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Abstract

In the execution of complex, skillful tasks, humans leverage a combination of strategic

planning, adept tool usage, and coordinated hand-eye movements. Replicating these

human capabilities in robotic systems forms the central objective of this thesis. A crit-

ical aspect of this endeavor involves the careful selection of planning algorithms, which

requires a balance between probabilistic and optimization-based planning strategies.

My research is primarily based on the development and evaluation of two robotic

manipulation systems. These systems utilize general-purpose robot arms and grip-

pers, representing substantial progress toward autonomous robotic manipulation.

Each system provides unique insights into their respective tasks and lays the foun-

dation for improvements in robotic performance and efficiency. A central challenge

I tackled pertains to task and motion planning, including the formulation of tasks

and optimization of robot motion, considering the environmental constraints and effi-

ciency. Given the goal of robust system development, I also examine several pertinent

while non-trivial aspects, including mechanism design, 3D shape modeling, and er-

ror recovery. These elements contribute significantly to the overall robustness and

resilience of the systems.

The key contribution of this thesis lies in a comprehensive analysis of these novel

robotic manipulation tasks. It highlights the importance of selecting suitable planning

algorithms to serve specific tasks. By combining these strategies, I equip robot arms

with the ability to perform complex tasks autonomously, effectively, and precisely.
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Chapter 1

Introduction

1.1 Challenges in Robot Manipulation

The advent of robotics has catalyzed a profound transformation in diverse areas, rang-

ing from industrial operations to the facets of everyday life. Their ability to perform

complex tasks with precision, adapt dynamically to varying conditions, and func-

tion in diverse environments lends to their growing effectiveness. The application of

general-purpose robot manipulators further improves the flexibility and adaptability

of robotic manipulation. Their application has now broadened, reaching into our daily

lives [1], and proving integral to sectors such as the high-mix, low-volume production

industry [2].

In modern manipulation, robots are applied to not only mechanical and repetitive

tasks but also flexible tasks to work autonomously in various situations [3][4]. Essen-

tially, robotic manipulation encapsulates the activities performed by a human hand.

It involves not just the physical movement of the robot, but also requires sensory in-

puts for environmental comprehension, planning algorithms to strategize movements,

and control algorithms for actual motion execution. However, the integration of these

elements into a cohesive system to ensure the safe and efficient accomplishment of

tasks is non-trivial.

The complexity of robotic manipulation encompasses many difficult problems in-

clude: mechanism, perception, modeling and control, planning, and uncertainty [5][6].

1
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Each facet presents unique challenges and together they shape the intricacy of robotic

manipulation:

• Mechanism refers to the design of robotic grippers or tools. Researchers pursue

designing and organizing mechanical components to realize versatile and robust

functions in an elegant way [7][8].

• Perception bridges the gap between robots and the real world. This includes two

groups of sensors that work complementarily. It comprises two complementary

groups of sensors: one functioning as the robot’s eyes, responsible for scanning

and locating objects (visual perception) [9], and the other endowing the robot

with the ability to perceive its own motion and interaction with the environment

(haptic perception) [10][11][12].

• Modeling and control provide an environment for the manipulation process

where we can analyze, simulate, plan, and control our manipulation systems.

Many of the underlying phenomena are challenging, including contacts [13],

impact [14], and deformation [15].

• Planning generates a sequence of actions to accomplish a specific task or goal,

considering the physical and operational constraints of the system [16].

• Uncertainty [17] presents challenges that go beyond the combinatorics issue

mentioned above. Within a robotic manipulation system, uncertainties can

originate from various sources such as partial or noisy observations of the envi-

ronment, detection errors, and more.

For a specific manipulation task, the above challenges should be thoroughly ad-

dressed to ensure optimal performance and efficacy. This involves a detailed under-

standing of the task-specific requirements and a careful selection of suitable modeling

and planning methodologies.

In this thesis, I focus on skillful robotic manipulation systems, using general-

purpose robot arms and grippers. Given a specific manipulation task, I structure

it within a general framework, as depicted in Fig.1.1. The first stage involves the



1.1. CHALLENGES IN ROBOT MANIPULATION 3

Figure 1.1: General robot manipulation system.

use of visual perception to extract relevant data about the task and its environment,

which is subsequently represented in an appropriate format. Following this, task

and motion planning is initiated, which involves transposing the human task into a

robotic task executable by the system while considering various constraints. This

stage also involves optimizing the robot’s motion to enhance efficiency. Subsequently,

the planned robotic task is carried out, guided by a suitable control policy. In order to

ensure the system performs successfully under uncertainties, multi-sensory feedback

mechanisms are utilized for error recovery. Upon receiving this information, the

planner processes it and makes necessary adjustments accordingly, thus enhancing

system adaptability and resilience.

In short, the systems proposed in this thesis leverage a general mechanism, fo-

cusing on perception, modeling and control, planning, and uncertainty management,

with the aim of developing a reliable and robust robotic manipulation system.
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Figure 1.2: Robotic drawing system. There are three essential components in the
system: (1) “Drawing Path Mapping” accepts mesh models and vectorized 2D strokes
from the first input, and maps the vectorized 2D strokes to the mesh model. (2)
“Motion Planning” determine grasp poses and plan manipulation motion. (3) “Error
Recovery” component using visual and force feedback to ensure the robustness of the
system.

1.2 Robotic Manipulation Planning

For each system proposed in this thesis, there are several sub-tasks to be formulated.

The choice of planning algorithm is contingent on the specific conditions and the

state of the solution space. The term “planning” in this context is a layered process

ranging from high-level task planning, low-level motion planning, and down to grasp

planning. While maintaining flexibility for re-planning in response to environmental

uncertainty. In this sub-section, I will analyze two primary methods of planning:

the probabilistic-based method and the optimization-based method. Through this

investigation, I strive to find insights that may inform the choice of method under

various circumstances.

Robotic manipulation tasks can often be classified as either discrete or continuous,

based on the type of actions they involve [18]. Discrete manipulation tasks involve

actions that have clear, distinct stages or steps. An example might be a robot pick-

ing up an object, which is a single action that can be completed or not completed.

Continuous manipulation tasks involve actions that have a range of possible outcomes
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Figure 1.3: Robotic bending system. There are four essential components in the sys-
tem: (1)“Visual Perception and Representation” capture the goal shape effectively
using a robot arm and a static 3D scanner. (2) “Bending Representation” approxi-
mate the 3D shape with discrete bending action and schedules the sequence to fulfill
geometric and kinematic constraints. (3) “Motion-Level Planning” determine grasp
poses and plan manipulation motion. (4)“Error Recovery” component using visual
feedback to compensate for the springback error.

and aren’t necessarily binary. For example a welding task or painting a surface, where

the exact path of the robot’s tool matters a great deal.

These different types of tasks inherently impose diverse constraints [19] and result

in solution spaces. Consequently, different planning methods are applied to handle

these variations.

• Probabilistic-based Method: Probabilistic-based methods typically involve

some level of randomness or stochasticity, and they excel at exploring complex,

high-dimensional state spaces. The solution space is significantly large and en-

compasses not just one path. Probabilistic Roadmaps (PRM) [20] and Rapidly-

exploring Random Trees (RRT) [21][22] are typical probabilistic methods used

for motion planning. However, the trajectories they generate can be very jerky

and include unnecessary motions. Therefore, after probabilistic-based planners

return their solutions, trajectory smoothing and shortening are often needed,

which can be achieved by trajectory optimization-based motion planners.

• Optimization-based Method: Optimization-based methods aim to find the
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best possible solution according to a defined objective function, and they are

often deterministic, though stochastic optimization methods do exist. These

methods are ideal to solve problems with continuous solutions since the time axis

is directly integrated into the objective function. They are particularly effective

when the problem requires finding an optimal solution and the state space is not

overly large or can be effectively approximated. For example, Ichnowski et al.

[23] present grasp-optimized motion planning, which speeds up the execution of

a bin-picking robot’s operations by incorporating robot dynamics and a set of

candidate grasps into an optimizing motion planner. Hess et al. [24] achieved

coverage path planning of 3D surfaces by modeling the problem as a generalized

traveling salesman problem (GTSP).

However, real-world robotic manipulation tasks present a mix of discrete and con-

tinuous constraints. A task might involve a discrete action (picking up a tool) followed

by a continuous action (using the tool to perform some task). Thus it is crucial to bal-

ance and integrate these two planning strategies effectively [25] considering different

task constrain.

Generally, the selection of these two kinds of planning methods can be based on

criteria as follows: (1) Solution Space Complexity: Probabilistic methods are particu-

larly effective when the solution space is high-dimensional or non-convex; (2) Solution

Continuity: The optimization method is ideal to solve problems with continuous solu-

tions since the time axis is directly integrated into the objective function; (3) Precision

Requirement: Optimization-based methods excel when the task necessitates finding

the most optimal solution within a well-defined and relatively simple solution space;

(4) Uncertainty: Probabilistic methods can handle uncertainty, as they can represent

the probability distributions over the solution space; (5) Computation Time: Prob-

abilistic methods can often find a feasible solution faster than optimization-based

methods, especially when the number of parameters is large.

Note that the above criteria are not exhaustive. The choice between probabilis-

tic and optimization-based methods also depends on the specific context, task con-

straints, and additional factors beyond this analysis.
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1.3 Organization of the Thesis

This thesis is structured as follows:

Chapter 2 delves into existing literature and studies related to three aspects: 3D

geometry representation; Robotic perception; Robotic manipulation planning. This

lays the theoretical groundwork for the subsequent developments in this thesis.

Chapter 3 presents the design and functionality of a 3D robotic drawing system as

shown in Fig. 1.2. There are three essential components in the system: (1) “Drawing

Path Mapping” accepts mesh models and vectorized 2D strokes from the first input,

and maps the vectorized 2D strokes to the mesh model. (2) “Motion Planning” de-

termine grasp poses and plan manipulation motion. (3) “Error Recovery” component

using visual and force feedback to ensure the robustness of the system.

Chapters 4 and 5 present the development of a robotic bending system using a pe-

ripheral bending machine as shown in Fig. 1.3. There are four essential components in

the system: (1)“Visual Perception and Representation” capture the goal shape effec-

tively using a robot arm and a stationary 3D scanner. (2) “Bending Representation”

approximate the 3D shape with discrete bending action and schedules the sequence to

fulfill geometric and kinematic constraints. (3) “Motion-Level Planning” determine

grasp poses and plan manipulation motion. (4)“Error Recovery” component using

visual feedback to compensate for the springback error. Chapter 4 primarily focus on

the perception of the desired shape (component 1), and Chapter 5 dedicated to the

task and motion planning process (component 2-4).

Chapter 6 concludes my study and suggests future research directions.



Chapter 2

Related Work

Related studies in three aspects are reviewed in this section: 3D geometry represen-

tation; Robotic perception; Robotic manipulation planning.

2.1 3D Geometry Representation

Representation of real-world geometry in the context of robotics and computer vi-

sion pertains to the methods and algorithms used to digitally depict the physical

environment in a format that can be understood and manipulated by computers [26].

2.1.1 Representation Taxonomy

Fig. 2.1 shows a taxonomy of 3D representations, which is classified based on the

representation itself. These representations can be broadly categorized into discrete

and continuous types. Discrete representations involve distinct, separate values. An

example of a discrete representation in a 3D model is a set of points in space, where

each point is a distinct entity. Such representations are often used in scenarios where

systems can be accurately modeled with a finite number of states or variables. Con-

tinuous representations, on the other hand, involve values that can vary continuously

and have an infinite number of possible states. These representations are often used

in scenarios where systems have an infinite number of possible states, or where more

8
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Figure 2.1: Taxonomy of 3D representations. The representations applied in this
thesis are highlighted in red.

accurate or smooth models are required.

Continuous representations can be subdivided into two classifications: combina-

tional and functional. Combinational representations merge different elements to

create a complete 3D shape. Functional representations, define the shape as a func-

tion of one or more variables. This form of representation is used when an object can

be accurately modeled or approximated by a mathematical function.

In the context of the tasks addressed in this thesis, various representations are

employed to serve different purposes, as highlighted in red in Fig. 2.1.

2.1.2 Geometry-based Classification

These 3D representations can also be sorted according to their geometry into curves,

surfaces, and solids. Here I introduce some common used example methods to model

each type of shape.
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Curve

A curve is a one-dimensional object. Curves in 3D space can be represented in

multiple ways.

• Parametric Curve: A curve represented by three functions x(t), y(t), z(t) where

each function describes the coordinates of points on the curve as a function of

parameter t. For example, parametric polynomial curves, Bezier curves[27] and

B-splines [28].

• Vector: A position vector can be used to represent a curve in 3D space. This

approach is useful when dealing with physical problems, where the position,

velocity, or force at different points along a trajectory can be described as

vectors.

Surfaces

Surface data refers to representations that only model the boundary or exterior of an

object. Some common types of surface representations are as follows.

• Polygonal Meshes (Explicit) [29]: These are 3D models made up of vertices,

edges, and faces, typically used in computer graphics. Meshes can be created

from point clouds or other data and well preserve the details on the surface of

3D objects.

• Implicit Surface [30]: Surfaces can be represented by an equation of the form

f(x, y, z) = 0. Any point (x, y, z) that satisfies this equation lies on the sur-

face. They are highly suitable for representing complex, organic shapes and for

performing operations like blending and deformation. For example, Algebraic

surface.

• Parametric Surface [31]: A surface in 3D space can be represented using two pa-

rameters (u, v) where x(u, v), y(u, v), and z(u, v) give the coordinates of points

on the surface. They offer a compact representation of complex shapes and

are widely used in computer-aided design (CAD) and graphics. For example,

NURBS surface [32].
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Solid

Solid data refers to the representation that includes information about the interior of

a 3D object, not just the surface. Below are some common techniques used to create

or represent solid models [33][34].

• Spatial occupancy enumeration: This method utilizes occupancy grids, applying

either a uniform grid such as a voxel [35], or a non-uniform grid like an octree

[36] to discretize the environment. It can be useful for tasks like occupancy

mapping, where the robot needs to understand which parts of the environment

are empty and which are occupied.

• Cell decomposition: This method represents a solid by decomposing it into

several cells. Spatial occupancy enumeration is a particular case of cell decom-

position where all cells are cubical and arranged in a uniform grid. Cell decom-

position provides convenient ways for computing certain topological properties

of solids such as their connectedness (number of pieces) and genus (number of

holes).

• Constructive Solid Geometry (CSG) [37]: This method creates complex objects

by combining primitive objects (such as spheres, cylinders, etc.) using Boolean

operations like union, intersection, and difference.

• Sweeping [38]: This method involves extending a shape or profile along a path

to create a 3D object. It is particularly useful for objects that have a consistent

cross-section along a path, such as a bottle, a tube, or a wire.

2.2 Robotic Perception

Robotic perception refers to a robot’s ability to sense and interpret its environment

to make decisions or perform tasks. It involves the use of sensors [39][40][41] and

algorithms [42][43][44] to create a representation of the world that the robot can

understand and interact with. As for humans, robot perception for manipulation is

multimodal. It can be classified as visual perception and haptic perception.
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2.2.1 Visual Perception

Visual perception refers to enabling machines to “see” and understand their envi-

ronment. This is typically achieved through computer vision, a field that includes

methods for acquiring, processing, analyzing, and understanding digital images to

produce numerical or symbolic information [9].

Visual perception is applied to achieve an estimation or a manipulation goal. For

example, object segmentation allows for the division of a digital image into multiple

segments to simplify the image or to identify objects of interest [45][46]. Object detec-

tion deals with detecting instances of visual objects of a certain class (such as humans,

animals, or cars) within an image [47]. And object pose estimation provides valuable

information about the spatial orientation of detected objects, proving crucial in tasks

requiring precise manipulation [48][49]. These applications of visual perception help

robotic systems effectively interact with and navigate within their environments.

2.2.2 Haptic Perception

Haptic perception plays a significant role in robotics by simulating the sense of touch

through the use of forces, vibrations, or motions. It has a complementary nature to

visual perception, and often fills the gaps where vision may not provide the complete

picture. The importance of this technology becomes particularly evident when a

robotic hand has made contact with an object directly or indirectly. The haptic data

not only guide the manipulation but can also provide insights into uncertainties. For

example, it can help in identifying inaccuracies in the estimated physical properties

of the object, thereby enhancing the overall efficacy of the manipulation task.

Haptic perception includes kinesthetic perception [10], force perception [11], and

tactile perception [12]. These subcategories respectively enable robots to know their

own body position and movement, measure the force/torque exerted during interac-

tions with the environment, and sense the texture or shape of an object. For instance,

force perception was employed in early research to achieve compliant motion control

[50]. Sato et al. [51] achieved the task of cleaning a vertical flat surface with the help

of a trajectory/force tracking controller. Song et al. [52] realized robotic drawing on
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an arbitrary surface using force feedback. There are also a plenty of works on tactile

perception. Li et al. [53] trained a deep neural network (DNN) for slip detection

using visual and tactile information captured from the camera and Gelsight sensor

[54]. Similar research was also done by [55][56] using different tactile sensors.

2.3 Robotic Manipulation Planning

Robotics researchers frequently draw inspiration from human behavior, particularly

given our unique ability to utilize tools to tackle various manipulation challenges.

The flexibility of the human form, combined with our cognitive abilities, enables us to

handle a myriad of tasks with adeptness, ranging from intricate in-hand manipulation

to the fabrication of advanced tools.

2.3.1 Combined Task and Motion Planning (TAMP)

The concept of Combined Task and Motion Planning (TAMP) integrates high-level

task planning, often referred to as decision-making, with low-level motion planning.

Task planning involves generating a sequence of actions, elementary or abstract, to

guide an agent toward achieving a complex task in a given environment [57][58].

TAMP extends beyond this by concurrently developing high-level actions and

planning the agent’s motion in alignment with these actions [59] [60]. While com-

bined task and motion planning has been studied for decades, recent literature extends

it with uncertainty, force constraints, and deeply learned heuristics [16]. For example,

Holladay et al. [61] extended an existing task and motion planner with controllers

that exert wrenches while considering torque and frictional limits to achieve forceful

manipulation. Toussaint et al. [62] leveraged optimization methods for physical rea-

soning and sequential manipulation planning by formulated force constraints. Silver

et al. [63] proposed a bottom-up relational learning method for operator learning

and demonstrated how the learned operators could be used for planning in a TAMP

system. Wang et al. [64] learned constraints from several training examples at the

task level to enable faster TAMP-based planning.
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Previously in my group, there are research focused on reasoning and constrained

planning methods for robots to manipulate tools. The studies were under the TAMP

framework. For example, Raessa et al. [65] presented a method to teach a dual-arm

robot to use common electric tools. Chen et al. [66] designed a motion planner

to manipulate a suction cup tool. Sanchez et al. [67] solved the problem of robot-

cable entanglements using four-arm collaborative TAMP. Chen et al. [68] developed a

planner that automatically finds an optimal assembly sequence for a dual-arm robot

to build a woodblock structure while considering supporting grasps from a second

hand. Wan et al. [69] presented a planner to solve a test tube arrangement problem.

2.3.2 Manipulation for Tool Use

Using tools is an extensively studied robotic manipulation problem. Three levels of

planning are needed to enable a robot with a general gripper to manipulate tools.

The first level is grasp pose reasoning, where the goal is to find common grasp poses

for starting and goal object poses. The reasoning problem has been studied a lot

in the robotic manipulation community previously. For example, Saut et al. [70]

developed a planner to plan grasp poses for multi-finger hands and then used the

planned poses to reason pick-and-place sequences. Wan et al. [71] developed similar

approaches and analyzed their performance for assembly tasks. After finding common

grasps poses, the next steps include selecting a proper one from them and planning

the motion. The related problems are grasp optimization [72] and constrained motion

planning and control [73]. Grasp optimization relies on the chosen quality metrics.

Previously, several different metrics have been proposed and compared [74][75][76].

The third level is task-constrained motion planning. Traditional motion planning

algorithms used probabilistic roadmaps approaches to search collision-free motion in

the joint space [77][20][78]. Incorporating task constraints into the planning process

represents significant challenges [79] and the following works fight the difficulties.

Toussaint et al. studied planning using tools while considering physical interactions

[80]. Holloday proposed a method to formulate force constraints in tool manipulation

tasks [81]. Beschi et al. [82] studied planning optimal trajectories for redundant
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industrial robots in machining applications.

Tool use can also be learned from the demonstration. Brown [83] presented a

robot agent which learns to exploit objects in its environment as tools by watching a

single demonstration.



Chapter 3

Robotic 3D Drawing

This section develops a flexible and robust robotic system for autonomously drawing

on 3D surfaces. The system takes 2D drawing strokes and a 3D target surface (mesh

or point clouds) as input. It maps the 2D strokes onto the 3D surface and generates

a robot motion to draw the mapped strokes using visual recognition, grasp pose

reasoning, and motion planning. The system is flexible compared to conventional

robotic drawing systems as we do not fix drawing tools to the end of a robot arm.

Instead, a robot recognizes and picks up pens online and holds the pens to draw 3D

strokes. Meanwhile, the system has high robustness thanks to the following crafts:

First, a high-quality mapping method is developed to minimize deformation in the

strokes. Second, visual detection is used to re-estimate the drawing tool’s pose before

executing each drawing motion. Third, force control is employed to compensate for

noisy visual detection and calibration and ensure a firm touch between the pen tip

and the surface. Fourth, error detection and recovery are implemented to deal with

slippage and other anomalies. The planning and executions are performed in a closed-

loop manner until the strokes are successfully drawn. We evaluate the system and

analyze the necessity of the various crafts using different real-world tasks. The results

show that the proposed system is flexible and robust to generate robotic motion that

picks up the pens and successfully draws 3D strokes on given surfaces.

16
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Figure 3.1: (a) A human draws on a 3D surface by picking multiple pens. (b) This
section aims at developing a robotic system that performs similar online pen picking
and 3D surface drawing using closed-loop planning and vision-force feedback.

3.1 Introduction

This section develops a flexible and robust robotic system for drawing on 3D surfaces

using visual detection, planning, and control. We especially pay our attention to

autonomously planning the drawing motion considering the following three aspects:

3D surface, flexibility, and robustness. First, the system accepts 2D drawing strokes

and a 3D mesh model or 3D point cloud of the target surface as input. It maps the

2D strokes to the 3D surface for robotic motion trajectory planning. Second, the

drawing pens are not fixed to the flange of a robot arm. The robot plans grasp poses

to pick up a drawing pen and holds the pen to draw the mapped 3D strokes. The

robot is able to change to other pens online and draw multi-color graphs. Third, since

detecting, grasping, and manipulating pens may lead to errors, the system leverages

in-hand pen pose estimation, force control, and error detection and recovery to ensure

robust executions. It works in a closed-loop manner until the strokes are successfully

drawn.

Robotic drawing can be viewed as moving a pen along a trajectory in a certain

pattern concerning the target surface. Previously at manufacturing sites, the trajecto-

ries were taught in a point-to-point way by professional system integration engineers.

The process was time-consuming and required expert knowledge. Modern systems
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solve the problem using motion planning. For example, [84][85][86][87] developed al-

gorithms for painting path planning and optimization on a free-form surface to ensure

the even distribution of the paint. Painting is a simplified robotic drawing case as

there is no contact between a robotic end-effector and a painting surface. In contrast,

robotic drawing, especially drawing with hand-held pens, is a contact-rich manipula-

tion problem. Closing up the planning using vision and force feedback is an important

solution to maintain the contact between a pen and a surface and is widely studied

[88]. Especially, force control methods play an important role in helping to achieve a

stable drawing motion [52]. Although we can find lots of state-of-the-art studies that

explore closing up the loop to realize robust and practical robotic systems, they as-

sume that drawing tools are fixed to a robot end flange, which significantly influences

the flexibility of switching among diverse stroke colors and types.

In the human world, artists leverage rich tactile and force feelings to control

a drawing pen and frequently change their pens during the drawing to switch to

different stroke colors and types, as is shown in Fig. 3.1(a). Inspired by human

artists, we develop a robotic system that performs similar 3D surface drawing using

closed-loop planning and online picked pens. We especially focus on using visual

and force feedback to make the system robust and flexible like human actions. The

system’s planning component is based on our previous work, which enabled a robot

to use tools [66]. We improve the planner to realize a flexible and robust robotic 3D

drawing system by including 3D stroke mapping and vision-force feedback. Multiple

pens and grippers can be directly used without any modification. There is no need

for human intervention – A robot autonomously reasons grasp poses, regrasp poses,

and plans joint motion following the mapped 3D goal strokes while considering vision

and force feedback.

We highlight our contributions as follows. (1) We do not fix pens to a robot

end flange. Instead, we allow picking up pens using a vision system and holding the

pen to draw graphs. (2) We develop a high-quality metrological method to map 2D

strokes to 3D surfaces. (3) We use in-hand pose estimation to correct accumulated

errors and trigger re-planning if no solution was found. (4) We employ force control
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to compensate for noisy visual detection and calibration and ensure a firm touch be-

tween the pen tip and the surface. (5) We implement error detection and recovery

to deal with slippage and other unexpected problems. These contributions may look

fragmented, but each of them plays an important role in solving a particular problem.

They interact with each other to accredit robust multi-pen 3D drawing. In the exper-

imental section, we evaluate our system using various tasks. The results show that

the proposed system is flexible and robust to generate robot motion from grasping

pens to finishing drawing.

The paper’s organization is as follows: First, we review the related work in Section

II. Then, we outline an overview of the system architecture in Section III. Detailed

descriptions of the mapping and feedback planning are presented respectively in Sec-

tion IV and V. Experiments, comparisons, and analysis are carried out in Section

V. Conclusions and future work are presented in Section VI. Besides, we present

optimization-based planning and error recovery methods in the Appendix for readers

looking for flexible alternatives.

