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fimm &1, oA 3 WOThICHAIE L ES L7ZERO Z & Th 5.
B, YAT7ECR, &, EEL, PFEREK EXEFRFEHRDE LT, Kx
DOHEDOEY TR THSN TS, T HEMmNPEKRT 218, 70 bk
LB E T2 Z L1, B EECBITA2HEERETHD. TOHAD |
DL LT, fdmbEOMEED LD 3 TAHEECR T OO A T <, fhdh
Elpolzt XD A X MR - 2 - WHICHLHRSEEZZ T H00THS.
B Z X EFE LM EHT R W TIE, B FENCERE R LSO T BN A 4T
XA TEVT ¢ (BRI Z2RIEHAECH D Z RN TWSH[1-3]. F
TERICFMEI DS, O (B 77~V 3 ARE, MHEhE eHRE)
I B A X, JTBIR, WEICHRAKEFET DL EDHHNTNSH[4-6]. ZD
X9 RBLE D, KRB OBEEE 2 8 D D 1= O FE S DO « #EE O HI A3
BEARAIRTHDLHEWNZD.

FoEE, M EfR (F BRAE, ERE) ITEMEOZ B CHET T
LHZENRHENTEY[T, 8], TDOAH=XLEMRHAT D Z LIIRLCIER
WCEETHDH. LL, b n-o s CZTRIAE2 FPHEIT S 2 & 1T R
THY, HH#2 2424 7OFETIT LB Z TS Z SITEE L.

INHOMEEMRT D20, T E TR iR b R EVE RSB R ST E
oo bR FEE LT, IRE - RS - BE B - IR Lot E
ERBEOMEI NS, LoL, WHEMEE (~ 400 kI/mol) oA F A (~ 200
kJ/mol), &S (~100kJ/mol) & W o 28R\ VEAANE /1 2 BREh /) & L CTIERL
T O - SR LRV, KBS (~20 kI/mol) X7 7 T INT —/L A
71 (~5kl/mol) & W o ZE5WHHAAEH /12 BRE ) & L OIS D0 Fiies (F
BEREAL - 2 o X7 B 12V TiE, MR BRREORE(LEZ{To & L
THILDON - hiEx AT HMma T 20N LW LnHD. iz, Z
DFETITR B OGHT - R 2 PRS0 2 SIIRETH L. 2o LD )
B 7GR bIEIT T L, AN D TR0, 10]1°E S [11], BEH[12], J[13-16]
REOE#BEMZ D Z LT, ML ERREINICHIE T 2 A bIThlTE .

FRlZ, L—W—ZBRE L7727 7 a—FI3AbE O - i O filiE<0Rs db b & R
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ZEMIICHE CE D FELE LTAEHEINTWD. b—F =28l L7k
EIIRE LT TREFRRIERICE S SO LR 7EHICE S o
3T e s, JSHEFRIERICE S S FEfKiETIE, ASHEIC Lo THEEL
RIS L, WREEDN/NSWENERT 22 DN M) =25, flzix
Tam 513, Cs & HoOERDBEASN TOHEEBIH L TCL—PF—2 KT 5 =
& T, CsH OFEALICHRTI L TWD[13]. 2O A =ALL LTl L—H%—
IZ&E > T Cs+Ha > CsH+H & WO AL FERISAFHER I D Z EITRK T 5 &
BINTWD. £72 Okutsu HIFRV Y 7=/ —/L (Ph,CO) DSIAEME L 7-IEIKIC
LTEAMEERE 1=355mm) OF /L —F—Z2BH+T52 LT, FVTILK
IGEHBE I, XY e a—/ (PhhCOH)-C(OH)Ph,) #HrHSELND 2
ExRFM LT, UL, 20X R EFERISIZHES Wi biE T,
JEH AT THMEIDAEML L TLE 9, MMEFRISERDRITRD, FOSHRIZE
FREEDID T D MEHZIR D, &0 D KD ITH B~ YL HPEAME .

—JF, HOWEERIC L oM BIETIE, L——RoELHS L —F—H
Ko TRET AN N H—L D, LEeR-T, K7 Fv—F
I FRIERIC DS < FEdBIE L 0 S PBIOIHAEREm W E WD KraZF L T
Wb, KRFEILKE L 4T T, Non-Photochemical Laser Induced Nucleation
(NPLIN), Optical Trapping-Induced Crystallization (OTIC), L —H%—7 7 L —
YA ED3DIHEINTWD. Lk, EZ B THAT 5.

» Non-Photochemical Laser Induced Nucleation (NPLIN)

ARFIEIL 1996 F1Z Garetz HIZ K » THID THA S /z[14]. ABFEIE, e
BERIC X 2 bIEDFEN E SN TWAD . i SR O JR F KRS T/
L —H— (1=1.06 um) ZRENTHRKFNLIZEZA, K ENDIRFMEEN
722 L& RHL7Z[14]. AR T, WEIZAFEICH L THERIA 220
F, WL TOWEMEEFRCSORH LI Z &b, SEFABURIT K DR
b3 s Efmffoon. £ LT, ol ofkfMmibisE% Non-
Photochemical Laser Induced Nucleation (NPLIN) &4 L7-. RFEDA =X
AELTHE, AHL—F =L o> T 3 ROIEIEDBIR TH 5 H —h RN
HE S, WENEHICIHh-> CTIESZ SRR 5 alREM N A ST 514,
18-20]. F7=, AH L —HF =PI L2 MR SV TAATARE
L, TONRTINREERAZGIE I LT 5 aTREME & 8 ST 5 [21-24].
INET, RPEIZK o THA 2 - G - 2 78k s Y oA
[20], 7'V (18], B AF I [25], HANRTEEL[26], UV F—LARTIRE)
DOFEERAENFEIESNTVD. BIZ, AHEOZ XX —E 2 A2 52
& T, WM AHIEHTE 5 2 & b ME STV A1, 25, 26].
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» Optical Trapping-Induced Crystallization (OTIC)

2007 -1 Sugiyama & [ ZEHEE L — Y — (1=1064nm) Zidfafnr VU o 9%
HROKIEFEICENARN T 22 LT, AN 7V R ETNSES 2
xRN LT[15]. £72 2009 Fi2iE, #@feRRLy —F—%2ERFP 07 U U8k
e ORI T2 2 & T, MmkER2RESEOND Z & bIE R LT[28].
AR EIRED A = AL LT, B —V—bE—Alz L oWE
S ety b, BET B D) T TR OEE D ER L, WE
BENEAT 22 LICRKT 2 &R onTunas. #5513 ARKF1E% Optical
Trapping-Induced Crystallization (OTIC) &4fTiF7z. T E TARFEICEL ST
KR & 7R RS - HEEREE (HEAE A U U A[29], HEERRT NV v A[30-35], fEAxT
3 JBE[15, 36, 37172 F) O EFR TE L I ENELESNATWD. AFik
DORFETRE R E LTI, 1ERIETIXREE e REFEIR D O Ok ik % EBL T
XHLTHhHD. EEE, Bvr/uaTF AN UEREIAKEERNPOE T v E
TR D 2 LT, B ZIEE RN 2 LIS LT 5 [38].
%72 NPLIN & [Flgk, L —W—ifESEL R EONTFRIEEZE XD Z & THRMD
TEAR[29] - ZH[37, 39, 40] + 7 U T 1 —[30, 34, 35]|DOHIHENZ H B L TV 5.
IS, AFREZ T~ o EMBEDEL I LT, oFME (7))
DG LN S EIETHEIT L TWD Z & b R &hiz[41].

> L—YV—T7T7 L —2 gk

L—H =TT —alE, WEICL—F—2 RN L7ZBICH HEMEEL L
T X 2RO EMMRIEEZLELD Z L 2fE7. 1960 4F D Maiman (2 L 5
e — L —H—DFRA%[42,43], £ H72< LT 1962 412 Breech & Cross (2 L »
TL—H =77 b —ya By THESNTM44]. L—VF—T 7L —v =z
D7 atAE, RKbIFOUIW e & ORHIIN1[45], EEER[46], T/ HEEERD
BIEL[47) 72 kR 2 Ze B I ST b

L—Y =TT L—varoyatRAIANL—F—0E, L AEE,
TRVX—, MEtOREE (MR, ®&BMEL o FHEhD 7 Ehkx RERIC
WRBLZ T D, RAELRIXOMENRICRES>TZ I TIERDFOL—YF—7T7
L—va iZERTD. FOL—%—T7T7L—ra T, FITAHRL—F
—WZ Lo TEFMENEZ 5. 0%, EFEIEIREN D O (MiES J0E)
MEZD, B (GFRNIEBI=/LX—) BRETDH. ZOLHEE LRI
X0, WEOR S - B BEESICELRZY, BPEMISHN ER LTSS
& T, EHICWE QBRGNS T EZ SN DH[48]. ZZTWIHE
REZb L1, IR A IR SN TV ORE, EIROSGE IR E Dk
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Heo v F U 728t 5.

FEEE, ZNETIDOX D RIPERELBIG 2 /MR E LTET 2 Z & T,
Rz 7 fbdb B 2 A T & 5 2 ENEFES T E 2. il 21 Adachi 132003
M, AN 4-dimethylamino-N-methyl-4-stilbazolium tosylate/ ™ % / — LR H
W B =252 LT, WRPORERZIREIICRESELN
HZEHERHLEN6]. ABEOA = LELTL, HEOL—F—T 71
— 3 a TR TRAELTEHEREONT AN R HT—L7o TV D AlREMEMN A
HMESNTETWD. KNk, ZivE Thkx ZolEl - B - 2 o )7 BkE
IZ DWW THRERAZ I AE O W FERE S LT & T 5H[49-56]. £ 72, Yoshikawa &
132006 4F, @EAFIKEE IS TRFERmE 7 2 L ML —F =TT L — 9
THE, MEmBHTHT S L2 RELE[57]. AT, 2012 4ElTiE¥ 87
Bitdh (VY9 —24, AcaB) IZoWTHREICHESEREEZFBRL T2 203D
Mo 7o [58]. FEFG A O HICTIE, MmO —PF =77 L —3 g LR TRY
HLET7 T 7 A FEEREEZ R L TWD @i onTnsg. BT,
Yoshikawa 51% 2016 4F, @EFIRIETO U V' F—2fihE 7 2 b FL—Y =T
TL—va ko TRFMET S Z LT, MaEEsRETE D Z L& A
L72[59). ARflicHes, 7 JWmHME (U vy, L-72=L1T 7 =7 E[60,
61]) HEIERIE L # B (4-dimethylamino-N-methyl-4-stilbazolium tosylate,
4-dimethylamino-N-methyl-4-stilbazolium p-chlorobenzenesulfonate[62]) (22T $
[FRRICREREN EFES N TN D, REMRED A T =X 5L LTI, AEKE
TO/NS ORISR T — R DOERERE ) O R E W& E R EE— NICE
325 Z LICREKT 2 T 6 Tind.

1-2 KHEDO B

DX, b —Z R U7 AL HIENE SRS S O - M O FIEORE
L DR ZERIHIEICHE R CTH D, OO FEOHF THLEIF L —Y—T 7 L
— T a K AR LHIENEICE B L, Mmoot LTIV A TE .
Frlz, AfbtE LclBE v AL —H%— OOULAREMIE : 7= A M~ af)
ROV, LYy XEHWTEBENSLVA L —F—5ERBE T L, ©— 7t
DEINDL (B TW/em? — PW/em?) XU T T RIS L < FHl S
o, LEER-T, AR L—F—1Zx LT 1 BRI E R =720 X 5 ZebtkHz o
Wi 3 et /N T 5. F72, BE/ VA L—HF—I12 X 5 ETEhiE%
1%, FEFITE OB A7 — L (B 1 ~ 10 ps) IS THRAEBRNEZDZ N5
ALTWDH[48]. TEREZALIZ D DRI A 7 —v (B 1 ~ 10 ns) &BET 5 &,

4



Z DWW AL FREI =k v ¥ — L L TRV ICIEfT 5 Z LiL T
RN, BGRYEIS ) OB R TR Z S, 22k, WEIT
WIER IS IR N T — LR 0 BREELT 5 (RIK : EREORAE, [H
KIS 2 ). Xy T TL—yarosSavRlE, 7+ A H=
v Otikng) 7 rt R LI D[63,64]. T LT 74 MAB=ALL—F
—T7 7 L—a T, MBIt oORE - B FEER LD HIKIR T BB L
BHEBLTEDLEND, MEOBMIMTLE LTHELTHDH. AHELFHTTIL,
B SNV AL =P —ICKDT7F N A= N L= =T T L— g U EEA TR
FOBE, £Rx 2 LRSS H L, MO - #E ORI, fdh kO RFZEH]
FORE B N B D FHATZ.

1-3 KX DR

B 1ETIE, AFROY ROV TRz,

2 ETIE, MaboERE L ——T 7L — g Ik D RERAEHIE O 2
B =R DT HOWTEEINSR RS .

O3 ETIE, BE SNV AL—YP—T T L —a ko OKDRERER A%
H L, ZofMmbiafEz~A 27 vk ~A 7 v A — hVORFZERM 3 fREe THl
L LT ROV THET 5.

%4 mTE, W07 T~ VY ERAESRTE L USHPEFRIR TS H
KIS ZR BN DN T, L= =T 7 L —3 g U k- CTHEREDOFIER
A LRI oW TR R B

B S5ETE, 7ML=V =TT L= a B LBMEBED N T— &
LCISHT 52 & T, HEBRRORERZ A 77 A 2B LRIz
TR 5.

