

Title	カプシドタンパク質の化学量論比に着目したアデノ随 伴ウイルスベクターの特性解析と応用	
Author(s)	大西, 一幸	
Citation	大阪大学, 2024, 博士論文	
Version Type	VoR	
URL	https://doi.org/10.18910/96023	
rights		
Note		

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

博士学位論文

カプシドタンパク質の化学量論比に着目した

アデノ随伴ウイルスベクターの特性解析と応用

大西 一幸

2023年12月

大阪大学 大学院工学研究科 生物工学専攻 高分子バイオテクノロジー領域 内山研究室

目次

略語	.4
第一章 序論	.6
1.1. 遺伝子治療とウイルスベクター	. 6
1.2. 遺伝子治療用ウイルスベクターの特徴	11
1.2.1. ウイルスの生物学的特徴	11
1.2.2. AAV のウイルス学的特徴	13
1.2.3. AAV の感染経路	17
1.3. 組換え型 AAV の開発	19
1.3.1. 組換え AAV の遺伝子治療への応用	19
1.3.2. rAAV の生産法	22
1.3.3. rAAV の精製法	25
1.3.4. 密度の異なる二種類の rAAV 粒子	28
1.5. 本博士論文の構成	30
第二章 rAAV2 における異なる密度を持つ完全粒子の特性解析	32
2.1. 序論	32
2.2. 実験材料および実験方法	34
2.2.1. 細胞培養	34
2.2.2. rAAV の調製	34
2.2.3. キャピラリーゲル電気泳動(CGE)	35
2.2.4. 2 サイクル CsCl 密度勾配遠心分離法(CsCl-DG-UC)による精製	35
2.2.5. ssDNA のキャピラリーゲル電気泳動(CGE)	35
2.2.6. 電荷検出質量分析(CDMS)によるネイティブ質量分析	36
2.2.7. CsCl 密度勾配超遠心分析(CsCl-DG-AUC)	37
2.3. 結果	40
2.3.1. rAAV2 における高密度および低密度完全粒子の分画法最適化	40
2.3.2. F1.1 と F2.2 における密度分布の評価	45
2.3.3. CGE を用いた低密度粒子(F1.1)と高密度粒子(F2.2)の物理化学的特性解析	47
2.3.4. 低密度粒子(F1.1)と高密度粒子(F2.2)の粒子レベルでの評価	50
2.3.5. F1.1 と F2.2 の in vitro における感染能評価	54
2.4. 考察	56
第三章 VP化学量論比および粒子不均一性を改善した rAAV2 変異体	50
3.1. 序論	50

3.2. 実懸	対料および実験方法	62
3.2.1.	細胞培養	62
3.2.2.	変異プラスミドの構築	62
3.2.3.	rAAV の調製	62
3.2.4.	キャピラリーグル電気泳動(CGE)	63
3.2.5.	2 サイクル CsCl 密度勾配遠心分離法(CsCl-DG-UC)による精製	63
3.2.6.	ssDNA のキャピラリーゲル電気泳動(CGE)	64
3.2.7.	電荷検出質量分析(CDMS)によるネイティブ質量分析	64
3.2.8.	CsCl 密度勾配超遠心分析(CsCl-DG-AUC)	65
3.2.9.	In vitro における感染能評価	65
3.2.10	0. リアルタイム定量ポリメラーゼ連鎖反応(qPCR)	66
3.2.1	1. 変性開始温度(denaturing melting temperature, Tm)の測定の測定	66
3.3. 結果	Ļ	68
3.3.1.	VP3 および VP3 clip における翻訳開始点への変異導入の検討	68
3.3.2.	rAAV2-M203V および rAAV2-M211V の特性解析	72
3.3.3.	rAAV2-M203V および rAAV2-M211V における粒子不均一性の改善	76
3.5. 考察	ξ	80
第四章 総	括と今後の展望	87
4.1. 本研	F究の総括	87
4.2. 今後	の展望	92
付録		94
参考文献	1	06
研究業績	1	15
学術発表	€論文1	15
謝辞	1	16

略語

- AAV: adeno-associated virus, アデノ随伴ウイルス
- rAAV: recombinant adeno-associated virus, 組換え型アデノ随伴ウイルス

VP: viral protein, ウイルスタンパク質

vg/mL: viral genome/mL, 1 mL に含まれるウイルスゲノム数(完全粒子のウイルス力価の単

位)

LC: liquid chromatography, 液体クロマトグラフィー

AC: affinity chromatography, アフィニティークロマトグラフィー

MS: mass spectrometry, 質量分析

CDMS: charge detection-mass spectrometry, 電荷検出型質量分析

CsCl: cesium chloride, 塩化セシウム

CsCl-DG-AUC: cesium chloride-density gradient-analytical ultracentrifugation, 塩化セシウム

密度勾配超遠心分析

AUC: analytical ultracetrifugation, 超遠心分析器

BS-AUC: band sedimentation-analytical ultracentrifugation, バンド沈降超遠心分析

PLA: phospholipase A, ホスホリパーゼ A

Intact-MS: intact mass spectrometry, インタクトな状態のタンパク質を対象に実施する質量分

析

SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis, ドデシル硫酸ナトリ

ウムポリアクリルアミドゲル電気泳動

CGE: capillary gel electrophoresis, キャピラリーゲル電気泳動

RFU: relative fluorescent unit, 相対蛍光ユニット

DFA: difluoroacetic acid, ジフルオロ酢酸

VR: variable region, 可変領域

VP1u: VP1 unique region, VP1 特異的配列(AAV2の残基番号で 1-137の領域)

VP2u: VP2 unique region, VP2 特異的配列(AAV2の残基番号で 1-202の領域)

BCM: barycentric mean, 重心平均

MVM: minute virus of mice, マウス微小ウイルス(AAV と同じパルボウイルス科のウイルス)

HSV: herpes simplex virus, 単純ヘルペスウイルス

第一章 序論

1.1. 遺伝子治療とウイルスベクター

近年、細胞内の遺伝子に異常が生じることが原因となり発症する遺伝性疾患を根本から治療する方法として、遺伝子治療が注目されている¹。遺伝子治療では、遺伝物質または核酸を細胞に導入または送達することによって、病状や遺伝的疾患が治療される^{2,3}。細胞・遺伝子治療の進歩は、先天性疾患からがんに至るまで、幅広い疾患の治療を可能にしつつある⁴。1990年の最初の遺伝子治療以来、数多くの努力が払われ、いくつかの遺伝子治療製品が承認されるに至っている⁴。

遺伝子治療は、大きくは in vivo、 ex vivo、 in situ の 3 種類の方法が存在する (図 1)³。 ex vivo 遺伝子治療では、患者の体内から標的細胞を取り出し、治療遺伝子の追加や遺伝子操作に よって、標的細胞に新たな機能を付加する2.3。改変された細胞はその後、患者に再び注入さ れる。例えば、血液がんの場合、標的細胞は T 細胞や最近では NK 細胞であり、治療遺伝子 はキメラ抗原受容体(CAR)である³。単一遺伝子疾患である血友病の場合、標的細胞は造血 幹細胞(HSC)であり、導入遺伝子は血友病の種類に合わせて変化する³。ただし、疾患によっ ては、ex vivo 遺伝子治療が適さない場合もあり、例えば、標的臓器が脳、脊柱管、肝臓などの 場合、in vivo 遺伝子治療と呼ばれる別の方法が使用される^{2,3}。in vivo 遺伝子治療では、治療 用ベクターは患者の血液循環や脳脊髄液中に全身投与される。最後に、遺伝子治療の最終 的な方法として、治療用ベクターを in situ、つまり患者の体内の特定の臓器や部位に直接注 入、もしくは腫瘍の場合は黒色腫や神経障害の場合は適切な脳領域に治療する際にカテー テルで投与される。どの投与方法を選ぶかは、適応症の種類、罹患組織、修正が必要な細 胞種に依存する。造血幹細胞、つまり CD34+細胞は患者から比較的簡単に単離可能である が、神経幹細胞は生体外で操作するための入手が難しい 3。さらに、幹細胞は肝臓において 部分的な特徴しか持っていない場合も存在する3。したがって、特定の臓器や適応症に対する 遺伝子治療は、治療用ベクターの全身投与または in situ 投与となる³。

治療用遺伝子を標的細胞へ送達する治療用ベクターには、既存のウイルスやドラッグデリ バリーシステム(Drug delivery system:DDS)にも用いられるリポソームなどが使用される^{1,2}。治 療用ベクターに求められる要件は多岐に渡り、特定の標的細胞への送達、免疫系の認識回 避、およびスケーラブルな生産(高濃度および/または大量収量)が可能であることなどが重 要である³。加えて、患者にとっての安全性の確保のため、アレルギー反応や重大な免疫反応 の回避、さらには、治療の実行者および環境に対する安全性の確保も不可欠である。遺伝子 治療では疾患に対処するため、遺伝子の長期的な発現を実現する必要がある。最良の遺伝 子治療を実現するためには、治療の目的や条件に合わせて適切なベクターを選択し、遺伝子 の導入効率やサイズ、発現の持続時間などを検討する必要がある。

治療用ベクターは、ウイルス性ベクターと非ウイルス性ベクターに分類される⁵(図 2A)。非ウ イルス性ベクターには、リボソームやカチオン性ボリマー、ポリマーネットワークなどが含まれる ^{1,2}。ウイルス性ベクターは、既存のウイルスを使用して目的遺伝子を送達する方法である¹。ウ イルス性ベクターは感染と遺伝物質の送達の効率が高く、広く使用されている。ウイルスベクタ ーとしては、レトロウイルス、アデノ随伴ウイルス(Adeno-associated virus : AAV)、アデノウイル スなどがあり、それぞれ適した治療法が選択される^{1,2}。例えば、上述した T 細胞、NK 細胞や HSC を標的細胞とした *ex vivo* 遺伝子治療では、ウイルスベクターとして、レトロウイルス科のレ ンチウイルスまたはオンコアトロウイルスに属するレトロウイルスベクターが使用される³。標的臟 器が脳、脊柱管、肝臓である *in vivo* 遺伝子治療では、アデノウイルスベクターや AAV ベクタ ーなどが利用される³。この中でも、アデノウイルスの分析中に発見された AAV は、病原性が なく血清型により組織指向性が異なり、他のウイルスベクターより優れている特性を持つことか ら、このウイルス属への関心は高まりつつある⁶(図 2B)。

図1. ヒト遺伝子治療の概略図

図 2. ヒト遺伝子治療におけるウイルスベクターとrAAV ベクター

A) 2010年から2020年までの臨床試験におけるウイルスベクターと非ウイルスベクター、 およびその種類の貢献度。遺伝子導入の主要な手法はウイルスベクターであるが、それぞれ のベクターがもつ特性により、特定の用途に最適なベクターが存在する(例えば、生体外遺伝 子治療にはレンチウイルスやレトロウイルス、生体内遺伝子治療には AAV、機能喪失変化に は RNA など)。Fatemeh A et al. Biomed Pharmacother. 2022; 153:113324.より引用し作成した。

B) 2003 年から2019 年の rAAV ベクターの臨床試験数。Kuzmin DA, et al. Nat Rev Drug
Discov. 2021;20(3):173-174. より引用し作成した。

1.2. 遺伝子治療用ウイルスベクターの特徴

1.2.1. ウイルスの生物学的特徴

まず、ウイルスの一般的な構造と感染プロセスについて説明し、その後、本研究に使用する 遺伝子治療用ベクターについて詳細に言及する。ウイルスは感染性粒子で、その大きさは数 ナノメートルから数マイクロメートルである。ウイルスには通常、DNA または RNA といった遺伝 物質が内包されている⁷。遺伝物質以外に、ウイルスの構造にはタンパク質で構成されるカプ シドと呼ばれる外殻が存在している⁷。このカプシドは通常、形態学的にらせん状または正二 十面体の形状を持つ⁷。

らせん状のウイルスのカプシドは、カプシドタンパク質がらせん状の DNA の内側または外側 に巻きついて、棒状の構造を形成する^{7.8}。正二十面体は 20 個の三角形から構成され、2、3、 5 回の 3 つの対称軸を持っている^{7.8}。正二十面体のカプシドの大きさは三角形分割数(T)に 基づいて決定され、カプシドタンパク質の数は 60 を T で乗算することで定義される。カプシド は、その構造を形成するタンパク質サブユニットが複数種類で形成することがあり、その場合、 擬似的な三角形分割数(Pseudo-triangulation number)を持つと言われている。また、Tに応じて、 カプシドタンパク質から形成される構造は 2 つの種類が存在する⁷。一つは、正二十面体の各 頂点において、五角形を形成する五量体タンパク質、もう一つは、六角形を形成する六量体タ ンパク質である^{7.9}。T の値は次の式で表される。

$$T = h^2 + hk + k^2 \tag{\Ext{t1}}$$

(h、kは任意の自然数もしくは 0)

ここで、*hとk*は、六角形の中心を通るキャプシド表面に沿って、ある頂点から別の頂点まで 水平または垂直に移動するために必要なステップの数である⁸。従って、*T*=1、3、4、7、9、12、 13、16…となる⁹。*T*の数の種類(=正二十面体様対称配列に必要なサブユニット数の種類)が、 正二十面体様カプシド構成様式に可能な種類に一致する。

ウイルスは、通常、細胞内環境に依存して増殖する。ウイルスは感染細胞に侵入し、新しい

ウイルス粒子を形成するために細胞の生活環を利用する¹⁰。感染経路の第一段階は、ウイル スが宿主細胞の膜上の受容体に結合することから始まる。その後、ウイルスは細胞内に侵入し、 カプシドの崩壊を引き起こす。ウイルスの種類によっては、ウイルスのゲノム DNA は宿主細胞 の染色体に組み込まれ、細胞はウイルス成分の生成を開始する^{2,10}。新たに生成されたウイル ス成分は新しいウイルス粒子として集合し、細胞から放出される。ただし、遺伝子治療用ベクタ ーとして使用されるウイルスは、標的細胞内で新しいウイルス成分の生成と複製を防ぐために 改変されており、これについては後述する²。

1.2.2. AAV のウイルス学的特徴

第1.1章でも簡単に触れたようにAAVは、アデノウイルス研究の際に偶然発見されたため、 アデノ随伴ウイルスと呼ばれるようになった^{11,12}。AAV はパルボウイルス科、ディペンドパルボ ウイルス属(The genus Dependoparvovirus in the family Parvoviridae)に属するエンベロープを 持たないウイルスであり、複製にはアデノウイルスやヘルペスウイルスなどのヘルパーウイルス が必要である¹¹⁻¹³。AAVは、直径が約25nmで、T=1(h=1、k=0)の正二十面体構造を持つ(式 1 及び図 3)。このウイルスは一本鎖 DNA(ssDNA)を含んでおり、野生型ウイルスのゲノム DNAは約4.7kbの長さを持つことが知られている^{11,12}。AAVのゲノムDNAには、ITR (Inverted Terminal Repeat)と呼ばれるヘアピン構造が含まれており、これは複製とパッケージングにお いて重要な役割を果たしている¹⁴。野生型 AAV(wt AAV)のウイルスゲノム DNA は、両端の ITR 配列に挟まれて Rep 遺伝子と Cap 遺伝子がコードされている¹⁵。 Rep 遺伝子は、非構造タ ンパク質である Rep78、Rep68、Rep52、Rep40 の 4 つのタンパク質をコードする。これらの Rep タンパク質は、ウイルスゲノムの複製、ウイルスゲノムのカプシド内へのパッケージング、および 宿主細胞の染色体へのウイルスゲノム組み込みなどの役割を果たす。Rep タンパク質は AAV を生産する細胞内、または AAV が感染した細胞内でのみ発現し、AAV のカプシドには含ま れない。一方、Cap 遺伝子は、AAV のカプシドを形成する 3 つの異なるウイルスタンパク質 (viral protein: VP)をコードしている^{15,16}。また、Cap 遺伝子にはコドンのフレームシフトにより AAV カプシド形成(アセンブリ)に関わる膜関連アクセサリータンパク質(Membrane-Associated Accessory Protein: MAAP)およびアセンブリー活性化タンパク質 (Assembly-activating protein: AAP) がコードされている^{17,18}。興味深いことに、AAV は+と-センス鎖(二本鎖 DNA ゲノムの順方向側と逆方向側の両方)の両方を同じ頻度でパッケージ化すると報告されている 14

AAV のカプシドは 3 種類の VP が 60 個会合して構成される¹³。VP は、VP1、VP2、VP3 と 配列の長い順で定義される。VP2 の配列には、VP3 の配列(残基番号: 203-735)が含まれて

おり、それに加えて VP1/VP2ドメインと呼ばれる N 末端ドメインを含んでいる。同様に、VP1も VP2 の配列(残基番号: 138-203)を含んでいるが、VP1 タンパク質は VP1 ユニーク(VP1u)ドメ インとよばれるさらなるN末端ドメインを含んでいる¹³。これらのタンパク質はモル比にして VP1: VP2: VP3 = 1:1:10とゲルデンシティメトリーを基にした分析から推定されており、従って 1 粒子 のカプシドには 5 個の VP1、5 個の VP2、50 個の VP3 が含まれていることになる。従って、会 合した AAV の一粒子あたりの分子量はゲノム DNA を含めると約 5.3 MDa となる。しかしなが ら、近年の報告では、AAV カプシドの組み立て/集合は確率的、つまりランダム性があり、ウイ ルスタンパク質以外の補助タンパク質の比率がカプシドの生成に関与する可能性があるという 仮説も提唱されている¹⁹⁻²¹。最近、尾山らが報告したように、いくつかの血清型においては VP3より更に 8 アミノ酸残基短い新規 VP 成分である VP3 clip が AAV には粒子に含まれてい ることが分かってきた^{22,23}。

AAV カプシドの会合 (アセンブリ)機序については未だ明確になっていない。しかし、これに 関する一つの仮説では、カプシドの形成から始まると考えられている¹⁴。最初にカプシドタンパ ク質のみが会合し、空カプシド (ゲノム DNA が封入されていないカプシド)が形成される。ゲノ ム DNA の封入プロセスは、5'末端の ITR 配列が複製タンパク質と結合することで始まり、既に 形成された空カプシド中のカプシドタンパク質の一部と相互作用する¹⁴。次に、ITR の 3'末端 も複製タンパク質に結合し、カプシドと相互作用するために巻き付く。最終的に、ゲノム DNA はカプシドの構造の頂点を通過してパッケージされ、3'から 5'の方向に引き込まれる。このよう な過程によって、AAV のカプシド内に遺伝子情報がパッケージングされ、成熟したウイルスが 形成されると考えられている¹⁴。

図 3. AAV 構造の概要

- A) 野生型 AAV の概略図
- B) Rep および Cap 遺伝子にコードされる各タンパク質の概略図(残基番号は AAV2 を

基に記載)

1.2.3. AAV の感染経路

AAV の生活環は、ウイルスゲノムを宿主細胞に導入し増幅する複雑な過程を経ていること が知られる。この過程は、(1)細胞への侵入、(2)エンドサイトーシス経路からの脱出、(3)核へ の細胞内移動、(4)ウイルスゲノムのカプシドからの脱殻の4つの段階で構成されている²⁴。ま ず、AAV は細胞表面のプロテオグリカンや膜上のレセプタータンパク質を一次受容体として認 識し、細胞への侵入を開始する(図4)。特筆すべきは、AAV の血清型によって認識するプロ テオグリカンやタンパク質の種類が異なっていることである。細胞内へ侵入したAAV は、エン ドサイトーシス経路に沿って細胞内を移動する。通常、エンドサイトーシスによって取り込まれ たタンパク質は最終的にリソソームまで運ばれて分解される。しかし、AAV はエンドソームエス ケープと呼ばれる機構を用いることでその分解から逃れることができる²⁴。エンドソームエスケ ープ機構は、VP1 タンパク質のN 末端領域にある PLA (phospholipase A)ドメインが小胞の脂 質二重層を分解することによって達成される²⁵。

PLA ドメインは生理的条件下ではカプシドの内部に位置しているが、エンドサイトーシスが 進むに伴ってPLAドメインがカプシド表面に外在化し、フォスフォリパーゼの酵素反応により脂 質二重層を分解すると考えられている。この PLA ドメイン外在化の構造変化は、エンドソーム 経路の進行に伴った pH の低下により誘導されると提唱されている。

エンドソームの分解経路から逃れた AAV は、宿主細胞の核へ移動し、ウイルスゲノムを核 内に放出する。放出されたウイルスゲノムは、宿主細胞の核で複製される。ウイルス由来の mRNA は細胞質へ運ばれ、Rep および VP タンパク質が生産される。VP の配列中には核移行 シグナル配列(Nuclear Localization Signal; NLS)が存在するため、細胞質から再び核へ移動 する。核内で新しいカプシドの組み立てと複製されたウイルスゲノムのパッケージングが行わ れ、AAV が増殖する²⁶。AAV の生活環は非常に複雑であり、AAV が細胞内でどのように輸 送され、核でゲノムを放出するかの詳細なメカニズムはまだ明らかになっていない²⁶。