3.2 Related Work

We review the related studies in two aspects: Robotic drawing systems; Mapping 2D

strokes to 3D object surfaces.

3.2.1 Robotic Drawing Systems

Developing automated systems to draw figures is an important and popular topic

in the robotics and automation communities. One of the historical work that used

machines to draw pictures is [89]. The book presented a computer program named

AARON, which was able to draw figures and shapes on paper using a pen driven by

a mechanical plotting machine. With the rapid development of robotic hardware and

computer vision, many researchers studied drawing using multi-joint robots. The

diversity and flexibility of automated drawing systems increased significantly with

the increased number of joints. For example, Calinon et al. developed a portrait
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drawing system using a 4-DoFs robotic arm [90]. Tresset et al. [91] presented an

advanced portrait drawing robot named “Paul”, which was able to draw portraits

using the equivalent of an artist’s stylistic signature based on several processes that

mimic drawing primitives or skills. Jun et al. [92] used a humanoid robot to draw a

large picture on a wall. Sasaki et al. [93] developed a deep learning method to learn

drawing motion with a given target image. More recently, Gulzow et al. presented

the e-David (electronic Drawing Apparatus for Vivid Image Display) system, which

allowed controlling a variety of painting robots and end-effectors to create artistic

drawings [94]. Igno-Rosario et al. developed a novel interactive system for detecting

regions and then creating robotic artworks by painting at the region level [95]. Guo

et al. developed an architecture for human-in-the-loop robotic painting. The system

was able to learn and interact with a human artist, imitate the artist’s painting

techniques, and reproduce the painting drawn by the human [96]. Scalera et al. used

the Non-Photorealistic Rendering (NPR) technique to convert an image to artistic

painting strokes and planned robotic manipulator motion to draw them [97]. The

above studies focused on drawing on a plane. Besides them, drawing on non-planar

surfaces is also a popular topic and received much research interest. For example,

Lam et al. [98] developed an automated 3-DoFs sketching system to conduct pen

drawing on a 2.5D surface. Song et al. [52] implemented a robot that used a pen to

draw on an arbitrary surface with force feedback.

Compared to the previous robotic drawing systems, our difference is that we focus

on 3D surface drawing using online picked pens. We develop computational geometric

algorithms to map 2D strokes to 3D surfaces or 3D point clouds, develop reasoning

and motion planning algorithms to select and change pens, and close the planning

loop using feedback control.

3.2.2 Mapping 2D Strokes to 3D Object Surfaces

An intuitive solution to 2D-to-3D mapping used in previous robotic drawing systems[52,

98] was to project 2D strokes onto xy-plane and estimate the z values according to

the surface’s shape. Although the method could successfully create 3D strokes, they
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suffer from deformation problems. The Euclidean distances of the mapped 3D strokes

get distorted from its 2D origin. Thus, researchers started to explore deformation-

free mapping. One effective method is Least Squares Conformable Mapping (LSCM)

[99, 100]. The method is widely used in computer graphics for creating a UV map

from mesh models to textures. Song et al. [101] leveraged the LSCM method to im-

plement distortion-free stroke mapping. They spread 3D meshes to 2D planes using

LSCM, mapped 2D strokes on the spread meshes, and wrapped them back to create

3D ones.

Some other deformation-free mapping methods do not spread 3D surfaces explic-

itly. Instead, they control the deformation in distances by using mesh metrology

[102]. These methods are widely used in applications like the surface following. For

example, Carmelo et al. [103] proposed a method for computing the mesh-following

trajectories of a surface by measuring distances along the intersection lines between

the surface and a bunch of scanning planes. A dual-arm inspection system was de-

veloped based on the proposed method. Can et al. [104] presented an algorithm to

project 2D patterns onto B-spline surfaces using a similar metrological method.

Table 3.1: Summary of 2D-to-3D Mapping Methods

Method Projective Conformal Mapping Metrological

Deformation Large Medium Small
Efficiency Low Low High
Implementation Simple Difficult Simple
Robustness High Low High

Related Studies [52][98] [99][100][101] [102][103][104]

Table 3.1 shows a summary of the various 2D-to-3D mapping methods mentioned

above. The projective method is the most intuitive one. It is robust but suffers from

large deformation. Compared to the projective method, the conformal mapping-

based methods have smaller deformation. However, they depend a lot on initial

conditions and are more difficult to implement. The metrological methods have the

least deformation, but are time-consuming since the metrics need to be iteratively

examined. All these methods require the 3D surfaces as input. The surfaces could
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Figure 3.2: One exemplary hardware setup for robotic 3D drawing.

be meshes or meshes rebuilt from point clouds [105][106]. We will implement and

compare all these methods. The details will be in Section VI.A.

3.3 Overview of Workflow

This section presents an overview of the methods and workflow to give readers an

intuitive conception. First, we show one hardware setup and its corresponding plan-

ning interface in Fig. 3.2. Although the proposed method is not limited to the setup,

we foreground it to provide a solid impression. In the setup, a robotic manipulator

with a general 2-finger gripper is prepared to manipulate pens and draw graphs. A

3D depth sensor is installed on top of the workspace to detect pens and target sur-

faces that are placed randomly (with adequate clearance) on the table. A diagram

of our workflow concerning the shown setup is presented in Fig. 3.3. The workflow

starts from two inputs denoted by the dashed boxes on the top. The first input is

from users. It includes the pre-annotated or pre-planned grasp poses1 for the drawing

pens, mesh models of the pens, and vectorized drawing strokes on a 2D surface. The

second input is the point clouds obtained using a 3D vision sensor. The point clouds

1A set of grasp poses (including hand positions, rotations, and jaw-opening distances) defined or
planned in advance [107].
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Figure 3.3: Workflow of the robotic 3D drawing system. The two dashed boxes are
the input. The four gray boxes are the essential algorithms. The red arrows highlight
the closed loop. The blue arrows highlight the switches to a different pen.
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are divided into two areas where the system finds the initial pen poses in the first

area and finds the target surface to draw the mapped 3D strokes in the second.

The four gray boxes in the lower part of the workflow indicate the essential algo-

rithms. The “Mapping Strokes to the 3D Target Surface” box accepts mesh models

and vectorized 2D strokes from the first input, and maps the vectorized 2D strokes

to the mesh model2. Together with the initial pen poses detected from the second

input, the workflow will produce a sequence of kinematic pen poses and send them to

the “Grasp Pose Reasoning and Motion Planning” gray box to determine grasp poses

and plan manipulation motion. The box will iterate through the pre-annotated grasp

poses to find the candidates that can finish all the motion, including the motion to

pick up a pen, move a pen to a visible position for in-hand pose estimation, and draw

the mapped strokes. The drawing motion will be regulated by the “In-hand Pen Pose

Estimation and Re-planning” box to determine if there is an in-hand error and will

be refined or re-planned according to the errors. The “Hybrid Trajectory Following

and Force Control” box ensures a firm contact between the pen tip and the target

surface. It will check the forces and trigger recovery when anomalies happen.

The planning process has a closed loop, as illustrated by the red arrows in the

diagram. If a refined pose or re-planning is not solvable, the system will invalidate

the current grasp pose, iterate to the next grasp pose in the reasoned candidate

set, and repeat the reasoning and planning. The iteration will be repeated until a

solution is found or a failure is reported. Also, during execution, the robot leverages

force control to make sure a stroke is firmly drawn on the target surface. It uses

F/T sensors installed at a robot wrist to monitor slippage and anomaly. If slippage

is detected, the system will trigger a recovery process. In case of an unrecoverable

anomaly, the workflow will go back to the “In-hand Pen Pose Estimation” box to

re-estimate the pen’s pose and re-generate the motion by continuing from the failed

point. The details of the four essential algorithms and the closed-loop planning will

be presented and analyzed in the remaining sections.

2Mesh models will be rebuilt from point clouds if they were not available.
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3.4 Mapping Strokes to 3D Surfaces

The goal of “Mapping Strokes to the 3D Target Surface” is to map a sequence of

vectorized drawing strokes (can be considered as points) in R2 onto the target surface

in R3 while preserving the geometric relation between the points. We expect an ideal

mapping method to comprise the following properties: (1) The method is applicable

to both raw point clouds and Computer-Aided Design (CAD) software-generated

mesh models; (2) The method has minimal deformation; (3) The method returns

smooth drawing strokes that are easy to follow by robotic manipulators. Following

this consideration, we propose both metrological methods and conformal mapping-

based methods in the following two subsections.

3.4.1 Metrological Methods

Local geometry estimation

To better explain the metrological methods, we first present an intuitive projective

mapping method as shown in Fig. 3.4(a). In this case, a point ci+1 in the 2D stroke

is directly mapped onto a target surface by projecting along the given projection

direction −−→cisi. The projection does not consider surface normal and its deformation

changes with the target surface’s curvature. For example, ||s0s1|| is much larger

than ||−−→c0c1|| in the figure and the difference changes along the curved surface. The

projection will fail when the angle between the surface normal and the projection

direction is larger than 90◦.

We revise the intuitive projective mapping method by considering the cross prod-

uct of the target surface normals and the vectors (moving directions) of the strokes

and propose the metrological methods. Fig. 3.4(b) illustrates our idea. The mapping

of the point c1 is considered as a projection of −−→c0c1 to a local geometry at s0. We use

a tangential plane as an exemplary local geometry for explanation in the figure and

also the following context. The blue dash line in the figure illustrates the tangential

plane. The dashed red arrows at c0 and s0 in the figure show the vertical direction
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Figure 3.4: Projecting a stroke to a curved surface. (a) Intuitive mapping method.
(b) Proposed method. (c) 3D illustration.

Figure 3.5: Various local geometries for the EI method. (a) Planes. (b) Quadratic
surfaces. (c) B-spline surfaces.
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Algorithm 1: Projecting a 2D stroke to a 3D surface

Input: M, the target surface
C = {ci}, a set of points in a stroke in R2

s0 ∈M, a start point and its normal onM
Output: S = {si}, a set of points onM

1 begin
2 Scale C to fit the 2D work-space ofM
3 Convert C to R3 by adding a z value with 0
4 S ← {s0}
5 for i ∈ (1,2,...,n) do
6 S← sample nearby points(si)
7 ni ← local plane(S)

8 R← rot(−−→cisi × ni, acos(
−−→cisi · ni

||−−→cisi|| · ||ni||
))

9 ŝi+1 ← si +R · −−−→cici+1

10 si+1,ni+1 ← Nearest point to ŝi+1 onM
11 S ← S ∪ si
12 return S

perpendicular to a 2D stroke and the normal n0 of the tangential surface at s0, re-

spectively. The solid red arrows between c0 and c1, and s0 and ŝ1, show the vectors

before and after projection. The final projected point is s1. It is a snapped point of

ŝ1 to the mesh surface, as shown by the zoom box in Fig. 3.4(b). The projection and

snapping together maintain the metrology – The length of −−→c0c1 is the same as
−−→
s0ŝ1. It

is approximated by s0s1 to minimize distortion. The relations between c0, c1, s0, ŝ1,

and s1 in the 3D space are illustrated in Fig. 3.4(c). We compute a rotation matrix

that implies a minimum geodesic distance between the given projection direction and

the normal direction n0. The value of ŝ1 is obtained by transforming −−→c0c1 onto the

tangential surface using the rotation matrix and extending s0 along the transformed

direction.

The above process is formulated as the pseudo-code shown in Algorithm 1. The

algorithm’s input includes the target surface, a set of points in a stroke, and a starting

point on the target surface. Line 8 of the algorithm carries out the estimation for

a local geometry. It finds a set of nearby points to si from M, and estimates a
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local plane for extending si to ŝi+1. The extended ŝi+1 is not necessarily on M.

Line 11 of the algorithm resolves the disparity by snapping ŝi+1 back to a nearest

point on M. Since the algorithm iteratively estimates a local geometry, we call it

the Estimation Implementation of the metrological method (EI). Depending on the

local geometry types, we further divide the implementations into EI-P (local plane),

EI-Q (local quadratic surface), and EI-B (local b-spline surface). Fig. 3.5 illustrates

some working examples of them. The performance of these varied implementations is

examined and compared later in the experimental section. Note that algorithm 1 is

the routine for a single stroke. When there are multiple strokes, a linear interpolation

may be applied between the endpoint of a previous stroke to the start point of its

next one. The same algorithm finds the projected position of the next stroke’s start

point. The points on the interpolated segment will be overlooked during drawing.

Global surfaces

For the methods mentioned above, we have to iteratively estimate local geometries

to find the next si+1. The iteration is time-consuming and may lead to accumulated

errors. Compared to it, a global parametric surface could help to avoid local iterations

and be more efficient. Thus, we develop and study global methods in this part. The

methods find global surfaces and allow us to carry out differential computations on

the surface. After obtaining the global surfaces, our mapping algorithm will find the

next drawing points by directly extending along them.

Specifically, we propose two kinds of global surfaces. The first one follows Carr’s

work [108] and is a parametric one rebuilt from a point cloud using Radial Basis

Functions (RBF). Fig. 3.23(b) exemplifies this surface. The second one is a numerical

one rebuilt using ball pivoting [109]. It does not have an explicit parametric form.

Fig. 3.23(c) exemplifies the second surface. Like the local methods, the two surfaces

and the mapping methods based on them (G-RBF and G-BP) will also be examined

and compared in the experimental section.
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3.4.2 Conformal Mapping-Based Methods

The conformal mapping-based methods consider the projection problem inversely.

Instead of projecting 2D strokes onto a 3D surface, the conformal mapping-based

methods unfold the 3D surface onto a 2D plane, find the correspondence between

2D strokes and the unfolded surface, and pack the correspondence back into 3D

space. The conformal mapping transforms a 3D graph into a 2D one while minimizing

angular deformation (not necessarily lengths). In this work, we use LSCM [100] to

map 3D vertices of a surface to 2D positions.

The workflow of our conformal mapping-based methods is as follows. First, we

unfold mesh vertices or the point clouds to a 2D plane using LSCM. Then, we use a

given starting position to find the correspondence between a 2D stroke and the un-

folded 2D positions. Third, we pack the found correspondences back to 3D to obtain

a 3D stroke. The “find the correspondence between a 2D stroke and the unfolded 2D

positions” step is critical throughout the process. We propose two implementations

to find the correspondence. In the first implementation, we find the nearest unfolded

2D position to a point in a 2D stroke and only pack back this single point. We call it

the Single-point Implementation of the conformal mapping-based method (SI). The

implementation could be problematic as the uneven unfolding or the point clouds’

noisy points may induce errors and lead to non-smooth strokes. In the second imple-

mentation, we sample the target surface to find the k-nearest points of a point in a

2D stroke from the unfolded 2D positions, pack them back to 3D samples on the 3D

surface, and perform interpolation to find the target point. This implementation is

similar to the one introduced in [101]. We call this implementation the Interpolation

Implementation of the conformal mapping-based method (II). The performance of

these two implementations will also be examined later.

After examining all the aforementioned methods, including the metrological ones

like EI-P, EI-Q, EI-B, G-RBF, and G-BP, and the conformal mapping-based ones like

SI and II, we will use the most satisfying one to generate 3D strokes for real-world

robotic executions and other evaluations.
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3.5 Reasoning and Closed-Loop Planning

This section presents the remaining three essential algorithms in the workflow – the

“Grasp Pose Reasoning and Motion Planning”, the “In-hand Pose Estimation”, and

the “Hybrid Trajectory Following and Force Control”. It comprises three subsections.

The first subsection presents the methods used to detect the object poses. The

remaining two subsections explain the details of the three essential algorithms.

3.5.1 Detecting the Object Poses

A depth sensor is installed on top of the workspace to capture a point cloud. The

algorithm will segment the point cloud and estimate the poses of the surfaces and

pens from it by matching the segments with their mesh models (if available). The

segmentation and estimation could be performed easily using conventional algorithms

like Density-Based Spatial Clustering of Applications with Noise (DBSCAN) based

segmentation [110], RANdom SAmple Consensus (RANSAC) based global search

[111], and Iterative Closest Point (ICP) based local refinement [112].

An important improvement we made to these conventional algorithms is that

we sample the models unevenly considering the depth sensor’s viewpoint. The old

routine to perform the matching was: (1) Generating a partial view of the model; (2)

Sampling the partial view evenly to generate a template and compute the features;

(3) RANSAC; (4) ICP. We revise step (2) to improve the precision of matching -

Instead of sampling evenly, we leverage a changing sampling density considering the

angles between the normals of the mesh surface and the viewing vector of the depth

sensor. The sampling density is formulated as a function of the angle as follows:

ρ =
1

1 + exp(π
2
− θ)

− 0.5 (3.1)

where ρ is the symbol used to denote the density of surface sampling, and θ is the

angle between the normal of a mesh triangle and the depth sensor’s viewing vector.

Influenced by this equation, the triangles that face the camera will be sampled with

a higher density. The side triangles will be less sampled. The back triangles will
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be ignored. The uneven samples increase the fitness of RANSAC and ICP, thus

improves the precision of pose estimation. Fig. 3.6 exemplifies a captured point

cloud, the template created using uneven sampling, the segmented clusters, and the

estimated surface pose and pen poses using the methods mentioned above.

Figure 3.6: (a) A captured point cloud. (b) Generating a partial view template for
visual recognition. The surface of the partial view is sampled unevenly following the
viewpoint direction to improve recognition performance. Orange: A full pen model.
Blue: An unevenly sampled partial view. (c) Background subtraction and clustering.
(d) Detected initial target surface pose and pen poses. The cylinder mesh is known
and matched.

3.5.2 Grasp Pose Reasoning and Motion Planning

The detailed diagram of the “Grasp Pose Reasoning and Motion Planning” algorithm

is shown in Fig. 3.7. It is a direct expansion of the counterpart in Fig. 3.3. The

diagram accepts (1) pre-annotated grasp poses for the pens, (2) estimated initial pen

poses, (3) a sequence of pen poses generated by attaching the pen tips to the mapped

3D strokes along inversed surface normal directions, as the input. The input will be

used in the “IK-Feasible and Collision Free Common Grasps” box to reason the IK-

feasible and collision-free common grasps. Here, by “common grasps”, we mean the

commonly available grasps at all pen poses. Fig. 3.8 shows an example of common
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Figure 3.7: Detailed diagram of the “Grasp Pose Reasoning and Motion Planning”
gray box in Fig. 3.3.

grasps. The gray hand poses in Fig. 3.8 are the pre-annotated grasp candidates.

They are transformed to new positions and orientations following the pen poses in

Fig. 3.8(b.1) and (b.2). The IK and collisions of the robot at the transformed hand

poses are examined, with the IK-feasible and collision-free ones marked in green and

the remaining ones marked in red. The green hand poses in Fig. 3.8(c) illustrate the

“common grasps”. They are identical in the pen’s local frame, and are the intersection

of the green hand poses in Fig. 3.8(b.1) and (b.2). A robot can hold the pen using a

“common grasp” at one pen pose and move it to another without regrasp.

After obtaining the common grasps, the “RRT-Connect Motion Planning” and

“IK Sequence for 3D Strokes” boxes will iterate through them to plan the “Pick-

up Motion”, the “Motion for Moving to a Pose for In-Hand Pose Estimation”, and



3.5. REASONING AND CLOSED-LOOP PLANNING 33

Figure 3.8: Grasp reasoning. (a) Pre-annotated grasps. (b.1,2) Transforming the pre-
annotated grasps to two different pen poses. The IK-feasible and collision-free grasps
are shown in green. The others are shown in red; (c) IK-feasible and collision-free
grasps at all pen poses (common grasps).

the “Drawing Motion”. The “RRT-Connect Motion Planning” box plans joint space

motion for picking up and moving a pen to a pose for in-hand estimation. The

“IK Sequence for 3D Strokes” box generates the drawing motion for the mapped 3D

strokes. It examines the IK and collisions again3 and uses workspace interpolation

to connect the IK configurations of two adjacent pen poses and produce a drawing

trajectory.

Especially for the “3D Strokes” input, we attach pen tips to each 3D stroke point

while requiring that the pen’s main axis4 are aligned with the surface normals and

get a sequence of pen poses for drawing each point of a stroke. The “IK Sequence for

3D Strokes” box examines the IKs and collisions of each pen pose. The smoothness

or optimization of adjacent IK configurations is considered implicitly in the IK solver

by using the result of a previous pen pose as the seed value for numerically solving

the following one. The solved configurations may be discontinuous due to the sudden

change of surface normals and, consequently, lead to a fragile drawing motion. The

3The IK and collisions have been solved wahen finding common grasps.
4A pen’s main axis is defined as a vector that points from its tip to end.
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sudden changes get worse when there is no exact CAD model, and the target sur-

face is a point cloud captured by depth sensors. To avoid discontinuity, we perform

quaternion Spherical Linear Interpolation (SLERP) [113] in the “IK Sequence for

3D Strokes” box to interpolate pen poses in-between the directly attached pen pose

sequence.5

3.5.3 Close the Loop to Improve Robustness

At the beginning of this section, we proposed improving visual estimation performance

using uneven sampling. The method exhibits higher precision. However, the errors

cannot be completely removed even if we are perfect in detection. There remain

errors caused by (1) pen displacements during manipulation, (2) sensor calibration,

and (3) numerically modeled CAD meshes. In this subsection, we look into these

errors and present our solutions – We use in-hand pen pose estimation to avoid the

errors caused by (1) and use force control to eliminate the errors caused by (2) and

(3). The in-hand pose estimation and force control will trigger a recovery mechanism

to correct the errors. In case of a failure, they will invalidate the current actions and

restart the planning.

In-hand pose estimation

We use the same methods as detecting the initial pen poses to perform the in-hand

estimation. The workflow is shown in Fig. 3.9. The algorithm extracts the point

cloud near the robot gripper6, estimates the pose of a grasped pen from the point

cloud, and compares it to the expected value in the simulation to measure errors. In

case of a large error, the algorithm will refine or re-plan the drawing motion to avoid

failures.

5The method is fast but finds fewer solutions since constraining the pen’s main axis to the
normal directions was a very strong condition. The FK-based optimization planner introduced in
the appendix of this manuscript could be a better choice if you are interested in a more flexible
alternative.

6We compute the pose of the gripper using joint encoder values and forward kinematics. The
point cloud near the gripper can be obtained by cropping the data around the computed gripper
pose.
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Figure 3.9: Detailed diagram of the “In-hand Pose Estimation Based Motion Refine-
ment” gray box in Fig. 3.3.

Fig. 3.10 shows an error recovery example. Fig. 3.10(a) and (b) are the robot

configurations for in-hand estimation in real execution and simulation respectively.

Fig. 3.10(c.1) shows the error between the captured point cloud of the pen and the

pen pose in the simulation. The point cloud is rendered in green. The pen pose

in the simulation is rendered in yellow. Fig. 3.10(c.2) shows the matched pen pose

(rendered in red. The in-hand estimation algorithm corrects the pen pose from the

yellow one to the red one following

Real
HandT = (World

Real T)−1 × World
Sim T× Sim

HandT, (3.2)

where Real
HandT is the refined in-hand pen pose and Sim

HandT is the expected value in

simulation.
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Figure 3.10: (a) A grasp pose in real execution. (b) The correspondent ideal grasp
pose in simulation. (c.1) The error between the captured point cloud of the pen
and the ideal pen pose. The point cloud is shown in green. The ideal pen pose is
shown in red. (c.2) Comparison of the matched in-hand pose (red) to the ideal pose
(yellow). (d) An example of a corrected drawing pose. The yellow robot configuration
is corrected to the red configuration by the estimated in-hand pose.

Fig. 3.10(d) compares the robot drawing configurations before and after correc-

tion. The yellow configuration is the one planned in the simulation, while the red

configuration is the corrected result. Note that the red configuration in Fig. 3.10(d)

is not necessarily solvable. When there is no solution, the planner will invalidate the

current grasp pose and trigger a new “Grasp Pose Reasoning and Motion Planning”

routine, as shown by the red arrows in Fig. 3.3. The correction, invalidation, re-

reasoning, and re-planning close up the planning loop, thus improve robustness and

planning success rate.

Hybrid Trajectory Following and Force Control

Force Control We consider the force feedback measured from an F/T sensor in-

stalled at the wrist of a manipulator and use force control along the pen’s main axis to

compensate for sensor calibration errors and uncertainty in CAD models. Essentially,

the force control method builds a connection between the force and motion of the pen

so that the robot can attach the pen to the target surface with firm contact. The

force control is performed by considering a decomposed force along the pen’s main

axis and thus provides compliance with surface curvature. The pen will follow the

planned motion path while maintaining a steady contact at the tip. Fig. 3.11 shows
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the workflow of the force control method.

Algorithm 2: Error Detection and Recovery

Input: {q1, q2, ..., qn}, a joint motion trajectory found by our planner;
1 begin
2 for each qi ∈ {q1, q2, ..., qn} do
3 P i,Ri ← fk(qi)
4 Move the robot to qi

5 Collect force and torque in the pen frame F i

6 if lost(F i) then
7 for each qj ∈ {qi+1, qi+2, ..., qn} do
8 P j,Rj ← fk(qj)

9 σ ← acos(
Ri(x) ·Rj(x)

||Ri(x)|| · ||Rj(x)||
)

10 if σ > threshold then
11 update({qi+1, qi+2, ...},P j,Rj)
12 break

13 else if inhnd slip(F i) or blocked(F i) then
14 forward search← True
15 for each qj ∈ {qi−1, qi−2, ...qi−m} do
16 P j,Rj ← fk(qj)

17 σ ← acos(
F i(x) ·Rj(x)

||F i(x)|| · ||Rj(x)||
)

18 if σ < threshold then
19 update({qi+1, qi+2, ...},P j,Rj)
20 forward search← False
21 break

22 if forward search is True then
23 for each qj ∈ {qi+1, qi+2, ...qn} do
24 P j,Rj ← fk(qj)

25 σ ← acos(
F i(x) ·Rj(x)

||F i(x)|| · ||Rj(x)||
)

26 if σ < threshold then
27 update({qi+1, qi+2, ...},P j,Rj)
28 break

29 return
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Error Detection and Recovery Considering Force Deviation Pen-surface

slippage and pen-hand contact slippage may happen during drawing. The slippage

has two causes. The first one is the material properties of the target surface. The

slippage caused by it is complicated (a mixed pen-surface slippage and pen-hand

slippage) and is difficult to compensate. We have no clever tricks to overcome these

slippage and suggest preventing them by adding a strong constraint to the planners.

