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Abstract

In the execution of complex, skillful tasks, humans leverage a combination of strategic
planning, adept tool usage, and coordinated hand-eye movements. Replicating these
human capabilities in robotic systems forms the central objective of this thesis. A crit-
ical aspect of this endeavor involves the careful selection of planning algorithms, which
requires a balance between probabilistic and optimization-based planning strategies.

My research is primarily based on the development and evaluation of two robotic
manipulation systems. These systems utilize general-purpose robot arms and grip-
pers, representing substantial progress toward autonomous robotic manipulation.
Each system provides unique insights into their respective tasks and lays the foun-
dation for improvements in robotic performance and efficiency. A central challenge
I tackled pertains to task and motion planning, including the formulation of tasks
and optimization of robot motion, considering the environmental constraints and effi-
ciency. Given the goal of robust system development, I also examine several pertinent
while non-trivial aspects, including mechanism design, 3D shape modeling, and er-
ror recovery. These elements contribute significantly to the overall robustness and
resilience of the systems.

The key contribution of this thesis lies in a comprehensive analysis of these novel
robotic manipulation tasks. It highlights the importance of selecting suitable planning
algorithms to serve specific tasks. By combining these strategies, I equip robot arms

with the ability to perform complex tasks autonomously, effectively, and precisely.
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Real-world experiment of bending task. The goal shape is shown in

the first column, and the planned bending sequence is annotated on it.

Following are the corresponding robot motion and final result. (a-b)
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a side length of 40 mm; (c¢) The random generated 3D curve shown in

Fig. [5.14] When the robot held the wire using the pose in (b.ii.3) and

(b.ii.4), the friction force from the rollers not only pulled the robot but

The deformation resulted in a large bending error to the 3D polygon
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Chapter 1

Introduction

1.1 Challenges in Robot Manipulation

The advent of robotics has catalyzed a profound transformation in diverse areas, rang-
ing from industrial operations to the facets of everyday life. Their ability to perform
complex tasks with precision, adapt dynamically to varying conditions, and func-
tion in diverse environments lends to their growing effectiveness. The application of
general-purpose robot manipulators further improves the flexibility and adaptability
of robotic manipulation. Their application has now broadened, reaching into our daily
lives [1], and proving integral to sectors such as the high-mix, low-volume production
industry [2].

In modern manipulation, robots are applied to not only mechanical and repetitive
tasks but also flexible tasks to work autonomously in various situations [3][4]. Essen-
tially, robotic manipulation encapsulates the activities performed by a human hand.
It involves not just the physical movement of the robot, but also requires sensory in-
puts for environmental comprehension, planning algorithms to strategize movements,
and control algorithms for actual motion execution. However, the integration of these
elements into a cohesive system to ensure the safe and efficient accomplishment of
tasks is non-trivial.

The complexity of robotic manipulation encompasses many difficult problems in-

clude: mechanism, perception, modeling and control, planning, and uncertainty [5][6].

1
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Each facet presents unique challenges and together they shape the intricacy of robotic

manipulation:

e Mechanism refers to the design of robotic grippers or tools. Researchers pursue
designing and organizing mechanical components to realize versatile and robust

functions in an elegant way [7][8].

e Perception bridges the gap between robots and the real world. This includes two
groups of sensors that work complementarily. It comprises two complementary
groups of sensors: one functioning as the robot’s eyes, responsible for scanning
and locating objects (visual perception) [9], and the other endowing the robot
with the ability to perceive its own motion and interaction with the environment
(haptic perception) [10][T1][12].

e Modeling and control provide an environment for the manipulation process
where we can analyze, simulate, plan, and control our manipulation systems.
Many of the underlying phenomena are challenging, including contacts [13],

impact [14], and deformation [15].

e Planning generates a sequence of actions to accomplish a specific task or goal,

considering the physical and operational constraints of the system [16].

e Uncertainty [I7] presents challenges that go beyond the combinatorics issue
mentioned above. Within a robotic manipulation system, uncertainties can
originate from various sources such as partial or noisy observations of the envi-

ronment, detection errors, and more.

For a specific manipulation task, the above challenges should be thoroughly ad-
dressed to ensure optimal performance and efficacy. This involves a detailed under-
standing of the task-specific requirements and a careful selection of suitable modeling
and planning methodologies.

In this thesis, I focus on skillful robotic manipulation systems, using general-
purpose robot arms and grippers. Given a specific manipulation task, I structure

it within a general framework, as depicted in Fig[l.1] The first stage involves the
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Figure 1.1: General robot manipulation system.

use of visual perception to extract relevant data about the task and its environment,
which is subsequently represented in an appropriate format. Following this, task
and motion planning is initiated, which involves transposing the human task into a
robotic task executable by the system while considering various constraints. This
stage also involves optimizing the robot’s motion to enhance efficiency. Subsequently,
the planned robotic task is carried out, guided by a suitable control policy. In order to
ensure the system performs successfully under uncertainties, multi-sensory feedback
mechanisms are utilized for error recovery. Upon receiving this information, the
planner processes it and makes necessary adjustments accordingly, thus enhancing

system adaptability and resilience.

In short, the systems proposed in this thesis leverage a general mechanism, fo-
cusing on perception, modeling and control, planning, and uncertainty management,

with the aim of developing a reliable and robust robotic manipulation system.
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Figure 1.2: Robotic drawing system. There are three essential components in the
system: (1) “Drawing Path Mapping” accepts mesh models and vectorized 2D strokes
from the first input, and maps the vectorized 2D strokes to the mesh model. (2)
“Motion Planning” determine grasp poses and plan manipulation motion. (3) “Error
Recovery” component using visual and force feedback to ensure the robustness of the
system.

1.2 Robotic Manipulation Planning

For each system proposed in this thesis, there are several sub-tasks to be formulated.
The choice of planning algorithm is contingent on the specific conditions and the
state of the solution space. The term “planning” in this context is a layered process
ranging from high-level task planning, low-level motion planning, and down to grasp
planning. While maintaining flexibility for re-planning in response to environmental
uncertainty. In this sub-section, I will analyze two primary methods of planning:
the probabilistic-based method and the optimization-based method. Through this
investigation, I strive to find insights that may inform the choice of method under

various circumstances.

Robotic manipulation tasks can often be classified as either discrete or continuous,
based on the type of actions they involve [I8]. Discrete manipulation tasks involve
actions that have clear, distinct stages or steps. An example might be a robot pick-
ing up an object, which is a single action that can be completed or not completed.

Continuous manipulation tasks involve actions that have a range of possible outcomes
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Figure 1.3: Robotic bending system. There are four essential components in the sys-
tem: (1)“Visual Perception and Representation” capture the goal shape effectively
using a robot arm and a static 3D scanner. (2) “Bending Representation” approxi-
mate the 3D shape with discrete bending action and schedules the sequence to fulfill
geometric and kinematic constraints. (3) “Motion-Level Planning” determine grasp
poses and plan manipulation motion. (4)“Error Recovery” component using visual
feedback to compensate for the springback error.

and aren’t necessarily binary. For example a welding task or painting a surface, where
the exact path of the robot’s tool matters a great deal.

These different types of tasks inherently impose diverse constraints [19] and result
in solution spaces. Consequently, different planning methods are applied to handle

these variations.

e Probabilistic-based Method: Probabilistic-based methods typically involve
some level of randomness or stochasticity, and they excel at exploring complex,
high-dimensional state spaces. The solution space is significantly large and en-
compasses not just one path. Probabilistic Roadmaps (PRM) [20] and Rapidly-
exploring Random Trees (RRT) [21][22] are typical probabilistic methods used
for motion planning. However, the trajectories they generate can be very jerky
and include unnecessary motions. Therefore, after probabilistic-based planners
return their solutions, trajectory smoothing and shortening are often needed,

which can be achieved by trajectory optimization-based motion planners.

e Optimization-based Method: Optimization-based methods aim to find the
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best possible solution according to a defined objective function, and they are
often deterministic, though stochastic optimization methods do exist. These
methods are ideal to solve problems with continuous solutions since the time axis
is directly integrated into the objective function. They are particularly effective
when the problem requires finding an optimal solution and the state space is not
overly large or can be effectively approximated. For example, Ichnowski et al.
[23] present grasp-optimized motion planning, which speeds up the execution of
a bin-picking robot’s operations by incorporating robot dynamics and a set of
candidate grasps into an optimizing motion planner. Hess et al. [24] achieved
coverage path planning of 3D surfaces by modeling the problem as a generalized

traveling salesman problem (GTSP).

However, real-world robotic manipulation tasks present a mix of discrete and con-
tinuous constraints. A task might involve a discrete action (picking up a tool) followed
by a continuous action (using the tool to perform some task). Thus it is crucial to bal-
ance and integrate these two planning strategies effectively [25] considering different
task constrain.

Generally, the selection of these two kinds of planning methods can be based on
criteria as follows: (1) Solution Space Complexity: Probabilistic methods are particu-
larly effective when the solution space is high-dimensional or non-convex; (2) Solution
Continuity: The optimization method is ideal to solve problems with continuous solu-
tions since the time axis is directly integrated into the objective function; (3) Precision
Requirement: Optimization-based methods excel when the task necessitates finding
the most optimal solution within a well-defined and relatively simple solution space;
(4) Uncertainty: Probabilistic methods can handle uncertainty, as they can represent
the probability distributions over the solution space; (5) Computation Time: Prob-
abilistic methods can often find a feasible solution faster than optimization-based
methods, especially when the number of parameters is large.

Note that the above criteria are not exhaustive. The choice between probabilis-
tic and optimization-based methods also depends on the specific context, task con-

straints, and additional factors beyond this analysis.
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1.3 Organization of the Thesis

This thesis is structured as follows:

Chapter 2 delves into existing literature and studies related to three aspects: 3D
geometry representation; Robotic perception; Robotic manipulation planning. This
lays the theoretical groundwork for the subsequent developments in this thesis.

Chapter 3 presents the design and functionality of a 3D robotic drawing system as
shown in Fig. [1.2] There are three essential components in the system: (1) “Drawing
Path Mapping” accepts mesh models and vectorized 2D strokes from the first input,
and maps the vectorized 2D strokes to the mesh model. (2) “Motion Planning” de-
termine grasp poses and plan manipulation motion. (3) “Error Recovery” component
using visual and force feedback to ensure the robustness of the system.

Chapters 4 and 5 present the development of a robotic bending system using a pe-
ripheral bending machine as shown in Fig. [1.3] There are four essential components in
the system: (1)“Visual Perception and Representation” capture the goal shape effec-
tively using a robot arm and a stationary 3D scanner. (2) “Bending Representation”
approximate the 3D shape with discrete bending action and schedules the sequence to
fulfill geometric and kinematic constraints. (3) “Motion-Level Planning” determine
grasp poses and plan manipulation motion. (4)“Error Recovery” component using
visual feedback to compensate for the springback error. Chapter 4 primarily focus on
the perception of the desired shape (component 1), and Chapter 5 dedicated to the
task and motion planning process (component 2-4).

Chapter 6 concludes my study and suggests future research directions.



Chapter 2

Related Work

Related studies in three aspects are reviewed in this section: 3D geometry represen-

tation; Robotic perception; Robotic manipulation planning.

2.1 3D Geometry Representation

Representation of real-world geometry in the context of robotics and computer vi-
sion pertains to the methods and algorithms used to digitally depict the physical

environment in a format that can be understood and manipulated by computers [26].

2.1.1 Representation Taxonomy

Fig. shows a taxonomy of 3D representations, which is classified based on the
representation itself. These representations can be broadly categorized into discrete
and continuous types. Discrete representations involve distinct, separate values. An
example of a discrete representation in a 3D model is a set of points in space, where
each point is a distinct entity. Such representations are often used in scenarios where
systems can be accurately modeled with a finite number of states or variables. Con-
tinuous representations, on the other hand, involve values that can vary continuously
and have an infinite number of possible states. These representations are often used

in scenarios where systems have an infinite number of possible states, or where more
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Figure 2.1: Taxonomy of 3D representations. The representations applied in this
thesis are highlighted in red.

accurate or smooth models are required.

Continuous representations can be subdivided into two classifications: combina-
tional and functional. Combinational representations merge different elements to
create a complete 3D shape. Functional representations, define the shape as a func-
tion of one or more variables. This form of representation is used when an object can
be accurately modeled or approximated by a mathematical function.

In the context of the tasks addressed in this thesis, various representations are

employed to serve different purposes, as highlighted in red in Fig. 2.1}

2.1.2 Geometry-based Classification

These 3D representations can also be sorted according to their geometry into curves,
surfaces, and solids. Here I introduce some common used example methods to model

each type of shape.
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Curve

A curve is a one-dimensional object. Curves in 3D space can be represented in

multiple ways.

e Parametric Curve: A curve represented by three functions z(t), y(t), z(t) where
each function describes the coordinates of points on the curve as a function of
parameter t. For example, parametric polynomial curves, Bezier curves[27] and
B-splines [2§].

e Vector: A position vector can be used to represent a curve in 3D space. This
approach is useful when dealing with physical problems, where the position,
velocity, or force at different points along a trajectory can be described as

vectors.

Surfaces

Surface data refers to representations that only model the boundary or exterior of an

object. Some common types of surface representations are as follows.

e Polygonal Meshes (Explicit) [29]: These are 3D models made up of vertices,
edges, and faces, typically used in computer graphics. Meshes can be created
from point clouds or other data and well preserve the details on the surface of
3D objects.

e Implicit Surface [30]: Surfaces can be represented by an equation of the form
f(z,y,2) = 0. Any point (z,y,2) that satisfies this equation lies on the sur-
face. They are highly suitable for representing complex, organic shapes and for
performing operations like blending and deformation. For example, Algebraic

surface.

e Parametric Surface [31]: A surface in 3D space can be represented using two pa-
rameters (u,v) where x(u,v), y(u,v), and z(u,v) give the coordinates of points
on the surface. They offer a compact representation of complex shapes and
are widely used in computer-aided design (CAD) and graphics. For example,
NURBS surface [32].
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Solid

Solid data refers to the representation that includes information about the interior of
a 3D object, not just the surface. Below are some common techniques used to create

or represent solid models [33][34].

e Spatial occupancy enumeration: This method utilizes occupancy grids, applying
either a uniform grid such as a voxel [35], or a non-uniform grid like an octree
[36] to discretize the environment. It can be useful for tasks like occupancy
mapping, where the robot needs to understand which parts of the environment

are empty and which are occupied.

e Cell decomposition: This method represents a solid by decomposing it into
several cells. Spatial occupancy enumeration is a particular case of cell decom-
position where all cells are cubical and arranged in a uniform grid. Cell decom-
position provides convenient ways for computing certain topological properties
of solids such as their connectedness (number of pieces) and genus (number of
holes).

e Constructive Solid Geometry (CSG) [37]: This method creates complex objects
by combining primitive objects (such as spheres, cylinders, etc.) using Boolean

operations like union, intersection, and difference.

e Sweeping [38]: This method involves extending a shape or profile along a path
to create a 3D object. It is particularly useful for objects that have a consistent

cross-section along a path, such as a bottle, a tube, or a wire.

2.2 Robotic Perception

Robotic perception refers to a robot’s ability to sense and interpret its environment
to make decisions or perform tasks. It involves the use of sensors [39][40][41] and
algorithms [42][43][44] to create a representation of the world that the robot can
understand and interact with. As for humans, robot perception for manipulation is

multimodal. It can be classified as visual perception and haptic perception.
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2.2.1 Visual Perception

Visual perception refers to enabling machines to “see” and understand their envi-
ronment. This is typically achieved through computer vision, a field that includes
methods for acquiring, processing, analyzing, and understanding digital images to
produce numerical or symbolic information [9].

Visual perception is applied to achieve an estimation or a manipulation goal. For
example, object segmentation allows for the division of a digital image into multiple
segments to simplify the image or to identify objects of interest [45][46]. Object detec-
tion deals with detecting instances of visual objects of a certain class (such as humans,
animals, or cars) within an image [47]. And object pose estimation provides valuable
information about the spatial orientation of detected objects, proving crucial in tasks
requiring precise manipulation [48][49]. These applications of visual perception help

robotic systems effectively interact with and navigate within their environments.

2.2.2 Haptic Perception

Haptic perception plays a significant role in robotics by simulating the sense of touch
through the use of forces, vibrations, or motions. It has a complementary nature to
visual perception, and often fills the gaps where vision may not provide the complete
picture. The importance of this technology becomes particularly evident when a
robotic hand has made contact with an object directly or indirectly. The haptic data
not only guide the manipulation but can also provide insights into uncertainties. For
example, it can help in identifying inaccuracies in the estimated physical properties
of the object, thereby enhancing the overall efficacy of the manipulation task.
Haptic perception includes kinesthetic perception [10], force perception [I1], and
tactile perception [12]. These subcategories respectively enable robots to know their
own body position and movement, measure the force/torque exerted during interac-
tions with the environment, and sense the texture or shape of an object. For instance,
force perception was employed in early research to achieve compliant motion control
[50]. Sato et al. [51] achieved the task of cleaning a vertical flat surface with the help

of a trajectory /force tracking controller. Song et al. [52] realized robotic drawing on
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an arbitrary surface using force feedback. There are also a plenty of works on tactile
perception. Li et al. [53] trained a deep neural network (DNN) for slip detection
using visual and tactile information captured from the camera and Gelsight sensor

[54]. Similar research was also done by [55][56] using different tactile sensors.

2.3 Robotic Manipulation Planning

Robotics researchers frequently draw inspiration from human behavior, particularly
given our unique ability to utilize tools to tackle various manipulation challenges.
The flexibility of the human form, combined with our cognitive abilities, enables us to
handle a myriad of tasks with adeptness, ranging from intricate in-hand manipulation

to the fabrication of advanced tools.

2.3.1 Combined Task and Motion Planning (TAMP)

The concept of Combined Task and Motion Planning (TAMP) integrates high-level
task planning, often referred to as decision-making, with low-level motion planning.
Task planning involves generating a sequence of actions, elementary or abstract, to
guide an agent toward achieving a complex task in a given environment [57][58].

TAMP extends beyond this by concurrently developing high-level actions and
planning the agent’s motion in alignment with these actions [59] [60]. While com-
bined task and motion planning has been studied for decades, recent literature extends
it with uncertainty, force constraints, and deeply learned heuristics [16]. For example,
Holladay et al. [61] extended an existing task and motion planner with controllers
that exert wrenches while considering torque and frictional limits to achieve forceful
manipulation. Toussaint et al. [62] leveraged optimization methods for physical rea-
soning and sequential manipulation planning by formulated force constraints. Silver
et al. [63] proposed a bottom-up relational learning method for operator learning
and demonstrated how the learned operators could be used for planning in a TAMP
system. Wang et al. [64] learned constraints from several training examples at the
task level to enable faster TAMP-based planning.
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Previously in my group, there are research focused on reasoning and constrained
planning methods for robots to manipulate tools. The studies were under the TAMP
framework. For example, Raessa et al. [65] presented a method to teach a dual-arm
robot to use common electric tools. Chen et al. [66] designed a motion planner
to manipulate a suction cup tool. Sanchez et al. [67] solved the problem of robot-
cable entanglements using four-arm collaborative TAMP. Chen et al. [68] developed a
planner that automatically finds an optimal assembly sequence for a dual-arm robot
to build a woodblock structure while considering supporting grasps from a second

hand. Wan et al. [69] presented a planner to solve a test tube arrangement problem.

2.3.2 Manipulation for Tool Use

Using tools is an extensively studied robotic manipulation problem. Three levels of
planning are needed to enable a robot with a general gripper to manipulate tools.
The first level is grasp pose reasoning, where the goal is to find common grasp poses
for starting and goal object poses. The reasoning problem has been studied a lot
in the robotic manipulation community previously. For example, Saut et al. [70]
developed a planner to plan grasp poses for multi-finger hands and then used the
planned poses to reason pick-and-place sequences. Wan et al. [71] developed similar
approaches and analyzed their performance for assembly tasks. After finding common
grasps poses, the next steps include selecting a proper one from them and planning
the motion. The related problems are grasp optimization [72] and constrained motion
planning and control [73]. Grasp optimization relies on the chosen quality metrics.
Previously, several different metrics have been proposed and compared [74][75][76].
The third level is task-constrained motion planning. Traditional motion planning
algorithms used probabilistic roadmaps approaches to search collision-free motion in
the joint space [77][20][78]. Incorporating task constraints into the planning process
represents significant challenges [79] and the following works fight the difficulties.
Toussaint et al. studied planning using tools while considering physical interactions
[80]. Holloday proposed a method to formulate force constraints in tool manipulation

tasks [81]. Beschi et al. [82] studied planning optimal trajectories for redundant
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industrial robots in machining applications.
Tool use can also be learned from the demonstration. Brown [83] presented a
robot agent which learns to exploit objects in its environment as tools by watching a

single demonstration.



Chapter 3

Robotic 3D Drawing

This section develops a flexible and robust robotic system for autonomously drawing
on 3D surfaces. The system takes 2D drawing strokes and a 3D target surface (mesh
or point clouds) as input. It maps the 2D strokes onto the 3D surface and generates
a robot motion to draw the mapped strokes using visual recognition, grasp pose
reasoning, and motion planning. The system is flexible compared to conventional
robotic drawing systems as we do not fix drawing tools to the end of a robot arm.
Instead, a robot recognizes and picks up pens online and holds the pens to draw 3D
strokes. Meanwhile, the system has high robustness thanks to the following crafts:
First, a high-quality mapping method is developed to minimize deformation in the
strokes. Second, visual detection is used to re-estimate the drawing tool’s pose before
executing each drawing motion. Third, force control is employed to compensate for
noisy visual detection and calibration and ensure a firm touch between the pen tip
and the surface. Fourth, error detection and recovery are implemented to deal with
slippage and other anomalies. The planning and executions are performed in a closed-
loop manner until the strokes are successfully drawn. We evaluate the system and
analyze the necessity of the various crafts using different real-world tasks. The results
show that the proposed system is flexible and robust to generate robotic motion that

picks up the pens and successfully draws 3D strokes on given surfaces.

16
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Figure 3.1: (a) A human draws on a 3D surface by picking multiple pens. (b) This
section aims at developing a robotic system that performs similar online pen picking
and 3D surface drawing using closed-loop planning and vision-force feedback.

3.1 Introduction

This section develops a flexible and robust robotic system for drawing on 3D surfaces
using visual detection, planning, and control. We especially pay our attention to
autonomously planning the drawing motion considering the following three aspects:
3D surface, flexibility, and robustness. First, the system accepts 2D drawing strokes
and a 3D mesh model or 3D point cloud of the target surface as input. It maps the
2D strokes to the 3D surface for robotic motion trajectory planning. Second, the
drawing pens are not fixed to the flange of a robot arm. The robot plans grasp poses
to pick up a drawing pen and holds the pen to draw the mapped 3D strokes. The
robot is able to change to other pens online and draw multi-color graphs. Third, since
detecting, grasping, and manipulating pens may lead to errors, the system leverages
in-hand pen pose estimation, force control, and error detection and recovery to ensure
robust executions. It works in a closed-loop manner until the strokes are successfully

drawn.

Robotic drawing can be viewed as moving a pen along a trajectory in a certain
pattern concerning the target surface. Previously at manufacturing sites, the trajecto-
ries were taught in a point-to-point way by professional system integration engineers.

The process was time-consuming and required expert knowledge. Modern systems
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solve the problem using motion planning. For example, [84][85][86][87] developed al-
gorithms for painting path planning and optimization on a free-form surface to ensure
the even distribution of the paint. Painting is a simplified robotic drawing case as
there is no contact between a robotic end-effector and a painting surface. In contrast,
robotic drawing, especially drawing with hand-held pens, is a contact-rich manipula-
tion problem. Closing up the planning using vision and force feedback is an important
solution to maintain the contact between a pen and a surface and is widely studied
[88]. Especially, force control methods play an important role in helping to achieve a
stable drawing motion [52]. Although we can find lots of state-of-the-art studies that
explore closing up the loop to realize robust and practical robotic systems, they as-
sume that drawing tools are fixed to a robot end flange, which significantly influences

the flexibility of switching among diverse stroke colors and types.

