),

(i) p'E'is a representative of p& & (S")**(P,(C)) for any representative &'
of EESH(P,(C)).

Let p: S*(P,(C))—S*(P,(C)) be a linear differential operator of degree q.
A linear differential operator p' is a lift of p if

pT = ; HZY—:I 7 PIJ ’
where p}; are lifts of p;;: S*¥*(P,(C))— S**(P,(C)) of bidegree (7,j) and p=
) pij. Let E€8#7Y(C**'—{0}). Define a linear differential operator (§*)'=

i+j=a

(0*)'+(0%)': S*(C*'—{0})—>S*(C***—{0}) of degree 1 by

a5 k ’ GEal'"fi"'ak'B_ . . 5
(@B =23 317 S (Ce( D)

and

(@B =25 32 B e pmya

|&I=p j=1 VAL

Notice that (8*) (resp. (9*)") is a linear differential operator of bidegree (1, 0)
(resp. (0, 1) on (S")**(P,(C)).
Lemma 2.9. (8*)", (%) and (3*)' are lifts of 6%, 0* and 0%, respectively.
Proof. We can easily verify that
[(6*)?’ 72] =0, [(5*)T1 rz] =0, [(6*)11 g] =0,
[(@*), E1=0, [(3*)", £]1=0, [(3*), §]=0
as operators on (S")**(P,(C)). This implies that (S")**(P,(C)) is preserved
by (8*)' and (3*)". On the other hand, (g*)'=2(r?8**—Z°Z%)8/0Z°0/02Z" is a
representative of g¥ in (S")"Y(P,(C)) and A'= —4(r’6*—Z°Z"*)8/8Z°-0/0Z" +
2n(¢+) is a lift (resp. a representative) of the Laplacian A for the metric g,.
Let £'e(S")%(P,(C)) be a representative of &£ =(S"%(P,(C)) (K=(k, I)). Then
(8*8)'=[(g*)", &' = (1/2)((a")*T O, AN+(1/2)(a)FFOV[E, AT)
= (8%)'€"—(§—)o(((—E)E") (mod (7)).

From this we can conclude that (8*)'€" is a representative of 8*& and our asser-
tion for (8*)', (8*)" and (0*)' follows. Q.E.D.

Let & S%-0(C*1—{0}) (K=(k, I)). Define
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(T*)T'—' Z/K') 2 2 (7’23a bJ—ZaleJ)E“I"'“:"'aIt bl"'_j""’l

1<isk 1Sj=!

-(8/02)40(8/0Z)P = S¥(C*—{0}) .
Let E€SK+a&)(C**'—{0}) (K=(k, I)). Define
T'E = (1/K1) .,Eo (1)27)(8°°—Z°Z° |r*)Ecesawd b 0(9 [0 Z) 4 (30 Z)" .

Lemma 2.10. (T*)" and T are lifts of T* and T, respectively.
Proof. We can easily verify that

(TH)E, rl=0, [(T*'E€,8]1=0, [(T*)E, =0,

[T, 7]=0, [T'€,8]=0, [T'€,8]=0
for any &'e(S")**(P,(C)). From this we see that (T'*)" and T preserve
(SHY**(P,(C)). From the definition (7'*)'€" is proved to be a representative of
T*E for any €S**(P,(C)). Thus (T*)"is a lift of T*. On the other hand, T'
is the adjoint operator of T* in S**(P,(C)) with respect to the Hermitian inner
product (1.6) and T is easily verified to be the adjoint operator of (T'*)' in
S¥*(C**1—{0}), r28,). We conclude that T'E'is a representative of 7§ and
that T is a lift of T. Q.E.D.

Define three defferential operators 8, 8" and §'=9'+0": S**(C**'— {0})—
S**(C+'—{0}) by
6T — [(5*)1, TT] R 67 — [(6*)T’ TT] .

Lemma 2.11. Let K=(k, [). (i) Let &'e(SYE+*®O(P,(C)). Then the
componentwise local expression of 8" is

a(E?)cal---a‘B t\eayap "’1 ...... 1,1 b
o8 = (1KY - 7 %?l‘f) trize |
-(8/0Z)40(8/0Z)? = (SN (P,(C)) .

(i) Let E'e(SHX*OD(P,(C)). The componentwise local expression of 3" is
a(ET)A,ZEI---EI—_ . > t cal-"ain-ak,?ﬂrnzl a; 2
JEt — (I/Kl)[ WP 3 @yt z /r]
-(8/02)*2(8/0Z)" €(S"Y(P4(C)) -

Proof. (i) and (ii) are obtained by direct calculations using Corollary to
Lemma 2.2. Q.E.D.

Define a linear differential operator []': S**(C*~'— {0} )—S**(C"*'— {0})
by
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(2.16) O =[5, (6]
Lemma 2.12. (i) (J'ésa lift of (. (ii) Let &' (S (Py(C)) (K=(k, 1)).
Then

O = (UKD 4 5 (54— 229 TEL L 21y e+ By
¢,d=0 YAV AL

5z My 44 g DN

(€Y |@/02)4e(0/02)"
where k': S¥¥(C'— {0} )—>S**(C**'— {0}) s given by
it = 2(n—1)(E+E+ 2824282 288)— 4(T*)'T*
and «' is a lift of k in (1.12).