The second cause of slippage is positioning errors. In this part, we focus on the

slippage caused by it and develop an algorithm to predict and recover from these

slippage.

Specifically, we analyze and categorize the slippage caused by positioning errors

by monitoring the force errors measured by the F/T sensor during force control. The

slippage includes: (1) An in-hand slippage. When there is a large torque around

the hand opening direction, the pen will slip inside the hand and exhibit an in-

hand slippage. The slippage could be caused by an uncertain surface that blocks the

drawing motion and pushes the pen to slide in the hand. (2) A lost surface. When the

force along the pen’s main axis has a sudden drop, the surface is lost. (3) A blocked

surface. When the torque or force in the directions other than the hand opening

direction and the pen’s main axis has a significant increase, the pen is blocked by a

surface. In the latter two cases, the surface might be in a wrong position and the pen

either loses contact with or runs into it. Following these analysis and categorizations,

we detect slippage by examining the changes of forces and torques measured by the

F/T sensor installed at the wrist of a robot manipulator and propose Algorithm 2 to

correct or avoid slippage. The algorithm includes two main sections. The magenta

section deals with a lost surface slippage. In this case, the algorithm searches forward

to the following drawing points until the pen orientation is significantly changed

(larger than the threshold in line 10). The blue section deals with an in-hand slippage

or a blocked surface. The algorithm will first look backward to the drawn points a

bit (the number of points is specified by the m in line 15) to see if the drawing

configuration at a previous drawing point could compensate for the force along the

pen’s main axis. The wheat-color block of the blue section shows the backward

search. The algorithm will resume the previous point and repeat the drawn stroke
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if a previous drawing configuration provides satisfying force compensation (smaller

than the threshold in line 18). It will search forward like the magenta section if the

previous drawing configurations cannot afford satisfying compensation. The part after

the wheat-color block in the blue section shows the forward search. The algorithm

will jump to a future point when it judges that a future drawing configuration can

provide reasonable compensation (lines 26-27).

3.6 Experiments and Analysis

This section presents the experiments performed to analyze the robustness and flexi-

bility of the developed robotic 3D drawing system. It compares both simulations and

real-world results to verify the proposed methods. The simulation platform used in

our experiments is a PC with an Intel Core i5-8250U CPU and 32 GB memory. The

programming language is Python 3, and the software environment is WRS7. A Pho-

toneo PhoXi 3D Scanner M with 1032×772 resolution is used for visual perception.

The robot used is the one shown in Fig. 3.2, which includes a UR3e robotic arm

equipped with a Robotiq Hand-E two-finger parallel gripper.

3.6.1 Robustness of 2D-to-3D Stroke Mapping

First, we evaluate the performance of the various stroke mapping algorithms presented

in section IV. The target surface includes both mesh models made by CAD software

and raw point clouds obtained from the depth sensor. To provide a direct view for

observation and comparison, we use a lattice stroke made of a series of grids as the 2D

strokes in the experiments. Readers may easily assess the performance of the various

mapping algorithms by observing the shapes of mapped results. Besides the visual

observation, we define one local indicator and two global indicators to quantitatively

measure in-stroke deformation, inter-stroke displacement, and inter-stroke distortion,

7WRS is an open-source environment developed in our laboratory. It is available on github at
https://github.com/wanweiwei07/wrs
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respectively. The local indicator is

el =
||sisi+1|| − ||−−−→cici+1||

||−−−→cici+1||
, (3.3)

where ci and ci+1 are two adjacent points in a stroke in R2, si and si+1 are their

corresponding points in a mapped stroke in R3. The length ||sisi+1|| is the geodesic

distance between si and si+1 on the target surface. The length ||−−−→cici+1|| is the Eu-

clidean distance between ci and ci+1 in R2. The el indicator shows the deformation

of a single stroke after mapping while ignoring displacement and distortion between

the strokes. The global indicators are

eg = ||smsn|| − ||−−−→cmcn||, (3.4)

and

eα = |acos( s′m · s′n
||s′m|| · ||s′n||

)− acos(
c′m · c′n

||c′m|| · ||c′n||
)|, (3.5)

where cm and cn are two closest points in two different strokes in R2, sm and sn

are their corresponding points in the mapped strokes in R3. The arc and arrow on

top of the symbols in equation (3.4) indicate geodesic and Euclidean distances like

equation (3.3). For the lattice strokes, ||−−−→cmcn|| equals to 0. The ′ superscripts on the

symbols in equation (3.5) indicate the derivative (tangential direction) at the points.

The acos() function computes the angle between the tangential directions. The eg

indicator shows the translational displacement between strokes after mapping. The

eα indicator shows the angular distortion between strokes after mappings.

Table 3.2 shows detailed information about the used 3D surfaces and lattice

strokes. The table has two sections where the upper section shows the surfaces with

known mesh models. The lower section shows the ones without mesh models. In each

section, there are seven rows where the first four are the size and mesh information

about the surfaces, the fifth and sixth rows are information about the lattice strokes,

and the last row host pointers to the mapping results in Fig. 3.12-3.14.
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Table 3.2: Information of the 3D Surfaces and Lattice Strokes

Known Mesh Model

Box Cylinder Sphere

Volume (mm) 100×100×100 100×100×50 100× 100 ×50
Surface (mm) 80×80 80×80 60×60
# Vertices 6 360 32401
# Faces 4 362 64440
# Strokes 18 18 14

# Points/Stroke 81 81 61
Results Fig. 3.12-3.14(a) Fig. 3.12-3.14(b) Fig. 3.12-3.14(c)

Raw Point Clouds

Cylinder Helmet -

Volume (mm) 89×101×31 166×199×72 -
Surface (mm) 80×80 80×80 -
# Vertices 12010 43617 -
# Faces 21407 80159 -
# Strokes 18 18 -

# Points/Stroke 81 81 -
Results Fig. 3.12-3.14(d) Fig. 3.12-3.14(e)

* Meanings of items: Volume - The bounding box dimensions of a mesh model or
point clouds; Surface - The 2D dimensions of the target surface for drawing; #
Vertices, # Faces - The number of vertices and faces (original or reconstructed)
on a target surface; # Stroke - The number of strokes in a lattice to be drawn;
# Points/Strokes - The number of points in each stroke.
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Figure 3.11: Detailed diagram of the “Hybrid Trajectory Following and Force Con-
trol” gray box in Fig. 3.3. The “Refine and Re-plan the Drawing Motion” box is
identical to that in Fig. 3.9.
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Fig. 3.12-3.14 visualize the mapping results and plot the el curves using the

surfaces and strokes shown in Table 3.2. The first rows of them are the mapping

results of the projective method mentioned in Section IV.A. They are considered as

the baseline for comparison and are repeated in each figure for readers’ convenience.

The lower three rows of Fig. 3.12 show the results of the EI-P, EI-Q, and EI-B

methods. The lower two rows of Fig. 3.13 show the results of the G-RBF and G-BP

methods. The lower two rows of Fig. 3.14 show the results of the SI and II methods.

Each of the small subfigures in the lower rows identified by an (alphabet.number)

includes two parts where the upper part visualizes the mapped result. The lower part

plots the error chart. The blue curves in the error charts show the in-stroke errors of

the current method and model. The orange curve shows the in-stroke errors of the

baseline method. In all figures, the columns (a-c) are mapping results on surfaces

with known mesh models. The columns (d,e) are results with point clouds. One

thing to note is that a closed mesh model should be decomposed into segments with

shapes homographic to discs to realize the conformal mapping-based methods. We

performed manual intervention to simplify the routine and reduce the error caused

by the non-uniform parameterization scale between the segments. The mapping is

performed on the main segment that we selected. Table 3.3 further shows the detailed

time costs and average el, eg, and eα values of the various mapping methods using the

surfaces and strokes shown in Table 3.2. The values with a lime background show the

minimum element of each row. The values with a pink background are the maximum

element of each row. Since the mesh models of the raw point clouds are not available,

we cannot directly compute the geodesic lengths and distances, and the meshes must

be reconstructed first. To make the comparison fair, we reconstruct meshes using two

methods – One uses the RBF global surface estimation method and the other one

uses the ball-pivoting estimation method. Then, we obtain the errors by computing

the difference between the geodesic stroke lengths or geodesic stroke inter-distances

on both the two reconstructed meshes and the original 2D ones. Depending on the

reconstruction method, a prefix is added to the end of the error labels for the point

clouds. We do not know which is a better reference as the ground truth, but leave it

to readers for evaluation.
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By observing the results in Fig. 3.12-3.14, we get the following conclusions. First,

the metrological mapping methods produce smooth strokes for both known mesh

models and point clouds. Readers may compare Fig. 3.12(a.2-4, b.2-4, c.2-4) to (d.2-

4, e.2-4), and also Fig. 3.13(a.2-3, b.2-3, c.2-3) to (d.2-3, e.2-3) for better inspection.

Second, the metrological methods tend to preserve in-stroke distances between adja-

cent drawing points for the known mesh models, while the conformal mapping-based

methods tend to preserve inter-stroke relations. This point can be drawn by com-

paring Fig. 3.12(c.2-4) and Fig. 3.13(c.2-3) to Fig. 3.14(c.2-3). The strokes in Fig.

3.12(c.2-4) and Fig. 3.13(c.2-3) are less globally connected compared to those in Fig.

3.14(c.2-3). For the raw point clouds shown in the last two columns of the three fig-

ures, all methods have more distortion compared to mapping using known mesh mod-

els. Third, the results also show that the performance of conformal mapping-based

methods is unstable. For example, both the SI and II methods exhibit better perfor-

mance on known mesh surfaces, as seen in Fig. 3.14(a.2-3, b.2-3). When the surface

gets complicated, the deformation increases, as seen in Fig. 3.14(c.2-3). The reason

is two-fold: (1) The parameterization scale of conformal mapping is non-uniform. (2)

More errors get accumulated while solving the conformal transformation. Also, the

conformal mapping-based methods will not work on more complicated models like

models with concavity. Segmentation must be performed to make the methods appli-

cable. Another observation about the conformal mapping-based methods is that they

have low performance on the point clouds, as shown in Fig. 3.14(d.2-3, e.2-3). The

reason is also two-fold: (1) Controlling the parameterized results’ rotation is difficult.

(2) The data is noisy. Based on the above observations, we decide not to use the

conformal mapping-based methods. By observing the results in Table 3.3, we get

the following additional conclusions for the metrological methods. First, we that find

the EI-P, EI-Q, EI-B, and G-BP methods are faster than the G-RBF method. The

reason is that G-RBF rebuilds a global parametric surface, which solves optimization

equations and is time-consuming. In the worst case, the optimization may not con-

verge and the method will fail. Second, the G-BP method is a fast one. However,

it numerically approximates a mesh using near points in a ball and is sensitive to

ball radius. Third, the EI-Q and EI-B methods are satisfying for curved objects, but
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they are less competitive on the box. Assuming a curved local surface is inherently

questionable. Fourth, the EI-P method exhibits bad performance in eg. The strokes

may have a large displacement for multi-stroke drawing. However, it is a very efficient

algorithm and is potentially good for fast prototype examination. Fifth, similar to

our observations in Fig. 3.12-3.14, the conformal mapping-based methods are unsta-

ble. They sometimes show bad eα for complicated meshes and point clouds. After

balancing the time costs and errors of each method, we decide to use EI-P in our

other experiments8.

3.6.2 Costs of Reasoning and Motion Planning

We use the four drawing tasks shown in Fig. 3.15 to study our reasoner and motion

planner’s performance and costs. The strokes for the four tasks are the same circle

consisting of 72 points. The first two target surfaces shown in Fig. 3.15(a, b) are

human-designed CAD models. They have known meshes. The target surfaces in Fig.

3.15(c, d) are point clouds.

The grasp reasoning and motion planning performance for the four tasks are shown

in Table 3.4. The labels (a-d) in the first row indicate the correspondence of each col-

umn to the tasks shown in Fig. 3.15. Below the first row, the table has three sections

where the first section shows the size of the surfaces and the number of SLERPed pen

poses along the mapped stroke. The following two sections show information about

trials and failures in reasoning and time costs. We pre-annotated 62 candidate grasp

poses for the pen. The reasoner iterated through the pen poses to find the common

grasps for all key pen poses. The “Grasps” section of Table 3.4 includes four items

where the first one shows the index of the 1st common grasp in the 62 pre-annotated

8Note that all metrological methods have a drawback – The errors of the following drawing points
inherit the previous ones and a closed stroke may be broken after mapping. The error accumulation
and broken position depend on both the starting point and the shape of a target surface. If a
stroke is symmetric and the surface has symmetric normal, we may start from a central point of the
symmetric stroke, map it to a central point on the symmetric surface, and begin drawing by moving
towards a symmetric direction. On the other hand, if the stroke is non-symmetric or the surface is
arbitrary, we do not have a good solution to avoid error accumulation and broken loops, unless we
allow stretching the strokes. If ensuring a closed loop is the most important condition to meet, we
recommend conformal mapping-based methods.
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Figure 3.15: Four tasks used to evaluate the costs of the proposed reasoner and
planner. The stroke is a circle. (a, b) Mesh models. (a): A cylinder. (b): A Stanford
bunny. (c, d) Point clouds. (c): A point cloud captured the cylinder shown in (a).
(d): A point cloud captured using a helmet.

grasps. The second item shows the number of all available common grasps. A motion

planner will use a common grasp to generate the robot motion that moves the pen

between adjacent key poses. The third item of the “Grasps” section shows the index

of the 1st common grasp that has a solvable motion. For easy comparison with the

first item, the index is also counted concerning the 62 pre-annotated grasps. Their

values in (a), (b), and (d) columns are the same as the first item, which means the

first common grasp led to successful motion. Contrarily, the value in (c) is different

from the first item, indicating that the planner encountered unsolvable motion and

switched to different common grasps for replanning. The value in (c) is highlighted

with a gray background to signify the difference. The fourth item of the “Grasps”

section shows the number of all common grasps with solvable motion. Note that

the number of total common grasps and common grasps with solvable motion are

counted for better evaluation. They do not need to be fully scanned in practice. The

reasoner and planner stop and the robot begins execution as long as the 1st successful

motion is found. The “Time Costs” section shows the time needed to find the 1st

common grasp, all common grasps, the 1st solvable motion, and all solvable motion.

On average, the planning takes 30 s to generate a drawing motion. It is more costly

than reasoning.
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Figure 3.16: (a) Candidate pen poses. Red: Pen poses for drawing the mapped 3D
strokes; Green: Initial pen pose; Gray and Yellow: Intermediate pen poses for in-
hand estimation. Especially, the yellow ones indicate the intermediate poses that
share common grasps with the green and red poses. (b) The successfully planned
motion based on one common grasp.

The results in Table 3.4 are subject to the order of scanning and may not be

enough to estimate a general performance. Thus, we further present Table 3.5 to

show the minimum, maximum, average time costs, and standard time cost deviations

of reasoning and planning of all common grasps with solvable motion. Each of the

common grasps is examined independently instead of in a sequential scan. In the

table, # G indicates the number of total common grasps with solvable motion. It is

the same as the counterpart in Table 3.4.

Fig. 3.16 exemplifies one of the reasoned and planned results. The reasoner finds

common grasps among the pen poses shown in Fig. 3.16(a), where the red ones

indicate the pen poses for drawing the mapped 3D strokes, the yellow and gray ones

show the candidate poses for in-hand estimation, and the green pose is the detected

initial pose. The yellow-highlighted gray poses are the IK-feasible and collision-free

in-hand estimation poses. The yellow robot in Fig. 3.16(a) shows a possible robot

configuration to reach a common grasp at the in-hand estimation pose. Fig. 3.16(b)

shows the successfully planned motion based on the common grasp.
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Table 3.5: Statistic Costs of All Solvable Grasps

(a) (b) (c) (d)

# G 8 1 4 7

Grasp Reasoning (s)

Min 0.03 0.07 0.04 0.04
Max 0.09 0.07 0.05 0.05
Mean 0.05 0.07 0.05 0.05
Std. 0.02 0.00 0.01 0.01

Pick-up and
Move-to Motion (s)

Min 11.04 40.73 12.71 10.77
Max 19.08 40.73 17.90 20.62
Mean 14.38 40.73 15.01 15.48
Std. 2.67 0.00 1.86 3.71

Drawing Motion (s)

Min 0.89 2.75 0.92 2.84
Max 0.91 2.75 0.94 8.45
Mean 0.90 2.75 0.93 4.19
Std. 0.00 0.00 0.01 2.14

Total (s)

Min 11.98 43.55 13.68 13.64
Max 20.02 43.55 18.88 27.05
Mean 15.33 43.55 15.98 19.72
Std. 2.68 0.00 1.87 4.81

3.6.3 Performance of Real-world Executions

We carry out robotic executions to study real-world performance. We specially con-

centrate on analyzing (1) the influence of in-hand pose estimation on the final tra-

jectories, (2) the influence of force control on the drawing results, (3) the difference

between model-based and point cloud-based drawing, (4) the flexibility for multiple

pens and complicated strokes, (5) error detection and recovery, and (6) precision of

the final resultant drawing.

The necessity of in-hand pose estimation

We evaluated the necessity of the in-hand pose estimation by using the task of drawing

a circle on a cylinder, like the ones seen in Fig. 3.15(a, c). Both the mesh models

and point clouds are used in the evaluation. Fig. 3.17 shows the results. The figure
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has two columns (a) and (b) where each column includes four subfigures and an

error chart. In the subfigures, the yellow robot configurations indicate the planned

results. The red robot configurations indicate the refined motion after in-hand pose

estimation. The green robot configuration is the real execution data read online from

a working robot. The four subfigures are arranged in a 2×2 grid. The lower row

of the grid shows the close-up view of the pen poses and pen tip trajectories in the

upper row. The left and right columns of the grids are enclosed by frames with

different colors. The left columns (the ones with orange frames) show the results of

the originally planned trajectories. The right column (the ones with blue frames)

shows the results using the refined trajectories after in-hand estimation. Note that

although the orange-frame subfigures do not have in-hand pose estimation, we still

repeated the red configurations in them as a reference for comparison.

Fig. 3.17(a) are the results using a mesh model. The orange-frame subfigures

are the results of a direct execution. It does not include an in-hand pose estimation

process. The green configurations and trajectories in the subfigures are the originally

planned motion’s direct execution results. Compared to the theoretical values (the red

trajectories), a large offset is observable. It indicates that direct executions suffer a lot

from noises. The blue-frame subfigures are the results with in-hand estimation and

trajectory refinement. The green trajectories in the subfigures are the execution result

of the refined motion. Compared to the theoretical values, the offset is moderate.

The results indicate that the in-hand pose estimation and refinement significantly

improved precision. Fig. 3.17((b) are the results using point clouds. Like their

orange-frame and blue-frame counterparts in (a), the green trajectories in differently

framed subfigures are the execution results of originally planned motion and refined

motion respectively. The offset in these cases is smaller since the strokes are directly

mapped to the measured surfaces, but there remains a discernible difference between

the red and green trajectories.

The error charts in Fig. 3.17 visualize the distance between pen tip trajectory in

simulation and real execution. The horizontal axis of the figure is the point ids. The

vertical axis is the difference between correspondent points. The blue curve shows

the value before applying in-hand pose estimation. The orange curve shows the value
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after in-hand pose estimation. The curves further confirm that the offset decreased

after in-hand pose estimation and motion refinement.

The necessity of force control

The results in 1) partially show that force control is important to remove detection

errors and ensure a solid drawing. In this part, we further examine the importance

of force control by comparing the task shown in Fig. 3.18. Here, the goal is to draw

a circle on a cylinder. The subfigures with orange frames show the results without

force control. The subfigures with blue frames show the results with force control.

Both methods can perform the drawing, but without force control, it is not easy to

ensure the pen to be always in contact with the target surface. One section of the

circle is lost when force control is not applied, as seen from the binarized boundary

view in the lower part of the subfigures. The chart on the rightmost side of Fig.

3.18 compares the changes of force curves during drawing. The horizontal axis is

the point id. The vertical axis is the magnitude of the force applied to the pen tip.

The orange curve shows the force changes without force control, while the blue curve

shows the changes with force control. The curves show that the force at the pen tip

has large values between the 1st and 15th points and after the 65th point without

force control. The force disappeared between the 20th and 40th points. We examined

the real-world motion and found that since the surface position used to generate the

motion in the simulation environment was different from that of the real world, the

pen tip sometimes got lower than the surface and a large force appeared, leading to a

heavy stroke. It also sometimes got higher than the surface and the force disappears,

resulting in a lost stroke. With the help of force control, the positional error could

be successfully suppressed. The controller adjusted the robot motion to ensure the

forces fall inside the blue shadow range.

Influence of mesh models

We also compared the difference between the drawing results planned using mesh

models and point clouds. The details are shown in Fig. 3.19(a, b). The task is the
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same as the one shown in 2) - draw a star on the cylinder object. Fig. 3.19(a.1) is the

result based on a mesh model. Fig. 3.19(a.2) shows a close-up view of the strokes.

Fig. 3.19(b.1) is the result based on point clouds. Fig. 3.19(b.2) shows a similar

close-up view. Our system can finish the drawing in both cases. However, the result

planned with a mesh model is smoother than the result planned with point clouds,

for the face normals estimated using point clouds are noisier than the inborn values of

a mesh model. The pen poses of the model-based drawing are thus more continuous

than those of the point cloud-based drawing.

Fig. 3.19(c, d) further show the results using two more difficult objects. Fig.

3.19(c.1-2) are the results of drawing a circle and a star on the back of a Stanford

bunny. The robot motion and pen trajectories are generated based on the bunny’s

mesh model. Fig. 3.19(d.1-2) are the results of drawing the same circle and star on

an engineering helmet. There is no mesh model for the helmet. The robot motion

and pen trajectories were planned based on point clouds. Although the results based

on point clouds are less smooth in Fig. 3.19(d.1-2), they are only visible in a close-

up view. From the viewpoints of Fig. 3.19(c, d), the roughness is less noticeable

and satisfying. Thus, we conclude that the developed robot system can draw on

complicated surfaces both with and without mesh models.

Multiple pens, complicated strokes

We examined the ability of our system to switch pens and draw complicated strokes

using the two tasks shown in the upper part of Fig. 3.20(a.6) and (b.7). The first

task is to draw the word “DRAW” on the cylindrical surface. Each letter in the word

is required to have a specific color. The system successfully planned the motion for

each pen as well as the motion for switching them. Fig. 3.20(a.1-5) show snapshots

of the execution sequence and the final drawing results. The second task is to draw

a Peppa Pig face on the same cylindrical surface. The Peppa Pig face strokes include

several small primitive elements. The developed system was still able to successfully

and robustly perform the task. Fig. 3.20(b.1-6) show snapshots of the execution and

the final drawn Peppa Pig face.
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Error detection and recovery

We carried out experiments to study the error detection and recovery ability of the

developed system using a challenging task shown in Fig. 3.21. The goal was to draw

a circle across the edge of a box in the presence of the following errors: (1) Backward

displacement error (translation in global -y axis); (2) Forward displacement error

(translation in global y axis); (3) Rotation error around global z axis. The results

are as follows.

When there was no error, the motion was well-performed as shown in Fig. 3.21(a).

When translational error existed and the real edge position was before the edge in sim-

ulation, a lost surface slippage was detected at the red point shown in Fig. 3.21(b.1).

The force exhibited an abrupt drop in the pen’s main axis, as shown by the force

curves in the (b) column. The robot took an action to skip to a future point and

continued the drawing motion, as shown by the TCP rotation curves in the (b) col-

umn and also the green dots in Fig. 3.21(b.1). By comparing the TCP rotation

curves in (b) and (a), we can see that a later section was shifted forward to skip the

failed points. When translational error existed and the real edge position was behind

the edge in simulation. An in-hand slippage was detected at the red point shown in

Fig. 3.21(c.1). The forces exhibited a large torque around the robot hand opening

direction, as shown by the force curves in the (c) column. The robot resumed to

a previous point and repeated the drawing motion, as shown by the TCP rotation

curves in the (c) column and also the green dots in Fig. 3.21(c.1). By comparing the

TCP rotation curves in (c) and (a), we can see that an early section was repeated

to delay the following drawing points. When rotational error existed, the robot may

either detect a lost surface slippage or an in-hand slippage, depending on the rotation

directions. Fig. 3.21(d.1) shows an example of an in-hand slippage. Like the TCP

rotation curves in the (c) column, an early section of the TCP rotation curves in

the (d) column was repeated to delay the following drawing points. The robot did

not detect a slippage when moving the pen across the edge for a second time, and

the later sections of the TCP rotation curves were the same as that of (a). The ex-

perimental results show that the proposed algorithm can successfully draw the circle

while avoiding errors. The final drawn results are shown in the last figure row.
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Figure 3.17: Comparison of the originally planned robot configurations (yellow robot
configurations and drawing points in the upper subfigures), the refined trajectories
based on in-hand pose estimation (red robot configurations and drawing points),
and the real execution results using force control (green robot configurations and
drawing points). The subfigures with orange frames show the results of the originally
planned trajectories. The green robot configurations and drawing points in it are the
execution results of the yellow ones. The red robot configurations and drawing points
are illustrated as a reference. The subfigures with blue frames show the results using
the refined trajectories after in-hand estimation. The green robot configurations and
drawing points in it are the execution results of the red ones. (a) uses the mesh
model shown in Fig. 3.15(a) as the input. (b) uses the point clouds shown in Fig.
3.15(c) as the input. The bottom charts show the error curves. The blue curves are
the original results. The orange curves are the results after in-hand pose estimation.
The horizontal axes of the charts are the point IDs. The vertical axes are the errors
(difference between correspondent points).
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Figure 3.18: Drawing a circle without (orange) and with (blue) force control. The
chart shows the force along the pen’s main axis concerning the point ids of the mapped
strokes.