5 6 CIIAE LERSCORFER L OREREEIC OV Tk 5.
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SAH, WA, WK, &2 WITIEME R E OIS, KA e L
TV 7 2 &bl & FES. fEABIIIERR T & i d O bR T v
YVEAMERE T E L CETT S, Thbb, IERFMHEEEREOILFERT v
YNV EENEN g, ue &2 &,

Ap=pc—pg <0 (1)
b X, FERENEITL, AuDRE SNEREI N OKRE ZITHYT 5.
fhmm LI, fES0 B NAEFNLMMERERERELE, F0 B Bk
B4 2R EEBRICRY END (Figure 2.1). VAR, #5SRE3AETE & i
EIBERIZ OV TR S,

o
e Crystal nucleation Crystal growth
oo, | ovue —

Molecules Crystal nuclei Crystals

Figure 2.1. Crystallization process (crystal nucleation + crystal growth).

211 FERBEREIRTE

HRRFFHI 72 AR > A b DRENE 2 e 2 K LR s A e & MRS, LR
FAFAERN BRI P06 O EMR E E<FALCTH L0, HHED
Diggam N DD % .

concentration
@ 4....... ,s 4.....' q\ 4.' ? P e 4,,,'
v 3 ;. :
b desorption ¥ ‘
G, e P ® )

Figure 2.2 Nucleation of droplet from a supersaturated vapor. Gi1 and G» indicate the
Gibbs free energy. Created based on ref [65].
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WEFIARK IR EEN DI, KiFIIHDHRE ST BER (77
AL =) BRHELTWD EEZBND. TDT T AL =~ ki L
720, W TAZ—IORIFDEERL L7 0 2R L7e RN 6 ZE DO RE IBREA
LTV, R OBBEL Y SWEDOEIED T NRREL D56, 77 A% —Z
R L TR TRIEAIER S D (Figure 2.2). 2D X 5 REEIKRE T Vit il
AR B GR & T, ST ABBEZX AT —OBLANLHAT N T
5.

7T AE—=NEL R L TORWVIRIETIL (Figure 2.2, —&/A), KD H
BT R/LX—G ik

Gy = nglg (2)

ERIND. TIT, ng ITXFHFORIAEL, pg (FXFHOIFRT % L Th
L. —F, KMHICT TAZ—=BNER L TWDEA (Figure 2.2, —&H), #&
OHBETZRILFE—G L

G, = (ng —m)ug + (mu + 4mr?y) (3)
ERIND. TTTEL, midZ 7AZ—%FKR L TOWDLR T, widxs 7 A% —
DALFERT ¥ Ib, ridy T AF =D, y 137 T AF—DEHRTXILF—
Thsd. XN3DOFE 1EHEEX, 7I7AX—(FETTOXMEDOB B RV —|ZH
WMT D, —FE 2HEE, JIAX—OHHZ ALY —2KT. [MHEERD,
I AZ—FHEOREEKT D7D 4y 12 =R VX —FRFN 28D, G
EGDODHHITANLNX—EAGELET DL,

AG = GZ - Gl
= {(ng - nl).ug + (p + 47TT'2]/)} — Nglg
= —ny (g — ) +4nry (4)
LD, ZIZT, ug—mDEG Al
Au = kTIn 2 )
Pe

ERDTEDMOENTWA[65]. k IZARNY <~ &, TITROMERE, p i
SADKGIE, pe 1 THMARETHD. 7 FAX—HOR A m i, 7T A%
— D r LRI ORFE vy Z W T m=4m7 3y LR D70, AGITEAEIIIC

AG =~ 6+ de? 6
= -3, Autdnrty (6)
4713
= — kTin 2+ 4mr?y (7)
3v De

L0 h. KAOAKIEDFEMAKIE LD BIRWIGE (p<pe), Au<0&2db7o®,
7 7 AL —DY A XA LT AGIEFIZIEIZ 72 % (Figure 2.3, R#R). Z D&
X, KA ITER L2, —FH p>pe &5 & X, AGIX Figure 2.3 OF

7



BROX D B RIEEHT ML 25, BEZXLE—ihBROBKREICBIT 5
JTGAL—=DYA R pre T 5L, ZOMHEIL AAG)dr =0 01HRDDH T ENT
&,

47 (r*)?

Ap+8nr*y =0

2yv
T M
L. Lo T, MAMETOARBTRLEF—DRE I AGHT
. lemy3v?
MG =1 ©)
D, BELE kD) 72 EDOFHIZL > TAGE B 2L X, WD “B” 2
AL, URBRKRARET 5.

*

T

(8)

»
>

Jug > H

Gibbs free energy, AG

\..

Radius of

r* \
droplet, r
o zilbzidizﬁtﬂk‘r’a'ﬂ?

Figure. 2.3. Activation energy for nucleation and Gibbs free energy against the radius of
the droplet.

Lk, SMFICERIE o KRN ERT S @ (b)
r— A% L7z (Figure 2.4a). L2 L, ’_d‘
FERTEEm e KA R & U TR etz 3e 4k

DI Z D Z L3\ (Figure 2.4b). RiE %

Homogeneous Heterogeneous

BJ—EK EMELSDIZXT L, %BE &R nucleation nucleation
IR LS, AR OL TS L,
B IETRR D B H— koL X— i Fig. 2.4. (a) Homogeneous and (b)

heterogeneous nucleation of droplet.

41r3 (1 + cos 0)%(2 + cos 0)

AG =
3v 4

Ap + 2mr?(1 — cos 8)y — nry sin® @ cos 8 (10)

8



ERY, BETORBEZX LT —DOKRE I AGHT
. léemy3v* (1 +cos6)*(2 + cos6)
AG* = T A 7 (11)
Elb. ZOXINL, RE—EERD AGHIE, W—EEROZNLY H/hEL
725, LTemo T, —MANCHRIEIZIARE —BEIRIC L > TERKRTH B2 60
5. RY =B OS 3R 72 EICR 6T, RO S /e £ & A
ELTHIEZD 9 B.

ZNE TR S DIEHFEDERRITHONWTIRART X 72, ERE, Ak D OS5
FEFASCTRIE D BRSOV T, AuZETnEh

Ay, = —L(T‘;m_ T), Aug = kT IHC% (12)

WCEEHZ, EROEWREEZDIEITTEEESETLVTH S ZENTE B[]
I, LITEEDEEN, Told@ls, TIXENROIERE, ClimmoffiEE, C
XK DOIREICHT-5. FT7, To— TITEGEE, C/ClXi@aFnE v ).

IR DB AT DN, BRAEREIZOWTERD. ERAERE N* I,
N*=N ( AG™ — AGvisc) 13
= Ng €Xp %T (13)

ERIND[66]. Z 2T, NolIHERTTHY, BFHMEIL 10% nuclei/em®-s TH
5. F70 AGyise 1T, WIRORMEN R ZFRTIHT, WEAFENE LD LENK
<725, R)TH L TKRO)VD Au ZIRIEOGEICEZ BT DO EMRAT D
(E )

16w y3v? AGviSC> (14)

N™ = Noexp <_ 313T3 (InC/Cy)? kT
LD, HHEEEANOEIERT 5 L, WROBBMENEmS 2L E, 5§ 11
Blivha< 7220, MIZE 2HBIIRELSRD. 20 & X ORBEHE N* &
FIE C/Ce DRI, & SICTAMEE AR & s RE MR OBBREZ R L TN D
(Figure 2.5). 3725, WAEIFIOSEM TS BB EIFIE 23/ WA
X, % 1 HEORECERAEFENNA bNLD T OREERAENEZ b0,
ZLCRfaFENE< b &, 2 HAORENRRKE IR, MMERAENEZ
D& 0%, WEERISRAT T T ORI AN T S 2V VI & TR T I &
W, A fnhER (Figure 2.5, Fft) LM (Figure 2.5, 7R#R) O
DOEIRIZHT7- 5 (Figure 2.5, Areall). 7233, YEZTHEIITBEFI CIXH D729,
fidnpRITE 2% (Table 2.1, 2 1T7H). @SEMEMHR L D b LB AE
BEHIK & Wy (Figure 2.5, Area 1), fEfBERALERREOELL B IS
(Table 2.1, 1 1TH). F7o, WMHREMHHE LY & FOBEBIIARMATIGHE & VL
(Figure 2.5, Arealll), A% ¥EAE bAGAME b Z 572\ (Table2.1, 31TH).



— Supersolubility curve & Table 2.1. Relationship between

F 3 . (120
—— Solubility curve , solution condition and crystallization.
_5 2 Area Crystal Crystal
= Nucleation Growth
E I
S O O
S
i1 ® ‘ 1 X ®
Temperature 111 % %

Figure. 2.5. Solubility curve and supersolubility

curve.

—WBNZ, A A UREER TR EOIRWSI A ERE) ) & LTI T DM BHIHEZR E
RIS/ NS <, bEaicmfafE (B2 CC.=1.1) 252571 THE%
ERFERIND. —FH, KEHBEST 7T NVT— VR TJEWo g9 E %
BREN S U CIZRCS % 40 Tt en i TEL EfEI AN A <, fhafZ I8 AR I v b A fn i
(Bl Z1E CICe>2) ZFET 5.

2-1-2 A RAE
MR L CERB ARG & 7 2R 2 A R R L A BRI D

BN RER T 256 2 XM, R CWEORIROIREED bR 2 56 & i
Wk, W DRFE DD IZT PR 256 LR & FES[67].

(3 latent heat g\ /[
Step
) molecular transport
Kank \Qﬁvﬁﬁﬂ

Terrace ©) surface diffusion

Terrace

Figure 2.6. Crystal growth process. Created based on ref [67].
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fhmm AR, OREMEEERAmE T, 2SR HEICERVAEN T WE
BEhEfE, ORI Co 0 ICMB S o IciaRiE, = L COMfmE
TOREMLIEROPEFRIBRED 3 SOWMBETHEITL, ZOWNTNIDFEEEED
A L 7 B[67]. T 2 TIEMEERE OZFE) 2 it 3 572, Kossel €7 /L%
A5, Kossel ET /LTI, a2V A RicEb+%. 2L, 5%1511‘9
MOEIE SN TEFRREIICMNE L, OO0 FAREILBOE IR b
WMVIAEND Z & TRMDBEET A EE %25 (Figure 2.6). fhfmZ<ml i7‘72,
AT w7, O 3 EEICHEIND. %?xefﬁ%ﬁﬂﬁbfwﬁﬁé
ZEIEHFEV RN, U, TTARATIIGFIIEREERE | ALMEES K
f%ﬁmt@ TR F— m’**f%@wﬁgfﬁé —ﬁ%yyﬁﬁ,%

ITAEmERm & 3 KOG AT 5720, ZFE LTI AFENCTU.
:@iiﬁ,%/&f@ > OHVIAENIC ioTXT/7ﬁ 5 > ToRITEDS
D, FEPEETS LWV ERITNERE & RS,

BRI RO R 3R ERR IO SN D . ZRoERE Tl
TITACBFELZNC K> TR TREOEDER L, TOEERA L L
TIHERENSEZ 5 2 & TR E T 5 (Figure 2.7). 2-1-1 #iD 3 IRITHY 72
BRAEDOEE LR, 2 WITEDBIERT 57201213 H 5L 2 2 5 MEH
HD. 2K EKT D200 H =R VX =20, R%Z IRILED AR,
QEN1THIVDHME, pEAT Y 7TOHHTRLX—LT 5L,

TR?
AG = ——Bu+ 2mRp (15)
Llpl. ZOLEDRITHAM R E LD LEDHMTRNLF—DRE S AG*
ITENEN

. _9p
R* = A (16)
. mOp?
AG* = v (17)

D A GREIFIECBGHEIE R L) BRES D E, R*E AGHTI/NE L 72
L7, TIRITEENER LTS, L LAuNNEL b e, BELEIC
iofAm%ﬁzé EMTERLI DD, ZIRTENIETE 72 5.
Ltﬂof_&nﬁmﬁﬁtfi,tkzmmw®*#totkbf%ﬁmm
ENERICIEE-STLEIZENHS.
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= = et 7

Figure 2.7. Two-dimensional growth mode. Created based on ref. [65].

— B E R, DR AMRAL & PEEI D BERES 1 RIS K o THRAAMIIC
AT TP END T2, Au BD/HNEL THREEERENATEETH 5 (Figure
28) Figur628 DEINCAT v TO—WNEESNTNDTD, wasE Lo

AR LTS BB R CIEIFFBEESE ST R T Tnd iz, o
%@@D@im_iOTXT/7wm ICTHZ 5 2 EidZewv. Fz, ZRoLH
BRI OAEEIC L - THREDED ROt E & B2 0, IEEXREILL
AR Z L E U TCRRENET 72O, MO IABN DI D 2D
FlEbHL. LEOX S RENG, e EHEIIMERE AN REXNTH D
EWVWZD.

Figure 2.8. Spiral growth mode. Created based on ref. [65].

Figure 2.9 IZAKEIEE & slEMARRNOBREZ RT[65]. HidmZ< im0 AH 5515
PIEEIZHERFHICH D IAEN D & T 5 & (NEME), £ OESRE Lk s8Rt
DX, FEEREEE DR K E 72D, “IRIUERE O EEHE TR
HRRO XL DR, AuldBH D —EDHEEBZ D EAHIIKELS D, RERK
BEOREHBITHFAHMRO L HI1C72Y, ZRICEME LY b FICE VRS E
AT, ZOBEND L, WEXREIT CRGOENRE LD b AR T — R
ThHEWVWZRD.
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Figure 2.9. Relationship between growth speed and growth mode. Created based on ref.
[65].