In the human world, artists leverage rich tactile and force feelings to control
a drawing pen and frequently change their pens during the drawing to switch to
different stroke colors and types, as is shown in Fig. [3.I(a). Inspired by human
artists, we develop a robotic system that performs similar 3D surface drawing using
closed-loop planning and online picked pens. We especially focus on using visual
and force feedback to make the system robust and flexible like human actions. The
system’s planning component is based on our previous work, which enabled a robot
to use tools [66]. We improve the planner to realize a flexible and robust robotic 3D
drawing system by including 3D stroke mapping and vision-force feedback. Multiple
pens and grippers can be directly used without any modification. There is no need
for human intervention — A robot autonomously reasons grasp poses, regrasp poses,
and plans joint motion following the mapped 3D goal strokes while considering vision

and force feedback.

We highlight our contributions as follows. (1) We do not fix pens to a robot
end flange. Instead, we allow picking up pens using a vision system and holding the
pen to draw graphs. (2) We develop a high-quality metrological method to map 2D
strokes to 3D surfaces. (3) We use in-hand pose estimation to correct accumulated

errors and trigger re-planning if no solution was found. (4) We employ force control
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to compensate for noisy visual detection and calibration and ensure a firm touch be-
tween the pen tip and the surface. (5) We implement error detection and recovery
to deal with slippage and other unexpected problems. These contributions may look
fragmented, but each of them plays an important role in solving a particular problem.
They interact with each other to accredit robust multi-pen 3D drawing. In the exper-
imental section, we evaluate our system using various tasks. The results show that
the proposed system is flexible and robust to generate robot motion from grasping
pens to finishing drawing.

The paper’s organization is as follows: First, we review the related work in Section
II. Then, we outline an overview of the system architecture in Section III. Detailed
descriptions of the mapping and feedback planning are presented respectively in Sec-
tion IV and V. Experiments, comparisons, and analysis are carried out in Section
V. Conclusions and future work are presented in Section VI. Besides, we present
optimization-based planning and error recovery methods in the Appendix for readers

looking for flexible alternatives.

3.2 Related Work

We review the related studies in two aspects: Robotic drawing systems; Mapping 2D

strokes to 3D object surfaces.

3.2.1 Robotic Drawing Systems

Developing automated systems to draw figures is an important and popular topic
in the robotics and automation communities. One of the historical work that used
machines to draw pictures is [89]. The book presented a computer program named
AARON, which was able to draw figures and shapes on paper using a pen driven by
a mechanical plotting machine. With the rapid development of robotic hardware and
computer vision, many researchers studied drawing using multi-joint robots. The
diversity and flexibility of automated drawing systems increased significantly with

the increased number of joints. For example, Calinon et al. developed a portrait
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drawing system using a 4-DoF's robotic arm [90]. Tresset et al. [91] presented an
advanced portrait drawing robot named “Paul”, which was able to draw portraits
using the equivalent of an artist’s stylistic signature based on several processes that
mimic drawing primitives or skills. Jun et al. [92] used a humanoid robot to draw a
large picture on a wall. Sasaki et al. [93] developed a deep learning method to learn
drawing motion with a given target image. More recently, Gulzow et al. presented
the e-David (electronic Drawing Apparatus for Vivid Image Display) system, which
allowed controlling a variety of painting robots and end-effectors to create artistic
drawings [94]. Igno-Rosario et al. developed a novel interactive system for detecting
regions and then creating robotic artworks by painting at the region level [95]. Guo
et al. developed an architecture for human-in-the-loop robotic painting. The system
was able to learn and interact with a human artist, imitate the artist’s painting
techniques, and reproduce the painting drawn by the human [96]. Scalera et al. used
the Non-Photorealistic Rendering (NPR) technique to convert an image to artistic
painting strokes and planned robotic manipulator motion to draw them [97]. The
above studies focused on drawing on a plane. Besides them, drawing on non-planar
surfaces is also a popular topic and received much research interest. For example,
Lam et al. [98] developed an automated 3-DoFs sketching system to conduct pen
drawing on a 2.5D surface. Song et al. [52] implemented a robot that used a pen to
draw on an arbitrary surface with force feedback.

Compared to the previous robotic drawing systems, our difference is that we focus
on 3D surface drawing using online picked pens. We develop computational geometric
algorithms to map 2D strokes to 3D surfaces or 3D point clouds, develop reasoning
and motion planning algorithms to select and change pens, and close the planning

loop using feedback control.

3.2.2 Mapping 2D Strokes to 3D Object Surfaces

An intuitive solution to 2D-to-3D mapping used in previous robotic drawing systems[52]
98] was to project 2D strokes onto zy-plane and estimate the z values according to

the surface’s shape. Although the method could successfully create 3D strokes, they



3.2. RELATED WORK 21

suffer from deformation problems. The Euclidean distances of the mapped 3D strokes
get distorted from its 2D origin. Thus, researchers started to explore deformation-
free mapping. One effective method is Least Squares Conformable Mapping (LSCM)
[99, 100]. The method is widely used in computer graphics for creating a UV map
from mesh models to textures. Song et al. [I01] leveraged the LSCM method to im-
plement distortion-free stroke mapping. They spread 3D meshes to 2D planes using
LSCM, mapped 2D strokes on the spread meshes, and wrapped them back to create
3D ones.

Some other deformation-free mapping methods do not spread 3D surfaces explic-
itly. Instead, they control the deformation in distances by using mesh metrology
[102]. These methods are widely used in applications like the surface following. For
example, Carmelo et al. [I03] proposed a method for computing the mesh-following
trajectories of a surface by measuring distances along the intersection lines between
the surface and a bunch of scanning planes. A dual-arm inspection system was de-
veloped based on the proposed method. Can et al. [104] presented an algorithm to

project 2D patterns onto B-spline surfaces using a similar metrological method.

Table 3.1: Summary of 2D-to-3D Mapping Methods

Method Projective Conformal Mapping  Metrological
Deformation Large Medium Small
Efficiency Low Low High
Implementation  Simple Difficult Simple
Robustness High Low High
Related Studies  [52][98] [99] [100) [T0T] [102] [103][104]

Table shows a summary of the various 2D-to-3D mapping methods mentioned
above. The projective method is the most intuitive one. It is robust but suffers from
large deformation. Compared to the projective method, the conformal mapping-
based methods have smaller deformation. However, they depend a lot on initial
conditions and are more difficult to implement. The metrological methods have the
least deformation, but are time-consuming since the metrics need to be iteratively

examined. All these methods require the 3D surfaces as input. The surfaces could
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Robotic
Manipulator

Target
Surface
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Figure 3.2: One exemplary hardware setup for robotic 3D drawing.

be meshes or meshes rebuilt from point clouds [L05][106]. We will implement and
compare all these methods. The details will be in Section VI.A.

3.3 Overview of Workflow

This section presents an overview of the methods and workflow to give readers an
intuitive conception. First, we show one hardware setup and its corresponding plan-
ning interface in Fig. [3.2] Although the proposed method is not limited to the setup,
we foreground it to provide a solid impression. In the setup, a robotic manipulator
with a general 2-finger gripper is prepared to manipulate pens and draw graphs. A
3D depth sensor is installed on top of the workspace to detect pens and target sur-
faces that are placed randomly (with adequate clearance) on the table. A diagram
of our workflow concerning the shown setup is presented in Fig. [3.3l The workflow
starts from two inputs denoted by the dashed boxes on the top. The first input is
from users. It includes the pre-annotated or pre-planned grasp posesﬂ for the drawing
pens, mesh models of the pens, and vectorized drawing strokes on a 2D surface. The

second input is the point clouds obtained using a 3D vision sensor. The point clouds

LA set of grasp poses (including hand positions, rotations, and jaw-opening distances) defined or
planned in advance [107].
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Figure 3.3: Workflow of the robotic 3D drawing system. The two dashed boxes are
the input. The four gray boxes are the essential algorithms. The red arrows highlight

the closed loop. The blue arrows highlight the switches to a different pen.
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are divided into two areas where the system finds the initial pen poses in the first

area and finds the target surface to draw the mapped 3D strokes in the second.

The four gray boxes in the lower part of the workflow indicate the essential algo-
rithms. The “Mapping Strokes to the 3D Target Surface” box accepts mesh models
and vectorized 2D strokes from the first input, and maps the vectorized 2D strokes
to the mesh mode]E]. Together with the initial pen poses detected from the second
input, the workflow will produce a sequence of kinematic pen poses and send them to
the “Grasp Pose Reasoning and Motion Planning” gray box to determine grasp poses
and plan manipulation motion. The box will iterate through the pre-annotated grasp
poses to find the candidates that can finish all the motion, including the motion to
pick up a pen, move a pen to a visible position for in-hand pose estimation, and draw
the mapped strokes. The drawing motion will be regulated by the “In-hand Pen Pose
Estimation and Re-planning” box to determine if there is an in-hand error and will
be refined or re-planned according to the errors. The “Hybrid Trajectory Following
and Force Control” box ensures a firm contact between the pen tip and the target

surface. It will check the forces and trigger recovery when anomalies happen.

The planning process has a closed loop, as illustrated by the red arrows in the
diagram. If a refined pose or re-planning is not solvable, the system will invalidate
the current grasp pose, iterate to the next grasp pose in the reasoned candidate
set, and repeat the reasoning and planning. The iteration will be repeated until a
solution is found or a failure is reported. Also, during execution, the robot leverages
force control to make sure a stroke is firmly drawn on the target surface. It uses
F/T sensors installed at a robot wrist to monitor slippage and anomaly. If slippage
is detected, the system will trigger a recovery process. In case of an unrecoverable
anomaly, the workflow will go back to the “In-hand Pen Pose Estimation” box to
re-estimate the pen’s pose and re-generate the motion by continuing from the failed
point. The details of the four essential algorithms and the closed-loop planning will

be presented and analyzed in the remaining sections.

2Mesh models will be rebuilt from point clouds if they were not available.
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3.4 Mapping Strokes to 3D Surfaces

The goal of “Mapping Strokes to the 3D Target Surface” is to map a sequence of
vectorized drawing strokes (can be considered as points) in R? onto the target surface
in R? while preserving the geometric relation between the points. We expect an ideal
mapping method to comprise the following properties: (1) The method is applicable
to both raw point clouds and Computer-Aided Design (CAD) software-generated
mesh models; (2) The method has minimal deformation; (3) The method returns
smooth drawing strokes that are easy to follow by robotic manipulators. Following
this consideration, we propose both metrological methods and conformal mapping-

based methods in the following two subsections.

3.4.1 Metrological Methods

Local geometry estimation

To better explain the metrological methods, we first present an intuitive projective
mapping method as shown in Fig. (a). In this case, a point ¢;;; in the 2D stroke
is directly mapped onto a target surface by projecting along the given projection
direction ¢;8;. The projection does not consider surface normal and its deformation
changes with the target surface’s curvature. For example, ||Sos7|| is much larger
than ||coc;|| in the figure and the difference changes along the curved surface. The
projection will fail when the angle between the surface normal and the projection

direction is larger than 90°.

We revise the intuitive projective mapping method by considering the cross prod-
uct of the target surface normals and the vectors (moving directions) of the strokes
and propose the metrological methods. Fig. (b) illustrates our idea. The mapping
of the point ¢; is considered as a projection of coc; to a local geometry at s5. We use
a tangential plane as an exemplary local geometry for explanation in the figure and
also the following context. The blue dash line in the figure illustrates the tangential

plane. The dashed red arrows at ¢y and sy in the figure show the vertical direction
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¢, ¢  Stroke (a)

Figure 3.4: Projecting a stroke to a curved surface. (a) Intuitive mapping method.
(b) Proposed method. (c) 3D illustration.

Figure 3.5: Various local geometries for the EI method. (a) Planes. (b) Quadratic
surfaces. (c) B-spline surfaces.



3.4. MAPPING STROKES TO 3D SURFACES 27

Algorithm 1: Projecting a 2D stroke to a 3D surface
Input: M, the target surface
C = {c¢;i}, a set of points in a stroke in R?
Sg € M, a start point and its normal on M
Output: S = {s;}, a set of points on M
1 begin
2 Scale C to fit the 2D work-space of M
3 Convert C to R? by adding a z value with 0
4 S {80}
5
6
7

for i € (1,2,....n) do

S + sample nearby points(s;)
n; < local _plane(S)
8 R + rot(¢;s, X ny, acos(%u))
[leisil| - [[nil]
9 8i+1 ¢« s+ R-ciciq
10 Sit1, M1 < Nearest point to 8;,1 on M
11 S+ SUs;
12 return S

perpendicular to a 2D stroke and the normal ng of the tangential surface at sq, re-
spectively. The solid red arrows between ¢y and ¢y, and sy and 81, show the vectors
before and after projection. The final projected point is s;. It is a snapped point of
81 to the mesh surface, as shown by the zoom box in Fig. [3.4b). The projection and
snapping together maintain the metrology — The length of Coc; is the same as .;O—é_i. It
is approximated by §p87 to minimize distortion. The relations between ¢y, ¢, s, S1,
and s in the 3D space are illustrated in Fig. [3.4c). We compute a rotation matrix
that implies a minimum geodesic distance between the given projection direction and
the normal direction ny. The value of s; is obtained by transforming coc) onto the
tangential surface using the rotation matrix and extending sy along the transformed

direction.

The above process is formulated as the pseudo-code shown in Algorithm (1 The
algorithm’s input includes the target surface, a set of points in a stroke, and a starting
point on the target surface. Line 8 of the algorithm carries out the estimation for

a local geometry. It finds a set of nearby points to s; from M, and estimates a
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local plane for extending s; to 8;41. The extended s;; is not necessarily on M.
Line 11 of the algorithm resolves the disparity by snapping s;.1 back to a nearest
point on M. Since the algorithm iteratively estimates a local geometry, we call it
the Estimation Implementation of the metrological method (EI). Depending on the
local geometry types, we further divide the implementations into EI-P (local plane),
EI-Q (local quadratic surface), and EI-B (local b-spline surface). Fig. illustrates
some working examples of them. The performance of these varied implementations is
examined and compared later in the experimental section. Note that algorithm [1} is
the routine for a single stroke. When there are multiple strokes, a linear interpolation
may be applied between the endpoint of a previous stroke to the start point of its
next one. The same algorithm finds the projected position of the next stroke’s start

point. The points on the interpolated segment will be overlooked during drawing.

Global surfaces

For the methods mentioned above, we have to iteratively estimate local geometries
to find the next s;y1. The iteration is time-consuming and may lead to accumulated
errors. Compared to it, a global parametric surface could help to avoid local iterations
and be more efficient. Thus, we develop and study global methods in this part. The
methods find global surfaces and allow us to carry out differential computations on
the surface. After obtaining the global surfaces, our mapping algorithm will find the

next drawing points by directly extending along them.

Specifically, we propose two kinds of global surfaces. The first one follows Carr’s
work [108] and is a parametric one rebuilt from a point cloud using Radial Basis
Functions (RBF). Fig. [3.23|(b) exemplifies this surface. The second one is a numerical
one rebuilt using ball pivoting [L09]. It does not have an explicit parametric form.
Fig. B.23((c) exemplifies the second surface. Like the local methods, the two surfaces
and the mapping methods based on them (G-RBF and G-BP) will also be examined

and compared in the experimental section.
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3.4.2 Conformal Mapping-Based Methods

The conformal mapping-based methods consider the projection problem inversely.
Instead of projecting 2D strokes onto a 3D surface, the conformal mapping-based
methods unfold the 3D surface onto a 2D plane, find the correspondence between
2D strokes and the unfolded surface, and pack the correspondence back into 3D
space. The conformal mapping transforms a 3D graph into a 2D one while minimizing
angular deformation (not necessarily lengths). In this work, we use LSCM [100] to

map 3D vertices of a surface to 2D positions.

The workflow of our conformal mapping-based methods is as follows. First, we
unfold mesh vertices or the point clouds to a 2D plane using LSCM. Then, we use a
given starting position to find the correspondence between a 2D stroke and the un-
folded 2D positions. Third, we pack the found correspondences back to 3D to obtain
a 3D stroke. The “find the correspondence between a 2D stroke and the unfolded 2D
positions” step is critical throughout the process. We propose two implementations
to find the correspondence. In the first implementation, we find the nearest unfolded
2D position to a point in a 2D stroke and only pack back this single point. We call it
the Single-point Implementation of the conformal mapping-based method (SI). The
implementation could be problematic as the uneven unfolding or the point clouds’
noisy points may induce errors and lead to non-smooth strokes. In the second imple-
mentation, we sample the target surface to find the k-nearest points of a point in a
2D stroke from the unfolded 2D positions, pack them back to 3D samples on the 3D
surface, and perform interpolation to find the target point. This implementation is
similar to the one introduced in [I0I]. We call this implementation the Interpolation
Implementation of the conformal mapping-based method (II). The performance of

these two implementations will also be examined later.

After examining all the aforementioned methods, including the metrological ones
like EI-P, EI-Q, EI-B, G-RBF, and G-BP, and the conformal mapping-based ones like
SI and II, we will use the most satisfying one to generate 3D strokes for real-world

robotic executions and other evaluations.
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3.5 Reasoning and Closed-Loop Planning

This section presents the remaining three essential algorithms in the workflow — the
“Grasp Pose Reasoning and Motion Planning”, the “In-hand Pose Estimation”, and
the “Hybrid Trajectory Following and Force Control”. It comprises three subsections.
The first subsection presents the methods used to detect the object poses. The

remaining two subsections explain the details of the three essential algorithms.

3.5.1 Detecting the Object Poses

A depth sensor is installed on top of the workspace to capture a point cloud. The
algorithm will segment the point cloud and estimate the poses of the surfaces and
pens from it by matching the segments with their mesh models (if available). The
segmentation and estimation could be performed easily using conventional algorithms
like Density-Based Spatial Clustering of Applications with Noise (DBSCAN) based
segmentation [I10], RANdom SAmple Consensus (RANSAC) based global search
[T11], and Iterative Closest Point (ICP) based local refinement [112].

An important improvement we made to these conventional algorithms is that
we sample the models unevenly considering the depth sensor’s viewpoint. The old
routine to perform the matching was: (1) Generating a partial view of the model; (2)
Sampling the partial view evenly to generate a template and compute the features;
(3) RANSAC; (4) ICP. We revise step (2) to improve the precision of matching -
Instead of sampling evenly, we leverage a changing sampling density considering the
angles between the normals of the mesh surface and the viewing vector of the depth

sensor. The sampling density is formulated as a function of the angle as follows:

1
~ 1+exp(3—0)

p — 0.5 (3.1)
where p is the symbol used to denote the density of surface sampling, and 6 is the
angle between the normal of a mesh triangle and the depth sensor’s viewing vector.
Influenced by this equation, the triangles that face the camera will be sampled with

a higher density. The side triangles will be less sampled. The back triangles will
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be ignored. The uneven samples increase the fitness of RANSAC and ICP, thus
improves the precision of pose estimation. Fig. [3.6] exemplifies a captured point
cloud, the template created using uneven sampling, the segmented clusters, and the

estimated surface pose and pen poses using the methods mentioned above.

Figure 3.6: (a) A captured point cloud. (b) Generating a partial view template for
visual recognition. The surface of the partial view is sampled unevenly following the
viewpoint direction to improve recognition performance. Orange: A full pen model.
Blue: An unevenly sampled partial view. (¢) Background subtraction and clustering.
(d) Detected initial target surface pose and pen poses. The cylinder mesh is known
and matched.

3.5.2 Grasp Pose Reasoning and Motion Planning

The detailed diagram of the “Grasp Pose Reasoning and Motion Planning” algorithm
is shown in Fig. 3.7 It is a direct expansion of the counterpart in Fig. [3.3] The
diagram accepts (1) pre-annotated grasp poses for the pens, (2) estimated initial pen
poses, (3) a sequence of pen poses generated by attaching the pen tips to the mapped
3D strokes along inversed surface normal directions, as the input. The input will be
used in the “IK-Feasible and Collision Free Common Grasps” box to reason the IK-
feasible and collision-free common grasps. Here, by “common grasps”, we mean the

commonly available grasps at all pen poses. Fig. shows an example of common
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Figure 3.7: Detailed diagram of the “Grasp Pose Reasoning and Motion Planning”
gray box in Fig. |3.3

grasps. The gray hand poses in Fig. [3.8 are the pre-annotated grasp candidates.
They are transformed to new positions and orientations following the pen poses in
Fig. B.§(b.1) and (b.2). The IK and collisions of the robot at the transformed hand
poses are examined, with the IK-feasible and collision-free ones marked in green and
the remaining ones marked in red. The green hand poses in Fig. c) illustrate the
“common grasps”. They are identical in the pen’s local frame, and are the intersection
of the green hand poses in Fig. [3.8(b.1) and (b.2). A robot can hold the pen using a

“common grasp” at one pen pose and move it to another without regrasp.

After obtaining the common grasps, the “RRT-Connect Motion Planning” and
“IK Sequence for 3D Strokes” boxes will iterate through them to plan the “Pick-

up Motion”, the “Motion for Moving to a Pose for In-Hand Pose Estimation”, and
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Figure 3.8: Grasp reasoning. (a) Pre-annotated grasps. (b.1,2) Transforming the pre-
annotated grasps to two different pen poses. The IK-feasible and collision-free grasps
are shown in green. The others are shown in red; (c¢) IK-feasible and collision-free
grasps at all pen poses (common grasps).

the “Drawing Motion”. The “RRT-Connect Motion Planning” box plans joint space
motion for picking up and moving a pen to a pose for in-hand estimation. The
“IK Sequence for 3D Strokes” box generates the drawing motion for the mapped 3D
strokes. It examines the IK and collisions agairﬂ and uses workspace interpolation
to connect the IK configurations of two adjacent pen poses and produce a drawing

trajectory.

Especially for the “3D Strokes” input, we attach pen tips to each 3D stroke point
while requiring that the pen’s main axisﬂ are aligned with the surface normals and
get a sequence of pen poses for drawing each point of a stroke. The “IK Sequence for
3D Strokes” box examines the IKs and collisions of each pen pose. The smoothness
or optimization of adjacent IK configurations is considered implicitly in the IK solver
by using the result of a previous pen pose as the seed value for numerically solving
the following one. The solved configurations may be discontinuous due to the sudden

change of surface normals and, consequently, lead to a fragile drawing motion. The

3The IK and collisions have been solved wahen finding common grasps.
4A pen’s main axis is defined as a vector that points from its tip to end.
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sudden changes get worse when there is no exact CAD model, and the target sur-
face is a point cloud captured by depth sensors. To avoid discontinuity, we perform
quaternion Spherical Linear Interpolation (SLERP) [113] in the “IK Sequence for
3D Strokes” box to interpolate pen poses in-between the directly attached pen pose

sequence//]

3.5.3 Close the Loop to Improve Robustness

At the beginning of this section, we proposed improving visual estimation performance
using uneven sampling. The method exhibits higher precision. However, the errors
cannot be completely removed even if we are perfect in detection. There remain
errors caused by (1) pen displacements during manipulation, (2) sensor calibration,
and (3) numerically modeled CAD meshes. In this subsection, we look into these
errors and present our solutions — We use in-hand pen pose estimation to avoid the
errors caused by (1) and use force control to eliminate the errors caused by (2) and
(3). The in-hand pose estimation and force control will trigger a recovery mechanism
to correct the errors. In case of a failure, they will invalidate the current actions and

restart the planning.

In-hand pose estimation

We use the same methods as detecting the initial pen poses to perform the in-hand
estimation. The workflow is shown in Fig. The algorithm extracts the point
cloud near the robot gripperﬂ estimates the pose of a grasped pen from the point
cloud, and compares it to the expected value in the simulation to measure errors. In
case of a large error, the algorithm will refine or re-plan the drawing motion to avoid

failures.

