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The main purpose of the present paper is to construct the solution of the
initial value problem for the modified Korteweg-de Vries (KdV') equation

(0.1) v,—6v%,+v,,, =0, —oo L, 1< oo,

The subscripts «, ¢ denote partial differentiations. We study smooth real
valued solutions which tend to +4-m as x— - co for a positive constant .

As an analogue of the method of Gardner, Greene, Kruskal and Miura
(GGKM) [3], we construct these solutions in terms of the scattering data of
the one dimensional Dirac operator

Lo—it %oyl 7 p_aa
=1 1 == U .
"o —1 v 0 Ja

In [9], Zakharov and Shabat have studied the initial value problem for the
non-linear Schrodinger equation

(0.2) wtu,,— |ul’u=20

with the step type initial data as above. They have developed the inverse

L 1 OD ’:0 uw*
=t 17T o

on formal basis, where u* is the complex conjugate of u. They have constructed
the exact solutions of (0.2) in terms of the scattering data of L,, assuming that
the reflection coefficient identically vanishes.

Now, L,, can be obtained from L, by putting u=iv, where v is a real valued
function. By virtue of this restriction, the argument can be considerably
simplified and, in the sequel, we can complete the inverse scattering theory of
L,,. This result enables us to construct the solutions with general step type
initial data.

scattering theory of
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In § 1, we describe preliminary materials which concern the Jost solutions
and the scattering data of L,. In §2, we derive the fundamental integral
equation. In §3, the solvability of the fundamental integral equation is esta-
blished. In §4, the inverse scattering problem for L;, are discussed. Finally,
in § 5, the solutions of the initial value problem for the modified KdV equation
(0.1) are constructed.

Throughout the paper, c* denotes the complex conjugate of c.

The author wishes to express his hearty thanks to Professor Shunichi
Tanaka for his invaluable suggestion.

1. Scattering data

In this section, we expose the generality of the scattering data of L, without
the assumption u=¢v. In deriving the following results, methods developed
for the Schrodinger operator and other operators have been used in modified form.
For these results, we refer to [1], [2] [4], [6], [8] and [9].

Let m be a positive real number. Put

m. = mexp (Ia.), —TL AL ST

For a complex valued measurable function #=u(x) which tends to m,. as x—--co,
consider the eigenvalue problem

(1'1) Luy =AYy, Y= t(yl) yz)’ A=E+ik )

on the real axis (— oo, o0).
Let £=¢(\) be the two-valued algebraic function defined by

£ = A2—m?

and R be the upper leaf of the two-sheeted Riemann surface associated with
¢. We assume Im {>0 for An&R. For E€R,=R\[—m, m], put

o = o(§) = (sgn E)(E*—m")"*.

For a two-dimensional vector y=7(y,, ;) and a matrix A=(a,;) of order
2, put

y="0501, =",
gt — |:a>2k2 a;kljl a :|ia21 a?zzl
af, dah], ay dp].
If y=y(x) is a solution of (1.1), then y* is a solution of (1.1), A being

replaced by A*.
For solutions y(x) and 2(x) of (1.1), the Wronskian

[v; 2] = y12—Y2%1



INVERSE SCATTERING PROBLEM FOR THE DIrRac OPERATOR 251

is constant.
Put
£ %) = (m3(—0), 1) exp (it)
Fox, n) = (1, m*'(A—C) exp (—iLx) .

They are solutions of (1.1) for u(x)=m.. respectively.
Gasymov [4; Theorem 1.2.1] has shown the following.

Theorem 1.1 (Gasymov [4]). If we assume

too
oul) = £ | (14 1 9D [U(9) s | dy+-8Up o u(3)— .| <0,
then there exist unique solutions f.(x, \) of (1.1) such that

fax, M) = fi(x, A)+-o(1)

as x—>+4o0o. f.(x, A) are analyticin N\ER. Moreover there exist matrix functions
A, (%, 9)=((Aur (%, 9))s 12 such that
Foo

(12 Felors ) = f25 N Aue )0 Ny
Furthermore

| A f(x, y)| <Cros(x+y)
and

A‘i(‘”} y) = Ai(x) _'Y)
are valid. We have

u(x) = —21A 5 (x, x)+m, .