Figure 3.19: Comparison of the drawing results planned using mesh models and point
clouds. (a, b) Drawing a star on the cylinder object. (a) Results using a mesh model.
(b) Results using a point cloud. (c, d) Other examples. (c) Drawing on a Stanford
bunny. The mesh model is used. (d) Drawing on a helmet. The captured point cloud
is used.
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Figure 3.20: (a) Drawing a word “DRAW” on a cylinder surface with each letter in
a different color. (b) Drawing a Peppa Pig face on the same cylinder surface.
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Figure 3.22: Evaluation of the final resultant drawings. The first row shows pictures
of the final results. The second row shows the 3D point clouds of the drawn strokes
(yellow) and the expected goals (blue dots). The fitness values of the ICP matching
between them are shown below.

Evaluation of the final resultant drawing

We also carried out experiments to globally evaluate the final resultant drawing. The

goal of our robotic drawing system is to ensure the mapped strokes (drawing goals)

and the results drawn by the robot are highly alike. To judge if this goal is effectively

reached, we captured images of the drawing results as shown in the first row in Fig.

3.22, extracted their point cloud, and compared the extracted point cloud with the

drawing goals. The second row of Fig. 3.22 illustrates the extracted point clouds

(yellow area) and drawing goals (blue dots). We used the ICP algorithm to match

the drawing goals to the point clouds and used the fitness of the ICP matching to

evaluate their similarity. The matched fitness values are shown below the second row.

The values are small. They confirm that the resultant drawings are very similar to

the drawing goals.
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3.7 Conclusions

This section presented a robotic drawing system that maps 2D strokes to 3D surfaces,

plans pen picking and manipulation motion, and performs drawing on 3D surfaces

considering vision and force feedback. The system is flexible as it treats pens as tools

that can be picked up and manipulated online. It is robust as it runs in a closed-loop

manner and leverages high quality-stroke mapping, in-hand pose estimation and mo-

tion refinement, force control, and error detection and recovery to suppress failures.

The system works on a wide range of surfaces as long as they are continuous and

do not trap a pen. Experimental results demonstrated the excellent expected perfor-

mance. We encourage our readers to watch the supplementary video to better view

the mentioned features. The video includes drawing demonstrations using different

surface shapes (convex and concave shapes), input types (meshes and point clouds),

and pens (marker pens and ballpoint pens).

One limitation of the current system is that the input must be vectorized 2D

strokes, which is difficult for non-professional users. In the future, we are interested

in developing an interface that extracts strokes by watching a human demonstration.

Also, the size of the 2D strokes must fit the workspace of the robot, Or else a nearby

point cannot be found, and the system will report a failure. We are interested in

solving this problem using dual-arm robots [114] and regrasp [115] in the future.

Appendix

Comparsion of projection step

We have to iteratively estimate local geometries to interpolate the point cloud and find

the next si+1. The iteration is time-consuming and may lead to accumulated errors.

Compared to it, a global parametric surface could help to avoid local iterations and be

more efficient. Thus, we studied the performance of global estimation-based mapping

methods. The global surface allows us to carry out differential computations and

measure the deformation using geodesic distances.

Specifically, we implemented two kinds of global geometries. The first one followed
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Figure 3.23: Global surfaces. (a) A point cloud. (b) A global parametric surface
rebuilt using the RBF method. (b) A global numerical surface rebuilt using the ball-
pivoting method.

Carr’s work [108] and modeled a point cloud using Radial Basis Functions (RBF).

Fig. 3.23(b) shows the modeling result of this method. The second one is a numerical

one that rebuilds the mesh model using ball pivoting [109] but does not return an

explicit parametric surface. Fig. 3.23(c) shows the modeling result of the second

method.

Based on the surfaces, we carried out more experiments to compare its perfor-

mance with other methods. The results are shown in Fig. 3.24. The figure uses the

point cloud of a helmet to compare both local estimation-based methods and global

estimation-based methods. The input to these methods is the helmet point cloud

shown in Fig. 3.23(a). The first three columns are the results of EI-based methods.

Each specific column uses a different local geometry for estimation. The last two

columns are the results of global surface-based methods. The two specific columns

use global surfaces estimated using RBF and ball-pivoting respectively. The different

rows of the figure show the results under different stroke step length (distance be-

tween two adjacent ci and ci+1, as was shown in Fig. 3.24). The stroke step length
−−−→cici+1 is set to 1, 2, 5, 10, 20 mm from top to bottom in each column to compare the

influence of the different algorithms to stoke deformation under the same mapping

method. The dashed box in the top-right corner illustrates the 2D strokes under the

different stroke lengths for readers’ convenience. By observing the graphical results,

we can find the methods do not have a large difference when the stroke step length is

small, as shown by the first row in the chart. However, the results of the EI methods
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Figure 3.24: Mapping a grid on a helmet (point cloud) using the metrological methods.
Errors of the results change with the length between adjacent points in strokes (stroke
step length). From top to bottom: The stroke step lengths are set to 1, 2, 5, 10, 20
mm respectively. From left to right: Different mapping methods. The chart on the
right shows the maximum error curves of the various methods under the changing
stroke length.

degenerate significantly as the stroke step length increases. At 20 mm, the mapped

grids almost lose their original shapes.

The maximum error curves of the various methods under the changing stroke

length are shown in the right chart of the same figure. Same to our conclusion from

the graphical observation, the projection error increases together with the increasing

stroke step length. The increasing tendency is more significant in the EI methods.

On the other hand, all methods have satisfying precision when the stroke step length

is small, i.e. 1-2 mm. Especially, the EI-P and G-RBF methods have even better

performance. Considering that we will always use a small step length (2 mm) in our

implementation and the EI-P method is much faster compared to the others, we used

EI-P in our real-world experiments.
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An Optimization-based Planner

The reasoning and planning method presented in the main text requires that the

pen poses are aligned with surface normals. The method is fast but finds fewer

solutions since constraining the pen pose to be along the normal direction is a very

strong condition that highly reduces the solution space. In this appendix, we present

an FK-based optimization solver as an alternative for it. The solver has explicitly

defined constraints. It allows us to relax constraints and produce a drawing path that

is smooth, has less motor action, but meanwhile does not restrict pen poses exactly

to surface normal.

The optimization solver treats the 3D drawing as an FK-based optimization prob-

lem considering the following goals and constraints.

min
qi+1

(qi+1 − qi)
T (qi+1 − qi) (3.6a)

s.t. qi+1 = [q0i+1, q
1
i+1, ..., q

d
i+1]

T

qki+1 ∈ [θ−k , θ
+
k ], k ∈ {0, 1, ..., d} (3.6b)

pi+1,Ri+1, {lrj}i+1, l
p
i+1 = fk(qi+1) (3.6c)

(pi+1 − si+1)
T (pi+1 − si+1) ≤ ϵ (3.6d)

acos(
Ri+1(x) · ni+1

||Ri+1(x)|| · ||ni+1||
) ≤ ϕ (3.6e)

min(dist(lpi+1,O)) ≥ ξp

∀lrj ∈ {lrj}i+1, min(dist(l
r
j ,O)) ≥ ξr (3.6f)

Here, we set the optimization goal to be minimizing the changes of joint angles

between every two adjacent arm configurations. The notation qi+1 denotes an arm

configuration at the i+1th drawing point. It includes d elements, which respectively

indicate the joint angle of each degree of freedom. The joint angles must meet the

work range limits, as shown by equation (3.6b). The forward kinematics function

(fk() in equation (3.6c)) finds the pen tip position pi+1, pen’s rotation matrix Ri+1,

and the vectors of the robot links ({lrj}i+1, a set of vectors) and the grasped pen (lpi+1,

a single vector). The distance between the pen tip position and a mapped drawing
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Figure 3.25: Some of the constraints for optimization-based planning. (a) Pen tip
position constraint. (b) Pen pose constraint. (c) Collision constraint.

point must be smaller than a threshold offset ϵ, as expressed by equation (3.6d) and

also the illustration in Fig. 3.25(a). The angle between the held pen and the drawing

point’s surface normal must be smaller than a threshold angle ϕ, as expressed by

equation (3.6e) and the illustration in Fig. 3.25(b). Here, we define the local x

direction of a pen to be its main axis (the axis points from a pen tip to a pen end).

Thus Ri+1(x) (the x component of the pen’s rotation matrix) is used to carry out

the computation. The obstacle avoidance constraint is taken into account by limiting

the distances between lpi+1 and obstacles O, and also all lrj in {lrj}i+1 and obstacles

O. Fig. 3.25(c) illustrates the constraint. Especially for lpi+1, the pen tip is ignored

since it must contact the target surface.

The following tasks and results compare the IK-based method introduced in the

main text and this optimization-based alternative. The task settings and results

are shown in Fig. 3.269. The first task requires drawing a circle and a star on

the inner surface of a plastic cylindrical bucket. The second task requires drawing

a circle on the inner corner of a rectangular glass tank. The detailed geometric

information of the objects and the success rate, average time costs, and average joint

displacements of the planned motion are shown in black text in Table 3.6. For readers’

9We use transparent objects for better visualization. The poses of these objects, together with
their mesh models, are pre-specified in the program.
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Figure 3.26: Task settings and results of drawing on concave surfaces. (a.1-3) Draw
a circle and a star inside a cylinder. (b.1-2) Draw a circle on the inner corner of a
tank.

convenience, we also show the comparison with convex objects (cylinder and helmet)

in the second part of the table. For the 62 pre-annotated grasps, the planner finds

fewer successful candidates for the concave objects, indicating the concave problems

are more constrained. Meanwhile, the average time costs become smaller since the

constraints reduce the search space. The execution results of these tasks can be found

in the supplementary video10.

10The optimization-based method has two drawbacks. The first one is speed. Table 3.6 shows
that an optimization-based method takes more than 200s to find a solution. The second drawback
is the collision or the measurement between the pen/robot and the surrounding obstacles. We
have to simplify the pen/robot models into vectors and measure the distance between an obstacle
surface and the vectors to ensure the metric functions are differentiable. On the other hand, the
optimization-based method has advantages in that it is more complete and can find the solution for
tasks that are not solvable by the IK-based method (i.e. the “Tank” task in the table). We thus
leave it to a practitioner to decide which method to use.
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Table 3.6: Concave Tasks and Comparison

Convex Object

Cylinder Helmet

Opt-based IK-based Opt-based IK-based

Volume (mm) 100 × 100 × 50 166 × 199 × 72
Size (mm) 40 × 40 40 × 40
# Pen Poses 106 370

Success Rate 40/62 20/62 47/62 34/62
Avg. Time (s) 208.20 0.85 704.61 3.09
Avg. Jnt. Mov. (◦) 250.65 279.57 790.48 1036.21

Concave Object

Bucket Tank

Opt-based IK-based Opt-based IK-based

Volume (mm) 230 × 230 × 230 600 × 300 × 360
Size (mm) 60 × 60 60 × 60
# Pen Poses 84 129

Success Rate 30/62 27/62 17/62 0/62
Avg. Time (s) 208.40 0.80 293.57 -
Avg. Jnt. Mov. (◦) 238.67 341.46 129.37 -

* Meanings of items: # Pen Poses - Number of Pen Poses; Avg. Jnt.
Mov. - Average Joint Movement.

Experiments using Ballpen

The proposed system can also be adapted to other types of pens. Some supplementary

experiments are provided in this subsection.

We are using the F/T sensor embedded at the wrist of a Universal Robots e-series

manipulator for the experiments. The precision of the F/T sensor is 3.5 N in force

and 0.10 Nm in torque. The resolution is around 1.0 N in force and 0.02 Nm in

torque. The precision, we would say, is a big large for drawing tasks. For this reason,

we chose a strong pen to carry out the experiments. Also, since we have to perform

experiments repeatedly, we chose to use a non-permanent marker pen with a soft tip
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in our study.

In practice, our system is not limited to the selected pen type. However, due

to the limitation of the F/T sensor’s precision, it remains advisable to use a strong

one. Fig. 3.27 shows an example where our robot uses a ballpoint pen to draw on a

piece of paper wrapped on a wooden handle. The ballpoint pen is still strong enough

for the F/T sensor to control. A video clip about using the ballpoint pen has been

included in the newly submitted video supplementary. On the other hand, if a robot

has a high-performance F/T sensor, a weaker pen should definitely work. Right now,

we do not have a high-precision F/T sensor to demonstrate this point, but we hope

we can show some interesting results in the future.

The planning needs to be tuned a bit to make it applicable to pens with particular

mechanisms. For example, the ballpoint pen must be moved with a considerable speed

and smaller pressure force to make sure the ball at the pen tip rolls around the contact

point and the ink is firmly transferred to the surface.

Figure 3.27: Drawing with a ballpoint pen on a piece of paper wrapped on a wooden
handle. (a) A circle. (b) A rose spiral.

Error Recovery by Skipping Failed Positions

The error recovery method presented in the main text can help to maintain continuity

and also help to correct drawing poses. However, the lengths of forward and backward

searches matter a lot. For a surface with a repeated pattern, e.g. the jagged surface

shown in our supplementary video, a large search length may lead the stroke to jump
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to the next repetition, and the system will get trapped in a repeated failure. In

this part of the appendix, we present an alternative error recovery method. In this

method, we close the loop by skipping the failed positions. In case of slippage, the

method will pause the current motion, pull the pen up, and move to the next drawing

point to start a new iteration.

Fig. 3.28 shows the results of drawing a circle across a box edge using this method.

It includes two cases of errors. The first one has the same error as that of Fig. 22(c).

The second one is a side displacement error (translation in the global x axis) where

the pen encounters a lost section during drawing. The charts show the forces along

pen’s local x (red), y (green), z (blue) axes. At the points marked by the yellow

vertical lines, the error detector finds large differences. The robot arm moves the pen

away from the target surface, gives up a current drawing point, and switches to a

next point to recover from the errors. The recovery is triggered four times in the task

shown in Fig. 3.28(a) and five times in the task shown in Fig. 3.28(b).

A shortage of this alternative method is that it gives up the current drawing point

in case of slippage and moves on to the next point for recovery. This policy may

result in broken drawings. On the other hand, the shortage can also be an advantage.

It provides a chance to skip a surface section and has the merit of dealing with bad

surface sections (e.g. scratched, dirty, lost sections, narrow gaps, etc.). For example

in the second case shown in Fig. 3.28, the method presented in the main text will get

trapped at the lost point to avoid breaking lines. Contrarily, the alternative method

skips to the next reachable surface to continue drawing. Practitioners may use the

method in the main text if continuity is most important to them. They may also use

the alternative method if their surfaces have defects or discontinuity and would like

to overlook the bad surface sections.
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Figure 3.28: Drawing a circle across the edge of a box with the alternative error
recovery method. The robots detected errors (as shown labeled by the yellow vertical
lines in the force charts) and recovered from the errors by moving ahead to the next
drawing point. Like previous figures, the charts show the forces along the pen’s local
x (red), y (green), z (blue) axes. (a) Results in the presence of a forward displacement
error (the same as Fig. 3.21(c)). (b) Result in the presence of a side displacement
error (translation in the global x axis).



Chapter 4

Next Best View Planning for

Metal Plate Reconstruction

In this section, we present a novel approach for planning the Next Best Views (NBV)

of an object so that a depth camera can collect the object’s surface point cloud and

reconstruct its 3D model with a small number of consequent views. Our focus is

especially on thin and curved metal plates, and we use a robot manipulator and an

externally installed stationary depth sensor as the experimental system. The targeted

objects have shiny and flat surfaces, which leads to noisy point cloud data and low

guidance in the surface normal for completion. To overcome these challenges, we

propose using a Point cloud Completion Network (PCN) to find heuristics for NBV

or Next Best robot Configuration (NBC) optimization. Unlike previous methods,

our approach predicts NBV by considering a holistic view of the object predicted by

neural networks, which is not limited by the local information captured by the sensors

and is, therefore, robust to deficiencies in known point cloud data and normal. We

conducted simulation and real-world experiments to evaluate the proposed method’s

performance. Results show that the proposed method efficiently solves the NBV

problems and can satisfactorily model thin and curved metal plates.

73
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Figure 4.1: A robot that obtains the shape of a hand-held thin metal plate by observ-
ing it from NBV/NBCs obtained based on shape completion learning. The thin metal
plate has a shiny and flat surface, making it difficult to infer optimal NBVs. This
work solves the problem by using a point cloud completion network as a heuristic for
NBV/NBC optimization.

4.1 Introduction

This section studies using a robot manipulator and a stationary depth sensor to obtain

a metal plate’s 3D mesh model with a minimal number of views. The challenge in

obtaining the model of such objects lies in their shiny and flat surface, which leads

to noisy point cloud data and low surface normal guidance for determining the next

viewpoints. We propose using a point cloud completion network to provide heuristics

for NBV/NBC optimization, thus overcoming the challenge. Compared with existing

methods, our approach predicts NBV/NBC based on a holistic view of the object

predicted using PCN. It is not limited by the local information captured by the

sensors and is, therefore, suitable for thin plates with either insignificant1 or complex

features2

1Insignificant features cannot provide enough information for surface normal estimation. For
example, when only the edge of a plate is captured, the point cloud forms a curved or line-like shape
with inadequate 2D variance. Using Principal Component Analysis (PCA) to estimate the normal
of such point clouds may lead to incorrect results.

2Complex features have intricate local geometry and will lead to an overabundance of point clouds
and thus noisy normal estimation.
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Previously, researchers proposed using a robot to scan an object’s 3D model auto-

matically. Robots could be configured as actuators to grasp a target object and show

it to external cameras for scanning. They could also be equipped with hand-eye sys-

tems to observe objects on a table. In both cases, the robot must decide how to move

itself to obtain the necessary views for 3D scanning [116][117], which is known as the

NBV/NBC problem. Remarkably, researchers proposed using NBV/NBC planning

to determine the object or camera poses that lead to an optimal amount of infor-

mation about the unknown object. However, state-of-the-art NBV/NBC planners

were based on local information. If the local information is insignificant, noisy, or

noncontinuous, it may lead to a failure in NBV/NBC planning. In this work, we

propose using a point cloud completion-based approach to learn the global geometry

and estimate the confidence and NBV/NBC considering the learned global informa-

tion. The proposed method provides more accurate and efficient view-planning results

than previous methods. The NBV/NBCs can be formulated as the same problem and

optimized in a continuous multi-DoF space without a significant change.

Fig. 4.1 illustrates the workflow of the proposed method. We especially assumed

a thin, curved metal plate as the target object and a robot manipulator with an

external stationary depth sensor as the collection system. The robot manipulator

grasps the metal plate and reposes it for the camera to collect data from different

viewpoints. The proposed NBV/NBC planning method finds the optimal robot con-

figuration for observation, considering the confidence of the learned complete point

cloud. The difficulties in the NBV/NBC estimation of such thin metal plates are

deficiencies caused by: (1) Reflection and noisy point cloud data; (2) Erroneous nor-

mal estimation; (3) Self-occlusion. The approach proposed in this work utilizes a

PCN trained using synthesized data as the heuristic for NBV/NBC optimization. It

is robust to the deficiencies mentioned above and is thus more advantageous than

state-of-the-art methods when applied to metal plates.

We evaluate the system using simulated and real-world tasks in the experimental

section. The results show that the proposed method can find NBV/NBC solutions

more accurately and efficiently compared to baseline methods. The trained PCN

had satisfying generalizability. The optimization algorithms were thus flexible and
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applicable to various metal plates without a significant change.

This section’s organization is as follows. Section 4.2 reviews related work. Section

4.3 presents a schematic overview of the proposed method. Section 4.4∼4.5 shows

algorithmic details of each essential component of the proposed system. Section

5.5 presents experiments and analysis. Conclusions and future work are drawn and

discussed in Section 4.7.

4.2 Related Work

4.2.1 Next Best View

Early research on NBV can be traced back to [118], which determines good “next best

views” to cover a given model. Wong et al. [119] studied a volumetric representa-

tion of the model after a 2D view was obtained to complete the NBV reconstruction

task. Mendoza et al. [120] proposed a supervised learning-based scheme for NBV

planning in an end-to-end manner, which predicts the sensor pose from predefined

candidates. The above approaches represent searching space by sampling viewpoints

over a cylinder or sphere model. They are in a low-dimensional space and have diffi-

culties collecting every corner of an object with complex geometry. To overcome the

difficulties, researchers have proposed using sensors mounted on robot arms [116][121],

or objects grasped by robot arms [117][122] to capture the surfaces not visible in low

dimensional searching space. Researchers have explored using prior knowledge to im-

prove the estimation efficiency of NBVs. For example, Kay et al. [123] considered

the importance of objects in the environment using semantic segmentation to inform

UAV navigation. Wu et al. [124] leveraged the prior knowledge of plant structure to

improve the effectiveness of the NBV algorithm for plant phenotyping.

The existed works are generally based on surface boundary [116][117] or volumetric

analysis [123][124][125]. However, these approaches have their respective limitations

when applied to curved, thin metal plates. Surface boundary-based approaches can

be misled by the plates’ surface-like behavior and inherent boundaries. They also
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struggle with noisy or sparse point cloud data, where reliable surface normal estima-

tion is difficult. On the other hand, volumetric analysis discretizes the 3D space into

a grid and thus can not precisely represent fine details. This limitation is significant

in our context, where the task is highly sensitive to the surface’s normal direction.

The system in this work comprises a robot manipulator and an external station-

ary depth sensor. We develop a complete shape learning-based NBV/NBC planning

method to help determine the next camera view point or robot configuration for ob-

servation. The method is more advantageous than previous ones as it is not limited

to local information captured by the sensors and is suitable for objects with uncertain

features.

4.2.2 3D Shape Completion

The goal of 3D shape completion is to generate a complete 3D model from a par-

tial observation. It plays an important role in robotic tasks [124][126]. Previously,

Choy et al. [127] proposed an amortized maximum likelihood approach for 3D shape

completion. Stutz et al. [128] learned a mapping from partial observations to shape

primitives using extensive training data collection. Rock et al. [129] proposed an

exemplar-based approach that retrieves a similar model from a training set based

on an input depth image and deforms the retrieved model to approximate the input

better. Litany et al. [130] used a variational autoencoder with graph convolutional

operations to learn a latent space for complete shapes. They perform optimization

in the latent space to iteratively deform the shape and align it with a partial input.

Yuan et al. [131] presented a point cloud completion model that used a PointNet-

based encoder to extract global features and folding operations to up-sample coarse

predictions. Like PCN, Tchapmi [132] proposed the TopNet, which essentially em-

ployed a tree-structured decoder to predict complete shapes.

The problem in this work requires iteratively collecting and predicting partial point

clouds. Consequently, we use the point cloud-based 3D shape completion to predict

complete point cloud data and then use the predicted data to estimate NBV/NBCs

parameters heuristically. We primarily use the PCN model [131] for the iterative
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shape completion and prediction. The model allows our proposed method to effec-

tively avoid issues related to local features and identify the optimal viewpoint from

a global perspective. It is robust to deficiencies caused by reflection and noisy point

cloud data, erroneous normal estimation, self-occlusion, etc., and is thus more advan-

tageous than state-of-the-art methods.

4.3 Schematic View of the Proposed Method

Fig. 4.2 presents the schematic diagram of the proposed method. The workflow

starts with a deformed metal plate held in a robot’s hand. An external stationary

3D scanner will capture a partial view of the point cloud and send it to the “Point

Completion Network” for prediction. The partial view is highlighted as the “Partial

Point Cloud” blue box in the diagram. The “Point Completion Network” will predict

a complete point cloud, as denoted by the “Complete Point Cloud” green box in

the diagram. It will be combined with the “Partial Point Cloud” and fed to the

“NBV/NBC Optimization” component to estimate the confidence of the point cloud

and the next robot configuration for holding the target object. Note that we used

“NBV/NBC Optimization” as the title since the developed approach applies to the

NBV problem and can also be used for solving the NBC of a robot to move an object

for the next best view. The NBV and NBC problems share essentially the same

formulation, except that additional robotic constraints must be included, and a few

optimization parameters must be replaced.

If the combined point cloud is confident enough, the “NBV/NBC Optimization”

component will produce a signal to stop the routine, switch to the “Mesh Recon-

struction” module, and build a mesh model using the received point cloud as the

final output. Vice verse, the workflow will be directed to the “Robot Execution”

block to move the object to the next best view pose and then restart the capturing

and prediction routine.

Details of the “Point Completion Network” and “NBV/NBC Optimization” will

be respectively presented in the following sections. The “Mesh Reconstruction” is not

the primary concern. It will only be briefly mentioned in the experimental section.
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Figure 4.2: Schematic diagram of the proposed method. The blue “Partial Point
Cloud” represents a single-view point cloud in the beginning and a multi-view point
cloud starting from the second loop. We train a point completion neural network using
both synthesized single-view and multi-view point clouds to predict the NBV/NBCs.