2-2 fER L HIEE D =R

T, iz bR A HE cE 57559 0. FTAOHBT RV
X—DBEND, fELNRAETDHZ0IIINA 9 TREN D = R /LX—[EEEL A
ZRTENT RN ENbnD. LER-T, HETRLEX— (y) & Fif
LWRT oy VER X (A, TbLifEMMmHAE) 2 K& <
L, TRAX R/ NS LR, K0EESITH LTS RS8R 5.
ZO7 7 a—F IR E OFIEIC b FRERD Z L BNV R D,

FERE, BRERT (RE - IRE - W - INY) oOFEE, EIlICREZ R
F—RRT VY VTR F—EOEEIC L DR HIEE S WA D L,
— R E A B AR OB AT 2 L b S D R BRSO & L R T BRI
BWTIE, MM REERTFOREEZITo THRmEEONRNI EXRd 5.
T, REZEWVESAIELEZ-LELTH, ARSKREEICEYAEOR
KBV BONTY, ERE (TELT7R) NELNAZEEHS. B
2, 207 7a—F TRV DT RV —[EREL X TR MmN ET Db o)
Hianiaw, fEdbEE) (& ITERAEER) 288 TZ LIREETHS.

—77, 1 ZECThbid_7=@my, L—HF =TT L — g UERMET D Z L THE
OS2I L=, FEabo X A v 7 222 MmIchlEcx 5 2 &
NEHENTWS., L= =TT L —> g v OfEEEHIEO A =1, BX
D72 Wb EIENE & L CTHEENZOWT, %A, fEfkat, BREIChITT
VIR 5.
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221 L= =7 T L—2a vtk bERREESE

L—WF = L ARERERED A =N LTI, KEOL—F—T7 7 L —
valsllfEo TRATAIF Y ET = a VXTI AN MY =L o TV D ATRE
PENRNTZE T 5[49, 51, 55, 68-73]. Figure 2.10 1L —Y—T7 7 L— 3
IZ X D REmBEEAEOER Z R . 4, WRPEZERRICH T35, 2
DOAREETIL, WM DRI LY., 22 TREE L——T7 7L —3 9
EHE, BHHICTTHR Y ET = a URNTANRRET D, —RBICF Y ET
— 3 a N T VORI TR E OJLHORE Z 0 S EFRIC R W2, e e
T = a AT VORI TEE DR S, RFTEESREMICE BRI S.
—J, L—H—ORHEICE S RE ERIRfRfE AR TIE5. 2L T, BE
L EIRE EROFETIOR, WRPERBEFERIZE LGS, BERAENEZS.
Flo, XY ET =T a NI NIEAREEIRROG L 70D 2 LT, MR AE
IZFHELTWDHEEEZELLNTND.
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Figure 2.10. Proposed mechanism of laser ablation-induced nucleation.

FERE, OKEEMRRK 2 k5 & LR TIZEIC ¢, L—F—T 7L — 3
IZ R o TREEDHT I 2 (REabiER) ¥y 7 — a3 VN7 VDR K
B LR OIRE FA- ORI RBRIC L > CTEMMICHATE 2 Z L2 /RHL
7= (Figure 2.11) [55]. §7¢bb, ¥ ET7T—a VNI LORRENKE L,
BR OIREE EAD/ NS WIS e b—HF—FEFTIE, bR bm< o T
Wiz, Fin, RFBEAKEEZXSRE LR CHREROBERN R o n7=[71]. =
NHORERIT, ¥ ET—va UNTIVORAENERE R AEICEE &R 2R
ZLTWAZ EERRLTNAS.
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F, L=V =T T L—3 g T ko TRAT D EEE LR A BRI INE
(BELWEIE) 72578, @AFENEE > TmERENMEESND L HE
ZHILTWBDH[74]. BIZIE, v 7 —Ta VNN TIVORRERICEET I
TITAT LT NTIVHFERERAEDO N H—L720 552 LRI THD
%[75].

BIEDO L —Y =7 7T L — g AW bIETIE, L ERER) DA
M ERESHEDL N TE L0, BEREMEFERTELZEnL0n. %
7=, HRBECxF Yy T —a NI, T TRAT 4 T RTIVDOREDH
A LR — VT THREE DT T 2720, fEbiBREZ2 88T 570D FiEE L
THLHEHTHS.

(a) (b) ~ 100
S = 150 fs . \
2 80 Lps
= £ Sps 1
§ 100 ps
< (a9
=1
S 40
¥ 15.0 sec = I
.E 1A 1|
3 2% |
SN 1 11
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Figure 2.11. (a) Representative crystallization dynamics of glacial acetic acid triggered
by successive laser irradiation (A = 800 nm, £ = 240 pJ/pulse, At = 100 ps, 1 kHz). The
red arrow indicate the focal spot. The scale bar represents 1 cm. Dependence of laser
energy and pulse duration on (a) crystallization probability, maximum radius of cavitation
bubble, and (c) temperature elevation. Reprinted with permission from ref. [55].
Copyright 2021 Japan Society of Applied Physics.
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2-22 L—HY—F7IL—>avic&rBERLELOTEE

EEADL—F—T7 7L —a Tk, BEHNLT/ A—FLhb~wA 78 A
— MY AXDT T 7 A TR T Z & NERAIIC B BRI RSN T
WA[63, 64, 76-79]. BEAFIARFICB W T, RO T7 77 A FRK 8 T
RINDEERAFE ) 2B TONIE, ZO%MEBEENETT21L7 T
H 5 [58].

INET, BEAVA L= — DB LA ZEE T2 2 & T, L
HOTHLREMMAHBECX D Z ENMEINTVDH[58]. £/, HFEMS X ke
PrEIZ L DTy DFEAE S O B TR & R THE L TN Z &AM E
NTWAH[S8]. 2D LD BRBLEND, HAEMNIE LT WE I R EHZ DWW
TAFELISHT A2 LT, mERERREZEONDEBZZOND.

2-2-3 L= =7 I L= avIckbERBEDRAE

FEOREREL, L—F—T 7L — 3 ko TREEE O KX UG
BERENFEINDGZ LICERT S EEEZEX TS (Figure2.12) [59].
mEHEL—Y—T 7L —a Nl TRET AL, moF o reT 7
UOHBENEZ S, LT, ZNUORLHABMAER VBRI NENTES
NnN5EEZXLNTWD. EE, WTIhoOETEIcETh, 77— ay
LN BIEIROREARAT v THRHAE L TV DT B I TV 5 [59-62].

Laser Spiral growth

Ablation Screw &
dislocation

Figure 2.12. Proposed mechanism of laser ablation-induced crystal growth.

MEERERITNTOMBICILBE T HRERNTH D720, KFEOMEHZ
ST AR WEWR S, £, T MR L—F—0 3 RITHIIN THE
AEMET 22T, HoltkidmOmELMEIE OIS, ZHiERsTr A X
SR OFNEHICEMR TE D EVWx 5. HIZ, Rl Z#ET 52 & TlREZRE
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HXEDH70, (ERkE CORERFOKEIZ L DH1EEE LAEDED Z

EMTED. T, TERETIIEARNELREROMERICEIRTE 2 L85 L
TW5.

23FED

UbEnkoic, L—¥—=77 L — g TlIEkOBEEERF O &l TR
o MEZZ TE BRI b OFE AL, FEa R A O RFZERIROHIE, RERXOERE
WK DREREREEZEIETED. T LT, 22V ofEEzHWD Z & T,
FEEDY A X AR - 2 - WEOFESC, bR OS2 FB TX
HAREMEDR RSN TE . & 3 BmUKETIE, Zor—% =771 — 3 0
& D b e L HAEE 2 kR 2 e b BE - RS mRRIZISH L, #idb O - HE o i1
OFEEA LD ZER Z A F 2 7 ADBIEZAT > TR O W TR 5.
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Irh-3:l'!'l:

=5
BENILAL—Y—7JL—3vIc&b
K ga1b D B ZE ] il 1

31K

KOFE AT % 72 HIR - AMBIRICHERERHZ R L TBY, 20

e EEMEMTTHEA SN TV, BlE, FOMBITEESEN & Vo REE
KIS U TR A R E R T2 ERMONTE Y, TORERSCHRESMAIT
KT, BWELT, NZ— R TR IICHIZEN 72 L TU 5 [80-82]. %
7=, BESOAW & > /X7 8 (Antifreeze protein; AFP) 7¢ & DEERMEINGFEL T
W5 T TOXDFEERIEIE, KA TREEICAERT 2D O A B = X L% fiFf
92 DICEETH H[83-85]. FIZZNOHLOHAIL, BN TIEOBRRBICH M
FEARA[ K TH H[86].

KOFEEE A T = X LA 5720, ZIVE THE X 7o i il k= B e O R 5
%wﬁﬁbmf%t.mzﬁ,m@@#w%%kt7) THEIE T VIS
HZET, BOTEWIBEREICCHEMEBREBIERTED Z EREIEEINT
W5, [87-91] —F, fEaEERAEERZORRTZ V7 P OREICBET LD
&, BRAOEBIEL L ORERREREOMENGHZRD S, £Z2TIO
&9 e OBRIEIRICHE Z DR b A BIE T 5720, ZTHvE THMBEI &
BRfE L7722 OFENRHMESINTE. KAV Y —7R7T 7o —F 2%k
FEETFTFHZLTHD (AmiE). LrL, ABIETIED AT OREHFECHE
WEER ORIFI 22 T D72, MAKIE O N KR (Bl 21~ A F 25+,
e~V y b)) [92-941ZISHNR LTS, ZOIENIT HKOERA
ZREZEACHIE T 5 Rk L LT, BRAIBIE95], BEHK[12], L—F—[56,
9672 EMMEEIN T E T2,

AL T, KOFEMLBREZBEICHET 2 FEELTL—F—T 7L —
vaEIilEBR L. B 2 BT, LT T L —Ta KA
pa LTS AEVE T RE N DR Z TS E 2 2 N TED. LR T,
LN EHEET DL TKORERILE A T2 &X%fniﬁﬂ HETDHZENTX

HA[REMEN B D . FEFE, Lindinger 1% 2007 4, &G HEIKZ A = 1064 nm D7/
ML—%—TT7 7L —rar35ILT, KOWMBEBREEZBRLTELI LA
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FFELZ[56]. LU D, A=1064 nm OF /L —YP—7 7L —2 3T
X, BERIECF Y BT — g NI LD o T BB ) NS B IR FLPH TR
At B E, RERBEEADNEZ > TLE I 20, Fidb ko 22 HEM: 3%
V. BUZEATHFE TIE, IKOTBIRZ: E DOFEM b db b &2 A F I 7 X 2 Bfe 28l
BT HZLIITE TN, LEN-S T, B2/ S ERE TK OSSR E
EEET A0, mRAOPRERL, BEEANDR R HBEAVA L
—P—ZHWDLOPIRTHLEBZOND.

Z ZTCARMZETIE, KIZEDIERIND D0 R (A=800nm) DEEEL LA
L—H— (BFaPp~7 =2 M) ZEBAOEORY L o X% TR 3
%HZET, KO OBERIEEZRAT. ZLTINGOREMEEY AT
A F R A T W TRERIBIZE LT,

3-2FEBIO ko

ABHARL. Milli-Q EE) SOk (182 MQem) %7 A4 7L (S-
07, HEBME) (2%, -15~-20°C DA > F 2X—&— (IN604, Yamato F 7= 1L
CRX-300, BONARCA) THEHEL7=. 1015701, o7V H LD L
— P —FRICHW =, 2oL EoKEEZT VX IVIRER (SGT, AS ONE) THl
ELIZEZA, H-10°CTEo Tz,

EBOLEER. Figure 3.1 [CARFER THW-EBRIEZERZ /T, HIRE L T4
W& Ti:Sapphire L —%—3 27 & (IFRIT, Cyber Laser Inc., A = 800 nm for At = 250
fs — 5 ps, or Chameleon and Legend, Coherent, 4 = 800 nm for Az =150 fs — 5 ps and 100
ps, A =780 nm for At =10 ns) &\ 7=[55, 61]. O 7=/ LV A L—HF —[LBARK
BEICEASH, L X (10x, NA = 0.4, Olympus) %@ U CilmHKPIcE
FERRH U7z, SBHSIIA TAOEm D G4 2-3mm BICERE L. A0 E
BB LU S, Rayleigh & Abbe DFEHEN D (K7 1.22 x UNA, il 7 [m):
2XANA?) ZNZEN~2um E~10um EHEE L7Z. L—F—= ¥ — %, P
EWR + @ FOMBAEDED, ND 74V Z—IZ Lo TR L-. 2L 2K
MElZ4— k=2 U L—4&— (Mini-PD-NIR, APE GmbH, or pulseCheck NX, APE) %
HAWTHIE L7z, fidfb BRIk T1X, # A7 (iPhone 12 mini, Apple) %
TR 240 fps TR L7z, — HBAMBIL, &ES AT (HPV-2, Shimazu,
62.5—125 kfps, or ULTRA Neo, nac Image Technology Inc., 1-100 Mfps) % FH\THg
APy
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Figure 3.1. Optical setup for ice crystallization.

