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Chapter 1

Introduction

This thesis addresses the control and mechanics of first-order Lie bracket systems, a class of
nonholonomic systems. A major class of nonholonomic systems is those that are subject to a
form of constraint  cT1(q)

...
cTm(q)

 · q̇ = 0, (1.1)

where q ∈ Rn denotes the state vector and c1(q), . . . , cm(q) ∈ Rn denote constraint vectors.
The term nonholonomic means that the differential equation (1.1) is not integrable, hence it
cannot be expressed in the form of h(q) = constant. Nonholonomic systems can potentially
change these full configurations from an arbitrary point to another one through the less number
of instantaneous degrees of freedom. For example, in the case of a differential-drive vehicle,
it is possible to change its position and orientation (three degrees of freedom in total) from
any initial state to another, by appropriately choosing the velocity of two wheels. Considering
the admissible velocity to be the control input, this mechanical property is interpreted as
the controllability of nonlinear systems. Here, even if controllability is guaranteed, it is not
trivial to find a time sequence of input. This is because, due to the constraint (1.1), the set
of admissible velocities q̇ does not span TqRn = Rn. In a differential-drive vehicle, any wheel
velocity cannot achieve lateral sliding motion.

These controllable underactuated systems would have some advantages and possible ap-
plications, as discussed in [2]. On the other hand, its control is much more difficult than
that of fully actuated systems. It is unsolved even for the path planning problems before
discussing the robustness and other issues, which restricts the potential for use. Therefore,
this study addresses the path planning problem on underactuated systems with nonholonomic
constraints.

Now we classify the symmetric affine systems form a viewpoint of the Lie bracket, an
operation on vector fields that characterizes the structure of nonlinear controllability. Systems
that are not controllable will not be considered. Among these systems, the smallest state
dimension is three, whose controllability is ensured by two inputs and a unique first-order Lie
bracket by the inputs. All other symmetric affine systems can be viewed as extensions of the
two-input three-state dimension systems in the direction of depth or breadth, or both. Here,
depth-extended systems denote systems that are controllable by higher-order Lie brackets,
such as the “chained system.” Breadth-extended systems are called the “first-order systems,”
in which n-dimensional states are controllable by m inputs and their first-order Lie brackets.

I focus on the first order systems according to its delay. The delay here refers to the re-
quired steps of time integration from the input to the state . It is analogous to the relative



degree of the linear SISO systems. The first-order systems have the smallest delay in the
underactuated systems. In control engineering for mechanical systems, not in general control
theory, it is loosely shared that control of systems with high deley tends to cause inconve-
nience, and I agree with this idea. Therefore, I decided to focus on first-order systems to
contribute to social implementations of nonholonomic systems. As an engineering major, the
significance of addressing control problems in nonholonomic systems, which have been the
focus of mathematicians, lies precisely on this point.

This thesis consists of five chapters. In Chapter 1, I have described the focus of this thesis
and its motivation.

Chapter 2 describes the Lie bracket and nonlinear control theory. The first-order systems
are defined according to this background theory. This is also the basis of the following two
contributions.

Chapter 3 describes the contributions to control theory. This chapter addresses an optimal
path planning problem on the three-input six-dimensional Brockett’s canonical system. By
introducing the input quadratic norm as a Riemannian metric, we show that the shortest
paths connecting two points are parametrized as helix paths. In addition, we present a quasi-
analytical procedure to determine the optimal helix path for any given target point. The
characteristic feature of our method is that the optimal paths are parametrized as an explicit
function on the state space, which enables the solution paths to be derived without multi-
dimensional iterations. The approach is validated by numerical computations in two aspects:
matching for arbitrary target points and covering known optimal paths as special cases.

Chapter 4 describes the contributions to mechanism design. This chapter introduces the
notion of a kinematic-dual snake robot, as contrasted with a conventional wheeled snake robot.
The well-known snake robot consists of active joints and passive wheels corresponding side-slip
constraints. The purpose of this study is to present a string-like mobile mechanism as a solution
to the difficulty of manipulating the original snake. The key idea in devising the proposed
snake is to reverse the mechanical elements of the original snake and then refine the reversed
mechanism by the kinematics so that it is a dual system of the original snake. Thus, the
proposed snake consists of passive joints and active omnidirectional wheels plus two ordinary
wheels at the ends, associated with side-slip constraints. Here, we introduce the concept
of the kinematic-dual snake and explain in what sense it is kinematic-dual. Then, through
controllability analysis, motion planning, and experiments, we prove that the concept of the
kinematic-dual snake is reliable as a mobile mechanism. The proposed robot can improve its
manipulability while maintaining the advantages of the string-like body. The authors expect
this idea would contribute to tasks that require both joint angle manipulation and traveling,
such as transportation with wrapping around an object.

Chapter 5 summarizes the contributions of this thesis and their significance.

– 6 –
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Chapter 2

Nonlinear Controllability and its
Characterization Using Lie brackets

This chapter describes the Lie bracket, an operation on vector fields that characterizes the
structure of nonlinear controllability. These discussions are summarized in the following books:
nonlinear control theory[3, 4]; control of nonholonomic systems[5, 6].

Among the nonholonomic systems, this study considers symmetric affine systems of the
form

q̇ =
m∑
i=1

gi(q)ui, q, gi(q) ∈ Rn, (2.1)

where q denotes the state, ui denotes the input. The vector field gi(q) indicates direction
of state change driven by the input. Many mechanical systems such that the nonholonomic
constraints (1.1) correspond to the generalized velocities are represented as this symmetric
affine system.

The following definition of nonlinear controllability is widely used, and this thesis follows
this.

Definition 1. Nonlinear controllability[7]: The nonlinear system (2.1) is said to be controllable
if, for any pair of q0, qf , there exists a finite time T and an admissible control input u(t)
defined on the interval [0, T ] such that the resulting solution q(t) starting from q(0) = q0
satisfies q(t) = qf .

A prominent way to prove the nonlinear controllability is using a product operation called
the Lie bracket. For two smooth vector fields gi(q), gj(q) ∈ Rn, the operation

[gi(q), gj(q)] :=
∂gj(q)

∂q
· gi(q)−

∂gi(q)

∂q
· gj(q) (2.2)

is Lie bracket of gi(q) and gj(q). The Lie bracket itself is also a vector field on Rn. Thus
we can consider a recursive Lie bracket such as [gi(q), [gi(q), gj(q)]], and can repeat this
operation for infinitely many times. The following theorem describes a computable condition
of nonlinear controllability of the symmetric affine systems using the Lie brackets.

Theorem 1. Chow’s theorem: The system (2.1) is controllable if and only if gi(q) and these
recurrent Lie brackets span the dimension n for all q.

Note that even if the system is controllable in the nonlinear sense, we cannot move the state
q in all directions instantaneously (these motions require [g1(q) g2(q) · · · gm(q)] to be full



Fig. 2.1 The left-side figure shows the path of the input (2.3). The area enclosed by the
path on the time integration of the u1 and u2 plane equals πε2. With this input, state
q(t) traces the path shown in the right-side figure. The state q moves not only in the
plane formed by g1(q0) and g2(q0), but also in the direction of [g1(q0), g2(q0)], because
the vector gi(q) changes as the state q changes.

row rank); we can only move the state q to a position in finite time with finite input.
Let us mention a geometric meaning of the Lie bracket. The Lie bracket [gi, gj ] means the

direction of state change caused by a periodic control by two corresponding inputs, with a
small amplitude and a phase difference. For example, applying the input

(u1(t), u2(t)) =

(
ε
2π

T
cos

(
2πt

T

)
, ε
2π

T
sin

(
2πt

T

))
(2.3)

moves the state from q(0) = q0 to q(T ) as

q(T ) = q0 + πε2
(
∂g2(q)

∂q
g1(q)−

∂g1(q)

∂q
g2(q)

)∣∣∣∣
q0

+O(ε3). (2.4)

Figure 2.1 shows the path of the input (2.3) and the path of the state with the input (2.3).
The direction of the displacement from q(0) to q(T ) corresponds to the Lie bracket of a pair
of vector fields, since the Lie bracket is defined as (2.2).