Proof. (i) is immediately obtained from Lemma 2.9 and 2.11. (ii) is
obtained by direct calculations. Q.E.D.

Put
(2.17) A= ['+«'.

Lemma 2.13. (i) A" is a lift of the Lichnerowicz operator A.
(i) Let &'e(SHX(P,(C)) (K=(k, 1)). Then
ATE! = (1K) [—4(ri6%— Z-ZG (Y F[02°0Z4 4 2n—1)((E +E)ENF
" 6(5 )c1 QG B_ n_ 1 a(ET)A sebyrediedy
—4 ch .z: Zn 4 cgo ji=1 0Z°

+('¢*'5')"3](8/62)"°(6/6Z)B ;

VAS

where «' is as in Lemma 2.12.

Proof. (i) is immediately obtained from Lemma 2.12. (ii) follows from
(2.17). Q.E.D.

3. An ordered pair of linearly independent vectors g, and g, in C**! is
called a 2-frame. Denote by W,(C"*') the manifold of 2-frames in C**'.
GL(n+1, C) acts canonically on W,(C**'). Assume that C**! is equipped with
the canonical flat metric g, The manifold of orthonormal 2-frames in (C***, g,)
is the Stiefel manifold, which we denote by V,(C**'). V,(C**) is identified with
the homogeneous space U(n+1)/U(n—1). Let G,, ,(C) be the Grassmann

manifold of complex linear subspaces of complex dimension 2 in C**1.  V,(C**")
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is regarded as a principal bundle over G, ,_,(C) with the typical fibre U(2), the
projection of which will be denoted by z,. Let H3 denote the manifold of
positive definite Hermitian matrices of degree 2. Define a map: W,(C**')—H3
by

Wy (C™Eq = (g, ) - p* = (i) »
where

(3.1) Pas = <dw 25> -

Let p=p(q) denote the positive definite Hermitian square root of the matrix p?

Lemma 3.1. The mapping ®: W,(C**')—>H3 X V,(C**") defined by ((q+—
(p(q), mw(q)) with my(9)=(2aP™®, @up™) EVo(C™*), pap=(P"")ap) is @ diffeomorphism.

The proof is obvious.

We assume that C"*'— {0} is equipped with the Hermitian metric 772,
Let E*S*/(C**'—{0}). The associated covariant tensor field with E* with
respect to the metric 772§, is denoted by E,. The components of =, are

EZ,B =y~ g4 B ,

where p=|¥4, B)| by the notations as in 1. Let g& W,(C**). Then my(q)
is regarded as a linear isometric imbedding: C?*—C"*! and thus also be regarded
as a linear isometric imbedding: €*— {0} —C**'— {0}, which we denote by ¢,.
The componentwise expression of 7, is given by («°, #')—(Z°, -+, Z"), where

32 Zz° =ﬁi(‘,. 5p**u?  (0<a=n, p™ is as in Lemma 3.1).

Here (4°, 4') is a fixed complex linear orthonormal coordinate system of C% Put
(r)?=u'"+u'a'. Then
” 1 -
¥ *y=2p A, By 5
- [4 r = 171
@R, 3 S Eeigp

. .q;:p‘”ﬂhqg:pﬂxs:- --qﬁ;pﬁlsldu":o veeodi®roduPio-- odub (k+l=P) .
The contravariant tensor field associated with the covariant tensor field =, will
be designated by the superscript *. Thus we have

1 1 1 1

(((V*Bx)*= 2 = 2 20 X (r)dEx)a,ap8
6)=0,=0 o;=0,=0p=,=0 B,;=p;=0

. 8 Oeee O 6 o 8 Oees 6 _— é

ou™

. [} ==
a
au k aﬂpl auﬂ’ ‘1""'“1:"’_1""'7’1:0
A, B0, 0 = =Yy b 8 b 8
cEAEBgpTM. . gy hq&:ppl 1---q8;PBI /]
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. a Qeee O 6 oio.. a kl 2
ou™ ™ o1 ouP: ESH(C—10).

Furthermore, if E* < (S"*/(P,(C)), then ((¢,)*Ex)* (ST (P(C)).

Henceforth fundamental differential operators on (S")**(P,(C)) are denoted
by T4, (8F)", e-t.c..

Define the Radon-Michel transform™: (S")**(P,(C))—C ~(G,,,-.(C)) by

2 t\k s/ Et * _
(3.3) (ET)A(I‘) _ Vol(Sa)S (1) ((t ) (‘E )x)¥do (k=)

0 (k1)

for £'e(S")*(P,(C)), where T'=nyomy(q) and S° is the standard unit sphere in
C? with the canonical volume element do. (£")(T') is easily seen to be inde-
pendent of the choice of g. Evidently ~ is a C-linear map.

Let p=(py, p)E V,(C**"). Put PP=pip’—p?p?, where pa=§) ple,
(=0, 1) for a fixed orthonormal basis (e, ‘-, e,) in (C***, §,). We can easily
verify that ?n‘_, Pop=2. (P?®)is called the normalized Plicker coordinates of

a,b=0

the complex subspace of dimension 2 determined by the frame p.

Theorem 3.1. The image ((K")**(P,(C)))" of the Radon-Michel transform
is the the subalgebra of C*(G,,,_,(C)) generated by the products P**P* (0<a<b<n,
0=c<d =n). It is uniformly dense in C=(G,,,_,(C)).