EEAENT. Image ] (NIS) ZH W TR SOHIERCHBEOE R - =2 FT7 A D
PHEE A LT,

33 L—H—7TL—avickdKRILHEE

Figure 3.2a |2 2@ L —H — O BRI L 2 KD bZF 8 O REH &R
3 (E =240 w/pulse, At=5ps, T~-10°C). L —HF—ME#% (r=0ms) I
HRINDKDFERMBFEL, N TALEKEB NSO TEIIHIICRELE. b—
P=T 7L —3a VTR DKDOFEEEH R Z i kT 5720, KO ERERE
T 5 L= )L — L )L IR AR & AR I~ 7o, BRI
FHZ BT DG g I AR % Figure 3.2b IR T. Ar =150 fs DL, FOL—
P—T XL F—THKOMRILITIZE AL EBR SN o7z (<4%). —7,
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At=1ps, 5 ps, 100 ps DIFH, FEEEBEITIH LRIV X —ZRITEZDH LI

DT ENPboTz (1ps:>180 wl/pulse; 5 ps: > 60 ul/pulse; 100 ps: > 120 pl/pulse) .
T OFERIL, KORERERAEDFHEITITH HRERE 2 L —F —FHEEE M5

VETHDLZLEZTRELTWD. MmERERRL, L—F—zxLF—0DH

me & HITE L 2B HmICH 7= (1 ps: 5% — 30%; 5 ps: 20% — 80% — 100%;

100 ps: 5% — 15% — 65%). —J7, At=10ns D/ A L—P —HREBEZ L 5

ferm I AR D L — P — L T — (KA & Figure 3.3 12" 7. fhdnt 341X

E > 1000 pl/pulse THEZ 5 X 9512721, E > 1400 pl/pulse TIIAER DK 60% THE

IXWIZR B Z EnbinoTe.

a 0ms 125 ms 250 ms 500 ms 1000 ms 1500 ms

b — 20 20
2100 - 150 fs £ £
2 1ps 16
= 20
§ 80 [ 5ps e, 13
8 = 100 ps 20
> 60|
S
3 40}

S E
= 20 £
s 20 1 1 20
1 0 L .0 == 0] ‘108 20 0 0
5§ ol222020 20 3120 []20 20 20 |[Flsgm 20 Ol | |
10 ' 60 120 ' 180 ' 240
Laser Energy (uJ/pulse)

Figure 3.2. Ice crystallization via a single laser pulse. (a) Representative ice
crystallization behavior triggered by a single laser shot (£ = 240 uJ/pulse, At =5 ps, T=
—10 °C). The images were captured at a frame rate of 240 fps. A single laser pulse was
shot at # = 0 ms. The yellow arrow indicates the laser focus. The scale bar represents 5
mm. (b) Dependence of the laser energy and pulse duration on the ice crystal nucleation
probability. Here, crystal nucleation probability was defined as the ratio of sample
numbers nucleated to the total sample numbers. The ratio of the sample number nucleated
to the total sample number is shown for each condition.
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Figure 3.3. Dependence of laser energy on crystal nucleation probability in 10 ns-pulses.
A single nanosecond laser pulse (£ = 800 — 2000 pJ/pulse, At = 10 ns) was shot to the
supercooled water (7 ~ -10 °C) in the vial through the objective lens (10x, NA = 0.4) as
the with the case of Figure 3.2. The ratio of sample numbers nucleated to total sample

numbers are shown in each condition.

KWL 2 /5 & LT ATHFZEICC, v BT —va U NI ANRKE L b1Z
bR AN E L 2D T ER RSN TWA[55]. & 2 TKORE kIS
OWVWTHRBEOKRFNZ2IToTmE A, Y ET—2a N7 LDV AR
(Figure 3.4) & fEdhiz AR (Figure 3.2b) ([ZIXMMERH D Z L2 R L1z,
(IFAES ﬁ‘fﬂ%bi‘% 200um DF ¥ BT — a VAT LERESELND L—

— T RNLF—ITT, KOERENEZVIEDD Z ENbroT-. £7-, E=60-
2%pmmw®mzw% TEIZBVT, Ar= smwﬂwxv~$ RSN
REYET—2 g URTUNERESEOLNDN, TOH VIR B A e R

bR ERS TV, HIZ, Fl—=xLr¥— Bz iE— 180 240 pl/pulse) T
ERAMRE T 5 &, HRDOIEF I Y BT —2 a3 T VO KEDIE
J¥ (150 fs<1ps<100ps<5ps) &—HTDMERICHD Z LrbhroTc. Zhb
DOFEFRIE, Y ET—a U ANTADKORERE R EICEE &K E 2 R7- LT
WHZ L aRRELTWD., 2E, 7V ARFRIMEIXZ I DR, BLHL,
BAGHIE I T 70 & DRk & T RN B % B 2 5729[97, 98], 4L BEAIITK
MeENTFER, ZOLIRF¥y ET— g AT ILH A AL AR
HRELNZEEZLND. £72, At=5ps D7V AL —F—&F AN HED
AEERAZ R AR, oD/ ARERIE (Ar=1501s, 1 ps, 100 ps, 10ns) O H D &
HARTEWZ EITRETREATHD.
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Figure 3.4. Dependence of laser energy and pulse duration on maximum radius of

cavitation bubble. Dashed lines correspond to the fitting with logarithmic functions.

3-4 K@RILBEOEEHRE

FIROFERIZEESE, At =5 ps D/VVA L—HF—OHRERIKIZ L 2 KDOHE M
IbDEHEA A= T EITo 7=, 125000 fps & 62000 fps TELEL L 72k D&t b
R % Z 412 40 Figure 3.5a & Figure 3.5b-d IZ/R T (T~—-10°C). 2B, b7
L—AL— NI /B L —F—% FW =BT & bl LT 50 ff5 LA Em[56].
L—H—Z AT 5L CICELRICR Y ET =2 a UNT AR L. £
LTt=24us TxX¥ ET—2 a3 AT T KREE (=400 pm) L72-7=. D
Bx v BT — 2 YT MRS, FASHINT 1= 64 ps TR L 2. HRIE
ERIFFIZ T 7T AT 4 I NTIOVREII, RN DEIS D LD IZEWT.
L—H—HE2 58 400 pus %, KOHFEEN T 7T AT 4 20 TR T )L O
OATH L7z, L TKIZT Y R4 MROFEE~ERE LT, KOREIZER
e 77 AT 4 U TNTANBHTH LR, a7 727 4 7T
VEBEN TGOS A2 E bbb oTe (Figure 3.6). F72, KORSMITE
WD 7746 pm (n=28) OHPANTEERIND Z LR -T2, LI=di»
T, PapplL—%—T 7L — a3 L DKOMEREDOZEREE X, JITaFsE
DOF I FL—H— (~300um) OFNLY HEWEWVZ B[56].
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Figure 3.5. High-speed imaging of ice crystallization behavior. (a—d) Representative ice
crystal dynamics induced by a single laser pulse (£ =240 pJ/pulse, At =5 ps, T=—10 °C).
The images were captured at frame rates of (a) 125000 fps and (b—d) 62500 fps. The
yellow arrow indicates the laser focus. The scale bars represent 200 um. (e) Temporal
change in the ice crystal radius after laser irradiation in Figure 3.5b—d. The growth rates
estimated from the slope of the linear fitting curve are 7-9 cm/s, of which rates are
comparable to that of without laser irradiation reported previously [82]. Uncertainties in

the bottom right correspond to a single frame exposure time (16 ps) and +1 pixel (4 um).

~0us 32 us 80 us 160 us 240 ps 320 ps

800 ps 1600 ps

SN

Figure 3.6. Ice crystals grown without the visible long-lasting bubbles. Red and blue
arrows indicate the long-lasting bubbles and ice crystal grew far away from the long-

lasting bubbles. The scale bar represents 200 pum.

24



Figure 3.5b-d DK DFERIZONWT, L—F—MHEN S DR A X ()
DRFMZELZRIE L7z (Figure 3.5¢). ffnDH A RIXREHIZ T L TIRITHRIZH)
W45 Z ERbnoTe. 22 TIEHEE TWRWAS, Figure 3.5 IZB3 o
RITIZBWTYH, ry FaBETek Figure 3.5¢ DRHR & HRROMICALE T 5
ZENRDNoTe. TIZT, MIET 4 v T g v ViR &R O SR E D X
AIVTTHDHERETDE, KOEREZA I TIXHFIZFE L TR, U
— P —HNBHRE~ A 7 o OB TEBH L TWHIZ LEZRLTNSD. 0Ok
B, KOFERERAEICHEBRESCX Y ET—va "I, a T I RA7 4
TRT N2 EOBBOBERNEE L TNWDLZ EERBLTWD GEMITER).
F£ 7=, Figure 3.5¢ DIERTREBE LT, BIET 14 v T 1 > Zllifp & Bl 22
RNADEIZ D 2 ENREAx ol (BIZIERE) . ZOfERIE, BRAOEM
72 EOHERNC L o OKOFEMBIERIER (B 2 IXRELBIE) ICiET 52 &
ZRIELTWD.

U EDFERIZ, VAL —P—DBRERRN 2B 5 2 & TKOM LS A
T X7 R TEORFZERIEEE (Z2[: ~ 4 um, FEfi: ~ 8 us) THIZETE 5 Z
EEIRLTWD., ZORFZERKEEL, - /0L —P—IC X D0 T5E & i L
THEW[56]. KHFZEDH AT D7 L—AL—k (KK 1000000 fps) & FLEFE
(Immx Ilmm) Z&ET 5 &, RFEETIE 10m/s LLETHRET 2KkOE R
AT IVATHBET D ENTE D, Lo T, RL—P—FyEEF
BT B IR B 72 i v FR R (1] 21E << -10°C) 1Z351F DK D#E ik % 7
RHTZOOFEHMRFEICRD 95 HIFFTES. ZOX ) BERGHEI T To
K OFEmAL Z BIZE T, BRI & O RUR R Tl 2 28 72 2 BB D BEIRIZ
HETZX 5 LB T05.

3-5 BE/NILA L—H—[C & SR DRERHEHEICEET 2EER

ABFFETIL, KOG EALEE OB M oL~ A 7 afb - ~ A 71 A
— MR —UIZE TR ESEDLZ LI LT, 2O X 9 72 @m0 REZE RS
TOHEEYEHTX=01F, BE/ UV A L—3— 3 58O BEZ2 R FE Tk O 5 &
EBRAZHIETEZINOLTHDLEEZOLND. BWVRFZERFEE CHlf c /=21
Ho 12L& LTE, BEASLVAL—F—CREREST Y ET— 3 T L
&N o T A BN ROE RS T ISR AEIELNDL Z EITH D . B
IRBEVE RSB NSV A L =2 BT 5 E 2R SR L RS
U, BhEEAENEIPTRA LD /<2 2 ENMBLITWAH[99]. 7= A4
ZeTCIE, MEANVAR L ——0DEE% 800 nm ICERE L T\ 5. Tk, Kix
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1064 nm (ZE470F%E) L0 3 800 nm (I2Xf L TCLVWBHELSTHD (Wtlfa
%7 : 800nm T 0.02cm™, 1064nm T 0.13cm™!) [97,100]. T, JCATHFZETHW
BN A0\ OBEEETH LU A EHWT L —F—%2E N L
= (JCATHFSE[56]: NA ~ 0.16, AWFJE: NA=04). ZD XL H1Z, KTzt L TEH,
Hom<EXEN-L—F—%2HW\-Z & bR R/IMET 5 2 L ICEHmk
L7-éEZEZOND. 20X HITBE SV AL —F—RRYHT L AR AR Z /NS
T2HZLT, L—W— %t@%ﬁ%%tﬁﬁ& CRESEDLZENTED.

ZHZE ST, TR L= I X BEATHE[56] L D &K DR s b D22 [
HEEEZ R ESED 2R TEEDREEEZLND. EE, #E VAL —W

—IZX > T téﬂtﬂ?’vt'f—“/a ST L (R 60 — 330 um, Figure
34), F/RLV—VF—lZXoTHERINZZEI (470 — 580 pm) [56]L D H/hE
Mo,

2 OHOHEHBE LT, BE VAL —Y—3F /L —P— Tl TERE L
AEMADZENTED., T/ L—F—OhEERETE, MELEZ 52ET
e EFBEFNC L > TRA LB L - T, L—YP—FEETEWVIRE FE i
Z5[48]. —HEEANVA L —YF—opEiEiE i, SuERE R &R
& o THA U 7 BB IS ISR Eﬁéh @Q&%fﬁ&ﬂ i X
548, T DWOEMIE, JENWBE T Aol &3, L—¥F—8hNT
OILE EHZE3 5. ZFE, Linfinger &3 L —W —MREHZ L 5L EFH A K
TN EKEOBMENEND LRI L TEB Y [56], ZiUIBlE DR YfFHE %2 K
TEEDIFREE/Z2-TND., LR~ T, BE/ SVAL—F—IZ X DEEED
DI W RPTE R ) 2B 5 2 & T, KOFESRL 2 2RI IR B I HE 5
ZENTE, EWERZERS %%T@K®ka®ﬁ”%%ﬁf%t®tk%z
Hivh. Fio, ZOBIEEORFZERRRRIEL, BEE101]1°BRMEIR[102] & W
o TN, oo L—H— %&(t%ﬁ&k>MLw;mﬂ%%wt A&
DHELSRDZEFEETREIATHS.

36 L—Y—7 I L—2a VL bRBBREAD =X LDER

¥ 3.4 D Figure 3.5 T2 X 912, KOFERILIZL—F—RBER%Z K
300 us DN EL TWDAREMED R SN TWD. ZORERIE, Ko L—3
—T7 T L— a0l ko téﬂé@IQ{ﬁ@ﬂF?ET var AT, my
T TAT 4 VT INT I EPERE BB R E 2 BT LT D ATREME D RIS
LTWa., 77 —va YB{Exz@B2lco 3V ¥ —%2FT5BE VAL —%
— 5T 5L, BRI THBELEAEL, KPP TOEHRU LOREET (~
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10°m/s) THEIZIZEHL TS (ZoY7~A 7 af). EREOERF, £
KBNSt~ A7 1 A — FVOEIROKIE GPa 7>5 MPa DE 15314 5[98].
WNTHFy ET— g URNTAREEKL, Et~A 7 o BoRICEE « 3
L. FOB%FYET =T a NI VIR E R LR ORREL, v s T
AT 4T NRTIVNBIND. BT T AT 4 TN T TR PRI AL AT
L7 (Figure 3.7).

Figure 3.7. High-speed images of laser-induced impulses triggered by a single laser shot
(E = 240 wW/pulse, At =5 ps). Images were captured with a frame rate at 200 Mfps (5

ns/frame). Yellow arrow indicates focal spot. Black arrows indicate front of shock wave.

Scale bar represents 250 um.