Proof. Put

E(x’ 7\') = (f-(-)’ (x’ 7‘)’ ff(x, 7\')) ’

then we have
. w u*(y)—m

(13) Fules 2) =12 M —iEs ) [ EG, x)ﬂ[ ©)

*
im0

This integral equation can be solved by successive approximation which leads
to the existence of the solution and its analyticity.

We refer to [4; pp53-63] for the existence of kernels A.. Q.E.D.

The functions f.(x, \) are called the Jost solutions.

If we assume that u=iv and a,=+2"'z, where v is real, then the proof
of this theorem can be considerably simplified as follows. Put

1 im‘l(é’—?\):]

(1.4) EQ)= [im“ PN
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If we set
hi(x, §) = E(\)7 fu(x, A) exp (Fikx)  (A=0),
then A.(x, {) are analytic in {, Im £>0. Assuming
(15)  hu(x &) = 4O, 1)+S0 K. (%, y) exp (2icy)dy, Ky = (K, Ks)
put (1.5) into (1.3). And we have

(16) K@, 9)+| @@ —mK ., aty—2)ds = —a(w-+y)+m
(17) Ko ,y)+gj(v(zj+m)K+1(z, Yz = 0.

These integral equations can be solved by successive approximation.
this, K, are real vectors. We have
v(x) = —Kiy(x, 0)+m = K_,(x, 0)—m .
The matrix
91 [Kﬂ(x, 27 (y—x)) Ki(x, 2“](y—~x))J
Kay(%, 27y —a)) Ko, 27(y—x))

coincides with the kernels 4. (x, ¥) in Theorem 1.1.
Returning to the case of general complex potential, put

fe(x, &) = fu(x, £E+40), EER,.
We have
[fi(x, E); f4(x, £)] = 20(c—E)/m? .

From

Since o(c—§&) does not vanish for (R, f.(x, &) and f%(x, &) are linearly

independent solutions of (1.1). Therefore one can express

(1.8) f-(x, &) = a(E)i(x, E)+b.(E)f+(x, £).

Similarly, we have

fo(x, &) = a_(§)fL(x, E)+b-(E)f-(x, £) .

We have

a.(&) = a_(§) = a(&) = m*(f.; f-]20(c—&)
and
(1.9) bi(§) = —b_(§) = m’[f-; fi][20(c—E).
We have

(1.10) la(8)[* = 1+ [b.(8)]*.
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This implies that a(£) does not vanish for (€ R,,.
The coeflicient a(£) can be extended to the analytic function

(1.11) a(n) = m*{fo(x N); f-(% M]2E(E—N),  AER.

Put (1.2) into (1.9) and (1.11) and calculate the Wronskians, and we can
obtain the integral representations of a(\) and b.(£¢). For instance, we have

a(\) = (E—=\)—m’ exp {{(a.—a-)}
28(E—x) exp {i(a—a-)}
1 S - ) .
T —A —A 2ix)dx
2%E—n) Jo {ou(*)+(E—Nao(®)+(E =) ay(%)} exp (2ix)dx
where a(x) (=1, 2, 3) which are integrable can be expressed explicitly in terms
of the kernels 4. .
Because f. are linearly dependent at the zero of a()\), they are square
integrable by their asymptotic property. By virtue of formal selfadjointness of
L,, zeros a(\) belong to (—m, m). Let A\’ be one of zeros of a(x). Then

f-(x, N) = dfo(x, )

u)

is valid for some constant d°. We have
(1.12) a(\) = —i(27°)'m_d°* gw | fo(x, A0 [2dx,

where 7°=(m?—\%)2,  Hence \° is a simple zero of a()).
Similarly to [6; pp133-134], we can show that @(X) has only finite number of
zeros. We denote them by A\j, Ay, -+, Ay. Put

rt(g) = bi(g)/a(g) ) £ERm ’
which are called reflection coefficients. We have

ro(£)=0E™), [E]—=0o0,

and
(1.13) lr.(§)I <1, E€R,.
Put
n., = {Slfi(x, A ) (%, xj)a'x}_l, j=1,2,N.
We call the collection
(1.14) {rs(E), map N j=1,2, -, N}

the scattering data of L,.
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In the following, we assume that u=iv and ay=-+2"'7, where v is real.
Putting (1.5) into (1.9) and (1.1), we have