Proof. Let w'=(—1)"%r, (v=0, 1; §=1—7). Then
(3-4) 8 = w*wP+(u/r) (@) .

Put Po——E g5p™"u’ |, Pl—E q2pP*P. Then the 2-frame P=(p,, p,) given by
5‘_, pie, (=0, 1) belongs to V,(C**"). On the other hand, by Lemma 2.7
and (2.14—) we have

E' = Eof = (Z°0/02"—2"0/0Z°\(Z°8|0Z°—Z0/0Z°) .

ab,ed 45 Za

In virtue of (3.2), (3.3) and (3.4) we can easily verify
(3.5) (&)Y = Ppepe.

ab,cd
As (K")**(P,(C)) is generated by bE*d ’s, (K"**(P,(C)))" coincides with the

subalgebra of C=(G,,,-,(C)) generated by the products P**P*®’s above. Thus
the first part of the theorem is proved.
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From the theorem of Stone-Weierstrass the latter half of the theorem
follows. Q.E.D.

Applying Lemma 2.1 to the principal bundle: V,(C**')— G, ,_,(C) with
U(2) as fibre, we obtain
(3.6) D¥(Gy,n-1(C)) = (DVOY(V(C)/S

where 4 is the two sided ideal in DU®(V,(C"*")) generated by U(2)-invariant
vertical vector fields. On the other hand, as W,(C"*') is diffeomorphic to

H X V,(C**) (Lemma 3.1), there are subalgebras D*( V,(C**)) and D*(H?}) of
D¥(W,(C"+Y)), respectively and each one of D¥(V,(C**)) and D*(H3) is the
centralizer of the other in D*(W,(C**)) (cf. [4], pp. 651-652, Lemma 1).

Lemma 3.2. (i) C=(V,(C"*))=D(V,(C"*")) is canonically isomorphic to
the subalgebra D(V,(C*Y))={f €C*(WLC**'}))| f is constant along each fibre
zw'(p) for p € V(C" N} of C=(WH(C*). D¥(V,(C**Y)) is canonically iso-

morphic to the subalgebra D*(V, (C"“))dif.{D € D¥(WL(C"™)) | [papy D] =
[0/0pap, D]=0 (e, B=0, 1)} of D¥(W,(C™M)). (u) D¥(Gy,p-1(C)) s zsomorphu‘ to
the quotient algebra (SD” @V (V(C**Y)/4, where (SD” @YXV, (C"“)) (resp. 4) is the

subalgebra of D*(W,(C"*)) (resp. the two-sided ideal in (@”(Z’)*( V,(C"*))
corresponding to (D@)¥(V(C**Y)) (resp. § in (DVP)*¥(V,(C"*Y))) by the canonical
isomorphism in (i).

Proof. (i) follows from Lemma 1 in [4] cited above. (ii) is immediately
obtained from (2.6) and (i). Q.E.D.

Put g,=3] dP**dP®, which is an U(n-1)-invariant Riemannian metric on
a<lb

G, ,(C). S**(G,,_,(C)) is equipped with the Hermitian inner product cor-
responding to the volume element of g, by (1.6).

Lemma 3.3. (i) (my)*( gl)—— Z (8"” —PapLd*P)8Mdpsdpl, where P = g5p™
(=0, 1) are components of p=(p,, pz)E V,(C**).

(i) Grv-mw)*(g1)= 33 (5 —22gh(e")™)(e*)"dasas, where (¢°)(p)or—

Proof. In virtue of the identities Z‘, Pe*peb=2 and {p, pPs>=1, (7y)*g,=
;}bd( PPt —pip AP —PiP?) is reduced to the required expression in (i). (ii)
follows from (i) with the aid of the identity

(3.7) e o QED.

ReMARK. The space C=(W,(C"*")) of smooth functions with compact
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support is equipped with the Hermitian inner product associated with the

volume element of the metric g, =i;,; dgidgs(p")™. Let D, (resp. D,) be a

representative of D, (resp. D) ED¥(G,,,-(C)). If D, is the adjoint operator of

D, in D*(V,(C™*")), then D, is the adjoint operator of D, in D*(G,,,-,(C)).
Denote by A” the Laplacian of (G,,_,(C), g,) and put A“=—4§= (89—

729b(P") ™) (p*)vs0° (0957093 +2(n—1)(q20/094+720/07 ), where (p)*P=(p *)up.
Lemma 3.4. A" is a representative of A” in (G, ,_,(C)).

Proof. We can easily verify that [A”, pe]=0 and [A7, 0/0p.s]=0 (0=«
B=mn). Thus A"eT*(V(C**')). Moreover, it is seen to be GL(2, C)-invariant
and consequently it represents some linear differential operator belonging tc
D(@G,,,-,(C)). The following three conditions are easily verified: (i) A is a
self-adjoint operator in F( V,(C**Y)). (ii) ﬁ(ﬁ)Aeél\'r(Vz(C’”“)) represents
(g)*, where (g)* is the contravariant Riemannian metric associated with g;.
(i) A” annihilates constants. Thus we can conclude that A™ is a representative
of A™.