5The method is fast but finds fewer solutions since constraining the pen’s main axis to the
normal directions was a very strong condition. The FK-based optimization planner introduced in
the appendix of this manuscript could be a better choice if you are interested in a more flexible
alternative.

We compute the pose of the gripper using joint encoder values and forward kinematics. The
point cloud near the gripper can be obtained by cropping the data around the computed gripper
pose.
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Figure 3.9: Detailed diagram of the “In-hand Pose Estimation Based Motion Refine-
ment” gray box in Fig. [3.3

Fig. shows an error recovery example. Fig. [3.10(a) and (b) are the robot
configurations for in-hand estimation in real execution and simulation respectively.
Fig. c.l) shows the error between the captured point cloud of the pen and the
pen pose in the simulation. The point cloud is rendered in green. The pen pose
in the simulation is rendered in yellow. Fig. [3.10(c.2) shows the matched pen pose
(rendered in red. The in-hand estimation algorithm corrects the pen pose from the

yellow one to the red one following
Hand T = (eat “T) ™" % Gt T X Fgna T (32)

where £eal T is the refined in-hand pen pose and 2™ T is the expected value in

simulation.
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Figure 3.10: (a) A grasp pose in real execution. (b) The correspondent ideal grasp
pose in simulation. (c.1) The error between the captured point cloud of the pen
and the ideal pen pose. The point cloud is shown in green. The ideal pen pose is
shown in red. (c.2) Comparison of the matched in-hand pose (red) to the ideal pose
(yellow). (d) An example of a corrected drawing pose. The yellow robot configuration
is corrected to the red configuration by the estimated in-hand pose.

Fig. [3.10[(d) compares the robot drawing configurations before and after correc-
tion. The yellow configuration is the one planned in the simulation, while the red
configuration is the corrected result. Note that the red configuration in Fig. |3.10[(d)
is not necessarily solvable. When there is no solution, the planner will invalidate the
current grasp pose and trigger a new “Grasp Pose Reasoning and Motion Planning”
routine, as shown by the red arrows in Fig. [3.3l The correction, invalidation, re-
reasoning, and re-planning close up the planning loop, thus improve robustness and

planning success rate.

Hybrid Trajectory Following and Force Control

Force Control We consider the force feedback measured from an F/T sensor in-
stalled at the wrist of a manipulator and use force control along the pen’s main axis to
compensate for sensor calibration errors and uncertainty in CAD models. Essentially,
the force control method builds a connection between the force and motion of the pen
so that the robot can attach the pen to the target surface with firm contact. The
force control is performed by considering a decomposed force along the pen’s main
axis and thus provides compliance with surface curvature. The pen will follow the

planned motion path while maintaining a steady contact at the tip. Fig. [3.11] shows
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the workflow of the force control method.
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Algorithm 2: Error Detection and Recovery
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Input: {q,,q, ., q,}, a joint motion trajectory found by our planner;
begin
for each q; € {q,,95, ---,q,} do
Move the robot to g;
Collect force and torque in the pen frame F;
if lost(F;) then
for each q; € {q,,1,49,,9, -, q,} do
Pj R; < fk(%)
R;(z) - R;(z) )

IR R, ()]
if 0 > threshold then

update({q; 1,912, -}, Pj, Rj)

break
else if inhnd slip(F;) or blocked(F;) then
forward_search <+ True
for each q; € {q,_1,a; »,---q;_,,,} do
Pj R; fk(qj)

Fi(x) - R;(x)
1E:(@)]] - || R; ()]
if 0 < threshold then
update({q;;1, gi1: -}, Pj, R;)
forward_search < False
break
if forward_search is True then
for each q; € {q;,1,4,.2,---q,} do
Pj, R;  fk(q;)

Fi(z) - R;(z)
[|EF3(2)]| - || R; ()]
if 0 < threshold then

update<{qi+'l 14t .}, Pj, R;)
break

o < acos(

o + acos(

)

o < acos(

)

return
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Error Detection and Recovery Considering Force Deviation Pen-surface
slippage and pen-hand contact slippage may happen during drawing. The slippage
has two causes. The first one is the material properties of the target surface. The
slippage caused by it is complicated (a mixed pen-surface slippage and pen-hand
slippage) and is difficult to compensate. We have no clever tricks to overcome these
slippage and suggest preventing them by adding a strong constraint to the planners.
The second cause of slippage is positioning errors. In this part, we focus on the

slippage caused by it and develop an algorithm to predict and recover from these

slippage.

Specifically, we analyze and categorize the slippage caused by positioning errors
by monitoring the force errors measured by the F/T sensor during force control. The
slippage includes: (1) An in-hand slippage. When there is a large torque around
the hand opening direction, the pen will slip inside the hand and exhibit an in-
hand slippage. The slippage could be caused by an uncertain surface that blocks the
drawing motion and pushes the pen to slide in the hand. (2) A lost surface. When the
force along the pen’s main axis has a sudden drop, the surface is lost. (3) A blocked
surface. When the torque or force in the directions other than the hand opening
direction and the pen’s main axis has a significant increase, the pen is blocked by a
surface. In the latter two cases, the surface might be in a wrong position and the pen
either loses contact with or runs into it. Following these analysis and categorizations,
we detect slippage by examining the changes of forces and torques measured by the
F /T sensor installed at the wrist of a robot manipulator and propose Algorithm [2| to
correct or avoid slippage. The algorithm includes two main sections. The magenta
section deals with a lost surface slippage. In this case, the algorithm searches forward
to the following drawing points until the pen orientation is significantly changed
(larger than the threshold in line 10). The blue section deals with an in-hand slippage
or a blocked surface. The algorithm will first look backward to the drawn points a
bit (the number of points is specified by the m in line 15) to see if the drawing
configuration at a previous drawing point could compensate for the force along the
pen’s main axis. The wheat-color block of the blue section shows the backward

search. The algorithm will resume the previous point and repeat the drawn stroke
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if a previous drawing configuration provides satisfying force compensation (smaller
than the threshold in line 18). It will search forward like the magenta section if the
previous drawing configurations cannot afford satisfying compensation. The part after
the wheat-color block in the blue section shows the forward search. The algorithm
will jump to a future point when it judges that a future drawing configuration can

provide reasonable compensation (lines 26-27).

3.6 Experiments and Analysis

This section presents the experiments performed to analyze the robustness and flexi-
bility of the developed robotic 3D drawing system. It compares both simulations and
real-world results to verify the proposed methods. The simulation platform used in
our experiments is a PC with an Intel Core i5-8250U CPU and 32 GB memory. The
programming language is Python 3, and the software environment is WRY] A Pho-
toneo PhoXi 3D Scanner M with 1032x772 resolution is used for visual perception.
The robot used is the one shown in Fig. [3.2] which includes a UR3e robotic arm
equipped with a Robotiq Hand-E two-finger parallel gripper.

3.6.1 Robustness of 2D-to-3D Stroke Mapping

First, we evaluate the performance of the various stroke mapping algorithms presented
in section IV. The target surface includes both mesh models made by CAD software
and raw point clouds obtained from the depth sensor. To provide a direct view for
observation and comparison, we use a lattice stroke made of a series of grids as the 2D
strokes in the experiments. Readers may easily assess the performance of the various
mapping algorithms by observing the shapes of mapped results. Besides the visual
observation, we define one local indicator and two global indicators to quantitatively

measure in-stroke deformation, inter-stroke displacement, and inter-stroke distortion,

TWRS is an open-source environment developed in our laboratory. It is available on github at
https://github.com/wanweiwei07 /wrs
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respectively. The local indicator is

_ |[Bsixall = lleiciall

e =
: el

) (3.3)

where ¢; and c¢;,; are two adjacent points in a stroke in R?, s; and s;,; are their

corresponding points in a mapped stroke in R3. The length |[5;s;57]| is the geodesic
distance between s; and s;,1 on the target surface. The length ||¢;¢ii1]| is the Eu-
clidean distance between ¢; and ¢;4; in R2. The ¢; indicator shows the deformation
of a single stroke after mapping while ignoring displacement and distortion between

the strokes. The global indicators are

eg = |[Sm8all = llemenl; (3.4)
and S/ . Sl Cl . C/
eq = |acos(7—r—"—) — acos(7—r———)| (3.5)
: IEAIRIEA] Rl - Hlenll ™

where ¢, and ¢, are two closest points in two different strokes in R?, s,, and s,
are their corresponding points in the mapped strokes in R?. The arc and arrow on
top of the symbols in equation indicate geodesic and Euclidean distances like
equation (B.3)). For the lattice strokes, ||mZ>|| equals to 0. The ' superscripts on the
symbols in equation indicate the derivative (tangential direction) at the points.
The acos() function computes the angle between the tangential directions. The e,
indicator shows the translational displacement between strokes after mapping. The
e, indicator shows the angular distortion between strokes after mappings.

Table .2 shows detailed information about the used 3D surfaces and lattice
strokes. The table has two sections where the upper section shows the surfaces with
known mesh models. The lower section shows the ones without mesh models. In each
section, there are seven rows where the first four are the size and mesh information
about the surfaces, the fifth and sixth rows are information about the lattice strokes,

and the last row host pointers to the mapping results in Fig. [3.1213.14}



3.6. EXPERIMENTS AND ANALYSIS 41

Table 3.2: Information of the 3D Surfaces and Lattice Strokes

Known Mesh Model

Box Cylinder Sphere
Volume (mm) 100x100x 100 100x100x50 100x 100 x50
Surface (mm) 80x80 80x80 60x60
# Vertices 6 360 32401
# Faces 4 362 64440
# Strokes 18 18 14
# Points/Stroke 81 81 61
Results Fig. [3.1253.14{(a)  Fig. [3.1243.14(b)  Fig. |3.123.14(c)
Raw Point Clouds
Cylinder Helmet -
Volume (mm) 89x101x31 166x199x 72 -
Surface (mm) 80x80 80x80 -
# Vertices 12010 43617 -
# Faces 21407 80159 -
# Strokes 18 18 -
# Points/Stroke 81 81 -
Results Fig. [3.12143.14(d)  Fig. [3.12}{3.14{(e)

* Meanings of items: Volume - The bounding box dimensions of a mesh model or
point clouds; Surface - The 2D dimensions of the target surface for drawing; #
Vertices, # Faces - The number of vertices and faces (original or reconstructed)
on a target surface; # Stroke - The number of strokes in a lattice to be drawn;
# Points/Strokes - The number of points in each stroke.
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Hybrid Trajectory Following and
Input Force Control Along the Pen

Drawing Motion Contact Detection

Refine and Re-plan
the Drawing Motion

No
(Failure) :
Move to the Next Point
Output
(Success <— ]Iéarge? %
or Failure) < s

Algorithm 2

Figure 3.11: Detailed diagram of the “Hybrid Trajectory Following and Force Con-
trol” gray box in Fig. [3.3] The “Refine and Re-plan the Drawing Motion” box is
identical to that in Fig. 3.9
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Fig. [3.12{3.14] visualize the mapping results and plot the e; curves using the
surfaces and strokes shown in Table [3.2l The first rows of them are the mapping
results of the projective method mentioned in Section IV.A. They are considered as
the baseline for comparison and are repeated in each figure for readers’ convenience.
The lower three rows of Fig. show the results of the EI-P, EI-Q, and EI-B
methods. The lower two rows of Fig. [3.13] show the results of the G-RBF and G-BP
methods. The lower two rows of Fig. |3.14] show the results of the SI and II methods.
Each of the small subfigures in the lower rows identified by an (alphabet.number)
includes two parts where the upper part visualizes the mapped result. The lower part
plots the error chart. The blue curves in the error charts show the in-stroke errors of
the current method and model. The orange curve shows the in-stroke errors of the
baseline method. In all figures, the columns (a-c) are mapping results on surfaces
with known mesh models. The columns (d,e) are results with point clouds. One
thing to note is that a closed mesh model should be decomposed into segments with
shapes homographic to discs to realize the conformal mapping-based methods. We
performed manual intervention to simplify the routine and reduce the error caused
by the non-uniform parameterization scale between the segments. The mapping is
performed on the main segment that we selected. Table further shows the detailed
time costs and average ¢;, €4, and e, values of the various mapping methods using the
surfaces and strokes shown in Table|3.2] The values with a lime background show the
minimum element of each row. The values with a pink background are the maximum
element of each row. Since the mesh models of the raw point clouds are not available,
we cannot directly compute the geodesic lengths and distances, and the meshes must
be reconstructed first. To make the comparison fair, we reconstruct meshes using two
methods — One uses the RBF global surface estimation method and the other one
uses the ball-pivoting estimation method. Then, we obtain the errors by computing
the difference between the geodesic stroke lengths or geodesic stroke inter-distances
on both the two reconstructed meshes and the original 2D ones. Depending on the
reconstruction method, a prefix is added to the end of the error labels for the point
clouds. We do not know which is a better reference as the ground truth, but leave it

to readers for evaluation.
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By observing the results in Fig. |3.1243.14] we get the following conclusions. First,
the metrological mapping methods produce smooth strokes for both known mesh
models and point clouds. Readers may compare Fig. [3.12|(a.2-4, b.2-4, ¢.2-4) to (d.2-
4, e.2-4), and also Fig. 3.13((a.2-3, b.2-3, ¢.2-3) to (d.2-3, e.2-3) for better inspection.
Second, the metrological methods tend to preserve in-stroke distances between adja-
cent drawing points for the known mesh models, while the conformal mapping-based
methods tend to preserve inter-stroke relations. This point can be drawn by com-
paring Fig. [3.12(c.2-4) and Fig. [3.13|(c.2-3) to Fig. [3.14c.2-3). The strokes in Fig.
3.12f(c.2-4) and Fig. [3.13((c.2-3) are less globally connected compared to those in Fig.
[3.14|(c.2-3). For the raw point clouds shown in the last two columns of the three fig-
ures, all methods have more distortion compared to mapping using known mesh mod-
els. Third, the results also show that the performance of conformal mapping-based
methods is unstable. For example, both the SI and II methods exhibit better perfor-
mance on known mesh surfaces, as seen in Fig. [3.14(a.2-3, b.2-3). When the surface
gets complicated, the deformation increases, as seen in Fig. |3.14{c.2-3). The reason
is two-fold: (1) The parameterization scale of conformal mapping is non-uniform. (2)
More errors get accumulated while solving the conformal transformation. Also, the
conformal mapping-based methods will not work on more complicated models like
models with concavity. Segmentation must be performed to make the methods appli-
cable. Another observation about the conformal mapping-based methods is that they
have low performance on the point clouds, as shown in Fig. 3.14{d.2-3, e.2-3). The
reason is also two-fold: (1) Controlling the parameterized results’ rotation is difficult.
(2) The data is noisy. Based on the above observations, we decide not to use the
conformal mapping-based methods. By observing the results in Table [3.3] we get
the following additional conclusions for the metrological methods. First, we that find
the EI-P, EI-Q, EI-B, and G-BP methods are faster than the G-RBF method. The
reason is that G-RBF rebuilds a global parametric surface, which solves optimization
equations and is time-consuming. In the worst case, the optimization may not con-
verge and the method will fail. Second, the G-BP method is a fast one. However,
it numerically approximates a mesh using near points in a ball and is sensitive to

ball radius. Third, the EI-QQ and EI-B methods are satisfying for curved objects, but
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they are less competitive on the box. Assuming a curved local surface is inherently
questionable. Fourth, the EI-P method exhibits bad performance in e,. The strokes
may have a large displacement for multi-stroke drawing. However, it is a very efficient
algorithm and is potentially good for fast prototype examination. Fifth, similar to
our observations in Fig. the conformal mapping-based methods are unsta-
ble. They sometimes show bad e, for complicated meshes and point clouds. After
balancing the time costs and errors of each method, we decide to use EI-P in our

other experimentsﬂ

3.6.2 Costs of Reasoning and Motion Planning

We use the four drawing tasks shown in Fig. to study our reasoner and motion
planner’s performance and costs. The strokes for the four tasks are the same circle
consisting of 72 points. The first two target surfaces shown in Fig. (a, b) are
human-designed CAD models. They have known meshes. The target surfaces in Fig.

3.15(c, d) are point clouds.

The grasp reasoning and motion planning performance for the four tasks are shown
in Table 3.4 The labels (a-d) in the first row indicate the correspondence of each col-
umn to the tasks shown in Fig. Below the first row, the table has three sections
where the first section shows the size of the surfaces and the number of SLERPed pen
poses along the mapped stroke. The following two sections show information about
trials and failures in reasoning and time costs. We pre-annotated 62 candidate grasp
poses for the pen. The reasoner iterated through the pen poses to find the common
grasps for all key pen poses. The “Grasps” section of Table [3.4] includes four items

where the first one shows the index of the 1st common grasp in the 62 pre-annotated

8Note that all metrological methods have a drawback — The errors of the following drawing points
inherit the previous ones and a closed stroke may be broken after mapping. The error accumulation
and broken position depend on both the starting point and the shape of a target surface. If a
stroke is symmetric and the surface has symmetric normal, we may start from a central point of the
symmetric stroke, map it to a central point on the symmetric surface, and begin drawing by moving
towards a symmetric direction. On the other hand, if the stroke is non-symmetric or the surface is
arbitrary, we do not have a good solution to avoid error accumulation and broken loops, unless we
allow stretching the strokes. If ensuring a closed loop is the most important condition to meet, we
recommend conformal mapping-based methods.
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Figure 3.15: Four tasks used to evaluate the costs of the proposed reasoner and
planner. The stroke is a circle. (a, b) Mesh models. (a): A cylinder. (b): A Stanford
bunny. (¢, d) Point clouds. (¢): A point cloud captured the cylinder shown in (a).
(d): A point cloud captured using a helmet.

grasps. The second item shows the number of all available common grasps. A motion
planner will use a common grasp to generate the robot motion that moves the pen
between adjacent key poses. The third item of the “Grasps” section shows the index
of the 1st common grasp that has a solvable motion. For easy comparison with the
first item, the index is also counted concerning the 62 pre-annotated grasps. Their
values in (a), (b), and (d) columns are the same as the first item, which means the
first common grasp led to successful motion. Contrarily, the value in (c) is different
from the first item, indicating that the planner encountered unsolvable motion and
switched to different common grasps for replanning. The value in (c¢) is highlighted
with a gray background to signify the difference. The fourth item of the “Grasps”
section shows the number of all common grasps with solvable motion. Note that
the number of total common grasps and common grasps with solvable motion are
counted for better evaluation. They do not need to be fully scanned in practice. The
reasoner and planner stop and the robot begins execution as long as the 1st successful
motion is found. The “Time Costs” section shows the time needed to find the 1st
common grasp, all common grasps, the 1st solvable motion, and all solvable motion.
On average, the planning takes 30 s to generate a drawing motion. It is more costly

than reasoning.
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Figure 3.16: (a) Candidate pen poses. Red: Pen poses for drawing the mapped 3D
strokes; Green: Initial pen pose; Gray and Yellow: Intermediate pen poses for in-
hand estimation. Especially, the yellow ones indicate the intermediate poses that
share common grasps with the green and red poses. (b) The successfully planned
motion based on one common grasp.

The results in Table are subject to the order of scanning and may not be
enough to estimate a general performance. Thus, we further present Table to
show the minimum, maximum, average time costs, and standard time cost deviations
of reasoning and planning of all common grasps with solvable motion. Each of the
common grasps is examined independently instead of in a sequential scan. In the
table, # G indicates the number of total common grasps with solvable motion. It is

the same as the counterpart in Table

Fig. [3.16| exemplifies one of the reasoned and planned results. The reasoner finds
common grasps among the pen poses shown in Fig. [3.16(a), where the red ones
indicate the pen poses for drawing the mapped 3D strokes, the yellow and gray ones
show the candidate poses for in-hand estimation, and the green pose is the detected
initial pose. The yellow-highlighted gray poses are the IK-feasible and collision-free
in-hand estimation poses. The yellow robot in Fig. [3.16|a) shows a possible robot
configuration to reach a common grasp at the in-hand estimation pose. Fig. |3.16[b)

shows the successfully planned motion based on the common grasp.
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Table 3.5: Statistic Costs of All Solvable Grasps

@ () (9 ()
#G 8 1 4 7

Min 0.03 0.07 0.04 0.04
Max 0.09 0.07 0.05 0.05
Mean  0.05 0.07 0.05 0.05
Std. 0.02 0.00 0.01 0.01

Min  11.04 40.73 12.71 10.77
Pick-up and Max  19.08 40.73 17.90 20.62
Move-to Motion (s) Mean 14.38 40.73 15.01 15.48
Std. 267 0.00 186 3.71

Min 0.89 2.75 0.92 2.84
Max 0.91 2.75 0.94 8.45
Mean  0.90 2.75 0.93 4.19
Std. 0.00 0.00 0.01 2.14

Min 11.98 43.55 13.68 13.64
Max 20.02 43.55 18.88 27.05
Mean 15.33 43.55 15.98 19.72
Std. 2.68 0.00 1.87 4.81

Grasp Reasoning (s)

Drawing Motion (s)

Total (s)

3.6.3 Performance of Real-world Executions

We carry out robotic executions to study real-world performance. We specially con-
centrate on analyzing (1) the influence of in-hand pose estimation on the final tra-
jectories, (2) the influence of force control on the drawing results, (3) the difference
between model-based and point cloud-based drawing, (4) the flexibility for multiple
pens and complicated strokes, (5) error detection and recovery, and (6) precision of

the final resultant drawing.

The necessity of in-hand pose estimation

We evaluated the necessity of the in-hand pose estimation by using the task of drawing
a circle on a cylinder, like the ones seen in Fig. [3.15(a, c¢). Both the mesh models
and point clouds are used in the evaluation. Fig. shows the results. The figure
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has two columns (a) and (b) where each column includes four subfigures and an
error chart. In the subfigures, the yellow robot configurations indicate the planned
results. The red robot configurations indicate the refined motion after in-hand pose
estimation. The green robot configuration is the real execution data read online from
a working robot. The four subfigures are arranged in a 2x2 grid. The lower row
of the grid shows the close-up view of the pen poses and pen tip trajectories in the
upper row. The left and right columns of the grids are enclosed by frames with
different colors. The left columns (the ones with orange frames) show the results of
the originally planned trajectories. The right column (the ones with blue frames)
shows the results using the refined trajectories after in-hand estimation. Note that
although the orange-frame subfigures do not have in-hand pose estimation, we still

repeated the red configurations in them as a reference for comparison.

Fig. [3.17(a) are the results using a mesh model. The orange-frame subfigures
are the results of a direct execution. It does not include an in-hand pose estimation
process. The green configurations and trajectories in the subfigures are the originally
planned motion’s direct execution results. Compared to the theoretical values (the red
trajectories), a large offset is observable. It indicates that direct executions suffer a lot
from noises. The blue-frame subfigures are the results with in-hand estimation and
trajectory refinement. The green trajectories in the subfigures are the execution result
of the refined motion. Compared to the theoretical values, the offset is moderate.
The results indicate that the in-hand pose estimation and refinement significantly
improved precision. Fig. [3.17((b) are the results using point clouds. Like their
orange-frame and blue-frame counterparts in (a), the green trajectories in differently
framed subfigures are the execution results of originally planned motion and refined
motion respectively. The offset in these cases is smaller since the strokes are directly
mapped to the measured surfaces, but there remains a discernible difference between

the red and green trajectories.

The error charts in Fig. visualize the distance between pen tip trajectory in
simulation and real execution. The horizontal axis of the figure is the point ids. The
vertical axis is the difference between correspondent points. The blue curve shows

the value before applying in-hand pose estimation. The orange curve shows the value
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after in-hand pose estimation. The curves further confirm that the offset decreased

after in-hand pose estimation and motion refinement.