– 8 –
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Chapter 3

Optimal Path Planning on the
Three-Input Six-Dimensional Brockett’s
Canonical System

3.1 Introduction: Finite-time steering of first-order systems
3.1.1 Related works: Finite time steering methods for “first-order systems”
This section introduces existing path planning methods that include first-order systems as
their target systems and classifying them in two aspects: rate of decay and representations
of the target systems. There are many path planning methods based on Lyapunov’s stability
theory in which the time evolution of state quantities decays exponentially (or its extension),
e.g., [8, 9, 10, 11, 12, 13]. However, we focus on finite-time steering, which is a stronger result
than exponential stabilization. If finite-time steering is achieved, the system is exponentially
stable, but the converse is not always true. We note that finite-time steering is not always
superior to exponential stabilization as a controller.

Several finite-time steering methods are proposed in [1, 14, 15]. Murray[1] presents a step-
by-step steering method on the first-order canonical systems introduced in [16]. Due to the
difficulty of matching multiple state variables to boundary conditions by the optimal paths,
they divide the state steering into some steps based on controllability structure. Leonard[14]
expands the target system to matrix Lie groups and provides a steering method similar to [1].
Matrix Lie groups can represent Brockett’s canonical system without any defect and include
the matrix representations of SO(m) and SE(m), which are important for application use. The
behavior of these step-by-step steering for a differential-drive vehicle is shown schematically in
Fig. 3.1. In the words of [14], step-by-step steering is a “constructive controllability” method
and is not the result of aiming to gain a good path but only to steer in finite time. Although
there are various measures of good paths, the authors feel it natural to minimize the path
length by introducing the inputs as a Riemannian metric.

This input Riemannian metric minimization problem was tackled early on by Brockett[17,
16] and Baillieul[18]. The formulation of these optimization problems is summarized in [19].
Jurdjevic[20, 21] also dealt with this problem in a mathematical manner. In [16], Brockett
introduced a local canonical system for the first-order controllable systems. In addition to
introducing the canonical system, Brockett parametrizes the optimal inputs by solving the
optimization problem. This result plays an important role in this study and will be discussed
in detail in Section 3.3.



3.1. INTRODUCTION: FINITE-TIME STEERING OF FIRST-ORDER SYSTEMS

Step 1

Step 2

Step 3

Fig. 3.1 A schematic sequence of steering a differential-drive vehicle by the method
presented in [1]. Step 1: Steer x-coordinate to zero by forwarding motion. Step 2:
Steer θ-coordinate to zero by rotation. Step 3: Steer y-coordinate to zero by combining
forward/backward motion and rotation. Each state quantity is steered in a separate step.
The motion is not aimed at its optimality.

Several methods to obtain specific optimal paths have been presented by using the above
formulation or numerical computations. A numerical computation method was reported in
[22]. Using the existing result that the optimal paths on SO(3) are parametrized as elliptic
functions, Spindler[23] uses the shooting method to match the boundary conditions. Hen-
ninger[24] extend the target system to include SO groups and provide similar results to [23].
In three-dimensional systems, they also present an analytic method. The authors of [25]
and [26] focused on a particular system on SE(3). Both authors discuss optimal orientation
problems at unit speeds intended for airplanes, and helix paths are derived as the solution
paths.

3.1.2 The focus of the chapter
In summary, for the case of more than three-dimensional systems, either step-by-step steer-
ing, a “constructive controllability” method, or multi-dimensional numerical optimization is
required. A more powerful result, finding the shortest path by an analytical procedure, has
only been achieved for two-input three-dimensional or specific systems. Hence, we address the
optimal path planning on the three-input six-dimensional Brockett’s canonical system.

The setting of the target system is limited but significant. Three-dimensional inputs can
steer six-dimensional states maximally by the first-order Lie brackets, and six dimensions are
identical to the degrees of freedom of SE(3). Precisely, it corresponds to controlling the position
and orientation of a rigid body in three-dimensional space by three-dimensional inputs. Our
focus on the canonical system will contribute as the first step toward solving more general
problems since finite-time steering was first solved for the canonical systems and then extended
to larger classes.

Our purpose is to present a parametric representation of the optimal paths and a path-

– 10 –



3.2. PRELIMINARIES

determining method for any given target point. To this end, in Section 3.3, we show that the
set of good paths, meaning that the path length is the local minimum, can be parameterized as
helix paths. In Section 3.4, the existence of helix paths that satisfy the boundary conditions
for almost all target points and a determining method are presented. In Section 3.5, numerical
examples show that the paths can be matched for many target points with reasonable accuracy.
We also show that the helix paths introduced in Section 3.3 contain the global shortest paths
for several specific target points. Finally, in Section 3.6, we summarize the contents of this
chapter.

The position of this chapter relative to existing studies can be summarized as follows. [1, 14]
are direct motivation of this study. They present finite-time steering methods for a wide class
of systems but do not aim to gain good paths. In contrast, the path planning method in this
study gains good paths in the sense that the path length measured by the input Riemannian
metric is the local minimum. While there are numerical methods to plan the paths, this study
not only presents a path planning method but also parametrizes the local optimal paths by
helix.

3.2 Preliminaries
This section describes mathematical notations. If the reader is unfamiliar with these theorems,
please see [27].

The cross product of two vectors v, w ∈ R3 is defined as

v ×w :=

v2 · w3 − v3 · w2

v3 · w1 − v1 · w3

v1 · w2 − v2 · w1

 , v =

v1v2
v3

 , w =

w1

w2

w3

 . (3.1)

Since the cross product by v is a linear operator, by defining wedge operator (·)∧ as

v̂ = (v)∧ =

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 , (3.2)

we can represent the cross product as

v ×w = (v)∧ ·w. (3.3)

For a vector ω ∈ R3, |ω| = 1, the following equation holds:

(ω̂)2 = ωωT − I, (3.4)

where I denotes the unit matrix. The following equation is held for the dot product and cross
product of the vectors u, v, w ∈ R3:

uT · (v ×w) = vT · (w × u) = wT · (u× v). (3.5)

We define the normalization operator for the non -zero vectors as

v :=
v

|v|
. (3.6)

– 11 –



3.3. PARAMETRIZATION OF THE OPTIMAL PATHS

By using two ordered vectors v, w ∈ R3, v × w 6= 0, we define the normal orthogonal
coordinate system C(v,w) ∈ SO(3) as

C(v,w) :=
[
v v ×w v × (v ×w)

]
. (3.7)

Maps by R ∈ SO(3) hold the following relations for the given v, w ∈ R3:

|R · (v −w)| = |v −w|, (3.8)
R · (v ×w) = (R · v)× (R ·w). (3.9)

3.3 Parametrization of the optimal paths
This section discovers a set of candidates for good paths. For this purpose, we define an
input Riemannian metric minimization problem between two points on the three-input six-
dimensional Brockett’s canonical system. We then derive a parametric path representation
that satisfies the shortest stationary condition.

First, we define the minimization problem as follow:

Problem 1. Primal optimization problem

given xf , yf (3.10)
system ẋ = u, ẏ = x× u (3.11)

find x(τ), τ ∈ [0, 1] (3.12)
s. t. x(0) = 0, y(0) = 0, x(1) = xf , y(1) = yf (3.13)

minimize J =

∫ 1

0

uT · udτ (3.14)

Where x,y ∈ R3 are state vectors, and let x and y be called base coordinates and fiber
coordinates, respectively. A pair of {xf ,yf} denotes a target point. u(·) : [0, 1] → R3 denotes
control input. In this formulation, we introduce the quadratic form uT · u as a Riemannian
metric, not the input two-norm

√
uT · u. These settings do not change the solution paths of

the optimization problem [16], and these simplify reducing Problem 1 to Problem 2.
For this problem, the following theorem holds:

Theorem 2. For the solutions of Problem 1 x∗(τ), there exist constant vectors λc,v ∈ R3,
such that the following equation holds:

d

dτ
x∗(τ) = γλ(τ) (3.15)

where γλ : [0, 1] → R3 is a parametric curve defined by

γλ(τ) := exp(λ̂cτ) · v (0 ≤ τ ≤ 1). (3.16)

Proof. This theorem was discussed for general dimensional case in [16], and a kind description
is provided in [1]. Here we provide a proof specialized within 3-dimensional input.