Lemma 3.5. (i) A7(p*f)=p"PA"f for f €CO=(W,(C"*Y)),

(i) A7(gyp™)=2(n—1)g3p",

(ii) A7N(gp™)=2(n—1)g5p",

(i) A glgho™p™)—4n—1)gigtp" o™,

(i) ANg3g3p”pP)=4n—1)a5asp™p",

(i) K(@5gp™p®) —45"(— 5743} ()")+ 4(n— 1)73gp™p".

(iv) 45+ 2g}(p")") (s (ALL7) Oap™) | D(G™) UGEe™) ),

ogy  0g; 08 ogy
—_ =C =TV —d =8N —=C =TV —=d <N
(%) 48+ 2303()") ()LL) P, D@PT) BT o,
0y 0gs 0gs 073
., s ® ; TV =d =W z TV —d =8
(v') H(—8-+a2ab(o)") () (ALL7T) NEEPT)., B(ERT) B(ERT))
0gy 0g; 0qs 0gy
=4(—8"4-g5q5(p") ™)™
Proof. These are verified by direct calculations. Q.E.D.

Theorem 3.2. Let §'e(S")**(P,(C)). Then
Al\(gf)/\ — (Afgf)/\ ,
where A" is as in Lemma 3.4.

Proof. Let &' (S"*P,(C)). Consider a representative (?)"‘ in
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C=(W,(C*)) of (8" e€C=(G,,-(C)). Let TEG,, (C) and choose g&
W,(C**) so that (zyomy)(¢)=T. Then we have

Py 2k x e ,.,
BEV@= 775 V3 s =T ™)
.[ AL (EM B) 822‘ 6(51A,E)+3Zc 6_Z_d aZ(ETA,E)
0gyoq; 0Z° 0g49¢; 0Z° 0g% oqy 0Z°0Z°
0Z° 0Z%  0Z°9Z° 62(57‘4'3) 6Z‘ 6Z" o%(&14-B)
+ 74 o2 02 wH
<6"‘ 0q; g3 0¢} >GZ‘GZ”’ 6qy g} 8Z‘6Z">
+ {(GW"h 6Z‘ GZ‘ AW )6(15m B) (GW"k 6Z‘+GZ‘ 6W'
0gy 9q; 6 g3 A 07y 0q 0qy 0g;
G(EfA B) 62Wa ETA B} Wa Wah WB { aka 6Z¢ 6Zc
. -1 k = 4=
0Z° ' og30q! T W\om ot o
. W”») o(£t4.B) <aZ‘aW% LA aZ) (g™ B) 2Wh E,A,g}
ogs / 0z° \ogy 0q;  ogy 0gs/ 0Z° 6456%
A Ty RE=1) 1)<aW“~ T
2 0g; 0q: 0g; 0q;
Wah_z_‘_k(k—l)(GW"k 6ka-1+6W”k oW1
2 og; 9q} 0g; 0q;
oW oW W™ oW
k +
o oi * orp o
+2(n__1)2k g n [6Zc 3(5“ B)
Vol. (83) Js* 5=0" 'Logy 0Z°

+6Z° (EMB )WAWB+kETA36W*Wa WS- W B
0qy 0Z

)ETA,EW“I,,

)gm BWAW s Whi-2

)E'“W" AW Wi |dor

wAaw®

@y ey by b=

W 2(n—1)2*
+ ke W g oy -1]d 2(n—1)2°
0g5 e A oL (8

. n aZc a(EM B) B azc a(EM ) WAWB
SS “ “Iz% “0p=0 % [a—a YA + 0gy YA

+ REM 86:‘" We. W“:.-xWB+kEM-§—agI_’a” W‘W”l-o-th-l]da,
Y

where WA=W%---W% and WZ=Wh.-W% with W'= zagp""‘“ W=

zqu"ﬂw Z'= Zq‘ “Pu and Z°=3) g5p**® (cf. (3.2)).

The first term of the first integral together with the first terms of the second
and the third integrals becomes by virtue of Lemma 3.5 (ii)
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_ 2t S
Vol. (57) )s* ap-aylig-s,=o
= 2k(n—1)(EY\T) = 2k(n—1)(E)" (q)_

Similarly the second term of the first integral together with the second terms of
the second and the third integrals becomes

(A"Z°) 3(’3 0EL?) aysg,

2 " ¢ 3(&) B
vol. (S3)S o %ﬁ » (5 Z) W"W do

= 2k(n—1)(EV(T) = 2k(n—1)E)" (Q)-
The third (resp. fifth term) of the first integral vanishes by virtue of
Lemma 3.5 (iv) (resp. of Lemma 3.5 (iv)). The eighth term of the first

integral together with the third ones of the second and the third integrals
becomes with the aid of Lemma 3.5 (ii)

Zk . a, t\A, B a —ak—l B .
LS g AT E W W
— 2k(n—1)(E)T) = 2k(n—1)(£*) @

Similarly the eleventh term of the first integral together with the fourth ones
of the second and the third integrals respectively becomes

ok
vol. (S?)