4.4 Training the Point Cloud Completion Network

We use the Point Completion Network (PCN) proposed in [131] to learn the complete

geometry. PCN is an encoder-decoder network. It encodes the input point cloud

as a single global feature vector and reconstructs the completed point cloud by a

FoldingNet [133] decoder. The algorithmic details can be referred to [131][134]. In

this section, we focus on the training process and present how we prepare the data

needed to train a PCN for metal plate objects.

We use synthetic shapes to create a large-scale dataset. The dataset contains single

and multi-view partial point clouds and their corresponding complete ground-truth.

It is used to train the PCN model. Particularly, the synthetic shapes are created

using flat plates, as shown in Fig. 4.3. We randomize the w, h, and l values of

the plates and use B-spline functions to transform the randomized plates into curved

shapes. Then, we use the Poisson disk sampling method [135] to sample the surfaces

and create ground-truth point clouds3. We capture partial views of the synthesized

3The thickness h is kept when creating partial-view point clouds but ignored when creating the
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curved shapes and include occlusions, noises, and loss to the views to create the partial

point clouds. The partial point clouds approximate the data collected by sensors. We

also align several partial point clouds of a single object with random transitional and

rotational errors to generate multi-view partial point cloud data. The multi-view

partial point cloud data approximate the point clouds collected after a sequence of

views.

Figure 4.3: Synthetic datasets created based on flat plates. We randomize w, h, and
l values to generate a variety of flat bases and then transform the bases into curved
shapes using B-splines. The ground truth is obtained by sampling the surface of the
curved shapes. Algorithmic details for creating single and multi-view partial point
clouds are shown in Fig. 4.4.

ground-truth data. The goal is to let the PCN model predict a complete point cloud that is thin
and irrelevant to thickness. Each region has a distinct normal direction, which helps the planner
find an optimal solution while staying unaffected by complex local geometry.
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Fig. 4.4 illustrates the routine for creating partial-view point clouds. First, we use

a hyperparameter ψ̄ to determine visibility. Points are considered visible if the angle

between the surface normal of the points and the line of sight is smaller than ψ̄. Fig.

4.4(b.iii) exemplifies two partial point clouds generated using different ψ̄. Higher ψ̄

values will result in more visible points. Also, since real point clouds usually have

non-uniform sampling density, noises, outliers, missing data, and misalignment [136],

we use the process shown in Fig. 4.4(c.i-c.iii) to include these disturbances and

reduce the sim-to-real gap. The processes include (1) removing points randomly to

approximate missing data, (2) adding random noisy points, and (3) applying random

Gaussian noises to existing points.

Figure 4.4: (a) Randomly select a curved shape with a random pose. (b) Generate
raw partial-view point clouds considering the camera’s line of sight, surface normal,
and a threshold angle ψ̄. (b.i) Definition of ψ (Angle between the line of sight and
surface normal) (b.ii) Changes of ψ under the same line of sight. (b.iii.1,2) Results
under different ψ̄ values. (c) Re-sample the raw clouds by including occlusions and
noises.

We use both the single and multi-view partial point clouds and their corresponding

ground-truth point clouds as the input and output for training the PCN. The Earth

Mover’s Distance (EMD) [137] is used as the loss during the training. The definition
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of EMD is as follows:

EMD(S, S∗) = min
ϕ:S→S∗

1

|S|
∑
x∈S

∥x− ϕ(x)∥2 . (4.1)

Here, S is the input point cloud. S∗ is the predicted complete point cloud. The

definition finds a bijection ϕ : S → S∗ that minimizes the average distance between

corresponding points of the two point clouds.

4.5 NBV And NBC Optimization

This section presents the algorithmic details of the “NBV/NBC Optimization” com-

ponent. The algorithms comprise two steps introduced in the following subsections.

The first step compares the partial-view point cloud with the PCN output and pre-

pares a list of candidate regions for further observation. The second step determines

the NBV/NBC using optimization.

4.5.1 Confidence Estimation

We estimate the confidence regions using the distance between the input partial-view

point cloud and the predicted complete result. We use S to represent a partial-view

point cloud and S∗ to represent a completed result. S∗ is downsampled to n regions.

They are denoted by the center points: M = {pµ0
,pµ1

, . . . ,pµn
}. For each center

point pµi
, we search for its neighbors in a denoised S set (where points that are far

from S∗ are removed) within a specified radius r and count the number of neighbors.

The number of neighbours is denoted as u(pµi
). The number of neighbours for all

points is denoted as U = {u(pµ0
), u(pµ1

), . . . , u(pµn
)}. The confidence of a region

(represented by its center pµi
) is computed by normalizing against U using:

c(pµi
) =

u(pµi
)−minU

maxU −minU + 1
, 0 ≤ i ≤ n. (4.2)
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Figure 4.5: NBV example. (a) Confidence in color. (b) Optimize the rotation and
transition of the object to capture more low-confidence regions on the reconstructed
mesh model Ω.

The c(pµi
) on the left hand side denotes the confidence of pµi

. It is computed by

normalizing the number of each center point’s neighbors. A greater number of neigh-

bors correlates to higher confidence values. C = {c(pµ0
), c(pµ1

), . . . , c(pµn
)} is a set

formed by all confidences.

Fig. 4.5(a) visualizes the confidence using a random plate as an example. A

redder color in the illustration indicates a region that has a larger confidence score.

Inversely, a bluer color indicates a region with a smaller confidence score. The nor-

mals {n(pµ0
),n(pµ1

), . . . ,n(pµn
)} of these regions are denoted by arrows. They are

computed by applying Principal Component Analysis (PCA) to the queried neigh-

bors.

4.5.2 Formulation of the Optimization Problem

Note that, the NBV and NBC optimization are treated as two distinct processes.

Both of them are introduced to show that the proposed method is adept in both

scenarios: where the robot holds the camera or when the robot holds the object.

NBV

Based on the confidence acquired in the previous subsection, we formulate the NBV

estimation as the following optimization problem.
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max
x

Gain(M, C, S̃) (4.3a)

s.t. x = (x, y, z, φx, φy, φz) (4.3b)

S∗ ∩ fov(x) ̸= ∅ (4.3c)

φx, φy, φz ∈ [−π, π] (4.3d)

S̃ = f(x,Ω) (4.3e)

The goal of the optimization is to find a viewpoint that leads to a larger gain in

confidence. The following constraints are considered in the formulation:

1. Camera Field of View (FOV): The object should stay in the camera’s FOV.

2. Occlusion: Both self-occlusion and robot occlusion should be considered.

3. Visibility: The surface is deemed well captured only when the angle between

the sensor’s line of sight and the surface normal is below a certain threshold

value.

The above equation (4.3c) corresponds to item 1). Equation (4.3e) corresponds to

item 2). x is a vector that represents the NBV, with its six elements denoting trans-

lation and rotation, respectively. The function fov(·) represents the camera’s viewing

frustum for a given pose. f(·) is a function that captures the partial-view point cloud

of a given mesh model using the ray-casting method. With a given viewpoint, a set

of rays are projected towards the mesh models visible within the viewing frustum.

Each of these rays undergoes an intersection test with the mesh. If an intersection

occurs, the initial point of intersection is recorded. Its result is assigned to S̃. Ω is a

mesh model reconstructed using S∗.

The optimization goal Gain(·) is defined by the pseudo-code shown in Algorithm

3. The algorithm’s input includes the set of region centers, the set of confidence scores

for the regions, a new partial-view point cloud captured using equation (4.3e), and

a user-defined threshold confidence value for filtering regions. The algorithm checks

the visibility of each region (corresponds to item 3)). The smaller angle between the



4.5. NBV AND NBC OPTIMIZATION 85

surface normal and the line of sight means that the surface is largely facing towards

the viewpoint. Recognizing the inherent ambiguity in the directionality of a surface’s

normal–owing to it having two potential normal directions that are, for our purpose,

functionally equivalent–we conceptualize the normal more as a line rather than a

vector with a specific direction. Thus if the acute angle between n(pquery) and the

line of sight (−−−−−−→pcampquery) is within a range of [0, ψ̄], the point pquery is considered to be

successfully captured (lines 9-10). The output value g sums up the gained confidence

when a new pquery is captured. Visible regions with lower confidence score c(pµi)

contribute to higher gain. It thus helps find an x that brings more unseen object

regions into the camera view.

Algorithm 3: Computing the Gain in Coverage

Input: M, a set of region centers;
C, a set of confidence scores for the regions;
S̃, a newly captured partial-view point cloud;

Output: g, total gain in S̃’s coverage
1 begin
2 g ← 0
3 for i ∈ (1,2,...,n) do
4 if c(pµi

) > ϵ then
5 continue // ϵ is a given threshold

6 Q ← Query for the neighbors of pµi
from S̃ within a given radius r

7 for pquery ∈ Q do

8 σ ← acos(
|−−−−−−→pcampquery · n(pquery)|
||−−−−−−→pcampquery|| · ||n(pquery)||

)

9 if σ ∈ [0, ψ̄] then
10 g ← g + (1− c(pµi

))

11 return g

NBC

Next, by replacing the optimization parameters with joint angles q, the proposed

optimization method can also help solve the next best robot configuration problem:

max
q

Gain(M, C, S̃) (4.4a)



86 CHAPTER 4. NEXT BEST VIEW PLANNING

s.t. q = [q0, q1, ..., qd]
T (4.4b)

qk ∈ [θ−k , θ
+
k ], k ∈ {0, 1, ..., d} (4.4c)

ph,Rh = fk(q) (4.4d)

S∗ ∩ fov([pcam,Rcam]) ̸= ∅ (4.4e)

S̃ = f([pcam,Rcam], rot([ph,Rh],Ω) ∩ Ωr) \ Ωr (4.4f)

Here, d is the number of arm joints; θ−k and θ+k are joint angle limits. ph and

Rh are the position and rotation of the robot hand. pcam and Rcam are constant

and represent the camera pose. rot(a, b) is a function that transforms b using a.

Ωr is the mesh model of the robot. Thus equation (4.4f) additionally considers the

constraint for robot occlusions.

4.5.3 Optimization Solver and Termination Criteria

We use the Constrained Optimization BY Linear Approximation (COBYLA) solver

to solve the optimization problems. The solver is typically used when a problem

is non-smooth or the gradient of the objective function is not known. The targeted

tasks exactly meet the conditions of the COBYLA solver. The optimization problems

will be solved repeatedly each time a newly captured partial view is included until

a termination criterion is met. Defining termination is difficult since there is no

ground truth. We thus used a threshold: If the minimum value of set U is larger

than a threshold value, the input point cloud is considered complete. Otherwise, the

algorithm proceeds to the next iteration.

4.6 Experiments and Analysis

In this section, we present the experiments used to examine the performance of the

proposed method. The experimental platform comprised a robot arm (Ufactory xArm

7) with a two-finger parallel gripper and a stationary depth sensor (Photoneo PhoXi

3D Scanner M with 1032×772 resolution) fixed above it. We used a PC with an Intel

Core i7-10700 CPU, RTX 3090 GPU, and 16 GB memory to carry out the learning
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Table 4.1: Information of the Dataset

Type
# Curve
Shapes

# Point
Clouds

Coverage

max. min. mean std.

Single-View 5k 50k 0.96 0.05 0.58 0.15

Multi-View 5k 50k 1.0 0.15 0.87 0.10

* Meanings of abbreviations: # Curved Shapes - Number of
randomly generated curved shapes; # Point Clouds - Number
of point clouds for respective single or multiple partial views.

and optimization processes. We performed quantitative studies and analysis in both

simulation and real-world using the robot and PC platform. Two types of metal plates

are evaluated: Curve Flat Plates (CFP) and Curved Linear Array Plates (CLAP).

Their respective single or multi-view partial point clouds are denoted as P-CFP and

P-CLAP.

4.6.1 Point Cloud Completion Network

First, we evaluated the performance of the PCN trained using point cloud data created

by the proposed method. We first generated 5000 flat plates with w×l×h randomized

from a range of (200±50)×(10±5)×(2±1) [mm], and then transformed them into

curved shapes using B-spline with degrees from 3 to 5. The point cloud data used

for training was sampled from the 5000 synthesized curved shapes (10 partial point

clouds for each shape). Detailed information about the point cloud data is shown in

Table 4.1.

We used the P-CFP created using the methods shown in Section 4.4 and partial

point clouds created based on a new type of linear array plates to test the performance

of the trained PCN. The new linear array plates were essentially a sequence of repeated

geometric elements. Notably, we used the two geometric elements shown in Fig. 4.6

and respectively morphed them into curved shapes using RBF morphing [138]. The

control points for the RBF morphing of the repeated geometric elements are randomly

moved in a range of 20 [mm]. Although the linear array plates remain thin and long
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Figure 4.6: Two Curved Linear Array Plates (CLAPs). (a) CLAP created using
circular elements. (b) CLAP created using ring elements.

like the flat ones, they had complicated local features, and the point clouds created

based on them were significantly different. Such point clouds help understand if the

trained model was generalizable to point clouds with complicated variations.

Table 4.2 presents the testing results. We used the P-CFP data for training and

tested the trained model using both single-view and multi-view P-CFP and P-CLAP

data. In order to better compare the performance difference, we used the Chamfer

Distance (CD) [139] and Earth Mover’s Distance (EMD) [137] to quantify the testing

results. The CD value represents the level of coincidence between the points in the

predicted cloud and those in the ground truth cloud. A lower CD value indicates

a higher degree of coincidence. On the other hand, the EMD value reflects the

completeness of the predicted point clouds when compared to the ground truth. A

lower EMD value indicates greater coverage of the ground truth clouds. The results in

the table show that the trained model had similar performance on either the P-CFP

or P-CLAP data. It had satisfying generalizability and was applicable to point clouds

created using curved linear array plates. The results also show that the accuracy of

the prediction results for multi-view point clouds was higher than single-view ones,

which implies that higher surface coverage leads to better estimation results, and

the negative influence of registration errors was insignificant in the presence of high

surface coverage.

Some examples of the results are visualized in Fig. 4.7. Interested readers may

examine it for a detailed comparison.
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Table 4.2: Performance of the Trained PCN Model

Training Data

Testing Data

Type
P-CFP P-CLAP

CD EMD CD EMD

P-CFP (35k+35k)
Single-View 2.62 6.78 2.12 7.53

Multi-View 1.75 4.02 1.81 6.69

* The digits in the parenthesis of the training data column
indicate the number of single-view and multi-view point clouds,
respectively. A lower CD value indicates a higher degree of
coincidence between the points in the predicted point clouds
and those in the ground truth. A lower EMD value indicates a
more excellent coverage on the ground truth clouds.

Figure 4.7: Visualization of some PCN outputs. (a) A P-CFP example. (b, c) Two
P-CLAP examples.
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4.6.2 Simulation Results

Second, we evaluated the effectiveness of the proposed NBV/NBC optimization method

and compared it with several baseline methods in simulation. The target objects used

in the evaluation and comparison included 200 random CFP shapes and 200 random

CLAP shapes, respectively. The PCN model trained in the previous subsection was

used in the evaluation. Two indicators, namely the average number of captures and

success rates, were used to quantify the effectiveness values. The average number of

captures indicates the number of views needed to achieve surface coverage above a

particular threshold value. It is computed by summing up the number of captures

across all trials and then dividing the sum by the total number of trials conducted.

The success rates indicate how well an object can be adequately observed (with sur-

face coverage larger than a particular threshold value) within a pre-defined number

of views (6 for NBV and 10 for NBC).

NBV

We compared the following methods to understand the advantages and disadvantages

of the proposed one:

• Baseline Method 1: Randomize a matrix by sampling rotations around the

vector of a level-1 icosphere.

• Baseline Method 2: Local dimensional information-based method developed by

Kobayashi et al. [117].

• Baseline Method 3: Use the normal of the point pµi
with the minimum con-

fidence score as the viewing direction, and calculate the rotation matrix by

aligning the NBV and camera’s line of sight.

• Proposed Method: The proposed direct optimization-based method.

Fig. 4.8(a.i-ii) illustrate the results of these methods. The diagrams in the first

row of the figure show the statistical change in surface coverage as the views in-

creased. Each box represents a summary of all 200 trials. When employing prior
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Table 4.3: Average Number of Captures and Success Rate of NBV Estimation Algo-
rithms.

(a) CFP (b-c) CLAP

# Captures Success Rate # Captures Success Rate

Baseline 1 2.88 199/200 2.24 200/200
Baseline 2 3.23 177/200 2.52 183/200
Baseline 3 2.59 189/200 2.14 200/200
Proposed 2.36 200/200 2.11 200/200

* Meanings of abbreviations: # Captures - Average number of captures;
Success Rate - Number of trials that reach surface coverage of more than
0.95 within 6 times of captures / Total number of trials.

knowledge (as indicated by the green and red boxes), the average increase in surface

coverage shows the most substantial improvement in the second view. Notably, the

optimization-based method demonstrates the most significant increase among the ap-

proaches considered. The diagrams in the second row show the number of objects

that were successfully observed (more than 95% coverage) as the view increased. A

large portion was successfully observed within two views using the proposed method.

It outperformed other methods for both CFP and CLAP. The previous method (Base-

line 2) had wrong normal estimations and, thus, a minor increase in surface coverage.

Baseline 3 considered the region with the lowest confidence but did not regard global

optimization. It is improved compared with the previous method but remains worse

than the optimization-based method. Detailed comparisons of these two methods

can be found in a supplementary file published together with this manuscript. On

average, CLAP tends to have fewer views than CFP. This could be attributed to the

fact that CLAP shapes have more complex local geometry, and their surface normal

can be more readily inferred. Table 4.3 shows the average number of views for all

successfully observed objects and the success rates.
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Table 4.4: Average Number of Captures and Success Rate of NBC Estimation Algo-
rithms.

(a) CFP (b-c) CLAP

# Captures Success Rate # Captures Success Rate

Baseline 1 7.34 104/200 3.60 193/200
Baseline 2 4.20 178/200 2.66 197/200
Baseline 3 3.89 179/200 2.61 195/200
Proposed 3.43 197/200 2.45 200/200

* Meanings of abbreviations: # Captures - Average number of captures;
Success Rate - Number of trials that reach surface coverage of more than
0.95 within 10 times of captures / Total number of trials.

NBC

We also evaluated the four methods by additionally considering robot configurations.

For the first three, we computed the NBC based on the predicted NBV using the

method presented in [117]. In contrast, we did not have an intermediate NBV es-

timation process for the proposed method and optimized the robot joint values di-

rectly. The diagrams in Fig. 4.8(b.i-ii) show the results of the NBC methods. Table

4.4 shows the average number of views for all successfully observed objects and the

success rates. We can see from the results that the proposed method outperformed

the other methods. They confirmed a presupposition that more viewpoints were re-

quired to obtain NBCs as the participation of the robot caused occlusions. Baseline 1

which randomizes the viewpoint does not work due to these occlusions. The success

rates are also lower than the NBV results, as robotic kinematic constraints caused

additional failures.

4.6.3 Real-World Results

Third, we carried out experiments in the real world using the xArm 7 robot ma-

nipulator and five curved metal plates. Fig. 4.9 shows pictures of the five curved

plates. They were randomly handed over to the robot by humans. Fig. 4.10 shows

the results. The (a) to (e) rows in the figure correspond to the results for objects
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Figure 4.9: Five curved plates used in real-world experiments. (a) Aluminum CFP
1. (b) Aluminum CFP 2. (c) Aluminum CLAP with circular pattern. (d) Aluminum
CLAP with circular pattern and blue coating. (e) Titanium CLAP with ring pattern.

Fig. 4.9(a)-(e). We can see from the results that the robots moved the plates to

different poses and captured and stitched the partial views to finally reconstruct the

3D models. It took three views to reconstruct the 3D models of the objects in Fig.

4.9(a) and (c), and two views to reconstruct the 3D models of objects (b), (d), and

(e). The registration of partial-view point clouds is done by the AR markers fixed

on the robot hand. The results of the real-world experiments are coherent with the

simulation. They demonstrate that the proposed method can quickly capture enough

point cloud data and thus help efficiently obtain the object models. The method is

robust to noisy point cloud data and low guidance in surface normal and is suitable

for thin metal plates with either insignificant or complex features.

4.7 Conclusions

We proposed a point completion network-based NBV/NBC estimation method in

the section. Experimental results show that the proposed method is applicable to

various metal plates and can reach a high coverage with a small number of viewpoints.

The method is robust to objects with noisy surface properties and uncertain surface

normal. It can flexibly and robustly solve the NBV/NBC problems of thin metal

plates.
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Figure 4.11: (a) Original mesh model. The control points (shown in yellow) are
sampled on the original mesh model with random intersections on cross-sections that
are perpendicular to the xy-surface and paralleled to the yz-surface. (b) Cross-section
view of the change of the control points. (c) Deformed mesh model using RBF
morphing.

Appendix

Curved Linear Array Plate Generation

Mesh morphing techniques aim to change the shape, size, and orientation of the mesh

while preserving its properties and integrity as much as possible. Additionally, the

update of node positions usually requires less computational effort compared with

a full mesh regeneration. We adopt it to generate a large amount of curved linear

array plates (CLAP). Specifically, Radial Basis Functions (RBF) morphing [138] is

used. It comes with two distinctive advantages that make it very flexible: it is mesh

independent and it allows node-wise precision [140].

Here we introduce the implementation details. With a given mesh model, we first

define control points on it. These points are sampled on cross-sections perpendicular
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to the xy-plane and parallel to the yz-plane, with four points taken from each cross-

section. Eight control points are sampled on cross-sections of the two ends of the

plates. The position of control points on the cross-sections in-between are randomized.

Fig. 4.11 (a) presents these control points, marked in yellow. Next, we establish the

goal positions of these control points. Each group of four points on a cross-section is

treated as a group, where their translation is restricted to a maximum of 20 mm. In

addition, the rotations about the x, y, and z-axis are constrained to be less than 30◦,

30◦, and 5◦ respectively. These values were carefully chosen to seek a balance between

allowing significant deformation and preventing unrealistic outcomes. Overly large

values could distort the shape beyond practical limits and make the model unrealistic.

Fig. 4.11 (b) shows the goal position of the control points (red). An exemplary

comparison of the mesh model before and after morphing is illustrated in (c).

Comparison with Previous Method

This work is an extension of our previous work [117]. It was inspired by the following

limitations of the previous method:

• Surface Normal Estimation: The previous method was unsuitable for thin

objects due to incorrect estimations of surface normals on thin metal plates.

These incorrect estimations were often caused by noisy input or insignificant

local information. In this context, “insignificant” refers to scenarios where only

the edge of the plate is captured. In that case, the obtained point clouds form

a 2D curve instead of a 3D surface. Estimating the normal of the 2D curve is

challenging, as it provides insufficient 3D information.

• Noise Reduction: Our previous work lacked an efficient method to remove

outliers from the point cloud. Lacking such a method is particularly problematic

for metal plates since the reflective metal materials will cause the time-of-flight

(ToF) sensor to output a very noisy point cloud. Furthermore, the point cloud

of metal plates is relatively discrete compared to general objects, particularly

in the case of Curved Linear Array Plates (CLAPs). As a result, the outliers
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of these point clouds are difficult to remove using conventional clustering-based

methods.

• Termination Condition: The previous method defined the object as well-

captured using a confidence value computed by a dimension feature [141]. In this

approach, continuous surfaces will have higher confidence, while non-continuous

sections will have lower confidence. It is unsuitable for thin plate tasks as the

objects have dominant non-continuous sections (edges).

Figure 4.12: Performance of various NBV methods. (a) Input partial-view point cloud
(first capture). (b) Baseline 2 (previous method) has wrong normal estimation. (c)
Baseline 3 uses the region with the lowest confidence for NBV. The newly captured
point cloud can cover the specific region but fails to cover other low-confidence regions.
(d) The proposed optimization-based method can cover more low-confidence regions.
It achieves the highest improvement of surface coverage after the second scan.

Quantitative comparisons of the new method and the previous one are presented in

Section 4.6.2 of the main manuscript. Here we showcase several qualitative examples

in Fig. 4.12. We hope readers can get an intuitive view of performance through the

results.

Additionally, the real-world results can be observed in the supplementary video.

Fig. 4.13 shows the details of the results. Both algorithms use the same point cloud

shown in Fig. 4.13(a) as input. Fig. 4.13(b) shows the NBV/NBC estimation results
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of the previous method and visualizes the point clouds after 3 time of scanning. The

result remains incomplete. Fig. 4.13(c) is the result of the proposed method.

Figure 4.13: Comparison of real-world NBC estimations. (a) Input partial-view point
cloud (first capture). (b) Previous method. The optimization goal is to make the
angle between the normal direction of the point with minimum confidence and the
camera line of sight smaller than a tolerance. (c) The new method. Directly optimize
the joint angles by maximizing the gain. (*.*.1) Confidence estimation. (*.*.2) NBC
optimization result. (*.*.3) Updated point cloud.



Chapter 5

TAMP for 3D Curving

Elasto-plastic metal wire curving task is commonly seen in manufacturing and medical

fields. This section presents a combined task and motion planner (TAMP) for a

robot arm to work aside a bending machine and carry out 3D metal wire curving

tasks. We assume a collaborative robot that is safe for humans but has a weak

payload and develop the combined planner for the robot to use the bending machine.