The Lagrangian function of the evaluation function (3.14) and the constraint equation (3.11)
is expressed as

L(x, ẋ,y, ẏ,λ) = ẋT · ẋ+ λT · (ẏ − x× ẋ) (3.17)
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3.3. PARAMETRIZATION OF THE OPTIMAL PATHS

with the Lagrangian multiplier λ : [0, 1] 7→ R3 and without u. Solving the Euler-Lagrange
equation for y yields

0 =
d

dτ

(
∂L

∂ẏ

)
− ∂L

∂y

= λ̇. (3.18)

Likewise, solving for x with substituting λ̇ = 0 yields

0 =
d

dτ

(
∂L

∂ẋ

)
− ∂L

∂x

= (2ẍ− λ× ẋ− λ̇× x)− (λ× ẋ)

= 2ẍ− 2λ× ẋ. (3.19)

This differential equation can be solved by using the matrix exponential function as

ẋ(τ) = exp (λ̂τ) · ẋ(0). (3.20)

From here, we begin the original formulations. First, we normalize λc and impose its norm
on the time.

Corollary 1. For the parametric curve γλ, there exist an equivalent parametric cruve γω :
[0, tf ] → R3 defined by

γω(t) := exp(ω̂t) · v (0 ≤ t ≤ tf ), (3.21)
ω ∈ R3, |ω| = 1. (3.22)

Due to the equivalence of γω and γλ, integrating γω on the time yield another parametric
curve that is equivalent to the solution curve of Problem 1 x∗(τ).

We can observe that exp(ω̂t) · v represents the rotation of a constant vector v about an
axis ω for an angle t. This geometric observation leads us to express (3.21) as the following
time-integrated form.

Theorem 3. For the constant vectors ω,v ∈ R3, satisfying |ω| = 1, there exist r, h ∈ R, r ≥
0, Ω ∈ SO(3) such that the following equation holds:

ξr,h(t) :=

 ht
r · sin t

r · (1− cos t)

 , ξr,h(·) : [0, tf ] → R3, (3.23)

∫ t

0

exp(ω̂τ) · vdτ = Ω · ξr,h(t). (3.24)

Proof. The Rodrigues’ rotation formula expand exp(ω̂τ) · v as

exp(ω̂τ) · v = v + ω̂v sin(τ) + ω̂2v(1− cos(τ)) (3.25)
= (ωTv)ω − ω̂2v cos(τ) + ω̂v sin(τ). (3.26)
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If ω̂v 6= 0, then we can re-arrange exp(ω̂τ) · v as

exp(ω̂τ) · v =
[
ω −ω̂2v ω̂v

]
·

 ωTv
|ω̂2v| cos(τ)
|ω̂v| sin(τ)

 . (3.27)

Here we can verify the followings:[
ω −ω̂2v ω̂v

]T ·
[
ω −ω̂2v ω̂v

]
= I, (3.28)

det
[
ω −ω̂2v ω̂v

]
= 1, (3.29)

|ω̂2v| = |ω̂v|. (3.30)

Therefore, if ω̂v 6= 0, there exist r ≥ 0, h ∈ R, Ω ∈ SO(3) such that

exp(ω̂τ) · v = Ω ·

 h
r cos(τ)
r sin(τ)

 (3.31)

is held. For the excepted cases, such that ω̂v = 0, we can also verify the existence of such
{r, h, Ω}.

Since Ω is constatnt against the time, (3.31) can be integrated on the time interval [0, t] as

∫ t

0

Ω ·

 h
r cos(τ)
r sin(τ)

dτ = Ω · ξr,h(t). (3.32)

To summarize, the infinite-dimensional optimization problem defined as Problem 1 was
reduced to the following boundary value problem with the evaluation function.

Problem 2. Boundary value problem with evaluation function

given xf , yf (3.33)
system ẋ = u, ẏ = x× u (3.34)

find Ω ∈ SO(3), r, h, tf ∈ R, r ≥ 0, tf ≥ 0 (3.35)
s. t. y(0) = 0, x(tf ) = xf , y(tf ) = yf , (3.36)

x(t) = Ω ·

 ht
r · sin t

r · (1− cos t)

 (3.37)

minimize J =

∫ tf

0

uT · udt (3.38)

We note that Theorem 2 gives the local optimal paths, not the global optimal paths. If the
admissible solutions of Problem 2 are unique against the given target points, the admissible
solutions are the global optimal paths. However, there exist multiple admissible solutions if
|yf | is relatively large. Hence, we would evaluate J to find the global optimal paths among
the admissible solutions.

While it is interesting to find the path that minimizes the evaluation function J among the
admissible solutions, we do not aim to solve this problem but use the helix trajectory (3.37)
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as a set of candidates for good paths. Conversely to the uniqueness, the existence of the helix
paths that steer the system to almost all target points will be proved constructively in the
next section.

3.4 Determination method of the optimal helix paths
This section provides the method for finding the optimal helix paths which match the boundary
conditions. For simplicity, we assume the target points satisfy xT

f · yf 6= 0, xf × yf 6= 0.

3.4.1 Representation of the helix orientation Ω

First, we solve about the orientation Ω by considering its symmetries on SO(3) and obtain its
explicit representation as a function of {r, h, tf} and {xf ,yf}. By substituting the optimal
base trajectory (3.37) into the system constraints (3.34), the behavior of the fiber coordinates
y(t) is expressed as

y(t) = y(0) +

∫ t

0

x(τ)× u(τ)dτ (3.39)

=

∫ t

0

(Ω · ξr,h(τ))× (Ω · ξ̇r,h(τ))dτ (3.40)

=

∫ t

0

Ω · (ξr,h(τ)× ξ̇r,h(τ))dτ (3.41)

= Ω ·
∫ t

0

ξr,h(τ)× ξ̇r,h(τ)dτ (3.42)

= Ω · ηr,h(t), (3.43)

where

ηr,h(t) :=

 r2 · (t− sin t)
rh · (t− 2 sin t+ t cos t)
rh · (t sin t+ 2 cos t− 2)

 . (3.44)

Since Ω ∈ SO(3) is a rotation matrix, which preserve the distance and angle, a set of necessary
conditions for {r, h, tf} to satisfy the boundary condition (3.36) is obtained as

|xf | = |ξr,h(tf )|,
|yf | = |ηr,h(tf )|,

xT
f · yf = ξr,h(tf )

T · ηr,h(tf ).

(3.45)

Conversely, if (3.45) is satisfied, the boundary conditions can be matched by determining Ω
as

Ω = C(xf ,yf ) · (C(ξr,h(tf ),ηr,h(tf )))
−1. (3.46)

This can be verified by the equations (3.37) and (3.43). Therefore, finding the admissible
solutions of Problem 2 is reduced to the following three parameter problem:

– 15 –



3.4. DETERMINATION METHOD OF THE OPTIMAL HELIX PATHS

Problem 3. Reduced boundary value problem

given xf , yf , xT
f · yf 6= 0, xf × yf 6= 0 (3.47)

find r, h, tf ∈ R, r ≥ 0, tf ≥ 0 (3.48)

s.t. ξr,h(t) :=

 ht
r · sin t

r · (1− cos t)

 , (3.49)

ηr,h(t) :=

 r2 · (t− sin t)
rh · (t− 2 sin t+ t cos t)
rh · (t sin t+ 2 cos t− 2)

 , (3.50)

|xf | = |ξr,h(tf )|, |yf | = |ηr,h(tf )|,
xT
f · yf = (ξr,h(tf ))

T · ηr,h(tf )
(3.51)

3.4.2 Solving r, h, tf by the given target points xf ,yf

Next, we will solve the Problem 3 with respect to r, h, tf , for the given conditions xf , yf . Let
θ be the angle between them, which satisfies

cos θ =
xT
f · yf

|xf ||yf |
. (3.52)

In order to simplify the expression, we prepare the following functions of t:

a(t) := 2(1− cos t),

b(t) := t2,

c(t) := (t− sin t)2,

d(t) := 2t2 cos t+ 2t2 − 8t sin t− 8 cos t+ 8,

e(t) := t2 + t sin t+ 4 cos t− 4,

f(t) := 2t sin t− 4(1− cos t)− t(t− sin t).