(1.15) a(N) =2 (1+S: () exp (2i§x)dx>/?;
and
(1.16) b.(E) = (2ic) S: B(x) exp (—2iox)dx

where a(x) and B(x) are real valued integrable functions which can be expressed
explicitly in terms of kernels K,. By (1.14) and (1.15), we have

a(—n) = —a()\)
and

b(8) = O(F™).

Hence, if A\° is a zero of a(\), then a(\) vanishes also at A=—2\°. Therefore
zeros of a(\) consist of -« ,, where

0= s, <1< o <, <m .

The linear dependence of f. implies that of %. exp(+ifx). Therefore
we have

h_(x, in)) exp (nx) = d h.(x, in;) exp (—n ), j=0,1,mn,

for some real number d, where 7,=(m*—«3)"?. Put
= -1
Cop= {S_J Fol®, 0) lzdx} — id,[2a/(0) ,

co=2 {11 k) Pax ) = imd (), =12
Define c_; by
Ciol-o = —(2a'(0)) 72,
Crffo, = —m(ni(k))E, j=1,2,-m.

(1.17)

By (1.12), ¢, ; are positive numbers.
In place of (1.14), we call the collection

{r:t(f)’ Cija K, ] = O, 1, 2, ...’n}

the scattering data of L;,.
By the similar arguments as in [2, p 149], we can show that the condition

(1.18) r§)—Fi (E—=Em)

are valid, if and only if
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1+S:a(y)dy=i=0 .
Moroever the condition
(1.19) r(f)<é<1, tEER,,

is valid, if and only if

1—{—5: a(y)dy =0.
Put
Bi(N) = A7 TL%4(E—in) (E+in,)
and
By(\) = A7 A+1m) T1;20(E—m,) 7 (E+17)) .

If the condition (1.18) holds, then By(X)a()) is analytic in §, Im >0, and
has no zero. If we set

a(¢) = Bi(M)a(n)
and

g(x)=nm"1 Sw log ay(c) exp (—2iox)do ,

where integration is taken in L?-sense, then, by (1.15) and the Payley-Wiener’s
theorem, g(x) is a real valued function which vanishes for x<<0. Hence we
have

(1.20)  g(x)d-g(—x) = = Sww log | ay(c") |2 exp (—2icx) dor
and
(121)  loga) = 27{ (" g) exp (2itn)an+ | _g(—x)exp (—2itw)dx)
Eliminating g(x) in (1.21) by (1.20), we have
log ay(8) = (2mi)™ Sww (c—8) log|ay(o)|do .
Hence, by (1.10), we obtain
(122)  a(\) = B,(n)"! exp{(zm')-l gfm(q_g)—l log [£%%(1— | r(£) |2)]"d0'} .
Similarly to above, we have

(1.23)  a(\) = B,(\)"! exP{(zm')-l Sojm(o—f)’l log (1— |r(g)|2)-lda} :

if (1.18) holds. Thus we can reconstrct a(\) from the reflection coefficient 7(£).
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2. The fundamental integral equation

In this and subsequent sections, we assume that u=iv and a.=-+2""r,
where v is real.

In [8], Zakharov and Shabat have derived integral equations which con-
nect kernels 4, with the scattering data of L,. In this sectiontwe derive similar

integral equations which connect kernels K. with the scattering data of L,,.
By (1.8) we have

a(&) P J(EYh_(x, )—'(1, 0) = {h+(x, a)—40, 1)}#
+ru(EV(E) exp Rioa)h(x, o) ,

where

J(E) = E(E+i0FE(g+i0) = £ [ ’ ”"’"}

—mm o

Now, multiply 77! exp (2icy) on the above identity and integrate over
(—oo, o) with respect to o, where integrations are taken in L*-sense. We have

! Siw{a(f)ﬂ](g)h—(x, a)—(1, 0)} exp (2icy)do = 2i 3%, R,

where R; is the residue at §=i7]] of

a(A) ™ JA)h-(x, §) exp (2:8y)

which is a meromorphic function in £, Im £>0, with simple poles i7,. We have

R, = ic,  exp (~2n,(x+y)){“’;f/ " _—IJ/u(x, in).