= 2k(n—1)EVT) = 26— 1)EY (q)
by virtue of Lemma 3.5 (ii). The twelfth (resp. the thirteenth) term of the

first integral vansihes by virtue of Lemma 3.5 (iv) (resp. by Lemma 3.5 (iv)).
The sixth term of the first integral vanishes by virtue of Lemma 3.5 (iv’) and
of the following formula.

nnnnnnnnn

SS >3 (A WH)EN AT WA .. Wo-sd o
a5, ,a sbyarbj=0

;‘_‘__, ww® =0 (cf. the proof of Theorem 3.1).
=0

Similarly, the tenth term of the first integral vanishes. The fourth term of
the first integral is by virtue of Lemma 3.6 (iv’) rewritten as

2k ”n _ ® a (E)
. 4 §ed dg 2\aB WAWBd .
vol.(S?) Ss o ,k% by (—0"+4,75(p") )6Z°8Z" o

On the other hand, we have —8-1-¢:g8(p?)*P=—8“+Z°Z*+ W*'W* (cf. (3.4)).
Thus the integral above is reduced to

2 " 0y FEN
M54 22 AWrd.
vol. (87 La B S G R Ry WAy,
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because the identity

s PO aayepeg

= == 0
SSS ‘l""’ak%""bbzo azcazd e

follows from Corollary to Lemma 2.2 and the Stoke’s theorem. Similarly the

fourteenth term of the first integral is rewritten as

kZS s é 4(—8“"”"—{—2""26"'1- Wes ka)(g?)A'EW"l...W‘k-lW"l-.-W”k—ldo-
§ s ———

= 4R(EN (D) —4(T*)' T'E)(T) = A(E+E—LD)EN (9 —4(T*)'T'E) () -

ey 8py by, bp=0

Comparing these results with the expression of A' in 2, we obtain
AEY = (MEY .
From this we conclude that

ANEY = (ATEY. QED.

4. Eigenspace decomposition of Lichnerowicz operator on
K**(P,(C))

Put M mw=4((2k—m)n+ 3R+ ?—2kl—(m+ 1) (k+ 1)+ m*+2m). Let
S: (SY**(P,(C))—(S")**(P,(C)) be the linear differential operator of bidegree
(—1, —1) defined by

(4.1) S = A" T'—2f,  TH6(T*)(T1—8' TH(8%) 4+ (8*) T'a"
on (S")(P,(C))-

Lemma4.1. (2m|(m-+1))(T") " S=A(TN*—\f 1 m(T")"+4(m—+2)/(m+1)
S(THN (T —(2/(m+1){0"(T")"(8*)'—(8*)'(T")"8"} .

Proof. From Lemma 1.1 (ii) we obtain
(4.2) (TS = AT =N (T -6(T*)(T )=+

+((m—1)(n+p)—(m—1)*+(m—1))(T")"
— (TN (0%)+(0%)(T")"8'— (m—1)(T"" 38" .

In the same way as in the proof of the first equality of Theorem 1.2, we have
Al = Ki,z,olk,z—S(T*)fTT‘l‘Z(DI)T ’

where 1, is the identity opreator: (S")*!(P,(C))—(S")*!(P,(C)). Applying
(T")™ to the identity above, we obtain
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AT = A1 o(TH"—8(T*)(T)+'—8(mn—+mp—m?+m)(T")"
_Z(GT(TT)M(G*)1+(6*)1(Tf)mat_mgfat(T'r)m—l)
on (SN(P,(C)) (p=k+1).

Eliminating 3'0" from (4.2) and the equality above, we can obtain the desired
formula. Q.E.D.

We remark that the image of S restricted to (K"*!(P,(C)) lies in
(K" 24(P,(C)). This fact is deduced from the following formulae:

[(8%)', S] = 4(n+3k—1+2)T'(0*),

[(3*)', 8] = —4k—1)3'+4(n—k-+DT@*) .
Put

B = 4m(m--1)(T*)'4-2(6*)'(3%)",

(4.3) A% — (i]i. BH(T')”

for any integer m=0.

Lemma 42, (i) (2m/(m+1))(T")y"S= AT — Ny o(T")" +(1/(m+1)?)
B ((TH™ on (KN¥P,(C), g,) for m=0, where

Nem = H(2k—m)n—+2k—2(m~+1)k+m?+2m) = N gom -
(i) A¥ leaves (K')**(P,(C), g,) invariant.

Proof. (i) follows from Lemma 4.1 immedately. We prove (ii) by induc-
tion on m. For m=0 (i) is reduced to

0= A*—)\,,,,olk_k—}—Ai" ’

where 1, , is the identity operator on (K"**(P,(C)). A'leaves (S")**(P,(C))
and (K")*(P,(C), g,) invariant and consequently leaves (K")**(P,(C), g,) in-
variant. From the equality above we see that AF¥ leaves (K")**(P,(C), &)

invariant. Applying f[ B¥ to the both sides of (i), we obtain
(44)  (2m|(m+-1)BEA% S = A'AE N, A%+ (m+1) A%, .

From the induction hypothesis and the remark to Lemma 4.1 we can conclude
that A%, also preserves (K')**(P,(C), g,)- Q.E.D.

Define (P")**(P,(C), g) =k§o(P")""(P,,(C), &) (direct sum) with

(P (Py(C), &) = (K")(P,(C), g) N (T*)'(K")*~'7H(Py(C), £0)))*
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where A* denotes the orthogonal complement of 4 in (S")*/(P,(C), g,). Let
ILo: (KN)**(P,(C), go)— (K" **(P,(C), g be the orthogonal projection with the
image (P')*(P,(C), g). Put

(4‘5) Hm = HoAﬁ .
Lemma 4.3. AUH,— o Hy+(1(m+1))H, s = 0
on (P")"(P,(C), &) (mz0).