図4. AAVの生活環の概要図

1.3. 組換え型 AAV の開発

1.3.1. 組換え AAV の遺伝子治療への応用

遺伝子組換え技術の進歩と野生型 AAV の生物学的理解に伴い、組換え AAV (recombinant adeno-associated virus : rAAV)が上ト遺伝子治療における遺伝子治療用ベクターとして開発されるようになった^{12,25,27}。AAV が持つ *Rep* 遺伝子および *Cap* 遺伝子は、治療用遺伝子(GOI : Gene of interest)に置き換えることで、結果として rAAV は体内での増殖を抑え、ベクターとしての機能を果たす。さらに、Rep のようなタンパク質が生産されないため、導入した治療用遺伝子が宿主細胞の染色体に組み込まれる確率は極めて低くなる。加えて rAAV は免疫原性、すなわち免疫反応を引き起こす能力が低いことが知られている。AAV はごくありふれたウイルスであり、多くの人はアデノウイルスと同様に遭遇したことのある AAV 株に対する抗体を持っている。たとえば、2 型の AAV(AAV2)に対しては、成人の約 85%が抗体を有している²⁸。残念ながら、この場合 AAV 株に対する免疫が自然に発達した患者が、その株を用いたrAAV を用いた療法による治療から除外される可能性があることを意味する。一方で rAAV の免疫認識を防ぐために、カプシドを改変する研究も行われている。

第1.2.3 章において簡単に前述したが、AAVの特徴として、異なる血清型により細胞侵入時 に結合する細胞表面受容体の種類や、内包遺伝子を導入する組織への指向性が異なる点が 挙げられる(表1)¹⁶。AAVの血清型はVP配列の違いによって分類されており、主な血清型とし て1型~12型(AAV1~AAV12)が報告されている。通常、AAVは通常プロテオグリカンを受容体 として細胞へ侵入を達成するが、異なる血清型のAAV(AAV1、AAV4、AAV5、AAV6、AAV2、 AAV3、AAV9)はそれぞれ異なるプロテオグリカンの糖鎖に結合能を持っている^{16,29-31}。例え ば、AAV2 はへパリン硫酸への結合能を有するが、AAV3 はガラクトースに対する結合能を有 する。

AAV の血清型による組織指向性の違いの例として、AAV1 は骨格筋細胞に効率よく感染 するが、AAV8 は肝細胞、骨格筋、心筋、膵臓細胞に感染する³。また、AAV2 は腎臓に、

AAV3は肝臓により適した指向性を持つ³。こうした組織指向性の違いを利用することで、特定の組織に治療用遺伝子を効率的に運ぶためのベクターをデザインできるため、rAAV は遺伝子治療用ベクターとして非常に有利である。

Serotypes	Cell receptor	Tissue tropism
AAV1	Sialic acid	Central nervous system, Skeletal muscle
AAV2	Heparin sulfate proteoglycan	Kidney
AAV3	Heparin sulfate proteoglycan	Liver
AAV4	Sialic acid	Central nervous system, Retinal pigment epithelium
AAV5	Sialic acid	Central nervous system, Retinal pigment epithelium
AAV6	Sialic acid	Skeltal muscle
AAV7	Unkown	Skeltal muscle
AAV8	Unkown	Skeltal muscle, Heart, Pancreas
AAV9	Galactose	Skeltal muscle, Liver, Lung
AAV10	Unkown	Lumbar cisterm
AAV11	Unkown	Spleen
AAV12	Unkown	Submandibular glands

表1. AAVの主な血清型における受容体の種類と組織指向性^{16,29-31}

Sialic acid: シアル酸

Heparin sulfate proteoglycan: ヘパリン硫酸プロテオグリカン

Galactose: ガラクトース

Central nervous system: 中枢神経系

Skeletal muscle: 骨格筋

Retinal pigment epithelium: 網膜色素上皮

Pancreas: すい臓

Lumbar cistern: 腰椎

Spleen: ひ臓

Submandibular glands: 顎下腺

1.3.2. rAAV の生産法

rAAV は、主に HEK293 細胞(ヒト胎児腎細; Human Embryonic Kidney cell: HEK)または Sf9 細胞(ツマジロクサヨトウ: Spodoptera frugiperda 9: Sf9)を用いて生産される。HEK293 細胞 生産系を利用した方法では、標的遺伝子が wtAAV 由来の ITR 配列に挟まれたトランスジー ンプラスミド、wtAAV2 由来の *Rep* 遺伝子(*Rep2*)、および特定のカプシド配列を持つ *Cap* 遺 伝子(*CapX* [X は目的の血清型])を含む Rep-Cap プラスミド、およびアデノウイルス由来の AAV 生産に必要な 5 種類のタンパク質をコードしたヘルパープラスミドの計 3 種類を細胞に 形質転換する(図 5)¹²。AAV はヘルパー依存型のウイルスであるため、その生産にはアデノウ イルスをヘルパーウイルスとして同時感染が必要であった。ただし、ヘルパーウイルスを用い た生産では、アデノウイルスの除去プロセスが必要であったため、アデノウイルスを同時感染さ せるのではなく、アデノウイルス由来の必要なタンパク質をコードしたプラスミドとヘルパープラ スミドを形質転換する手法が開発された。HEK 細胞の場合、HEK 細胞自身が E1A と E1B を 産生するため、ヘルパープラスミドには E2A、E4、VA の 3 種類のタンパク質がコードされる。

rAAV 遺伝子治療の生産スケールアップにおいて、Sf9 昆虫細胞株は研究されてきた。この 細胞株は、バキュロウイルスと呼ばれるウイルスと協力して rAAV の生成に活用される。具体的 な方法では、目的のゲノム DNA、*Rep* 遺伝子、および *Cap* 遺伝子を3 つの遺伝子組換えバキ ュロウイルスに導入し、それらを Sf9 細胞株に感染させる。このアプローチは、HEK 細胞生産 系を利用する方法とは異なり、遺伝子組換えバキュロウイルスを使用して rAAV の DNA 成分 を細胞株に取り込み、rAAV 粒子を高収量で生成することを可能にする^{12,32}。しかし、Sf9 生産 系で生産された rAAV は、エンドソーム脱出に関わる VP1 の取込み量が少ないことが報告さ れている¹⁹。

また近年、無血清培地での培養などによる浮遊 HEK293 細胞株が開発された。これによっ て従来は接着細胞を用いていた HEK 生産系においても生産スケールアップがより容易にな った。浮遊 HEK293 細胞は、接着 HEK293 細胞とは異なり、効率的な rAAV ベクターの生産

が可能で、様々な研究に用いられ始めている。本研究では、全て浮遊 HEK293T 細胞と一過 的な三種類のプラスミドの形質転換法を用いて rAAV 生産を実施した。HEK293T 細胞は、 HEK293 細胞に SV40 Large T 抗原を発現させたもので、HEK293T 細胞の「T」は、T 抗原を意 味する³³。これにより、HEK293T 細胞では、SV40 複製起点を持つプラスミドの使用を可能と し、大量のタンパク質を生産できる。ただし、2004 年に PNAS に T 抗原の安全面に関して懸念 を抱く研究結果が報告されたことから、近年は臨床に用いる rAAV の製造には T 抗原を含ま ない HEK293 細胞株が利用されている³⁴。

図 5. rAAVの基本構造とHEK 生産系の概念図

GOI(Gene of interest)は、目的遺伝子を示す。

1.3.3. rAAV の精製法

rAAVの研究分野では、生産細胞や培養液からベクター粒子を抽出し、その後に精製する ために数多くの方法論が報告されている³⁵⁻³⁹。まず、ウイルス精製として最も古典的な手法で ある、塩化セシウム(CsCl)またはヨージキサノール密度勾配遠心分離による精製について説 明する⁴⁰。これらの精製法は、ある程度は完全粒子(すなわちベクターゲノム DNA を含む粒 子)と空粒子の分離が可能であり、また血清型やカプシドの配列にほとんど依存しないため、 数多く使用されている⁴¹⁻⁴³。CsCl遠心分離による精製は、ヨージキサノール精製と比較して、よ り多くの時間と工数を必要とする。しかし、ヨージキサノールとは対照的に、完全粒子の精製度 が高く、残存する空粒子の割合が著しく低いことが大きな利点である⁴⁰。どちらの方法で精製 しても CsCl もしくはヨージキサノールを除去する必要があるため、限外濾過、脱塩カラムを用 いたサイズ排除クロマトグラフィー(Size-exclusion Chromatography: SEC)、中空糸タンジェンシ ャルフロー限外濾過 (Tangential Flow Filtration: TFF)、または透析による溶媒の置換などによ って必要である⁴⁰。

近年、密度勾配遠心分離に代わり、カラムクロマトグラフィーによる精製が、rAAV 精製にお ける下流の手法として注目を集めている。カラムクロマトグラフィーによる精製では、宿主細胞 タンパク質、ヌクレアーゼ、残留 DNA などの不純物から rAAV 粒子を効果的に分離することが 可能で、同時に rAAV ベクターサンプルのバッファー置換を効率的に可能である⁴⁴⁻⁴⁶。クロマト グラフィーによる rAAV 精製は、典型的な密度勾配遠心分離技術に比べると柔軟性に欠ける ものの、rAAV の生産スケールアップが容易である。rAAV のクロマトグラフィー精製では主に、 組換えタンパク質精製と同様にアフィニティークロマトグラフィー(Affinity Chromatography : AC)やイオン交換クロマトグラフィー(Ion Exchange Chromatography : IEC)が利用される⁴⁷。

ACは、細胞レセプターを模倣した特異的なrAAV 基質や、rAAV 外殻タンパク質を認識するモノクローナル抗体やナノボディーを利用することで、会合したカプシドから遊離ウイルスタンパク質や不純物を除くことが可能である。最も初期の例の一つは、ヘパリンを基盤とした AC

カラムで、AAV2 膜に関連するヘパラン硫酸プロテオグリカンレセプターが同定された直後に 確立された⁴⁷。最近では、AAV に自然感染したラクダ科のラマから単離された抗体断片の非 常に安定な単一ドメインに基づき開発されたアフィニティーリガンドは、rAAV 変異体カプシド や幅広い血清型が精製可能である。ただし、AC 生成のみでは完全粒子と空粒子を選択的に 分離することはできず、他の精製法と組み合わせて使用する必要がある⁴⁷。

一方、IEC は、rAAV 粒子上の正味表面電荷とカラム内のイオン樹脂の静電的相互作用に よってカラムマトリックスと相互作用する。この相互作用はカプシドの等電点(pI)と緩衝液の pH に依存する。空粒子(pI=6.3)と完全粒子(pI=5.9)との間の pI のわずかな差に基づき、完全粒子 を効率的に回収できる⁴⁵⁻⁴⁷。rAAV に IEC 精製を使用する利点としては、再現性が高く、自動 化や大規模精製(スケールアップ)が可能であり、溶出(アフィニティー精製法でしばしば見ら れる抗 AAV 抗体などの捕捉試薬の溶出)がないことなどが挙げられる(表2)。ただし、IEC の 分離条件は対象物質の物理化学的特性に影響を受けやすく、rAAV の血清型や最近盛んに 開発が進められている rAAV 変異体ごとに最適化が必要となり、プロトコルの標準化が難しい という課題がある。

本研究では、生産のスケールアップの可能性を考慮しつつ、不純物による影響を抑えた分析を行うため、ACによる精製および CsCl密度勾配遠心分離を組み合わせた精製法により純度が高いrAAVを製造した。

表 2. 代表的な rAAV 精製方法の特徴とスケーラビリティ

Purification methods	Linear scarability
Centrifugation (primary clarification)	No
Clarification by depth filtration (primary and secondary clarification)	No
Tangential flow filtration (concentration and diafiltration)	Yes
CsCl-density gradient ultracentrifugation (separation of empty and full rAAV)	No
Iozixanol-density gradient ultracentrifugation (separation of empty and full rAAV)	No
Affinity chromatography (purification)	Yes
Cation-exchange chromatography (purification)	Yes
Anion-exchange chromatography (separation of empty and full rAAV)	Yes

1.3.4. 密度の異なる二種類の rAAV 粒子

第1.3.3 章でも前述した通り、rAAVの精製には CsCl 密度勾配遠心分離がよく利用される。 CsCl 密度勾配遠心分離は、高濃度の CsCl が遠心力場中で濃度分布に沈降平衡が成り立ち、 液面から底に向かって濃度増加を示し、一定の密度勾配のなかで高分子がそれぞれの浮遊 密度(buoyant density)と同じ密度の位置、すなわち、浮力と高分子に対する重力の釣り合った 位置に分布する平衡状態になって分離する方法であり、等密度勾配遠心法ともよばれる。こ の rAAV 精製中には、CsCl 密度勾配条件次第で、しばしば空粒子の他に 2 種類の異なる密 度を持った完全粒子が観察される。この 2 種類の完全粒子は、アデノウイルスをヘルパーとし て同時感染して増殖させた wtAAV でも確認されており、1970 年に初めて報告された⁴⁸。

低密度と高密度の AAV 粒子の物理的および生物学的特性は、さまざまな方法で研究され てきたが、未だに結論づけられていない。2017年、HEK293 細胞で製造した rAAV8 調製物中 には低密度と高密度の完全粒子が存在することが報告されている⁴⁹。2 種類の粒子は同様の 内包ゲノム DNA を含んでいたが、高密度粒子は低密度粒子よりも DNA/タンパク質比が高か った。さらに、高密度粒子は低密度粒子よりも VP1 と VP2 の比率が低いことが、ゲルデンシテ ィメトリーによって判明した。

一方、低密度と高密度の2種類のAAV粒子は、wtAAV1⁵⁰、wtAAV3¹⁵、wtAAV4⁴⁸、鳥類 AAV⁵¹、および同じパルボウイルス科に属する H-1 パルボウイルス⁵²、マウスパルボウイルス (MVM)⁵³の調製の過程でも同定されている。wtAAVを用いた電子顕微鏡の結果では、高密 度のAAV2は低密度のAAV2よりも直径が10~20%小さいことが示された¹⁵。De la Mazaらに よる研究では、低密度のバンドと高密度のバンドのDNA/タンパク質比率は同じであり、ショ糖 密度勾配における密度も同様であることが報告された⁵⁴。また、AAV2粒子の分光光度分析お よび沈降速度超遠心分析(sedimentation velocity analytical ultracentrifugation : SV-AUC)にお いて、沈降係数に有意差がみられず、AAV2粒子から抽出された内包ゲノムDNA は類似して いた。一方で、高密度のAAV2は、DNA/タンパク質比率が低密度のAAV2よりも高いという矛 盾する結果も報告されている。さらに、低密度の wtAAV2 粒子は、高密度の AAV2 粒子よりも 遺伝子導入効率は 16~300 倍高いことが示された ⁵⁴。他の研究では、wtAAV4 ⁴⁸、MVM ⁵³、H1 パルボウイルス ⁵² の低密度粒子と高密度の粒子で感染性に大きな差はないことが確認されて いる。

このように CsCl 密度勾配中に存在する 2 種類の完全粒子の不均一性は、VP サブユニット の化学量論比に起因していることを示唆する報告⁴⁹もあれば、一方で内包ゲノム DNA の違い に起因していることを示唆する報告⁵⁴も存在する。また、遺伝子治療用に修正された組換え型 AAV に関する報告は、前述した rAAV8 の一報に留まる⁵⁴。しかしながら、適切な製造管理の ための製造における重要品質特性の設定のためには、密度が異なる完全粒子の特定が必要 となることから完全粒子の不均一性の理解と対応方法の確立が必要である。

1.5. 本博士論文の構成

数十年に渡って、rAAV 調製中に高密度粒子と低密度粒子が存在することが示唆されてき たが、2 種類の粒子の違いの原因には結論が得られておらず、製造管理の面からの重要性も 不明である^{15,48,49,54,55}。しかし、2 種類の粒子の浮遊密度差は 0.009 g/cm³と非常に小さく特定 の CsCl 密度勾配条件下でしか分離できず、これらの粒子不均一性はあまり注目されずにい た。また、これまで rAAV の特性解析 (カプシドタンパク質や内包ゲノム DNA)の手法として、ド デシル硫酸ナトリウムポリアクリルアミドゲル電気泳動 (Sodium dodecyl sulfate-polyacrylamide gel electrophoresis : SDS-PAGE) やアガロースゲル電気泳動などのゲルデンシティメトリー分析 が多く用いられており、定量性に欠けていたことから正確な解析に基づいた結論が得られてい なかった。特性の中でも VP サブユニットの化学量論比の違いが rAAV ベクターの遺伝子導入 率に影響を及ぼす報告は数多く存在する。そのため、ヒト遺伝子治療における rAAV ベクター の安全性と有効性を担保するためには、遺伝子運搬役となる rAAV ベクターの品質を正確に 信頼できる手法で管理する必要があり、2 種類の完全粒子のような粒子不均一性も密度差の 原因を特定可能な定量的な特性解析の必要がある。以上の背景から、本博士論文では CsCI 密度勾配中で見られる 2 種類の完全粒子について定量的な特性解析および粒子レベルでの 分析を実施した。

第二章では、CsCl密度勾配中のrAAVにおいて観察された完全粒子の密度の2つの 異なる分布について分画の最適化と包括的な特性解析を試みた。まず、浮遊密度差およそ 0.009 g/cm³の2種類の粒子をサイクルごとに条件を変えた2サイクルの最適化された密度勾 配遠心分離によって分画した。分画した2種類の粒子に対して、キャピラリーゲル電気泳動 (Capillary Gel Electrophoresis : CGE)を用いた VPと内包ゲノム DNA の定量的な分析を実施 した。その結果、2種類の粒子間に内包ゲノム DNA の差は見られなかったが、低密度粒子は、 高密度粒子および未分画のバルク状態と比較して、VP1 + VP2 化学量論比が高いことを示唆 した。また、バンド沈降超遠心分析(BS-AUC)と電荷検出型質量分析 (CDMS) による粒子レベ ルでの解析では、低密度粒子は高密度粒子と比較して分子量が大きく、CGEの結果を支持した。これに対して、*in vitro* での感染性評価では、高密度粒子およびバルクよりも低密度粒子の 方が高い導入遺伝子発現を示した。これらの結果から、CsCl 密度勾配中の rAAV で観察され た完全粒子の密度の2つの異なる分布が、ウイルスゲノムのサイズの違いではなく、VP サブユ ニットの不均一性に由来することを明らかにした。

第三章では、第二章で得た結果を基に VP サブユニットの化学量論比を変化させた変異体の作成を試みた。VP3 および VP3 clip の翻訳開始点に位置するメチオニン残基へ適切な変異(M203V および M211V)を導入したところ、VP サブユニットの化学量論比が変化した変異体の作成に成功した。これは VP3 または VP3 clip の翻訳量抑制に起因すると考えられ、CGEを用いた VP サブユニットの定量分析を実施すると、VP1 + VP2 化学量論比が野生型 rAAV2 (rAAV2-WT)と比較して高いことが示唆された。これら rAAV2 変異体の *in vitro* での遺伝子導入効率についても rAAV2-WT より優位に高かった。一方で、驚くべきことに、これら rAAV2 変異体は、CsCI 密度勾配中で 1 つの分布しか示さず、VP サブユニットの不均一性が抑制されていることが示唆された。また、CDMS による分析から、質量分布が狭くなっていることが示唆された。

第四章では、第二章と第三章で得られた結果を基に「VP サブユニットの化学量論比」と「遺伝子導入効率」の相関関係を定量的に示し、総括するとともに、今回の研究において得られた遺伝子導入効率が高く、均一なrAAV についての今後の展望について記述した。