WEDIATAIZEIZ T, GPa BREDJENNHINE D L AKDMHEE RS HEI L,
KOFERERENFRLIND EHEINTVDH[104-106]. FEBE, DXL D728
WEH T T e OBBEIENRSL 2 ENFE SN TEBY[106], %—
BRAETHDOICHSTHLEEZ LS. FEEE, Lindinger 513 /L —H—
2K o THAE LT ERIESOE DR DK OFERERAED ) H—Th 5 L it
T TWB[56]. —J, ZLOMETIF Y BT — 3 YT ANRENEOHKAE
[105, 106]° AN — I DARHE[107], FEAVDFHEE[108], 72 LI K- TEFRAE
FRUH—=LIBEMESNTWAS. £, L=Vl THRESNF v
BT — 3 VNI OVINERIR DN D OGN R E A2 R LT\ D Al
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PEHHE STV D49, 50, 68]. EBE, KO MR EMSE (Figure 3.2b) &%
?B%~yayﬂfw®#4f(mmem)ﬁﬁ%bfwé*&# , KOKE
AT Y BT — 2 a ORI N EBE R KRE E R LTV D D AR
5. L/U:O)%I EHEETDHE, VLV —HEEZOMmEZRAE (Figure
3.5b,c; Figure 3.5¢ DR EfkD 7T 1w ) 1, ERESCFYET—2 a3 370
DOFAEIERLTWD EEZBND. —J, L—P—BE#%K 300 ps IR L
7oK DOFEEIE (Figure 3.5d; Figure 3.5e DHFD 72> ~), BT T AT 4 TN
TN — IR D& te 325 2 & Tt LT\ 5 Al %erém
L. FERBBRENC LIS, BFETH5R T T AT 4 VT RTAOIHC L —F
—E T DL, KOREERENBIIREIND Z EbbhoTz (Flgure
38). ZORERIE, VYV —FEEBERNLE0 T T AT 4 T NT VO AAE
HIZZ > THRmERENHREINDATEEZ LTS, 2k LT, #HE
IV A L= B RIS RS 5 2 & THiA R R D 2T 5 2 &
DTE, BEWRFZEREE (6055 100 um LA 2> FEEF #2559 300 ps LAPY)
IZOKDOfERfbERIECX s Z 2R L.

a < 100
2
S 80
Delay time 3
«— o
a 60
c
S
8 40
S
Laser  Laser £ 5
pulse pulse b
ey
o O
i 500 750
Delay time (ms)
b 6 0 ps 128 pis 704 ps 1040 s 1440 ps

Figure 3.8. Ice crystal nucleation induced by double pulse irradiation. Two successive
femtosecond laser pulses (E = 240 pl/pulse, At = 250 fs) with a different delay time (1,
10, 100, 500, 750, and 1000 ms) were focused into supercooled water (7~ -10 °C) through
an objective lens (10x, NA = 0.4). (a) Dependence of delay time on crystal nucleation
probability. The ratio of the sample number nucleated to the total sample number is shown

for each condition. From the Pearson’s chi-squared test, significant difference between
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single shot and double shots was confirmed (> (1) > 6.2, P < 1.3 %). (b) Microscopic
images of ice crystallization dynamics captured with a frame rate of 625000 fps. The time
when the cavitation bubble was formed with a second laser pulse was defined as # =0 ps.
Delay time was set to 1000 ms. Red arrows indicate the long-lasting bubbles that were

generated with the first laser pulse. The scale bar represents 200 um.

3-7TFELED

AW TIX, BE VA L —HF—DHESLIEHT L > OKORE AL O 7o Ik
Z2 I A S L7, BE LA L — P — WG HK I E RN 5 &, 4
FRO T GEBEICEE ) (FEBRESCY Yy BT — 3 UNTILOIERE)
MHBEIND. ZORERLEERDZ KO V) H—EL LTRAT 2 &
T, KinfbilfEz~A 7 afh « w4 7 v A — VAT — )LD ERFZEM S fifHeE T
BT LITH LT, RPEEHEA R (B IERE Y X7 KA 78
E) WWIEHT5Z LT, BRAGAMBS, LET v RITBT 5 KOM M
{EDORFZEICERRT 5 2 L NHIFRFCTE 5.
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Irh-4:l'!'l:

ES
L—H—7JL—2avIz&d
BRI IEEM B DOEGRIEFHE

BRILTFT A AR E O ME IR KFET 22 Db TS T
EinE 7 %méﬁiﬁé CIFFERICEETH S, BIZIE, KT XRaOE
RIC R DU — 7 BIROFAENT, EEREEARES (B0 Gax0s) OESHIMEREIZ
WELHEZHZENMbNTWALG 110, 111]. £7-, wkiERDT 7~
(THz) WRAZFCEEER YV —[112-114]& L USHARI/HE I AT D
HHEIERRTE i‘é?ﬁ £t 4-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST,
Figure 4.1) 1%, #EIHOERLKRE ZIC X » TIFRIB A EN LT D Z &3
%MTwémlm.E:,mwTﬁmﬁK%%Eﬁmé<ﬁ5&%E%KﬂL
TEWMAMEZ R T L7 2 EbESNTWA[S]. —FH, A UEER
LHRES 70 & DRI & & FF OB b0 & 13RS, KFER/HET 7
YTNT =V A S e EDOFIN M EAERIC K o TS 2 AR EHT D
T, S EORMEREEDL ZENNERZ ERH L. FEEE, RE - RBE - &
72 P OBRBEIN T 2 RN RIEE L2 & LT, ZRbae KD A - 7= fdh
RERPEE (0T v07E) 2T TEERPHOND T EBE.

H3C
N \ —\ 4 -

Figure 4.1. Chemical structure of 4-dimethylamino-N-methyl-4-stilbazolium tosylate
(DAST)

S IR AR RO B A ERST B2 0D FED 1 Db LTv A 7y —
FAVTRHLENTWD., A7 ai—F &, LA CRER S &
ERLL, ZOMEREZ D<K VRESED Z L CERMEREREEDI THED D
ETHDH. TNETEL DA 0y —F 4 VT FRENRE S TE (116,
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117]. b ATV Y —RFEL L TUEL, B Vo ERBEICE > THid %
AL Z L TH DT, L, ZOFETITERKEENMENZD, <A
7 a A — kYA A/ 7kl (Bl 20E, < 100 pm/Rot) (X L THWD Z
CIEREECH D, FIL, ZOT7 T —FIXBHRICHNDZ LIXREETHY,
BERIcB R b TR X I x—2a U LT LE Y AREMER D H. — i
., Yoshikawa HIXL —V—T7 7L — g U EZEFET 5 2 L TS O/FER %
BN ORI EBL T 5 Z L 2 L L72[57, 58]. BERO L —HF—T 71—
varTlE, EREENL T A=A bwA 70 A — YA XDT TS
AU MBS Z ENERMICHEGERIIIC ORI TV 5H[63, 64, 76-79].
FATWFIE ClX, BT ORFBLZ X7 Gikkdh (VY9 —24, AcrB) 7>
S ENT=T7 T 7 A MR E L TREL, &KL T il 25
5NDZENAHEN TS5, 58], 7=, RICEAMEEC X REHTEIC X 58
HND, b= =TT b—a k> TERLEREESOME LI LN
TEDNHEREINTWAH[SS]. Lizdio T, RFEEZEMFET S Z & CHdhE R
EmEER X 2 AREER S 5.

FZTIRORT » 7L LT, KWL TITHIERIE I Fh5 D DAST % %f4:
ELCL—HY =TT —vailibs~vArual—7 4 7 &iTo7-. FfER
HERA 57280, NALAL—HF =% WL o X & W CEEFTER O DAST
RIS Ls, F72, Lb—P =3 — L UL ARERIE AR & 0 &
BT 5% 5 5B % RIS~ 7. BRSSO EIE, THz IRAOFEHE 7 v
A=aVBEIZE > TR L7, R&&lc, L—F—7 7 b — 3 2 K DHER
mfEFBEDFE A T 5720, IR O DAST fifm~0 L —3 —H4HH
AT AT TR L.

42 LB IOoralL

B DA, 97, 11.52 mg @ DAST ¥y>K (Dai-Ichi Chemicals Co. or Kanto
Chemical Co.) & 3 mL ®=# /—/)L (Wako, > 99.5%) % 277 A/ XA T )L (S-3,
Nichiden-Rika Glass Co., Ltd.) (Z/01z, 55°C DA > %% 2~— % — (IN604, Yamato)
FCHEEL THREZEEICEM ST, BRI T2 & % B TR
L7=D%, 5°C/hour T 55°C /75 20°C £ THRE L1z, ZOWIKE I /X—H T A
LV aryy— b RLABEOY L RA v FF ¥ 3—=I2 70 uL MZ, £ 10
SHEEESTHZ LT, v~ 7av—TF 1 7 FBAO DAST izl L.

AR TIZ I T D it di B i D Al R il FE DRI L 2 IE L 72 & 2 A Figure 4.2 O
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X hotlz. ZOF v o \—Z MBI (Eclipse Ti, Nikon, or IX71, Olympus)
DAT—VITEE, LD L—F—FERTHWEZ.

-/g 30F

8 25

Ll O

£ 1st

S 10f {

S 0.5k H{

C%(H%f | | {*&{iiii
0 30 60 90 120

Time (min)

Figure 4.2. Temporal change of growth velocity along the lateral direction. Error bars
represents standard deviation (n = 5). The velocity was derived from the temporal change
of crystal size. t = 0 corresponds to the timing when the supersaturated solution was
poured to the sample chamber.

VREEDORIE. =% 7 — VIR k3% DAST OWRE 2 W Stat 2 A CHlE
L7z, BB Y 7L E LT, 2,4,6,8, 10 ug/mL O DAST/T ¥ ) — VKK &
L=, T HIERIZOWT, UV-VIS B EERE (U-1900, Hitachi) % W
T AR RV ZRIE L7 (Figure 4.3a) . MRESRIZWEH KD 4 = 480 nm (2
THER L7z (Figure 4.3b) . IRWTEMBEAZRET D720, UBEOFIET
DAST/= % J — /VIRiE = TRE L7z, 1AHIZ 20mg D DAST K% 3mL D= X /
—UIZINZ, 55°C DA U F aX—F —HTHEPT L2 L TERIEMIET.
WIZ, 5°C/hour T20, 30, 40, F£721L50°C ETHREG L. TNHDERKRE 2
MERET 2 &, BAREREICL > TEZL OFEPERFPITHTH L. Z0%K
BITANEY T LT=D,, fimk ) — /L T200 AR L. £ LT, Z0F
R UTZBERIZ DWW TR AT MVERE LT, SEBITRRER D O IRRRE &

32



1.6 (20°C), 2.1 (30°C), 3.5 (40°C), 4.0 (50°C) mg/mL & & L7z (Figure
43c). 72l WHAEET BRORE) /| (BERE) CTERLE. £220
VR AR D, Eabh TR L 73K (3.84 mg/mL) DiEfIFIEIL24 TH D &
W2 5.

(a) (b)
1.0 1.0 o
— 10 pg/mL -
—— 8 ug/mL | P
0.8 0.8 .
—am | -
g —— 4ug/m g .
%’ 0.6 2 pg/mL 5: 0.6} ed
2 2 .
o 04 = 04F 1
< <
0.2 02
0.0 I L 0.0 el L 1 I ] |
300 400 500 600 700 800 0 2 4 6 8 10
Wavelength (nm) Concentration (ug/mlL.)
()
45F
—_ 4.0 * Temperature Solubility
ERNOll . (°C) (mg/mL)
S 3.0F
E“ 20 1.6
8 25}
2 20F d 30 2.1
= .
g 1.5F 40 3.5
-_— ] 0 -
S
50 4.0
“ 05t
0.0& I I I l
20 30 40 50

Temperature (°C)

Figure 4.3. (a) Absorption spectra of DAST/EtOH solutions with the concentration of 2,
4,6, 8, and 10 pg/mL. The curve showed the absorption peak at 480 nm. (b) Absorbance
at 480 nm as function of concentration. Molar extinction coefficient of DAST was
determined from the slope of the linear function to be 101.7 L-g'-cm™ (4.176 x 10* L-
mol'-cm™). (c) Solubility of DAST in ethanol solvent.

REAFIEE L R EEOBMR. N FBHMEE TR Y A XORRIZE L Z R ET 5 Z
kY, mfafnE (WREE) LREEEORREMR . MdIlc, meafn
2.4 (JREE: 3.8 mg/mL) O DAST/T# J — /LifafnyAii 100 mL - < 0 &
FEEHZLET, $05mmx0.5mm D DAST R 2R L=, Z Rz Ak
DF ¥ /N —|ZINZ, WEIFE 1.62 (2.6 mg/mL), 1.8 (2.88 mg/mL), 2.0 (3.2
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mg/mL), 7203 24 (3.84 mg/mL) DOEWIRAZENTE. ZOBRT ITHIMIE %
BEMEE (Eclipse LVIOON POL, Nikon) % HWNCHEIZ L7=. AR IHEE 1XBIZ2E 1A
226 10 R OFE A XDE BRI (Figure 4.4).

Concentration of DAST (mg/mL)

1.6 2.4 3.2 4.0
30F I T T

2.5 — ’/’¥

20 E”,’

151 i/'

1.0 o

0.5} SO

Growth velocity (um/min)

0.0 ‘ I | |
1.0 1.5 2.0 2.5

Supersaturation value

Figure 4.4. The relationship between supersaturated value (concentration) and growth

velocity. Error bars represent standard deviation (n = 3).