Proof. From Lemma 4.1, 4.2 (ii) and the first equality of (4.3) the image

of the left-hand side of the equality (4.4) restricted to (K'")**(P,(C), &) is
contained in (T*)'((K")**(P,C), g)).- Applying II, to (4.4), we obtain the
lemma. Q.E.D.

Define a linear endomorphism P, ,, of (P")**(P,(C), g,) by

Poy— n+2k—2m—2 & (—l)i—m.(n.—{—Zk‘—i—m—:;)! (k=m=0).
m!-(n+2k—m—2)!i=n 2%(21)2 (1—m)!
Theorem 4.1. (i) A*:i_] Neom P 0n (PY¥(P,(C), g,), and this gives the

eigenspace decomposition of A restricted to (P')"*(P,(C), g). (ii) Piw==0kmlis
on (PY¥(PyC), g,). (iil) Py, =0 for k2m=0,n=3. (iv) (K")**(P,(C), go)=

3 Eh} (THH™. ((Phr=mt=mP,(C), g,)) (direct sum). Thus the eigenspace decom-

hzom=0

position (i) yields that of (K")**(P,(C), &)

The proof of Theorem 4.1 is divided into the following eight lemmas.

mf N
Lemma 44. > =1 (m) = (n+n)! .
m=0 (a-+m)--+(a+m-+r) rl-a(a+1)-+(a+n+r)

Proof. For r=0 the left-hand side of the assertion is equal to

L E0(n)
22— = So(l—x) % dx = B(n—l—l, a) = P(n—]—l).I‘(a)/I‘(n+a+1) ,

m= a+m

which coincides with the right-hand side. The lemma follows by induction on
r using elementary difference calculus. Q.E.D.

(=17(J, )w—2m)
’ ‘_]:Io (x—m—1)

Lemma 4.5.

=8f.

M-

m
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Proof. For j=0 the equality is immediately verified. If j=1 the left-
hand side of the assertion is expressed as the sum of two terms:

o ) evld)
= l(w—m—i) " A(x—m—i)

Taking Lemma 4.4 into account, we see imemdiately that the quantity above
vanishes for j =1. Q.E.D.

Lemma 4.6. A'P,,=X; Py . on (P)*(P,(C), g).

Proof.

b (1)t 2k—j—m—3)! (— 1)y (n4-2k—j—m—3)!
ME S G ) =R G

O Hy UG I H) = P2
® _ 1\j-m e P L
+iz’""+l<( 1)22"(?]'—;22‘szim)n'z 3)!Xk'jHj~( 12)2<j—1) (%jff r{z—’;l)! 2)!Hj>
= (mt2k—2m=3)!, g _ < (=) M(nt2k—j—m—3)!
2'm(m!1)? komim ,,.+1 2. (1) (j—m)!
< {\, i +H4(j—m)(n+2k—j—m—2)}H; .
As M, w=Ny,j+4(j—m)(n+2k—j—m—2), we obtained the lemma. Q.E.D.

Corollary. P, ,P, =0 for m==m'.

This is a direct consequence of Lemma 4.6.

Lemma 47. 3P, .=1,, on (P'}*(P,(C), £,).
L2k 2m—2 & (—1Y " (k- 2k—i—m—3)]
omle(nt 2k—m—2)li=m 28 (jl)(j—m)!

L1y G (=) (nt2k—2m—2)« (n+2k—j—m—3)1( j
= 2 -G H; % (n+2k—m—2)! (m)

&
Proof. >} P, ,=
m=0

on (P"*P,C), g). On the other hand, substituting x=n-2k—2 into the
equality in Lemma 4.5, we have

i (7 (=D (n2k—2m—2)+ (n+2k—j—m—3)! _
2 (m) (n+2k—m—2)! =9

o,

m=0

Then
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P =3 (1])")3 Hsi=1,,. QE.D.

From Lemma 4.6 and Lemma 4.7 follows Theorem 4.1 (i) immediately.

Let @ be an eigenfunction of the Laplacian A of (P,(C), g,) for the first
eigenvalue 4(n+1). We can identify @ with its representative @' in virtue of
the isomorphism (2.4), restricted to D°(P,(C)).

Lemma 4.8. (i) BXZ°Z'/r)=8 2 E L (i) BIO'E(K)(P(C), £)-

Proof. It is enough to prove (i) because (ii) is a direct consequence of (i).

We know that ®'=c+ 2 c,,,,(Z"Z *[r?) for some c€C and ¢,,€C (cf. [2] pp. 172-
173). 'Then we have o

BY(Z°Z'[r*) = 2(0%)'(0*)(Z°Z" |r*)+(T*)(Z°Z*/r*)
= 8(r?8%98% — 280 20— 282 — Z°8% 2 |- 2Z° 2V Z° 2% |r?
+2(r?84—ZZ*)Z*Z}|r*)(0/0Z°)o(8[0Z?) .