From the conditions (3.51), we obtain

|xf |2 = a(tf )r
2 + b(tf )h

2, (3.53)
|yf |2 = c(tf )r

4 + d(tf )r
2h2, (3.54)

|xf ||yf | cos θ = e(tf )r
2h. (3.55)

We begin to express r and h as functions of tf . The equations (3.53), (3.54) are summarized
as [

r2|xf |2
|yf |2

]
=

[
a(tf ) b(tf )
c(tf ) d(tf )

] [
r4

r2h2

]
. (3.56)

The right-hand side is invertible since ad− bc = ef < 0 for any t > 0, then we obtain[
r4

r2h2

]
=

1

e(tf )f(tf )

[
d(tf ) −b(tf )
−c(tf ) a(tf )

] [
r2|xf |2
|yf |2

]
. (3.57)
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The first row is a quadratic equation with respect to r2, i.e.,

r4 − d(tf )|xf |2

e(tf )f(tf )
r2 +

b(tf )|yf |2

e(tf )f(tf )
= 0

is obtained. Since the last term (b|yf |2)/(ef) < 0 for any t > 0, there exists a unique positive
real solution with respect to r2. Moreover, r must be positive by its definition. Therefore, r
has a unique solution for tf as

r(tf ) =

√√√√d|xf |2
2ef

(
1−

√
1− 4bef |yf |2

d2|xf |4

)∣∣∣∣∣∣
t=tf

. (3.58)

By substituting this into (3.55), we have

h(tf ) =
|xf ||yf | cos θ
(r(tf ))2 · e(tf )

. (3.59)

Finally, we solve tf by |xf |, |yf |, and the angle θ. Substituting (3.59) into the second row
of (3.57) leads

−cer4|xf |2 + aer2|yf |2 − f · (|xf ||yf | cos θ)2
∣∣
t=tf

= 0. (3.60)

Substituting (3.58) to eliminate r from (3.60), we obtain

(a2b)

(
ef

|yf |2

|xf |4

)2

+ ((f cos θ)4 − (ad+ 2bc)(f cos θ)2 − bc(ad− bc))

(
ef

|yf |2

|xf |4

)
+ cd2(f cos θ)2|t=tf

= 0. (3.61)

Solving (3.61) as a quadratic equation with respect to
(
ef

|yf |2

|xf |4

)
, we have a function that

gives its root as the tf to be solved as

|yf |2

|xf |4
− βθ ± γθ

α
(t), (3.62)

where

α(t) := 2a2bef,

βθ(t) := −(f cos θ)4 + (ad+ 2bc) · (f cos θ)2 + bc · (ad− bc),

γθ(t) := (bc− (f cos θ)2)
√

((f cos θ)2 − e2) · ((f cos θ)2 − f2).

In order to find a tf for any given xf and yf , we expect the range of the functions (βθ+γθ)/α
and (βθ − γθ)/α cover [0,∞) by a domain of t. This is proven as follows, with the aid of the
intermediate value theorem. Figure 3.2 shows an overview of the functions (βθ ± γθ)/α. Let

Td := min {t > 0 | d(t) = 0} ' 9.0, (3.63)
tθ := min {t > 0 | γθ(t) = 0}, ∃tθ ∈ (0, 2π), ∀| cos θ| ∈ (0, 1). (3.64)
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Fig. 3.2 The functions (βθ ± γθ)/α against t, for various values of θ. The bullet marks
point at which γθ(t) = 0. The functions (βθ ± γθ)/α ranges [0,∞) by t ∈ (0, Td], ∀θ.

Section 3.4.2Section 3.4.1

Fig. 3.3 Procedure for determining the optimal helix paths for the given {xf ,yf}.

Then, we can see that the following relationships hold:

βθ + γθ
α

(tθ) =
βθ − γθ

α
(tθ) > 0, (3.65)

lim
t→2π−

βθ + γθ
α

(t) = ∞, (3.66)

βθ − γθ
α

(Td) = 0. (3.67)

The function (βθ+γθ)/α is continuous with respect to t in [tθ, 2π), also (βθ−γθ)/α is continuous
in [tθ, Td]. Therefore, by the intermediate value theorem, for almost all pairs of {xf ,yf}, there
exist at least one t ∈ (0, Td] which satisfies (3.62) be zero. This root is the tf we want to obtain.
Such tf can be obtained numerically, e.g., by applying the bisection method to (3.62).

Once tf is determined, r, h and Ω can be obtained by just substituting tf into (3.58),
(3.59) and (3.46) sequentially as Fig. 3.3. In summary, we have shown that there exists a helix
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Fig. 3.4 By a helix path on the x, six-dimensional states x(t),y(t) are steered optimally
to any given target point.

path reaching almost any target point and also show the method to find such a path with the
smallest phase angle.

Remark 1 (Excepted cases: xT
f · yf = 0, xf × yf = 0). Although we have provided a path

determination method for almost all target points, the above procedure cannot be used to find
a solution path for the regions of measure zero such that the parallel or orthogonal conditions
are satisfied. For such cases, the solution path will be obtained by appropriate case method.
For the orthogonal case xT

f ·yf = 0, we should degenerate the system into the 2-inputs 3-states
system. For the parallel case xf × yf = 0, there exist numerous optimal Ω due to rotational
symmetry, and one of them can be chosen as an optimal path’s parameter.

3.5 Numerical experiments
In this section, we show some numerical examples. We first discuss generic examples, then
focus on four extreme cases. In the figures, the given target points xf ,yf are plotted as
dots, and the numerically obtained paths x(t),y(t) are plotted as lines. Note that the state
dimension of the whole system is six, but we divide it into the base coordinates x and the
fiber coordinates y in order to overlay them as a trajectory on a three-dimensional space.

3.5.1 Generic optimal paths and their accuracy
First, we state that the numerical solutions are obtained for a set of comprehensive target
points with reasonable errors. Symmetry on SO(3) is not covered. In addition, base coor-
dinates x is also normalized. Based on these considerations, we set the target values in the
range of

xf =
[
1.0 0.0 0.0

]T
, (3.68)

yf =
[
yf1 0.0 yf3

]T
, (3.69)

yf1 ∈ [−100.0, 100.0], yf3 ∈ [0.0, 100.0]. (3.70)
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Fig. 3.5 Helix path: even if xf × yf ' 0, we can find out the optimal path. y(t) is
steered to yf by the helix path on the x.

We cut the mesh at 0.1 intervals, and exclude the case |yf | = 0.0 or θ = 0.0. The termination
error µ was evaluated by

µ := max

{
|xp − xf |

|xf |
,
|yp − yf |

|yf |

}
, (3.71)

where xp,yp denote the termination point which calculated by the set of numerically obtained
parameters {r, h, tf ,Ω}. As a result of the above settings, numerical solutions were obtained
for all cases, and the termination error µ was less than 0.02. Figure 3.4 shows several sampled
paths which steer six-dimensional states x(t),y(t) optimally. Introducing the helix path rep-
resentation on x enabled us to gain the optimal paths on the six-dimensional underactuated
system quasi-analytically.

3.5.2 Extreme case 1: A typical optimal helix path
Figure 3.5 shows the first extreme case where xf and yf are almost parallel, which yields a
typical path of this study. We set the target point as xf = [2.0 0.0 0.0]T, yf = [−1.0 0.0 0.01]T.
Even in this case, the optimal path is obtained, and the obtained parameters are {r, h, tf} '
{0.351,−0.224, 8.49}.

3.5.3 Extreme cases 2–4: Encompassing relationship with the known shortest paths
The remaining three cases correspond to cases for which the global optimal paths are already
known in previous studies. We show that the paths of this study encompass the global optimal
paths on these three cases. The two-input three-state Brockett’s canonical system can be
represented as a special case of the three-input six-state Brockett’s canonical system; where
the case of xT · y = 0, x,y ∈ R3 are satisfied. Therefore, we show the three cases where x is
embedded in the horizontal plane and y is embedded in the vertical axis.

Figure 3.6 and Fig. 3.7 show the cases where x(t) traces a circle and an arc, respectively.
For the case of the circle, the target point is xf = [0.01 0.0 0.0]T, yf = [0.01 0.0 2.0]T,
and the obtained parameters are {r, h, tf} ' {0.564, 0.00, 6.27}. For the case of the arc, the
target point is xf = [1.0 0.0 0.0]T, yf = [0.01 0.0 2.0]T, and the obtained parameters are

– 20 –



3.6. CONCLUSION

Fig. 3.6 Circular path: y(t) moves in the vertical direction, while x(t) moves along the
circular path in the horizontal plane.