V=P =TT =g ilkd~eAons—T 4 VT DD DERNER. 7
=5 M (A=800nm, Ar=100fs), B =f) (1=800nm, Ar=100ps), FE7/=ILT
WL —%— (A=780 nm, At=10ns) Zx¥L X (20x, NA = 0.5, CFI Plan
Fluor, Nikon) % HV T DAST ffiblC Y EERBH L=, L —P—o 3L ¥ —(X
PRt (WPH10M-808, Thorlabs) & i@t (GL15-B, Thorlabs) Z #7501
THEI L7z, AR ClIE, L—Y—= %X —| DAST fimD7 7 L — 3 v
BE (Ew) O1-100f2 IR ELE. 72 ML —HF—T 7L —> 3 v ORE
[ZDOWTILSEATHIZEDME (13 nl/pulse) Z#HBMRLTZ[62]. —FHE a2t /L —
P—=7 7L —a VOREICHOWTIE, BITHEOET VST 2> TENE
A1 0.69 W/pulse & 2.0 W/pulse & F7-IZHFES o7 (Figured.5). L —HF—MUL
72 DASTHER DR E X A F 2 7 A3 L —W — I S EE  (A1R MP+, Nikon, %1
AR 638 nm) TR LT-. T AT L% Figure 4.6a lTRT
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(a) (b)
35F 35F
o o |
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=4 . 3 .
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Figure 4.5. Influence of the laser energy on the etched area with (a) picosecond and (b)
nanosecond laser pulses. Error bars represent standard deviation (n = 5). The plots were
fitted with a logarithmic function (dark dashed line) since the etched area logarithmically
increase over laser energy when laser pulses have a Gaussian-like beam profile.[57] The
threshold energy for laser ablation was determined from the crossed point between the
logarithmical fitting and the bottom axis.
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(b) Flash lamp I I

Sample

Objective lens

(20 %X,NA =0.5)
Regenerative amplified
Ti:Sapphire laser system

Dichroic mirror

Prdoieminer
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> |
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Figure 4.6. Optical setups for (a) systematic screening of pulse duration and laser energy

and (b) high-speed imaging of laser ablation dynamics.

BHRE (CW) L—F—BHEOZDDEREFEFR. NEYAG L—HF— 25
2 (BL-106SU-FE, Spectra-Physics) 7> 615 b L7iiRMNER (4 = 1064 nm) @
CW L—H—Zx1L X (60x, NA = 0.9, UPLFLN60X, Olympus) % i# U CI&
RO DAST FlEICENIBH L. L—P— U — 2R (WPHI0M-1064,
Thorlabs) & Y67 (GL15-C26, Thorlabs) % A& T L7z, kR ZEHE)
X, "a s 7 o 7ORBOT, sCMOS 1 A7 (Zyla 4.2, Andor) % H V> TH]
B R CHIZE LTz, I AT ~OHEREEZBET 572, DAST fifmnbD CW L
— P —DORHFEE S 9 — M XA 7 ¢ L% — (FES0850, Thorlabs) (ZX > THhH v
~L7=.

ERMEOFAE. fELEIT Y 2 A= o VEER S THZ I OBIE[118, 119112 & -
TRl L7z, 7 v 2 =2 /3R BMEE (ECLIPSE LVIOON POL, Nikon) %
FWTHIZL L=, DASTfidh/ 50 THZ I O3AIL, EIRT (22+1°C, FHxHE
J£: ~25%), Ti:Sapphire 43 L —4% — (1 =800 nm, At =100 fs, 80 MHz, Tsunami,
Spectra-Physics) % /307« ' —7 R & LTz BAEDE M THz IR fE 550
VAT AMZE S THE L2, N7 L o X & VT DAST #lhic 8k
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FRET U7z (BEEARS: ~3 um). L—HF =7/ AL DAST fif D7 7 L—3
a VREME (4.1 nl/um?) [62]8L Y /NS0 0.0088 nl/um? ([ZEXE L7z, %84 L7- THz
WIINRTRTZT T Lo TINEE - 2 A—FL7Z%, 10 mW O a—7
WTH— b ENTNEBMT T F (THz BT A R) IZE L. BHh
7o RffEL THZ P2 7 — U =82 L, HEAIIZ THz A7 b L&,

SA A —T 4 VT EEOERBE. L -7 7L —2a DO DNKIR
ELT7 =4 b —H%— (IFRIT-SA10, Cyber laser, A = 800 nm, At =250 fs) %
Wi, 7oA ML —HF—%%tmL > X (20%, NA = 0.5, UPLFLN20X,
Olympus) #if U CIEHKR T O DAST fhdmulZE KN Lz, L—P—z ¥ —
I ND 74 VEZ—5EHWTHHFI LT, ~A4 70y —T 4 T ORI T T v
27T ENRE LTEED AT (HPV-2, Shimazu) Z HWTHRE Lz, %
F % Figure 4.6b |27~ 7.

BAENT. Image ] Y 7 b =7 (NIS) ZMW{EHANT°a > T A METIDT=8
W=

4-3 L—H—7TL—>3vIc& 2 DAST i RO EE

L—H =TT L — a1k D DAST kO~ 7 a v —7 4 T DT %
Figure 4.7alZRT. 7= b ML —H— (Enx5) & HIHTH L7= DAST f 5o
SRICRINT 5 &, fEsomN b T MCHEINT: (=0 min). 5%, EHFERD
G AR DN BRSO DBAVR A 1T E LTz, R RILE<EaD 7 = A MNP L
— P —MRE TIIRE LR 22D, ~f 7 ui—F 4 U7X —%—7T
T —ya VBBICERT A ENRBR SN £, YA MNP L—Y—T
Tl—varilkb~vArus—F 4 7T, SRR b EMELESD 2
xR L7 (Figured.7b). ZOFERIE, L—V—T 7L —va k> TH
BINOF I~ A T u s —T 4 VT EEBITEL L ERL TS, —F,
Tz ML= —DRDOVIZ CW L—W—% MG L7 % Figure 4.7¢
(ZRT. CW L= — ORI Ko TRERS IR, Rl S AT T
SR ATTORICRE D82 BEE ST, 2L, CW L—F—DfHT
XA DNIRIE TP ICHRRT 2720 THo EEZLND. ZOREIE, ~A
Jay—5 4 VT OFRITIININVAL—F =25 —F—=T T L — g )N
RHITHD Z L Z R LTV,
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(a) Before
iradiation ~ 0 min 15 min 30 min 60 min 150 min

100 © 25m 5

Figure 4.7. (a) Behavior of single crystal generation from a DAST crystal by laser
ablation. A single femtosecond laser pulse with an energy of 65 nJ/pulse (Em x 5) was
shot at # = 0 min to the crystal that was preincubated for 30 min after the preparation of
the sample chamber. (b) Behavior of microseeding from a polycrystal by laser ablation
(E =65 nl/pulse Ewn % 5). (c) Local dissolution and recovery of a DAST crystal that was
triggered by focused irradiation with a CW laser (0.5 W) for 1 min from ¢ ~ 0 min. The
red arrows indicate the focal spot.

4-4 L—Y—F7 I L= a3 VvBBIAM 70 —T 420D L—HF—/R5A—4
RIS DIER

L—H =TT —vailkd~fruv—T 47 Ok’ L—V — Bt
FMEHONZT DD, A7 v—T 4 T TH L —F—2 R F—
B IOV AR 2 RIS _T2. Enx1-100 D7 = A bR, B2
B, 7 /L —%—% DAST #idh Dl TN RE L7 BROMRER 26 % Figure
48 1T, L= =X —NIET 7 L— 3 VEE En EREREOSRS
(Ewx 1,Figure 4.8a-c), DV ARFMIBIZEBWNTH = v F o VHEIT | pm? 72
EZ otz LLRRG, mLVARHERAER S 25 & 10 %< OfEfs a2 H
THMENCH -T2, ZORERIE, L—PF—T Tl —rvailkoTzyTF s
I GIROH D 77 7 A NOBR SV ARMERAELS b %< b &
FHAE —FHLTWAH[78,79]. L —HF—= XX —NHEINT5HE (Enx 10 -
100, Figure 4.8d-1), REfEa2S X0 RIFICHET, Enx 1 (Figure 4.8a-c) D& & X
D H %< OREERNBHTH L7-. Table 4.1 137V A L—H —DOWREHZ K - TR
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Eas DA LSO EZ T LTS, B, L—¥— 3k 30
Il 120 RIS L =, Table 4.1 1%, L—P—= L F—NK&L, 7L
ARFEEN VT S, R OBN 252 L2 LTS, LER-TC, 7
TL—3a VBT (~Enx1) 7 A NPL—HF—FBHTHZ LT, D
BOFRBHTZTENHSEL 208 TE, BREL TV iR EERITE
DAREME A R L TS, F, BRI D L — = E TORR R <
AL, FERESOMEBENEDS Z ENbhots. T, MR EICHE- TR
MIEESNDTI, KL & bICHEIRIRED B U, f sz AR O fE FERE D
REL RDEDELEEBEZLND GEHIZZR). ZofEFRIE, A3 2k
DTV =P =T A —=Z I TR<WRERELEG L T2 &2 RLT
W5,

Femtosecond lasers Picosecond lasers Nanosecond lasers
(@) ~0min 60 min (b) ~0min 55 min () ~0min 60 min
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f r @
o T 8 -
= . @ A . @ i # s
— ‘ “ S S
x B o D P
; e L b 7;3 = » -
s @ W Sl o - t ¥
LL‘]:’ Z <\ ] ’ " ¥ ’ e ’-‘, @ * P

o % i 4 ®
100 pm 100 pm 100 um 200 um

Figure 4.8. Influence of laser energy and pulse duration on microseeding by laser ablation.
A single laser pulse with Emn % 1 ((a) fs: 13 nl/pulse, (b) ps: 0.69 ul/pulse, (¢) ns: 2.0
ul/pulse), Enm % 10 ((d) fs: 130 nJ/pulse, (e) ps: 6.9 pJ/pulse, (f) ns: 20 pwJ/pulse) or E x
100 ((g) fs: 1300 nJ/pulse, (h) ps: 69 wl/pulse, (i) ns: 200 uJ/pulse) was shot to the edge
of DAST crystal that was preincubated for 30 min after the preparation of a sample
chamber. The red arrows indicate the focal spot. Top right figure surrounded by black

dashed line in (h) and (i) shows the image of a crystal before laser irradiation.
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Table 4.1. Dependence of laser energy and pulse duration on the number of seed crystals
that were generated from mother crystals that was irradiated after 30 and 120 minutes

from the preparation of the chamber ¢

Fs (Ar= 100 fs) Ps (Ar= 100 ps) Ns (Ar=10 ns)
1, n, Ny 0 1, 13 1Y 1, 13
30 mm 1 0 0 5 7 1 10 5 10
Ey _
120 mm 0 0 0 0 1 1 0 25 3
30 mm 4 14 0 =60 10 17 =100 =100 =200
Eq X 10
120 mm 17 1 10 >70 >30 4 >40 >80 >60
30 min 2 50 20 =1000 =200 =200 | =150 =150 =150
Ey X 100
120 mm 12 10 12 >150 =100 =200 [ =500 =500 =500

¢ Experiments were conducted 3 times in each condition (ni, nz and n3).

4-5 FEE RO M E S

02 S

FT amplitude (arb. unit)

Frequency (THz)

Figure 4.9. Representative THz Fourier-transform spectrum obtained from the DAST
crystal that was produced by microseeding via laser ablation. The image of the seed

crystal is shown in Figure 4.10a,b

L= =TT L — g Ko T L flifE O B 2 f -+ 572, f#
FEER7 D O THz W ORAZME Lz, Figure 4.9 3L 55 5072 THz A
X7 MV THD (Figure 4.10ab HEM) . A7 LT 08 THz HEICE—7 %
FFo L L HlZ, LITHzEIZA~ZAHARH LIz, ZiLH X DAST i A O
I ThH 5120, = OfERIE, L—F =BT X > T DAST OIERIBTF4E
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PEITHR LW Z L 2R L TWAD. I, 78 A=)V 5 IS CRERS & 3R
pa BRI D7 > TR CERAZ R Lz (Figure 4.10¢,d) . Z AU FEAS & A3 B &b
ThHZEeERLTWVWD., TRHLORERIE, L—F—T 7L — a3 VITXV1E
B L7= DAST OFERE LI PR 2R Lo E S HERRKE TE 52 &
HZRLTWD.

100 pm 10 pm 100 pm

(©  90° 105 © (d)
1 .
0.5 f
120 ° 135 ° g
k3
= !
0
0 920 180 270 360
e Angle [degree]
10 pm

Figure 4.10. The images of seed crystal where the THz wave emission measurement and
crossed Nicols observation were carried out. (a) Bright field images of the seed crystal.
The seed crystal was generated by picosecond laser ablation with £ = 6.9 pJ/pulse (Ew x
10). Red arrow indicates the focal spot. The lateral size and thickness of the crystal were
approximately 20 pm x 18 um and 5 um, respectively. (b) The image of the crystal that
was used for the THz wave measurement. The yellow arrow indicates the focal spot of a
pump beam. (c) The crossed Nicols images of the seed crystal at different orientation. (d)
Dependence of crystal angle on intensity of transmitted light. The intensities were

measured at the point shown in Figure 4.10a.
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4-6 L—H—7TL—>3vic&kde490—F 4 U BRNEEHE

(a) before
mradiation

(b) before
iradiation

10 ps 20 ps 50 ps 160 ps

(©)  before
irradiation 0 ps

6 us 10 ps 14 ps 160 ps

100 pum

Figure 4.11. High-speed imaging of microseeding dynamics. A single femtosecond laser
pulse ((a) £ ~ 13 nJ/pulse, ~ En % 1, (b) E =65 nJ/pulse, Em x 5, or (¢) E = 1300 nJ/pulse,
Ew % 100) was shot to the edge of DAST crystal through an objective lens. The red arrows
indicate the focal spot. These images were captured with a frame rate of 500 000 frame

per second (correspond to 2 ps per frame).