第二章 rAAV2 における異なる密度を持つ完全粒子の特性解析

2.1. 序論

アデノ随伴ウイルス(AAV)は、直径約 25 nm の小型の非エンベロープ型一本鎖 DNA ウイ ルスである。野生型 AAV (wtAAV)は約 4.7 kb の ssDNA を内包しており、複製にはアデノウイ ルスやバキュロウイルスのようなヘルパーウイルスが必要である^{12,25,56}。rAAV は、遺伝子治療 ベクターのリーディングプラットフォームであり、現在 2 つの rAAV ベースの治療法が米国食品 医薬品局(FDA)に承認され、多くの臨床試験が進行中である⁵⁷。

rAAVのカプシドは、選択的翻訳開始点によって生成された3種類のタンパク質(VP1、VP2、 VP3)を含んでいる。3種類とも VP3 配列を共通配列として持ち、VP2 はN末端ドメインを付加 し、VP1 は VP2 配列に加えさらにN末端ドメインから構成される。HEK293 細胞由来のカプシ ドでは、VP1: VP2: VP3 の比率は約1:1:10 であると提唱されている。VP1 は、そのN末端領 域にPLAドメインを有しており、感染に重要な役割を持ち、カプシド中の VP1 比率が重要であ ることが多数報告されている。また近年、rAAV カプシドの VP サブユニットはランダムに組み込 まれ、質量分析およびマススペクトルシミュレーションにより、rAAV 粒子の不均一性が示唆さ れ始めている¹⁹。

rAAV 精製中には、しばしば空粒子の他に 2 種類の異なる密度を持った完全粒子が観察さ れる。実際、後述するが著者らの rAAV2 調製の際にも、2 種類の異なる密度を持った完全粒 子が観察された。Wang らは、rAAV8 調製物中に CsCl 密度勾配遠心分離中に低密度と高密 度の完全粒子の存在を示したと報告している⁴⁹。2 種類の粒子は同様の内包ゲノム DNA を含 んでいたが、高密度粒子は低密度粒子よりも DNA/タンパク質比が高かった。さらに、高密度 粒子は低密度粒子よりも VP1 と VP2 の比率が低いことが、ゲル濃度測定によって判明した。 一方、wtAAV では、スクロースメトリザミド勾配において、両タイプの粒子が同じ DNA/タンパク 質比と密度を持つという矛盾した結果が報告されている⁵⁴。従って、AAV における高密度粒子 および低密度粒子の特性について、決定的に結論づけられていない。先に述べたように VP の比率は遺伝子導入効率に影響する⁵⁸。こうした背景から、VPの正確な定量と化学量論的制 御はますます重要になってきている。

本章では、最適化された高分解能な分画法を用いて分画した低密度と高密度の rAAV に ついて包括的な特性解析を実施した。血清型については、ヒトで初めて発見され最も研究例 が多い rAAV の 2 型を選択した。2 つの異なる密度の粒子から得られる粒子の不均一性は、 内包ゲノム DNA や VPの比率、あるいは VPの翻訳後修飾である可能性がある。近年、キャピ ラリーゲル電気泳動(CGE)に基づく高感度かつ定量的なタンパク質および DNA 分析法が開 発されている ^{59,60}。さらに本研究室の先行研究において、CGE を用いた VP 化学量論比の定 量的評価法が確立されている²²。この定量的評価法は、rAAV2粒子中のVPのモル化学量論 比を正確かつ確実に推定することを可能とした。この定量法を用いて、rAAV2 生産中の高密 度粒子と低密度粒子の画分をそれぞれ評価した。加えて、本研究では、初めてバンド沈降超 遠心分析(Band-sedimentation analytical ultracentrifugation: BS-AUC)および電荷検出型質量 分析(Charge detection-mass spectrometry: CDMS)を用いて、天然状態での異なる密度をもつ rAAV 粒子の測定を実施した。通常、rAAV 粒子の分画には1サイクルの CsCl 密度勾配遠心 分離法を用いるが、2 種類の粒子密度差はごく僅かであるため、分画後も混在したままである 可能性が高い。そこで本博士論文では、CsCl密度勾配シミュレーションにより分離条件を最適 化した密度勾配遠心分離による2サイクル精製を利用した。このアプローチにより、純度が高く 単離された2種類の rAAV2 粒子の物理化学的特性解析および1粒子レベルでの分析、さら に、in vitro における細胞株への遺伝子導入効率、について包括的に評価した。

2.2. 実験材料および実験方法

2.2.1. 細胞培養

rAAV ベクター作製には浮遊 HEK293T 細胞を用いた。さらに、HeLaRC32 細胞を *in vitro* での特性解析に使用した。浮遊 HEK293T 細胞は、1%ペニシリン-ストレプトマイシンを含む BalanCD HEK293 (FUJIFILM Irvine Scientific, Inc., Santa Ana, CA)を用いて培養した。 HeLaRC32 細胞は、10%ウシ胎児血清 (FBS, Hyclone [GE Healthcare Life Sciences], Madison, WI)および 1%ペニシリン-ストレプトマイシン (Gibco [Thermo Fisher Scientific], Grand Island, NY)を添加した DMEM (Sigma-Aldrich Co. LLC, St. Louis, MO)を用い、37℃、5% CO2 中で 接着培養した。

2.2.2. rAAVの調製

すべての rAAV ベクターは、3 種類のプラスミドを一過的に形質転換する方法を用いて作製 した。pAAV-Rep&Cap(血清型2型)、pAd helper、トランスジーンプラスミド(CMV-EGFP)を、バ イオリアクターで培養した浮遊 HEK293T 細胞に 1:1:1の割合で形質転換した。形質転換後 72 時間で宿主細胞および培地からベクターを回収し、AAVx カラム(Thermo Fisher Scientific, Waltham, MA)を用いたアフィニティークロマトグラフィーで精製した。バルク rAAV サンプルは、 アフィニティークロマトグラフィー精製後、CsCl 密度勾配遠心分離を 1 回行い、完全粒子と空 粒子を分離した。アフィニティークロマトグラフィーで精製した rAAV サンプル(2 mL 以上)を、 0.001 w/v% poloxamer-188 (P-188)を含む CsCl/PBS 溶液に加え、終濃度 2.5 M CsCl、最終容 量 12 mL になるように調整し、13.2 mL の超遠心チューブに移した。このチューブを Optima XE-90 (Beckman Coulter, Brea, CA)で、Beckman SW41Ti ローターを用いて、20[°]C で 34,000rpm、72 時間遠心した。ウイルスバンドを Triax Gradient Profiling System (BioComp Instruments Ltd., CA) で回収し、Slide-A-Lyzer 10K (Thermo Fisher Scientific)で透析した。

2.2.3. キャピラリーゲル電気泳動(CGE)

rAAV サンプル原液 10 μ L (5.0×10¹² vg/mL)を参考論文 ⁶⁰のプロトコルに従って変性および バッファー交換した。回収したサンプル溶液に 70 μ L の脱イオン水を加え、CGE のサンプルと した。CGE の測定には PA800Plus system(Sciex, Framingham, MA)を使用した。サンプルの 検出は PDA detector を使用して波長 214 nm で実施した。

2.2.4. 2 サイクル CsCl 密度勾配遠心分離法 (CsCl-DG-UC) による精製

最適化された 2 サイクルの CsCl-DG-UC を行い、高密度と低密度の完全粒子を分離・分画 した。精製した rAAV サンプル (2 mL 以上)を、0.001 w/v% P-188 を含む CsCl/PBS 溶液に加 え、終濃度 2.5 M CsCl、最終容量 12 mL になるように調整し、13.2 mL の超遠心チューブに移 した。このチューブを Optima XE-90 (Beckman Coulter)で、Beckman SW41Ti ローターを用い て、20°Cで 34,000rpm、72 時間遠心した。濃縮された完全粒子を含むウイルスバンドを Triax Gradient Profiling System (BioComp Instruments Ltd., CA)で回収した。回収したウイルスバン ドを 0.001 w/v% P-188 を含む CsCl/PBS 溶液に加え、終濃度 2.5 M CsCl、最終容量 12 mL に なるように調整し、13.2 mL の超遠心チューブに移した。このチューブを Optima XE-90 (Beckman Coulter)で、Beckman SW41Ti ローターを用いて、20°Cで 24,000rpm で 72 時間、再 度遠心分離を行った。ウイルスバンドを Triax Gradient Profiling System (BioComp Instruments Ltd., CA)で回収し、Slide-A-Lyzer 10K (Thermo Fisher Scientific)で透析した。

2.2.5. ssDNA のキャピラリーゲル電気泳動(CGE)

10 μL の rAAV 溶液 (1.0×10¹² vg/mL)を DNase と ProteaseK で処理し、以下のプロトコルで カプシドから ssDNA を抽出した。rAAV サンプルを調製するために、10 μL のヌクレアーゼフリ ー水、3 μL の 10×DNase 緩衝液、1.5 μL のベンゾナーゼ、5.5 μL の 0.001% P-188 を含む 1×PBS を混合し、最終容量を 30 μL とした。その後、サンプルを 37℃で 30 分間インキュベー
トした。その後、30 µL の DNase 処理 AAV を新しいチューブに移し、10 µL の 500 mM EDTA、 55 µL の 0.001% P-188 を含む 1×PBS、および 5µL の Proteinase K (20 mg/mL)を加えて最終 容量を 100 µL とした。次に、混合物を 55 °C で 60 分間インキュベートし、その後混合物を 95 °C で 20 分間加熱し、遠心分離して溶解液を回収した。その後、QIAquick PCR Purification Kit (QIAGEN, Hilden, Germany)に記載されているプロトコールに従って ssDNA を精製し、最終 回収サンプルとして使用した。CGE は PA800Plus システム (Sciex, Framingham, MA)を用いて 測定した。サンプルの検出は、488 nm のレーザー励起蛍光と 520 nm の発光フィルターを用い て行った。

2.2.6. 電荷検出質量分析(CDMS)によるネイティブ質量分析

CDMS では、従来の MS では測定できなかった不均一で高分子量のサンプルの質量分布 を測定することを可能にした⁶¹⁻⁶⁴。CDMS では、各イオンの m/z 比と電荷の同時測定から個々 のイオンの質量を決定する。質量測定は何千ものイオンに対して行われ、その結果は質量分 布を得るためにヒストグラム化する。各サンプル 25 µL を、Micro Bio-Spin P-6 ゲルカラム (Bio-Rad, California, USA, 7326221)を用いて、0.01 %プルロニック F-68 (Thermo Fisher Scientific, 24040032)を含む 200 mM 酢酸アンモニウム水溶液 (Invitrogen, AM9070G) に直接バッファー 交換した。

質量分析は、Megadalton Solutions 社が構築したシステムをベースにした、静電リニアイオン トラップ(ELIT)を備えた電荷検出質量分析計のプロトタイプを用いて行った⁶¹⁻⁶⁴。CDMS シス テムの質量範囲は、ウシ肝臓由来の L-グルタミン酸デヒドロゲナーゼ(GDH)(Sigma-Aldrich Co. LLC, St. Louis, MO, G7882)を用いてキャリブレーションした。このキャリブレーションを行う ために、GDH スペクトルの *m/z*ピークを GDH の理論的な *m/z* 値に対してプロットし、CDMS シ ステムから質量と電荷を正確に決定するための補正係数を得た。NanoMate はノズルに 1.75 kVを印加して CD-MS システムに注入する各サンプルを 5 μ L (5.0 × 10¹² vg/mL)注入した。 3-5MDa の質量範囲で約 3000 個のイオンが捕捉されるまでスペクトルを取得した。総取得時間は約 10-12 分であった。信号処理とデータの可視化は、Waters Corporation (Milford, USA)が開発したプロトタイプのソフトウェアを用いて行った。

2.2.7. CsCl密度勾配超遠心分析(CsCl-DG-AUC)

各 rAAV サンプルに 0.001 w/v% P-188を含む CsCl/PBS 溶液を加え、1 cmの光路長で 230 nm における最終吸光度が約 0.1 になるように希釈した(終濃度 2.5 M CsCl)。合計 390 μ Lの サンプルを、sapphire windows と 12-mm double-sector charcoal-filled epon centerpiece (Beckman Coulter)を備えたサンプルセクターにロードした。さらに、対応する CsCl 溶媒 400 μ Lを各リファレンス・セクターにロードした。

データは、Optima AUC (Beckman Coulter)を用い、20 ℃で 42,000 rpm、UV-可視吸収検出 システムを用いて、半径 10 µ m 刻みで 72 時間まで 1 時間ごとに取得した。

2.2.8. バンド沈降超遠心分析(BS-AUC)

BS-AUC 実験と解析は、以前に報告⁶⁵した方法に従って実施した。rAAV サンプルは 260 nmで1 cmの光路長における最終吸光度が 0.25 になるように希釈した。次に、15 µLの rAAV ベクター溶液と溶媒を、サファイアウィンドウを備えた 12 mm のバンド形成センターピース (Spin Analytical, Berwick, ME)を備えたサンプルまたはリファレンスリザーバーウェルにロードした。0.001 w/v % P-188を含む 240 µL または 250 µL の PBS/D₂Oを、それぞれサンプルま たは参照セクタにロードした。Optima AUC (Beckman Coulter)を用い、20,000rpm、UV 検出 システムを用いて 20 °Cでデータを取得した。データは半径方向に 10 µm 刻みで取得した。 BS-AUC 沈降データは、プログラム SEDFIT (バージョン 16.2b)の分析ゾーン遠心 c(s)モデル を用いて分析され、ラメラ幅、摩擦比、メニスカス、時間不変ノイズ、半径方向不変ノイズが、 正則化レベル 0.68を用いてフィッティングされた。s 値は 0-175 S の範囲を 350 の分解能で評 価し、緩衝液密度と PBS/ $H_2^{18}O$ の粘度はプログラム SEDNTERP を用いて計算した。c(s)分 布の図は、プログラム GUSSI(バージョン 1.3.2)を用いて作成した。s 値は sw(実験条件下で の見かけの値としての s 値)として記述した。

2.2.9. In vitro における感染能評価

rAAV 複製に必要な *Rep* および *Cap* 遺伝子を発現する HeLaRC32 細胞を、24ウェル培養 プレート(Corning Inc.)に 5×10^4 cells/well となるように播種した。翌日、細胞を顕微鏡で観察 し、すべてのプレートで細胞が均一にウェルに接着していることを確認した。感染多重度 (MOI=virus/cell)が 1×10^2 、 2.5×10^3 、 1×10^3 、 2.5×10^3 、 5×10^3 となるように rAAV を細胞 に感染させた。rAAV の量は、無作為に選んだ 3 つのウェルから計算された細胞数に従って 決定した。5 時間後、完全培地(DMEM、10% FBS、1% P/S)を加えてさらに培養した。感染 後 72 時間で、細胞を DPBS(Wako, Osaka, Japan)で洗浄し、フェノールレッドを含まない TrypLETM Select Enzyme(1X)を用いて剥離した(Thermo Fisher Scientific)。トリプシン消化 は完全培地を加えることで終了した。GFP 発現の解析は、フルオレセインイソチオシアネート (励起:498 nm、発光:522 nm)チャンネルを用い、CytoFlexTM II Flow Cytometer(Beckman Coulter)を用いて行った。

2.2.10. リアルタイム定量ポリメラーゼ連鎖反応(qPCR)

rAAV ベクターは、AAVpro® Titration Kit (for Real-Time PCR) Ver.2 (Takara, Tokyo, Japan)を用いて QuantStudio™ 3 Real-Time PCR System (Thermo Fisher Scientific)で qPCR により定量した。ほぼ全てのステップをマニュアルに従って行った。酵素の熱失活とカプシドの 変性に続いて、カプシド外の DNA を消化するために DNase I 処理を行った。抽出したウイル スゲノムを希釈し、TB Green インターカレート色素を含む溶液と混合した。陽性コントロールの 希釈系列(2×10⁷~2×10² copies/µL)を測定し、標準曲線を作成した。95℃での2分間の初期 変性に続いて、95 ℃での 5 秒間の変性と 60 ℃、30 秒間のアニーリングを 35 サイクル行い、 最終的に融解曲線を解析した。ウイルス力価は、1 mL あたりのゲノム粒子数として計算した。

2.3. 結果

2.3.1. rAAV2 における高密度および低密度完全粒子の分画法最適化

rAAV2 は、生産スケール拡大のために開発された浮遊 HEK293T 細胞発現系を用いて作 製した。殆どのrAAV2 は、培地中には存在せず細胞内に蓄積される。そのため、過剰発現 72 時間後、細胞のみを分画し細胞溶解液によって抽出した。抽出液である細胞ライセートをアフ ィニティクロマトグラフィーによって精製したのち、CsCl 密度勾配遠心分離による2 種類の完全 粒子の分画を検討した。

CsCI密度勾配遠心分離は、遠心条件下の溶液中で CsCl が自己濃度勾配を形成すること で形成される密度勾配を利用した手法で、AAV などの各分子は、CsCl 溶液中で各分子が持 つ浮上密度と溶液の密度が等しくなる位置にバンドを形成する。つまり、各分子の浮上密度の 差に基づいて分離を行う手法である。AAV の製造工程では、完全粒子からゲノム DNA を内 包していない空粒子を除去するために利用されてきた。典型的な溶液中での浮遊密度は、核 酸(約1.82 g/cm³)よりタンパク質(約1.37 g/cm³)の方が大きい⁶⁶。つまり、核酸は、タンパク質 と比較して分子 1 グラムが溶液中で占める体積が小さく、密度が高い。そのため、カプシド内 に浮遊密度の高い核酸が内包されている完全粒子と空粒子では大きな浮遊密度差が生じ、 分離する事ができる。ただし、2 種類の粒子の浮遊密度差は僅か 0.05 g/cm³未満であると、過 去に報告されており、通常の分画法では2 種類の粒子がよく分離されていない可能性がある。 そのため、空粒子を除きつつ 2 種類の完全粒子を単離するため、より最適な分画条件を検討 する必要がある。

最適な分画条件の検討には、平衡状態の CsCl 濃度勾配のシミュレーションを用いて実施 した。粒子の浮力密度は、遠心管またはセル内の半径方向の位置と CsCl 濃度の関係が得ら れれば、平衡状態におけるバンドの位置から推定することができる。CsCl 密度と CsCl 濃度の 関係はよく確立されている。つまり、CsCl 密度勾配をシミュレーションすることで、それぞれの 粒子のバンドパターンが予測できると考えた。そこで以下の式を用いて、遠心条件と CsCl 溶 液の初期濃度から平衡状態の CsCl 密度勾配を予測した(図 6)。

$$c(r) = c(r_0) exp\left[M(1 - vbar\rho) \frac{\omega^2}{2RT} (r^2 - r_0^2) \right]$$
 (式 2)

ここで、r は半径(回転中心からの距離)、r0 は任意の基準半径、M は分子量、vbar は粒子 部分固有体積、ρ は溶液密度、ω はローター角速度、R は気体定数、T は絶対温度である。 式 2 を DG-AUC 平衡プロファイルに適用する場合、基準半径 c(r0)における塩化セシウム濃 度のみが未知である。測定中、DG-AUC のセル内の Cs イオンの全質量は保存されなければ ならないので、Cs イオンの濃度が初期濃度と等しくなる半径である等濃縮点 ri を r0 として定義 することができる。CsCl密度勾配シミュレーションの結果より1度目の CsCl密度勾配遠心分離 は、空粒子を除きつつ、2 種類の粒子を粗く分画するため、急勾配(終濃度 2.5 M CsCl、 34,000 rpm)をつくるように実施した。2 度目の CsCl密度勾配遠心分離では、CsClの密度勾 配を緩め(終濃度 2.5 M CsCl、24,000 rpm)、浮遊密度差の小さい2 種類の粒子の分離できる ように実施した(図 7)。

図7は、2サイクルのCsCI密度勾配遠心分離後に形成されたバンドパターンを示している。 1度目のCsCI密度勾配遠心分離では、3つのバンドを示しており、それぞれ空粒子、低密度 の完全粒子、高密度の完全粒子が確認された。オンラインモニタリング装置付きピストン分画 器によって2種類の完全粒子を分画した(F1およびF2と表記)。F1およびF2について、2度 目のCsCI密度勾配遠心分離を実施した。予想通り、両画分において2種類の粒子の顕著な 混合が観察された。また、シミュレーションに基づいた2度目の遠心分離では、2種類のバンド 位置がより離れていることも同時に観察された。4つのバンドを分画し、それぞれF1.1、F1.2、 F2.1、F2.2と定義する。別の調製では、F1およびF2試料を混合物として分画した。以降、本 博士論文では、この混合物を「バルク」と定義する。図7に全てに見られる白い層は、SDS-PAGEと吸光度測定の結果、タンパク質とDNAが検出されなかったことから(データは示さず)、 高濃度により析出したCsCIであると結論づけた。

本項以降は、最も密度が低い「F1.1」、最も密度が高い「F2.2」、および混合物である「バルク」

をそれぞれ低密度 rAAV2 粒子、高密度 rAAV2 粒子、および通常の rAAV2 完全粒子として 特性解析を実施した。

図 6. CsCl密度勾配シミュレーションで予測される2度の平衡状態CsCl密度勾配 横軸は、遠心時のフラクションチューブの回転中心からの半径を示している。

図 7.2 サイクルの CsC 密度勾配超遠心におけるバンドの様子

アフィニティークロマトグラフィー精製後、CsCl 密度勾配超遠心を 2 サイクル行うことにより、 高密度 rAAV2 粒子と低密度 rAAV2 粒子を分離した。精製された rAAV2-CMV-EGFP ベクタ ーは、懸濁 HEK293T 生産系を用いて製造した。2 つの完全な粒子バンドが観察され、F1 およ びF2を分画した(左)。また、F1とF2について 2 サイクル目の CsCl密度勾配超遠心分離(右) を行ったところ、密度の異なる 2 種類の粒子が観察され、さらに F1.1、F1.2、F2.1、F2.2 に分画 した。別の調製では、F1 および F2 試料を混合物として分画した。