The necessity of force control

The results in 1) partially show that force control is important to remove detection
errors and ensure a solid drawing. In this part, we further examine the importance
of force control by comparing the task shown in Fig. Here, the goal is to draw
a circle on a cylinder. The subfigures with orange frames show the results without
force control. The subfigures with blue frames show the results with force control.
Both methods can perform the drawing, but without force control, it is not easy to
ensure the pen to be always in contact with the target surface. One section of the
circle is lost when force control is not applied, as seen from the binarized boundary
view in the lower part of the subfigures. The chart on the rightmost side of Fig.
[3.18] compares the changes of force curves during drawing. The horizontal axis is
the point id. The vertical axis is the magnitude of the force applied to the pen tip.
The orange curve shows the force changes without force control, while the blue curve
shows the changes with force control. The curves show that the force at the pen tip
has large values between the 1st and 15th points and after the 65th point without
force control. The force disappeared between the 20th and 40th points. We examined
the real-world motion and found that since the surface position used to generate the
motion in the simulation environment was different from that of the real world, the
pen tip sometimes got lower than the surface and a large force appeared, leading to a
heavy stroke. It also sometimes got higher than the surface and the force disappears,
resulting in a lost stroke. With the help of force control, the positional error could
be successfully suppressed. The controller adjusted the robot motion to ensure the

forces fall inside the blue shadow range.

Influence of mesh models

We also compared the difference between the drawing results planned using mesh
models and point clouds. The details are shown in Fig. [3.19(a, b). The task is the
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same as the one shown in 2) - draw a star on the cylinder object. Fig. [3.19(a.1) is the
result based on a mesh model. Fig. [3.19(a.2) shows a close-up view of the strokes.
Fig. [3.19(b.1) is the result based on point clouds. Fig. [3.19(b.2) shows a similar
close-up view. Our system can finish the drawing in both cases. However, the result
planned with a mesh model is smoother than the result planned with point clouds,
for the face normals estimated using point clouds are noisier than the inborn values of
a mesh model. The pen poses of the model-based drawing are thus more continuous

than those of the point cloud-based drawing.

Fig. [3.19(c, d) further show the results using two more difficult objects. Fig.
[3.19(c.1-2) are the results of drawing a circle and a star on the back of a Stanford
bunny. The robot motion and pen trajectories are generated based on the bunny’s
mesh model. Fig. [3.19(d.1-2) are the results of drawing the same circle and star on
an engineering helmet. There is no mesh model for the helmet. The robot motion
and pen trajectories were planned based on point clouds. Although the results based
on point clouds are less smooth in Fig. [3.19(d.1-2), they are only visible in a close-
up view. From the viewpoints of Fig. [3.19(c, d), the roughness is less noticeable
and satisfying. Thus, we conclude that the developed robot system can draw on

complicated surfaces both with and without mesh models.

Multiple pens, complicated strokes

We examined the ability of our system to switch pens and draw complicated strokes
using the two tasks shown in the upper part of Fig. [3.20[(a.6) and (b.7). The first
task is to draw the word “DRAW?” on the cylindrical surface. Each letter in the word
is required to have a specific color. The system successfully planned the motion for
each pen as well as the motion for switching them. Fig. [3.20(a.1-5) show snapshots
of the execution sequence and the final drawing results. The second task is to draw
a Peppa Pig face on the same cylindrical surface. The Peppa Pig face strokes include
several small primitive elements. The developed system was still able to successfully
and robustly perform the task. Fig. [3.20[(b.1-6) show snapshots of the execution and
the final drawn Peppa Pig face.
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Error detection and recovery

We carried out experiments to study the error detection and recovery ability of the
developed system using a challenging task shown in Fig. |3.21] The goal was to draw
a circle across the edge of a box in the presence of the following errors: (1) Backward
displacement error (translation in global -y axis); (2) Forward displacement error
(translation in global y axis); (3) Rotation error around global z axis. The results
are as follows.

When there was no error, the motion was well-performed as shown in Fig. [3.21|a).
When translational error existed and the real edge position was before the edge in sim-
ulation, a lost surface slippage was detected at the red point shown in Fig. [3.21|(b.1).
The force exhibited an abrupt drop in the pen’s main axis, as shown by the force
curves in the (b) column. The robot took an action to skip to a future point and
continued the drawing motion, as shown by the TCP rotation curves in the (b) col-
umn and also the green dots in Fig. (b.l). By comparing the TCP rotation
curves in (b) and (a), we can see that a later section was shifted forward to skip the
failed points. When translational error existed and the real edge position was behind
the edge in simulation. An in-hand slippage was detected at the red point shown in
Fig. [3.21fc.1). The forces exhibited a large torque around the robot hand opening
direction, as shown by the force curves in the (c¢) column. The robot resumed to
a previous point and repeated the drawing motion, as shown by the TCP rotation
curves in the (c¢) column and also the green dots in Fig. [3.21fc.1). By comparing the
TCP rotation curves in (c¢) and (a), we can see that an early section was repeated
to delay the following drawing points. When rotational error existed, the robot may
either detect a lost surface slippage or an in-hand slippage, depending on the rotation
directions. Fig. [3.21)(d.1) shows an example of an in-hand slippage. Like the TCP
rotation curves in the (c) column, an early section of the TCP rotation curves in
the (d) column was repeated to delay the following drawing points. The robot did
not detect a slippage when moving the pen across the edge for a second time, and
the later sections of the TCP rotation curves were the same as that of (a). The ex-
perimental results show that the proposed algorithm can successfully draw the circle

while avoiding errors. The final drawn results are shown in the last figure row.
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(a) —— Before In-Hand Est.
—— After In-Hand Est.

(b) —— Before In-Hand Est.
—— After In-Hand Est.

Error (mm)
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Point ID

0 10 20 30 40 50 60 70 80
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Figure 3.17: Comparison of the originally planned robot configurations (yellow robot
configurations and drawing points in the upper subfigures), the refined trajectories
based on in-hand pose estimation (red robot configurations and drawing points),
and the real execution results using force control (green robot configurations and
drawing points). The subfigures with orange frames show the results of the originally
planned trajectories. The green robot configurations and drawing points in it are the
execution results of the yellow ones. The red robot configurations and drawing points
are illustrated as a reference. The subfigures with blue frames show the results using
the refined trajectories after in-hand estimation. The green robot configurations and
drawing points in it are the execution results of the red ones. (a) uses the mesh
model shown in Fig. [3.15(a) as the input. (b) uses the point clouds shown in Fig.
3.15(c) as the input. The bottom charts show the error curves. The blue curves are
the original results. The orange curves are the results after in-hand pose estimation.
The horizontal axes of the charts are the point IDs. The vertical axes are the errors
(difference between correspondent points).
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—— Without Force Control
—— With Force Control

Force (N)

s 1

40

Point ID

Figure 3.18: Drawing a circle without (orange) and with (blue) force control. The
chart shows the force along the pen’s main axis concerning the point ids of the mapped
strokes.

Figure 3.19: Comparison of the drawing results planned using mesh models and point
clouds. (a, b) Drawing a star on the cylinder object. (a) Results using a mesh model.
(b) Results using a point cloud. (c, d) Other examples. (¢) Drawing on a Stanford
bunny. The mesh model is used. (d) Drawing on a helmet. The captured point cloud
is used.
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Figure 3.20: (a) Drawing a word “DRAW?” on a cylinder surface with each letter in
a different color. (b) Drawing a Peppa Pig face on the same cylinder surface.
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Fitness: 0.75 Fitness: 0.89

Figure 3.22: Evaluation of the final resultant drawings. The first row shows pictures
of the final results. The second row shows the 3D point clouds of the drawn strokes
(yellow) and the expected goals (blue dots). The fitness values of the ICP matching
between them are shown below.

Evaluation of the final resultant drawing

We also carried out experiments to globally evaluate the final resultant drawing. The
goal of our robotic drawing system is to ensure the mapped strokes (drawing goals)
and the results drawn by the robot are highly alike. To judge if this goal is effectively
reached, we captured images of the drawing results as shown in the first row in Fig.
3.22), extracted their point cloud, and compared the extracted point cloud with the
drawing goals. The second row of Fig. [3.22] illustrates the extracted point clouds
(yellow area) and drawing goals (blue dots). We used the ICP algorithm to match
the drawing goals to the point clouds and used the fitness of the ICP matching to
evaluate their similarity. The matched fitness values are shown below the second row.
The values are small. They confirm that the resultant drawings are very similar to

the drawing goals.
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3.7 Conclusions

This section presented a robotic drawing system that maps 2D strokes to 3D surfaces,
plans pen picking and manipulation motion, and performs drawing on 3D surfaces
considering vision and force feedback. The system is flexible as it treats pens as tools
that can be picked up and manipulated online. It is robust as it runs in a closed-loop
manner and leverages high quality-stroke mapping, in-hand pose estimation and mo-
tion refinement, force control, and error detection and recovery to suppress failures.
The system works on a wide range of surfaces as long as they are continuous and
do not trap a pen. Experimental results demonstrated the excellent expected perfor-
mance. We encourage our readers to watch the supplementary video to better view
the mentioned features. The video includes drawing demonstrations using different
surface shapes (convex and concave shapes), input types (meshes and point clouds),
and pens (marker pens and ballpoint pens).

One limitation of the current system is that the input must be vectorized 2D
strokes, which is difficult for non-professional users. In the future, we are interested
in developing an interface that extracts strokes by watching a human demonstration.
Also, the size of the 2D strokes must fit the workspace of the robot, Or else a nearby
point cannot be found, and the system will report a failure. We are interested in

solving this problem using dual-arm robots [I14] and regrasp [I15] in the future.

Appendix

Comparsion of projection step

We have to iteratively estimate local geometries to interpolate the point cloud and find
the next s;1. The iteration is time-consuming and may lead to accumulated errors.
Compared to it, a global parametric surface could help to avoid local iterations and be
more efficient. Thus, we studied the performance of global estimation-based mapping
methods. The global surface allows us to carry out differential computations and
measure the deformation using geodesic distances.

Specifically, we implemented two kinds of global geometries. The first one followed
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Figure 3.23: Global surfaces. (a) A point cloud. (b) A global parametric surface
rebuilt using the RBF method. (b) A global numerical surface rebuilt using the ball-
pivoting method.

Carr’s work [I08] and modeled a point cloud using Radial Basis Functions (RBF).
Fig. 3.23(b) shows the modeling result of this method. The second one is a numerical
one that rebuilds the mesh model using ball pivoting [I09] but does not return an
explicit parametric surface. Fig. |3.23(c) shows the modeling result of the second
method.

Based on the surfaces, we carried out more experiments to compare its perfor-
mance with other methods. The results are shown in Fig. [3.24] The figure uses the
point cloud of a helmet to compare both local estimation-based methods and global
estimation-based methods. The input to these methods is the helmet point cloud
shown in Fig. [3.23(a). The first three columns are the results of El-based methods.
Each specific column uses a different local geometry for estimation. The last two
columns are the results of global surface-based methods. The two specific columns
use global surfaces estimated using RBF and ball-pivoting respectively. The different
rows of the figure show the results under different stroke step length (distance be-
tween two adjacent ¢; and ¢; 1, as was shown in Fig. [3.24). The stroke step length
CZTi_H) is set to 1, 2, 5, 10, 20 mm from top to bottom in each column to compare the
influence of the different algorithms to stoke deformation under the same mapping
method. The dashed box in the top-right corner illustrates the 2D strokes under the
different stroke lengths for readers’ convenience. By observing the graphical results,
we can find the methods do not have a large difference when the stroke step length is

small, as shown by the first row in the chart. However, the results of the EI methods
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Estimated Implementation (EI) Global Surface
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Figure 3.24: Mapping a grid on a helmet (point cloud) using the metrological methods.
Errors of the results change with the length between adjacent points in strokes (stroke
step length). From top to bottom: The stroke step lengths are set to 1, 2, 5, 10, 20
mm respectively. From left to right: Different mapping methods. The chart on the
right shows the maximum error curves of the various methods under the changing
stroke length.

degenerate significantly as the stroke step length increases. At 20 mm, the mapped

grids almost lose their original shapes.

The maximum error curves of the various methods under the changing stroke
length are shown in the right chart of the same figure. Same to our conclusion from
the graphical observation, the projection error increases together with the increasing
stroke step length. The increasing tendency is more significant in the EI methods.
On the other hand, all methods have satisfying precision when the stroke step length
is small, i.e. 1-2 mm. Especially, the EI-P and G-RBF methods have even better
performance. Considering that we will always use a small step length (2 mm) in our
implementation and the EI-P method is much faster compared to the others, we used

EI-P in our real-world experiments.
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An Optimization-based Planner

The reasoning and planning method presented in the main text requires that the
pen poses are aligned with surface normals. The method is fast but finds fewer
solutions since constraining the pen pose to be along the normal direction is a very
strong condition that highly reduces the solution space. In this appendix, we present
an FK-based optimization solver as an alternative for it. The solver has explicitly
defined constraints. It allows us to relax constraints and produce a drawing path that
is smooth, has less motor action, but meanwhile does not restrict pen poses exactly
to surface normal.

The optimization solver treats the 3D drawing as an FK-based optimization prob-

lem considering the following goals and constraints.

]glfll (@1 — )" (@11 — @0) (3.6a)

S.t. qdi1 = [QZQH, qil—l-l? ooy CI?+1]T
qry € 10,05,k €{0,1,...,d} (3.6b)
Div1, Biv1, {l}f}m, lf+1 = fk(q;41) (3.6¢)
(Pit1 — Si+1)T(pi+l —8it1) <€ (3.6d)
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acos( )< ¢ (3.6e)
[ Rir1(2)]] - [[mi1]|

min(dist(l},,,0)) > &,

VI € {l}}it1,min(dist(l}, 0)) > &, (3.6f)

Here, we set the optimization goal to be minimizing the changes of joint angles
between every two adjacent arm configurations. The notation g,,; denotes an arm
configuration at the i+1th drawing point. It includes d elements, which respectively
indicate the joint angle of each degree of freedom. The joint angles must meet the
work range limits, as shown by equation ([3.6b). The forward kinematics function
(fk() in equation (3.6d)) finds the pen tip position p,,,, pen’s rotation matrix R;1,
and the vectors of the robot links ({I7}i11, a set of vectors) and the grasped pen (17, |,

a single vector). The distance between the pen tip position and a mapped drawing
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Surface/
Obstacle

Figure 3.25: Some of the constraints for optimization-based planning. (a) Pen tip
position constraint. (b) Pen pose constraint. (c¢) Collision constraint.

point must be smaller than a threshold offset €, as expressed by equation and
also the illustration in Fig. |3.25(a). The angle between the held pen and the drawing
point’s surface normal must be smaller than a threshold angle ¢, as expressed by
equation and the illustration in Fig. [3.25(b). Here, we define the local x
direction of a pen to be its main axis (the axis points from a pen tip to a pen end).
Thus R;;1(z) (the z component of the pen’s rotation matrix) is used to carry out
the computation. The obstacle avoidance constraint is taken into account by limiting
the distances between 17, and obstacles O, and also all I; in {I}};;; and obstacles
O. Fig. m(c) illustrates the constraint. Especially for 17, ,, the pen tip is ignored
since it must contact the target surface.

The following tasks and results compare the IK-based method introduced in the
main text and this optimization-based alternative. The task settings and results
are shown in Fig. [3.26”, The first task requires drawing a circle and a star on
the inner surface of a plastic cylindrical bucket. The second task requires drawing
a circle on the inner corner of a rectangular glass tank. The detailed geometric
information of the objects and the success rate, average time costs, and average joint

displacements of the planned motion are shown in black text in Table[3.6l For readers’

9We use transparent objects for better visualization. The poses of these objects, together with
their mesh models, are pre-specified in the program.
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Figure 3.26: Task settings and results of drawing on concave surfaces. (a.1-3) Draw
a circle and a star inside a cylinder. (b.1-2) Draw a circle on the inner corner of a
tank.

convenience, we also show the comparison with convex objects (cylinder and helmet)
in the second part of the table. For the 62 pre-annotated grasps, the planner finds
fewer successful candidates for the concave objects, indicating the concave problems
are more constrained. Meanwhile, the average time costs become smaller since the
constraints reduce the search space. The execution results of these tasks can be found

in the supplementary vided™|

19The optimization-based method has two drawbacks. The first one is speed. Table shows
that an optimization-based method takes more than 200s to find a solution. The second drawback
is the collision or the measurement between the pen/robot and the surrounding obstacles. We
have to simplify the pen/robot models into vectors and measure the distance between an obstacle
surface and the vectors to ensure the metric functions are differentiable. On the other hand, the
optimization-based method has advantages in that it is more complete and can find the solution for
tasks that are not solvable by the IK-based method (i.e. the “Tank” task in the table). We thus
leave it to a practitioner to decide which method to use.
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Table 3.6: Concave Tasks and Comparison

Convex Object

Cylinder Helmet
Opt-based Opt-based
Volume (mm) 100 x 100 x 50 166 x 199 x 72
Size (mm) 40 x 40 40 x 40
# Pen Poses 106 370
Success Rate 40/62 47/62
Avg. Time (s) 208.20 704.61
Avg. Jnt. Mov. (°) 250.65 790.48
Concave Object
Bucket Tank
Opt-based Opt-based
Volume (mm) 230 x 230 x 230 600 x 300 x 360
Size (mm) 60 x 60 60 x 60
# Pen Poses 84 129
Success Rate 30/62 17/62
Avg. Time (s) 208.40 293.57
Avg. Jnt. Mov. (°) 238.67 129.37

" Meanings of items: # Pen Poses - Number of Pen Poses; Avg. Jnt.
Mov. - Average Joint Movement.

Experiments using Ballpen

The proposed system can also be adapted to other types of pens. Some supplementary

experiments are provided in this subsection.

We are using the F/T sensor embedded at the wrist of a Universal Robots e-series
manipulator for the experiments. The precision of the F/T sensor is 3.5 N in force
and 0.10 Nm in torque. The resolution is around 1.0 N in force and 0.02 Nm in
torque. The precision, we would say, is a big large for drawing tasks. For this reason,
we chose a strong pen to carry out the experiments. Also, since we have to perform

experiments repeatedly, we chose to use a non-permanent marker pen with a soft tip
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in our study.

In practice, our system is not limited to the selected pen type. However, due
to the limitation of the F/T sensor’s precision, it remains advisable to use a strong
one. Fig. shows an example where our robot uses a ballpoint pen to draw on a
piece of paper wrapped on a wooden handle. The ballpoint pen is still strong enough
for the F/T sensor to control. A video clip about using the ballpoint pen has been
included in the newly submitted video supplementary. On the other hand, if a robot
has a high-performance F/T sensor, a weaker pen should definitely work. Right now,
we do not have a high-precision F/T sensor to demonstrate this point, but we hope
we can show some interesting results in the future.

The planning needs to be tuned a bit to make it applicable to pens with particular
mechanisms. For example, the ballpoint pen must be moved with a considerable speed
and smaller pressure force to make sure the ball at the pen tip rolls around the contact

point and the ink is firmly transferred to the surface.

(@) | (b)

Figure 3.27: Drawing with a ballpoint pen on a piece of paper wrapped on a wooden
handle. (a) A circle. (b) A rose spiral.

Error Recovery by Skipping Failed Positions

The error recovery method presented in the main text can help to maintain continuity
and also help to correct drawing poses. However, the lengths of forward and backward
searches matter a lot. For a surface with a repeated pattern, e.g. the jagged surface

shown in our supplementary video, a large search length may lead the stroke to jump
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to the next repetition, and the system will get trapped in a repeated failure. In
this part of the appendix, we present an alternative error recovery method. In this
method, we close the loop by skipping the failed positions. In case of slippage, the
method will pause the current motion, pull the pen up, and move to the next drawing
point to start a new iteration.

Fig. [3.28 shows the results of drawing a circle across a box edge using this method.
It includes two cases of errors. The first one has the same error as that of Fig. 22(c).
The second one is a side displacement error (translation in the global x axis) where
the pen encounters a lost section during drawing. The charts show the forces along
pen’s local x (red), y (green), z (blue) axes. At the points marked by the yellow
vertical lines, the error detector finds large differences. The robot arm moves the pen
away from the target surface, gives up a current drawing point, and switches to a
next point to recover from the errors. The recovery is triggered four times in the task
shown in Fig. [3.28|(a) and five times in the task shown in Fig. [3.28(b).

A shortage of this alternative method is that it gives up the current drawing point
in case of slippage and moves on to the next point for recovery. This policy may
result in broken drawings. On the other hand, the shortage can also be an advantage.
It provides a chance to skip a surface section and has the merit of dealing with bad
surface sections (e.g. scratched, dirty, lost sections, narrow gaps, etc.). For example
in the second case shown in Fig. [3.28 the method presented in the main text will get
trapped at the lost point to avoid breaking lines. Contrarily, the alternative method
skips to the next reachable surface to continue drawing. Practitioners may use the
method in the main text if continuity is most important to them. They may also use
the alternative method if their surfaces have defects or discontinuity and would like

to overlook the bad surface sections.
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Figure 3.28: Drawing a circle across the edge of a box with the alternative error
recovery method. The robots detected errors (as shown labeled by the yellow vertical
lines in the force charts) and recovered from the errors by moving ahead to the next
drawing point. Like previous figures, the charts show the forces along the pen’s local
x (red), y (green), z (blue) axes. (a) Results in the presence of a forward displacement
error (the same as Fig. [3.21]c)). (b) Result in the presence of a side displacement
error (translation in the global x axis).



Chapter 4

Next Best View Planning for

Metal Plate Reconstruction

In this section, we present a novel approach for planning the Next Best Views (NBV)
of an object so that a depth camera can collect the object’s surface point cloud and
reconstruct its 3D model with a small number of consequent views. Our focus is
especially on thin and curved metal plates, and we use a robot manipulator and an
externally installed stationary depth sensor as the experimental system. The targeted
objects have shiny and flat surfaces, which leads to noisy point cloud data and low
guidance in the surface normal for completion. To overcome these challenges, we
propose using a Point cloud Completion Network (PCN) to find heuristics for NBV
or Next Best robot Configuration (NBC) optimization. Unlike previous methods,
our approach predicts NBV by considering a holistic view of the object predicted by
neural networks, which is not limited by the local information captured by the sensors
and is, therefore, robust to deficiencies in known point cloud data and normal. We
conducted simulation and real-world experiments to evaluate the proposed method’s
performance. Results show that the proposed method efficiently solves the NBV

problems and can satisfactorily model thin and curved metal plates.
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3D Scanner

+ New Capture |

NBV/NBC
Estimation

Figure 4.1: A robot that obtains the shape of a hand-held thin metal plate by observ-
ing it from NBV /NBCs obtained based on shape completion learning. The thin metal
plate has a shiny and flat surface, making it difficult to infer optimal NBVs. This
work solves the problem by using a point cloud completion network as a heuristic for
NBV/NBC optimization.

4.1 Introduction

This section studies using a robot manipulator and a stationary depth sensor to obtain
a metal plate’s 3D mesh model with a minimal number of views. The challenge in
obtaining the model of such objects lies in their shiny and flat surface, which leads
to noisy point cloud data and low surface normal guidance for determining the next
viewpoints. We propose using a point cloud completion network to provide heuristics
for NBV /NBC optimization, thus overcoming the challenge. Compared with existing
methods, our approach predicts NBV/NBC based on a holistic view of the object
predicted using PCN. It is not limited by the local information captured by the
sensors and is, therefore, suitable for thin plates with either insigniﬁcantﬂ or complex
featured’]

nsignificant features cannot provide enough information for surface normal estimation. For
example, when only the edge of a plate is captured, the point cloud forms a curved or line-like shape
with inadequate 2D variance. Using Principal Component Analysis (PCA) to estimate the normal
of such point clouds may lead to incorrect results.