On the other hand, as {—&=0 (mod (7))

DS Elof! = 8 2 (V1)U Z°0[02Z°— Z°0]0Z°)(Z°0[0 2> — Z3[0Z°)

¢=0ac cb

= 81%0/0Z-3/0Z°—8 )3 Z°Z°00Z%0/0Z°—8 )3 Z°Z%|0Z3[0Z°
c=0 c=0
1-8Z°Z" 31 0/0Z°00/0Z°+8 3] Elof'  (mod (7).
c=0 €=0 cc a
Comparing these two equalities we obtain

(4.7) BHZZ'r)—8 3] g =0 (mod(r).

By virtue of Lemma 2.3 and its proof we have
(K")**(P,(C), g) N(T) S (8")**(P,(C)) N (7) = {0} .
Hence the left-hand side of (4.7) vanishes. This proves (i). Q.E.D.
Lemma 4.9. (i) (T*)"(a’?zd)"z((k!)2/((k~z')!)2)( ;’g"d)"”"(I/Z"W")(Z”Z”S”—I—
ZbZdSac__Zaz_'dabc__zbztb\n)i-
i d *(TH( E V)= D2 (k!)g'(i!)2 k=i (= i
(i) Ho(il;ll B¥(T") (ab&:m) )=2 ((—k—z—)'){ Ho((abg'id) (E(abd, cd)))
with
H(ab, cd) = 3 (3% £ 8% £ 3% £ 5% £ )& (K')(P,(C), g)-

Proof. From Lemma 2.7 we know that
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TH EY Y — R EY VIT( EY ).
(algcd) (algcd) (abg,cd)
On the other other hand, we obtain by direct calculation

TT( E ) — _2172_(Zaanbd+Zbstac_ZaZdabc_Zchaad) X

ab,cd

From these two equalities we can prove (i) by induction on i. To prove (ii)
it is enough to verify that

(a) LI BYE'—(BYE)=0 for E'(K)**(P.(C), &)
(b) B¥TY( I’E*)=23E(ab, cd).
(a) is evident. (b) follows from Lemma 4.8. Q.E.D.

Notice that there are only following two cases in which E(ab, cd) are non-

trivial.
Case 1. Among a,b,c and d, three and only three of them are distinct.
Case 2. a=c, b=d and a=b or a=d, b=c and a=b.

Lemma 4.10. In (PyC), g,) P4 n.+0 if and only if k=m.

Proof. In virtue of Lemma 4.9 and (4.6), the expression of P, , is reduced
to the following form:

P”"'(H"a;g:d)k = [1o(E(abd, cd)):.
As n=2, in case 1, say a=d=0, b=1, ¢=2,
Pl £ = T(—33 £ = I(EL + & + B = T £
In case 2, say a=c¢=0 and b=d=1,

2
Pk'k(HOME:o)k - Ho(_-go (=§Zo+¢§11))k = HO(—O;E; + g:‘)k - HO(oxg:o )k )

We can conclude that P, ,=1,, on (P")**(PyC), g). Owing to Corollary

of Lemma 4.6 and Lemma 4.7 we have P, ,=0 if m=k. Q.E.D.

From Lemma 4.7 and Lemma 4.10 follows (ii) of Theorem 4.1 immediately.

In order to prove the rest of Theorem 4.1, we need the following two
lemmas. Let X;; (0=:<j=<n), Y,; (0=k<</=n) be intederminates.

We employ the following notations:

C[X, Y]: the polynomial algebra generated by all of X;;’s and Y,,’s,

C[X-Y]: the subalgebra of C[X, Y] generated by products X,;+ Y,

I§: the ideal of C[X, Y] generated by [I;;u (0=5i<j<k<lI=n), I1,4ys
0=p<g<r<s=nm),
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I}: the ideal of C[X, Y] generated by II;;u (0=<i<j<k<I=n), TI,q
(0= p<g<r<s<mn) and G—1,

I4: the ideal of C[X, Y] generated by Il (0=i<j<k<I=n), TI,qs
(0= p<g<r<s=n)and G,

L=INCX-Y] (0<i<2),
where Hiikl=XiiXk1_Xikal+Xi1Xik) ﬁﬁqn= qu Yn—' Yerqs+ Yps an
G = 2 X'-j YU .

05i<isn

Lemma 4.11. (i) The image of the Radon-Michel transform restricted to
(KY**(P,(C), &) is the subalgebra C[P*P* (0<a<b=n; 0<c<d=n)] in
C~(G,,,_,(C)), where P*s are normalized Plicker coordinates. (i) The image of
the Radon-Michel transform restricted to (K')**P,((C), g,) is isomorphic to the
quotient algebra C[X -Y][I,. (iii) The kernel of the Radon-Michel transform
restricted to (K")**(P,(C), g,) is the principal ideal in (K')**(P,(C), g,) generated

by (&8/2)—1.
Proof. (i) is essentially proved in 3. (ii) is another expression of (i) based

on the classically known result on complex normalized Pliicker coordinates.
(ii) As we have by direct calculation:

(g¥12)—1 = (r*8°*—Z2°Z%)0/0Z°08[0Z"—~1 = 3} Eok—1,

0Se<bSn 5y 0f

we obtain

(gF/2)—1)" = _3_PYPI—1.