The contributions of the study are three-fold. First, we propose a coarse-to-fine

optimization-based method to convert a 3D curve to a structured bending set. Second,

we build a planner to generate the feasible bending sequence, machine operation,

robotic grasp poses, and arm motion while considering constraints from the bending

machine and the robot. Third, we use visual feedback to build and dynamically

update the springback model of a metal wire and use the model to predict and

compensate for bending errors caused by springback. Compared with previous work,

the proposed planner does not require the robot arm to have a large payload, making

it suitable for lightweight collaborative robots. We evaluate the system using both

simulated and real-world 3D curving tasks. The results show that the proposed

planner can solve robotic 3D curving problems with satisfying time efficiency and

precision. It is flexible and applicable to different robots and metal wire materials

without a significant change. The method is expected to accelerate the high-variation

low-volume manufacture of 3D metal wire curves.

Note to Practitioners: Using robots to bend metal wires has been an old topic

100
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in robotics and automation. In previous robotic metal wire bending systems, the

robot motion was usually pre-programmed to feed parts to bending machines. It was

not easy to be extended to multiple goal shapes. Also, the bending was limited to a

few discrete action points instead of an arbitrary curve. The method we developed

solved the problem by adding up optimized goal shape parameterization, combined

task and motion planning, and springback compensation. It helps to auto-program

robot actions and ensures satisfying precision by correcting bending results online

with visual feedback. Practitioners are encouraged to use the planner for either

offline programming or online motion generation. The springback estimation and

compensation are independent of motion generation and can be connected to both

motions pre-programmed offline or generated online. However, it is advisable to

employ robots with higher DoFs (Degree of Freedom) and avoid the online planning

of curves with many bending actions.

5.1 Introduction

This section presents a combined task and motion planner (TAMP) [16] for a robot

to curve metal wires into 3D shapes by working aside a bending machine. We as-

sume a collaborative robot that is safe for humans. Such a robot does not have

enough payload to directly bend objects with high stiffness. We designed a bending

machine made of a stepper motor and a gear set to solve the low-payload problem.

The designed bending machine can provide a much more significant bending force

than the robot arm to bend high-stiffness objects. The developed planner enables

a collaborative robot to work aside the bending machine like a professional human

worker and curve stiff and various-shaped metal wires. It plans the bending sequences

at the task level and robotic joint trajectories at the motion level while considering

constraints from the bending machine, the robot, and the wire’s physical properties

like springback. The planner helps solve robotic 3D curving problems with satisfying

time efficiency and precision. It does not require manual definition or programming

and is flexible and applicable to different robots and metal wire materials without a

significant change.
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Figure 5.1: (a) Curve parameterization and closed-loop planning considering com-
bined task-level and motion-level constraints. (b) A collaborative robot (low pay-
load) bends a metal wire with a bending machine following the planned result. (c)
Springback is compensated by visual estimation during the robotic execution.

Previously, using robots to curve metal wires was widely studied, as robots pro-

vided a promising solution to flexible or personalized manufacturing of metal-wire

products. The previous methods treated robots as automation machines. They pro-

grammed a robot to hold a metal wire and bend it by pressing against a fixture or an

external robotic gripper. The payload of the robot limited the maximally affordable

metal stiffness. Unlike the previous methods, we develop a planner for a robot to

curve metal wires by working aside a bending machine. The planner helps determine

the bending sequence, the grasping poses, and the robot joint trajectories to conduct

3D curving with the machine. Fig. 5.1 illustrates the robot-machine system and

workflow. In the first step, we use a coarse-to-fine parameterization to represent a
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desired 3D curve as a set of bending action points. Then, we perform a combined

task and motion planning to generate the bending sequence, grasping poses, and arm

motion integrally. Finally, the robot will follow the planned results to work with

the bending machine and bend the metal wire considering spingback compensation

predicted using visual feedback and a dynamically updated spingback model.

Our main contribution is the closed-loop exploration considering the task and

motion-level constraints. At the task level, we investigate the bending machine’s

kinematic constraints and the metal wire’s changing shapes. These constraints help

us to determine several tentative bending sequences. At the motion level, we in-

vestigate the logical relations of robotic grasping poses, robot joints’ torque limits,

and the availability of joint trajectories for moving the metal wire to the next bend-

ing pose. The motion-level results will be recorded during exploration to prune the

task-level sequences and improve planning efficiency. They together make the impos-

sible exploded combinatorics tractable. We improved the bending results’ accuracy

with the following techniques: First, we propose an optimization-based algorithm

to achieve a better bending set representation. Second, we select robotic grasping

poses considering reaction forces from the bending machine to ensure the robot does

not bear excessive payload during execution. Third, we include visual estimation

and springback compensation to reduce errors caused by a metal wire’s elastoplastic

properties.

We evaluate the system using both simulated and real-world 3D curving tasks

in the experimental section. The results show that the proposed planner can solve

robotic 3D curving problems with satisfying time efficiency and precision. It is flexi-

ble and applicable to different robots and metal wire materials without a significant

change. The method is expected to accelerate the high-variation low-volume manu-

facture of 3D metal wire curves.

The remaining sections are organized as follows. Section 5.2 reviews the related

work. Section 5.3 presents preliminary developments like the bending machine design

and bending set paramerization. Section 5.4 presents the combined task and motion

planning, with special discussions and analysis spent on force constraints and spring-

back compensation. Section 5.5 presents experiments and analysis. Section 5.6 draws
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conclusions and discusses the limitation and future work.

5.2 Related Work

5.2.1 Deformable Linear Objects (DLO)

Robotics research communities have paid considerable attention to the problem of au-

tomatically shaping Deformable Linear Objects. Unlike rigid objects, a DLO is more

complicated due to its infinite degrees of freedom. The methods for automatically

shaping such objects can be separated into non-physical (geometric) and physical ones

[142][15]. For example, Lv et al. [143] developed a comprehensive dynamic model us-

ing a discrete elastic rod model. Yan et al. [144] used Model Predictive Path Integral

(MPPI) control for optimizing a sequence of actions. Laezza et al. [145] developed

a reinforcement learning-based elastoplastic object shape control method. Takizawa

et al. [146] proposed a geometric model-based method to manipulate the shape of a

rope to tie it around a pipe using a dual-arm robot. Han et al. [147] developed a

sample-efficient reinforcement learning method to resolve the high-dimensional plan-

ning problem with a practical number of samples. Since the DLOs’ shapes change

during robotic manipulation, researchers also developed methods to track the defor-

mation and conduct online collision checking during planning [148]. Tactile [149][150],

force [151] and visual [144][152][153] sensing are widely used techniques for the track-

ing and online collision detection.

Researchers have categorized the DLOs into five categories considering their de-

formability and whether a force smaller than gravity can result in deformation [154].

This section focuses on curving the elastoplastic DLOs (e.g., metal wire, metal rod,

etc.). Unlike the rope or elastic rod, repeated bending of elastoplastic DLOs will

result in material fatigue, making their curving task different from that of rope, ca-

ble, and elastic beam. The elastoplastic DLOs are generally curved by one or a

sequence of discrete bending actions to avoid cracks caused by material fatigue. Pre-

viously, Jin et al. [155] designed an automation device to bend an elastoplastic DLO

(archwire). The device flexibly curved desired shapes by orchestrating predefined
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processes. Xia et al. [156] used a robotic arm and an external gripping unit to carry

out similar tasks. A sample-based planner was adopted for bending path generation.

Kuehl et al. [157] automated hairpin winding with a robotic manipulator. When

the material’s stiffness is high, it is difficult for a low-payload robot to curve DLOs

actively. Lu et al. [158] solved the problem by leveraging a heater to soften metal

rods before applying robotic arm actions. Zhang et al. [159] designed a multi-axis

special-purpose machine to form high-stiffness titanium alloy strips used in oral and

maxillofacial surgery. Another challenge of elastoplastic DLOs bending task is to

control the springback, which may cause crucial problem related to accuracy. Wu

et al. [160] formulated the springback compensation problem as an optimization of

the bending and twisting parameters using Finite Element (FE) simulation. Zhang

et al. [161] proposed a springback prediction model for variable curvature tubes, the

bending compensation amount was obtained through a reverse process.

This work uses a collaborative robot arm and a bending machine to achieve the

elastoplastic metal wire curving task. Unlike previous robotic curving systems, we

developed a planner to automatically generate the robot motion for using a bending

machine. We parameterized goal curves considering a bending machine’s constraints

and preserve goal shapes as much as possible. Meanwhile, we developed an online

visual estimation-based springback prediction and compensation method to reduce

errors caused by a metal wire’s elastoplastic properties and achieved satisfying preci-

sion.

5.2.2 Bending System

A bending system is a machine or a collection of interconnected mechanisms that work

together to bend materials into desired shapes. It can include not only the physical

units but also the planning algorithms that guide the process. There is plenty of

work done in the automation of bending systems. Raj et al. [162] constructed a

bend feasibility matrix to map the entire search space and used the best-first search

algorithm to determine the metal sheet bend sequence. Kontolatis et al. [163] and

Sen et al. [164] used genetic algorithms and particle swarm optimization to solve the
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bending sequence planning problem, respectively. Baraldo et al. [165] developed a

graph representation and used A* search to find an appropriate bending sequence

for a wire bending machine. Aomura et al. [166] used a searching-based method

to generate metal sheet bending sequences for a robotic manipulator considering its

grasp positions.

Table 5.1 further summarises the systems mentioned above according to three

criteria:

• Type of objects being bent: Objects are categorized based on their geometric

features.

• Incorporation of action and sequence planning: Action planning generates the

parameters for each bending action. Sequence planning generates a series of

feasible action poses while considering robotic and environmental constraints.

• Feeding and bending device employed: The feeding device is a robot or machine

responsible for translating and rotating an object to achieve the desired pose

for bending. The bending device is a robot or machine responsible for shaping

the object.

Our study stands out by incorporating both action and sequence planning for wire

objects. It uses a general high-DoF manipulator for feeding and a specially designed

machine for bending. The planning and the physical setup improve the flexibility of

the 3D curving. The proposed system is not only suitable for metal wire. It can also

easily be adapted to metal plates and pipes.

5.3 Problem Formulation

5.3.1 Structure of the Bending Machine

We design a bending machine shown in Fig. 5.2 by following the mechanisms of

commercial metal plate benders or folders. The bending machine comprises a 23HS45-

4204S (Holding Torque 3 Nm) stepping motor as the power source, a 1:10 gearbox to
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Table 5.1: Comparison of related works.

Planning Physical Device

Reference Object Type Act. Seq. Feed Bend

[156] Wire ⃝ ⃝ D M
[157][158] Wire ⃝ × D M

[165] Wire × ⃝ D D
[159] Plate ⃝ × D D

[160][167] Tube ⃝ × D D
[162][163][164][168] Sheet × ⃝ - D

[166] Sheet × ⃝ M D
[169] Sheet ⃝ ⃝ M D

Ours Wire ⃝ ⃝ M D

* Meanings of abbreviations: Act. - Action planning; Seq. - Se-
quence planning; Feed - The device used to feed the object; Bend -
The device used to feed the object; M - General high-DoF manipu-
lator; D - Specially designed machine or unit.

increase the output torque, an optical photo-interrupter for initialization (calibrating

the zero position), and several rollers for pressing or fixing target metal wires. Two

needle-roller bearings (Fig. 5.2(b)) are installed under the bending roller and the

center roller to allow free sliding motion between them and the metal wire.

A target metal wire is assumed to be placed between the center roller and the

other two rollers. The bending roller can rotate clockwise and counterclockwise start-

ing from the calibrated zero position. Thus the machine allows bending from two

directions without reversing a wire. The maximum rotation angle of the bending

roller is highlighted as a green zone in Fig. 5.3(a). Its effective work range depends

on the shape and thickness of the metal wire and is a bit narrower than the maxi-

mum rotation range. Fig.5.3(b) and (c) exemplify a bending process. Fig.5.3(b) is

the initial configuration where the wire is straight and tangent with all three rollers.

The rotation angle of the wire (φi) and the start angle of the machine (γi) can be

computed considering the three rollers’ radii and the thickness of the metal wire. Fig.

5.3(c) is the configuration after a bending action. The end angle of the machine can

be computed using γi + θi. When the wire is not straight, it is difficult to figure out
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Figure 5.2: CAD model of the designed bending machine.

an explicit equation for computing this angle. In that case, we leverage a kinematic

simulator to examine the collision between the wire and the rollers and measure φi

and γi based on the collisions. Notably, we have the following assumptions for the

kinematic simulator. First, we do not consider the accumulation and release of ki-

netic energy and thus cannot estimate and simulate the spring back of elastoplastic

materials. Second, the wire begins to bend when the bending roller starts to collide

with it and stops bending when the bending roller reaches a given goal rotation angle.

Third, we assume the bending arc couples with the center roller during bending. The

wire will wind around the center roller to form an arc. Fourth, if two bending actions

overlap, the newer arc will override the older arc sections. Under these assumptions,

we can compute the changed shape after each bending action by replacing related

wire sections with arcs determined by collisions.

Note that although we use this design to practice our task and motion planning

implementation, the developed method is not limited to this specific machine. It can

be adapted to other alternative mechanisms, such as those presented in [170], [171],

etc.
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Figure 5.3: Illustration of the bending machine’s action from a 2D top view. (a)
Maximum rotation range of the bending roller. (b) Initial contact between a bending
roller and a straight metal wire. (c) End configuration of a bend action.

5.3.2 Representing a 3D Curve Using Bending Parameriza-

tion

We assume a desired 3D curve is initially given as a list of dense points. Since the

bending machine’s center roller has a non-negligible radius which leads to a maximum

bending curvature, it is difficult to generate bending actions considering all dense

points. Bending actions close to each other will be canceled by the maximum bending

curvature. Instead of directly using the dense points, we propose a coarse-to-fine

fitting algorithm to approximate the 3D curve with fewer points. The algorithm’s

pseudo-code is shown in Algorithm 4. Like its name, the algorithm is carried out

progressively from an initial coarse representation to a later optimal refinement. The

details will be presented below.

Coarse Representation

In coarse representation, we combine polyline approximation and arc adaption to

simplify the dense points. The objective of polyline approximation is to reduce the

number of points in a dense point set while maintaining the original shape as closely
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Algorithm 4: Coarse-to-fine Bending Parameterization

Input: D, desired curve represented by dense points;
rc, center roller radius of the bending machine;
rw, metal wire radius;
ϵ, error tolerance of the representation;

Output: B, a set of bending parameters;
1 begin
2 r ← rc + rw
3 P ← {D[0],D[−1]}
4 B̃← {}
5 error, min error ← +∞
6 while error > ϵ do
7 ptmp ← farthest point(D, polyline(P));
8 θ̃tmp, α̃tmp, l̃tmp ← arc adaption(ptmp, r);

9 B̃tmp ← B̃ ∪ {θ̃tmp, α̃tmp, l̃tmp};
10 C ← merge overlap(B̃tmp, r);
11 error ← error(D, C);
12 if error > min error then
13 break;
14 min error ← error;
15 P ← P ∪ ptmp;

16 B̃← B̃tmp;

17 B← minimize average error(B̃,D);
18 return B

as possible. This process, known as line simplification, can be achieved through

various methods, such as preserving critical points (Douglas-Peucker method, DP)

[172], maintaining important bends [173], or retaining significant areas [174][175]. In

comparison to the DP method, the latter two methods are more suitable for handling

jagged curves or curves with noisy bending curvatures. They do not apply to our

scenario, as the goal was to authentically approximate a curve rather than overlook

noises. Thus, instead of them, we employ the DP method for line simplification

in this work. Fig. 5.4(a) shows the polyline approximation process. The smooth

black curve (D) is the desired curve. The orange dashed line (P) is the polyline

approximation result. It comprises a sequence of pivot points [p0,p1, ...,pn] plus
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their normal [n0,n1, ...,nn}. Fig. 5.4(b) and (c) show the arc adaption process.

It essentially fits the central roller (circles in the figure) to the pivot points of the

approximated polyline and converts the sections tangential to the rollers (
−−→
p−
i pi and−−→

pip
+
i in the figure) to arc sections (p−

i p
+
i in the figure). Like polyline approximation,

the adapted curve suffers from a representation error. However, there is a trade-off

between the number of pivot points and the representation error.

Due to the center roller’s non-negligible radius imposing a maximum bending

curvature, increasing the number of pivot points has a non-monotonic and non-linear

relation with the arc adaption accuracy. The arc adaption in the shadow regions of

Fig. 5.4(b) and (c) illustrates an example.

The details are shown in Fig. 5.5. The curve D is approximated using a polyline

in Fig. 5.5(a.1) and adapted with an arc considering the center roller’s radius in Fig.

5.5(a.2). The green double-arrow line in Fig. 5.5(a.2) denotes the representation

error after adaptation. Increasing a pivot point to it leads to the result shown in Fig.

5.5(b.1). There are two overlapped arc sections, as shown in the enlarged frame box on

the right side. If bent sequentially, the two arc sections will result in the curves shown

in Fig. 5.5(b.2) and (b.3), making the wire direction different from the goal curve.

To keep the wire direction, we merge the two overlapped arc sections into a single arc

(thus a single bending action) as shown in Fig. 5.5(b.4). The representation error

after merging is denoted by the green double-arrow line in Fig. 5.5(b.4). The error

is not necessarily smaller than the one before increasing a pivot point. To minimize

the representation error, we incrementally add new pivot points while comparing

the representation error with the previous minimum value to an optimal number

of pivot points. Lines 6 and 12 of Algorithm 4 respectively show the incremental

loop and the comparison of the errors. The min error parameter saves the previous

minimum representation error. The current error is compared against it in line 12 to

determine a break. The threshold error ϵ in line 6 is additionally designed to avoid

non-converging iteration. If the minimum representation error always decreases, the

loop will stop when the minimum error is lower than ϵ.

Since D is a 3D curve, an adapted arc section p−
i p

+
i will also be 3D. The section

could be described using a bending angle θi and a twisting angle αi, as shown in Fig.
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Figure 5.4: (a) Polyline approximation. (b) Fit the bending roller to the pivot points
of the approximated polyline. (c) Merge overlapped arcs and parameterize the bend-
ing actions. (d) Minimize the representation error by non-linear optimization.
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Figure 5.5: (a.1) Polyline approximation with four pivot points (black dots). (a.2)
Adapting to an arc considering the center roller’s radius. (b.1) Polyline approximation
with six pivot points. (b.2-3) Two step arc adaption without merge. In this case, δl is
larger than 0. Bi overlaps with Bi−1. The adapted arc results into a smaller bending
angle. (b.4) The bending angle conforms with expectation after merging Bi−1 to Bi.

5.6. Based on the description, we define an arc p−
i p

+
i by using bending parameters

B̃i = {θ̃i, α̃i, l̃i}. The values of θ̃i and α̃i are measured in the local coordinate system

{p−
i ,Ri} shown in Fig. 5.61. l̃i indicates the 1D position of p−

i measured along the

metal wire starting from its origin. Their formal definitions are presented in equation

(5.1). Note that we included a ·̃ hat on top of the set elements to indicate that

the parameters are temporal to this algorithm stage and will be refined later. The

bending parameters are also labeled in Fig. 5.4(c) for easy understanding. Note that

the figure is illustrated in 2D and the angle α̃i may be difficult to read.

θ̃i = arccos(
−−−−→pi−1pi · −−−−→pipi+1

∥−−−−→pi−1pi∥ · ∥−−−−→pipi+1)∥
(5.1a)

α̃i = arccos(
ni · ni+1

∥ni∥ · ∥ni+1∥
)) (5.1b)

1The y direction of the local coordinate system is the wire axial direction (
−−−→
p−
i pi). The z direction

is the normal direction of a local plane (ni).
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l̃i =


∥∥∥−−−→p0p

−
1

∥∥∥ , i = 1

l̃i−1 + θ̃i−1 · r +
∥∥∥−−−−→p+

i−1p
−
i

∥∥∥ , 1 < i < n
(5.1c)


p−
i = pi − r · tan

θi
2
·
−−−−→pi−1pi

∥−−−−→pi−1pi∥

p+
i = pi + r · tan θi

2
·
−−−−→pipi+1

∥−−−−→pipi+1∥

(5.1d)

r = rc + rw (5.1e)

Figure 5.6: We use a bending angle θi and a twisting angle αi to represent a bending
action. Their values are defined in the local coordinate system of the bending action
point p−

i .

A complete 3D curve is made of many arc sections and can thus be represented

as a bending set B̃ = {B̃i}. Each element in the bending set holds the bending

parameters of an individual arc section. They will be converted to the bending action

commands of the bending machine. For an ith arc section, the metal wire will be

placed between the center roller and the bending roller & die, with the wire in contact

with the center roller at p−
i . The wire will be rotated by the robot and pressed by

the bending roller to form the desired shape. The magnitude of B is determined by

the aforementioned lines 6 and 12 of Algorithm 4. In the following sections, we use

m to denote B ’s magnitude and differentiate it from the number of pivot points n.

Line 9 and 10 of Algorithm 4 determine the overlap and merge the arc sections. For

a newly inserted pivot point and arc section Btmp after Bi, the algorithm recursively
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examines its positional difference δl with adjacent arc sections following equation

(5.2). When δl is larger than 0, the algorithm merges the two arc sections and their

respective bending parameters following equation (5.3).

δl = l̃i + θ̃i · r − l̃tmp (5.2)
l̃i ← l̃i

θ̃i ← θ̃i + θ̃tmp

α̃i ← arccos(
ni · ni+1

∥ni∥ · ∥ni+1∥
))

(5.3)

Optimal Refinement

The straight-line sections of coarse representation will either be coincident (before

merging) or parallel (after merging) with a polyline approximation, which is a strong

constraint and will lead to unavoidable residual errors. In the second half of the

algorithm, we further reduce the residual error by performing an optimal refinement.

Particularly, we allow adjusting the parameters of each bending action point to

reduce the errors. We formulate the adjustment as an optimization problem shown

by equation (5.4). The optimization goal is to minimize the average error between

the target curve (D) and simplified curve (C) as shown by equation (5.4a). The x and

y variables in the equation represent dense points in D and C. They are discretized

from respective continuous curves. Notations ξθ, ξα and ξl in equations (5.4c) are

manually defined to limit the searching space. Equation (5.4d) ensures the order of

the bending action sequence is not changed, and there is no overlap between two

bending action points.

Line 17 of Algorithm 4 shows the position of optimization in the pseudo code.

It produces a set of optimal bending parameters. The parameters will be used for

modeling and solving a combined task and motion planning problem. Fig. 5.4(d)

illustrates the results before and after adjustment.
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argmin
B={Bi},Bi={θi,αi,li}

1

n

∑
x∈D

min
y∈C(B̃)

∥x− y∥2 (5.4a)

s.t. B̃i = {θ̃i, α̃i, l̃i} ∈ B̃ (5.4b)

∣∣∣θi − θ̃i∣∣∣ ≤ ξθ

|αi − α̃i| ≤ ξα∣∣∣li − l̃i∣∣∣ ≤ ξl

(5.4c)

li + θi · r ≤ li+1 (5.4d)

5.4 Combined Task and Motion Planning Consid-

ering Springback

Next, we carry out combined task and motion planning based on the obtained bending

parameters. The flowchart of the proposed method, with a particular focus on the

combined task and motion planning part, is shown in Fig. 5.7. The planner accepts

the B obtained in the last section and some pre-annotated grasp poses for a metal wire

primitive as the input. In the first step, it generates a bending sequence by permuting

the order of the optimized bending action points while pruning the searching tree

considering previously detected invalid actions. In the second step, the generated

bending sequence is sent to the motion generation process to determine grasp poses

and plan manipulation motion. The method iterates through the pre-annotated grasp

poses to find the candidates that are kinematically feasible to reach all bending action

points. It sorts the feasible grasp candidates considering the torque limit of the robot

arm to ensure safe executions. The springback of the metal wire is considered during

execution. A linear model with online visual estimation and dynamic updates is used

to predict additional bending angles and compensate for the springback after releasing

the bending roller. The details of the planner are presented below.
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Figure 5.7: Workflow of the proposed planner. The shadowed box in the middle
represents the combined task and motion planning. The details of the three steps will
be presented in the remaining part of this section.

5.4.1 Bending Sequence Planning

Figure 5.8: Infeasible.

The bending sequence planning process is at the task level.

It is carried out without considering robotic constraints. A

feasible bending sequence must meet the following two condi-

tions: (1) The wire does not collide with the machine or any

other obstacles during bending; (2) The wire is long enough

to contact the die and bending roller. If the metal wire can-

not touch one of the rollers at a certain bending action, the

bending parameter Bi pertaining to the action will be con-

sidered infeasible. An example of an infeasible scenario is

illustrated in Fig. 5.8.

As the sequence that fulfills the conditions above may not be unique, we further

introduce two criteria to find the optimized solution: (1) Number of pick-and-places

(Npnp); (2) Number of unstable bending actions (Nunstable). Consider a bending set
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Algorithm 5: Prune Search

Input: B = {B0, B1..., Bn}, a bending action set;
t, permutation tree;
s = [0, 1, .., n], a bending sequence where each element is an index to
B;

1 begin
2 t← select(t);
3 while s is not empty do
4 if s is feasible then
5 Gcom ← grasp reasoning(G);
6 motion planning(Gcom);
7 if success then
8 return s

9 t← update(t, permutate(s[: i]));
10 s← Find a new sequence from t;

11 return False

with m = 2 for example. As illustrated in Fig. 5.9, if the bending sequence is l0 → l1

(depicted in (b.i)), the wire between l0 and the next bending point l1 will not be

straight and the robot will need to reset the wire (i.e., pick the wire up from the

rollers, adjust its pose, and place it back for the second bending action, Npnp = 1).