Fig. 3.7 Arc path: y(t) moves in the vertical direction, while x(t) moves along the arc
path in the horizontal plane.

{r, h, tf} ' {0.613, 0.00274, 4.38}. In both cases, the pitch of helix h ' 0, and in the case of
the circle, the phase angle tf ' 2π. These paths are consistent with the known shortest paths.

Figure 3.8 shows the case where x(t) traces a straight path. The target point
is xf = [1.0 0.0 0.0]T, yf = [0.001 0.0 0.01]T, and the obtained parameters are
{r, h, tf} ' {0.0109, 0.125, 8.01}. This path is also consistent with the known optimal
paths. We note that there are two ways to represent a straight-like path by the helix paths
(3.37), one is {rt = |xf |, h ' 0, tf ' 0} and the other one is {ht = |xf |, r ' 0}, and the
numerical solutions vary significantly depending on the angle θ.

3.6 Conclusion
In this chapter, I have presented a helix path representation as the optimal paths on the three-
input six-dimensional canonical system. Specifically, on Brockett’s local canonical system,
we have shown that the local optimal paths are parameterized as the helix paths. Then a
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Fig. 3.8 Straight path: the straight path on the x does not generate the displacement of y(t).

procedure to determine the helix path that reaches any given target point was presented. The
helix paths encompass the global optimal paths for the two-inputs three-dimensional canonical
system, which is visually demonstrated. The followings are key results of this chapter.

• The parametric representation of the optimal paths was obtained as an explicit function
x(t) = Ω · ξr,h(t).

• The parameters of helix r, h, tf and Ω are geometrically distinct (representing the
radius, pitch, phase angle, and orientation, respectively).

Future work includes the following topics. As indicated by the Brockett’s necessary con-
dition[28], the resulting path would depend discontinuously on the choice of target points,
around the points of exception in the boundary condition (3.47). In addition, the consider-
ation of this study is local in two meanings. One is that the target system is only a local
canonical system, and it is desirable to link it to Lie group representations or more general
forms. The other is that the optimality of the paths is local in the sense of only satisfying the
stationary conditions, and this analysis is an interesting problem in the future.
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Chapter 4

A Kinematic-Dual Snake Robot:
Undulatory Mobile Robot Driven by
Controllable Side-Thrust Links

4.1 Introduction of the kinematic-dual snake
The snake robots are kinematically interesting mobile mechanisms in which postural defor-
mation produces positional translation. Mechanical analysis of a living snake was performed
in the 1940s [29]. The original snake robot was introduced by Hirose [30, 31]. The original
robotic model mimics a living snake, as shown in Fig. 4.1(a): scales on the snake’s belly, which
prevent lateral slippage, are modeled by passive wheels, and its musculature is modeled by ac-
tive joints. The passive wheels, which prevent the links from moving in the lateral directions,
are formulated as ẋi sin θi− ẏi cos θi = 0, and the active joints are formulated as θ̇i+1− θ̇i = ωi.

Here we present control-theoretical studies for the original snake with kinematic assump-
tions: fixed passive wheels, no side-slippage, and no frictional losses. Head position control
based on the dynamics model has been proposed in [32, 33, 34, 35]. For the kinematic models,
control of the entire state quantities (i.e., n + 2 degrees of freedom in the case of n-link) has
been studied as an example of the nonlinear control theory based on the differential geome-
try [5, 36]. Ostrowski [37] achieved a general method for controlling undulatory locomotion,
whereby internal changes in shape generate motions. Ishikawa [38, 39] applied this method
to the original snake and described its nonlinear controllability and control strategy. The
considerations in the above studies have shown that it is complicated to control the shape of
the original snakes.

The original snake has the advantage provided by distributive traction, but its capability of
motion is limited. Therefore, string-like mobile mechanisms inspired by the original snake have
been developed. Studies that are relatively close to the original snake are those that assume
anisotropic groud friction property instead of nonholonomic constraint [40] and those that lift
or eliminate some wheels [41, 42, 43, 44]. Other examples include the worm-like robots that
assume isotropic ground friction [45, 46], and the robots focused on traversing rough terrain
with active wheels as well as joints [47, 48, 49, 50, 51, 52]. We approached this development
of the string-like mobile mechanisms by focusing on the kinematics and control structure.

Now let us consider a mechanical-dual snake as the first step toward introducing a kinematic-
dual snake, which the authors previously presented in [53, 54, 55]. The original snake consists
of side-slip-constraint wheels and active joints; the active joints are used as input. The side-
slip constraint used in the original snake can be treated as a special case of a side-thrust input.
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Step 1: reversing the mechanism

(c) A kinematic-dual snake

Side-thrust
wheels

Passive joints

Passive
wheel

Passive
wheel

(a) The original snake

Passive wheels

Active joints

(b) A mechanical-dual snake

Side-thrust
wheels

Passive joints

Step 2: adding constraints to make the kinematics dual

Fig. 4.1 (a): Subfigure shows the original snake. (b): Reversing the mechanism of
the original snake to use the wheels as input results in a mechanical-dual snake. This
is not well-defined kinematically because the number of degrees of freedom exceeds its
constraints. (c): Therefore, we add two kinematic constraints, creating the proposed
kinematic-dual snake .
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rotates
actively

moves
freely 

Fig. 4.2 The omnidirectional wheel is composed of a parent wheel and child wheels
attached to it. In the proposed snake described in this chapter, only the parent wheel is
used in active rotation.

That is, ẋi sin θi − ẏi cos θi = 0 is a special case of ẋi sin θi − ẏi cos θi = vi with constant zero
input vi = 0. By considering this notion, we conceived of a mechanism that uses the side-
thrust velocities as inputs, a mechanism dual to the original snake, as shown in Fig. 4.1(b).
The side-thrust input could be implemented by attaching an omnidirectional wheel (Fig. 4.2)
that can rotate actively in the lateral direction of the link.

The original snake and the mechanical-dual snake have a reverse relationship in the me-
chanical sense; however, their kinematics are not in a dual relation. Therefore, as the second
step, we refine the mechanical-dual snake to create a system whose kinematic model is dual to
the original snake’s; we propose this model as a kinematic-dual snake. It is derived as follows.

The kinematic equations for the original snake can be written in the following form:

D(ξ) · ξ̇ =

0...
0

 , A(ξ) · ξ̇ =

[
u1

u2

]
(4.1)

where ξ ∈ Rn+2 denotes the state of the system, and u1, u2 denote the control input. The left-
hand side of the equations indicates the side-slip constraints imposed by the passive wheels,
and the right-hand side of the equations indicates the inputs for the remaining degrees of
freedom.

The kinematic equations for the mechanical-dual snake, on the other hand, are not well
defined because the total number of inputs and constraints is less than the number of degrees
of freedom. Thus, we add two kinematic constraints to the mechanical-dual snake. As the
kinematic constraints can be chosen arbitrarily, for reasons of symmetry, we choose to add a
side-slip constraint at each end of the mechanical-dual snake, as shown in Fig. 4.1-(c). With
this addition, the kinematic model is now well defined and is written as follows:

D(ξ) · ξ̇ =

u1
...
un

 , A(ξ) · ξ̇ =

[
0
0

]
(4.2)

The left-hand side of the equations indicates the side-thrust control inputs, which are imple-
mented by the active omnidirectional wheels, and the right-hand side of the equations indicates
the two constraints implemented by the passive wheels at both ends of the robot. Equations
(4.1) and (4.2) have a dual relationship with each other. Thus, we propose the mechanism
shown in Fig. 4.1-(c) as a kinematic-dual snake robot, whose kinematic model is dual to the
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Fig. 4.3 Dual kinematic models and their implementations. The two kinematic models
are dual to each other and can be implemented as mechanical systems.

original snake robot. Fig. 4.3 shows the relationship between the two snake robots in terms
of their kinematics and mechanisms.

In this chapter, we address the following topics. In Section 4.1, we have introduced a
mechanism whose kinematic model is dual to that of the original snake. In Section 4.2, we
derive kinematic models for the two snake robots and demonstrate that they are dual to each
other. In Section 4.3, the nonlinear controllability of the kinematic-dual snake is proved for
the three-link case, and a simple motion planning method is presented. In Section 4.4, we
derive the dynamics of the proposed mechanism, and feasible motions are shown. Finally, in
Section 4.5, we demonstrate the motions of an actual robot based on the motion planning in
Section 4.4.