05i<jsn

Thus (g¥/2)—1 1s contained in the kernel of the Radon-Michel transform
restricted to (K")**(P,(C), ).
On the other hand, we have the following identities by direct calculations:

El o B' — &' o B! + E' o B! = (£of—Eof+Lof)E0E=0

ij,mn ki,pqg ik,mn jl,pq il,mn jk,pq ij kT ik T il jk mm Pq
(resp. §' o &' — &' o E' + &' o E' =Fof(E0E—E0E4EE=0).
mn,ij pq,kl mn,ik pg,jl mn,il pq,jk mn p7 ij Bl ik 1 il G

The left-hand sides of the identities above have
(Pijpkl_pikpjl+pi1pjk)Pmanq (resp. pmnppq(Piijl_Pikle+Pilek))

as their images of the Radon-Michel transform. Comparing with the results in
(i) and (ii), we can easily conclude that the kernel of the Radon-Michel trans-
form coincides with the principal ideal generated by (g&/2)—1. Q.E.D.

Lemma 4.12. (K")**(P,(C), g)=C[X - Y]/I,.
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Proof. Let @: C[X-Y]—(K")**(P,C), g,) be given by X,; Y& =
ij M
’g";. Then & is a surjective homorphism of graded algebras. Obviuosly I,C
ij.kl
ker @. If we consider the homomorphism @ followed by the Radon-Michel
transform, Lemma 4.11 tells us that the kernel of @ is exactly 1. Q.E.D.

Proof. of Theorem 4.1 (iii). Let#=3. From Lemma 4.9 (ii) we have

(48)  Pya(E) = s (1) @) (k1) + 2k —2m—2)
i= m m!(n+2k—m—2)!-((k—i)!)?: (i—m)!
«(n+2k—m—i—3)!-I1, (E(01, 01)’ (mE:u)k 9.

If P, ,, vanishes identically, then

Ho 2 Cr,m, 3(2( EIO+01§:1)) ( ng)k Fee
where ¢, ,, ; are numerical coefficients of II,(E(01, 01))° ( f* )*"¥in (4.8). From
Lemma 4.11 it follows that

(49) 23 Chni 2[5 (Ko Yo+ Xo Yot 32 X Vil (X Yar)~!

should be in the ideal I,, However this is not the case. If we put X;;=1,
Xp=2v"1, Xp=Xu=1, Xp=—vV—-124+V2), Xis==—V =2, X;;=0 for
Max{i, j} =4, Yu=2, Yu=Vv—1, Yo=—Yg=1, Yp,=—v—-2, Yi=

—12++v=2), Y,,=0 for Max{p, g} =4, then X, ’s and Y,/’s satisfy IT;;,,=0,
IIM,,=0, °s§s~ X;j*Y;;=0, and .-=Z,:,. Com,i(Xor Yor— X3 Vis) (X0 Yr) =0, Con-
sequently we can conclude ¢; ,, ;=0. This is a contradiction. Q.E.D.

(iv) of Theorem 4.1 is easily obtained from the definition of (P")**(P,(C))
and the properties of T'*. The proof of Theorem 4.1 is finished.

By virtue of Theorem 3.2 the eigenspace decomposition of A™ is obtained
by transferring the decomposition of (K')**(P,(C)).

Theorem 4.2. The spectrum of (G, ,-(C), g1) s Np,w=H(2k—m)n+2K?
—2(m+1)k+m*+2m) for n=3, N, ,=4(k*+2Fk) for n=2.

Proof. By virtue of the theorem of Stone-Weierstrass C[P*, P (0<a<
b=<n; 0=c<d=n)] is uniformly dense in C~(G,,-,(C)). The image of an
eigensubspace of A" in (K')**(P,(C)) by the Radon-Michel transform is non-
trivial, which is essentially proved in the proof of (iii) in Theorem 4.1. Our
assertion follows from Theorem 3.2 and Theorem 4.1. Q.E.D.
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Appendix. Differential equation for eigenfunctions of the Laplacian
A in (P,(C), g,)

Define a linear differential operator in C"*'—{0} of order 2h+1 by

D¥=(8%)"- 11 B (h=0). Note that Dy=(5*)".
Put

k+1 6Ea1m2‘wa‘+ pB

*=\4.B
(60 :‘) 2 i=1 07Z°% ’

M

. _ 1+1 ’—‘A';lmflmb—l‘i'l
@rmyns —2 53 BT
j=1 7/A¢)

for E€ S*!/(C**'—{0}) and put
8 =of+0
Lemma A.  Di(y/r™)=r*"5§(08)"(08)"n, if n/r™ (S")"*(P.(C)).

Proof. D¥(n/r’)=8%p=r*8§n. Suppose that the assertion be true for 7 =0.
Then

%

D:j<+ 1(7]/72i+2) —_ D?B?:.l(‘q/fz“‘z) — r2i+48§=(63k)i+1(55k)i+1’7
by virtue of Leibnitz’s formula. Q.E.D.

Let E; be the eigensubspace for the eigenvalue 4i(n-+i) of the Laplacian
A of (P,(C), g)-

Theorem A. Let f=(C*)'(P,(C)). D¥f=0 if and only iffe:‘] E..
i=0

Proof. Put ¥=r*f. From Lemma A. D}f=0 if and only if »***2§¥
<(05)"(3¥)"w=0. Thus D#f=0 if and only if ¥ is a homogeneous polynomial
of bidegree (%, k) with respect to (Z% Z*). The latter is known to be equivalent

to feié E, QE.D.
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