2.3.2. F1.1とF2.2における密度分布の評価

CsCl密度勾配超遠心分析法(CsCl-DG-AUC)は、第 2.3.1 章で用いた密度勾配遠心分離 法の原理に基づいた、超遠心分析(AUC)装置に組み込まれた高度な光学システムを用いた 分析手法である。この方法は、超遠心場において CsCl溶液を使用して密度勾配を生成し、高 分子がその浮力密度と溶液密度の差に応じて移動することを利用している。1959 年に発表さ れた Meselson-Stahl による半保存的複製の証明では、モデル E 分析用超遠心機を用いた CsCl密度勾配遠心分離法と光学装置を組み合わせた生物学で非常に優れた実験の一例で ある。以来、CsCl-DG-AUC はタンパク質や核酸からなるウイルスなどの生物学的物質の分析 に広く利用されてきた。実際、CsCl-DG-AUC の応用例としては、アデノウイルス^{67,68}や rAAV ⁶⁹の特性評価が報告されている。CsCl-DG-AUC の結果における横軸は、回転中心からの距 離を示す。本研究で使用した CsCl-DG-AUC における回転半径と CsCl 濃度(浮遊密度)の関 係は、式 2 を用いて導き、図 6 に示す。

分画した F1.1、F2.2 および高密度粒子と低密度粒子を分離せずに分画したバルクに対し て、CsCl-DG-AUC 分析を実施した。この分析では、波長 230、260、280 nm の UV 吸収により 検出した。2 回目の分画後、F1.1 にはまだ高密度の完全粒子がわずかに含まれていたが、 F2.2 では低密度の完全粒子分布は検出されなかった(図 8)。また、式2をこの手法に適応し、 完全粒子のピーク位置からそれぞれのる浮力密度を算出した。低密度粒子と高密度粒子の 推定浮力密度は、それぞれ 1.352 g/cm³、1.361 g/cm³であり、Ab260/280 比は 1.277、1.280 で あった。Ab260/280 比が僅かに低密度粒子の方が低いことからタンパク質量が多い、もしくは 内包ゲノム DNA 量が少ない事が推察できる。

45

図 8. バルク、F1.1 および F2.2 フラクションの CsCl-DG-AUC プロファイル

それぞれ230nmで検出されたCsCl平衡状態におけるプロファイルを示す。横軸(Radius)は 回転中心からの距離を表す。回転半径値が大きくなるにつれて、CsCl濃度も高くなる。6.1 cm 付近に観察される大きなピークは、溶液のメニスカス位置を示す。

2.3.3. CGE を用いた低密度粒子(F1.1)と高密度粒子(F2.2)の物理化学的特性解析

CGE は現在のバイオ医薬品の品質管理において主流になりつつある分析手法であり、ゲ ルベースのスラブ式電気泳動よりも高い感度と分離能をもつ ^{59,60}。分離されたタンパク質はペ プチド結合の吸収または芳香族アミノ酸の吸収を用いて検出できるため、SDS-PAGE のように 染色の過程を必要としない。加えて、核酸全般の最も効率的な分離法の一つでもある。そのた め、直接的に VP や内包ゲノム DNA の量を定量することができる。また、本研究室の先行研 究において、CGE エレクトロフェログラムのピーク面積を各 VP のモル吸光係数で徐算し、補 正する事でより正確な VP のモル化学量論比を算出することを可能とした。各 VP のモル吸光 係数は、Kuipers らが報告した 214 nm における変性状態での各アミノ酸およびペプチド結合 のモル吸光係数をもとに各 VP のアミノ酸配列から算出する ^{22,70}。F1.1 と F2.2 の内包ゲノム DNAと VP 成分を分析するために CGE を実施した。

CGEによる内包ゲノム DNA の評価では、含まれる内包ゲノム DNA 長が高密度粒子と低密 度粒子で同じであることを示し、これらの粒子間の密度の差に内包ゲノム DNA が寄与してい ないことが示唆された(図 9A)。214 nm で検出し、VP3 ピークを基準にして強度を正規化した VP タンパク質の CGE からのエレクトロフェログラムを図 9B および図 9C に示す。すべてのカプ シドタンパク質が F1.1 および F2.2 粒子の両方に存在した。VP1、VP2、VP3 のピークに加えて、 VP3 の開始コドンのリボソームリーキースキャンによって生成された VP3 clip も検出された。解 析の結果、F1.1 カプシドは F2.2 カプシドよりも VP1 および VP2 の比率が高いことが示唆され た。

これらの粒子の VP モル化学量論比は、前述したように各 VP タンパク質のアミノ酸配列から 推定した 214 nm のモル吸光係数を用いてピーク面積を計算することにより決定した(図 9D)。 VP1: VP2: VP3: VP3 clip の比率は、F1.1 ではそれぞれ 1.0: 1.3: 6.9: 0.4、FP2.2 では 1.0: 1.4: 8.6: 0.4 であり(図 9D)であった。VP モル化学量論比をもとに算出した VP1 と VP2 の合 計比率を示す(VP1 + VP2)/VP3_{total} 値(VP3_{total} は VP3 と VP3 clip の合計を示す)は、F1.1 で は 0.32、FP2.2 では 0.25 であった。2 つの完全粒子間で VP モル化学量論比に明らかな違い があり、これが 2 つの完全粒子の異なる浮遊密度を生み出している可能性が高い。

図 9. CGE を用いた F1.1 および F2.2 粒子の特性解析

- A) F1.1 および F2.2 粒子中の内包ゲノム DNA の CGE エレクトロフェログラム
- B) F1.1 および F2.2 粒子のカプシドタンパク質(VP)成分の CGE エレクトロフェログラム
- C) 図 9B のエレクトロフェログラムの拡大図
- D) バルク、F1.1、F2.2の VP モル化学量論比

VP1を1.0とした比率を示す。VPのモル化学量論比を決定するために、214 nmで 検出された CGE ピークの面積を、214 nm における VPのモル吸光係数で徐算し た。

2.3.4. 低密度粒子(F1.1)と高密度粒子(F2.2)の粒子レベルでの評価

rAAV は、完全粒子で 4 MDa を超えるタンパク質、DNA 複合体高分子である。そのため、 天然状態での粒子レベルの評価は、非常に難しい。近年、粒子の質量電荷比(m/z)と電荷を 同時に測定する CDMS が rAAV の粒子レベル評価では非常に注目されている ⁷¹⁻⁷³。CDMS は単一のイオンを捕捉する事が可能であり、従来の質量分析では難しかった 1 MDa を越える 高分子も測定する事ができる。エレクトロスプレーイオン化(ESI)プロセスから生成される電荷 の状態を割り当てる必要がなくなり、電荷そのものが検出される。測定は、測定プロセス中に荷 電粒子を荷電検出シリンダーに導入することによって行われる。イオンがシリンダー内を飛ぶと、 シリンダー上に荷電が等しいが、反対の電荷が発生する。電荷感応増幅器が信号を増幅し、 デジタル化と高速フーリエ変換を行う。イオンのエネルギーが既知であれば、シリンダーを通 過するイオンの飛行時間から m/z を決定することができる。シリンダー上の誘導電荷の大きさ は、イオンの電荷に対応する。

F2.2 粒子は、F1.1 粒子に対して VP1と VP2 の化学量論比が低いため、それぞれの粒子の 分子量が異なる可能性を疑うのは妥当である。そこで、F1.1 および F2.2 の粒子について、BS-AUC および CDMS 測定を実施した。BS-AUC では、従来の沈降速度超遠心分析である SV-AUC に必要なサンプル量のわずか 1/25 で溶液中の粒度分布を評価することができる⁶⁵。沈 降プロファイルから、F1.1 および F2.2 には空の粒子が含まれておらず、F1.1 および F2.2 の粒 子の沈降係数はそれぞれ 99.5 S および 97.2 S であった(図 10A)。式 2 および 3 によると、こ れらの F1.1 粒子の沈降係数の増加は、F1.1 粒子の平均分子量が F2.2 粒子の平均分子量に 比べて増加したことを示している。さらに、CDMS 測定により、F1.1 粒子および F2.2 粒子の単 一質量は、それぞれ 4.70 MDa および 4.58 MDa であることが明らかになった(図 10B 右)。 Jarrold らによって示唆されたように、イオン化時に付加される対イオン、塩付加体、溶媒の影 響の可能性を考慮すると、CGE による VP のモル化学量論比を六十量体として計算した理論 質量値と実験質量値に良い相関があった⁷³(表 3)。CDMS の電荷対質量の散布図(図 10B

50

左)に、低い電荷集団が示された。これは、rAAV から内包ゲノム DNA が放出されると荷電状態が高くなり、逆にコンパクトで球形に近い形状の AAV は荷電状態が低くなることが示唆される ⁷²。BS-AUC と CDMS の両方から得られた分子量は、いずれも F1.1 の方が F2.2 よりも高い値を示した。内包ゲノム DNA 量は同じであったため、質量の増加は六十量体オリゴマー中の VP1と VP2 含有量が高いことに起因していると考えられる。このことは、CGE の結果より導かれた F1.1 粒子の VP1 と VP2 の化学量論比が F2.2 粒子のそれよりも高いという主張を裏付けるものであった。

図 10. F1.1 および F2.2 粒子の粒子質量分析

- A) F1.1とF2.2 粒子の沈降プロファイル
- B) F1.1とF2.2 粒子の CDMS 質量ヒストグラム(右)と電荷および質量散布図(左)

表 3. F1.1 および F2.2 粒子の理論分子量と実測分子量の比較

	VP molar ratio from CGE*				Theoritical mass from CGE result*	Molecular mass from CDMS	Molecular weight from BS-AUC
	VP1	VP2	VP3	VP3clip	(MDa)	(MDa)	(MDa)
AAV	5.0	5.0	50.0	-	4.54	-	-
F1.1	6.3	8.1	43.1	2.5	4.56	4.70	5.24
F2.2	5.3	7.4	45.3	2.1	4.53	4.58	5.11

*1 個の AAV 粒子に含まれる VP の総数は 60 個とした。

*アミノ酸配列から理論質量値を算出する際に使用した分子量:野生型では、VP1:81855.24、VP2:66488.20、VP3:59974.02、VP3clip:

59301.27 および核酸配列から理論質量値を算出した: ITR-CMV-EGFP-ITR (2521 bp)から理論質量を算出した: 777502.35

2.3.5. F1.1とF2.2の in vitro における感染能評価

Bosmaらはバキュロウイルスを用いて製造したrAAV5のカプシドを構成するVP比が異なる と、ウイルスの遺伝子導入率が変化することを報告した⁵⁸。そのメカニズムは完全には明らかに なっていないが、VP1特異的配列(VP1u)上のホスホリパーゼA2(PLA2)ドメインがエンドソーム エスケープに必須であるため、VP1の組み込み量が少ないrAAVの遺伝子導入率が低下した 可能性が高い。さらに、VP1/VP2 共通領域には核局在化配列(NLSs)が存在する。したがって、 VP1とVP2のこれらのN末端伸長は、エンドソームへの輸送と脱出、核局在化、ゲノム放出に おいて重要な役割を果たしており、VP1とVP2の総量は遺伝子導入効率に大きく影響すると 考えた。

感染性試験は、HeLaRC32 細胞にバルク、F1.1 および F2.2 の 3 種類の rAAV2 をそれぞれ 形質転換し、3 日後に、感染性評価を実施した。本研究で使用している rAAV2 のゲノムには、 導入遺伝子として緑色蛍光タンパク質 (Enhanced Green Fluorescence Protein : EGFP) がコード されている。EGFP 陽性生存細胞の割合は、フローサイトメトリーにより 5 つの異なる感染多重 度 (Multiplicity of Infection : MOI) において評価した。MOI は、感染を受ける細胞に対する感 染性ウィルスの比率を表す (つまり、ウイルス数/細胞数)。F1.1 の遺伝子導入効率はバルクと 比較して最大 8.9% (MOI $5x10^2$) 高く、F2.2 の遺伝子導入効率は最大 17.8% (MOI $1x10^3$) 低 かった。(図 11A および B)。

これらの結果は、VP1 および VP2 の化学量論比が in vitro での感染性に重要な役割を果たしていることを確認するものであった。

54

図 11. HelaRC32 細胞における F1.1 および F2.2 粒子の *in vitro* での感染能評価 EGFP レポーター遺伝子のアッセイ結果は、代表的な 1 回の実験における 3 連ウェルの平 均値として示した。エラーバーは 3 つの独立したウェルの±SDを表す。

A) 5 つの MOI ポイント(MOI 1×10²、2.5×10³、1×10³、2.5×10³、5×10³)で、フローサ
イトメーターを用いて EGFP 陽性生存細胞を測定した

B) MOI(1×10²および 5×10²)の in vitro における遺伝子導入効率

2.4. 考察

本研究では、CsCI密度勾配中においてrAAVで観察された完全粒子の密度の2つの異な る分布が、ウイルスゲノムのサイズの違いではなく、VPサブユニットの不均一性に由来すること を実証した。(VP1+VP2)/VP3total 値は、F1.1 では 0.31、F2.2 では 0.27 であり、バルク ([VP1+VP2]/VP3total 値、0.28)と比較して、それぞれ 1.8%の増加と 2.8%の減少に相当した。こ れらの定量的関係は、本研究室の先行研究である CGEとモル吸光係数を組み合わせた正確 な定量法によって明らかにした。BS-AUC および CDMS の結果は、F1.1 では F2.2 よりも分子 量が大きいことが示唆され、VP1+VP2 数が多いことを支持した。CDMS で測定した粒子質量 に基づいて、六十量体中の VP1、VP2、VP3 の組み合わせを推定すると、F1.1 粒子の VP1と VP2 のカプシド含有率はF2.2 粒子よりも明らかに高いことが示唆された(図 12)。これに対応し て、2 サイクルの CsCl密度勾配遠心分離によって精製された F1.1 粒子は、*in vitro*で高い遺 伝子導入効果を示した。HeLaRC32 細胞を用いた EGFP レポーター遺伝子発現のフローサイ トメトリー解析によって、F1.1 粒子の方がバルクよりも最大で 8.9%高かった。対照的に F2.2 粒 子の EGFP 陽性細胞数はバルクよりも最大で 8.9%低かった。

相対的な分子量が大きい、つまりタンパク質量が多い F1.1 粒子において、F2.2 粒子と比較 して浮遊密度が小さくなることは以下の式で証明する事ができる。

$$\rho_{rAAV} = \frac{(\rho_{protein} V_{capsid} + \rho_{nucleic\ acid} V_{DNA})}{V_{capsid} + V_{DNA}} \tag{\mathbf{T}4}$$

ここでは ρ_{rAAV} 、 $\rho_{protein}$ 、 $\rho_{nucleic\ acid}$ はそれぞれ rAAV、タンパク質、核酸の溶媒中密度、 V_{capsid} 、 V_{DNA} はそれぞれ rAAV カプシド、内包ゲノム DNA の体積を示す。典型的な溶液中の 偏比容(*vbar*)は、核酸(0.55 cm³/g)よりタンパク質(0.73 cm³/g)の方が大きい^{66,74}。*vbar*は、単 位質量のタンパク質や核酸を多量の溶媒に溶かしたときの体積(*V*)増加を表す単位である。つ まり、核酸は、タンパク質と比較して分子 1 グラムが溶液中で占める体積が小さいため、密度が 高い。また *vbar*は、おおよそ密度(ρ)の逆数と考える事ができ、核酸とタンパク質の密度はそ れぞれ約 1.82 g/cm³、1.37 g/cm³となる。そのため、分子量の大きい VP1 および VP2 の取り込 み量多い F1.1 は、*V_{capsid}*の値が大きくなるため、相対的に浮遊密度が小さくなる。CGE により 決定された VP 化学量論比に基づく F1.1 と F2.2 の水中での理論的 *vbar* の差は 0.0003 cm³/g (F1.1:0.6839 cm³/g、F2.2:0.6837 cm³/g)であったが、CsCl-DG-AUC により求められた実験的 *vbar* の差は 0.0049 cm³/g(F1.1:0.7396 cm³/g、F2.2:0.7347 cm³/g)であった。このことは、VP 化 学量論比の違いによる *vbar* の差が、CsCl 条件下で著しく増強されたことを示唆している。

CsCl密度勾配中で2種類のrAAVの密度が異なる理由や密度と遺伝子導入効果の関係 は、これまでに報告されているいくつかの相反する報告が存在するように決定的な結論は導き 出せなかった^{15,48,49,54,55}。これまでの報告では、カプシドタンパク質や内包ゲノム DNA 評価に おいて定量性が欠けていた可能性がある。例えば、色素染色を用いた SDS-PAGE⁷⁵⁻⁷⁷では、 バンド強度がアミノ酸組成に依存するため、正確な定量結果を得るのは難しい。本研究では、 上述のように、各 VP のアミノ酸配列から吸光度を補正することで正確なモル化学量論比を定 量するための方法を用いた。rAAV ベクターの開発において、VP 化学量論比は、バイオ医薬 品としての rAAV 産物の仕様として、重要な品質属性および品質管理として認識されている。 一方、HEK 細胞で産生された rAAV の VP 比が、感染性にどのような影響を与えるかは、これ まで不明であった。

低密度粒子と高密度粒子は、アデノウイルスをヘルパーとして産生された wtAAV (AAV1、 AAV3、AAV4、鳥類 AAV) や他のパルボウイルス (H-1 パルボウイルス、マウスミニッツウイルス [MVM]) の調製物でも以前に観察されている。AAV2 の高密度粒子は、低密度粒子よりも DNA/タンパク質の比率が高いと報告されている^{15,48,50,51,53}。しかし、他の研究では、どちらのタ イプの粒子も DNA/タンパク質比と沈降速度は同じであると報告されている⁵⁴。さらに、物理的 粒子に対する感染ユニットの比率は、AAV2 の低密度粒子の方が高密度粒子よりも 16~300 倍高いことが報告されている。一方で、AAV4、MVM、H1パルボウイルスの低密度粒子と高密 度粒子の感染性には有意な差は認められなかった。このように密度の違いは粒子の VP 比の違 量の違いに起因するとする研究もあるが、rAAV8 の研究では密度の違いは粒子の VP 比の違 いに起因すると結論している⁴⁹。AAV の高密度粒子と低密度粒子の特性に関するこの相違は、 いくつかの研究では分画には1度の CsCl 密度勾配遠心分離法を用いていることから、サンプ ル調製法の違いに起因している可能性がある。特に今回のように、同じ内包ゲノム DNA 長で あり、VP の化学量論比に由来する密度の差がある場合、本研究で分離される 2 種類の粒子 の推定密度の差はわずか(~0.009 g/cm³)であるため、1 度の CsCl 密度勾配遠心分離では 2 種類の粒子を完全に異なる画分に分離するには不十分である。実際、アフィニティークロマト グラフィー精製後に CsCl 密度勾配遠心分離で調製した F1.1 には、まだ高密度粒子が残存し ていた。本研究では、2 回目の CsCl 密度勾配遠心分離を行い、低密度 rAAV が残存しない F2.2 の調整に成功した。本研究では、VP 化学量論比が異なる rAAV2 完全粒子の混合物で ある不均一な rAAV サンプルから、より高活性の rAAV を調製するためには、CsCl 密度勾配 遠心分離を繰り返す、またはその効果的な最適化が必要であることが示唆された。

図 12. CD-MS による粒子質量に基づく六十量体中の VP の組み合わせの推定

VP マトリックス質量値のヒートマップは、CDMS 分析による粒子の理論質量値と測定質量値 との間の VP1と VP2 の化学量論的対応関係を評価するために作成した。CGE 実験に基づく 計算質量値も示した。対応する VP の組み合わせの理論質量値は各セルに示され、カラーチ ャートは CDMS 質量値との差を示す。全ての VP の組み合わせの質量値は六十量体として計 算され、VP1と VP2 以外の全ての成分は VP3 として計算された。オレンジ色で囲まれた部分 AAV2 GE 測定から得られた VP1と VP2 のモル化学量論比を用いた質量値を示す。 A) F1.1 粒子の CDMS 質量値と各 VP の組み合わせの質量差のヒートマップ B) F2.2 粒子の CDMS 質量値と各 VP の組み合わせの質量差のヒートマップ