Additionally, the wire between l1 and pg is not straight. The friction force between

the wire and the bending roller is not collinear with the force provided by the gripper,

which may cause unexpected deformation of the wire (Nunstable = 1). More details will

be introduced in Section 5.4.2. On the other hand, if the bending sequence is l1 → l0

(shown in (b.ii)), the wire between pg and the bending position remains straight. The

values of Npnp and Nunstable will be 0, and the robot will not need to reset the wire.

The candidate sequences in the permutation tree t are firstly selected using the

routine shown in Algorithm 6, as denoted by line 2 of Algorithm 5. The Npnp and

Nunstable used to compare and select candidates are computed in lines 5∼14 of the

select routine. The candidates are sorted in ascending order according to the values

of Npnp and Nunstable, with a priority given to Npnp.

Next, we employ pruning to find a feasible sequence from the sorted candidates.

Finding a sequence that fulfills the above constraints is costly as a set of n bending
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Figure 5.9: Example of a curve with m = 2. (a) Bending positions. (b.i) Sequence
l0 → l1. Npnp = 1, Nunstable = 1. (b.ii) Sequence l1 → l0. Npnp = 0, Nunstable = 0.

actions can be arranged in n! ways. Instead of brutally evaluating all permutations

of bending actions, we leverage pruning in this work to accelerate the search. Algo-

rithm 5 shows the details. The algorithm starts with a bending sequence initialized as

s = [0, 1, ..., n]. Each element of s represents an index of B. The algorithm examines

the sequence’s validity by checking the action parameters indexed by the sequence

elements one by one. Suppose a parameter leads to a collided, infeasible, or unreach-

able bending action. In that case, the sequence is judged invalid, and the remaining

elements no longer need to be explored. The sub-sequence up to the invalid bending

parameter, namely s[: i], and all permutations of paths passing through the same

nodes (permutate(s[: i])) are removed from t, using the update() function (line 9 of

Algorithm 5). After that, the algorithm will generate a new sequence from the sorted

t while avoiding repeating the invalid sub-sequences. The algorithm will repeat the

examination routine with the newly generated sequence.

5.4.2 Grasp Reasoning and Motion Planning

The grasp reasoning and motion planning process is at the motion level. We use an

example with two bending action points to explain this process. Like its name, the

process comprises grasp reasoning and motion planning. Grasp reasoning accepts (1)

pre-annotated grasp poses for a metal wire primitive (G) and (2) wire poses generated
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Algorithm 6: Compare and select candidates

Input: t, permutation tree;
1 begin
2 Npnp, Nunstable ← {}, {};
3 while s is not empty do
4 Npnp, Nunstable ← 0, 0;
5 for j ∈ [0, n) do
6 if s[j + 1] > s[j] then
7 Npnp ← Npnp + 1;
8 if is intersec(s[: j], [s[j + 1], s[j])) then
9 Npnp ← Npnp + 1;

10 if s[j] > min(s[: j]) then
11 Nunstable ← Nunstable + 1;

12 Npnp ← Npnp ∪Npnp;
13 Nunstable ← Nunstable ∪Nunstable;
14 s← Find a new sequence from t;

15 indexes← ascending sort(Npnp, Nunstable);
16 t← t[indexes];
17 return t

based on the bending parameters obtained from sequence planning to reason IK-

feasible and collision-free grasps. The robot will hold a wire using reasoned grasping

poses. Motion planning accepts the robot’s holding configurations and generates the

joint motion among the reasoned grasps. The robot will move the wire following the

generated motion.

Fig. 5.10(a-c) visualizes the example. Fig. 5.10(a.i) and (a.ii) illustrate a single

grasping pose and all pre-annotated grasping poses defined based on a metal wire

primitive, respectively. Fig. 5.10(b.i) and (b.ii) illustrate the optimal bending se-

quence obtained by the task-level planner. Fig. 5.10(c) shows the grasp reasoning

details. The pre-annotated grasps are transformed to the local metal wire primi-

tives at the holding positions of the two bending actions. The reasoner examines

their collisions and feasibility, as illustrated in (c.i). The grasps that are simultane-

ously accessible to all holding positions in the sequence will be kept as the “common

grasps”, as illustrated in (c.ii). The robot can kinematically hold the wire using a

“common grasp” at one wire pose and move it to another pose without changing the
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Figure 5.10: Workflow of grasp reasoning and motion planning. The inputs are
shown in dashed boxes on the top. The results are in the solid boxes below. (a) Pre-
annotated grasps. (b) Planned bending sequence. (c) Grasp reasoning. (d) Motion
planning.
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Figure 5.11: (a) A robot configuration at one bending action point. (b) Free-body
diagram for a metal wire at an intermediate motor configuration.

grasp.

Despite the kinematic feasibility of the “common grasps”, they do not necessarily

meet force requirements. As shown in Fig. 5.11, the metal wire is supported by

the die and center rollers and pressed by the bending roller. Although we used

rolling mechanisms to reduce friction, a large pressing force may still induce friction

forces and result in a heavy reaction load on the robot. The heavy reaction load

may cause the robotic system to fall into an emergency. Thus, after obtaining the

common grasps, we further rate them, considering the maximum force the robot can

bear along the bending direction to ensure safe robot executions. The highly ranked

“common grasp” will be selected for motion planning.

The force vector f g in Fig. 5.11(a) and (b) illustrates the reaction load induced

by the machine. The robot grasps the metal wire at pg. The wire contacts with the

die, bending roller, and center roller respectively at pd, pp, and p−
i . The robot bears

an reaction load f g at pg. Its direction is along the tangential vector t̂d of the die at

pd. For each “common grasp”, we rated it considering the maximum force that the

robot can bear along t̂d. The highly ranked “common grasp” allowed bearing a large

force. We chose it to resist the reaction load and avoid an overloaded emergency.

Specifically, we formulate the maximum force that the robot can bear along t̂d

as the following optimization problem. The goal is to maximize equation (5.5a)
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Figure 5.12: The robot will hold and move the wire to all bending poses with a
“common grasp”. Each column in the figure represents such a “common grasp” and
the correspondent bending poses. The best grasping pose is selected as the one that
has the maximally bearable force across the columns, which is the largest “Local
min”.

considering the “common grasp” pose, wire pose, and the torque limits of each robot

joint. Here, wF is the robot’s output TCP (Tool Center Point) force described in the

world coordinate system. t̂dPw is the projection matrix that projects the TCP force

on to vector t̂d.
mTg is the “common grasp” described in the coordinate system of a

metal wire primitive. It is a homogeneous matrix containing the position and rotation

of a grasping pose. wTm is the transformation matrix from the coordinate system of

a metal wire primitive to the coordinate system of the local metal wire primitive at

the holding position. J(q) is the jacobian matrix. nj is the number of robot joints.
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τ−k , τ
+
k , q

−
k , q

+
k are respectively the torque and rotational limits of each joint. Link

weights and joint frictions are ignored for simplicity.

argmax
q

∥t̂dPw
wF∥ (5.5a)

s.t. wTm
mTg = J(q)q (5.5b)

wF = J(q)τ (5.5c)
τ = {τk}, τk ∈ [τ−k , τ

+
k ]

q = {qk}, qk ∈ [q−k , q
+
k ]

k ∈ [0, ..., nj]

(5.5d)

Note that a “common grasp” is not used for a single bending pose. Instead,

the robot will hold the wire with the “common grasp” and move it to all bending

poses. The maximally bearable force of a “common grasp” is thus the minimum of

all bending poses. Fig. 5.12 shows an example. In each column, the robot holds and

moves the wire to different poses using the same “common grasp”. Each column’s

minimum bearable force (“Local min”) determines the performance of the grasping

pose shown at the beginning. The maximally bearable force of all grasping poses is

the largest “Local min” across the columns.

After rating the “common grasps”, a motion planner will iterate through them

sequentially according to their rank until a feasible joint space motion is found. The

following prescribed motion primitives are defined to improve motion planning effi-

ciency:

i) Pulling motion primitive. When the segment between the current bending po-

sition and the next bending position is straight, the robot does not need to

lift the metal wire. Instead, it re-poses the metal wire by pulling and rotating

between the rollers.
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ii) Pick-and-place motion primitive. When it is difficult to reason a motion in-

between the rollers, the robot performs pick-and-place motion planning to re-

pose the metal wire.

Fig. 5.10(d) exemplifies a planned pick-and-place motion. A zoomed-in view is

shown in Fig. 5.10(d.iv). The green dots show the end-effector position during the

motion, and the dashed arrow indicates the moving direction. We required the robot

to incline to t̂d to avoid large frictional resistances during the planning.

5.4.3 Online Springback Compensation

Since the metal wire used in this study is made of an elastoplastic material, it will ex-

hibit springback when released from the forces of the bending roller. Previous studies

[176] concluded that an elastoplastic metal wire’s springback angle and bending angle

have a positive relationship when the bending radius is fixed and developed analyt-

ical methods to compute the springback angle of a metal wire with known physical

properties. In this work, we assume the physical properties of the target elastoplas-

tic metal wire is unknown and propose using online visual sensing to estimate the

springback. Notably, we represent the springback with a linear model following pre-

vious conclusions and leverage ridge regression to dynamically estimate and update

the model. The linear model is formulated as

δθ = f(θ) = aθ + b, (5.6)

where δθ is the springback angle, θ is the bending angle. The ridge regression is

formulated as

argmin
a,b

n∑
i=0

∥δθi − (aθi + b))∥2 + λ∥a∥, (5.7)

where i is the id of a bending action. λ is the regularization weight of ridge regression.

The parameters a, b are re-estimated each time a new (θi, δθi) pair is obtained. The

machine will be adjusted to bend an additional springback angle estimated using the

latest model to improve precision.
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Fig. 5.13 illustrates the workflow of dynamic visual estimation and bending angle

adjustment. It is carried out as a closed loop during execution. The additional bend-

ing angle is adjusted dynamically considering the latest springback model. Especially

in Fig. 5.13(c), we fit the shape primitive (mesh model from pi to pn) to the extracted

point cloud and compute the transformations before and after releasing the bending

roller as [Rp, tp], [Rr, tr]. We ignore the displacement from tp to tr and compute the

springback angle as δθi = arccos(Tr(Rp·Rr)−1

2
), where Tr(·) indicates the trace of a

matrix. When occlusion happens, we may not be able to fit shape primitives and

obtain a springback angle. In that case, the system will not update the springback

model but jump to additional bending angle prediction with the most recent update.

The red arrow in Fig. 5.13 shows the workflow in the presence of occlusion. The blue

and yellow arrows are coherent with the ones that have the same color in Fig. 5.7.

The blue arrows and boxes indicate the dynamic compensation. The yellow arrows

indicate the update. They represent two loops as shown by the two circled arrows.

The two loops run in parallel and yellow loop is one step late than the blue loop.

An exception is the first bending action. In the beginning, we do not have a good

guess about the springback model and thus cannot predict an additional bending

angle. We solve the problem by performing a two-time bending action. The first

time, we estimate a springback angle and use it to update the springback model. We

further bend an additional angle predicted using the updated springback model the

second time. The two-time bending action is dedicated to the first bending action

point and does not apply to others.

5.5 Experiments and Analysis

In this section, we carry out experiments to examine the proposed methods. The

section comprises two parts, where the first part focuses on individual processes, and

the second part studies the overall performance on real-world bending tasks. The

computation device used in our experiments is a PC with an Intel Core i7-10700

CPU and 16 GB memory. We tested the proposed methods on two robot platforms,

a self-assembled robot platform made of two UR3e arms (Max payload of each arm:
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3 kg) and two Robotiq Hand-E two-finger parallel grippers, and an ABB YuMi dual-

arm robot (Max payload of each arm: 0.5 kg). A Photoneo PhoXi 3D Scanner M

with 1032×772 resolution is mounted on the top of the table for visual perception.

The bending machine is fixed on a work table under the robot’s arms. The Photoneo

scanner detects the pose of the machine.

5.5.1 Performance of Individual Processes

Bending Set Representation

Figure 5.14: Desired curve.

First, we evaluated the performance of the coarse-

to-fine bending parameterization algorithm use a

specific curve shown in Fig. 5.14. We were espe-

cially interested in the relation between the num-

ber of pivot points (n) and the representation er-

rors in the presence of different center roller ra-

diuses (rc). Thus, we carried out experiments to

observe the changes of representation errors under

varying n (5∼50) and rc (10 mm, 7.5 mm, and 5

mm). The first two rows of Fig. 5.15 show the

results. We particularly compared two represen-

tation errors, including the maximum difference

between D and C, as shown in the first row of Fig. 5.15, and the average difference

between D and C, as shown in the second row. The results indicate that smaller

center roller radiuses lead to more minor representation errors. On the other hand,

the representation errors do not decrease monotonically with an increasing n. The

observation is coherent with our analysis in Section 5.3.2. The last row of Fig. 5.15

shows the relation between the n and the number of bending action points (m). The

curves indicate that the pivot points (and their adapted arcs) were merged more

heavily when the center roller radius was larger.
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Figure 5.15: The relation between the number of pivot points (n) and max/average
fitting errors, and also the relation between the n and the number of bending action
points (size of B, m), with different radius of the center pillar (rc). rc is 10 mm, 7.5
mm, and 5 mm from left to right, respectively. The wire radius (rw) is 0.75 mm. The
red dashed line highlights the best n found by our algorithm (ϵ = 0.5 mm).
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Table 5.2: Evaluation of Bending Set Representation.

rc = 5 mm rc = 7.5 mm rc = 10 mm

n 12.90 ± 2.10 13.25 ± 2.32 13.65 ± 2.63

Uniform
Sampling

m 12.90 ± 2.10 13.25 ± 2.32 11.40 ± 1.32
avg(ec) 0.50 ± 0.12 0.50 ± 0.13 0.70 ± 0.22
avg(eo) 0.18 ± 0.04 0.19 ± 0.16 0.19 ± 0.04
max(ec) 1.81 ± 0.74 1.79 ± 0.73 2.34 ± 0.85
max(eo) 0.72 ± 0.31 0.88 ± 0.84 0.86 ± 0.44

Douglas-
Peucker

m 11.65 ± 1.49 11.40 ± 1.43 11.30 ± 1.14
avg(ec) 0.46 ± 0.03 0.48 ± 0.13 0.52 ± 0.16
avg(eo) 0.18 ± 0.03 0.18 ± 0.04 0.19 ± 0.07
max(ec) 1.19 ± 0.21 1.23 ± 0.39 1.41 ± 0.58
max(eo) 0.78 ± 0.30 0.75 ± 0.32 0.86 ± 0.48

* Less number of bending action points (m) and lower error are high-
lighted in bold. Meanings of abbreviations: ec - Error of coarse represen-
tation result; eo - Error of optimized result; n - Number of pivot points.
m - Number of bending action points.

We also evaluated the performance of optimal refinement. Fig. 5.16 shows the

results. We especially compared rc = 10 mm and 5 mm in Fig. 5.16(a) and (b) to

see if 10 mm was acceptable, as we preferred using a large center roller to increase

machine stiffness. Fig. 5.16(a.1) and (b.1) respectively show the goal curve, coarse

representation result, and optimization result in black, orange, and green colors under

the two different rcs. The details of some sections with significant differences are

zoomed-out in detail in (a.ii), (a.iii), (b.ii), and (b.iii). Fig. 5.16(a.iv), (a.v), (b.iv),

and (b.v) respectively show the changes in maximum errors and average errors as the

number of points increases. The red dashed line highlights the best n determined

by our algorithm dashed lines (stopping line). The decrease in errors becomes less

remarkable or inverses after the stopping line. The results indicate that the optimal

refinement helped to reduce both maximum and average errors. Using a center roller

with a larger radius was not significantly worse when the n was limited. The average

errors were competitive with the results of a thinner roller (0.25 mm vs. 0.14 mm).

To further understand the efficiency of the proposed coarse representation method,
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we compared it with a baseline method, in which the points are uniformly sampled

on the goal curve. We generated 20 random B-splines for the comparison, with each

of them having the same length of 200 mm. The tolerance ϵ is set as 0.5 mm. The

statistical information regarding the fitting results can be found in Table 5.2. Less

number of bending action points and lower error are highlighted in bold. The results

show that the DP method outperformed the baseline method with smaller errors and

fewer bending action points (m).

Figure 5.17: Average time costs of sequence planning vs. the number of bending
action points (m). The green, blue, and orange colors correspond to random goal
curves with λ = 0.2, θmax = π/4, π/2, π, respectively. (a) Time costs to find the first
solution. (b) Time costs to find the first ten solutions. If there were fewer than ten
solutions, it indicates the time cost to find all of them.

Sequence Planning

In this subsection, we demonstrate some planning results and examine the time ef-

ficiency of the sequence planner. The experiments were carried out by randomly

generating bending sets and planning their order using the developed method. Espe-

cially, we randomized the parameters bending angle θi ∈ [λθmax, θmax]
2 and twisting

2Here, λ represents a percentage that controls the bending angles of the generated shapes.
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Figure 5.18: Some sequence planning results when m = 7. The time cost, number of
trials, and planned sequence are annotated on the top left of each figure.

angle αi ∈ [−π, π]. Larger bending θmax angles will result in more complicated curves.

The start position of each bending action point, li, was set at a random position that

did not overlap with others. Five groups of curves with the number of bending action

points (m) in randomized bending sets ranging from 3 to 8 were evaluated. Each

group included ten random desired curves with θmax of π/4, π/2 and π. The statis-

tical cost for different numbers of bending action points is shown in Fig. 5.17. The

time cost of finding the first and the first ten solutions are plotted separately. If there

are fewer than ten solutions, it indicates the time cost to find all of them. Fig. 5.18

visualized some planning results when m = 7. The 3D curves visualize the goals.

The time costs and planned sequences are annotated on the upper-left corner of each

curve. Each value in the sequence represents an id of the red section. They start
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from the “start point” and the values increase incrementally as the sections get fur-

ther. The start point is the holding positions used for grasp reasoning. Each column

represents the result with different θmax values and comprises two rows. The upper

row shows the curve required the minimum time cost. The lower row shows the curve

required the maximum time cost.

Fig. 5.19 shows the planned bending result of a 3D curve with five bending action

points. The (a.i) and (a.ii) lists shown below the diagram indicate two feasible planned

bending sequences. The (a.i) list has smaller Npnp and Nunstable and thus has higher

priority for the following planning compared to (a.ii). The two lists are graphically

illustrated in (b.i) and (b.ii), which provides a more intuitive understanding of the

priority. The planned robot actions for (a.i) are illustrated in (c).
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Performance of Springback Compensation

To verify the performance of the proposed springback compensation model, we per-

formed experiments using two different metal wires, including a 3.3 mm aluminum

wire and a 2.6 mm galvanized steel wire, as shown in Fig. 5.20. Both of them wear

rubber sleeves around their bodies. The aluminum wire’s thickness was 6.0 mm with

the sleeve. The galvanized steel wire’s thickness changed to 2.9 mm with the sleeve.

In the experiments, the robot held a wire using a random grasping pose and placed

the wire between the bending machine’s rollers horizontally. Then, the bending roller

was actuated to a goal angle θgoali to observe and update springback. We carried out

the experiments 11 times by changing θgoali from π/12 to 11π/12 with π/12 interval.

The bending results were observed after each experiment, and the springback model

was dynamically updated with the observation.

The details are shown as follows. The first step was different as we did not have

a model:

1. Actuate the bending roller of the machine to bend θgoal0 = 15◦ and capture a

point cloud;

2. Release the roller and capture a second point cloud;

3. Segment and extract the metal wires from the two point clouds and obtain their

difference δθ0.

4. Initialize the springback model f(θ) using θgoal0 and δθ0. The springback model

after initialization is saved as f0(·)

5. Activate the machine to additionally bend δθ0 and capture a third point cloud;

6. Segment and extract the metal wires from the third point cloud and obtain its

difference from θgoal0 as θerr0 .

For the remaining steps, we repeated the following procedure and collected a

series of δθ̃i (estimated springback), δθi (actual springback), and δθ
err
i (residual error

between compensated bending result and the original goal):
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Figure 5.20: We perform experiments on two different metal wires. (a) Aluminum
wire with a radius of 3.3 mm (6 mm with rubber sleeve); (b) Galvanized steel wire
with a radius of 2.6 mm (2.9 mm with rubber sleeve).

1. Solve the corrected bending angle θcori by θgoali = θcori − fi−1(θi);

2. Actuate the bending roller of the machine to bend θcori and capture a point

cloud;

3. Release the bending roller and capture a second point cloud;

4. Segment and extract the metal wires from the second point cloud and obtain

its difference from θgoali as θerri ;

5. Segment and extract the metal wires from the first point cloud and its difference

with the second point cloud as δθi;

6. Update the model to fi(·) using θcori and δθi.
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The actual springback angles (δθi) are shown as the solid yellow line, and the

estimated values (δθ̃i) are shown as the dashed yellow line. The errors between the

compensated bending results and the original goal angles (θerri ) are shown in the solid

blue line. The average errors (avg(θerri ) = 1
n

∑n
i=0 θ

err
i ) are shown in the dashed blue

line.

By observing the results, we found that the errors θerri and avg(θerri ) were steady

and did not change much with dynamic updates. The observation differs from our

expectation that the errors would decrease as we collected more data and improved

the springback model. We guess the reason was that the metal wires were even, and

the proposed linear model was good enough to predict a precise springback with very

few data points. The observation was coherent with the conclusions presented in

[176].

5.5.2 Performance of Real-World Executions

We studied the performance of the proposed method by planning the two robot arms,

a 6-DoF UR3e and a 7-DoF ABB YuMi to bend different desired shapes using our

bending machine. The position of the machine is well-calibrated using AR markers

before the experiment. As the gripping force (20N) of the YuMi gripper is not enough

to firmly grasp the metal wire at all poses, we fixed the metal wire on the finger using

a 3D-printed case.

Three shapes are used to evaluate the complete workflow of the proposed system:

(a) A 2D pentagon with a side length of 50 mm; (b) A 3D polygon with a side length

of 40 mm; (c) The random generated 3D curve used in Section 5.5.1. The metal

wires used were the same as Section 5.5.1, and the center roller’s radius (rc) was 7.5

mm. Fig. 5.21 shows the real-world execution results. The goal curves and planned

sequences are shown in (a.i), (b.i), and (c.i). The robot grasping poses and motion

are shown in (a.ii), (b.ii), and (c.ii). Pictures of the finished metal wires are shown in

(a.iii), (b.iii), and (c.iii). For the first curve, we present the results of both the YuMi

and UR3e robots. The YuMi robot was used to bend the thicker aluminum wire. The

UR3e robot was used to bend the galvanized steel wire. We only show the results of
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the YuMi robot for the second and third curves since the UR3e robot failed to find

a solution due to its lower DoFs. We encourage readers to watch the supplementary

video for more details.

The various costs of the planner for each task are shown in Table 5.3 and 5.4. The

“ABB YuMi (7-DoF)” and “UR3e (6-DoF)” tables correspond to the two robots.

Under each robot, there are three shape names. They correspond to the three tasks

shown in Fig. 5.21. The “Seq. Planning”, “Grasp Reasoning”, and “Motion Plan-

ning” sections of the table show the trials and failures of our planner’s three planning

processes and their time costs. The “Total Costs” row shows the total time to find

the first solution. The “Max Bearable Force” row shows the maximum minimally

bearable force encountered during grasp selection. Although the maximum payload

of the YuMi robot is 0.5 kg (4.90 N), the force could reach 27.09 N for the “Pentagon”

shape. The “Bend Angle vs. Springback” section shows the goal bending angle and

the observed springback angle. Each item is represented as a sequence of numbers.

They correspond to the sequential bending action points shown in Fig. 5.21. The ×
symbol means the vision system failed to observe a springback value due to occlusion.

The last two columns of the table do not have valid data as the UR3e robot failed to

find a solution for the “3D Polygon” and “3D Curve” shapes due to its lower DoF.

Complete Workflow
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Figure 5.21: Real-world experiment of bending task. The goal shape is shown in the
first column, and the planned bending sequence is annotated on it. Following are
the corresponding robot motion and final result. (a-b) A 2D pentagon with a side
length of 50 mm; (b) A 3D polygon with a side length of 40 mm; (c) The random
generated 3D curve shown in Fig. 5.14. When the robot held the wire using the pose
in (b.ii.3) and (b.ii.4), the friction force from the rollers not only pulled the robot
but also caused an undesired deformation to the vertical section of the wire. The
deformation resulted in a large bending error to the 3D polygon (Fig. 5.22(c)).
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We also conducted experiments to evaluate the resultant shapes of the above

experiments globally. We captured the point clouds of resultant metal wires and

compared them with the goal shapes to judge if the results were satisfying. In detail,

we used the Iterative Closest Point (ICP) [112] algorithm to match the captured

point clouds to the dense point set used to represent the bending goals and used

the fitness (Root Mean Square Error, RMSE) of the ICP matching to evaluate judge

their similarity. Fig. 5.22 shows pictures of the observed point clouds (red) and the

dense representation points (green). The matched RMSE values are shown below

each picture.

Figure 5.22: Evaluating the resultant shapes of the real-world experiments. The
pictures compare the 3D point clouds of the bending results (observed point clouds,
represented in red) and the goal shapes (dense points set in green color). The RMSE
values of the ICP matching algorithm between them are shown below the pictures.

The matching results show that most RMSE errors were less than 1.50 mm and

satisfying. However, Fig. 5.22(c) exhibited an exception. Its error (3.30 mm) was

more significant than the others. We analyzed the reasons and found that when a

robot held the wire using the pose shown in (b.ii.3) and (b.ii.4), the friction force

from the rollers not only pulled the robot but also caused an undesired deformation

to the vertical section of the wire. The deformation further resulted in a positional

displacement of the bending point (q−) along the direction of t̂d. This is defined as

Nunstable in Section 5.4.1. Including a fixture unit in the bending machine or employing
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Figure 5.23: Other results. (a) A 3D helix; (b) A 2D spiral.

a robot with compliant control policies may help solve the problem.