4.2 Duality of the kinematic equations
In this section, we explain how the kinematic equations of the original snake and the proposed
snake are dual to each other.

4.2.1 Definitions and assumptions
The respective mechanical structures of the two snake robots are shown in Fig. 4.1(a) and (c).
The robots are composed of n links in series connected by active joints in the original snake
and passive joints in the proposed snake. At the center of each link in the original snake and
the proposed snake is an ordinary wheel or an active omnidirectional wheel, respectively. The
proposed snake has ordinary passive wheels at both ends.

The configuration variables are defined as shown in Fig. 4.4. We refer to one end segment
as the first link and the other end segment as the nth link. (In the figure, n = 3.) The
positions of the two ends are defined as (xF , yF ) and (xR, yR), respectively. For each link,
(xi, yi) and θi (i = 1, 2, . . . , n) represent its center position, and its counter-clockwise angle
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Fig. 4.4 Definition of configuration variables for the both three-link snakes

relative to the x-axis, respectively. vi represents the side-thrust velocity of the corresponding
omnidirectional wheel. ωi represents the angular velocity of the corresponding joints. The
unit length is defined as half the length of a link.

In order to derive the kinematic models, we adopt the following assumptions.

• Planar motion: only planar motion is considered.
• Non-slip condition: the wheels (including the omnidirectional wheels as well as the

ordinary wheels) do not slip in the link’s lateral directions.
• Mechanical limit on joints: joint angles are mechanically limited to the range

(−π/2, π/2).

4.2.2 Derivations
First, we derive the kinematic equations for the proposed snake. The velocities of the center
of the ith link and the rear endpoint are respectively represented by

ẋi = ẋF − 2

i−1∑
j=1

θ̇j sin θj − θ̇i sin θi

ẏi = ẏF + 2

i−1∑
j=1

θ̇j cos θj + θ̇i cos θi

(4.3)

and

ẋR = ẋF − 2
i−1∑
j=1

θ̇j sin θj

ẏR = ẏF + 2
i−1∑
j=1

θ̇j cos θj

(4.4)

The lateral velocity of the ith link is represented by

−ẋi sin θi + ẏi cos θi = vi (4.5)
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Similarly, the non-slip assumption for the ordinary wheels is expressed by

−ẋF sin θ1 + ẏF cos θ1 = 0

−ẋR sin θn + ẏR cos θn = 0
(4.6)

By combining (4.3), (4.4), (4.5), and (4.6), we obtain the following kinematic equations in the
same form as that of (4.2)

D(ξn) · ξ̇n =

v1...
vn

 , A(ξn) · ξ̇n =

[
0
0

]
(4.7)

where ξn :=
[
θ1 θ2 · · · θn xF yF

]T .
The matrix [D(ξn) A(ξn)]

T is nonsingular almost everywhere, and in this case, an arbitrary
choice for v := [v1 · · · vn]

T ∈ Rn can be used as inputs that are independent of each other.
The joint constraints of the original snake are given by (4.3) and (4.4) as the same as those

for the proposed snake. Each link has an ordinary wheel that does not slip sideways, and so
the lateral velocity of the ith link is given by

−ẋi sin θi + ẏi cos θi = 0 (4.8)

The angular velocity of the ith joint is represented by

θ̇i+1 − θ̇i = ωi (4.9)

By combining (4.3), (4.4), (4.8), and (4.9), we obtain the following kinematic equations:

D(ξn) · ξ̇n =

0...
0

 , A′(ξn) · ξ̇n =

 ω1
...

ωn−1

 (4.10)

Because the equations in (4.10) are (2n − 1)-dimensional equations for a system with n + 2
degrees of freedom, we cannot determine the ωi values independently from each other; that
is, there is no state change ξ̇n that satisfies (4.10) for values of ωi that are determined inde-
pendently from each other. Forcing an independently determined ωi on an actual mechanical
system will cause the wheels to slip sideways.

The existence condition for a ξ̇n satisfying (4.10) is that ω := [ω1 · · · ωn−1]
T ∈ Rn−1 be

representable in the following form (because the remaining degrees of freedom are 2):

ω = A′′(ξn) · u (4.11)

where u := [u1 u2]
T represents the arbitrary generalized velocities of the system, and matrix

A′′(ξn) is a coordinate transformation matrix from u to ω.
Bearing in mind the proposed snake, we define the arbitrary u as the lateral velocities of

both ends of the robot. Then, the kinematic equations of the original snake are expressed in
terms of constraints and inputs independent of each other, using matrices D(ξn) and A(ξn),
as follows:

D(ξn) · ξ̇n =

0...
0

 , A(ξn) · ξ̇n =

[
u1

u2

]
(4.12)
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Equations (4.7) and (4.12) are dual to each other, and therefore the proposed snake is dual to
the original snake.

4.3 Lie bracket motion based on kinematic controllability
The minimum number of links for which the proposed mechanism is first-order nonlinearly
controllable is three; thus, we discuss the three-link model in more detail.

4.3.1 State equation for the three-link system
To analyze the nonlinear controllability of the three-link model, we formulate (4.7) in the state
equation form. We define the state vector ξ and the input v as follows:

φ :=

[
φ1

φ3

]
:=

[
θ1 − θ2
θ3 − θ2

]
, ξ :=


φ
x2

θ2
y2

 , v :=

v1v2
v3

 (4.13)

Using ξ, v, and the rotation matrix Rθ2 , the three-link kinematic equation is obtained as

A(φ)R−1
θ2

ξ̇ =

v0
0

 (4.14)

where A(φ) ∈ R5×5. The determinants of A(φ) and Aλ2(φ) are the followings:

detA(φ) = sin(φ1 + φ3) (4.15)
detAλ2(φ) = cosφ1 + cosφ3 + cosφ1 cosφ3 (4.16)

Since |φ1(t)| < π/2 and |φ3(t)| < π/2 hold for all t by the mechanical limit assumption,
Aλ2(φ) is nonsingular everywhere.

If A(φ) is nonsingular; the state equation is obtained in the following symmetric affine form:

ξ̇ = Rθ2A(φ)−1

v0
0

 (4.17)

= Rθ2

[
I

S(φ)

]
(A1(φ) +A2(φ)S(φ))

−1v (4.18)

where

S(φ) := −Aλ2(φ)
−1Aλ1(φ) (4.19)

We can equivalently write it in the following form:

ξ̇ =
[
g1(ξ) g2(ξ) g3(ξ)

]
v (4.20)

4.3.2 Controllability of the kinematic-dual snake
Let us now check the nonlinear controllability of the kinematic-dual snake. The state equation
describing the kinematics is written as (4.20). The span of gi and its first-order Lie brackets
are full row rank except for the singular posture. Therefore, state ξ is nonlinearly controllable
by using v as input.
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Fig. 4.5 Combining [g3, g1](ξ0) and g2(ξ0) with appropriate weights produces a net
motion in the x-direction.

4.3.3 Lie bracket based motion planning
We demonstrate a simple approach for archiving the desired displacement based on the non-
linear controllability analysis. As an example, we describe a case in which the system moves
only in the x-direction.

Let initial state ξ0 =
[
π/4 π/4 0 0 0

]T . Then the two vectors [g3, g1](ξ0) and g2(ξ0)
are written as follows:

[g3, g1](ξ0) =


0
0

−4− 2
√
2

0
−4

 , g2(ξ0) =


0
0
1
0
1

 (4.21)

The two vectors [g3, g1](ξ0) and g2(ξ0) operate only on x and y, and these two vectors are
linearly independent of each other. Therefore, we can make arbitrary vectors of (x2, y2) by
combining [g3, g1](ξ0) and g2(ξ0) with appropriate weights. For example, the following linear
combination indicates a pure x-axis vector, as shown in Fig. 4.5:

− 1

2
√
2
[g3, g1](ξ0)−

√
2g2(ξ0)

=


0
0

1 +
√
2

0√
2

+


0
0

−
√
2

0

−
√
2

 =


0
0
1
0
0

 (4.22)

To implement the motion that corresponds to (4.22), we apply the time sequence of inputs
shown in Fig. 4.6. The input for the time from t = 0 to t = 6 generates the displacement
[g3, g1](ξ0), and the input for the time from t = 6 to t = 7 generates the displacement g2(ξ0).