1
__..771/m

Hence we have
(2.14) Ki(x, y)+Fi(x+)(0, 1) —1-8: F (x+y+2)K.(x, 2)dz=0 (y>0),
where

—nj/m 1

(2.2+4) F+<x>=22,zoc+,{ 1
—n,/m

} exp (—27,x)

Y Sw r(E)J(E) exp (iox)do .
Similarly we have
(21=) K5 )P () (L 0+ ] FriytaK (v 2as =0 (3<0),

where
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1 ——nj/m

Lt S: r(€) J(E) epx (—2iox)do .
By (1.15) and (1.16), we have
HEY* = r(—E).

This shows that F.(x) are real matrices.
We call (2.14-) the fundamental integral equations.

(2.2—) F_(x) =233,% c-,-[ ] exp (27;%)

3. Solvability of the fundamental equation

In this section we discuss the solvability of the fundamental equation (2.1)
as an integral equation for K.
Assuming that G is bounded integrable in (a, o) for any a, put

(To.N0) = | Gty +9)f@)ds

for f&L!(0, ). Then T, is a completely continuous operator as an operator
on LY(0, oo).
We have

Theorem 3.1. If F(x) defined by (2.2) is bounded integrable in (a, ) for
any a, then I+T.7 . has the bounded inverse for any x, where I is the identity.

Proof. Suppose ¢ is a solution of
(I+ TFT,x)d) =0
in LY(0, o). By the boundedness of F, that of ¢ follows. So ¢ belongs to
L¥0, o). Put
hE) = (O, () = | () exp Qitwyds,  ImE>0,

X(8) = "(m(8), h(©), BE(D), BE(D)) 5
R(x, o) = 7(£) J(£)" exp (2i0x) ,

He, o) —| T B
(% o) = [R(x, o) E :|
and
1 —n/m
Hj(x) = ZC, exp (__Zvij) [dn./m 1] J

where E is the unit matrix of order 2. Then we have
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G 0= [ e T ey
= 7! S: X(o)*H(x, 0)X(0)do 43350 h(in y*H (x)h(in ) .

H, are nonnegative definite real symmetric matrices. On the other hand, the
Hermitian matrix / is unitarily equivalent to the diagonal matrix

LHnE)] 0 0 0
0 1HH®) 0 0
0 0 1-[x® 0
0 0 0 1—Ix®)

Hence, by (1.14), the right hand side of (3.1) contains only positive terms.
Therefore we have

X(o)*H(x, 0)X(c) = 0

for any x, . Therefore A(c)=0 follows. This shows ¢(x)=0. Q.E.D.
By Theorem 3.1, the operator equation
(3.2) I+T ) = s

is uniquely solvable for a continuous L!-valued function +f,. We denote the
unique solution by ¢,. Then, by Theorem 3.1, ¢, is a continuous L'-valued
function. Moreover we have

Lemma 3.2. Suppose that F is absolutely continuous and F, F’ are in
L'(a, o) for any a. Let , be continuously differentiable in x as a L'-valued
Sfunction, then the solution ¢, is differentiable in x and

(I+ TFT,x) ¢,: ‘!":,c - TI"T,,qux
holds.

A proof for this Lemma is completely parallel to [7; Lemma 4.3, pp 342-343].

Put yr,=—F(x-+y)™(0, 1) and the equation (3.2) coincides with the funda-
mental equation (2.1). By Theorem 3.1 and Lemma 3.2, K(x, y) is differentaible
in the ordinary sense. Put

(3.3) v(x) = —Kj(x, 0)+m
and
G S0 = exp @B, )+ K, ) exp 2iE3)as)

where E(\) is the matrix defined by (1.4). Then we have
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Theorem 3.3. If F is absolutely continuous and F, F’ are in L'(a, ) for
any a, then f defined by (3.4) is differentiable in x and satisfies

(3.5) Lf=f
Jor v=v(x) defined by (3.3).
Proof. Put
J(x, ) = (Ko, y)—(0(x) +m)K\(x, y), Ki(x, y)—K;y(x, 3)
—(v(x)—m)Ky(x, ¥)) -
Then, (3.5) holds if and only if J(x, y)=0. We have
3(%) = 2mF(x),

where

F) F)
Py = [Fz(x) F(x)J.