第三章 VP 化学量論比および粒子不均一性を改善した rAAV2 変異体

3.1. 序論

アデノ随伴ウイルスは、パルボウイルス属の一種であり、その組換え体は遺伝子治療ベクタ ーとして利用されている。現在、rAAVを用いた2つのFDA認可治療法が上市されており、さ らに多くの臨床試験が行われている⁵⁷。rAAVは非エンベロープ型、直径26 nmの正二十面 体ウイルスで、免疫原性が低く、組織指向性が高い。特にrAAV2はrAAVベクターを利用し た医薬品開発において、臨床研究数が最も多い血清型である。現在までに40以上の臨床試 験が終了しており、将来的に遺伝子治療用医薬品として最も普及しうる血清型の1つである 6.57。

rAAV は、カプシドタンパク質と内包ゲノム ssDNA から構成されており、野生型 AAV は約 4.7 kb のゲノムが組み込まれている。ウイルスゲノムは 2 つの同じ逆末端反復配列(ITR)に挟 まれており、ITR は複製とゲノムのパッケージングに役割を果たしている。組換えベクターを調 製する際、三種類のプラスミドは *Rep と Cap* 遺伝子を、必要なヘルパー遺伝子(アデノウイル ス由来など)を発現させ、目的のゲノム(GOI)を空の rAAV カプシドに導入するために利用さ れる。*Rep* 遺伝子と *Cap* 遺伝子は、それぞれ複製補助タンパク質とカプシドタンパク質の産生 を担っている。rAAV の作製には、必要な条件に応じてさまざまな細胞株が利用される。 HEK293 細胞株は、研究グレードの材料を作製するために利用される伝統的な細胞株である。 しかし、HEK293 細胞を利用する方法は、ベクター収量をスケールアップするために大量のプ ラスミドを必要とし、不均一性を生み出し、生産費用を増加させる。

rAAV のカプシドは 3 種類のウイルスタンパク質、VP1-3 (rAAV2 ではそれぞれ 82.9 kDa、 66.5 kDa、60.0 kDa)から六十量体タンパク質オリゴマーが構成されていることが知られており、 およそ 1:1:10 の割合で集合していると提唱されている。近年、Worner らの報告したネイティ ブ質量分析データとマススペクトルシュミレーションに基づいた VP 化学量論比推定モデルで は、各 VP の粒子への取り込みはランダム性があることが示唆されている。つまり、あらゆる VP 構成比をもつ rAAV 粒子の平均値が約 1:1:10(VP1:VP2:VP3)である可能性が高い。 Bosma らは、Sf9 生産系にて rAAV5 における VP1 の翻訳開始領域を変更し、VP1 の翻訳開 始領域の強さが VP2 と VP3 の比率に影響を与えることを明らかにした。また、VP 構成比が感 染性に影響を与えることを示唆した ⁵⁸。

第二章では、CsCl密度勾配超遠心中に存在する二種類のrAAV2完全粒子は、VP化学 量論比の異なる粒子群であることを明らかにした。また遺伝子導入効率は、VP1とVP2を多く 取り込んだrAAV2粒子の方が高いことが示唆された。本章では、VP3とVP3 clipの翻訳開始 点に着目し、それらの翻訳を抑制または欠損させることで、VP化学量論比の変化した変異体 の作製を検討した。また、VP構成比の違いから、遺伝子導入効率や粒子の不均一性にどの ような影響を与えるかを明らかにすることを目的とした。

3.2. 実験材料および実験方法

3.2.1. 細胞培養

rAAV ベクター作製には浮遊 HEK293T 細胞を用いた。さらに、HeLaRC32 細胞を *in vitro* での特性解析に使用した。浮遊 HEK293T 細胞は、1%ペニシリン-ストレプトマイシンを含む BalanCD HEK293 (FUJIFILM Irvine Scientific, Inc., Santa Ana, CA)を用いて培養した。 HeLaRC32 細胞は、10%ウシ胎児血清 (FBS, Hyclone [GE Healthcare Life Sciences], Madison, WI) および 1%ペニシリン-ストレプトマイシン (Gibco [Thermo Fisher Scientific], Grand Island, NY)を添加した DMEM (Sigma-Aldrich Co. LLC, St. Louis, MO)を用い、37℃、5% CO2 中で 接着培養した。

3.2.2. 変異プラスミドの構築

VP3 および VP3 clip の翻訳開始コドンを部位特異的変異導入により改変した。各変異体プ ラスミドについて、個々のカプシドタンパク質の開始コドンにミスセンス変異を含む 2 つの相補 的 PCR プライマーを用いて、*Cap* 遺伝子のオープンリーディングフレームに変化を導入した。 これらのプラスミドを、サイレント変異によって挿入された制限部位についてスクリーニングし、 DNA 配列決定によって変異を確認した。

3.2.3. rAAV の調製

すべての rAAV ベクターは、3 種類のプラスミドを一過的に形質転換する方法を用いて作製 した。pAAV-Rep&Cap(血清型2型)、pAd helper、トランスジーンプラスミド(CMV-EGFP)を、バ イオリアクターで培養した浮遊 HEK293T 細胞に 1:1:1の割合で形質転換した。形質転換後 72 時間で宿主細胞および培地からベクターを回収し、AAVx カラム(Thermo Fisher Scientific, Waltham, MA)を用いたアフィニティークロマトグラフィーで精製した。バルク rAAV サンプルは、 アフィニティークロマトグラフィー精製後、CsCl 密度勾配遠心分離を 1 回行い、完全粒子と空 粒子を分離した。アフィニティークロマトグラフィーで精製した rAAV サンプル (2 mL 以上)を、 0.001 w/v% poloxamer-188 (P-188)を含む CsCl/PBS 溶液に加え、最終濃度 2.5 M CsCl、最終 容量 12 mL になるように調整し、13.2 mL の超遠心チューブに移した。このチューブを Optima XE-90 (Beckman Coulter, Brea, CA)で、Beckman SW41Ti ローターを用いて、20°C で 34,000rpm、72 時間遠心した。ウイルスバンドをオンラインモニタリング装置で回収し、Slide-A-Lyzer 10K (Thermo Fisher Scientific)で透析した。

3.2.4. キャピラリーゲル電気泳動(CGE)

rAAV サンプル原液 10 μ L (5.0×10¹² vg/mL)を参考論文 ⁶⁰のプロトコルに従って変性および バッファー交換した。回収したサンプル溶液に 70 μ L の脱イオン水を加え、CGE のサンプルと した。CGE の測定には PA800Plus system(Sciex, Framingham, MA)を使用した。サンプルの 検出は PDA detector を使用して波長 214 nm で実施した。

3.2.5. 2 サイクル CsCl 密度勾配遠心分離法 (CsCl-DG-UC) による精製

最適化された 2 サイクルの CsCl-DG-UC を行い、高密度と低密度の完全粒子を分離・分画 した。精製した rAAV サンプル (2 mL 以上)を、0.001 w/v% P-188 を含む CsCl/PBS 溶液に加 え、最終濃度 2.5 M CsCl、最終容量 12 mL になるように調整し、13.2 mL の超遠心チューブに 移した。このチューブを Optima XE-90 (Beckman Coulter)で、Beckman SW41Ti ローターを用 いて、20°Cで 34,000rpm、72 時間遠心した。濃縮された完全粒子を含むウイルスバンドをオン ラインモニタリング装置で回収した。回収したウイルスバンドを 0.001 w/v% P-188 を含む CsCl/PBS 溶液に加え、最終濃度 2.5 M CsCl、最終容量 12 mL になるように調整し、13.2 mL の超遠心チューブに移した。このチューブを Optima XE-90 (Beckman Coulter)で、Beckman SW41Ti ローターを用いて、20 °Cで 24,000rpm で 72 時間、再度遠心分離を行った。ウイルス バンドを Triax Gradient Profiling System (BioComp Instruments Ltd., CA)で回収し、Slide-A- Lyzer 10K (Thermo Fisher Scientific) で透析した。

3.2.6. ssDNA のキャピラリーゲル電気泳動(CGE)

10 µL の rAAV 溶液 (1.0×10^{12} vg/mL)を DNase と ProteaseK で処理し、以下のプロトコルで カプシドから ssDNA を抽出した。rAAV サンプルを調製するために、10 µL のヌクレアーゼフリ ー水、3 µL の 10×DNase 緩衝液、1.5 µL のベンゾナーゼ、5.5 µL の 0.001% P-188 を含む 1×PBS を混合し、最終容量を 30 µL とした。その後、サンプルを 37°Cで 30 分間インキュベー トした。その後、30 µL の DNase 処理 AAV を新しいチューブに移し、10 µL の 500 mM EDTA、 55 µL の 0.001% P-188 を含む 1×PBS、および 5µL の Proteinase K (20 mg/mL)を加えて最終 容量を 100 µL とした。次に、混合物を 55°Cで 60 分間インキュベートし、その後混合物を 95°C で 20 分間加熱し、遠心分離して溶解液を回収した。その後、QIAquick PCR Purification Kit (QIAGEN, Hilden, Germany)に記載されているプロトコールに従って ssDNA を精製し、最終 回収サンプルとして使用した。CGE は PA800Plus システム(Sciex, Framingham, MA)を用いて 測定した。サンプルの検出は、488 nm のレーザー励起蛍光と 520nm の発光フィルターを用い て行った。

3.2.7. 電荷検出質量分析(CDMS)によるネイティブ質量分析

CDMS では、従来の MS では測定できなかった不均一で高分子量のサンプルの質量分布 を測定することを可能にした⁶¹⁻⁶⁴。CDMS では、各イオンの m/z 比と電荷の同時測定から個々 のイオンの質量を決定する。質量測定は何千ものイオンに対して行われ、その結果は質量分 布を得るためにヒストグラム化する。各サンプル 25 µ L を、Micro Bio-Spin P-6 ゲルカラム (Bio-Rad, California, USA, 7326221)を用いて、0.01 %プルロニック F-68 (ThermoFisher Scientific, 24040032)を含む 200 mM 酢酸アンモニウム水溶液 (Invitrogen, AM9070G) に直接バッファー 交換した。 質量分析は、Megadalton Solutions 社が構築したシステムをベースにした、静電リニアイオン トラップ(ELIT)を備えた電荷検出質量分析計のプロトタイプを用いて行った⁶¹⁻⁶⁴。CDMS シス テムの質量範囲は、ウシ肝臓由来の L-グルタミン酸デヒドロゲナーゼ(GDH)(Sigma-Aldrich Co. LLC, St. Louis, MO, G7882)を用いてキャリブレーションした。このキャリブレーションを行う ために、GDH スペクトルの m/z ピークを GDH の理論的な m/z 値に対してプロットし、CDMS シ ステムから質量と電荷を正確に決定するための補正係数を得た。NanoMate はノズルに 1.75 kVを印加して CD-MS システムに注入する各サンプルを 5 μL (5.0 × 10¹² vg/mL)注入した。 3-5 MDa の質量範囲で約 3000 個のイオンが捕捉されるまでスペクトルを収集した。総取得時 間は約 10-12 分であった。信号処理とデータの可視化は、Waters Corporation(Milford, USA) が開発したプロトタイプのソフトウェアを用いて行った。

3.2.8. CsCl密度勾配超遠心分析(CsCl-DG-AUC)

各 rAAV サンプルに 0.001 w/v% P-188を含む CsCl/PBS 溶液を加え、1 cm の光路長で 230 nm における最終吸光度が約 0.1、になるように希釈した(終濃度 2.5 M CsCl)。合計 390 μ L のサンプルを、sapphire windows と 12-mm double-sector charcoal-filled epon centerpiece (Beckman Coulter)を備えたサンプルセクターにロードした。さらに、対応する CsCl 溶媒 400 μ Lを各リファレンス・セクターにロードした。

データは、Optima AUC (Beckman Coulter)を用い、20 ℃で 42,000 rpm、UV-可視吸収検出 システムを用いて、半径 10 µm 刻みで 72 時間まで 1 時間ごとに取得した。

3.2.9. In vitro における感染能評価

rAAV 複製に必要な Rep および Cap 遺伝子を発現する HeLaRC32 細胞を、24 ウェル培養 プレート(Corning Inc.)に 5×10⁴ cells/well となるように播種した。翌日、細胞を顕微鏡で観察 し、すべてのプレートで細胞が均一にウェルに接着していることを確認した。感染多重度 (MOI=virus/cells) が 1 × 10²、2.5 × 10³、1 × 10³、2.5 × 10³、5 × 10³となるように rAAV を細胞 に感染させた。rAAV の量は、無作為に選んだ 3 つのウェルから計算された細胞数に従って 決定した。5 時間後、完全培地(DMEM、10% FBS、1% P/S)を加えてさらに培養した。感染 後 72 時間で、細胞を DPBS(Wako, Osaka, Japan)で洗浄し、フェノールレッドを含まない TrypLETM Select Enzyme(1X)を用いて剥離した(Thermo Fisher Scientific)。トリプシン消化 は完全培地を加えることで終了した。EGFP 発現の解析は、フルオレセインイソチオシアネー ト(励起:498 nm、発光:522 nm)チャンネルを用い、CytoFlexTM II Flow Cytometer(Beckman Coulter)を用いて行った。

3.2.10. リアルタイム定量ポリメラーゼ連鎖反応(qPCR)

rAAV ベクターは、AAVpro® Titration Kit (for Real-Time PCR) Ver.2 (Takara, Tokyo, Japan) を用いて QuantStudioTM 3 Real-Time PCR System (Thermo Fisher Scientific)で qPCR により定量した。ほぼ全てのステップをマニュアルに従って行った。酵素の熱失活とカプシドの 変性に続いて、カプシド外の DNA を消化するために DNase I 処理を行った。抽出したウイル スゲノムを希釈し、TB Green インターカレート色素を含む溶液と混合した。陽性コントロールの 希釈系列(2×10⁷~2×10² copies/µL)を測定し、標準曲線を作成した。95°Cでの 2 分間の初期 変性に続いて、95 °Cでの 5 秒間の変性と 60 °C、30 秒間のアニーリングを 35 サイクル行い、 最終的に融解曲線を解析した。ウイルスカ価は、1 mL あたりのゲノム粒子数として計算した。

3.2.11. 変性温度 (denaturing melting temperature, T_m)の測定

rAAV カプシドの変性開始温度は Uncle (Unchained Labs, Pleasanton, CA)を用いて決定した。AAV サンプル原液 9 μL を専用の測定用ウェルである Uni にアプライし、昇温速度 1 °C/min の昇温条件下でトリプトファン残基を中心とした芳香族アミノ酸残基由来の蛍光スペクトルを測定した。加熱時のタンパク質の変性は、装置内蔵の 266 nm レーザーにより励起した

芳香族アミノ酸由来の内因蛍光(主にトリプトファン⁸⁵)を検出することでモニターすることがで きる。熱変性が進むと、内部にフォールディングされていたトリプトファン等が外部に露出し、芳 香族アミノ酸残基周囲の環境が疎水性環境から親水性環境へと変化する。芳香族アミノ酸の 蛍光波長は変性状態の親水性環境において長波長側へシフトする(レッドシフト)ことが分か っており、このレッドシフトを検出することでタンパク質の変性状態への移行を分析する。カー ブを取得する。取得したデータより、温度を x 軸に、蛍光スペクトルの 300~430 nm の重心平均 (barycentric mean: BCM)を y 軸にプロットすることでタンパク質の変性カーブを取得できる。 BCM のプロットの一次微分値が最大値の 10%に達する温度点を変性開始温度 *T*mと定義し、 値を決定した。

3.3. 結果

3.3.1. VP3 および VP3 clip における翻訳開始点への変異導入の検討

VP3 はカプシドの基本骨格を形づくり、rAAV 全体のほとんどを占める構成成分である。そのため、VP3 翻訳量はカプシドに組み込まれる VP 化学量論比に影響を与えると考えた。一方で、VP3 clip は新規 VP 成分としていくつかの血清型で微量に組み込まれていることが報告された^{22,23}。VP3 clip 生成は、リボソームのリーキースキャニングと呼ばれる機構で生成されることが提唱されている^{22,23}。リボソームが、VP3 の翻訳開始点(rAAV2 では M203 位)を読み飛ばし8 アミノ酸残基下流のメチオニン残基(rAAV2 では M211 位)を翻訳開始点として翻訳することが示唆されている。この下流に存在するメチオニン残基は、いくつかの血清型に存在し、その中でも rAAV1、rAAV2、rAAV6、rAAV8 において VP3 clip がカプシド内に組み込まれていることが報告されている。しかし、VP3 clip の生成機序や生物学的意義については、実験的には未だ明らかにされていない。

このような背景から、VP3 および VP3 clip の翻訳開始部位の部位特異的変異導入による rAAV 変異体を作成し、これらの rAAV 変異体が粒子への VP3 の組み込みレベルを変化させ るかどうかを検討した。これは、VP3 の組み込みレベルが VP1 および VP2 の組み込みに影響 することを示した Bosma らの報告に基づくものである ⁵⁸。しかし、M203 位および M211 位に位 置する VP3 および VP3 clip の翻訳開始部位への変異は、粒子形成に影響を及ぼし、rAAV 粒子を形成しないことが報告されていた ⁷⁸。これらの残基 rAAV2 の粒子の組み立ておよび/ または安定性において重要な役割を果たしていることを示唆している ⁷⁸。そのため、rAAV2 と 比較して VP3 の N 末端配列において相同性が高い配列かつ該当配列に開始コドン(ATG)以 外の配列が保存されている AAV7 と AAV9 に注目した(図 13)。各血清型のアミノ酸配列アラ インメントにより、AAV7 では M203 位がバリン(CTG)であるのに対し、AAV9 では M211 位が バリン(CTG)であることに気づいた。そこで、それぞれの ATG 翻訳開始部位を CTG に置換し たプラスミドコンストラクトを作製した(rAAV2-M203V および rAAV2-M211V)。興味深いことに、 これらの rAAV 変異体は野生型 rAAV2(rAAV2-WT)と同等の生産性を示し(図 14)、複数の バッチ間で生産性のばらつきが少なかった。一方、rAAV 変異体生産時の完全粒子と空粒子 比率は、野生型と比較して3つの異なる生産バッチについて有意差はなかった(図 S2)。

sequence	
MATGSGAPM	
MASGGGAPM	(7/9)
MASGGGAPM	(7/9)
MASGGGAPM	(7/9)
MAAGGGAPM	(7/9)
MASGGGAPM	(7/9)
MRAAAGGAA	(2/9)
MRAAPGGNA	(2/9)
MSAGGGGPL	(3/9)
MASGGGAPV	(6/9)
VAAGGGAPM	(6/9)
	Sequence MATGSGAPM MASGGGAPM MASGGGAPM MASGGGAPM MAAGGGAPM MRAAAGGAA MRAAAGGAA MRAAPGGNA MSAGGGGPL MASGGGAPV VAAGGGAPM

図 13. AAV1-11 の VP3 N 末端領域のアミノ酸配列アラインメント(左)と AAV2 配列との相同 配列数(右)

AAV7とAAV9は VP3N末端領域についてAAV2と高度に保存された配列を持っていた

図 14. 形質転換後 24、48、72 時間における rAAV2 野生型(WT)と各 rAAV2 変異体との生産性の比較

生産性の評価は、3 つの異なる生産バッチを用いて実施し、エラーバーは 3 つの独立した 生産バッチの標準偏差を示す。
3.3.2. rAAV2-M203V および rAAV2-M211V の特性解析

rAAV2-M203V および rAAV2-M211V の両方の VP 成分を評価するために、SDS-PAGE、 CGE および LC-MS を実施した。rAAV2-M203V 粒子は VP3 clip を有意にカプシドに組み込 んだが、rAAV2-M211V 粒子は VP1 および VP2 に加えて全長 VP3 のみをカプシドに組み込 んだ(図 15A および図 S3)。これらの rAAV 変異体の各 VP のマススペクトルを LC-MS によっ て取得した。取得したマススペクトルからデコンボリューション解析された質量は、理論値と<25 ppm で一致した(図 15B、S4 および表 S1)。rAAV2-M203V および rAAV2-M211V の VP 化学 量論は、各変性 VP の 214 nm におけるモル吸光係数と CGE のピーク面積から計算した(図 5E)。VP1 および VP2 の化学量論は、rAAV2-M203V および rAAV2-M211V において、それ ぞれ (VP1 + VP2)/VP3_{total} = 0.35 および 0.32 のような優勢な傾向を示した(図 15C)。さらに rAAV2-M203V および rAAV2-M211V における変性温度(T_m)を示差走査蛍光測定(DSF)で評 価したところ、それぞれ rAAV2-WT は 67.1 °C、rAAV2-M203V は 68.2 °C、rAAV2-M211V は 67.7 °Cあった。このことから、これらのメチオニン残基からバリン残基への置換が粒子のコンフ オメーション安定性に影響を及ぼさないことが示された(図 15D)。