2Complex features have intricate local geometry and will lead to an overabundance of point clouds
and thus noisy normal estimation.
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Previously, researchers proposed using a robot to scan an object’s 3D model auto-
matically. Robots could be configured as actuators to grasp a target object and show
it to external cameras for scanning. They could also be equipped with hand-eye sys-
tems to observe objects on a table. In both cases, the robot must decide how to move
itself to obtain the necessary views for 3D scanning [116][117], which is known as the
NBV/NBC problem. Remarkably, researchers proposed using NBV /NBC planning
to determine the object or camera poses that lead to an optimal amount of infor-
mation about the unknown object. However, state-of-the-art NBV/NBC planners
were based on local information. If the local information is insignificant, noisy, or
noncontinuous, it may lead to a failure in NBV/NBC planning. In this work, we
propose using a point cloud completion-based approach to learn the global geometry
and estimate the confidence and NBV/NBC considering the learned global informa-
tion. The proposed method provides more accurate and efficient view-planning results
than previous methods. The NBV/NBCs can be formulated as the same problem and

optimized in a continuous multi-DoF space without a significant change.

Fig. illustrates the workflow of the proposed method. We especially assumed
a thin, curved metal plate as the target object and a robot manipulator with an
external stationary depth sensor as the collection system. The robot manipulator
grasps the metal plate and reposes it for the camera to collect data from different
viewpoints. The proposed NBV/NBC planning method finds the optimal robot con-
figuration for observation, considering the confidence of the learned complete point
cloud. The difficulties in the NBV/NBC estimation of such thin metal plates are
deficiencies caused by: (1) Reflection and noisy point cloud data; (2) Erroneous nor-
mal estimation; (3) Self-occlusion. The approach proposed in this work utilizes a
PCN trained using synthesized data as the heuristic for NBV/NBC optimization. It
is robust to the deficiencies mentioned above and is thus more advantageous than

state-of-the-art methods when applied to metal plates.

We evaluate the system using simulated and real-world tasks in the experimental
section. The results show that the proposed method can find NBV/NBC solutions
more accurately and efficiently compared to baseline methods. The trained PCN

had satisfying generalizability. The optimization algorithms were thus flexible and
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applicable to various metal plates without a significant change.

This section’s organization is as follows. Section 4.2 reviews related work. Section
presents a schematic overview of the proposed method. Section shows
algorithmic details of each essential component of the proposed system. Section
presents experiments and analysis. Conclusions and future work are drawn and
discussed in Section .71

4.2 Related Work

4.2.1 Next Best View

Early research on NBV can be traced back to [I18], which determines good “next best
views” to cover a given model. Wong et al. [119] studied a volumetric representa-
tion of the model after a 2D view was obtained to complete the NBV reconstruction
task. Mendoza et al. [120] proposed a supervised learning-based scheme for NBV
planning in an end-to-end manner, which predicts the sensor pose from predefined
candidates. The above approaches represent searching space by sampling viewpoints
over a cylinder or sphere model. They are in a low-dimensional space and have diffi-
culties collecting every corner of an object with complex geometry. To overcome the
difficulties, researchers have proposed using sensors mounted on robot arms [116] [121],
or objects grasped by robot arms [117][122] to capture the surfaces not visible in low
dimensional searching space. Researchers have explored using prior knowledge to im-
prove the estimation efficiency of NBVs. For example, Kay et al. [123] considered
the importance of objects in the environment using semantic segmentation to inform
UAV navigation. Wu et al. [124] leveraged the prior knowledge of plant structure to
improve the effectiveness of the NBV algorithm for plant phenotyping.

The existed works are generally based on surface boundary [116][117] or volumetric
analysis [123][124][125]. However, these approaches have their respective limitations
when applied to curved, thin metal plates. Surface boundary-based approaches can

be misled by the plates’ surface-like behavior and inherent boundaries. They also
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struggle with noisy or sparse point cloud data, where reliable surface normal estima-
tion is difficult. On the other hand, volumetric analysis discretizes the 3D space into
a grid and thus can not precisely represent fine details. This limitation is significant
in our context, where the task is highly sensitive to the surface’s normal direction.
The system in this work comprises a robot manipulator and an external station-
ary depth sensor. We develop a complete shape learning-based NBV/NBC planning
method to help determine the next camera view point or robot configuration for ob-
servation. The method is more advantageous than previous ones as it is not limited
to local information captured by the sensors and is suitable for objects with uncertain

features.

4.2.2 3D Shape Completion

The goal of 3D shape completion is to generate a complete 3D model from a par-
tial observation. It plays an important role in robotic tasks [124][126]. Previously,
Choy et al. [127] proposed an amortized maximum likelihood approach for 3D shape
completion. Stutz et al. [128] learned a mapping from partial observations to shape
primitives using extensive training data collection. Rock et al. [129] proposed an
exemplar-based approach that retrieves a similar model from a training set based
on an input depth image and deforms the retrieved model to approximate the input
better. Litany et al. [130] used a variational autoencoder with graph convolutional
operations to learn a latent space for complete shapes. They perform optimization
in the latent space to iteratively deform the shape and align it with a partial input.
Yuan et al. [I3I] presented a point cloud completion model that used a PointNet-
based encoder to extract global features and folding operations to up-sample coarse
predictions. Like PCN, Tchapmi [I32] proposed the TopNet, which essentially em-
ployed a tree-structured decoder to predict complete shapes.

The problem in this work requires iteratively collecting and predicting partial point
clouds. Consequently, we use the point cloud-based 3D shape completion to predict
complete point cloud data and then use the predicted data to estimate NBV /NBCs
parameters heuristically. We primarily use the PCN model [I31] for the iterative
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shape completion and prediction. The model allows our proposed method to effec-
tively avoid issues related to local features and identify the optimal viewpoint from
a global perspective. It is robust to deficiencies caused by reflection and noisy point
cloud data, erroneous normal estimation, self-occlusion, etc., and is thus more advan-

tageous than state-of-the-art methods.

4.3 Schematic View of the Proposed Method

Fig. presents the schematic diagram of the proposed method. The workflow
starts with a deformed metal plate held in a robot’s hand. An external stationary
3D scanner will capture a partial view of the point cloud and send it to the “Point
Completion Network” for prediction. The partial view is highlighted as the “Partial
Point Cloud” blue box in the diagram. The “Point Completion Network” will predict
a complete point cloud, as denoted by the “Complete Point Cloud” green box in
the diagram. It will be combined with the “Partial Point Cloud” and fed to the
“NBV/NBC Optimization” component to estimate the confidence of the point cloud
and the next robot configuration for holding the target object. Note that we used
“NBV/NBC Optimization” as the title since the developed approach applies to the
NBYV problem and can also be used for solving the NBC of a robot to move an object
for the next best view. The NBV and NBC problems share essentially the same
formulation, except that additional robotic constraints must be included, and a few
optimization parameters must be replaced.

If the combined point cloud is confident enough, the “NBV/NBC Optimization”
component will produce a signal to stop the routine, switch to the “Mesh Recon-
struction” module, and build a mesh model using the received point cloud as the
final output. Vice verse, the workflow will be directed to the “Robot Execution”
block to move the object to the next best view pose and then restart the capturing
and prediction routine.

Details of the “Point Completion Network” and “NBV/NBC Optimization” will
be respectively presented in the following sections. The “Mesh Reconstruction” is not

the primary concern. It will only be briefly mentioned in the experimental section.
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Figure 4.2: Schematic diagram of the proposed method. The blue “Partial Point
Cloud” represents a single-view point cloud in the beginning and a multi-view point
cloud starting from the second loop. We train a point completion neural network using
both synthesized single-view and multi-view point clouds to predict the NBV /NBCs.

4.4 Training the Point Cloud Completion Network

We use the Point Completion Network (PCN) proposed in [131] to learn the complete
geometry. PCN is an encoder-decoder network. It encodes the input point cloud
as a single global feature vector and reconstructs the completed point cloud by a
FoldingNet [133] decoder. The algorithmic details can be referred to [131][134]. In
this section, we focus on the training process and present how we prepare the data
needed to train a PCN for metal plate objects.

We use synthetic shapes to create a large-scale dataset. The dataset contains single
and multi-view partial point clouds and their corresponding complete ground-truth.
It is used to train the PCN model. Particularly, the synthetic shapes are created
using flat plates, as shown in Fig. [.3] We randomize the w, h, and [ values of
the plates and use B-spline functions to transform the randomized plates into curved
shapes. Then, we use the Poisson disk sampling method [I35] to sample the surfaces

and create ground-truth point cloudsﬂ We capture partial views of the synthesized

3The thickness h is kept when creating partial-view point clouds but ignored when creating the
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curved shapes and include occlusions, noises, and loss to the views to create the partial
point clouds. The partial point clouds approximate the data collected by sensors. We
also align several partial point clouds of a single object with random transitional and
rotational errors to generate multi-view partial point cloud data. The multi-view

partial point cloud data approximate the point clouds collected after a sequence of

views.
| ! |
|
-
h . . o
Single-View Multi-View
/.% Mesh Model - PCD 1 PCD 1 + PCD x
W Ep+
PCD 2 ; PCD2+ ... + ..
Ground Truth

Figure 4.3: Synthetic datasets created based on flat plates. We randomize w, h, and
[ values to generate a variety of flat bases and then transform the bases into curved
shapes using B-splines. The ground truth is obtained by sampling the surface of the
curved shapes. Algorithmic details for creating single and multi-view partial point
clouds are shown in Fig.

ground-truth data. The goal is to let the PCN model predict a complete point cloud that is thin
and irrelevant to thickness. Each region has a distinct normal direction, which helps the planner
find an optimal solution while staying unaffected by complex local geometry.
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Fig. illustrates the routine for creating partial-view point clouds. First, we use
a hyperparameter 1 to determine visibility. Points are considered visible if the angle
between the surface normal of the points and the line of sight is smaller than . Fig.
(b.iii) exemplifies two partial point clouds generated using different ). Higher v
values will result in more visible points. Also, since real point clouds usually have
non-uniform sampling density, noises, outliers, missing data, and misalignment [130],
we use the process shown in Fig. [4.4(c.i-c.iii) to include these disturbances and
reduce the sim-to-real gap. The processes include (1) removing points randomly to
approximate missing data, (2) adding random noisy points, and (3) applying random

Gaussian noises to existing points.

(a) Random 3D model; (b) Generate Partial-View Point Cloud
Random Rotation (b.i) “v% (b.iii. 1)

./ N \g Y =7/2
q ;’ ;D " 0 1 (biii2)
(b.11) ; :
Chi f ¢ und y I /2 /_ \
(C) Re_sample theasrﬁreli (l)ine ofusligfli w - 7T/4

(c.1) (c. 1) ,»mw m‘ (c.ii1) R

& N‘\ = aF %%
{

Add Random AddRandom ~  Add Gaussian
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Figure 4.4: (a) Randomly select a curved shape with a random pose. (b) Generate
raw partial-view point clouds considering the camera’s line of sight, surface normal,
and a threshold angle ¢. (b.i) Definition of 1/ (Angle between the line of sight and
surface normal) (b.ii) Changes of ¢ under the same line of sight. (b.iii.1,2) Results
under different ¢/ values. (c) Re-sample the raw clouds by including occlusions and
noises.

We use both the single and multi-view partial point clouds and their corresponding
ground-truth point clouds as the input and output for training the PCN. The Earth
Mover’s Distance (EMD) [137] is used as the loss during the training. The definition
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of EMD is as follows:

EMD(S, S*) = = min o Z |z — ()], - (4.1)

Here, S is the input point cloud. S* is the predicted complete point cloud. The
definition finds a bijection ¢ : S — S* that minimizes the average distance between

corresponding points of the two point clouds.

4.5 NBYV And NBC Optimization

This section presents the algorithmic details of the “NBV/NBC Optimization” com-
ponent. The algorithms comprise two steps introduced in the following subsections.
The first step compares the partial-view point cloud with the PCN output and pre-
pares a list of candidate regions for further observation. The second step determines
the NBV/NBC using optimization.

4.5.1 Confidence Estimation

We estimate the confidence regions using the distance between the input partial-view
point cloud and the predicted complete result. We use S to represent a partial-view
point cloud and S* to represent a completed result. S* is downsampled to n regions.
They are denoted by the center points: M = {p, P, --,P,, }. For each center
point p,., we search for its neighbors in a denoised S set (where points that are far
from S* are removed) within a specified radius  and count the number of neighbors.
The number of neighbours is denoted as u(p,,). The number of neighbours for all
points is denoted as U = {u(p,,),w(p,,),---,u(p,,)}. The confidence of a region
(represented by its center pui) is computed by normalizing against U using:

u(p,,) — minl

= i 0<:<n. 4.2
cP) maxU —minlU + 1’ =t=n (42)
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C={cp,,) cP,,), - cp,, )} Camera

Figure 4.5: NBV example. (a) Confidence in color. (b) Optimize the rotation and
transition of the object to capture more low-confidence regions on the reconstructed
mesh model 2.

The ¢(p,,) on the left hand side denotes the confidence of p, . It is computed by
normalizing the number of each center point’s neighbors. A greater number of neigh-
bors correlates to higher confidence values. C = {c(p,,),c(p,,),---,c(p,,)} is a set
formed by all confidences.

Fig. W.5(a) visualizes the confidence using a random plate as an example. A
redder color in the illustration indicates a region that has a larger confidence score.
Inversely, a bluer color indicates a region with a smaller confidence score. The nor-
mals {n(p,,),n(p,,),---,n(p,,)} of these regions are denoted by arrows. They are
computed by applying Principal Component Analysis (PCA) to the queried neigh-

bors.

4.5.2 Formulation of the Optimization Problem

Note that, the NBV and NBC optimization are treated as two distinct processes.
Both of them are introduced to show that the proposed method is adept in both

scenarios: where the robot holds the camera or when the robot holds the object.

NBV

Based on the confidence acquired in the previous subsection, we formulate the NBV

estimation as the following optimization problem.
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max Gain(M,C,S) (4.3a)
s.t. x = (2,9, 2, 0z, Py, Pz) (4.3b)
S*Nfov(x) # 0 (4.3¢)

P, 90y7 Pz c [_7‘-7 ﬂ-] (43d)

S = f(x,Q) (4.3¢)

The goal of the optimization is to find a viewpoint that leads to a larger gain in

confidence. The following constraints are considered in the formulation:
1. Camera Field of View (FOV): The object should stay in the camera’s FOV.
2. Occlusion: Both self-occlusion and robot occlusion should be considered.

3. Visibility: The surface is deemed well captured only when the angle between
the sensor’s line of sight and the surface normal is below a certain threshold

value.

The above equation corresponds to item 1). Equation corresponds to
item 2). x is a vector that represents the NBV, with its six elements denoting trans-
lation and rotation, respectively. The function fov(-) represents the camera’s viewing
frustum for a given pose. f(-) is a function that captures the partial-view point cloud
of a given mesh model using the ray-casting method. With a given viewpoint, a set
of rays are projected towards the mesh models visible within the viewing frustum.
Each of these rays undergoes an intersection test with the mesh. If an intersection
occurs, the initial point of intersection is recorded. Its result is assigned to S.Qisa
mesh model reconstructed using S*.

The optimization goal Gain(-) is defined by the pseudo-code shown in Algorithm
Bl The algorithm’s input includes the set of region centers, the set of confidence scores
for the regions, a new partial-view point cloud captured using equation , and
a user-defined threshold confidence value for filtering regions. The algorithm checks

the visibility of each region (corresponds to item 3)). The smaller angle between the
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surface normal and the line of sight means that the surface is largely facing towards
the viewpoint. Recognizing the inherent ambiguity in the directionality of a surface’s
normal-owing to it having two potential normal directions that are, for our purpose,
functionally equivalent-we conceptualize the normal more as a line rather than a
vector with a specific direction. Thus if the acute angle between n(p,,e,) and the
line of sight (M) is within a range of [0, 9], the point pyuery is considered to be
successfully captured (lines 9-10). The output value g sums up the gained confidence
when a new pquery is captured. Visible regions with lower confidence score c(pm)
contribute to higher gain. It thus helps find an @ that brings more unseen object

regions into the camera view.

Algorithm 3: Computing the Gain in Coverage
Input: M, a set of region centers;
C, a set of confidence scores for the regions;
S, a newly captured partial-view point cloud;
Output: g, total gain in S’s coverage

1 begin

2 g+ 0

3 for i € (1,2,...,n) do

4 if ¢(p,,,) > € then

5 ‘ continue // € is a given threshold

6 Q < Query for the neighbors of p,. from S within a given radius r
7 for p. ..y € Q do

—_—
‘pcampquery 'n (pquery) |

8 o < acos( )
_||pcampquery|| ’ ||n(pquery>||
9 if o € [0,¢] then
10 | g+ g+ (1—clpy))
11 return g
NBC

Next, by replacing the optimization parameters with joint angles g, the proposed

optimization method can also help solve the next best robot configuration problem:

max Gain(M,C, S) (4.4a)
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5., q= g0, 91, qa]" (4.4b)
a € 100,67,k € {0.1,....d) (4.4¢)

Py Ry, = tk(q) (4.4d)

8" N £0V([Peam: Ream]) # 0 (4.4¢)

S = f([Peam> Ream], rot([py, Rnl, ) N ) \ (4.4f)

Here, d is the number of arm joints; 6, and 6, are joint angle limits. p, and
Ry, are the position and rotation of the robot hand. p.,, and R, are constant
and represent the camera pose. rot(a,b) is a function that transforms b using a.
), is the mesh model of the robot. Thus equation additionally considers the

constraint for robot occlusions.

4.5.3 Optimization Solver and Termination Criteria

We use the Constrained Optimization BY Linear Approximation (COBYLA) solver
to solve the optimization problems. The solver is typically used when a problem
is non-smooth or the gradient of the objective function is not known. The targeted
tasks exactly meet the conditions of the COBYLA solver. The optimization problems
will be solved repeatedly each time a newly captured partial view is included until
a termination criterion is met. Defining termination is difficult since there is no
ground truth. We thus used a threshold: If the minimum value of set U is larger
than a threshold value, the input point cloud is considered complete. Otherwise, the

algorithm proceeds to the next iteration.

4.6 Experiments and Analysis

In this section, we present the experiments used to examine the performance of the
proposed method. The experimental platform comprised a robot arm (Ufactory xArm
7) with a two-finger parallel gripper and a stationary depth sensor (Photoneo PhoXi
3D Scanner M with 1032772 resolution) fixed above it. We used a PC with an Intel
Core i7-10700 CPU, RTX 3090 GPU, and 16 GB memory to carry out the learning
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Table 4.1: Information of the Dataset

Type # Curve # Point Coverage

Y Shapes Clouds max. min. mean std.
Single-View 5k 50k 096 0.05 0.58 0.15
Multi-View 5k 50k 1.0 0.15 0.87 0.10

* Meanings of abbreviations: # Curved Shapes - Number of
randomly generated curved shapes; # Point Clouds - Number
of point clouds for respective single or multiple partial views.

and optimization processes. We performed quantitative studies and analysis in both
simulation and real-world using the robot and PC platform. Two types of metal plates
are evaluated: Curve Flat Plates (CFP) and Curved Linear Array Plates (CLAP).
Their respective single or multi-view partial point clouds are denoted as P-CFP and

P-CLAP.

4.6.1 Point Cloud Completion Network

First, we evaluated the performance of the PCN trained using point cloud data created
by the proposed method. We first generated 5000 flat plates with w x [ x h randomized
from a range of (200£50)x(10£5)x(2+1) [mm], and then transformed them into
curved shapes using B-spline with degrees from 3 to 5. The point cloud data used
for training was sampled from the 5000 synthesized curved shapes (10 partial point
clouds for each shape). Detailed information about the point cloud data is shown in
Table [4.1]

We used the P-CFP created using the methods shown in Section [4.4] and partial
point clouds created based on a new type of linear array plates to test the performance
of the trained PCN. The new linear array plates were essentially a sequence of repeated
geometric elements. Notably, we used the two geometric elements shown in Fig.
and respectively morphed them into curved shapes using RBF morphing [138]. The
control points for the RBF morphing of the repeated geometric elements are randomly

moved in a range of 20 [mm]. Although the linear array plates remain thin and long
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Figure 4.6: Two Curved Linear Array Plates (CLAPs). (a) CLAP created using
circular elements. (b) CLAP created using ring elements.

like the flat ones, they had complicated local features, and the point clouds created
based on them were significantly different. Such point clouds help understand if the
trained model was generalizable to point clouds with complicated variations.

Table presents the testing results. We used the P-CFP data for training and
tested the trained model using both single-view and multi-view P-CFP and P-CLAP
data. In order to better compare the performance difference, we used the Chamfer
Distance (CD) [I39] and Earth Mover’s Distance (EMD) [137] to quantify the testing
results. The CD value represents the level of coincidence between the points in the
predicted cloud and those in the ground truth cloud. A lower CD value indicates
a higher degree of coincidence. On the other hand, the EMD value reflects the
completeness of the predicted point clouds when compared to the ground truth. A
lower EMD value indicates greater coverage of the ground truth clouds. The results in
the table show that the trained model had similar performance on either the P-CFP
or P-CLAP data. It had satisfying generalizability and was applicable to point clouds
created using curved linear array plates. The results also show that the accuracy of
the prediction results for multi-view point clouds was higher than single-view ones,
which implies that higher surface coverage leads to better estimation results, and
the negative influence of registration errors was insignificant in the presence of high
surface coverage.

Some examples of the results are visualized in Fig. Interested readers may

examine it for a detailed comparison.
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Table 4.2: Performance of the Trained PCN Model

‘ Testing Data
Training Data ‘ P-CFP P-CLAP
Type
| CD EMD CD EMD
| Single-View 2.62 6.78 212 7.53
| Multi-View  1.75  4.02 181 6.69

P-CFP (35k+35k)

* The digits in the parenthesis of the training data column
indicate the number of single-view and multi-view point clouds,
respectively. A lower CD value indicates a higher degree of
coincidence between the points in the predicted point clouds
and those in the ground truth. A lower EMD value indicates a
more excellent coverage on the ground truth clouds.

Input Output Ground Truth

CD/EMD 2.96/9.54

CD/EMD 2.05/6.90

(b)

CD/EMD 6.14/7.89

Figure 4.7: Visualization of some PCN outputs. (a) A P-CFP example. (b, ¢) Two
P-CLAP examples.
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4.6.2 Simulation Results

Second, we evaluated the effectiveness of the proposed NBV /NBC optimization method
and compared it with several baseline methods in simulation. The target objects used
in the evaluation and comparison included 200 random CFP shapes and 200 random
CLAP shapes, respectively. The PCN model trained in the previous subsection was
used in the evaluation. Two indicators, namely the average number of captures and
success rates, were used to quantify the effectiveness values. The average number of
captures indicates the number of views needed to achieve surface coverage above a
particular threshold value. It is computed by summing up the number of captures
across all trials and then dividing the sum by the total number of trials conducted.
The success rates indicate how well an object can be adequately observed (with sur-
face coverage larger than a particular threshold value) within a pre-defined number
of views (6 for NBV and 10 for NBC).

NBV

We compared the following methods to understand the advantages and disadvantages

of the proposed one:

e Baseline Method 1: Randomize a matrix by sampling rotations around the

vector of a level-1 icosphere.

e Baseline Method 2: Local dimensional information-based method developed by
Kobayashi et al. [117].

e Baseline Method 3: Use the normal of the point p,. with the minimum con-

fidence score as the viewing direction, and calculate the rotation matrix by

aligning the NBV and camera’s line of sight.

e Proposed Method: The proposed direct optimization-based method.