By this relation, we have
J 9+ | Faty+2)J(s, )z = 0.
Hence, by Theorem 3.1, J(x, y)=0 follows. Q.E.D.

4. The inverse problem
Let n be a nonnegative integer, #, (j=0, 1, -*-, n) be nonnegative numbers
such that
0=, <r; < o <k, <

and ¢, (j=0, 1, -+, n) be positive numbers. Suppose 7(&) (€ R,,) be a function
which satisfies the conditions

r(—&) =r&*, |7(§)| <1, EER,,,
(&) = O(™) (E— £oo).
Moreover we assume that either

) —+i  (E— +m),
or

lr(§)l <8<, E€R,.
Determine a(§) from 7(§) by (1.22) and (1.23) respectively. Put

a(E) = a(E+i0)
r() = r(®), 7-(8) = —a() a(—E)r.(E—)
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and define ¢_ from ¢, =c, according to (1.16).
Put

—'77]/7”
1 ——nj/m

fa S: ro(8) J(E) exp (- 2iox)do .

F.(x) =23, cijli } exp (F2nx)

We assume that F.(x) are absolutely continuous and F.(4x), F4(4-x) belong
to L'(a, o) for any a.

Let K.(x, y) be the unique solutions of the fundamental equations (2.1+)
whose kernels F, are defined above.

Put

(%) = —K (%, 0)+m
and

v_(x) = K_y(x, 0)—m .
By Theorem 3.3,
flon 2) = exp (@) B0, 1+ [ Ko, ) exp @ity)ay)
and
£, 2) = exp (—iE B0, 0+ [ K (3, 3) exp (~2t9)ay)
satisfy (1.1) for v=uv_. respectively.
Next we show that v.(x) coincide. This follows immediately, once the
equality
(4.1) a&)f-(x, &) = fh(x, E)Fr()f+(x, E), EER,
is established, where
fe(x, &) = fu(x, E+10),  EER,.
Put
2, @) = Fi(x, o)+exp Liox)r () J(Ehi(x, o)
and
G(s,3) =7 [ {aw, o)—1(1, O)} exp (2ioy)do,
where
hi(x, o) ="(1, 0)—{—S: K. (x, y) exp (Ziocy)dy .
Then we have

G(x, ) = Kil, 9)+ FO+9)(0, D+ Fo vty + 9K, 2)ds,
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where
Fo(w) =7 | r.(©)J(&) exp (iox)do

Lemma 4.1. The function g(x, o) can be extended to the domain, Im £>0,
as a meromorphic function g(x, §) whose poles are simple and exhausted by i,
(=0, 1,2, .-, n).

Proof. Putting

m  —1
qj(x’ ;) — —ic+j(§,’——i17])'1[:§/’m

—1 &/m
+ S: K.(x, 2)exp (2i§z)dz}

} exp (2itx) {'(0, 1)

and
&(x, o) = g% 0)—(0, )=2%0¢,(x, @), oER.
We have
r! S: q{x, o) exp (2icy)do

7,/m —1

1 ~/m:'{‘(O, 1)+$:K+(x, 2) exp (219 ].z)dz} .

= 2¢,; exp (—27,(x+y)) [:
By the fundamental equation,

Gl 3) = w7 o | g, o) exp Qioy)do, (w3, y>0),

follows. Therefore, we have

(4.2) [" o o) exp Qioy)do =0, (x+5,5>0).
So, g,(x, o) can be extended to the analytic function g(x, §), Im£>0. Q.E.D.
Put
& —im
Jm=r] 5 e,
—im
(4.3) h(x, £) = a(})J(A) " g(x, £)
and

f(x, A) = exp (—ilx) J(A)h(x, £) .