また、rAAV2-M203V および rAAV2-M211V の *in vitro* での遺伝子導入効率の評価を実施 した。rAAV2-M203V および rAAV2-M211V は、それぞれ野生型 rAAV2 と比較して、 HeLaRC32 細胞に対して 21.9% (MOI 5×10^2) ~24.7% (MOI 1×10^2) および 8.2% (MOI 2.5×10^3) ~11.9% (MOI 1×10^3) 高い *in vitro* 遺伝子導入効果を示した(図 16)。これらの結果は、 高い VP1 および VP2 化学量論比をもつ粒子は高い遺伝子導入効率を示す第二章での結果 と一致した。また、VP1、VP2化学量論比および *in vitro* 遺伝子導入効率の高さは、異なる GOI で作成した別の生産バッチでも再現された(図 S5)。

図 15. rAAV2-M203V および rAAV2-M211V の特性解析

A) rAAV2-WT、rAAV2-M203V および rAAV2-M211V の CGE エレクトロフェログラム

B) rAAV2-WT、rAAV2-M203V および rAAV2-M211V の VP3 と VP3clip のデコンボリュ ーション質量値

C) rAAV2-WT、rAAV2-M203V および rAAV2-M211V の VP 化学量論比の比較
 VPのモル化学量論を決定するために、214 nmで検出された CGEピークの面積を、214 nmでの VPのモル消光効率で割った。

D) rAAV2-WT、rAAV2-M203V および rAAV2-M211V の熱変性カーブ(上)および微分 プロット(下)

熱変性カーブの傾きの最大点をTmとした。

図 16. HelaRC32 細胞における rAAV2-M203V および rAAV2-M211V の in vitro 導入効果

A) 5 つの MOI ポイント(MOI 1×10、2.5×10³、1×10³、2.5×10³、5×10³)で、フローサ
 イトメーターを用いて EGFP 陽性生存細胞を測定した

B) MOI(1×10²および 5×10²)の in vitro 遺伝子導入効率

3.3.3. rAAV2-M203V および rAAV2-M211V における粒子不均一性の改善

これら rAAV2 変異体精製時、CsCl 密度勾配中における完全粒子の密度分布が野生型と 異なることに気づいた。そこで、CsCl-DG-AUC を実施し、完全粒子をすべて一括で分画した バルク状態での各変異体の粒子密度分布を測定した。その結果、驚くべきことに rAAV-WT に おける 2 つの異なる密度の粒子分布は、rAAV2-M203V および rAAV2-M211V では単一の密 度に収束していることが示唆された(図 17A)。また、rAAV2-M203V と rAAV2-M211V の両方 の CsCl-DG-AUC から推定された密度は 1.359 g/cm³ であった。これらの密度分布の収束は、 異なる GOI で作成した別の生産バッチでも再現された(図 S6)。

CGE 分析から得られた VP 化学量論比を用いて計算した rAAV2-WT、rAAV2-M203V、 rAAV2-M211V の理論分子量は、それぞれ 4.54、4.56、4.57 MDa であった(表 4)。バルク状 態の rAAV2-WT、-M203V、-M211V について CDMS による粒子測定を行ったところ、分子量 はそれぞれ 4.75、4.73、4.71 MDa であり(図 16B)、これらの値は CGE 理論値とほぼ一致した (表 4)。注目すべきことに、rAAV2-WTと比較して、2 つの rAAV2 変異体では、CDMS 測定に おける質量ヒストグラムの分子量分布が均一に収束していることが確認された。rAAV2-WT、 rAAV2-M203V、rAAV2-M211V の半値幅(Full Width at Half Maximum : FWHM)の値は、そ れぞれ 0.18 MDa、0.13 MDa、0.16 MDa で、rAAV 変異体は rAAV2-WT よりも小さい値を示し た。CDMS マスヒストグラムにおけるピークの鋭さは、rAAV2-WT>-M211V>-M203V の順で あった。これらの結果から、2 つの rAAV2 変異体は、組替え野生型と比較して粒子不均一性 が低減していることが明らかになった。

図 16. rAAV2-M203V および rAAV2-M211V の粒子均一性評価

A) バルク状態の rAAV2-WT、-M203V および-M211V の CsCl-DG-AUC プロファイル
 横軸(Radius)は回転中心からの距離を表す。回転半径値が大きくなるにつれて、CsCl 濃度も
 高くなる(図 S1 参照)。6.1 cm 付近に観察される大きなピークは、溶液のメニスカス位置を示す。

B) バルク状態の rAAV2-WT、-M203V、-M211V の CDMS 質量ヒストグラム(右)と電荷
 対質量散布図(左)

rAAV2-WT、rAAV2-M203V、rAAV2-M211V の FWHM 値は、それぞれ 0.18 MDa、0.13 MDa、0.16 MDa であった。

	VP molar ratio from CGE*				Theoritical mass from CGE result*	Molecular mass from CDMS
	VP1	VP2	VP3	VP3clip	(MDa)	(MDa)
AAV	5.0	5.0	50.0	-	4.54	-
rAAV2-WT	4.4	5.7	48.1	1.8	4.54	4.75
rAAV2-M203V	5.6	10.0	2.8	41.7	4.56	4.73
rAAV2-M211V	5.0	9.5	45.5	-	4.57	4.71

表 4. rAAV2-M203V および rAAV2-M211V における理論分子量と実測分子量の比較

*1 個の AAV 粒子に含まれる VP の総数は 60 個とした。

*アミノ酸配列から理論質量値を算出する際に使用した分子量:野生型では、VP1:81855.24、VP2:66488.20、VP3:59974.02、VP3clip: 59301.27:rAAV2-M203V では、VP1:81823.1875、VP2:66456.14、VP3:59974.02、VP3clip:59301.27:rAAV2-M211V では、VP1:81823.1875、VP2:66456.14、VP3:59941.96 および核酸配列から理論質量値を算出した: ITR-CMV-EGFP-ITR(2521bp)から理論質量を算出した:777502.35

3.5. 考察

rAAV2のVP3 およびVP3 clip 翻訳開始部位のそれぞれにアミノ酸置換が導入したrAAV 変異体を得ることができた。この結果、VP1とVP2の化学量論比が高い粒子均質性を持つ rAAVカプシドが形成された。今までこれら翻訳開始点への変異 (rAAV2-M203L, -M211L)は、 粒子形成がされないことが報告されていた⁷⁸。また、本研究における変異体検討段階でも、該 当残基へのアラニン置換では、203 残基と211 残基に保存されている血清型が存在するにも かかわらず、粒子形成には至らなかったことが観測された(図 S7)。rAAVカプシド粒子の六十 量体形成は非常に高度なバランスで組み上げられているため、VP3 および VP3 clipのN末 端領域において相同性が高いバリン残基への置換でこの問題を解決することができた。バリン 残基への置換は均一な粒子形成をもたらした VP1+VP2 の化学量論比は、バルク状態の rAAV2-M203V、rAAV2-M211V、野生型rAAVの順に高かった。また、これは複数の生産バッ チにおいて優位傾向であった(図 S8)。

これらrAAV 変異体の VP 化学量論比の変化を考察するため、まず rAAV 生産における各 VP の発現レベルの制御について説明する。AAV のカプシドを形成する VP1、VP2、VP3 は、 選択的スプライシングとリーキースキャニングというプロセスを通じて、単一の *Cap* 遺伝子から 生成される ^{79,80}。これらの過程により、*Cap* 遺伝子の mRNA 前駆体は選択的スプライシングを 受け、約 2.3 kb の主要なメジャーmRNA と約 2.6 kb のマイナーmRNA、の 2 つの異なる種類 の mRNA が生成される ^{79,80}。これらの mRNA 量は、細胞に *Cap* 遺伝子を導入してからの時間 によって変動するものの、選択的スプライシングを受けた後、主要なメジャーmRNA とマイナー mRNA の量比は約 7:1 であるとされている ^{81,82}(図 18A)。マイナーmRNA には VP1の翻訳開 始コドンのみが存在するため、VP1 の量比は比較的少なくなる ⁸²⁻⁸⁴。一方、VP2 と VP3 はリー キースキャニングを介して同じメジャーmRNA から翻訳される。リーキースキャニングは、細胞 質における翻訳の過程で、リボソームが mRNA 上の最も上流の翻訳開始点に到達した際に、 開始コドンが読み飛ばされる現象である ⁸⁴。VP2 の開始コドンは非古典的な ACG(Val に対応 する) であるため翻訳量は少なく、一方、多くのリボソームは翻訳を開始せずに下流に進み VP3 の翻訳が開始されるため VP2 の発現量は VP3 と比べて少ない(図 18B)。これらの結果か ら、VP1 および VP2 の量比は VP3 よりも小さくなる。これらの制御メカニズムにより、VP1 : VP2 : VP3 = 1 : 1 : 10 に近い比率を持つ AAV カプシドが形成される。

rAAV2-M203VとrAAV2-M211Vの VP 化学量論比の変化は、おそらく翻訳プロセスそのも のに関係している。例えば、Bosmaらの報告では、VP1の発現が減少すると、VP1の取り込み が減少し、VP3 の取り込みが増加した 58。rAAV2-M203V における VP3 の構成比が下がった 理由としては、本来の VP3 翻訳開始位置にある ATG 配列が、変異により非正規の GTG とな ったため、非正規の開始コドンとしてリボソームに認識され VP3 の翻訳量が下がったことで説 明できる。このメカニズムは前述したリボソームリーキースキャンであり、近年、遺伝子工学の分 野で注目されている⁸⁵。実際、本研究でrAAVの生産にし使用したHEK293T細胞では、翻訳 開始部位の約 7.5%が CTG を非正規の翻訳開始配列として認識されていることが報告されて いる³³。また、これらの翻訳開始点の Kozak 配列⁸⁶は、VP3とVP3clipの発現を制御する役割 も果たしている。近接した位置に翻訳開始コドンが2つある場合、-3位にA、+4位にGを持 つ開始コドン(開始コドン AUG の A を+1 と数える)が優先的に発現に使われる。いくつかの AAV 血清型の VP3 の場合、M203 の最初の ATG は-3 位に A、+4 位に Gを持つ(強い Kozak 配列)のに対し、M211の2番目のATGは-3位にC、+4位にGを持つ(弱いKozak 配列)。し たがって、VP3 の発現量は VP3 clip よりも多く、従って、カプシドに組み込まれる総量は VP3 clip の総量よりもはるかに多くなる。以上のことから、リボソームサブユニットの一部が、VP2 の 非正規開始コドンと VP3 の開始コドンを欠失した後に M211 位の VP3 第 2 開始コドンに到達 し、VP3 clip が発現する一方、M203 位の強い Kozak 配列により、野生型では VP3 が有意に 翻訳されることが実験的に示されたといえる。rAAV2-M203V における、203 位の ATG から CTG への変異では、非正規の翻訳開始コドンとなるため、M203 位から始まる VP3 の翻訳量 が少なくなり、一方、で M211 位の翻訳開始コドンから優位に翻訳が起こると考えられる(図

18C)。これは、LC-MS 分析による 203 位のバリン残基の欠失と VP3 の N 末端のアラニン残基 のアセチル化によって示された(表 S1 参照)。一方、211 位の ATG から CTG への変異は、弱 い開始コドンと弱い Kozak 配列により、VP3 clip が全く翻訳されなかったと考えられる。これは、 非正規開始コドンを介する機構によって生成され、形成された rAAV2-M211V 粒子は完全に 3 種類の VP から構成されていることから考えることができる(図 18D)。

この研究により、翻訳機構と特定のアミノ酸置換が rAAV カプシド形成に与える影響につい て貴重な知見が得られた。フローサイトメトリーを用いて *in vitro* における感染性を評価した結 果、rAAV2-M203V および rAAV2-M211V は、バルクの rAAV2-WT よりも高い効率(それぞれ 最大 24.7%および 21.9%)で HeLa 細胞に遺伝子を導入できることが示唆された。第二章にお ける、F1.1 および F2.2 で見られた「遺伝子導入効率」と「VP1 および VP2 の化学量論比」との 間の関係を考慮すると、これらの rAAV 変異体の高い遺伝子導入効率は「VP1 および VP2 の 化学量論比」が増加したことに起因していると考えるのが妥当である。以前の報告では、M203 と M211 の位置の変異が粒子の安定性とアセンブリに影響することが示唆されていた ⁷⁸。本研 究では、これらの rAAV2 変異体おけるカプシド構造安定性について評価した。その結果、 rAAV2-WT とこれらの rAAV2 変異体との間で、DSF における変性温度に有意な差は認めら れなかった。*T_m*値が野生型 rAAV と同程度であったことから、カプシドの構造安定性への影響 というよりも、VP1 と VP2 の化学量論的な増加のみが、遺伝子導入効率の増加の原因であるこ とが示唆された。

AAV2-M203V および AAV2-M211V の粒子化学量分布は、CsCl DG-AUC において浮遊 密度分布が単一に収束した。これと一致して、AAV2-M203V および AAV2-M211V は、CsCl DG-UC を用いた精製中に 1 つのバンドのみを示した。加えて、CDMS 分析もまた、rAAV2 変 異体の粒子 VP の均一性を示唆する結果となった。rAAV2-M203V および rAAV2-M211V の 質量ヒストグラムの FWHM は、それぞれ 0.13 MDa および 0.16 MDa を示し、rAAV2-WT (0.18 MDa)よりも狭い質量分布を示した(図 17B)。CDMS 質量分布と粒子均一性の相関について

は、VP3 のみから構成される rAAV における FWHM が 0.11 MDa からも支持された(図 S9)。 近年、rAAV 粒子における VP の比率は生産系に依存し、一般的にバキュロウイルス生産系で は VP1 の発現が低いことが示唆されている^{87,88}。また、VP1 と VP2 の比率は、HEK 産生系で 産生された rAAV の方がバキュロウイルス産生系で産生されたものより高いことが判明している ¹⁹。また、VP1 と VP2 の比率は、HEK 産生系で産生された rAAV の方がバキュロウイルス産生 系で産生されたものより高いことが判明している。本研究では、すべての rAAV2 は HEK293T 細胞で生産されたが、rAAV 粒子中の VP 化学量論分布は VP3 と VP3 clip 翻訳のレベルに 影響されたと推測するのは妥当である。ただし、rAAV 粒子のアセンブリの正確なメカニズムは 明確に解明されていない。そのため、今回のような粒子の不均一性の減少については、さらな る研究が必要であると考える。

第三章では、遺伝子導入効率が高く、より均質な粒子をもつ rAAV2 変異体を得ることに成 功した。また、VP3 および VP3 clip 発現量は、VP1 および VP2 のカプシド取込みに影響する ことが明らかとなった。一方で、M203 位および M211 位への変異は、VP サブユニットのアセン ブリに影響を及ぼすことが示唆された。活性については、VP1 および VP2 の増加に対応して 上昇しており、VP3 翻訳開始点への変異導入した r AAV2-M203V においては rAAV2-WT と 比較して、最大で 24.7%高かった。結果として、粒子不均一性が低く、且つ、高活性な rAAV2 変異体を得ることができた。

В

С

図 18. rAAV2-M203V および rAAV2-M211V における翻訳制御の概念図

- A) rAAV における転写後の制御
- B) メジャーmRNA における翻訳制御
- C) rAAV2-M203V における翻訳後制御
- D) rAAV2-M211V における転写後制御

第四章 総括と今後の展望

4.1. 本研究の総括

rAAV ベクターを利用した遺伝子治療用医薬品は近年さかんに臨床研究が進む一方で、 十分な品質分析が行われておらず、しばしば精製途中に観測される CsCl 密度勾配中で見ら れる rAAV の異なる浮遊密度の二つの粒子について、明確な結論は得られていなかった。本 博士論文では、これら二種類の粒子に対して分画方法の最適化、包括的な特性解析を実施 することで、浮遊密度の違いが VP タンパク質の化学量論比に起因していることを明らかにし た。さらに、今まで粒子形成されないと報告されていた残基への適切なアミノ酸置換により、こ れらの粒子不均一性や VP 化学量論比を改善した rAAV 変異体を得ることに成功した。

第二章では、CsCI密度勾配中に現れる完全粒子の浮遊密度の違いが VP タンパク質の化 学量論比に起因していることを明らかにした。浮遊密度差がおよそ~0.009 g/cm³である二種類 の完全粒子について CsCI密度勾配シミュレーションを用いて分画法の最適化を実施した。近 年、各 VP のカプシドへの取り込みは、ランダム性があることが示唆されるが、2 回の最適化さ れた超遠心分離によって、異なる VP 化学量論比を持つ rAAV2 粒子の分画に成功した。従来 のゲル電気泳動法より分離が良く定量性の高い CGE 分析によって、低密度粒子は高密度粒 子と比較して、同様の内包ゲノム DNA にも関わらず、VP1+VP2 化学量論比が高いことが明ら かとなった。これら結果は、完全粒子の浮遊密度差は内包するゲノム DNA ではなく、VP 構成 比が原因であることが示唆された。また、CDMS および BS-AUC により粒子レベルの解析では、 低密度粒子は高密度粒子と比較して分子量が大きく、CGE での結果を強く支持するものであ った。一方、*in vitro* での感染性評価では、高密度粒子およびバルクよりも低密度粒子の方が 高い導入遺伝子発現を示した。これらの結果から、CsCI密度勾配中の rAAV で観察された完 全粒子の密度の 2 つの異なる分布が、ウイルスゲノムのサイズの違いではなく、VP サブユニッ トの不均一性に由来することを明らかにした。

第三章では、遺伝子導入効率が高く、より均質な粒子をもつ rAAV2 変異体を得ることに成 功した。これまで、VP3 および VP3 clip 翻訳開始点である M203 位および M211 位への変異 は、粒子アセンブリに影響を及ぼし粒子形成されないことが報告されていた。しかし、血清型 間の保存されている配列に着目し、適切に変異導入することで、粒子形成が確認された。また、 該当残基への変異は、VP1 および VP2のカプシド取込みに影響し、結果として高い VP1+VP2 化学量論比をもつ rAAV 変異体を得ることができた。一方で、*in vitro* での感染性を評価した 結果、rAAV2-M203V および rAAV2-M211V は、バルクの rAAV2-WT よりも高い遺伝子導入 効率を示した。また、驚くべきことにこれらの変異体は、浮遊密度分布が野生型 rAAVと比較し て、単一に収束していた。このことは、VP サブユニットに起因するウイルス粒子不均一性が減 少していることを示唆した。CDMS 分析では、質量分布が野生型 rAAVと比較して、狭くなって いることから均一性が上昇していることを支持する結果となった。結果として、高い均質性と効 力を持つ高機能な rAAV 変異体の作成に成功した。

第二章および第三章の結果を通じて、rAAV における「VP 化学量論比」と「遺伝子導入効率」について議論する。EGFP レポーター遺伝子の発現結果に基づいて、F1.1、F2.2、rAAV2-203V、rAAV2-211V の遺伝子導入効率を、フローサイトメトリーで測定したバルク野生型 rAAV の遺伝子導入効率で正規化した。さらに、相対的な VP1 化学量論(VP1/[VP2 + VP3total])、VP2 化学量論(VP2/[VP1 + VP3total])、VP1 と VP2 の総量の化学量論([VP1 + VP2]/VP3total)、および CGE の面積比とモル吸光係数から計算される VP 化学量論と遺伝子導入効率の相関関係を示す(図 19)。その結果、「VP1 のみ」と「VP2 のみ」の間に良好な相関は認められず、「VP1 と VP2 の総量」の化学量論比と相対的な遺伝子導入効率との間に良好な相関があることが示された。相関係数は、「VP1 と VP2 の総量」、「VP2 のみ」、「VP1 のみ」の順で高かった。これは、ゲルデンシトメトリーによる定量に基づいて相関関係を示した過去の報告⁵⁸と一致していたが、今回の研究では、相関関係についてより明確な数値関係が初めて明らかとなった。これは、VP1 配列にホスホリパーゼ A2 ドメインが存在し、VP1 および VP2 配列に核移行シグ

ナルが存在することと直接関係している⁸⁹⁻⁹³。当然のことながら、F1.1、rAAV2-M203V、-M211Vと比較して、高密度の rAAV 粒子のみを含む F2.2の MOI 1x10³における遺伝子導入 効率が有意に低いのは、VP1と VP2 の化学量論比が低いためであると考えられる。