Fig. [4.§(a.i-ii) illustrate the results of these methods. The diagrams in the first
row of the figure show the statistical change in surface coverage as the views in-

creased. Fach box represents a summary of all 200 trials. When employing prior
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Table 4.3: Average Number of Captures and Success Rate of NBV Estimation Algo-
rithms.

| (a) CFP (b-c) CLAP

‘ # Captures Success Rate ‘ # Captures Success Rate
Baseline 1 2.88 199/200 2.24 200/200
Baseline 2 3.23 177/200 2.52 183/200
Baseline 3 2.59 189/200 2.14 200/200
Proposed 2.36 200/200 2.11 200/200

* Meanings of abbreviations: # Captures - Average number of captures;
Success Rate - Number of trials that reach surface coverage of more than
0.95 within 6 times of captures / Total number of trials.

knowledge (as indicated by the green and red boxes), the average increase in surface
coverage shows the most substantial improvement in the second view. Notably, the
optimization-based method demonstrates the most significant increase among the ap-
proaches considered. The diagrams in the second row show the number of objects
that were successfully observed (more than 95% coverage) as the view increased. A
large portion was successfully observed within two views using the proposed method.
It outperformed other methods for both CFP and CLAP. The previous method (Base-
line 2) had wrong normal estimations and, thus, a minor increase in surface coverage.
Baseline 3 considered the region with the lowest confidence but did not regard global
optimization. It is improved compared with the previous method but remains worse
than the optimization-based method. Detailed comparisons of these two methods
can be found in a supplementary file published together with this manuscript. On
average, CLAP tends to have fewer views than CFP. This could be attributed to the
fact that CLAP shapes have more complex local geometry, and their surface normal
can be more readily inferred. Table 4.3 shows the average number of views for all

successfully observed objects and the success rates.
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Table 4.4: Average Number of Captures and Success Rate of NBC Estimation Algo-
rithms.

| (a) CFP (b-c) CLAP

‘ # Captures Success Rate ‘ # Captures Success Rate
Baseline 1 7.34 104/200 3.60 193/200
Baseline 2 4.20 178/200 2.66 197/200
Baseline 3 3.89 179/200 2.61 195/200
Proposed 3.43 197/200 2.45 200/200

* Meanings of abbreviations: # Captures - Average number of captures;
Success Rate - Number of trials that reach surface coverage of more than
0.95 within 10 times of captures / Total number of trials.

NBC

We also evaluated the four methods by additionally considering robot configurations.
For the first three, we computed the NBC based on the predicted NBV using the
method presented in [II7]. In contrast, we did not have an intermediate NBV es-
timation process for the proposed method and optimized the robot joint values di-
rectly. The diagrams in Fig. [4.8|(b.i-ii) show the results of the NBC methods. Table
[4.4] shows the average number of views for all successfully observed objects and the
success rates. We can see from the results that the proposed method outperformed
the other methods. They confirmed a presupposition that more viewpoints were re-
quired to obtain NBCs as the participation of the robot caused occlusions. Baseline 1
which randomizes the viewpoint does not work due to these occlusions. The success
rates are also lower than the NBV results, as robotic kinematic constraints caused

additional failures.

4.6.3 Real-World Results

Third, we carried out experiments in the real world using the xArm 7 robot ma-
nipulator and five curved metal plates. Fig. [4.9 shows pictures of the five curved
plates. They were randomly handed over to the robot by humans. Fig. [4.10] shows

the results. The (a) to (e) rows in the figure correspond to the results for objects
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Figure 4.9: Five curved plates used in real-world experiments. (a) Aluminum CFP
1. (b) Aluminum CFP 2. (c¢) Aluminum CLAP with circular pattern. (d) Aluminum
CLAP with circular pattern and blue coating. (e) Titanium CLAP with ring pattern.

Fig. [1.9(a)-(e). We can see from the results that the robots moved the plates to
different poses and captured and stitched the partial views to finally reconstruct the
3D models. It took three views to reconstruct the 3D models of the objects in Fig.
4.9(a) and (c), and two views to reconstruct the 3D models of objects (b), (d), and
(e). The registration of partial-view point clouds is done by the AR markers fixed
on the robot hand. The results of the real-world experiments are coherent with the
simulation. They demonstrate that the proposed method can quickly capture enough
point cloud data and thus help efficiently obtain the object models. The method is
robust to noisy point cloud data and low guidance in surface normal and is suitable

for thin metal plates with either insignificant or complex features.

4.7 Conclusions

We proposed a point completion network-based NBV/NBC estimation method in
the section. Experimental results show that the proposed method is applicable to
various metal plates and can reach a high coverage with a small number of viewpoints.
The method is robust to objects with noisy surface properties and uncertain surface
normal. It can flexibly and robustly solve the NBV/NBC problems of thin metal
plates.
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(a) Original (b) Cross-section AZ
Mesh Model View
X
yl
, Control Points
(goal)

(c) Deformed
Mesh Model

Control Points (goal)

Figure 4.11: (a) Original mesh model. The control points (shown in yellow) are
sampled on the original mesh model with random intersections on cross-sections that
are perpendicular to the xy-surface and paralleled to the yz-surface. (b) Cross-section
view of the change of the control points. (c) Deformed mesh model using RBF
morphing.

Appendix

Curved Linear Array Plate Generation

Mesh morphing techniques aim to change the shape, size, and orientation of the mesh
while preserving its properties and integrity as much as possible. Additionally, the
update of node positions usually requires less computational effort compared with
a full mesh regeneration. We adopt it to generate a large amount of curved linear
array plates (CLAP). Specifically, Radial Basis Functions (RBF) morphing [13§] is
used. It comes with two distinctive advantages that make it very flexible: it is mesh

independent and it allows node-wise precision [140].

Here we introduce the implementation details. With a given mesh model, we first

define control points on it. These points are sampled on cross-sections perpendicular
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to the zy-plane and parallel to the yz-plane, with four points taken from each cross-
section. Eight control points are sampled on cross-sections of the two ends of the
plates. The position of control points on the cross-sections in-between are randomized.
Fig. (a) presents these control points, marked in yellow. Next, we establish the
goal positions of these control points. Each group of four points on a cross-section is
treated as a group, where their translation is restricted to a maximum of 20 mm. In
addition, the rotations about the z, y, and z-axis are constrained to be less than 30°,
30°, and 5° respectively. These values were carefully chosen to seek a balance between
allowing significant deformation and preventing unrealistic outcomes. Overly large
values could distort the shape beyond practical limits and make the model unrealistic.
Fig. (b) shows the goal position of the control points (red). An exemplary

comparison of the mesh model before and after morphing is illustrated in (c).

Comparison with Previous Method

This work is an extension of our previous work [I17]. It was inspired by the following

limitations of the previous method:

e Surface Normal Estimation: The previous method was unsuitable for thin
objects due to incorrect estimations of surface normals on thin metal plates.
These incorrect estimations were often caused by noisy input or insignificant
local information. In this context, “insignificant” refers to scenarios where only
the edge of the plate is captured. In that case, the obtained point clouds form
a 2D curve instead of a 3D surface. Estimating the normal of the 2D curve is

challenging, as it provides insufficient 3D information.

e Noise Reduction: Our previous work lacked an efficient method to remove
outliers from the point cloud. Lacking such a method is particularly problematic
for metal plates since the reflective metal materials will cause the time-of-flight
(ToF) sensor to output a very noisy point cloud. Furthermore, the point cloud
of metal plates is relatively discrete compared to general objects, particularly
in the case of Curved Linear Array Plates (CLAPs). As a result, the outliers
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of these point clouds are difficult to remove using conventional clustering-based
methods.

e Termination Condition: The previous method defined the object as well-
captured using a confidence value computed by a dimension feature [I41]. In this
approach, continuous surfaces will have higher confidence, while non-continuous
sections will have lower confidence. It is unsuitable for thin plate tasks as the

objects have dominant non-continuous sections (edges).

®) Confidence Estimation 21d View Output

f,

Kobayashi et al.

\/\ (Baseline 2)
\ Coverage
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Figure 4.12: Performance of various NBV methods. (a) Input partial-view point cloud
(first capture). (b) Baseline 2 (previous method) has wrong normal estimation. (c)
Baseline 3 uses the region with the lowest confidence for NBV. The newly captured
point cloud can cover the specific region but fails to cover other low-confidence regions.
(d) The proposed optimization-based method can cover more low-confidence regions.
It achieves the highest improvement of surface coverage after the second scan.

Quantitative comparisons of the new method and the previous one are presented in
Section 4.6.2 of the main manuscript. Here we showcase several qualitative examples
in Fig. .12 We hope readers can get an intuitive view of performance through the
results.

Additionally, the real-world results can be observed in the supplementary video.
Fig. [4.13| shows the details of the results. Both algorithms use the same point cloud
shown in Fig. [1.13|a) as input. Fig. [£.13[(b) shows the NBV/NBC estimation results
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of the previous method and visualizes the point clouds after 3 time of scanning. The
result remains incomplete. Fig. c) is the result of the proposed method.

(a) Input (1%t View)

(b) Kobayashi et al.

(b.i.1)

Min. Confidence

Min. Confidence

“(b.i3)

(c) Ours
(ci.l)
Confidence < threshold b (ci.3) s (c.ii.3)

20d View 31 View

Figure 4.13: Comparison of real-world NBC estimations. (a) Input partial-view point
cloud (first capture). (b) Previous method. The optimization goal is to make the
angle between the normal direction of the point with minimum confidence and the
camera line of sight smaller than a tolerance. (c¢) The new method. Directly optimize
the joint angles by maximizing the gain. (*.*.1) Confidence estimation. (*.*.2) NBC
optimization result. (*.*.3) Updated point cloud.



Chapter 5

TAMP for 3D Curving

Elasto-plastic metal wire curving task is commonly seen in manufacturing and medical
fields. This section presents a combined task and motion planner (TAMP) for a
robot arm to work aside a bending machine and carry out 3D metal wire curving
tasks. We assume a collaborative robot that is safe for humans but has a weak
payload and develop the combined planner for the robot to use the bending machine.
The contributions of the study are three-fold. First, we propose a coarse-to-fine
optimization-based method to convert a 3D curve to a structured bending set. Second,
we build a planner to generate the feasible bending sequence, machine operation,
robotic grasp poses, and arm motion while considering constraints from the bending
machine and the robot. Third, we use visual feedback to build and dynamically
update the springback model of a metal wire and use the model to predict and
compensate for bending errors caused by springback. Compared with previous work,
the proposed planner does not require the robot arm to have a large payload, making
it suitable for lightweight collaborative robots. We evaluate the system using both
simulated and real-world 3D curving tasks. The results show that the proposed
planner can solve robotic 3D curving problems with satisfying time efficiency and
precision. It is flexible and applicable to different robots and metal wire materials
without a significant change. The method is expected to accelerate the high-variation

low-volume manufacture of 3D metal wire curves.

Note to Practitioners: Using robots to bend metal wires has been an old topic

100
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in robotics and automation. In previous robotic metal wire bending systems, the
robot motion was usually pre-programmed to feed parts to bending machines. It was
not easy to be extended to multiple goal shapes. Also, the bending was limited to a
few discrete action points instead of an arbitrary curve. The method we developed
solved the problem by adding up optimized goal shape parameterization, combined
task and motion planning, and springback compensation. It helps to auto-program
robot actions and ensures satisfying precision by correcting bending results online
with visual feedback. Practitioners are encouraged to use the planner for either
offline programming or online motion generation. The springback estimation and
compensation are independent of motion generation and can be connected to both
motions pre-programmed offline or generated online. However, it is advisable to
employ robots with higher DoFs (Degree of Freedom) and avoid the online planning

of curves with many bending actions.

5.1 Introduction

This section presents a combined task and motion planner (TAMP) [I6] for a robot
to curve metal wires into 3D shapes by working aside a bending machine. We as-
sume a collaborative robot that is safe for humans. Such a robot does not have
enough payload to directly bend objects with high stiffness. We designed a bending
machine made of a stepper motor and a gear set to solve the low-payload problem.
The designed bending machine can provide a much more significant bending force
than the robot arm to bend high-stiffness objects. The developed planner enables
a collaborative robot to work aside the bending machine like a professional human
worker and curve stiff and various-shaped metal wires. It plans the bending sequences
at the task level and robotic joint trajectories at the motion level while considering
constraints from the bending machine, the robot, and the wire’s physical properties
like springback. The planner helps solve robotic 3D curving problems with satisfying
time efficiency and precision. It does not require manual definition or programming
and is flexible and applicable to different robots and metal wire materials without a

significant change.
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(a) Task sequence (D) planning

Figure 5.1: (a) Curve parameterization and closed-loop planning considering com-
bined task-level and motion-level constraints. (b) A collaborative robot (low pay-
load) bends a metal wire with a bending machine following the planned result. (c)
Springback is compensated by visual estimation during the robotic execution.

Previously, using robots to curve metal wires was widely studied, as robots pro-
vided a promising solution to flexible or personalized manufacturing of metal-wire
products. The previous methods treated robots as automation machines. They pro-
grammed a robot to hold a metal wire and bend it by pressing against a fixture or an
external robotic gripper. The payload of the robot limited the maximally affordable
metal stiffness. Unlike the previous methods, we develop a planner for a robot to
curve metal wires by working aside a bending machine. The planner helps determine
the bending sequence, the grasping poses, and the robot joint trajectories to conduct
3D curving with the machine. Fig. illustrates the robot-machine system and

workflow. In the first step, we use a coarse-to-fine parameterization to represent a
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desired 3D curve as a set of bending action points. Then, we perform a combined
task and motion planning to generate the bending sequence, grasping poses, and arm
motion integrally. Finally, the robot will follow the planned results to work with
the bending machine and bend the metal wire considering spingback compensation

predicted using visual feedback and a dynamically updated spingback model.

Our main contribution is the closed-loop exploration considering the task and
motion-level constraints. At the task level, we investigate the bending machine’s
kinematic constraints and the metal wire’s changing shapes. These constraints help
us to determine several tentative bending sequences. At the motion level, we in-
vestigate the logical relations of robotic grasping poses, robot joints’ torque limits,
and the availability of joint trajectories for moving the metal wire to the next bend-
ing pose. The motion-level results will be recorded during exploration to prune the
task-level sequences and improve planning efficiency. They together make the impos-
sible exploded combinatorics tractable. We improved the bending results’ accuracy
with the following techniques: First, we propose an optimization-based algorithm
to achieve a better bending set representation. Second, we select robotic grasping
poses considering reaction forces from the bending machine to ensure the robot does
not bear excessive payload during execution. Third, we include visual estimation
and springback compensation to reduce errors caused by a metal wire’s elastoplastic

properties.

We evaluate the system using both simulated and real-world 3D curving tasks
in the experimental section. The results show that the proposed planner can solve
robotic 3D curving problems with satisfying time efficiency and precision. It is flexi-
ble and applicable to different robots and metal wire materials without a significant
change. The method is expected to accelerate the high-variation low-volume manu-

facture of 3D metal wire curves.

The remaining sections are organized as follows. Section [5.2| reviews the related
work. Section [5.3| presents preliminary developments like the bending machine design
and bending set paramerization. Section presents the combined task and motion
planning, with special discussions and analysis spent on force constraints and spring-

back compensation. Section |5.5 presents experiments and analysis. Section draws
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conclusions and discusses the limitation and future work.

5.2 Related Work

5.2.1 Deformable Linear Objects (DLO)

Robotics research communities have paid considerable attention to the problem of au-
tomatically shaping Deformable Linear Objects. Unlike rigid objects, a DLO is more
complicated due to its infinite degrees of freedom. The methods for automatically
shaping such objects can be separated into non-physical (geometric) and physical ones
[142][15]. For example, Lv et al. [I43] developed a comprehensive dynamic model us-
ing a discrete elastic rod model. Yan et al. [144] used Model Predictive Path Integral
(MPPI) control for optimizing a sequence of actions. Laezza et al. [145] developed
a reinforcement learning-based elastoplastic object shape control method. Takizawa
et al. [I46] proposed a geometric model-based method to manipulate the shape of a
rope to tie it around a pipe using a dual-arm robot. Han et al. [147] developed a
sample-efficient reinforcement learning method to resolve the high-dimensional plan-
ning problem with a practical number of samples. Since the DLOs’ shapes change
during robotic manipulation, researchers also developed methods to track the defor-
mation and conduct online collision checking during planning [I48]. Tactile [149][150],
force [I51] and visual [144][152][153] sensing are widely used techniques for the track-
ing and online collision detection.

Researchers have categorized the DLOs into five categories considering their de-
formability and whether a force smaller than gravity can result in deformation [154].
This section focuses on curving the elastoplastic DLOs (e.g., metal wire, metal rod,
etc.). Unlike the rope or elastic rod, repeated bending of elastoplastic DLOs will
result in material fatigue, making their curving task different from that of rope, ca-
ble, and elastic beam. The elastoplastic DLOs are generally curved by one or a
sequence of discrete bending actions to avoid cracks caused by material fatigue. Pre-
viously, Jin et al. [I55] designed an automation device to bend an elastoplastic DLO

(archwire). The device flexibly curved desired shapes by orchestrating predefined
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processes. Xia et al. [I56] used a robotic arm and an external gripping unit to carry
out similar tasks. A sample-based planner was adopted for bending path generation.
Kuehl et al. [I57] automated hairpin winding with a robotic manipulator. When
the material’s stiffness is high, it is difficult for a low-payload robot to curve DLOs
actively. Lu et al. [I58] solved the problem by leveraging a heater to soften metal
rods before applying robotic arm actions. Zhang et al. [159] designed a multi-axis
special-purpose machine to form high-stiffness titanium alloy strips used in oral and
maxillofacial surgery. Another challenge of elastoplastic DLOs bending task is to
control the springback, which may cause crucial problem related to accuracy. Wu
et al. [I60] formulated the springback compensation problem as an optimization of
the bending and twisting parameters using Finite Element (FE) simulation. Zhang
et al. [I6I] proposed a springback prediction model for variable curvature tubes, the
bending compensation amount was obtained through a reverse process.

This work uses a collaborative robot arm and a bending machine to achieve the
elastoplastic metal wire curving task. Unlike previous robotic curving systems, we
developed a planner to automatically generate the robot motion for using a bending
machine. We parameterized goal curves considering a bending machine’s constraints
and preserve goal shapes as much as possible. Meanwhile, we developed an online
visual estimation-based springback prediction and compensation method to reduce
errors caused by a metal wire’s elastoplastic properties and achieved satisfying preci-

sion.

5.2.2 Bending System

A bending system is a machine or a collection of interconnected mechanisms that work
together to bend materials into desired shapes. It can include not only the physical
units but also the planning algorithms that guide the process. There is plenty of
work done in the automation of bending systems. Raj et al. [162] constructed a
bend feasibility matrix to map the entire search space and used the best-first search
algorithm to determine the metal sheet bend sequence. Kontolatis et al. [163] and

Sen et al. [164] used genetic algorithms and particle swarm optimization to solve the
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bending sequence planning problem, respectively. Baraldo et al. [165] developed a
graph representation and used A* search to find an appropriate bending sequence
for a wire bending machine. Aomura et al. [166] used a searching-based method
to generate metal sheet bending sequences for a robotic manipulator considering its
grasp positions.

Table further summarises the systems mentioned above according to three

criteria:

e Type of objects being bent: Objects are categorized based on their geometric

features.

e Incorporation of action and sequence planning: Action planning generates the
parameters for each bending action. Sequence planning generates a series of

feasible action poses while considering robotic and environmental constraints.

e Feeding and bending device employed: The feeding device is a robot or machine
responsible for translating and rotating an object to achieve the desired pose
for bending. The bending device is a robot or machine responsible for shaping

the object.

Our study stands out by incorporating both action and sequence planning for wire
objects. It uses a general high-DoF manipulator for feeding and a specially designed
machine for bending. The planning and the physical setup improve the flexibility of
the 3D curving. The proposed system is not only suitable for metal wire. It can also

easily be adapted to metal plates and pipes.

5.3 Problem Formulation

5.3.1 Structure of the Bending Machine

We design a bending machine shown in Fig. by following the mechanisms of
commercial metal plate benders or folders. The bending machine comprises a 23HS45-

4204S (Holding Torque 3 Nm) stepping motor as the power source, a 1:10 gearbox to
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Table 5.1: Comparison of related works.

‘ Planning  Physical Device

Reference ‘ Object Type Act. Seq. Feed Bend
[156] Wire O O D M
[157)[158] Wire O X D M
[165] Wire X O D D
[159] Plate O X D D
[160][167] Tube O X D D
[162][163] [164] [168] Sheet X O - D
[166] Sheet X O M D
[169] Sheet O O M D
Ours ‘ Wire O O M D

* Meanings of abbreviations: Act. - Action planning; Seq. - Se-
quence planning; Feed - The device used to feed the object; Bend -
The device used to feed the object; M - General high-DoF manipu-
lator; D - Specially designed machine or unit.

increase the output torque, an optical photo-interrupter for initialization (calibrating
the zero position), and several rollers for pressing or fixing target metal wires. Two
needle-roller bearings (Fig. |5.2(b)) are installed under the bending roller and the
center roller to allow free sliding motion between them and the metal wire.

A target metal wire is assumed to be placed between the center roller and the
other two rollers. The bending roller can rotate clockwise and counterclockwise start-
ing from the calibrated zero position. Thus the machine allows bending from two
directions without reversing a wire. The maximum rotation angle of the bending
roller is highlighted as a green zone in Fig. [5.3{a). Its effective work range depends
on the shape and thickness of the metal wire and is a bit narrower than the maxi-
mum rotation range. Fig[5.3(b) and (c) exemplify a bending process. Figl5.3|(b) is
the initial configuration where the wire is straight and tangent with all three rollers.
The rotation angle of the wire (¢;) and the start angle of the machine (v;) can be
computed considering the three rollers’ radii and the thickness of the metal wire. Fig.
5.3(c) is the configuration after a bending action. The end angle of the machine can

be computed using v; + 6;. When the wire is not straight, it is difficult to figure out
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Figure 5.2: CAD model of the designed bending machine.
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an explicit equation for computing this angle. In that case, we leverage a kinematic
simulator to examine the collision between the wire and the rollers and measure ;
and 7; based on the collisions. Notably, we have the following assumptions for the
kinematic simulator. First, we do not consider the accumulation and release of ki-
netic energy and thus cannot estimate and simulate the spring back of elastoplastic
materials. Second, the wire begins to bend when the bending roller starts to collide
with it and stops bending when the bending roller reaches a given goal rotation angle.
Third, we assume the bending arc couples with the center roller during bending. The
wire will wind around the center roller to form an arc. Fourth, if two bending actions
overlap, the newer arc will override the older arc sections. Under these assumptions,
we can compute the changed shape after each bending action by replacing related

wire sections with arcs determined by collisions.

Note that although we use this design to practice our task and motion planning
implementation, the developed method is not limited to this specific machine. It can
be adapted to other alternative mechanisms, such as those presented in [170], [I71],

ete.
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Figure 5.3: Illustration of the bending machine’s action from a 2D top view. (a)
Maximum rotation range of the bending roller. (b) Initial contact between a bending
roller and a straight metal wire. (¢) End configuration of a bend action.

5.3.2 Representing a 3D Curve Using Bending Parameriza-

tion

We assume a desired 3D curve is initially given as a list of dense points. Since the
bending machine’s center roller has a non-negligible radius which leads to a maximum
bending curvature, it is difficult to generate bending actions considering all dense
points. Bending actions close to each other will be canceled by the maximum bending
curvature. Instead of directly using the dense points, we propose a coarse-to-fine
fitting algorithm to approximate the 3D curve with fewer points. The algorithm’s
pseudo-code is shown in Algorithm Like its name, the algorithm is carried out

progressively from an initial coarse representation to a later optimal refinement. The

details will be presented below.