By Lemma 4.1, f(x, A) is holomorphic in AER.
We have

Theorem 4.2. The function h(x, §) defined by (4.3) is represented as
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0
(+4) W, ©) =0, )+ [ K(x, ) exp (208 3)dy,
where K(x, v) is the unique solution of the fundamental equation (2.1-).

Proof. By the absolute continuity of F and the integrability of F’, the
existence and integrability of K, (x,y) follows. Hence og(x, o) is bounded
as a function of o. By (4.2), we can apply the Phragmén-Lindelof type
argument (see [6;pl68, problem 32]) and conclude that {g,(x, {) is bounded in
the domain Im {>0 for x>0. This implies that as |{|—co(Im §>0)

h(x, £)—*(1, 0) > 0,

where convergence is uniform. Hence we have

S:{h(x, &) —*(1, 0} exp (2icy)do =0,  (y>0).

Therefore, the representation (4.4) holds.
By direct calculation, we have

a &) J(E)hs(x, o) = I (x, o)+-exp (—2iox)r_(§)J(E)h(x, o).

Hence the kernel K(x, y) satisfies the fundamental equation (2.1—). Q.E.D.
By this Theorem, the equality

K(x) ;V) = K‘(x: y)
follows. This shows that
S, N) =f-(x, A), x>0.

So we have shown the fulfillment of the equality (4.1). Therefore v.(x) coin-
cide for x>0.
From the fundamental equation, the estimates

[ Ka(%, ¥)| <Ci SUPssitery [ Fu(?)]
follows. Hence, we have finally

Theorem 4.3. Let 7(£) satisfy the conditions formulated at the beginning
of this section and also we assume that m.(--x) belong to L'(a, ~°) for any a, where

My(X) = SUP 5, | Fa(x)].
Then

{ra(E), cap i, j =10, 1, m}

are the scattering data of L,,.
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For the application of this result to the construction of the solution of the
modified KdV equation (0.1), we need the relation between the smoothness of the
potential v and that of the reflection coefficient 7(£).

Let S be the space of C~-functions which are rapidly decreasing together
with all their derivatives and D,, be the set of C~-functions which tend to +m
as x— 4o and whose derivatives belong to S.

We have

Lemma4.4. Suppose that the potential v is n-times continuously differentiable
function with integrable derivatives. Then K§¥(x, y)=(0/0x)/(0/0y)*K (x, y)
exist for j, k; 1< j+k<n and the estimates

| KYiP(x, y)+o0 P (x4-p) | 4 | KD (x, )| < Ciop(x+-y)
hold.

The proof of this Lemma is completely parallel to that of [7; Lemma 1.3,
p 334].

Next we have

Theorem 4.6. The potential v belongs to D,, if and only if £7'r(£) belongs
to S as the function of a variable o .

Proof. If we express a(x) and B(x) defined by (1.15) and (1.16) in terms
of K, by calculating the Wronskians in (1.8) and (1.9), then, by Lemma 4.4,
a(x) and B(x) are infinitely differentiable except at x=0 and rapidly decreasing
together with all derivatives.

By (2.1), we have

h(x, @) = a(E) JEVA (¥, o) +b(E)hs(x, @) exp (2iaw).

Multiply z7* exp (2icy)(— | x| <y<0) on the second component of the above
relation, integrate over (— oo, co) with respect to o, differentiate with respect
to y and let y 1 0. Then we have an explicit representation for B(x)

B) = V() —(w(x)—m) | () —me)ds+2m | (e2(a)—m)ds
+ [ @K, 2+ @mate)— Alet-2)Kanl, dz

Hence B(x) is infinitely differentiable even at x=0, 7.e, B(x) belongs to S.
Next we assume

1+S: a(x)dx=0.

Then, by Lemma 4.4, (2icfa(£))™ is a C=-function of . As mentioned
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above, 2icb(£) belongs to S. Hence

E7(E) = 2ich(§)/2icEa(E)
belongs to S.
On the other hand if we assume

(4.5) 1+S: a(x)dx =0,
then we have
Sl B(x)dx = 0.
This implies that there exists y(x) S such that
V(%) = B(x) .
This shows
b(E) = S: (%) exp (—2icx)dx .