本研究を通して、VP1 および VP2 の化学量論に関する VP 化学量論の定量分析および EGFP レポーター遺伝子アッセイによって、「VP 化学量論比」は「*in vitro* 遺伝子導入効率」と 密接に関わっていることが明らかとなった。VP1 には 2 つの領域があり、そのうちの 1 つは VP2 にも存在し、rAAV の遺伝子導入効率に関与していると推測されている⁸⁹⁻⁹³。VP1 の N 末端領 域は、通常はカプシド内に換入された状態で存在し、ベクターの細胞内輸送中に露出するが、 核移行に重要な役割を果たす。この領域のホスホリパーゼドメインは、エンドソームの脂質二 重層を形成するリン脂質の 2-アシルエステル(sn-2) 結合を特異的に加水分解し、rAAV のエ ンドソーム脱出をもたらす。VP1 が高レベルでカプシドに組み込まれることで、rAAV に基づく ゲノム DNA の核への輸送効率が向上することが考えられる。ここで、VP1 の化学量論比だけ に注目した場合、*in vitro* での遺伝子導入効率との相関を説明することはできなかった。そこで、 VP1 のもう一つの機能領域であり、VP2 にも存在する核局在化配列(NLS)の寄与についても 検討した。その結果、「VP1とVP2の総和」と「*in vitro* 遺伝子導入効率」には正の相関があるこ とが明らかとなった。したがって、VP1とVP2の化学量論比は、rAAV が高い遺伝子導入効率 を達成するために重要であることが明らかとなった。

図 19. VP 化学量論と遺伝子導入効率の相関

A-Cは、バルク、F1.1、F2.2、rAAV2-M203Vおよび-M211VのVPモル化学量論比と遺伝 子導入効率のプロットを示す。相対的な遺伝子導入効率は、MOI1×10²におけるEGFP陽性 細胞数の結果を基にすべてバルク状態のrAAV2-WT値1として正規化した。点線は、回帰直 線を示し、ピアソンの積率相関係数とR²値を示す。

- A) VP1の化学量論比と相対遺伝子導入効率との相関
- B) VP2 の化学量論比と相対遺伝子導入効率の相関
- C) VP1とVP2の総化学量論比と相対遺伝子導入効率との相関

本研究により、もともと不均一であることが示唆されていた rAAV 粒子について、VP 化学量 論比が異なり、「2 回の CsCl 超遠心分離」もしくは「部位特異的変異」により、VP1 と VP2 の化 学量論が高く、高い活性を持ち、より均一な rAAV 粒子を得ることに成功した。また、カプシド 内の VP1 と VP2 の総量は、遺伝子導入効率に相関していることが定量的に明らかとなった。 これらは、rAAV の細胞質から核への移行に関与する NLS と、エンドソームからの脱出に関与 する PLA2ドメインの存在がゲノム送達に重要な役割を示していることが示唆された。

4.2. 今後の展望

遺伝子治療用の rAAV ベクターの臨床試験数は近年増加傾向にあり、今後も遺伝子治療 用の rAAV ベクター開発はますます進んでいくことが予想される ^{5,94,95}。一方で、AAV ベクター を利用した医薬品が普及する上でその品質管理項目には VP 構成比が重要であることは認識 されつつあるが、ベクターの不均一性にも注目することが必要である。rAAV ベクターの有効性 と安全性を担保するためにも、いまだに不明点が多い粒子の不均一性や VP 化学量論比を改 善した rAAV ベクターの開発が求められる。

第二章において 2回の最適化された CsCl 超遠心分離によって、より高活性かつ不均一性 が低い rAAV 粒子(低密度粒子)を得ることができた。典型的な分画法では、高活性の低密度 粒子と低活性の高密度粒子が混在している状態である。VP1 および VP2 の取り込み量が少な い低活性の rAAV を使用する場合、より多量に投与する必要があるため、免疫原生を誘発す るリスクが高くなる。そのため、高活性な低密度粒子を精製することは、rAAV 治療の対象であ る患者へのリスク軽減につながると考える。しかし、一方で今回の研究では全体(バルク状態) の低密度粒子割合は、約 4 割未満であり分画による収量低下につながる。この収量低下は、 製造コストの増加に繋がり、最終的に薬価の高騰が予想される。また、低密度粒子の精製に は、密度勾配遠心分離を用いた精製が不可欠である。そのため、実製造時のスケーラビリティ の低下が課題点としてあげられる⁴⁷。一方で、rAAV ベクター投与時の免疫反応は、活性を持 たない空粒子と完全粒子では異なることが示唆されている⁹⁶。同様のアミノ配列を持っている 空粒子と完全粒子において、免疫反応が異なることは組織または細胞内での感染過程で問 題が起きている可能性が高い。そのため、今後、今回得られたような低活性の高密度粒子と高 活性な低密度粒子における、免疫反応の違いなどは評価するべきであると考える。

第三章では、VP1とVP2の化学量論が高く、粒子の均一性が高い rAAV 変異体の作製に成功した。VP1とVP2の化学量論が高い rAAV2-M203V および rAAV2-M211V 変異体は、in vitro での遺伝子導入効率は野生型 rAAV2と比較して顕著に高かった。今後、in vivo におい

てもこの結果が反映されるかどうか評価すべきであると考えている。rAAV2-M203V および rAAV2-M211V 変異体は、VP による不均一性が低下している。これら rAAV 変異体は、低密 度粒子と高密度粒子を分画する必要がないため、よりスケーラブルな LC ベースの精製に適し ていると言える。LC ベースの精製は現在、rAAV の大量生産を達成するための開発で非常に 注目されている手法の一つである。今後、LC ベースでの精製を実施し、同様の収率や高い遺 伝子導入効率を示すかを検討したいと考えている。近年、組織指向性に着目したカプシドエ 学が盛んに行われているが、製造性も同等以上に重要な観点である。したがって、本研究で 示されたような高活性かつ高製造性を有する rAAV 変異体は、製造の観点から今後より重要 になると思われる。

偏比容(vbar)の計算

AAV-空粒子の vbar 値は、CGE 測定によって決定されたカプシドタンパク質のアミノ酸組成から計算した。水中での F1.1 および F2.2 の vbar 値は、以下の式で理論的に計算できる。

$$vbar_{AAV-FP} = \frac{vbar_{AAV-Empty} \times Mw_{AAV-Empty} + vbar_{ssDNA} \times Mw_{ssDNA}}{Mw_{AAV-Empty} + Mw_{ssDNA}}$$
(式 S1)

ここで $vbar_{AAV-F1.1 or F2.2}$, $vbar_{AAV-Empty}$, および $vbar_{ssDNA}$ は、それぞれ AAV-F1.1 また は F2.2、rAAV 空粒子、および ssDNA の偏比容である。 $Mw_{AAV-F1.1 or F2.2}$, $Mw_{AAV-Empty}$, および Mw_{ssDNA} は、それぞれ AAV-FP1.1 または AAV-FP2.2、AAV-空粒子、および ssDNA の Mw である。それぞれ BS-AUC 測定で得られた 0.6840 cm³/g および 0.6837 cm³/g の部分 比容積(式)、および両粒子の摩擦比(f/f0)1.46 を使用した。

沈降係数からの分子量(Mw)の推定

AAV2 空粒子の理論 Mw 値は、SEDNTERP を用いた CGE 測定により決定したカプシドタンパク質のアミノ酸組成から求めた。さらに、DNA 組成から ssDNA の理論 Mw 値を算出した。 BS-AUC 実験では、rAAV2 完全粒子の Mw 値は Svedberg 方程式を用いて計算した。

$$\frac{s}{D} = \frac{M(1 - vbar\rho)}{RT}$$
(式 S2)

ここで、sはBS-AUCで得られた沈降係数、Dは拡散係数、MはMw、vbarは粒子の偏比容、 ρ は溶媒中密度、Rは気体定数、Tは絶対温度である。

付録

図 S1. 式 2 を用いて計算された CsCl-DG-AUC の回転中心半径(Radius)と CsCl 濃度の関係

回転中心半径(Radius)とCsCl濃度の関係はCsClの初期濃度に依存する。

図 S2. マスフォトメトリー法(MP)を用いた rAAV-WT、-M203V、-M211V の製造時における 空粒子と完全粒子の比率評価。遠心精製前 rAAV サンプルの DNA パッケージング比を MP で測定した。MP 測定は TwoMP 装置 (Refeyn, Oxford, UK)を用いて行った。

A) rAAV-WT、-M203Vおよび-M211Vの代表的な質量分布の1つ。緑が空の粒子、青 が完全な粒子に対するガウスフィッティングを示す。 B) rAAV-WT、-M203V、-M211Vの完全粒子比率。

AAV2

図 S3. rAAV2-M203V および rAAV2-M211Vの SDS-PAGEの結果

図 84. 液体クロマトグラフィー質量分析法(LC-MS)による rAAV2-WT、-M203V、-M211V の VP1 および VP2 のデコンボリューション後質量

図 S5. rAAV2-WT、-M203V および-M211Vの GOIの違いによる特性評価

導入遺伝子を CMV-zsGreen1 に変更した rAAV2-M203V および-M211V を調製し、VP 化 学量論比および *in vitro* 導入効果を評価した。

- A) WT、M203V、M211VのVP化学量論比。
- B) EGFP 陽性生存細胞をフルオロサイトメーターで 5 点の MOI(MOI 1x10²、5x10²、

10x10²、25x10²、50x10²)で測定した。

C) MOI 10x10²と25x10²を選択した場合の in vitro での導入効果。

図 S6. rAAV2-M203V および-M211V の CsCl 密度勾配分析的超遠心(CsCl-DG-AUC)プロファイル。A-B は、サイトメガロウイルスプロモーターの下流に zsGreen1 遺伝子(CMV-zsGreen1)をパッケージした rAAV2 変異体の CsCl-DG-AUC プロファイルである。内包遺伝子を変更した両変異体とも単一の浮遊密度分布が観察された。

- A) rAAV2-CMV-zsGreen1-M203VのCsCl-DG-AUCプロファイル
- B) rAAV2-CMV-zsGreen1-M211VのCsCl-DG-AUCプロファイル

図 S7. VP3 および VP3 clip 翻訳開始点のアミノ酸置換による rAAV2 粒子形成評価 rAAV 粒子形成を評価するため、トランスフェクション後 72 時間の細胞溶解液におけるウイ ルスカ価を qPCR でした。細胞溶解液はタンパク質、ゲノム DNA、形質転換用プラスミドなど が存在し粗雑なため qPCR 測定前のベンゾナーゼによる消化が不十分である可能性を考慮し、 pHelper プラスミド以外の二種類プラスミドでトランスフェクトした細胞溶解液をネガティブコント ロール(NC)として使用した。NCと同程度の力価の場合、粒子形成していないとみなした。

図 S8. rAAV2-WT、-M203V、-M211Vの VP 化学量論比のばらつき

3 つの異なるバッチにおける rAAV2-WT、-M203V、-M211V の VP 化学量論のばら A)

つき

3つの異なるバッチにおける平均値と標準偏差 B)

図 S9. CDMS による VP3 のみで構成された rAAV8 空粒子の測定

半値幅(Full width at half maximum : FWHM)は 0.11 MDa であった。

表 S1. LC-MS 測定による推定アミノ酸配列と質量精度。

	Estimated amino acid sequence	Observed mass (Da)	Theoretical mass (Da)	Mass accuracy (ppm)
AAV2-WT	VP1 (A2(Ac)-L735)	81855.32	81855.24	0.95
	VP2 (A139-L735)	66487.82	66488.20	5.76
	VP3 (A204(Ac)-L735)	59973.14	59974.02	14.73
	VP3 clip (A212(Ac)-L735)	59299.79	59301.27	24.95
AAV2-M203V	VP1-M202V (A2(Ac)-M203V-L735)	81823.38	81823.19	2.35
	VP2-M65V (A139-M203V-L735)	66455.23	66456.14	13.70
	VP3 (A204(Ac)-L735)	59972.82	59974.02	20.07
	VP3 clip (A212(Ac)-L735)	59300.22	59301.27	17.70
AAV2-M211V	VP1-M210V (A2(Ac)-M211V-L735)	81824.28	81823.19	13.35
	VP2-M73V (A139-M211V-L735)	66456.10	66456.14	0.61
	VP3-M8V (A204(Ac)-M211V-L735)	59941.72	59941.96	4.08
	VP3 clip (A212(Ac)-L735)	ND	-	-

参考文献

- 1. Goncalves, G.A.R., and Paiva, R.M.A. (2017). Gene therapy: advances, challenges and perspectives. Einstein (Sao Paulo) *15*, 369-375. 10.1590/S1679-45082017RB4024.
- Kay, M.A., Liu, D., and Hoogerbrugge, P.M. (1997). Gene therapy. Proc Natl Acad Sci U S A 94, 12744-12746. 10.1073/pnas.94.24.12744.
- 3. Papanikolaou, E., and Bosio, A. (2021). The Promise and the Hope of Gene Therapy. Front Genome Ed *3*, 618346. 10.3389/fgeed.2021.618346.
- 4. Bulaklak, K., and Gersbach, C.A. (2020). The once and future gene therapy. Nat Commun *11*, 5820. 10.1038/s41467-020-19505-2.
- Arabi, F., Mansouri, V., and Ahmadbeigi, N. (2022). Gene therapy clinical trials, where do we go? An overview. Biomed Pharmacother 153, 113324. 10.1016/j.biopha.2022.113324.
- Kuzmin, D.A., Shutova, M.V., Johnston, N.R., Smith, O.P., Fedorin, V.V., Kukushkin, Y.S., van der Loo, J.C.M., and Johnstone, E.C. (2021). The clinical landscape for AAV gene therapies. Nat Rev Drug Discov 20, 173-174. 10.1038/d41573-021-00017-7.
- Louten, J. (2016). Virus Structure and Classification. Essential Human Virology., 19–29. 10.1016/B978-0-12-800947-5.00002-8.
- Caspar, D.L., and Klug, A. (1962). Physical principles in the construction of regular viruses. Cold Spring Harb Symp Quant Biol 27, 1-24. 10.1101/sqb.1962.027.001.005.
- 9. Hosaka, Y. (1967). Problems of Virus Morphology. Seibutsu Butsuri 7, 141-151. 10.2142/biophys.7.141.
- 10. Coleman, R.L., M Sicard, R. (1992). Fundamental Immunology, 2nd ed. 272-274.
- Chamberlain, K., Riyad, J.M., and Weber, T. (2016). Expressing Transgenes That Exceed the Packaging Capacity of Adeno-Associated Virus Capsids. Hum Gene Ther Methods 27, 1-12. 10.1089/hgtb.2015.140.
- Naso, M.F., Tomkowicz, B., Perry, W.L., 3rd, and Strohl, W.R. (2017). Adeno-Associated Virus (AAV) as a Vector for Gene Therapy. BioDrugs 31, 317-334. 10.1007/s40259-017-0234-5.
- Nam, H.J., Lane, M.D., Padron, E., Gurda, B., McKenna, R., Kohlbrenner, E., Aslanidi,
 G., Byrne, B., Muzyczka, N., Zolotukhin, S., and Agbandje-McKenna, M. (2007).
 Structure of adeno-associated virus serotype 8, a gene therapy vector. J Virol 81, 12260-12271. 10.1128/JVI.01304-07.
- Ling, C., Wang, Y., Lu, Y., Wang, L., Jayandharan, G.R., Aslanidi, G.V., Li, B., Cheng,
 B., Ma, W., Lentz, T., Ling, C., et al. (2015). The Adeno-Associated Virus Genome Packaging Puzzle. J Mol Genet Med 9. 10.4172/1747-0862.1000175.

- 15. Johnson, F.B., Ozer, H.L., and Hoggan, M.D. (1971). Structural proteins of adenovirusassociated virus type 3. J Virol *8*, 860-863. 10.1128/JVI.8.6.860-863.1971.
- Wu, Z., Asokan, A., and Samulski, R.J. (2006). Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther 14, 316-327. 10.1016/j.ymthe.2006.05.009.
- Galibert, L., Hyvonen, A., Eriksson, R.A.E., Mattola, S., Aho, V., Salminen, S., Albers, J.D., Peltola, S.K., Weman, S., Nieminen, T., Yla-Herttuala, S., et al. (2021). Functional roles of the membrane-associated AAV protein MAAP. Sci Rep *11*, 21698. 10.1038/s41598-021-01220-7.
- Earley, L.F., Powers, J.M., Adachi, K., Baumgart, J.T., Meyer, N.L., Xie, Q., Chapman, M.S., and Nakai, H. (2017). Adeno-associated Virus (AAV) Assembly-Activating Protein Is Not an Essential Requirement for Capsid Assembly of AAV Serotypes 4, 5, and 11. J Virol 91. 10.1128/JVI.01980-16.
- Worner, T.P., Bennett, A., Habka, S., Snijder, J., Friese, O., Powers, T., Agbandje-McKenna, M., and Heck, A.J.R. (2021). Adeno-associated virus capsid assembly is divergent and stochastic. Nat Commun *12*, 1642. 10.1038/s41467-021-21935-5.
- Snijder, J., van de Waterbeemd, M., Damoc, E., Denisov, E., Grinfeld, D., Bennett, A., Agbandje-McKenna, M., Makarov, A., and Heck, A.J. (2014). Defining the stoichiometry and cargo load of viral and bacterial nanoparticles by Orbitrap mass spectrometry. J Am Chem Soc 136, 7295-7299. 10.1021/ja502616y.
- Wörner, T.P., Snijder, J., Bennett, A., Agbandje-McKenna, M., Makarov, A.A., and Heck, A.J.R. (2019). 10.1101/717413.
- Oyama, H., Ishii, K., Maruno, T., Torisu, T., and Uchiyama, S. (2021). Characterization of Adeno-Associated Virus Capsid Proteins with Two Types of VP3-Related Components by Capillary Gel Electrophoresis and Mass Spectrometry. Hum Gene Ther *32*, 1403-1416. 10.1089/hum.2021.009.
- Jin, X., Liu, L., Nass, S., O'Riordan, C., Pastor, E., and Zhang, X.K. (2017). Direct Liquid Chromatography/Mass Spectrometry Analysis for Complete Characterization of Recombinant Adeno-Associated Virus Capsid Proteins. Hum Gene Ther Methods 28, 255-267. 10.1089/hgtb.2016.178.
- Riyad, J.M., and Weber, T. (2021). Intracellular trafficking of adeno-associated virus (AAV) vectors: challenges and future directions. Gene Ther 28, 683-696. 10.1038/s41434-021-00243-z.
- Wang, D., Tai, P.W.L., and Gao, G. (2019). Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov 18, 358-378. 10.1038/s41573-019-0012-9.
- 26. Sha, S., Maloney, A.J., Katsikis, G., Nguyen, T.N.T., Neufeld, C., Wolfrum, J., Barone,
P.W., Springs, S.L., Manalis, S.R., Sinskey, A.J., and Braatz, R.D. (2021). Cellular pathways of recombinant adeno-associated virus production for gene therapy. Biotechnol Adv *49*, 107764. 10.1016/j.biotechadv.2021.107764.

- Carter, B.J. (2004). Adeno-associated virus and the development of adeno-associated virus vectors: a historical perspective. Mol Ther 10, 981-989. 10.1016/j.ymthe.2004.09.011.
- 28. Ozawa, K. (2007). [Gene therapy using AAV]. Uirusu *57*, 47-55. 10.2222/jsv.57.47.
- Nance, M.E., and Duan, D. (2015). Perspective on Adeno-Associated Virus Capsid Modification for Duchenne Muscular Dystrophy Gene Therapy. Hum Gene Ther 26, 786-800. 10.1089/hum.2015.107.
- Guo, Y., Wang, D., Qiao, T., Yang, C., Su, Q., Gao, G., and Xu, Z. (2016). A Single Injection of Recombinant Adeno-Associated Virus into the Lumbar Cistern Delivers Transgene Expression Throughout the Whole Spinal Cord. Mol Neurobiol 53, 3235-3248. 10.1007/s12035-015-9223-1.
- Schmidt, M., Voutetakis, A., Afione, S., Zheng, C., Mandikian, D., and Chiorini, J.A. (2008). Adeno-associated virus type 12 (AAV12): a novel AAV serotype with sialic acidand heparan sulfate proteoglycan-independent transduction activity. J Virol 82, 1399-1406. 10.1128/JVI.02012-07.
- Urabe, M., Ding, C., and Kotin, R.M. (2002). Insect cells as a factory to produce adenoassociated virus type 2 vectors. Hum Gene Ther 13, 1935-1943. 10.1089/10430340260355347.
- 33. Ichihara, K., Matsumoto, A., Nishida, H., Kito, Y., Shimizu, H., Shichino, Y., Iwasaki, S., Imami, K., Ishihama, Y., and Nakayama, K.I. (2021). Combinatorial analysis of translation dynamics reveals eIF2 dependence of translation initiation at near-cognate codons. Nucleic Acids Res 49, 7298-7317. 10.1093/nar/gkab549.
- 34. Chen, M.L., Pittet, M.J., Gorelik, L., Flavell, R.A., Weissleder, R., von Boehmer, H., and Khazaie, K. (2005). Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo. Proc Natl Acad Sci U S A 102, 419-424. 10.1073/pnas.0408197102.
- Ayuso, E., Mingozzi, F., and Bosch, F. (2010). Production, purification and characterization of adeno-associated vectors. Curr Gene Ther 10, 423-436. 10.2174/156652310793797685.
- Clement, N., and Grieger, J.C. (2016). Manufacturing of recombinant adeno-associated viral vectors for clinical trials. Mol Ther Methods Clin Dev 3, 16002. 10.1038/mtm.2016.2.
- 37. Aponte-Ubillus, J.J., Barajas, D., Peltier, J., Bardliving, C., Shamlou, P., and Gold, D.