Fig. 4.7 shows the results of a numerical simulation. The two subfigures show the time
sequences of shape and orientation and the position, respectively. Fig. 4.8 displays the top-
view sequential depictions of the robot, showing its motion. As a result of the motion, only x
has changed; the other state values have not.

The state value y changes slightly as a result of the numerical motion. This is because (2.4)
uses an approximation for the small value ε. Whereas the approximation error increases as ε
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Fig. 4.6 This time sequence of inputs moves the state in the x-direction.
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(a) Time sequence of the joint angles φ1, φ3 and the orientation of the
second link θ2: none of the angles have changed from its original value.
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(b) Time sequence of the robot’s position: as a result of the motion,
only the x value has changed.

Fig. 4.7 Time sequence of the controlled translation: only x has changed.
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Fig. 4.8 The figures show the controlled translation: changing the position without
changing the shape or the orientation.

Fig. 4.9 In order to reduce the approximation error, we apply the input that traces a
circular path as close to the origin O as possible.

increases, the Lie bracket motion uses changes in the tangent space to represent state changes.
Thus, there is a dilemma: as the change in state decreases, the amount of movement likewise
decreases.

We can reduce the approximation error by setting up the input path using several techniques.
For example, the time integration of the input in Fig. 4.6 follows the path shown in Fig. 4.9.
The path remains as close to the origin ξ0 as possible while maximizing the the closed-loop
area.

4.4 Skating motion without avoiding the singular posture
The control approach proposed in the previous section is based on a drift-free nonlinear system
that corresponds to the kinematic equation. Although this approach is easily understood, it
must avoid the singular posture. Thus, we design undulation motions, called dynamic skating,
to include the singular posture.

To design the skating motion, we first derive the dynamics. Next, we describe the method
for determining the motion and the motion constraints. Finally, we give a numerical example.
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4.4.1 Dynamics of the kinematic-dual snake
In this derivation, we do not consider losses from friction. Let m be the mass of a link, which
is defined as the unit mass, and let J be the vertical moment of inertia of the link. (Other
masses and moments of inertia are not considered in this chapter.) We define force vectors as
follows:

f :=
[
f1 f2 f3

]T
, fλ :=

[
fF fR

]T (4.23)

where fi denotes the driving forces of the ith omnidirectional wheel, and fF and fR denote
the constraint forces of the respective end wheels.

We then begin to derive the equations of motion based on the method described in [27]. By
the virtual work principle, the following equation for the virtual work holds for all v, f , and
fλ:

δW = ξ̇T · fξ =

v0
0

T [
f
fλ

]
(4.24)

where fξ denotes the generalized force using ξ as the generalized coordinates. By substituting
(4.14) into (4.24), fξ can be written as follows:

fξ =
(
A(φ) ·R−1

θ2

)T [ f
fλ

]
(4.25)

From the Euler–Lagrange equation, the following holds:

d

dt

(
∂T
∂ξ

)
− ∂T

∂ξ
− fξ = 0 (4.26)

where T denotes the kinetic energy. We then obtain the equation of motion including the
constraint forces as follows:

M(φ)R−1
θ2

ξ̈ +C(φ, ξ̇) = AT (φ)

[
f
fλ

]
(4.27)

where M(φ) is an inertia matrix, and C(φ, ξ̇) is a centrifugal matrix.

4.4.2 Procedure for planning dynamic skating motion
We do not plan the proposed system’s motion by determining the state trajectory ξ(t) ∈
S1 × S1 × SE(2), because the elements of ξ(t) cannot be determined independently; that is,
[Aλ1 Aλ2] ·R−1

θ2
· ξ̇ = 0 ∈ R2 must be satisfied for all t. Hence, we specify an initial state ξ0

and a trajectory of the generalized velocity γ(t) ∈ R3; this allows the state trajectory ξ(t) to
be determined as follows:

ξ(t) = ξ0 +

∫ t

0

F (ξ(τ)) · γ(τ)dτ (4.28)

where F is a coordinate transformation matrix from γ to ξ̇, including the nonholonomic
constraints; note that the existence of F is not guaranteed.
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The selection of the coordinates of γ is arbitrary. With consideration of the symmetry of
SE(2) and the existence of F , we set the coordinates of γ as

γ :=

 φ̇1

φ̇3

ẋ2 cos(θ2) + ẏ2 sin(θ2)

 (4.29)

By defining γ as above, we ensure that F always exists. It is written as

F = Rθ2

[
I3

−A−1
λ2Aλ1

]
(4.30)

Not all motions ξ(t) are mechanically admissible; the actuators’ velocity and friction force
must be finite. For example, it is expected that longitudinally accelerating motions in the
singular posture would not be possible. Therefore, we derive sufficient conditions for a motion
to be realized by a finite driving velocity v and finite friction forces f and fλ.

The driving velocity v is obtained in terms of γ as

v =
[
A1 −A2A

−1
λ2Aλ1

]
γ (4.31)

Equation (4.31) holds for all time since Aλ2 is nonsingular by the assumption of the mechanical
limit on joints. Therefore, if γ is sufficiently smooth against time, v is mechanically admissible.

The wheel forces f and fλ are expressed by the dynamic equation (4.27):

[
f
fλ

]
=

adj(AT )
(
MR−1

θ2
ξ̈ +C

)
det(AT )

(4.32)

Since (4.32) holds only if det(AT ) 6= 0, careful handling with the singular posture is needed.
We define Ts as the set of times at which the system is singular:

Ts := {t > 0 | det(A(ξ(t))) = 0} (4.33)

Then for any time t 6∈ Ts, the sufficient condition for f and fλ to be mechanically admissible
is clearly that γ be sufficiently smooth.

To achive admissible motion for the time t ∈ Ts, we parameterize γ(t). We treat the
dynamic skating motion as a motion in the longitudinal direction while the joint angle is being
periodically changed. Thus, we parameterize the reference motion γ(t) = [γ1(t) γ2(t) γ3(t)]

T

by using a time-varying parameter a(t) and constant parameters b and c as follows:

φ1(t) = φ1(0) +

∫ t

0

γ1(τ)dτ = a(t) sin(bt+ c)

φ3(t) = φ3(0) +

∫ t

0

γ2(τ)dτ = a(t) sin(bt− c)

(4.34)

If we use the parameterizations (4.34), a sufficient condition for the wheel forces to be
admissible is given by the following constraints:

a(ts) 6= 0,
dγ3(t)

dt

∣∣∣∣
t=ts

= 0, ts ∈ Ts (4.35)
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Substituting the reference motion into the numerator of (4.32) and the denominator of (4.32)
leads the following equations:

lim
t→ts

adj(AT )
(
MR−1

θ2
ξ̈ +C

)
= 0, ts ∈ Ts (4.36)

lim
t→ts

det(AT ) = 0, ts ∈ Ts (4.37)

Also the following equations hold:

lim
t→ts

d
(
adj(AT )

(
MR−1

θ2
ξ̈ +C

))
dt

6= ±∞, ts ∈ Ts (4.38)

lim
t→ts

d(det(AT ))

dt
6= 0, ts ∈ Ts (4.39)

Thus, by the L’Hôpital’s rule, the wheel forces f and fλ are mechanically admissible if the
generalized velocity γ satisfies (4.35).

4.4.3 Numerical verification of dynamic skating motion
The previous subsection described a design procedure for a motion in which the wheel velocity
and the wheel friction force are finite even in the singular posture. We then verify it by a
numerical simulation. We assume the moment of inertia of each link to be J = 1/3.

We describe a motion such that the two joint angles are opposite in phase, and the amplitude
of undulation is constant. Note that the signs of φ1 and φ3 are reversed for the robot’s
posture because they are defined as φ1 := −(θ2 − θ1) and φ3 := θ3 − θ2. The reference motion
is established as shown in Fig. 4.10; it satisfies the admissibility conditions derived in the
previous subsection. The simulation results for wheels’ driving velocity and friction force are
shown in Fig. 4.11, and top-view sequential depictions are shown in Fig. 4.12. From Fig. 4.11,
it can be seen that the system moves with finite driving velocity and frictional force, including
the singular posture.