L—HW =TTV —vailkd~Afrav—7 4 JmBEORZER 2 A F 2
A FEMC B S 7260, DAST #tign D L— W — RSS2 &gl gg Lz,
500000 fps THgi L 7 AR e mnd i 228 % Figure 4.11 IR v—#—izw
F— En EIZIER T & X (Figure 4.11a), L—H —MREE% (¢=0pus) |
Y—T7 T L= g JIZDFEE@I/:JC/775>EEJ ST —jfl/‘—'ﬁj‘—i*
VX =N Enx SI272 o726 (Figure4.11b), fEfMmA 7T 7 L— 3 k- T
I‘Yﬁ:‘/féz”bf)kk%;f’\‘“\’tT a U NTANREHK L., ¥y BT —Y
ayﬂfwﬁ4mﬁﬁfﬁk“(ﬁﬁwdmm)K%Lt D%, ¥r¥ BT
— 3 UNTOVIFNE LG, BRIV =y MROFER[FRZ2EREZ R LR S
FREELTZ. BIZL—P—z 3 X—2HINEE 5 & (Enx 100, Figure 4.11¢),
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FORERFYET =23 UNTANERL (RKER: ~ 150 um), DAST #f
B Y BT = a URNTVDGREIZI > Ty F U7 End. ORI,
L= = XN X —NOLRERES DL, FHROL—F—T 71— 3
DHTHRL, F¥YET—a VXTI ILORAIT L DAL & Vo 72 IR
HNRIZE T DAST FEED 7 T T AT —va U RNFEREIND T EE2RL T
5.

47 L—HY—=F7TL—=2arv@ERBIM4 /0 —T 1T DER

T7b—va rBEUL EOZ RV = HTH VA L—— OB IR
Lo TCOBFERERPHLIZZ LD, ~A 70y —FT 4V T DAB=ALEL
LT =Y =T 7L =y a il b 777 A FOREICERT L EEZD
N5, EEROL—F—T 7L — g TlE, BEEREGNST T 7 A BB
HIZeRnmonTnag, oL —%—77 1L —a Ois, mhoY
A ARBAER OB %) 2225 L, WEaFAR T Ot AR &
ELTRET D & TS H[58]. Classical Nucleation Theory (255 < &, SR
BEIILL T o TRHEAETE A[121].

. 2vy

" T ksTIn(C/C,)
Z 2T, viZ DAST 53+ DAFE, X DAST D 3KRILY 7 A X —DFRET FRILF
—, kslIZAR VY~ B, TIZEROIRE (293.15K), C & C i DAST/—=% /
— VIR DY L AR (1.6 mg/mL @ 293.15 K) Th 5. v ITHA M AT

(2098.2 A) (Zk}9 2 DAST 014 (4 hFA > -T =A==y MNEMIE) »
5 5.25 x 1028 m® EHEE L72[122]. EETHR/LF— () ([ZBIL TiE, DAST/
AL ) = IVIEIRFZ D DGO BEHME (~ 3 mJ m?) [123-126]2 &M L 72
DAST &R DIRE (C) 1% DAST ORGSO HE (Figure 4.2) »HHEE L
7o, ABFIETIE, AERREL 5530 70 & 120 7577% (2 DAST fdbicxf L T L —H
— & W& L7=. Figure 421233 < L, ZD & & D DAST fish DO FEEIZZ N
ZH#~ 1.5 um/min (¢ =30 min) &~ 0.3 um/min (¢ =120 min) ToH 5. KEHE
vs. DAST MEFEDEMEE 7 4 v T 4 » 7R S (Figure 44), =D L&D
DAST IHIR DIEFEIZB R L Z 3.0mg/mL (1=30min) & 2.2mg/mL (=120 min)
ERBOLDZENHEKD. LEN-T, REBRSMETIZHET DAL R
A2 12nm (¢=30min) & 23nm (=120 min) LEHENZ. ZOKRKE X
%, FNEi~148 (t=30min) &~991# (1=120min) OHFF -7 =F > =
= MY T2 (Table 42 HEIR). 20X 5 ZREERERGEICLE O BE R A 80
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AL, B S L — Y — S FE TOREID R < 72 21 h TR O
HEN BT 5 Z LICERLTWD EEX b5 (Table 4.1). $72bb, il
L —P—T T —va T3 —EDVA XNMORERABER L, B
LREBATOBPHERTEDN, ZRUTObOIEMLTVDEVZD.

Table 4.2. The relationship among supersaturation, concentration, critical radii and the

number of cation-anion units in the critical cluster.

Concentration . Critical radius ~ The number of cation-anion
(kg m) Supersaturation (nm) units in critical cluster
1.60 1.0 - -
1.76 1.1 8.2 4343
1.92 1.2 4.3 620
2.08 1.3 3.0 208
2.24 1.4 23 99
2.40 1.5 1.9 56
2.56 1.6 1.7 36
2.72 1.7 1.5 25
2.88 1.8 1.3 19
3.04 1.9 1.2 14
3.20 2.0 1.1 11
3.36 2.1 1.0 9
3.52 2.2 1.0 8
3.68 23 0.9 7
3.84 2.4 0.9 6
4.00 2.5 0.8 5

WICL—Y =T T L —r g vk~ Aras—7 4 o 719 5200 AR
BOMBIZE L CiEmT 5. 7ob Mo apo L ) RdE LA L —3F—
kBT 7=y a i, ~A7uv—TF 4 U7 EREBICHET DAL T
borEZLND. T7L—va B0l —P—ox L F—D7 =
AR L —YF— 2 HHRERICIRE 5 &, QB TR &R L o TEWE
PRSI EF L, BRSO 25 2 RS I TW5[77, 79, 127]. 2O
KO T A= IN VL=V =T T L —2a VTIEINNT IR T T T A R
B S D 72076, 771, FhfS S O HED N A 64 TRAR b 2 FR L 09 <
RHEBEZLND. EE, JATHIIE L [FER[ST, 58], E~ExnC7 = ML —H
—T7 7=y ard bl LT, TyFUTMEE (~1um?) HIFERCYA XD

44



TITAY RO D Z EDRERTETZ. ZOLIRANNVITIRT T T AR
%, BAEERERLNICEZTERY, FEERToFRIZITEY Th D v i
L. MAT, BE VAL —P =L —P =TT L —vaii7+ b Ab
=MV CHEIT T A7, U TS T AR E A — U R/ NRIZT S
ZENMKD. LR oT, mamELREELRAFRTCEIRBELD D
(Figure 4.9). BT, EE/ VA L—F =LY TIEZ NIl 2 2= &
KHRTDHZENTE LD, BFRR LNV OEMSHE (~um?) THEKEZ
IMTF 2% Z ERHRD[99]. 2D X5 i VA L—HP—o 3R SeIN TR
DAST Z#b & LIz S E S ERBFWNAA A~T U T T ONT, TGRS
ERLUCEHEBCTE A EZE 2 TS, EE, 7oA ML —Y—T 7L —2 3
2k D 3 W IEMEZRIHAT D Z & T, SN 5 T Bt Z2 BT D 2
IR LTV D (Figure 4.7b). —J, 7SV ARFEIENE < 72 % & DAST OFf#
FERBEDNEINET D ERNbroTo. T BL—Y =T T L— g U TIIME
DR HIEIZ L - TT T L —varRslERz s, £<DF ) A— L
ARXDT T T AL MINFHEIND Z ERMLINTWD[T77,127]. ZD X577
+ MY —< gD L —F—T 7L —3 3 T, Bz E~ En T %< OFffE
p T 5137 CTh D (Figure 4.8bc). Fiz, L—PF—Z X LF =N En LY
B RELS 72D E Bl >Enx5), ¥ ET— 3 UNT U I DHERIIH
WMOLRERDO 7T 7 A MBI ERZIT L1025, iEE» L —F—x %
NEX—TOT 7 L—v a3 BT, REmARIFIZEIL TS < O S B3HT
MLz FREKThL EE2BND. U EORREEZEEXD &, E ~ En
DT =h "L —HF—T T L — g ko TEWRZ A= BT > o038
OFEfEILZERICE AL EZ NS, 2k, EEE T30 7 7 DAST H
fEmOERIZERCE 5 B2 b 5.

4-8FL®

AT, L—Y—T 7L —rar& U A—L L7 DAST fidaD~A 7
ny—7 4T EFEFEL. LY =T T L=y gl o T EN=T T
T A I FERSE LTCRET A2 E R R Lz, Mk Tr 71—y a &
NAEm A ICHRT 201 bbb 67, Bk & MBI F R (77~
VIR DREA) BT ENDboTE. ZhiE, BESLVA L —P— T~
DHERA=VEMAONDLZEICERT L EEZEXND. A7 uv—T 47
WO ERBIZENS, L—F—o XA F—RNT7 7 L—3 g VEME LY bR
ICREWEAIEL Bl >Enx5), oL —Y =771 —a 215 chl, &
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YET =T a RN T VORI~ A 7 a s —T 4 VT EHET A &
R L. Zhid, b—P—o R X —NE & S SN 5 2 &
WS L Wb EEx NS, 7oA MNP L —YF—EFEappL—HF—F 00
L—P =L R TENFRIEREICENLTWD D, ~f 7 av—T 427D
ZE AP TN D, %W,7;Ak@V~# T L— g il ko
T%ﬁaaﬁ‘%@ﬁﬁaaﬁﬁﬁ%%aﬁf%71. Yoshikawa 51X Z AV E THA 0 F
B RS AT U T LOREREEZ L —F—T 7L —a il ko TRES Y
HNDH T EERLTELS9-62]. LEEN-T, L—HY—=TT7 L —vailLd
~ A7 —T 47 R EREE A G DY D & T, ERIETIIE
N2 & E - 2L DAST A 2 FRTE 2 L HIFFL TV D

AEOHBRIZHIET HRERX

Hozumi Takahashi, Megumi Shiraiwa, Valynn Katrine Mag-usara, Ruochen Dai, Verdad

C. Agulto, Kosaku Kato, Makoto Nakajima, Mayu Yamaji, Seiichiro Nakabayashi,
Mihoko Maruyama, Yusuke Mori, Masashi Yoshimura, and Hiroshi Y. Yoshikawa*:
“Production of Single Crystalline Seeds of Organic Nonlinear Optical Materials via Laser
Ablation”

The Journal of Physical Chemistry C 127, 14005 — 14012 (2023).
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BSE
JzLbL—Y—FIL—>avItkd

1) O DR D % R AR ER S B ZE i il 1]

51

ST & OB R EZE T 5 Z ik, RS, BEiRYER, HEkE
F, RMPICEERMR 25257 OMBOCEHEECTHS. MAT, Baoy
B LR (B AR, BlUR, NA AT AT E VT 1) IERICHIK
52 ENMbBNTEY, LEHIETFEORBIIREN, B3, EIELEEIC
BWTHEEZED TS, ZO L) RIBROVET - FEEXENDOBLE)N G, FHiR
BOFBE A M3 5 - OISR 2 55 MICBILE T 5 Z LI3ERICEETH
L. ZHEEZENRT DI, ZAVETHFRITN[128-130], R GIFH[131-133], J&H
R O EHA[134, 135], KIEDHINN[136-138], JERRH139, 140] & V- 7= HIl %
RN BN A A Z & THERE 2 R ZZ AT 2 AT T 7=, L,
LG, SRR D Z2 IR E OFIFIC L > T, ZHhbDOFETITIH- A0 E
MODLARER ZFHET 52 NN TH Y, HIERERE L FEMICBET 5
ZEIEEE LY. — T, LY —T T L— g I A FERER o E R ZE R
FECMLTT A ENTEATOLBMHEEO N T—L LTHIFFTE 5. 4F
2, BEASVAL—Y—T T L— g K AWEINTLTIE, F0OEN T4k
BIOT 4 N AN =BV T 7T L— a RS, FERVND SR TR R
MEVINT N AIRETH 5.

AWFZETIE, 72 ML=V =T 7L —T a0 3 R THEMZ2 Fuv
52 & T, ZIHEBEBORFZEMEIEZFEZFELL. oo LT, &b
NIRRT R JBMEICH L7 R RWE. UV ATEMSY T Call, BIE,
YIEDHTHT 5 Z E 6N TEY (Figure 5.1), F OB 2R EMEIZy>a>
B DIAETH H[134, 141, 142]. ZD X I BREBIOZEENS, 7V ¥ XL
FROET LAY & L TR WS TE72[18, 134, 135, 141-145].  AAFZETIE,
FRZEHEME Ti:Sapphire L' —W — 3 AT A ELNZ 7= A ML —F— (1=
800 nm, Ar=250fs) XL o XEBE L TPV v U fbamIZE IR LT,
Z#UX Wang & Sugiyama HI1Z L%, E#EEL 7 = A ML —HF— (80MHz) %
WEBET M) 7 AREROENBE T2 LT X7 v —>F 7 VOLBALRS &
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FERE LI SeATHRZE & I RO T 5 [146]. AEBRTIX, 7SV A L—PF—D 7L
TUAZEME (Fa) £V bDOFNICERET LI LT, RFTIRBIEZT-
7o, FHEBEERIDEFEMEEEZ VT v A= 2 LR T ORI L.