Coarse Representation

In coarse representation, we combine polyline approximation and arc adaption to
simplify the dense points. The objective of polyline approximation is to reduce the

number of points in a dense point set while maintaining the original shape as closely
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Algorithm 4: Coarse-to-fine Bending Parameterization
Input: D, desired curve represented by dense points;
r., center roller radius of the bending machine;
Tw, metal wire radius;
€, error tolerance of the representation;
Output: B, a set of bending parameters;

1 begin

2 T4 T.+ Ty

3 P « {D|0], D[-1]}

s | B+ {}

5 error, min_error < +oo

6 while error > € do

7 Pomp < farthest point(D,polyline(P));
8 %mp, &th, ltm&<— arc,a(iaption(ptmp7 T);
9 Bimp ¢ B U {Otmp, Ctmp, lemp };

10 C «+ merge,overlap(ﬁtmp, T);

11 error < error(D,C);

12 if error > min_error then

13 ‘ break;

14 MIN_ETrTor <— error;

15 P <P U Pemp;

16 B« @tmp;
17 B + minimize_average error(B, D):
18 return B

as possible. This process, known as line simplification, can be achieved through
various methods, such as preserving critical points (Douglas-Peucker method, DP)
[172], maintaining important bends [173], or retaining significant areas [174][175]. In
comparison to the DP method, the latter two methods are more suitable for handling
jagged curves or curves with noisy bending curvatures. They do not apply to our
scenario, as the goal was to authentically approximate a curve rather than overlook
noises. Thus, instead of them, we employ the DP method for line simplification
in this work. Fig. [5.4{a) shows the polyline approximation process. The smooth
black curve (D) is the desired curve. The orange dashed line (P) is the polyline

approximation result. It comprises a sequence of pivot points [p,, Py, .., P,] plus
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their normal [ng,nq,...,n,}. Fig. [5.4(b) and (c) show the arc adaption process.
It essentially fits the central roller (circles in the figure) to the pivot poinﬂ;f the
approximated polyline and converts the sections tangential to the rollers (p; p; and
p;p; in the figure) to arc sections (EE in the figure). Like polyline approximation,
the adapted curve suffers from a representation error. However, there is a trade-off

between the number of pivot points and the representation error.

Due to the center roller’s non-negligible radius imposing a maximum bending
curvature, increasing the number of pivot points has a non-monotonic and non-linear
relation with the arc adaption accuracy. The arc adaption in the shadow regions of

Fig. [5.4[(b) and (c) illustrates an example.

The details are shown in Fig. |5.5 The curve D is approximated using a polyline
in Fig. M(a.l) and adapted with an arc considering the center roller’s radius in Fig.
b.5(a.2). The green double-arrow line in Fig. [5.5|(a.2) denotes the representation
error after adaptation. Increasing a pivot point to it leads to the result shown in Fig.
m(b.l). There are two overlapped arc sections, as shown in the enlarged frame box on
the right side. If bent sequentially, the two arc sections will result in the curves shown
in Fig. [5.5(b.2) and (b.3), making the wire direction different from the goal curve.
To keep the wire direction, we merge the two overlapped arc sections into a single arc
(thus a single bending action) as shown in Fig. [5.5(b.4). The representation error
after merging is denoted by the green double-arrow line in Fig. m(bél) The error
is not necessarily smaller than the one before increasing a pivot point. To minimize
the representation error, we incrementally add new pivot points while comparing
the representation error with the previous minimum value to an optimal number
of pivot points. Lines 6 and 12 of Algorithm H| respectively show the incremental
loop and the comparison of the errors. The min_error parameter saves the previous
minimum representation error. The current error is compared against it in line 12 to
determine a break. The threshold error € in line 6 is additionally designed to avoid
non-converging iteration. If the minimum representation error always decreases, the

loop will stop when the minimum error is lower than e.

Since D is a 3D curve, an adapted arc section ﬁ will also be 3D. The section

could be described using a bending angle #; and a twisting angle «;, as shown in Fig.
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Merged

— Desired Curve, D — Arc Adaption,
-- Polyline Approximation, P  — Optimization
Figure 5.4: (a) Polyline approximation. (b) Fit the bending roller to the pivot points

of the approximated polyline. (c) Merge overlapped arcs and parameterize the bend-
ing actions. (d) Minimize the representation error by non-linear optimization.
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Figure 5.5: (a.l) Polyline approximation with four pivot points (black dots). (a.2)
Adapting to an arc considering the center roller’s radius. (b.1) Polyline approximation
with six pivot points. (b.2-3) Two step arc adaption without merge. In this case, 0l is
larger than 0. B; overlaps with B;_. The adapted arc results into a smaller bending
angle. (b.4) The bending angle conforms with expectation after merging B;_; to B;.

5.6, Based on the description, we define an arc EE by using bending parameters
B; = {51, &i,z}. The values of 5@ and «; are measured in the local coordinate system
{p;,Ri} shown in Fig. Z indicates the 1D position of p,” measured along the
metal wire starting from its origin. Their formal definitions are presented in equation
(5.1). Note that we included a = hat on top of the set elements to indicate that
the parameters are temporal to this algorithm stage and will be refined later. The
bending parameters are also labeled in Fig. |5.4|(c) for easy understanding. Note that

the figure is illustrated in 2D and the angle a; may be difficult to read.

s
@ — arccos( pifllpi 'pipiJrl/
||pi—1pi|| : ||pipi+1)||

n; -N;1
—)) (5.1b)
72| - [|72i4 ]

(5.1a)

a; = arccos(

—
!The y direction of the local coordinate system is the wire axial direction (p; p;). The z direction
is the normal direction of a local plane (n;).
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[por: 1=
~ DoPy ||, =
li=4q2 ’ 1~ —_ (5.1c)
li—1+9i—1'7”+‘pf_1pi_ Jd<i<n
P =p —7 tanei D;_1D;
2 Hpi—lpz’H q
— (5.1d)
p*zp-—kr-tan&-%
' ' 2 ||pipi+1||
T =Te+ Ty (5.16)

~ .

L » C » \

(b) 92 = 7T//4,0éi = 7T/4 |

(@ 6, =m/4,0;, =0

Figure 5.6: We use a bending angle #; and a twisting angle «; to represent a bending
action. Their values are defined in the local coordinate system of the bending action

point p; .

A complete 3D curve is made of many arc sections and can thus be represented
as a bending set B = {El} Each element in the bending set holds the bending
parameters of an individual arc section. They will be converted to the bending action
commands of the bending machine. For an ¢th arc section, the metal wire will be
placed between the center roller and the bending roller & die, with the wire in contact
with the center roller at p; . The wire will be rotated by the robot and pressed by
the bending roller to form the desired shape. The magnitude of B is determined by
the aforementioned lines 6 and 12 of Algorithm [l In the following sections, we use
m to denote B s magnitude and differentiate it from the number of pivot points n.

Line 9 and 10 of Algorithm 4] determine the overlap and merge the arc sections. For

a newly inserted pivot point and arc section By, after B;, the algorithm recursively
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examines its positional difference 0l with adjacent arc sections following equation
(5.2). When 6l is larger than 0, the algorithm merges the two arc sections and their

respective bending parameters following equation (|5.3)).

Sl ="1;+0; - 7 — Loy (5.2)
li 1
0 0; + Oeanp (5.3)
n; - N1

)

. — IR SR
0 4 avecos( e ]

Optimal Refinement

The straight-line sections of coarse representation will either be coincident (before
merging) or parallel (after merging) with a polyline approximation, which is a strong
constraint and will lead to unavoidable residual errors. In the second half of the

algorithm, we further reduce the residual error by performing an optimal refinement.

Particularly, we allow adjusting the parameters of each bending action point to
reduce the errors. We formulate the adjustment as an optimization problem shown
by equation (5.4). The optimization goal is to minimize the average error between
the target curve (D) and simplified curve (C) as shown by equation ({5.4a)). The z and
y variables in the equation represent dense points in D and C. They are discretized
from respective continuous curves. Notations &y, &, and & in equations (5.4c|) are
manually defined to limit the searching space. Equation ensures the order of
the bending action sequence is not changed, and there is no overlap between two

bending action points.

Line 17 of Algorithm [4] shows the position of optimization in the pseudo code.
It produces a set of optimal bending parameters. The parameters will be used for
modeling and solving a combined task and motion planning problem. Fig. [5.4(d)

illustrates the results before and after adjustment.



116 CHAPTER 5. TAMP FOR 3D CURVING

B (B B o) %;ygg(%) Iz =yl (5.4a)
5 B; = {0:,d,1;} € B (5.4b)
6; — 0, < &o
i — ai| < & (5.4¢)
L=l < &
L+ 67 <lin (5.44)

5.4 Combined Task and Motion Planning Consid-
ering Springback

Next, we carry out combined task and motion planning based on the obtained bending
parameters. The flowchart of the proposed method, with a particular focus on the
combined task and motion planning part, is shown in Fig. [5.7 The planner accepts
the B obtained in the last section and some pre-annotated grasp poses for a metal wire
primitive as the input. In the first step, it generates a bending sequence by permuting
the order of the optimized bending action points while pruning the searching tree
considering previously detected invalid actions. In the second step, the generated
bending sequence is sent to the motion generation process to determine grasp poses
and plan manipulation motion. The method iterates through the pre-annotated grasp
poses to find the candidates that are kinematically feasible to reach all bending action
points. It sorts the feasible grasp candidates considering the torque limit of the robot
arm to ensure safe executions. The springback of the metal wire is considered during
execution. A linear model with online visual estimation and dynamic updates is used
to predict additional bending angles and compensate for the springback after releasing

the bending roller. The details of the planner are presented below.
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Figure 5.7: Workflow of the proposed planner. The shadowed box in the middle
represents the combined task and motion planning. The details of the three steps will
be presented in the remaining part of this section.

5.4.1 Bending Sequence Planning

The bending sequence planning process is at the task level.
It is carried out without considering robotic constraints. A
feasible bending sequence must meet the following two condi-
tions: (1) The wire does not collide with the machine or any
other obstacles during bending; (2) The wire is long enough

to contact the die and bending roller. If the metal wire can-

not touch one of the rollers at a certain bending action, the

bending parameter B; pertaining to the action will be con-

Figure 5.8: Infeasible.

sidered infeasible. An example of an infeasible scenario is
illustrated in Fig. [5.8|

As the sequence that fulfills the conditions above may not be unique, we further
introduce two criteria to find the optimized solution: (1) Number of pick-and-places

(Npnp); (2) Number of unstable bending actions (Nupstable). Consider a bending set
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Algorithm 5: Prune Search
Input: B = {By, B;..., B,}, a bending action set;

t, permutation tree;
s =10,1,..,n], a bending sequence where each element is an index to
B;

1 begin

2 t < select(t);

3 while s is not empty do

4 if s is feasible then

5 Geom < grasp_reasoning(G);

6

7

8

9

motion planning(Geom);
if success then
‘ return s
t «+ update(t, permutate(s[: 7]));
10 s < Find a new sequence from ¢;
11 return False

with m = 2 for example. As illustrated in Fig. [5.9 if the bending sequence is Iy — [
(depicted in (b.i)), the wire between [, and the next bending point /; will not be
straight and the robot will need to reset the wire (i.e., pick the wire up from the
rollers, adjust its pose, and place it back for the second bending action, Ny, = 1).
Additionally, the wire between [, and p, is not straight. The friction force between
the wire and the bending roller is not collinear with the force provided by the gripper,
which may cause unexpected deformation of the wire (Nypstanle = 1). More details will
be introduced in Section[5.4.2] On the other hand, if the bending sequence is l; — Iy
(shown in (b.ii)), the wire between p, and the bending position remains straight. The
values of Npn, and Nypgtanle Will be 0, and the robot will not need to reset the wire.
The candidate sequences in the permutation tree t are firstly selected using the
routine shown in Algorithm [6] as denoted by line 2 of Algorithm [5} The Ny, and
Nunstable Used to compare and select candidates are computed in lines 5~14 of the
select routine. The candidates are sorted in ascending order according to the values
of Npnp and Nynstable, With a priority given to Nppp.
Next, we employ pruning to find a feasible sequence from the sorted candidates.

Finding a sequence that fulfills the above constraints is costly as a set of n bending
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Figure 5.9: Example of a curve with m = 2. (a) Bending positions. (b.i) Sequence
lo = li. Npnp = 1, Nunstable = 1. (b.ii) Sequence l; — ly. Npnp = 0, Nunstable = 0.

actions can be arranged in n! ways. Instead of brutally evaluating all permutations
of bending actions, we leverage pruning in this work to accelerate the search. Algo-
rithm [5[shows the details. The algorithm starts with a bending sequence initialized as
s =10,1,...,n]. Each element of s represents an index of B. The algorithm examines
the sequence’s validity by checking the action parameters indexed by the sequence
elements one by one. Suppose a parameter leads to a collided, infeasible, or unreach-
able bending action. In that case, the sequence is judged invalid, and the remaining
elements no longer need to be explored. The sub-sequence up to the invalid bending
parameter, namely s[: i|, and all permutations of paths passing through the same
nodes (permutate(s|: i])) are removed from ¢, using the update() function (line 9 of
Algorithm . After that, the algorithm will generate a new sequence from the sorted
t while avoiding repeating the invalid sub-sequences. The algorithm will repeat the

examination routine with the newly generated sequence.

5.4.2 Grasp Reasoning and Motion Planning

The grasp reasoning and motion planning process is at the motion level. We use an
example with two bending action points to explain this process. Like its name, the
process comprises grasp reasoning and motion planning. Grasp reasoning accepts (1)

pre-annotated grasp poses for a metal wire primitive (G) and (2) wire poses generated
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Algorithm 6: Compare and select candidates
Input: ¢, permutation tree;
1 begin

2 anp7 Nunstable — {}7 {}7
3 while s is not empty do
4 anpa Nunstable <~ 07 07
5 for j € [0,n) do
6 if s[j + 1] > s[j] then
7 | Nonp < Nowp + 1;
8 if is_intersec(s[: j|,[s[j + 1], s[j])) then
9 | Noup ¢ Npnp + 1;
10 if s[j] > min(s[: j]) then
11 ‘ Nunstable < Nunstable + 17
12 Nonp ¢ Npnp U Npnp;
13 Nunstable <= Nunstable U Nunstable;
14 s «+ Find a new sequence from ¢;
15 indexes < ascending sort(Npnp, Nunstable);
16 | t < t[indexes];
17 return ¢

based on the bending parameters obtained from sequence planning to reason IK-
feasible and collision-free grasps. The robot will hold a wire using reasoned grasping
poses. Motion planning accepts the robot’s holding configurations and generates the
joint motion among the reasoned grasps. The robot will move the wire following the
generated motion.

Fig. [p.10|(a-c) visualizes the example. Fig. [p.10j(a.i) and (a.ii) illustrate a single
grasping pose and all pre-annotated grasping poses defined based on a metal wire
primitive, respectively. Fig. [5.10[b.i) and (b.ii) illustrate the optimal bending se-
quence obtained by the task-level planner. Fig. (c) shows the grasp reasoning
details. The pre-annotated grasps are transformed to the local metal wire primi-
tives at the holding positions of the two bending actions. The reasoner examines
their collisions and feasibility, as illustrated in (c.i). The grasps that are simultane-
ously accessible to all holding positions in the sequence will be kept as the “common
grasps”, as illustrated in (c.ii). The robot can kinematically hold the wire using a

“common grasp” at one wire pose and move it to another pose without changing the
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Figure 5.10: Workflow of grasp reasoning and motion planning. The inputs are
shown in dashed boxes on the top. The results are in the solid boxes below. (a) Pre-
annotated grasps. (b) Planned bending sequence. (c) Grasp reasoning. (d) Motion
planning.
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Center
Roller

Figure 5.11: (a) A robot configuration at one bending action point. (b) Free-body
diagram for a metal wire at an intermediate motor configuration.

grasp.

Despite the kinematic feasibility of the “common grasps”, they do not necessarily
meet force requirements. As shown in Fig. the metal wire is supported by
the die and center rollers and pressed by the bending roller. Although we used
rolling mechanisms to reduce friction, a large pressing force may still induce friction
forces and result in a heavy reaction load on the robot. The heavy reaction load
may cause the robotic system to fall into an emergency. Thus, after obtaining the
common grasps, we further rate them, considering the maximum force the robot can
bear along the bending direction to ensure safe robot executions. The highly ranked
“common grasp” will be selected for motion planning.

The force vector f, in Fig. |5.11f(a) and (b) illustrates the reaction load induced
by the machine. The robot grasps the metal wire at p,. The wire contacts with the
die, bending roller, and center roller respectively at p;, p,, and p; . The robot bears
an reaction load f, at p,. Its direction is along the tangential vector t, of the die at
p,. For each “common grasp”, we rated it considering the maximum force that the
robot can bear along t;. The highly ranked “common grasp” allowed bearing a large
force. We chose it to resist the reaction load and avoid an overloaded emergency.

Specifically, we formulate the maximum force that the robot can bear along t4

as the following optimization problem. The goal is to maximize equation (}5.5a)
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Bending Action Points (7)

Maximally bearable force (Max local min value)

Figure 5.12: The robot will hold and move the wire to all bending poses with a
“common grasp”. Each column in the figure represents such a “common grasp” and
the correspondent bending poses. The best grasping pose is selected as the one that
has the maximally bearable force across the columns, which is the largest “Local

2

min- .

considering the “common grasp” pose, wire pose, and the torque limits of each robot
joint. Here, “F is the robot’s output TCP (Tool Center Point) force described in the
world coordinate system. tap,, is the projection matrix that projects the TCP force
on to vector tg. ™Ty is the “common grasp” described in the coordinate system of a
metal wire primitive. It is a homogeneous matrix containing the position and rotation
of a grasping pose. “T,, is the transformation matrix from the coordinate system of
a metal wire primitive to the coordinate system of the local metal wire primitive at

the holding position. J(q) is the jacobian matrix. n; is the number of robot joints.
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o oy @i, g are respectively the torque and rotational limits of each joint. Link

weights and joint frictions are ignored for simplicity.

argmax |24P,“F| (5.5a)

q
s.t. T, T, =J(q)q (5.5b)
YF=J(q)T (5.5¢)

T = {Tk}77—k € [TI;7TI;F]
qa=Aa}a € gy, 4] (5.5d)
k - [0, ,nj]

Note that a “common grasp” is not used for a single bending pose. Instead,
the robot will hold the wire with the “common grasp” and move it to all bending
poses. The maximally bearable force of a “common grasp” is thus the minimum of
all bending poses. Fig. [5.12/ shows an example. In each column, the robot holds and
moves the wire to different poses using the same “common grasp”. Each column’s
minimum bearable force (“Local min”) determines the performance of the grasping
pose shown at the beginning. The maximally bearable force of all grasping poses is

the largest “Local min” across the columns.

After rating the “common grasps”, a motion planner will iterate through them
sequentially according to their rank until a feasible joint space motion is found. The
following prescribed motion primitives are defined to improve motion planning effi-

ciency:

i) Pulling motion primitive. When the segment between the current bending po-
sition and the next bending position is straight, the robot does not need to
lift the metal wire. Instead, it re-poses the metal wire by pulling and rotating

between the rollers.
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ii) Pick-and-place motion primitive. When it is difficult to reason a motion in-
between the rollers, the robot performs pick-and-place motion planning to re-

pose the metal wire.

Fig. 5.10[d) exemplifies a planned pick-and-place motion. A zoomed-in view is
shown in Fig. [5.10[d.iv). The green dots show the end-effector position during the
motion, and the dashed arrow indicates the moving direction. We required the robot

to incline to ¢4 to avoid large frictional resistances during the planning,

5.4.3 Online Springback Compensation

Since the metal wire used in this study is made of an elastoplastic material, it will ex-
hibit springback when released from the forces of the bending roller. Previous studies
[176] concluded that an elastoplastic metal wire’s springback angle and bending angle
have a positive relationship when the bending radius is fixed and developed analyt-
ical methods to compute the springback angle of a metal wire with known physical
properties. In this work, we assume the physical properties of the target elastoplas-
tic metal wire is unknown and propose using online visual sensing to estimate the
springback. Notably, we represent the springback with a linear model following pre-
vious conclusions and leverage ridge regression to dynamically estimate and update

the model. The linear model is formulated as
30 = f(0) = ab + b, (5.6)

where 06 is the springback angle, 6 is the bending angle. The ridge regression is

formulated as

argmin » _ [|66; — (ab; + b)), + Allall, (5.7)
@b o

where 7 is the id of a bending action. A is the regularization weight of ridge regression.
The parameters a, b are re-estimated each time a new (6;, 66;) pair is obtained. The
machine will be adjusted to bend an additional springback angle estimated using the

latest model to improve precision.
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Fig. illustrates the workflow of dynamic visual estimation and bending angle
adjustment. It is carried out as a closed loop during execution. The additional bend-
ing angle is adjusted dynamically considering the latest springback model. Especially
in Fig. [5.13|(c), we fit the shape primitive (mesh model from p; to p,,) to the extracted
point cloud and compute the transformations before and after releasing the bending

roller as [R,,t,], [R.,t;]. We ignore the displacement from ¢, to ¢, and compute the

Tr(Rp-Rr)—1

5 ), where T'r(-) indicates the trace of a

springback angle as 06; = arccos(
matrix. When occlusion happens, we may not be able to fit shape primitives and
obtain a springback angle. In that case, the system will not update the springback
model but jump to additional bending angle prediction with the most recent update.
The red arrow in Fig. shows the workflow in the presence of occlusion. The blue
and yellow arrows are coherent with the ones that have the same color in Fig. [5.7
The blue arrows and boxes indicate the dynamic compensation. The yellow arrows
indicate the update. They represent two loops as shown by the two circled arrows.
The two loops run in parallel and yellow loop is one step late than the blue loop.
An exception is the first bending action. In the beginning, we do not have a good
guess about the springback model and thus cannot predict an additional bending
angle. We solve the problem by performing a two-time bending action. The first
time, we estimate a springback angle and use it to update the springback model. We
further bend an additional angle predicted using the updated springback model the
second time. The two-time bending action is dedicated to the first bending action

point and does not apply to others.

5.5 Experiments and Analysis

In this section, we carry out experiments to examine the proposed methods. The
section comprises two parts, where the first part focuses on individual processes, and
the second part studies the overall performance on real-world bending tasks. The
computation device used in our experiments is a PC with an Intel Core i7-10700
CPU and 16 GB memory. We tested the proposed methods on two robot platforms,

a self-assembled robot platform made of two UR3e arms (Max payload of each arm:
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3 kg) and two Robotiq Hand-E two-finger parallel grippers, and an ABB YuMi dual-
arm robot (Max payload of each arm: 0.5 kg). A Photoneo PhoXi 3D Scanner M
with 1032x772 resolution is mounted on the top of the table for visual perception.
The bending machine is fixed on a work table under the robot’s arms. The Photoneo

scanner detects the pose of the machine.

5.5.1 Performance of Individual Processes
Bending Set Representation

First, we evaluated the performance of the coarse-
to-fine bending parameterization algorithm use a
specific curve shown in Fig. [5.14, We were espe-
cially interested in the relation between the num-
ber of pivot points (n) and the representation er- 20
rors in the presence of different center roller ra- 40

diuses (r.). Thus, we carried out experiments to

observe the changes of representation errors under 220 0
varying n (5~50) and r. (10 mm, 7.5 mm, and 5 0 40

mm). The first two rows of Fig. show the 80

results. We particularly compared two represen- Figure 5.14: Desired curve.

tation errors, including the maximum difference

between D and C, as shown in the first row of Fig. [5.15] and the average difference
between D and C, as shown in the second row. The results indicate that smaller
center roller radiuses lead to more minor representation errors. On the other hand,
the representation errors do not decrease monotonically with an increasing n. The
observation is coherent with our analysis in Section [5.3.2] The last row of Fig.
shows the relation between the n and the number of bending action points (m). The
curves indicate that the pivot points (and their adapted arcs) were merged more

heavily when the center roller radius was larger.
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(a) 7. = 10 mm (b) r. = 7.5 mm (¢) re =5 mm
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Figure 5.15: The relation between the number of pivot points (n) and max/average
fitting errors, and also the relation between the n and the number of bending action
points (size of B, m), with different radius of the center pillar (r.). 7. is 10 mm, 7.5
mm, and 5 mm from left to right, respectively. The wire radius (r,) is 0.75 mm. The
red dashed line highlights the best n found by our algorithm (¢ = 0.5 mm).
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Table 5.2: Evaluation of Bending Set Representation.