4.5 Experiment
Finally, we demonstrate the kinematic-dual snake as an actual mechatronic system with the
reference motion planned in Section 4.4.

4.5.1 Development
Fig. 4.13 shows the overview of the robot. The total length is 540 mm and the total mass is
1 kg. In order to ground all wheels in response to vehicle misalignment or ground unevenness
of a few millimeters, we designed each link to be connected by a cylindrical pair. Each link
is equipped with a microcontroller in order to follow the designed reference motion. Each
microcontroller measures the joint angle and the motor velocity and communicates with other
microcontrollers. The desired motor velocity is then determined from the reference motion
and the present state so that the entire system follows the given reference motion. Each
microcontroller also provides a current-velocity cascade feedback controller to ensure that
each motor follows its desired velocity.
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Fig. 4.10 Reference for the box-phase constant-amplitude undulation motion. Reference
shapes φi are specified as in-phase sine waves.
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Fig. 4.11 Wheel velocities and forces are admissible throughout the box-phase constant-
amplitude undulation motion.
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Fig. 4.12 Sequential depictions show the box-phase undulation motion.

4.5.2 Experiment setup and results
Then, we perform experiments. Based on the results of Section 4.4, we specify the reference
motion by the joint angle and the longitudinal velocity, and the control was performed so that
the actual joint angle and the actual longitudinal velocity follow the reference motion. The
actual longitudinal velocity is estimated from the actual wheel velocities. A metal plate is
used as the flooring material, and its flatness is within 1 mm approximately.

The first example is a box-phase undulation motion, where both joint reference angles are
the same sinusoid, as shown in Fig. 4.15, and the longitudinal velocity is constant at 325
mm/s. Fig. 4.16 shows the snapshots of the box-phase motion. The time sequence of the joint
angles is shown in Fig. 4.15. The actual motion does not fully follow the reference motion, but
it can be seen that the robot indeed moves with undulation that includes the singular posture.

– 37 –



4.5. EXPERIMENT

Fig. 4.13 Mechatronic system of the kinematic-dual snake

Fig. 4.14 Left: A side view of the kinematic-dual snake is shown. DC geared motors
rotate the omnidirectional wheels. Right: Exploded view of the joint is shown. Each
passive joint is composed of cylindrical pair to make all wheels grounded. A potentiometer
is attached to each joint to measure the joint angle via gears.
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Fig. 4.15 The joint reference (desired) angle and the four cycles of actual angles in the
box-phase motion are shown.
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Fig. 4.16 Snapshots of a box-phase motion are shown. The time interval of the photos is
0.2 s; hence the total time is 3 s. The robot moves to the right with undulation, including
the singular posture.

From this example, we can confirm that the kinematic-dual snake is not only a mathematical
idea but also a realistic mechanical system.

Additional examples of motion are shown in Fig. 4.17 and Fig. 4.18, which are snapshots
of a retrograde motion and a forward-wave motion, respectively. Each reference motion is a
phase-only variation of the previous box-phase motion. Video clips of these experiments are
provided in the electronic manuscript.

4.6 Conclusion and discussion
In this chapter, we have presented the notion of a kinematic-dual snake robot and shown
its mechanical implementation. First, the kinematic-dual snake was introduced as a contrast
to the original snake, especially for its mathematical relationship rather than mechanical
relationship. Then, in Section 4.3 onward, we have shown that this kinematic-dual snake makes
sense as a mechanical system through nonlinear controllability analysis, motion planning,
development, and experiments.

The contrast between the original and the kinematic-dual snakes appears eminent when
we increase the number of links. Table 4.1 shows the comparison of the DoFs of the both
snakes. For the original snake with n links, (A) dimension of the total configuration space
is n + 2 (corresponds to the position and orientation of the links). It has n passive wheels,
which impose (B) n nonholonomic constraints. Thus the freedom of (C) instanteneous motion
is (n+ 2)− (n) = 2. Meanwhile, the robot has (D) n− 1 actuators at the joints. Thus there
is a gap between (C) and (D). In the case of the kinematic-dual snake, (A) the configuration
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Fig. 4.17 Snapshots of a retrograde motion are shown. The time interval of the photos
is 0.2 s; hence the total time is 3 s. The robot moves to the right with retrograde
undulation.

Fig. 4.18 Snapshots of a forward-wave motion are shown. The time interval of the
photos is 0.2 s; hence the total time is 3 s. The robot moves to the right with forward-
wave undulation.
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Table 4.1 The table shows a comparison of DoFs and the number of active actuators
with n links. For the kinematic-dual snake, the dimension of instantaneous motion is n,
and the same number of actuators are equipped.

(A) (B) (C) (D)
Type of robot Configuration Nonholonomic Instantaneous actuators

space constraints motion
Original snake n+ 2 n 2 n− 1

Kinematic-dual snake n+ 2 2 n n

Fig. 4.19 One example of locomotion shape by the kinematic-dual snake is a U shape.
The omnidirectional wheels at both ends perform steering, and the wheels in the center
perform driving. Of course, the snake can be transformed as desired in this posture.

space is n + 2 as the same as the original one. It has only 2 passive wheels at the ends,
imposing (B) 2 nonholonomic constraints. Thus the freedom of (C) instanteneous motion is
(n+ 2)− (2) = n. Meanwhile, the robot has (D) n omnidirectional wheels at the links, which
is equal to (C).

This difference allows the kinematic-dual snake to travel and transform independently by
n actuators. This is expressed in equations (32)-(34) for the 3-link case. In the n-link case,
for arbitrary desired n− 1 joint angular velocities and longitudinal velocities, there exist the
actuator inputs that achieve such motions. In the skating motion discussed in Section 5, un-
dulation by sinusoid is assigned, but this is just for simplicity, and any joint angular velocity
and longitudinal velocity, including those other than sinusoidal, can be realized. As an ex-
ample of locomotion without undulation, we can conceive a U shape locomotion, as shown in
Figure 4.19.

The idea of the kinematic-dual snake originates from the control-theoretical point of view
to solve the disadvantages of the original snake robot. The main feature of the kinematic-dual
snake in terms of the mechanical design is that the axial drive and joints are passive, and only
the lateral drive of each link is manipulated. This feature provides the following advantages.

1. More manipulability: there are only two nonholonomic constraints, and the actuators
are mounted so that the driving force acts laterally to the links, enabling both joint
angle manipulation and traveling.

2. Just-enough actuators: The number of actuators, n, corresponds to the instantaneous
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degrees of motion with no excess nor deficiency. All the actuators will contribute to the
driving force with less conflict among them.

3. Distributed traction: it can maintain the traction (contact force with the ground) across
the whole body.

Overall, the proposed robot can improve its manipulability while maintaining the advantages
of the string-like body. The concept of the kinematic-dual snake was proven in Section 3 and
onward. Practical robots utilizing this concept should be developed for the next step. The
authors expect this idea would contribute to tasks that require both joint angle manipulation
and traveling, such as transportation with wrapping around an object.

As a future work, it is worth pursuing a potential advantage of the proposed robot in coping
with uncontrolled environments. It is a hypothesis for the time being though, the proposed
robot would be suitable uneven terrain than the original snake robots, thanks to the number
of “active” wheels along the body. In order to verify this issue, we should carefully re-design
the joint mechanism and motion algorithms so that it can contact with non-flat surface.

– 42 –



43

Chapter 5

Conclusion

In the works of this thesis, I mainly dealt with two issues concerned with the “first-order sys-
tems,” one of which contributes to control theory, while the other contributes to the mechanism
design. As a contribution to control theory, this thesis focused on the three-input Brockett’s
canonical system and described that the helix paths satisfy a specific shortest condition. To
contribute to mechanism design, I focused on the degrees of freedom in kinematics and pro-
posed a dual snake robot as a counterpart to the original snake robot. I confirmed that the
proposed snake robot could move and transform its posture independently, theoretically, and
experimentally.

I tackled these two different issues based on my perspective that advancing both control
and mechanism is necessary for the social implementation of nonholonomic systems. This is
because the studies of the control and mechanism of nonholonomic systems are essential to
motivate each other. This is just like “chicken first or egg first.” One solution to advance the
research under this structure is to advance both simultaneously.

Although each topic of this study is still a ways off, its ideas and directions are essential
for advancing nonholonomic systems. I hope this work will be help in future research and
development.
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