The condition (4.5) implies that (£a(£))™* is a C”-function with bounded
derivatives. Therefore £7'7(£) belongs to S.

The proof for the converse statement can be obtained by induction based
on Lemma 3.2, Q.E.D.

5. Construction of the solution of the modified KdV equation
Put

2

* v, vt o,
B,y = —4D%*+3 D-+3D
v, ¢ v, o]

Then, by direct calculation, the modified KdV equation (0.1) is equivalent to
(5.1) dL,,»[dt = [Byw, Lisn] = By Ly —Liso B -

Let v=uv(t)=v(x, t) be a smooth solution of (0.1). Suppose

(5.2) Liwfe =Nz

Differentiate this with respect to ¢, then, by (5.1),

dfs|dt—By |-

satisfy the differential equation (5.2). Hence if v belongs to D, for cach ¢,
then, by the asymptotic property and the uniqueness of the Jost solution, we
have

(5.3) df,|dt— B, fo = (F4ET6iEm?)f, .
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Differentiating (1.8) with respect to ¢ and eliminating df./d¢ by (5.3), we have
daldtft.+ {db..|dt F(8ic*+ 12mPic)b.} f. = 0.

So we have
a(E, 1) = a(, 0)
and
(5.4) bo(E, t) = by(§, 0) exp {(8ic®+12m%a)t} .

Hence a(, ?) is independent of ¢ and so are its zeros +«;(j=0, 1, .-, 7).
Similarly we have

(5.5) ca(t) = 2 0) exp {(8r—12men )i}
Conversely, suppose that
{ri(g)y Cij Mj)j =0,1, -, ”}

are the scattering data of the operator L;, v&D,,. Define r.(&, t)=b.(£, t)/a(§)
and ¢, () by (5.4) and (5.5). Put

1 —nj/m

! rm ro(E, ) J(E) exp (L2iox)do .

F.(x, ) =232, cij(t)lz ] exp (F27 x)

Then, by Theorem 3.1, the fundamental equations (2.1+) with the kernels
F.(x, t) are uniquely solvable. We denote the solutions by K.(x, y, t). Put

vp(x, t) = —Ky(x, 0, £)+m

(5.6) v_(x, t) = K_,(x, 0, t)—m .

As r(-£m, t)=r(4-m), the condition required to show v, (x, £)=v_(x, t) is clearly
satisfied. Thus, by Theorem 4.3 and 4.5, we have

Theorem 5.1. If v(x) belongs to D,, then there exists the unique potential
v(x, t)ED,, whose scattering data is

{ra(E, 0), cx(t), k, j=0, 1, 0, 7}
for each t.
We have finally

Theorem 5.2. The potential v(x, t) defined by (5.6) satisfies the modified KdV
equation (0.1).
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Proof. It is sufficient to show that the relation (5.3) holds. Infact, di-
fferentiate (5.2) with respect to ¢ and eliminate df../dt by (5.3). 'Then we have

(@L;yo/dt—[By, Liw])f = 0.
By direct calculation, the relation (5.3) is equivalent to
(5.7) dh.jdt = g..,
where

ha(e, £, 1) =0, D+ [ Kaw, 3, ) exp Qity)ay,

ho(x, £, 1) = (1, 0)+S°_w K_(%, v, 2) exp (—2ity)dy
and

gi(xl g’ t) = 12§2hixq:12i§hixx_4hixxx

¢ v, .
+6L vz}(iz:hﬁhﬂm[

200, V.,

1h+=F6' ’h, .
200, |~ im'h,

xx X.

Substitute (5.8) into this and integrate by part. Then we have

g &) = [ 3, ) exp Qity)y,

where

v?’+m? o,
](x) y: t) = _K+xxx +3[ }K x

v, vHm
As F(x, y) is differentiable with respect to ¢, so is K. The relation
F1+Fxxz_6m2Fx =0

is valid. Hence we have

5.9 K7, v, :)+S: Flaty-+2, OK.ix, 2, f)ds = D(x, v, 1),
where
D(s,3,1) = | (Fenlsty-+, ) —6mF (s-+y+5, 0K, (x, 3, 1)d
+(Fad(xty+2, 1)—6m’F.(x+y, 1))(0, 1).