‘ r. = 5 mm r. = 7.5 mm r. = 10 mm

n \ 12.90 + 2.10 13.25 + 2.32 13.65 + 2.63

m 12.90 + 2.10 13.25 + 2.32 11.40 + 1.32

Uniform avg(e.) 0.50 4+ 0.12 0.50 4+ 0.13 0.70 4 0.22
Sampling avg(e,) | 0.18 £+ 0.04 0.19 £+ 0.16 0.19 £+ 0.04
max(e.) 1.81 £ 0.74 1.79 £ 0.73 2.34 + 0.85

max(e,) | 0.72 4+ 0.31 0.88 4+ 0.84 0.86 + 0.44
m 11.65 + 1.49 11.40 + 1.43 11.30 &+ 1.14

Douglas- avg(e.) | 0.46 £ 0.03 0.48 + 0.13 0.52 £+ 0.16
Peucker avg(e,) | 0.18 £ 0.03 0.18 & 0.04 0.19 + 0.07
ax(e.) | 1.19 £ 0.21 1.23 + 0.39 1.41 £+ 0.58

max(e,) 0.78 + 0.30 0.75 + 0.32 0.86 £+ 0.48

* Less number of bending action points (m) and lower error are high-
lighted in bold. Meanings of abbreviations: e. - Error of coarse represen-
tation result; e, - Error of optimized result; n - Number of pivot points.
m - Number of bending action points.

We also evaluated the performance of optimal refinement. Fig. shows the
results. We especially compared 7. = 10 mm and 5 mm in Fig. [5.16(a) and (b) to
see if 10 mm was acceptable, as we preferred using a large center roller to increase
machine stiffness. Fig. [5.16[a.1) and (b.1) respectively show the goal curve, coarse
representation result, and optimization result in black, orange, and green colors under
the two different r.s. The details of some sections with significant differences are
zoomed-out in detail in (a.i), (a.ii), (b.ii), and (b.iii). Fig. p.16(a.iv), (a.v), (b.iv),
and (b.v) respectively show the changes in maximum errors and average errors as the
number of points increases. The red dashed line highlights the best n determined
by our algorithm dashed lines (stopping line). The decrease in errors becomes less
remarkable or inverses after the stopping line. The results indicate that the optimal
refinement helped to reduce both maximum and average errors. Using a center roller
with a larger radius was not significantly worse when the n was limited. The average

errors were competitive with the results of a thinner roller (0.25 mm vs. 0.14 mm).

To further understand the efficiency of the proposed coarse representation method,
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we compared it with a baseline method, in which the points are uniformly sampled
on the goal curve. We generated 20 random B-splines for the comparison, with each
of them having the same length of 200 mm. The tolerance € is set as 0.5 mm. The
statistical information regarding the fitting results can be found in Table [5.2] Less
number of bending action points and lower error are highlighted in bold. The results
show that the DP method outperformed the baseline method with smaller errors and

fewer bending action points (m).

First Solution First 10 Solutions
2000
~ 1000/
= 1500
wn
8 1000
g 500+
= i 500 i ;
3 4 5 6 7 8 3 4 5 6 7 8
Number of Bending Actions Points (m)
- Hmaw:ﬂ-/ll -Hmaw:ﬂ-/2 ‘Hmaxzﬂ_

Figure 5.17: Average time costs of sequence planning vs. the number of bending
action points (m). The green, blue, and orange colors correspond to random goal
curves with A = 0.2, . = 7/4, /2, 7, respectively. (a) Time costs to find the first
solution. (b) Time costs to find the first ten solutions. If there were fewer than ten
solutions, it indicates the time cost to find all of them.

Sequence Planning

In this subsection, we demonstrate some planning results and examine the time ef-
ficiency of the sequence planner. The experiments were carried out by randomly
generating bending sets and planning their order using the developed method. Espe-

cially, we randomized the parameters bending angle 0; € [Afyax, Hmax]ﬂ and twisting

2Here, ) represents a percentage that controls the bending angles of the generated shapes.
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3.34s, 1 times 7.78 s, 1 times 17.57 s, 3 times
[6,5,4,3,2,1,0] 40 [6,5,4,3,2,1,0] [6,4,3,2,1,0,5]

60

Ormaz = 7T/4 Omaz = 7T/2 Oraz =T

(a) Random curves that required the minimum time costs

61.19 s, 20 times 158.84 s, 28 times 474.6 s, 77 times
[5,4,3, 1,076, 2} [5,4,1,0,6,3,2] [6,3,0,2,1,4, 5]

Qmax — 7T/2 emaaz =T

(b) Random curves that required the maximum time costs

Figure 5.18: Some sequence planning results when m = 7. The time cost, number of
trials, and planned sequence are annotated on the top left of each figure.

angle o; € [—m, ). Larger bending 0,,,,x angles will result in more complicated curves.
The start position of each bending action point, [;, was set at a random position that
did not overlap with others. Five groups of curves with the number of bending action
points (m) in randomized bending sets ranging from 3 to 8 were evaluated. Each
group included ten random desired curves with 6y,., of 7/4,7/2 and 7. The statis-
tical cost for different numbers of bending action points is shown in Fig. [5.17 The
time cost of finding the first and the first ten solutions are plotted separately. If there
are fewer than ten solutions, it indicates the time cost to find all of them. Fig. |5.18
visualized some planning results when m = 7. The 3D curves visualize the goals.
The time costs and planned sequences are annotated on the upper-left corner of each

curve. Each value in the sequence represents an id of the red section. They start
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from the “start point” and the values increase incrementally as the sections get fur-
ther. The start point is the holding positions used for grasp reasoning. Each column
represents the result with different 6,,., values and comprises two rows. The upper
row shows the curve required the minimum time cost. The lower row shows the curve
required the maximum time cost.

Fig. [5.19 shows the planned bending result of a 3D curve with five bending action
points. The (a.i) and (a.ii) lists shown below the diagram indicate two feasible planned
bending sequences. The (a.i) list has smaller Npy, and Nypstapie and thus has higher
priority for the following planning compared to (a.ii). The two lists are graphically
illustrated in (b.i) and (b.ii), which provides a more intuitive understanding of the

priority. The planned robot actions for (a.i) are illustrated in (c).
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Performance of Springback Compensation

To verify the performance of the proposed springback compensation model, we per-
formed experiments using two different metal wires, including a 3.3 mm aluminum
wire and a 2.6 mm galvanized steel wire, as shown in Fig. [5.20] Both of them wear
rubber sleeves around their bodies. The aluminum wire’s thickness was 6.0 mm with
the sleeve. The galvanized steel wire’s thickness changed to 2.9 mm with the sleeve.
In the experiments, the robot held a wire using a random grasping pose and placed
the wire between the bending machine’s rollers horizontally. Then, the bending roller
was actuated to a goal angle Higoal to observe and update springback. We carried out
the experiments 11 times by changing 65°* from 7/12 to 117/12 with 7/12 interval.
The bending results were observed after each experiment, and the springback model
was dynamically updated with the observation.

The details are shown as follows. The first step was different as we did not have

a model:

1. Actuate the bending roller of the machine to bend 65 = 15° and capture a

point cloud;
2. Release the roller and capture a second point cloud;

3. Segment and extract the metal wires from the two point clouds and obtain their
difference 66,.

4. Initialize the springback model f(6) using #5°* and 66,. The springback model

after initialization is saved as fo(+)
5. Activate the machine to additionally bend 66, and capture a third point cloud;

6. Segment and extract the metal wires from the third point cloud and obtain its

: I
difference from 65°* as 65.

For the remaining steps, we repeated the following procedure and collected a
series of 06; (estimated springback), 66; (actual springback), and 66 (residual error

between compensated bending result and the original goal):



5.5. EXPERIMENTS AND ANALYSIS 137

(a) Aluminum Wire

RN R
Wdasdewdnbishdasblanbiaddinid

75105 135 165
(b) Galvanized Steel Wire

N

15 45 75 105 135 165

50; 50, — 05" ---avg(0;"") — Goal

Figure 5.20: We perform experiments on two different metal wires. (a) Aluminum
wire with a radius of 3.3 mm (6 mm with rubber sleeve); (b) Galvanized steel wire
with a radius of 2.6 mm (2.9 mm with rubber sleeve).

1. Solve the corrected bending angle 65" by 5% = 65" — f,_(6;);

2. Actuate the bending roller of the machine to bend 6{*" and capture a point

cloud;
3. Release the bending roller and capture a second point cloud;

4. Segment and extract the metal wires from the second point cloud and obtain

. . 1
its difference from 65°* as 65™;

5. Segment and extract the metal wires from the first point cloud and its difference

with the second point cloud as 06;;

6. Update the model to f;(-) using 65" and §0;.
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The actual springback angles (06;) are shown as the solid yellow line, and the
estimated values (551) are shown as the dashed yellow line. The errors between the
compensated bending results and the original goal angles (65™) are shown in the solid

n eerr

blue line. The average errors (avg(fs™) = £ >°" (6) are shown in the dashed blue

line.

By observing the results, we found that the errors 65 and avg(65™) were steady
and did not change much with dynamic updates. The observation differs from our
expectation that the errors would decrease as we collected more data and improved
the springback model. We guess the reason was that the metal wires were even, and
the proposed linear model was good enough to predict a precise springback with very

few data points. The observation was coherent with the conclusions presented in

[176].

5.5.2 Performance of Real-World Executions

We studied the performance of the proposed method by planning the two robot arms,
a 6-DoF UR3e and a 7-DoF ABB YuMi to bend different desired shapes using our
bending machine. The position of the machine is well-calibrated using AR markers
before the experiment. As the gripping force (20N) of the YuMi gripper is not enough
to firmly grasp the metal wire at all poses, we fixed the metal wire on the finger using
a 3D-printed case.

Three shapes are used to evaluate the complete workflow of the proposed system:
(a) A 2D pentagon with a side length of 50 mm; (b) A 3D polygon with a side length
of 40 mm; (c) The random generated 3D curve used in Section [5.5.1] The metal
wires used were the same as Section [5.5.1] and the center roller’s radius (r.) was 7.5
mm. Fig. shows the real-world execution results. The goal curves and planned
sequences are shown in (a.i), (b.i), and (c.i). The robot grasping poses and motion
are shown in (a.ii), (b.ii), and (c.ii). Pictures of the finished metal wires are shown in
(a.iii), (b.iii), and (c.iii). For the first curve, we present the results of both the YuMi
and UR3e robots. The YuMi robot was used to bend the thicker aluminum wire. The

UR23e robot was used to bend the galvanized steel wire. We only show the results of



5.5. EXPERIMENTS AND ANALYSIS 139

the YuMi robot for the second and third curves since the UR3e robot failed to find
a solution due to its lower DoFs. We encourage readers to watch the supplementary
video for more details.

The various costs of the planner for each task are shown in Table and 5.4l The
“ABB YuMi (7-DoF)” and “UR3e (6-DoF)” tables correspond to the two robots.
Under each robot, there are three shape names. They correspond to the three tasks
shown in Fig. [5.21. The “Seq. Planning”, “Grasp Reasoning”, and “Motion Plan-
ning” sections of the table show the trials and failures of our planner’s three planning
processes and their time costs. The “Total Costs” row shows the total time to find
the first solution. The “Max Bearable Force” row shows the maximum minimally
bearable force encountered during grasp selection. Although the maximum payload
of the YuMi robot is 0.5 kg (4.90 N), the force could reach 27.09 N for the “Pentagon”
shape. The “Bend Angle vs. Springback” section shows the goal bending angle and
the observed springback angle. Each item is represented as a sequence of numbers.
They correspond to the sequential bending action points shown in Fig. |5.21] The x
symbol means the vision system failed to observe a springback value due to occlusion.
The last two columns of the table do not have valid data as the UR3e robot failed to
find a solution for the “3D Polygon” and “3D Curve” shapes due to its lower DoF.

Complete Workflow
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(a.1) Pentagon

(a.iii®)

-

(b.1) 3D Polygon

2
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(c.1) 3D Curve
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Figure 5.21: Real-world experiment of bending task. The goal shape is shown in the
first column, and the planned bending sequence is annotated on it. Following are
the corresponding robot motion and final result. (a-b) A 2D pentagon with a side
length of 50 mm; (b) A 3D polygon with a side length of 40 mm; (c) The random
generated 3D curve shown in Fig. When the robot held the wire using the pose
in (b.ii.3) and (b.ii.4), the friction force from the rollers not only pulled the robot
but also caused an undesired deformation to the vertical section of the wire. The
deformation resulted in a large bending error to the 3D polygon (Fig. |5.22[(¢c)).
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We also conducted experiments to evaluate the resultant shapes of the above
experiments globally. We captured the point clouds of resultant metal wires and
compared them with the goal shapes to judge if the results were satisfying. In detail,
we used the Iterative Closest Point (ICP) [I12] algorithm to match the captured
point clouds to the dense point set used to represent the bending goals and used
the fitness (Root Mean Square Error, RMSE) of the ICP matching to evaluate judge
their similarity. Fig. shows pictures of the observed point clouds (red) and the
dense representation points (green). The matched RMSE values are shown below

each picture.

RMSE RMSE RMSE RMSE
1.07mm 1.35mm 3.30mm 0.73mm

Figure 5.22: Evaluating the resultant shapes of the real-world experiments. The
pictures compare the 3D point clouds of the bending results (observed point clouds,
represented in red) and the goal shapes (dense points set in green color). The RMSE
values of the ICP matching algorithm between them are shown below the pictures.

The matching results show that most RMSE errors were less than 1.50 mm and
satisfying. However, Fig. [5.22(c) exhibited an exception. Its error (3.30 mm) was
more significant than the others. We analyzed the reasons and found that when a
robot held the wire using the pose shown in (b.ii.3) and (b.ii.4), the friction force
from the rollers not only pulled the robot but also caused an undesired deformation
to the vertical section of the wire. The deformation further resulted in a positional
displacement of the bending point (g~) along the direction of ;. This is defined as
Nunstable in Section [5.4.1] Including a fixture unit in the bending machine or employing
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(a.1) Helix

Figure 5.23: Other results. (a) A 3D helix; (b) A 2D spiral.

a robot with compliant control policies may help solve the problem.

Other Results

The proposed system also works for other shapes like spirals. In this part, we con-
ducted two additional experiments to bend a helix and a spiral, respectively. The
results are shown in Fig. [5.23] The geometry of the robot and machine may limit the
curvature and sizes of target wires that can be processed. However, there are no con-
straints to a particular shape. Note that the springback model estimated by previous
experiments is directly adopted without online updates in these experiments.

It is important to note that the smoothness of the bending results for shapes
such as helix and spiral depends on the number of bending action points. We set
the tolerance parameter in these experiments to be € = 0.2 mm. By adjusting this

tolerance to a lower value, we can achieve a higher level of smoothness in the bending
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results.

5.6 Conclusions

We presented a combined task and motion planning-based planner for a robot arm to
bend metal wire while collaborating with a bending machine. It enabled a low-payload
robot arm to automatically curve metal wire with high stiffness. Visual estimation
with dynamic update and prediction was used to compensate for the springback
caused by elastic deformation during the bending process. We examined different
bending results of the developed system and confirmed that our system was flexible
and robust for generating robotic motion to corporate with the bending machine. It
also exhibited satisfying precision with the help of springback compensation.

Besides these positive conclusions, we learned several lessons and understood sev-
eral systematic limitations. First, as the metal wire was not firmly fixed on the
machine, it might be pulled or dragged by the machine’s bending rollers and thus
cause an unaffordable payload to the robot. Although careful planning could help
avoid large payloads, the deformation it caused led to significant bending errors. In-
cluding a fixture unit in the bending machine or employing a robot with compliant
control policies may help solve the problem. Second, the metal wire must be strictly
straight in the beginning to ensure that ensuing planning, execution, and feedback
can be correctly performed. It will be helpful to further improve the bending machine
by including a straightener unit. Third, the deformed wire was difficult to be captured
by a single view, and the springback estimation may fail due to self-occlusion and
robot-object occlusion. Developing a high-precision and active vision system will be
helpful to fully capture the curving status and improve the springback compensation
performance.

We are interested in working out the above problems to obtain better bending
precision in future work. We would also like to extend the method to other types of
objects, i.e., a metal plate. In addition, due to the limitation of our current system
configuration, such as lacking a straightener unit, it remains difficult for us to ensure

100% precision. In particular cases, we have to invite a human to assist in positioning
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the wire correctly and preventing unexpected collisions. Entirely eliminating human
intervention would be an important topic to explore. Finally, we are interested in
using dual-arm coordination to perform the bending tasks. In the dual-arm configu-
ration, the bending machine would be removed, and the robot manipulators will take
all the roles. However, implementing such a system requires robots and grippers to
have satisfying payloads and holding forces. We may work on it in the future when

we have a more suitable dual-arm robotic platform.

Appendix

In this appendix, we discuss the mechanism details of the proposed system.
A challenge of the proposed system lies in the
maximum gripping force of the ABB IRB 14000

b Y]

"@® 3D Printed

gripper, which is 20 N. Given this constraint, the Case
gripper is difficult to firmly grasp the metal wire at

all poses using force closure-based grasping [177]. Loce}ting
This difficulty arises due to the metal wire’s thin Hif
and long nature, resulting in small contact sur- Figure 5.24: Wire fixture.

faces and soft-finger contact friction. To address

this issue, we fixed the metal wire on the finger using a 3D-printed case, as shown
in Fig. [5.24] At the beginning of each experiment, we manually adjust the grasping
pose before robotic executions.

Additionally, it is vital that the wire is accurately positioned within the bending
machine before the operation commences. To this end, we primarily worked on the
following two steps to accomplish satisfying positioning. First, we manually calibrated
the machine’s position using AR markers before the experiment. The poses of the
robot hand and bending machine were precisely known through this step. Second,
we used tapered rollers to constrain the metal wire’s pose. As shown in Fig. [5.25
(dy < dy = d3), the wedge of such tapered rollers provided an error tolerance of
dy — dy. In the real setting, this tolerance was 2 mm.

It is also possible to check the contact state using force feedback. However, we
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Figure 5.25: Two steps to achieve satisfying positioning: (1) We manually calibrated
the machine’s position using AR markers before the experiment; (2) We used tapered
rollers to constrain the metal wire’s pose.

did not implement it as the force sensor is not equipped for the robot. Joint current

sensors were available, but they needed to be more precise to meet the requirements.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

6.1.1 System Overview

In this thesis, my primary focus lies in choosing and designing efficient algorithms for
planning robot manipulation using general-purpose robot arms. This was achieved
through the implementation of two specific robot manipulation systems. Visual and
force perception, task and motion planning, and uncertainty management are lever-
aged for achieving reliable and robust manipulation systems. By employing general-
purpose robot arms and grippers, the adaptability and flexibility of robots in accom-
plishing complex tasks were improved.

The robotic drawing system maps 2D strokes to 3D surfaces, plans pen picking
and manipulation motion, and performs drawing on 3D surfaces considering vision
and force feedback. The system showcases its flexibility by treating pens as tools that
can be picked up and manipulated in real-time. Its robustness is illustrated through a
closed-loop operation that utilizes high-quality-stroke mapping, in-hand pose estima-
tion, motion refinement, force control, and error detection and recovery mechanisms
to mitigate potential failures. Experimental results demonstrated excellent expected
performance.

The robotic bending system integrates a view planning algorithm and a task and

148
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motion planner. The view planning component uses a point completion network-based
NBV/NBC estimation method that can reconstruct the shape of the metal plate with
a minimum number of scans. The task and motion planner facilitates the interaction
of a low-payload robot arm with a bending machine, enabling it to autonomously
curve high-stiffness metal wire. The system employs dynamic visual estimation and
prediction to adjust for the springback effects caused by elastic deformation during
the bending process. Different bending results of the developed system are examined
to confirm that the proposed system was flexible and robust for generating robotic
motion to corporate with the bending machine. It also exhibited satisfying precision

with the help of springback compensation.

6.1.2 Planning Method Overview

The selected algorithms for task and motion planning across different systems are
listed in Table [6.1 The summary is as follows:

1. Drawing Task (Chapter 3): The sub-tasks in this system present both dis-
crete and continuous constraints. The task of picking up a pen, for instance,
is discrete in nature. The initial and end poses can be effectively solved using
an optimization-based method, while the intervening motion can be managed
with a probabilistic method like the RRT*. And the task of drawing presents
a more constrained, continuous problem where the path is predetermined and
must be followed precisely. Probabilistic-based methods might not be as effec-
tive in this case due to their inherent randomness and the large solution spaces
they generate. Hence, more deterministic methods that can precisely manage
the constraints are generally preferable. Additionally, the choice of poses for
recalibrating in-hand pose is handled through a sampling-based method due
to two primary reasons: First, the constraints of this task are relatively flex-
ible; Second, the calculations can be performed offline, significantly boosting

efficiency.
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Table 6.1: Planning Algorithm Overview.

Optimization-based Probabilistic-based
Grasp Reasoning;
Other Motion Planning

Chapter 3 Drawing Motion Planning

View Planning;
IK Solving
Bending Action Representation;
Chapter 5 Bending Sequence Planning;
Pulling Motion Planning

Chapter 4 Motion Planning

Grasp Reasoning;
Lift-and-Place Motion Planning

2. View Planning Task (Chapter 4): A probabilistic-based method is em-
ployed to represent the object, which allows for effective handling of the un-
certainties. The view pose is calculated using an optimization-based method,
which ensures the most optimal solution is found. By combining these two

methodologies, the task successfully balances efficiency and precision.

3. Bending Task (Chapter 5): The fully constrained bending action represen-
tation makes it a suitable candidate for an optimization-based method. On the
other hand, the sub-task of selecting a grasp pose that meets the force constraint
requires a broader exploration of the solution space, which correlates with the
number of bending actions. This exploration is effectively conducted using a
sampling-based method. The motion connecting bending actions is bifurcated:
the lift-and-place motion is addressed by RRT*, whereas the pulling motion,
constrained by rollers and necessitating only linear end-effector movement, is

best handled by optimization-based methods.

In conclusion, this thesis shows the balance of planning algorithms can significantly
enhance the performance of complex robotic manipulation systems. By delving deep
into the difference between discrete and continuous constraints, and harnessing the
strengths of various planning methodologies, it shows that probabilistic and determin-
istic strategies are not just stand-alone solutions. When synergistically integrated,
they possess the ability to present efficiency, precision, and adaptability in robot

manipulation systems.
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6.2 Furture Work

While the robotic manipulation systems developed in this thesis demonstrate promis-
ing results, they are primarily tailored for specific tasks. Their adaptation to a wide
array of tasks without substantial reprogramming or redesign poses a challenge. Fu-
ture research may aim to enhance the versatility of these robotic manipulation sys-

tems.

e Amodal Scene Representations: Shifting from a specialized to a generalized
approach, one research focus may be to develop amodal scene representations.
This involves leveraging complete 3D representations of scenes regardless of
occlusions and image field of view (amodal) [I78] and utilizing contextual in-
formation from the entire scene as a whole (scene). This will essentially equip
robots with a level of autonomy to perceive and interpret their environments in

a more human-like manner.

e General Task Planning Strategy: Despite the substantial advancements
made in automatic planning for high-level tasks, there is yet a significant gap
to be bridged. The complexity of these tasks is often underpinned by numerous
variables that our current computational models struggle to fully grasp and ef-
ficiently operationalize. And it is time-consuming to design algorithms for all
real-world tasks. With the advent of Artificial General Intelligence (AGI), an
increasing number of researchers are working towards the creation of a univer-
sal model capable of addressing complex task and motion planning challenges.
Recent studies have started to leverage Large Language Models (LLM) for task
and motion planning [T79)[180].
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