Other Results

The proposed system also works for other shapes like spirals. In this part, we con-

ducted two additional experiments to bend a helix and a spiral, respectively. The

results are shown in Fig. 5.23. The geometry of the robot and machine may limit the

curvature and sizes of target wires that can be processed. However, there are no con-

straints to a particular shape. Note that the springback model estimated by previous

experiments is directly adopted without online updates in these experiments.

It is important to note that the smoothness of the bending results for shapes

such as helix and spiral depends on the number of bending action points. We set

the tolerance parameter in these experiments to be ϵ = 0.2 mm. By adjusting this

tolerance to a lower value, we can achieve a higher level of smoothness in the bending
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results.

5.6 Conclusions

We presented a combined task and motion planning-based planner for a robot arm to

bend metal wire while collaborating with a bending machine. It enabled a low-payload

robot arm to automatically curve metal wire with high stiffness. Visual estimation

with dynamic update and prediction was used to compensate for the springback

caused by elastic deformation during the bending process. We examined different

bending results of the developed system and confirmed that our system was flexible

and robust for generating robotic motion to corporate with the bending machine. It

also exhibited satisfying precision with the help of springback compensation.

Besides these positive conclusions, we learned several lessons and understood sev-

eral systematic limitations. First, as the metal wire was not firmly fixed on the

machine, it might be pulled or dragged by the machine’s bending rollers and thus

cause an unaffordable payload to the robot. Although careful planning could help

avoid large payloads, the deformation it caused led to significant bending errors. In-

cluding a fixture unit in the bending machine or employing a robot with compliant

control policies may help solve the problem. Second, the metal wire must be strictly

straight in the beginning to ensure that ensuing planning, execution, and feedback

can be correctly performed. It will be helpful to further improve the bending machine

by including a straightener unit. Third, the deformed wire was difficult to be captured

by a single view, and the springback estimation may fail due to self-occlusion and

robot-object occlusion. Developing a high-precision and active vision system will be

helpful to fully capture the curving status and improve the springback compensation

performance.

We are interested in working out the above problems to obtain better bending

precision in future work. We would also like to extend the method to other types of

objects, i.e., a metal plate. In addition, due to the limitation of our current system

configuration, such as lacking a straightener unit, it remains difficult for us to ensure

100% precision. In particular cases, we have to invite a human to assist in positioning
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the wire correctly and preventing unexpected collisions. Entirely eliminating human

intervention would be an important topic to explore. Finally, we are interested in

using dual-arm coordination to perform the bending tasks. In the dual-arm configu-

ration, the bending machine would be removed, and the robot manipulators will take

all the roles. However, implementing such a system requires robots and grippers to

have satisfying payloads and holding forces. We may work on it in the future when

we have a more suitable dual-arm robotic platform.

Appendix

In this appendix, we discuss the mechanism details of the proposed system.

Figure 5.24: Wire fixture.

A challenge of the proposed system lies in the

maximum gripping force of the ABB IRB 14000

gripper, which is 20 N. Given this constraint, the

gripper is difficult to firmly grasp the metal wire at

all poses using force closure-based grasping [177].

This difficulty arises due to the metal wire’s thin

and long nature, resulting in small contact sur-

faces and soft-finger contact friction. To address

this issue, we fixed the metal wire on the finger using a 3D-printed case, as shown

in Fig. 5.24. At the beginning of each experiment, we manually adjust the grasping

pose before robotic executions.

Additionally, it is vital that the wire is accurately positioned within the bending

machine before the operation commences. To this end, we primarily worked on the

following two steps to accomplish satisfying positioning. First, we manually calibrated

the machine’s position using AR markers before the experiment. The poses of the

robot hand and bending machine were precisely known through this step. Second,

we used tapered rollers to constrain the metal wire’s pose. As shown in Fig. 5.25

(d1 ≤ d2 = d3), the wedge of such tapered rollers provided an error tolerance of

d2 − d1. In the real setting, this tolerance was 2 mm.

It is also possible to check the contact state using force feedback. However, we
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Figure 5.25: Two steps to achieve satisfying positioning: (1) We manually calibrated
the machine’s position using AR markers before the experiment; (2) We used tapered
rollers to constrain the metal wire’s pose.

did not implement it as the force sensor is not equipped for the robot. Joint current

sensors were available, but they needed to be more precise to meet the requirements.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

6.1.1 System Overview

In this thesis, my primary focus lies in choosing and designing efficient algorithms for

planning robot manipulation using general-purpose robot arms. This was achieved

through the implementation of two specific robot manipulation systems. Visual and

force perception, task and motion planning, and uncertainty management are lever-

aged for achieving reliable and robust manipulation systems. By employing general-

purpose robot arms and grippers, the adaptability and flexibility of robots in accom-

plishing complex tasks were improved.

The robotic drawing system maps 2D strokes to 3D surfaces, plans pen picking

and manipulation motion, and performs drawing on 3D surfaces considering vision

and force feedback. The system showcases its flexibility by treating pens as tools that

can be picked up and manipulated in real-time. Its robustness is illustrated through a

closed-loop operation that utilizes high-quality-stroke mapping, in-hand pose estima-

tion, motion refinement, force control, and error detection and recovery mechanisms

to mitigate potential failures. Experimental results demonstrated excellent expected

performance.

The robotic bending system integrates a view planning algorithm and a task and

148
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motion planner. The view planning component uses a point completion network-based

NBV/NBC estimation method that can reconstruct the shape of the metal plate with

a minimum number of scans. The task and motion planner facilitates the interaction

of a low-payload robot arm with a bending machine, enabling it to autonomously

curve high-stiffness metal wire. The system employs dynamic visual estimation and

prediction to adjust for the springback effects caused by elastic deformation during

the bending process. Different bending results of the developed system are examined

to confirm that the proposed system was flexible and robust for generating robotic

motion to corporate with the bending machine. It also exhibited satisfying precision

with the help of springback compensation.

6.1.2 Planning Method Overview

The selected algorithms for task and motion planning across different systems are

listed in Table 6.1. The summary is as follows:

1. Drawing Task (Chapter 3): The sub-tasks in this system present both dis-

crete and continuous constraints. The task of picking up a pen, for instance,

is discrete in nature. The initial and end poses can be effectively solved using

an optimization-based method, while the intervening motion can be managed

with a probabilistic method like the RRT*. And the task of drawing presents

a more constrained, continuous problem where the path is predetermined and

must be followed precisely. Probabilistic-based methods might not be as effec-

tive in this case due to their inherent randomness and the large solution spaces

they generate. Hence, more deterministic methods that can precisely manage

the constraints are generally preferable. Additionally, the choice of poses for

recalibrating in-hand pose is handled through a sampling-based method due

to two primary reasons: First, the constraints of this task are relatively flex-

ible; Second, the calculations can be performed offline, significantly boosting

efficiency.
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Table 6.1: Planning Algorithm Overview.

Optimization-based Probabilistic-based

Chapter 3 Drawing Motion Planning
Grasp Reasoning;

Other Motion Planning

Chapter 4
View Planning;
IK Solving

Motion Planning

Chapter 5
Bending Action Representation;
Bending Sequence Planning;
Pulling Motion Planning

Grasp Reasoning;
Lift-and-Place Motion Planning

2. View Planning Task (Chapter 4): A probabilistic-based method is em-

ployed to represent the object, which allows for effective handling of the un-

certainties. The view pose is calculated using an optimization-based method,

which ensures the most optimal solution is found. By combining these two

methodologies, the task successfully balances efficiency and precision.

3. Bending Task (Chapter 5): The fully constrained bending action represen-

tation makes it a suitable candidate for an optimization-based method. On the

other hand, the sub-task of selecting a grasp pose that meets the force constraint

requires a broader exploration of the solution space, which correlates with the

number of bending actions. This exploration is effectively conducted using a

sampling-based method. The motion connecting bending actions is bifurcated:

the lift-and-place motion is addressed by RRT*, whereas the pulling motion,

constrained by rollers and necessitating only linear end-effector movement, is

best handled by optimization-based methods.

In conclusion, this thesis shows the balance of planning algorithms can significantly

enhance the performance of complex robotic manipulation systems. By delving deep

into the difference between discrete and continuous constraints, and harnessing the

strengths of various planning methodologies, it shows that probabilistic and determin-

istic strategies are not just stand-alone solutions. When synergistically integrated,

they possess the ability to present efficiency, precision, and adaptability in robot

manipulation systems.
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6.2 Furture Work

While the robotic manipulation systems developed in this thesis demonstrate promis-

ing results, they are primarily tailored for specific tasks. Their adaptation to a wide

array of tasks without substantial reprogramming or redesign poses a challenge. Fu-

ture research may aim to enhance the versatility of these robotic manipulation sys-

tems.

• Amodal Scene Representations: Shifting from a specialized to a generalized

approach, one research focus may be to develop amodal scene representations.

This involves leveraging complete 3D representations of scenes regardless of

occlusions and image field of view (amodal) [178] and utilizing contextual in-

formation from the entire scene as a whole (scene). This will essentially equip

robots with a level of autonomy to perceive and interpret their environments in

a more human-like manner.

• General Task Planning Strategy: Despite the substantial advancements

made in automatic planning for high-level tasks, there is yet a significant gap

to be bridged. The complexity of these tasks is often underpinned by numerous

variables that our current computational models struggle to fully grasp and ef-

ficiently operationalize. And it is time-consuming to design algorithms for all

real-world tasks. With the advent of Artificial General Intelligence (AGI), an

increasing number of researchers are working towards the creation of a univer-

sal model capable of addressing complex task and motion planning challenges.

Recent studies have started to leverage Large Language Models (LLM) for task

and motion planning [179][180].
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[141] Jérôme Demantké, Clément Mallet, Nicolas David, and Bruno Vallet. Di-

mensionality based scale selection in 3d lidar point clouds. The international

archives of the photogrammetry, remote sensing and spatial information

sciences, 38:97–102, 2012.

[142] Patricia Moore and Derek Molloy. A survey of computer-based deformable

models. In International Machine Vision and Image Processing Conference,

pages 55–66, 2007.

[143] Naijing Lv, Jianhua Liu, and Yunyi Jia. Dynamic modeling and control of

deformable linear objects for single-arm and dual-arm robot manipulations.

IEEE Transactions on Robotics, 38:2341–2353, 2022.

[144] Mengyuan Yan, Yilin Zhu, Ning Jin, and Jeannette Bohg. Self-supervised

learning of state estimation for manipulating deformable linear objects. IEEE

Robotics and Automation Letters, 5(2):2372–2379, 2020.

[145] Rita Laezza and Yiannis Karayiannidis. Learning shape control of elastoplastic

deformable linear objects. In IEEE International Conference on Robotics and

Automation, pages 4438–4444, 2021.



REFERENCES 169

[146] Masaru Takizawa, Shunsuke Kudoh, and Takashi Suehiro. Method for placing a

rope in a target shape and its application to a clove hitch. In IEEE International

Symposium on Robot and Human Interactive Communication, pages 646–651,

2015.

[147] Haifeng Han, Gavin Paul, and Takamitsu Matsubara. Model-based reinforce-

ment learning approach for deformable linear object manipulation. In IEEE

Conference on Automation Science and Engineering, pages 750–755, 2017.

[148] Félix Nadon, Angel J Valencia, and Pierre Payeur. Multi-modal sensing and

robotic manipulation of non-rigid objects: A survey. Robotics, 7(4):74, 2018.

[149] A Delgado, Carlos Alberto Jara, Damian Mira, and F Torres. A tactile-based

grasping strategy for deformable objects’ manipulation and deformability es-

timation. In International Conference on Informatics in Control, Automation

and Robotics, volume 2, pages 369–374, 2015.

[150] Yu She, Shaoxiong Wang, Siyuan Dong, Neha Sunil, Alberto Rodriguez,

and Edward Adelson. Cable manipulation with a tactile-reactive gripper.

International Journal of Robotics Research, 40(12-14):1385–1401, 2021.

[151] Shigang Yue and Dominik Henrich. Manipulating deformable linear ob-

jects: sensor-based fast manipulation during vibration. In IEEE International

Conference on Robotics and Automation, volume 3, pages 2467–2472, 2002.

[152] Shervin Javdani, Sameep Tandon, Jie Tang, James F O’Brien, and Pieter

Abbeel. Modeling and perception of deformable one-dimensional objects. In

IEEE International Conference on Robotics and Automation, pages 1607–1614,

2011.

[153] Cheng Chi and Dmitry Berenson. Occlusion-robust deformable object track-

ing without physics simulation. In IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 6443–6450, 2019.



170 REFERENCES

[154] Dominik Henrich, Tsukasa Ogasawara, and H Worn. Manipulating deformable

linear objects-contact states and point contacts. In International Symposium

on Assembly and Task Planning, pages 198–204, 1999.

[155] Jingang Jiang, Yongde Zhang, Mingliang Jin, and Chunge Wei. Bending

process analysis and structure design of orthodontic archwire bending robot.

International Journal of Smart Home, 7(5):345–352, 2013.

[156] Zeyang Xia, Hao Deng, Shaokui Weng, Yangzhou Gan, Jing Xiong, and Hesheng

Wang. Development of a robotic system for orthodontic archwire bending. In

IEEE International Conference on Robotics and Automation, pages 730–735,

2016.

[157] Alexander Kuehl and Joerg Franke. Robot-based forming of hairpin winding.

In IEEE International Electric Machines & Drives Conference, pages 1–7, 2021.

[158] Yi-Heng Lu, Shih-Yuan Wang, Yu-Ting Sheng, Che-Wei Lin, Yu-Hsuan Pang,

and Wei-Tse Hung. Transient materialization–robotic metal curving. In

International Conference on Computer-Aided Architectural Design Research

in Asia, pages 425–434, 2020.

[159] Jiaji Zhang, Binjun Shi, Guang Feng, Guokun Zuo, and Ye Liang. Design,

development and control of a forming robot for an internally fixed titanium

alloy strip. Machines, 10(2):68, 2022.

[160] WU Jianjun and Zengkun Zhang. An improved procedure for manufacture of 3d

tubes with springback concerned in flexible bending process. Chinese Journal

of Aeronautics, 34(11):267–276, 2021.

[161] Shuyou Zhang, Mengyu Fu, Zili Wang, Dingyu Fang, Weiming Lin, and Huifang

Zhou. Springback prediction model and its compensation method for the vari-

able curvature metal tube bending forming. The International Journal of

Advanced Manufacturing Technology, 112(11):3151–3165, 2021.



REFERENCES 171

[162] D Raj Prasanth and MS Shunmugam. Geometry-based bend feasibility ma-

trix for bend sequence planning of sheet metal parts. International Journal of

Computer Integrated Manufacturing, 33(5):515–530, 2020.

[163] Nikolaos Kontolatis and G-C Vosniakos. Optimisation of press-brake bending

operations in 3d space. Journal of Intelligent Manufacturing, 23(3):457–469,

2012.

[164] Yang Sen, Kaiwei Ma, Zhou Yi, and Fengyu Xu. A research on bending pro-

cess planning based on improved particle swarm optimization. In International

Conference on Intelligent Robotics and Applications, pages 348–358, 2021.

[165] Andrea Baraldo, Luca Bascetta, Fabrizio Caprotti, Sumit Chourasiya, Gianni

Ferretti, Angelo Ponti, and Basak Sakcak. Automatic computation of bend-

ing sequences for wire bending machines. International Journal of Computer

Integrated Manufacturing, pages 1–17, 2022.

[166] Shigeru Aomura and Atsushi Koguchi. Optimized bending sequences of sheet

metal bending by robot. Robotics and Computer-Integrated Manufacturing,

18(1):29–39, 2002.

[167] Hao Zhang, Ali Abd El-Aty, Jie Tao, Xunzhong Guo, Shuo Zheng, and Cheng

Cheng. Effect of active deflection on the forming of tubes manufactured by 3d

free bending technology. Metals, 12(10):1621, 2022.

[168] Zahid Faraz, Syed Waheed ul Haq, Liaqat Ali, Khalid Mahmood, Wasim Akram

Tarar, Aamer Ahmed Baqai, Mushtaq Khan, and Syed Husain Imran. Sheet-

metal bend sequence planning subjected to process and material variations. The

International Journal of Advanced Manufacturing Technology, 88(1-4):815–826,

2017.

[169] Fengyu Xu, Dawei Ding, Baojie Fan, and Sen Yang. Prediction of bending

parameters and automated operation planning for sheet-metal bending ori-

entated to graphical programming. The International Journal of Advanced

Manufacturing Technology, pages 1–14, 2023.



172 REFERENCES

[170] Teruaki Ito, Rahimah Abdul Hamid, and Tetsuo Ichikawa. Collaborative de-

sign and manufacturing of prosthodontics wire clasp. In Transdisciplinary

Engineering: Crossing Boundaries, pages 421–428. 2016.

[171] Rahimah Abdul Hamid and Teruaki Ito. 3d prosthodontics wire bending mecha-

nism with a linear segmentation algorithm. Journal of Advanced Manufacturing

Technology, pages 33–46, 2016.

[172] Urs Ramer. An iterative procedure for the polygonal approximation of plane

curves. Computer Graphics and Image Processing, 1(3):244–256, 1972.

[173] Zeshen Wang and Jean-Claude Müller. Line generalization based on analysis

of shape characteristics. Cartography and Geographic Information Systems,

25(1):3–15, 1998.

[174] Maheswari Visvalingam and James D Whyatt. Line generalisation by repeated

elimination of points. The Cartographic Journal, 30(1):46–51, 1993.

[175] Sheng Zhou and Christopher Jones. Shape-aware line generalisation with

weighted effective area. Developments in Spatial Data Handling, pages 369–

380, 2005.

[176] Jun Ma, Heng Li, and MW Fu. Modelling of springback in tube bending: A

generalized analytical approach. International Journal of Mechanical Sciences,

204:106516, 2021.

[177] Mohamed Raessa, Weiwei Wan, Keisuke Koyama, and Kensuke Harada. Plan-

ning to flip heavy objects considering soft-finger contacts. International Journal

of Automation Technology, 15(2):158–167, 2021.

[178] Jiayang Ao, Qiuhong Ke, and Krista A Ehinger. Image amodal completion: A

survey. Computer Vision and Image Understanding, page 103661, 2023.

[179] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes,

Byron David, Chelsea Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol



REFERENCES 173

Hausman, et al. Do as i can, not as i say: Grounding language in robotic

affordances. arXiv preprint arXiv:2204.01691, 2022.

[180] Yan Ding, Xiaohan Zhang, Chris Paxton, and Shiqi Zhang. Task and motion

planning with large language models for object rearrangement. arXiv preprint

arXiv:2303.06247, 2023.



Acknowledgements

First and foremost, I would like to express my deepest appreciation to my supervisor,

Professor Harada Kensuke. Despite my transition from a different major, he not

only welcomed me into the lab as a doctoral student but also instilled in me the

confidence that I could successfully complete the program. This trust has been the

initial driving force for my journey. And his guidance, support, and expertise have

consistently underpinned my research endeavor.

In addition, my deep gratitude extends to Professor Wan Weiwei, whose careful

guidance and detailed comments helps me get to know how to do research step by step.

His mentorship has been crucial in my transformation from a novice in robotics to

where I stand today. Thanks to Professor Isomura Emiko, who give me an interesting

topic that inspired me a lot in research.

I am also thankful to my thesis committee members, Professor Sato Kousuke and

Professor Iiguni Youji, for their insightful comments and constructive criticism. Their

rigorous feedback has helped me enhance the quality of this work.

I am very glad to spend my Ph.D. years with my great lab mates. Special thanks

to Ms. Zhang Xinyi whose encouragement from my undergraduate through to my

doctorate, spanning aspects of life and research, has been immensely valuable. To Mr.

Chen Hao (Senior) and Dr. Hu Zhengtao, for the guidance me when I first come to

the lab as a novice and for the inspiring discussion of research throughout my doctoral

journey. I also want to thank all my lab mates who helped me a lot in both life and

study, Ms. Wang Zhengting, Ms. Gao Yuan, Ms. Chen Hao (Junior), Mr. Zhang

Junbo, Mr. Yu Bowen, Mr. Wang Chenxi, and Mr. Tang Yu, Mr. Prashant Kumar,

Mr. Higashi Kazuki, and Mr. Tsuru Masato. And also the graduated students from

174



our lab, Dr. Wang Yan, Dr. Xu Jingren, Dr. Motoda Tomohiro, Dr. Cristian Beltran,

Dr. Zhang Ang, Mr. Matsuosa Shogo, Mr. Kobayashi Sho, Mr. Hayakawa Shogo and

Mr. Joshua C. Triyonoputro. I am forever grateful for your friendship and support.

Thanks to my parents for giving birth to me in the first place and supporting me

spiritually throughout my life. To my partner, Mr. Lu Chenyue, the sacrifices you

have made and your unending support have played a significant role in getting me

this far.

This journey has been filled with challenges and moments of self-doubt. However,

I take this moment to acknowledge my own grit and determination that have driven

me through these past four years.

175



List of Publications

Journal Papers

1. Ruishuang Liu, Chuan Li, Weiwei Wan, Jia Pan, Kensuke Harada. Next

Best View Planning Considering Confidence Obtained from Shape Completion

Learning. IEEE Robotics and Automation Letters, 2023 (Submitted, IF: 5.2).

2. Ruishuang Liu, Weiwei Wan, Kensuke Harada. TAMP for 3D Curving –

A Low-Payload Robot Arm Works Aside a Bending Machine to Curve High-

Stiffness Metal Wires. IEEE Transactions on Automation Science and Engi-

neering, 2023 (Early access, IF: 5.6).

3. Ruishuang Liu, Weiwei Wan, Keisuke Koyama, Kensuke Harada. Robust

Robotic 3-D Drawing Using Closed-Loop Planning and Online Picked Pens,

IEEE Transactions on Robotics, 38(3), 1773-1792, 2021. (Presented at 2022

IEEE/RSJ International Conference on Intelligent Robots and Systems, IF:

7.8).

176



International Conference Papers (with Peer-Review)

1. Ruishuang Liu, Weiwei Wan, Emiko Tanaka Isomura, and Kensuke Harada.

Metal Wire Manipulation Planning for 3D Curving - A Low Payload Robot that

Uses a Bending Machine to Bend High-Stiffness Wire. IEEE/RSJ International

Conference on Intelligent Robots and Systems, pp. 8927–8932, 2022.

Local Conference Papers (without Peer-Review)

1. Ruishuang Liu, Weiwei Wan, Kensuke Harada, Obtaining a Shiny Metal

Plate’s 3D Model using Deeply Learned Geometry and Next Best View Plan-

ning, The Robotics and Mechatronics Conference (ROBOMECH), 2A2-D27,

2023.

2. Ruishuang Liu, Weiwei Wan, Kensuke Harada, Metal Wire Manipulation

Planning for 3D Curving with a Bending Gadget, The Robotics and Mecha-

tronics Conference (ROBOMECH), 2A2-N03, 2022.

3. Ruishuang Liu, Weiwei Wan, Keisuke Koyama, Kensuke Harada, Optimizaiton-

based Planning and Control for 3D Robotic Drawing, The Conference of the

Robotics Society of Japan (RSJ), 1I3-01, 2021.

4. Ruishuang Liu, Weiwei Wan, Keisuke Koyama, Kensuke Harada, Planning

3D Robotic Drawing, The Conference of the Robotics Society of Japan (RSJ),

1I3-01, 2020.

177


	Abstract
	Introduction
	Challenges in Robot Manipulation
	Robotic Manipulation Planning
	Organization of the Thesis

	Related Work
	3D Geometry Representation
	Representation Taxonomy
	Geometry-based Classification

	Robotic Perception
	Visual Perception
	Haptic Perception

	Robotic Manipulation Planning
	Combined Task and Motion Planning (TAMP)
	Manipulation for Tool Use


	Robotic 3D Drawing
	Introduction
	Related Work
	Robotic Drawing Systems
	Mapping 2D Strokes to 3D Object Surfaces

	Overview of Workflow
	Mapping Strokes to 3D Surfaces
	Metrological Methods
	Conformal Mapping-Based Methods

	Reasoning and Closed-Loop Planning
	Detecting the Object Poses
	Grasp Pose Reasoning and Motion Planning
	Close the Loop to Improve Robustness

	Experiments and Analysis
	Robustness of 2D-to-3D Stroke Mapping
	Costs of Reasoning and Motion Planning
	Performance of Real-world Executions

	Conclusions

	Next Best View Planning for Metal Plate Reconstruction
	Introduction
	Related Work
	Next Best View
	3D Shape Completion

	Schematic View of the Proposed Method
	Training the Point Cloud Completion Network
	NBV And NBC Optimization
	Confidence Estimation
	Formulation of the Optimization Problem
	Optimization Solver and Termination Criteria

	Experiments and Analysis
	Point Cloud Completion Network
	Simulation Results
	Real-World Results

	Conclusions

	TAMP for 3D Curving
	Introduction
	Related Work
	Deformable Linear Objects (DLO)
	Bending System

	Problem Formulation
	Structure of the Bending Machine
	Representing a 3D Curve Using Bending Paramerization

	Combined Task and Motion Planning Considering Springback
	Bending Sequence Planning
	Grasp Reasoning and Motion Planning
	Online Springback Compensation

	Experiments and Analysis
	Performance of Individual Processes
	Performance of Real-World Executions

	Conclusions

	Conclusions and Future Work
	Conclusions
	System Overview
	Planning Method Overview

	Furture Work

	References
	Acknowledgements
	List of Publications