(2018). Molecular design for recombinant adeno-associated virus (rAAV) vector production. Appl Microbiol Biotechnol *102*, 1045-1054. 10.1007/s00253-017-8670-1.

- Qu, W., Wang, M., Wu, Y., and Xu, R. (2015). Scalable downstream strategies for purification of recombinant adeno- associated virus vectors in light of the properties. Curr Pharm Biotechnol 16, 684-695. 10.2174/1389201016666150505122228.
- Penaud-Budloo, M., Francois, A., Clement, N., and Ayuso, E. (2018). Pharmacology of Recombinant Adeno-associated Virus Production. Mol Ther Methods Clin Dev 8, 166-180. 10.1016/j.omtm.2018.01.002.
- Zolotukhin, S., Byrne, B.J., Mason, E., Zolotukhin, I., Potter, M., Chesnut, K., Summerford, C., Samulski, R.J., and Muzyczka, N. (1999). Recombinant adenoassociated virus purification using novel methods improves infectious titer and yield. Gene Ther 6, 973-985. 10.1038/sj.gt.3300938.
- Strobel, B., Miller, F.D., Rist, W., and Lamla, T. (2015). Comparative Analysis of Cesium Chloride- and Iodixanol-Based Purification of Recombinant Adeno-Associated Viral Vectors for Preclinical Applications. Hum Gene Ther Methods 26, 147-157. 10.1089/hgtb.2015.051.
- 42. Grieger, J.C., Choi, V.W., and Samulski, R.J. (2006). Production and characterization of adeno-associated viral vectors. Nat Protoc *1*, 1412-1428. 10.1038/nprot.2006.207.
- Tenenbaum, L., Hamdane, M., Pouzet, M., Avalosse, B., Stathopoulos, A., Jurysta, F., Rosenbaum, C., Hanemann, C.O., Levivier, M., and Velu, T. (1999). Cellular contaminants of adeno-associated virus vector stocks can enhance transduction. Gene Ther 6, 1045-1053. 10.1038/sj.gt.3300904.
- 44. Urabe, M., Nakakura, T., Xin, K.Q., Obara, Y., Mizukami, H., Kume, A., Kotin, R.M., and Ozawa, K. (2006). Scalable generation of high-titer recombinant adeno-associated virus type 5 in insect cells. J Virol *80*, 1874-1885. 10.1128/JVI.80.4.1874-1885.2006.
- 45. Okada, T., Nonaka-Sarukawa, M., Uchibori, R., Kinoshita, K., Hayashita-Kinoh, H., Nitahara-Kasahara, Y., Takeda, S., and Ozawa, K. (2009). Scalable purification of adenoassociated virus serotype 1 (AAV1) and AAV8 vectors, using dual ion-exchange adsorptive membranes. Hum Gene Ther 20, 1013-1021. 10.1089/hum.2009.006.
- Qu, G., Bahr-Davidson, J., Prado, J., Tai, A., Cataniag, F., McDonnell, J., Zhou, J., Hauck, B., Luna, J., Sommer, J.M., Smith, P., et al. (2007). Separation of adeno-associated virus type 2 empty particles from genome containing vectors by anion-exchange column chromatography. J Virol Methods *140*, 183-192. 10.1016/j.jviromet.2006.11.019.
- El Andari, J., and Grimm, D. (2021). Production, Processing, and Characterization of Synthetic AAV Gene Therapy Vectors. Biotechnol J 16, e2000025. 10.1002/biot.202000025.

- Torikai, K., Ito, M., Jordan, L.E., and Mayor, H.D. (1970). Properties of light particles produced during growth of Type 4 adeno-associated satellite virus. J Virol 6, 363-369. 10.1128/JVI.6.3.363-369.1970.
- Wang, Q., Firrman, J., Wu, Z., Pokiniewski, K.A., Valencia, C.A., Wang, H., Wei, H., Zhuang, Z., Liu, L., Wunder, S.L., Chin, M.P., et al. (2016). High-Density Recombinant Adeno-Associated Viral Particles are Competent Vectors for In Vivo Transduction. Hum Gene Ther 27, 971-981. 10.1089/hum.2016.055.
- 50. Lipps, B.V., and Mayor, H.D. (1982). Characterization of heavy particles of adenoassociated virus type 1. J Gen Virol 58 Pt 1, 63-72. 10.1099/0022-1317-58-1-63.
- Pronovost AD, Y.V., Fry DE. (1979). Inhibition and enhancement of avian adenovirus plaque production by heavy and light avian adenovirusassociated viral particles. Am J Vet Res. 40, 549-551.
- Paradiso, P.R. (1981). Infectious process of the parvovirus H-1: correlation of protein content, particle density, and viral infectivity. J Virol 39, 800-807. 10.1128/JVI.39.3.800-807.1981.
- Clinton, G.M., and Hayashi, M. (1976). The parvovirus MVM: a comparison of heavy and light particle infectivity and their density conversion in vitro. Virology 74, 57-63. 10.1016/0042-6822(76)90127-6.
- 54. de la Maza, L.M., and Carter, B.J. (1980). Heavy and light particles of adeno-associated virus. J Virol *33*, 1129-1137. 10.1128/JVI.33.3.1129-1137.1980.
- de la Maza, L.M., and Carter, B.J. (1980). Molecular Structureof Adeno-associated Virus Variant DNA. Journal of Biological Chemistry 255, 3194-3203.
- Mietzsch, M., Penzes, J.J., and Agbandje-McKenna, M. (2019). Twenty-Five Years of Structural Parvovirology. Viruses 11. 10.3390/v11040362.
- 57. FDA Issues Emergency Use Authorization for Third COVID-19 Vaccine. (2021). FDA NEWS RELEASE.
- Bosma, B., du Plessis, F., Ehlert, E., Nijmeijer, B., de Haan, M., Petry, H., and Lubelski,
 J. (2018). Optimization of viral protein ratios for production of rAAV serotype 5 in the baculovirus system. Gene Ther 25, 415-424. 10.1038/s41434-018-0034-7.
- Lechner, A., Giorgetti, J., Gahoual, R., Beck, A., Leize-Wagner, E., and Francois, Y.N. (2019). Insights from capillary electrophoresis approaches for characterization of monoclonal antibodies and antibody drug conjugates in the period 2016-2018. J Chromatogr B Analyt Technol Biomed Life Sci 1122-1123, 1-17. 10.1016/j.jchromb.2019.05.014.
- 60. Zhang, C.X., and Meagher, M.M. (2019). Highly Sensitive SDS Capillary Gel Electrophoresis with Sample Stacking Requiring Only Nanograms of Adeno-Associated

Virus Capsid Proteins. Methods Mol Biol 1972, 263-270. 10.1007/978-1-4939-9213-3 19.

- Hogan, J.A., and Jarrold, M.F. (2018). Optimized Electrostatic Linear Ion Trap for Charge Detection Mass Spectrometry. J Am Soc Mass Spectrom 29, 2086-2095. 10.1007/s13361-018-2007-x.
- Draper, B.E., and Jarrold, M.F. (2019). Real-Time Analysis and Signal Optimization for Charge Detection Mass Spectrometry. J Am Soc Mass Spectrom 30, 898-904. 10.1007/s13361-019-02172-z.
- 63. Todd, A.R., Alexander, A.W., and Jarrold, M.F. (2020). Implementation of a Charge-Sensitive Amplifier without a Feedback Resistor for Charge Detection Mass Spectrometry Reduces Noise and Enables Detection of Individual Ions Carrying a Single Charge. J Am Soc Mass Spectrom 31, 146-154. 10.1021/jasms.9b00010.
- Todd, A.R., and Jarrold, M.F. (2020). Dynamic Calibration Enables High-Accuracy Charge Measurements on Individual Ions for Charge Detection Mass Spectrometry. J Am Soc Mass Spectrom 31, 1241-1248. 10.1021/jasms.0c00081.
- 65. Maruno, T., Ishii, K., Torisu, T., and Uchiyama, S. (2023). Size Distribution Analysis of the Adeno-Associated Virus Vector by the c(s) Analysis of Band Sedimentation Analytical Ultracentrifugation with Multiwavelength Detection. J Pharm Sci 112, 937-946. 10.1016/j.xphs.2022.10.023.
- 66. Uchiyama, S., Arisaka, F., Stafford, W.F., and Laue, T. (2016). Analytical Ultracentrifugation. 10.1007/978-4-431-55985-6.
- 67. Yang, X., Agarwala, S., Ravindran, S., and Vellekamp, G. (2008). Determination of particle heterogeneity and stability of recombinant adenovirus by analytical ultracentrifugation in CsCl gradients. J Pharm Sci *97*, 746-763. 10.1002/jps.21008.
- Berkowitz, S.A., and Philo, J.S. (2007). Monitoring the homogeneity of adenovirus preparations (a gene therapy delivery system) using analytical ultracentrifugation. Anal Biochem 362, 16-37. 10.1016/j.ab.2006.11.031.
- Savelyev, A., Brookes, E.H., Henrickson, A., and Demeler, B. (2023). A new UltraScan module for the characterization and quantification of analytical buoyant density equilibrium experiments to determine AAV capsid loading. Eur Biophys J. 10.1007/s00249-023-01641-4.
- 70. Kuipers, B.J., and Gruppen, H. (2007). Prediction of molar extinction coefficients of proteins and peptides using UV absorption of the constituent amino acids at 214 nm to enable quantitative reverse phase high-performance liquid chromatography-mass spectrometry analysis. J Agric Food Chem 55, 5445-5451. 10.1021/jf0703371.
- 71. Pierson, E.E., Keifer, D.Z., Asokan, A., and Jarrold, M.F. (2016). Resolving Adeno-

Associated Viral Particle Diversity With Charge Detection Mass Spectrometry. Anal Chem 88, 6718-6725. 10.1021/acs.analchem.6b00883.

- 72. Barnes, L.F., Draper, B.E., and Jarrold, M.F. (2022). Analysis of thermally driven structural changes, genome release, disassembly, and aggregation of recombinant AAV by CDMS. Mol Ther Methods Clin Dev 27, 327-336. 10.1016/j.omtm.2022.10.008.
- Jarrold, M.F. (2022). Applications of Charge Detection Mass Spectrometry in Molecular Biology and Biotechnology. Chem Rev 122, 7415-7441. 10.1021/acs.chemrev.1c00377.
- 74. Rickwood, D. (1984). Centrifugation: A Practical Approach.
- Su, Q., Sena-Esteves, M., and Gao, G. (2020). Analysis of Recombinant Adeno-Associated Virus (rAAV) Purity Using Silver-Stained SDS-PAGE. Cold Spring Harb Protoc 2020, 095679. 10.1101/pdb.prot095679.
- Penaud-Budloo, M., Broucque, F., Harrouet, K., Bouzelha, M., Saleun, S., Douthe, S., D'Costa, S., Ogram, S., Adjali, O., Blouin, V., Lock, M., et al. (2019). Stability of the adeno-associated virus 8 reference standard material. Gene Ther 26, 211-215. 10.1038/s41434-019-0072-9.
- 77. Lock, M., McGorray, S., Auricchio, A., Ayuso, E., Beecham, E.J., Blouin-Tavel, V., Bosch, F., Bose, M., Byrne, B.J., Caton, T., Chiorini, J.A., et al. (2010). Characterization of a recombinant adeno-associated virus type 2 Reference Standard Material. Hum Gene Ther 21, 1273-1285. 10.1089/hum.2009.223.
- 78. Warrington, K.H., Jr., Gorbatyuk, O.S., Harrison, J.K., Opie, S.R., Zolotukhin, S., and Muzyczka, N. (2004). Adeno-associated virus type 2 VP2 capsid protein is nonessential and can tolerate large peptide insertions at its N terminus. J Virol 78, 6595-6609. 10.1128/JVI.78.12.6595-6609.2004.
- 79. CARTER, J.P.T.A.B.J. (1988). Alternate mRNA Splicing Is Required for Synthesis of Adeno-Associated Virus VP1 Capsid Protein. JOURNAL OF VIROLOGY.
- PASCAL CASSINOITI, M.W.J.-D.T. (1998). Organization of the Adeno-Associated Virus (AAV) Capsid Gene: Mapping of a Minor

Spliced mRNA Coding for Virus Capsid Protein 1. VIROLOGY 167, 176-184.

- 81. Stutika, C., Gogol-Doring, A., Botschen, L., Mietzsch, M., Weger, S., Feldkamp, M., Chen, W., and Heilbronn, R. (2016). A Comprehensive RNA Sequencing Analysis of the Adeno-Associated Virus (AAV) Type 2 Transcriptome Reveals Novel AAV Transcripts, Splice Variants, and Derived Proteins. J Virol 90, 1278-1289. 10.1128/JVI.02750-15.
- Mouw, M.B., and Pintel, D.J. (2000). Adeno-associated virus RNAs appear in a temporal order and their splicing is stimulated during coinfection with adenovirus. J Virol 74, 9878-9888. 10.1128/jvi.74.21.9878-9888.2000.
- 83. Becerra, S.P., Rose, J.A., Hardy, M., Baroudy, B.M., and Anderson, C.W. (1985). Direct

mapping of adeno-associated virus capsid proteins B and C: a possible ACG initiation codon. Proc Natl Acad Sci U S A *82*, 7919-7923. 10.1073/pnas.82.23.7919.

- Firth, A.E., and Brierley, I. (2012). Non-canonical translation in RNA viruses. J Gen Virol 93, 1385-1409. 10.1099/vir.0.042499-0.
- 85. Ferreira, J.P., Noderer, W.L., Diaz de Arce, A.J., and Wang, C.L. (2014). Engineering ribosomal leaky scanning and upstream open reading frames for precise control of protein translation. Bioengineered *5*, 186-192. 10.4161/bioe.27607.
- Kozak, M. (1999). Initiation of translation in prokaryotes and eukaryotes. Gene 234, 187-208. 10.1016/s0378-1119(99)00210-3.
- Kohlbrenner, E., Aslanidi, G., Nash, K., Shklyaev, S., Campbell-Thompson, M., Byrne,
 B.J., Snyder, R.O., Muzyczka, N., Warrington, K.H., Jr., and Zolotukhin, S. (2005).
 Successful production of pseudotyped rAAV vectors using a modified baculovirus expression system. Mol Ther *12*, 1217-1225. 10.1016/j.ymthe.2005.08.018.
- 88. Mietzsch, M., Grasse, S., Zurawski, C., Weger, S., Bennett, A., Agbandje-McKenna, M., Muzyczka, N., Zolotukhin, S., and Heilbronn, R. (2014). OneBac: platform for scalable and high-titer production of adeno-associated virus serotype 1-12 vectors for gene therapy. Hum Gene Ther 25, 212-222. 10.1089/hum.2013.184.
- 89. Girod, A., Wobus, C.E., Zadori, Z., Ried, M., Leike, K., Tijssen, P., Kleinschmidt, J.A., and Hallek, M. (2002). The VP1 capsid protein of adeno-associated virus type 2 is carrying a phospholipase A2 domain required for virus infectivity. J Gen Virol 83, 973-978. 10.1099/0022-1317-83-5-973.
- 90. Sonntag, F., Bleker, S., Leuchs, B., Fischer, R., and Kleinschmidt, J.A. (2006). Adenoassociated virus type 2 capsids with externalized VP1/VP2 trafficking domains are generated prior to passage through the cytoplasm and are maintained until uncoating occurs in the nucleus. J Virol 80, 11040-11054. 10.1128/JVI.01056-06.
- 91. Grieger, J.C., Johnson, J.S., Gurda-Whitaker, B., Agbandje-McKenna, M., and Samulski, R.J. (2007). Surface-exposed adeno-associated virus Vp1-NLS capsid fusion protein rescues infectivity of noninfectious wild-type Vp2/Vp3 and Vp3-only capsids but not that of fivefold pore mutant virions. J Virol *81*, 7833-7843. 10.1128/JVI.00580-07.
- 92. Popa-Wagner, R., Porwal, M., Kann, M., Reuss, M., Weimer, M., Florin, L., and Kleinschmidt, J.A. (2012). Impact of VP1-specific protein sequence motifs on adenoassociated virus type 2 intracellular trafficking and nuclear entry. J Virol 86, 9163-9174. 10.1128/JVI.00282-12.
- 93. Xiao, P.J., and Samulski, R.J. (2012). Cytoplasmic trafficking, endosomal escape, and perinuclear accumulation of adeno-associated virus type 2 particles are facilitated by microtubule network. J Virol 86, 10462-10473. 10.1128/JVI.00935-12.

- 94. Srivastava, A., Mallela, K.M.G., Deorkar, N., and Brophy, G. (2021). Manufacturing Challenges and Rational Formulation Development for AAV Viral Vectors. J Pharm Sci 110, 2609-2624. 10.1016/j.xphs.2021.03.024.
- Blair, H.A. (2022). Valoctocogene Roxaparvovec: First Approval. Drugs 82, 1505-1510.
 10.1007/s40265-022-01788-y.
- 96. Pei, X., Earley, L.F., He, Y., Chen, X., Hall, N.E., Samulski, R.J., and Li, C. (2018). Efficient Capsid Antigen Presentation From Adeno-Associated Virus Empty Virions In Vivo. Front Immunol 9, 844. 10.3389/fimmu.2018.00844.

研究業績

学術発表論文

- <u>Onishi T.</u>, Nonaka M., Maruno T., Yamaguchi Y., Fukuhara M., Torisu T., Maeda M., Susan A., Anisha H., Keith R., Kevin G., Steve P., Yamano-Adachi N., Omasa T., Uchiyama S., "Enhancement of recombinant adeno-associated virus activity by improved stoichiometry and homogeneity of capsid protein assembly", *Mol. Ther. Methods Clin. Dev.*, **2023**, 31, 101142 (本博士論文第二章と第三章に該当)
- Hirohata K., Yamaguchi Y., Maruno T., Shibuya R., Torisu T., <u>Onishi T.</u>, Chono H., Mineno J., Yuan Y., Higashiyama K., Masumi-Koizumi K., Uchida K., Yamamoto T., Uchida E., Okada T., Uchiyama S., "Applications and Limitations of Equilibrium Density Gradient Analytical Ultracentrifugation for the Quantitative Characterization of Adeno-Associated Virus Vectors", *Anal. Chem.*, 2024,

謝辞

本研究を遂行するにあたり、厚いご指導を賜りました、大阪大学工学研究科生物工学専攻 高分子バイオテクノロジー領域内山進教授、鳥巣哲生准教授、山口祐希助教、株式会 社ユー・メディコ 丸野孝浩氏に謹んで感謝いたします。

本博士学位論文を作成するにあたり、ご指導を賜りました、大阪大学工学研究科生物工 学専攻 大政健史 教授、ならびに青木航 教授に厚く感謝申し上げます。

本研究の rAAV ベクター製造にお力添え頂きました大阪大学工学研究科生物工学専攻 大政健史 教授、山野範子 准教授および次世代バイオ医薬品製造技術研究組合 前田将 治 氏にお礼申し上げます。また、CDMS 実験のご協力をいただきました、Waters Corporation Susan Abbatiello 博士、Anisha Haris 博士、Keith Richardson 博士、Kevin Giles 博士、Steve Preece 博士に厚く御礼申し上げます。

そして、研究活動のみならず研究室生活において大変お世話になりました、同研究室の 榎本敢太 修士、西海遥 修士、広畑貴一 修士、水口潤也 修士、Yang Zhuolun 修士、野 中三千花 学士、池田智彦 学士、木野慎一郎 学士、また先輩、後輩、先生の方々に心から 感謝いたします。さらに、日頃より研究だけでなく研究室生活全般にわたり、暖かいご援助を いただきました、山根拓也 招へい准教授、板東香林 派遣研究員、露峰明子 秘書に感謝 申し上げます。

尚、本研究は JST 科学技術イノベーション創出に向けた大学フェローシップ創設事業 JPMJFS2125の支援を受けたものです。

最後に、博士後期課程に進学するにあたり、理解を示し、いつも支えてくれた両親、妹、 親戚一同、そして、いつも励まし応援してくれた多くの友人に深い感謝の意を表し、謝辞とさ せていただきます。