By direct calculation, we can show that J(«, y, ¢) satisfies (5.9). Therefore, by
Theorem 3.1, K,,=] follows. Q.E.D.

Next we discuss the reflectionless solution which can be obtained under
the assumption 7(£)=0. This implies
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_.vj/m

Fy(x) = 22,-10%,.[ 1

1
exp (F29.x).
—n, /m} p (F27x)
This shows that we can express the unique solution K(x, ¥) of the fundamental
equation as

_n]/m

K(x, ) = zz,f;oc,.[ 1

_nlj /mej(x) exp (—27,(x+y)) ,

where f(x)="(f,(x), f2,(x)). Substitute this into the fundamental equation
(2.1), and we have the system of the 2(n-1) linear algebraic equations

—,fm }(,,.H)-l exp (—2n,2)f ()
1 g=/m] 7 ’ Y

= —(1,0), (Z=0,1,--,n),

(5:10)  fi(x)+22i% C,-[

whose coefficient matrix is easily seen to be nondegenerate. Let f; (x) (i=1, 2
and j=0, 1, --+, n) be the unique solutions of (5.10). Then we have the reflec-
tionless potential

(A1) ole) = 2 3 ¢ (0, fi(¥)— o) exp (— 2m)
Put
hy (%) = c(1Fm™n;) exp (—1,2)(h(*) £ /() ,

where j=1, 2, .., n for+and j=0, 1, -, n for —. Then we can rewrite the
formula (5.11) as

(5.12)  oa(x) = 20;%1 Ay () exp (—n,2)— 2350 b (x) exp (—n,%)+m .
The functions A.; satisfy the linear algebraic equations

h.i(%)+a.; exp (—nx) 23,(7.+n,) o (x) exp (—7 )
= —a.; exp (—7%),
where a.;=c,(1Fm™'n;). Put
Ay = (ay; exp (—(0+2)2)(2:4+2,) )i j=12 o

and
A_ = (a_;exp (—(0:+72,)2)(047,) )i j=0.1,.n

Then E,+A, and E,,,+A_ are positive definite, where E, is the unit matrix of

order k. (See [5; Lemma 1].)
We have

Proposition 5.3.  The equality
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va(x) = d {log(det(E,+A.)/det(E,,+A4.))} [dx+m
holds.
Proof. By the Cramer’s formula, we have
h.i(x) = D;/det(E,+A4.),

where D; is the determinant obtained by replacing the i-th column of det(E,+A4.)
byl {(—a, exp (—mx), —a4, exp (—n,%), *++, —a4, exp (—n,x)). On the other
we have

d {log det(E,+A.)} /dx = 3", A;/det(E,+A4.),

where A; is the determinant obtained by replacing the i-th column of
det(E,+A4) by “(—aw exp (—(m+m)x), —asexp (—(nF7:)x), -+, —a., exp
(—(7,+7;)x)). Hence we have

A; = exp (—nx)D; .
Therefore we have
d {log det(E,+A)} dx = 3% h_i(x) exp (—7x) .
Completely pallalel to above, we have
d {log det(E, ., +A_ )} /dx = 3}i%o h_;(x) exp (—n,x) . Q.E.D.

If the reflectionless scattering data Sy= {0, ¢,(?), #;, j=0, 1, ---,n} depend
on ¢ as (5.5), we denote the unique solutions of (5.10) which correspond to S,
by f; (x, t) (=1, 2 and j=0, 1, ---, m). Then we have the explicit formula of
the reflectionless solutions

(5.13)  o(x, ) = 232580 ¢ (m 7, fi (%, t)—fo(x, 1)) exp (—2n;3,)+m,

where z;=x—(475—6m’)t.
Now suppose #=0 in (5.13), and we have

vg(x, t) = m tanh (m(x—+2m*t+-3)) ,

where §=(2m) ! log (¢"'m). Thus the reflectionless solutions (5.13) contain the
traveling wave solution v§(x, 7).
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