(aﬂ (b) ©

Figure 5.1. The crystalline structure of (a) a-form, (b) B-form, and (c¢) y-form of glycine
crystal.[135]

52RO ran

HBEHRL HIRD 7Y v (> 99.0%, wako) ZAEHETICHWE. B DO Y
Uk, REEF 7Y VUK (~0.7mol kg, 1 g DAKIZK LK 50 mg D
Vo) &A% 77— (>99.5%, Wako) & IAFEML 1:2 TIRE S Z & TIERI L.
/ol BIEZ Y v URimE, BROZBESOEITZRET 7ol y /) —
JVIEHET (> 99.5%, Wako) I[ZIRTELTZ. ZORETFTIE, BIEZ Y Vo fbidhix
Dip &b 1 HEITHEBERET LR o7, a B0 Y VUi, i
7 IKERIR (WIVEEE: ~4.0mol kg, 1 g D/KICK LKI300mg D7) v 2) %
Do VARREEDLZLETHEZ. yJBOZ Y VU EIE, 0.75 T %SEDONREE
T hU DA (>985%, Wako) & & ATZEaR 7 U o AR (~ 4.0 mol kg')
HFLNTE. ZNHOREMICONT XMETHES Lk 24, BT EHNE
1TRZEDH D & —F LTz (Table 5.1) [147-149]. 2 b7 ) v o fldha H
ED T Z RV ayIANTTADY Y R4 v FRF ¥ o R—|CEX, LD
EERTHW .
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Table 5.1. Lattice parameters obtained by XRD measurement.

a-form a-form p-form B-form v-form v-form
(reported!*!)  (this study)  (reported!?S)  (this study)  (reported!?6) (this study)

a(A) 5.102 5.098 5.077 5.091 7.037 7.037
b (A) 11.970 11.969 6.267 6.267 7.037 7.037
c(A) 5.457 5.464 5.379 5.379 5.483 5.476
alpha (%) 90.00 90.00 90.00 90.00 90.00 90.00
beta (%) 111.42 111.67 113.12 113.14 90.00 90.00
gamma (°) 90.00 90.00 90.00 90.00 120.00 120.00
Volume (A3) 309.6 309.9 1573 157.8 235.1 2348
Space group P2,/n P2,/n P2, P2, P3,orP3, P3,

FERD U—F—ILTORODEBRIEER. REBRTHWL TR % Figure 521
9. FAEHANE Ti:Sapphire L —%—3 25 A (1 = 800 nm, Ar = 250 fs, IFRIT,
Cyber Laser Inc.) ZXJRIZCH W=, oz L —F— UL 22 BMEE (IX71,
Olympus) (ZEAL, %L X (UPLXAPO 10x, NA = 0.4 or UPLFLN 40x, NA
=0.75, Olympus) ZHUTH TS LIz, BB Y L UfmDT 71—
a VEMEIL, ATHFIEDETIV[STIE VT 64 Tiem? & BFED Hiviz (Figure
53). ZZC, BN ETORMEEIL Rayleigh DXHUE (0.61 x UNA) 2> HHEE
L7z, 74 NI b —¥—II1Li%, UV L —H%— (1=266nm, At~ 10 ps, 200
kHz) #HW\WTiT-72. UV L—HF—F— K (1 =266 nm, At ~ 10 ps, LDH-
2010, Spectronix) % CLBO ffifh CHEZ# T 5 Z & TH7Z[150]. UV L—H—
[T X (f= 50 nm, SLSQ-30-50P, SIGMAKOKI) % HW\\TH o 7 U2
SHU7c. tHERBWRIX, 7 e A=a3 V&M FTH AF (DS-Fi3, Nikon, DS-Ri2,
Nikon, Floyd, MRAYMER, or iPhone 12 mini, Apple) &AW T#EIZER L. L —F—
MG S 7=k O R iTEEMNE FBEMEE (JCM-7000 NeoScope, JEOL) (2 L -
THEIZEL.
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Halogen lamp T Crystal \

Cover glass

Polarizer ~
Cover glass P l Focused fs laser pulses
Silicone rubber T

Cover glass

Microscope stage

Objective lens
(10X, NA=04 or
40 %, NA = 0.75)

Ti:Sapphire

Dichroic ¢
mirror Laser System
Analyzer /=800 nm
Camera
(b) Cover glass —e

Silicon rubber Focused UV laser pulses

o

Convex lens Crystal \
(f= 50 mm)

Dumper

Cover glass

Prism

Nd:YAG
Laser System

/=266 nmn /4 =1532 nm

/=532 nm
Figure 5.2. Optical setups for laser ablation with (a) near-infrared femtosecond laser

pulses and (b) UV picosecond laser pulses.
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(a) 64 J/cm‘ 128 J/cnr 214 Jem?*  (b)  so0F
Y AN Y .
g\ \\ ;:\*\ ' \ \ oo /o’
\\ \ \ \“ A Ni 300 - ’,9'
S 200} ¢
321 J/em?* 428 J/cm‘ 642 J/cm? =
"\"\ a3 NS Y S 100} I o
\\ w ' = » o--"®
h‘ . K Otz @71 P
\ i . ‘ \ 5 5 6 78 100 2 3 4 5 6 78 IOOO
S _ Laser fluence (J/cm?)

Figure 5.3. Estimation of threshold fluence for laser ablation of glycine crystals. An
objective lens with NA = 0.4 (10x) was used. (a) Bright field images of etched area. The
scale bar represents 50 um. (b) Etched area as a function of laser fluence. Dotted line

corresponds the fitting with a logarithmic function.

TIVARY MVORIE. 7)o D T~ o 2RET D720, FH Ok
FPR L —H— (1=488 nm, Sapphire 488 LP, Coherent) % %[#)L > X (CFITU Plan
Fluor BD 50x, NA = 0.8, Nikon) % JHWCTH > 7 /MTHENIRE L7z, HELEIX
AR fL A —H— (ACTON SpectraPro SP-2500, Princeton Instruments) 7% i U
TWH CCD 4 A F (DU420A-BEX2-DD-N, Andor) (Z & - CTHIE L7z (Figure
5.4).

Halogen lamp -

Cover glass e I
—

Silicone rubberA 1
Cover glass .
Microscope stage

A=488 nm

Objective lens

(50x, NA=0.38) CW laser for Raman
Spectroscopy

Cooled
CCD
camera

Half-mirror Notch filter
(A =488 nm)

Figure 5.4. Optical setup for Raman spectra measurement.
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ERARNT. Image ] Y7 h 7 =7 (NIH) IZX»> T, Hfgd =2 b7 R ML,
EGAEAT, B X O fE g O ER AT > 72,

53 L—H—7JL—2 3 VT & B EHBEBOHE

Figure 5.5 2 P2 U & U DOEMEIC T = b ML —HF —BFME L 2B
REGIZRT. MalE7 e 2A=a b JEFTBRE L. ZhiX, ZHEERD
HITE O EEDENNSBETE I THS. L—V—HHERL (t=0h),
BRI Ty F U IR SN, 2Dk, AN L-EERT yF 7
MHHEI, 5 RN TR EERAR L IZIEN o T2, T2 HIc T, Ang
Dolzf8E B IEL Y LENZICLZER a TBO TV v i ERE LT
(Figure 5.5b, U 77 L' > A AT hUIE Figure 5.6). ZOFERIE, 7= b b
L—HF— OB L > TEEHIEEENFEINTEZ L EZR L TWD. Figure
55c ICETEAMEBHERD L —F — 7 Lo ARG A 7. SIMGEBIT L —
P—=T TV —arO7 NV AFEL ETOHE Z 572, Pearson O y* FRE
(P=5%, JMEEEL: fERIZZITRY) 26, F=21Jcm? (< Fy) & F=214
Jem? (33 x Fu) IZBITOMERIIIAEEN DL Z L 2R LT ((1)=4.03,P
=447%). ZOFRIL, L—VF—T T L — a3 VREHHEEBO N T—Th
HZEERIBLTWS. BIELL RICBW T, MERITGED ERLER, snr
NEVAZBOWTIRIZEA LT 52 LN bho7z (214 Jem?: 9%, 1069
J/em?: 59%, 3208 J/em?: 62%) . Figure 5.5d (2 ARSI E ORFEFHT — Z &9,
FHERR IR 13RS R O B T s » TEMEL Lk (F7eX=arlg) o
SN DB Uiz, SEHEE L 142+ 68 um/h (n=13) ToH 7=, Student D t iE
226, B—a (190+179 um/h,n=10) & B—vy (332+232 um/h,n=3) DOIHIERE
WEORIITAEBEEN R ON o7 ((11)=22,P=33%). i1 5HDHET,

[FREDOREBISEE T LU — Y —RE 21T h e 2855 OBERE L 1IZIEF%ETH
%[135]. A Emox=yF o 7z, fEailmo = v F 27 (Figure 5.7a)
RUIWHE 5> (Figure 5.7b) MO bMEBEZFRL T 2 L2 A LTz,
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Figure 5.5. The polymorphic phase transition of a B-form glycine crystal that was
triggered by laser ablation at the top surface of the crystal. (a) Schematic illustration of
the laser irradiation experiment and the crossed Nicols images (upper) and binary images
(lower) of the phase transition dynamics (B to a). A single femtosecond laser pulse was
shot through an objective lens (10x, NA = 0.4) at =0 h in air. The laser fluence was set
to F'=1069 J/cm?, which is 16.7 times larger than the threshold fluence for laser ablation
(Fin = 64 J/em?, see also Figure S2). The yellow arrows indicate focal spots. Scale bars
represent 0.5 mm. The white areas in the binary images correspond to a-form that was
transformed from B-form. (b) Raman spectra of glycine crystals before (B-form, dashed
lines) and after (a or y form, solid lines) laser ablation. Reference spectra are shown in
Figure S3. The shape of Raman spectra is good agreement with those in previous
studies[41, 151]. (c) Dependence of probability of the phase transition on laser fluence.
The phase transition that was observed within 1 hour after a single shot was counted as a
successful sample. The fractions shown above each bar correspond to ratio of total tested
numbers to transformed numbers. (d) Statistical data of the phase transition velocity.

These experiments were carried out under the relative humidity of 40 + 5%.
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Figure 5.6. Raman spectra of glycine crystals prepared by spontaneous nucleation. The
intensity was normalized at the peak around ~ 3000 cm™'. The shape of Raman spectra is
good agreement with those in previous studies [41, 151]. The sample preparation method

1s mentioned in the experimental section.
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@ 7=0h t=0h  r=18h (b) r=0h  7=20h  7=40h

Figure 5.7. Crossed Nicols images of the phase transition dynamics of B-form glycine
crystals that was triggered by (a) laser ablation of crystal edge and (b) laser cutting. A
single pulse (a) or multiple pulses (1 kHz) (b) of a femtosecond laserwas shot to crystals
through an objective lens (10%, NA = 0.4) at = 0 h. The laser fluence was set to F'= 1069
J/em? (16.7 x Fy). The yellow arrow and dashed line indicate the position where the laser
was shot. Scale bars represent 0.2 mm. These experiments were carried out under the

relative humidity of (a) ~ 30 and (b) ~ 25%, respectively.

Flo, 7z A ML=V —DX N FIEREEZBEET S22 2T, BB Y
GRS O R EE A FEHL L= (Figure 5.8a). Z D X 9 7 iEShNiEL 72
T OREEIL, SIFRBCPIRERIE & W o T ERIE IO TR#ETH 5. L—
P—TNZ AL, 77—y a EELY BHOTNITRKENV 150 Jem? (2.3 x
Fu) IZRE LT, HBRENZ LT, ZIMHERITHOEN AN DD < )T
L7c QK Z & ICHE Lo REE £ 02 — 2.5 ym/h). £ L CL—H—H
B8 8 FEffL, MBI EIICINE L. £ OE#HE T, IErcit
NT 50 E#E D o2 (~100pm/h). ZD X 9 7 TEEOMERB A A F I U R
(TG mRE A~ L — =N TIIBlE S > 7 (Figure 5.5). Figure 5.8b 1T
FEERZRE D OMEYE DR S MBS 5 %4 2V 7 ORERT.
RS T2 & A 2 7%, BEHEONENEL 225250 TR DI
& o7z, Figure 5.8b D7 1 s OFIZIELIHIHR G, FHEEE O BB AR HH A3~
0.4 um/h EHEH STz, Z OB IR O K7 [0~ DB E FE & 12X A
UA—F—Thol. TNOLOREIT, MHERBIIFMEREICEST S E THEN
TP VH#EITTHZLERELTNS., ZDEHIC, 7=xh ML —F—
T L=y ary® 3 WL TREIC LY, 7V 2 OZ A B DAL
ERAE (NES - i) ZRAHTZ &N TEZ.
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Figure 5.8. The polymorphic phase transition in a -glycine crystal that was triggered by
laser ablation at inside of the crystal. (a) Schematic illustration of the laser irradiation
experiment and the crossed Nicols images of the phase transition dynamics. A single
femtosecond laser pulse was shot through an objective lens (40%, NA=0.75) at t =0 h.
The laser fluence was set to /= 150 J/cm?, which is 2.3 times larger than Fn. The yellow
arrow indicates a focal spot. Scale bars represent 0.2 mm. The polymorphic phase
transition of B — a was confirmed by Raman spectroscopy. (b) The relationship between
the depth of the irradiated area from crystal surface and the timing of acceleration (see
the main text for explanation). The dashed line corresponds to fitting with a linear
function. These experiments were carried out under the relative humidity of ~ 40 %. The

transition was induced twice (plots with depth > 0 um) out of three trials.

5-4 STRHAHEBERDER

FT, T2 A MLV —IC L DZEHIBBFED A = X AIDONTEL
T5. ZVVrOEBMHERIL, L= D7V ART T L— g VEIE
BBAT-LEEORE 72 L (Figure 5.5¢), L—H =77 L — g R
LA O N H—ThHHZ L3N THDH. A EIO L —F—T7T 71
— g VOREITEE T4 Y —~L, T NFIBN, T NAB= AL
RIERICE > TS, Zhbn7at 23,0 ARIECEE 72 & OkEx
R =PRI RA—=HURFT D, T T L—va VEEICTW T L 2D T
A ML= —Z2RKF LGS, BFZO7 7L —a UL T+ M AT
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=T RACKEEND. TbE, MEHILEMKIE (F 2 X555 -
WRLLT) TEGEMEILS O R X 0 IR E T 5[63]. HIZL—HF—D 7L
TUAPEEINT % &, MEtO@E - FiE - A AkpFREISh, L—Y—T7 7
L—2a b OBENR T3 A=WV Tav AN 75 hh—</u/7 % b7 3
Tt ANEBT D EE, o FUoEEE V- =T L ADB
B, F=300 Jem? TS CHEREEOEMNALNTEY, ZhE7 7
L—a AR DO NV AT T T NA T =Tk A6 7+ b
Y=~/ Tk NI INTaREANEEL TSI EEZRELTVAH[152].
F7o, EEMEFEMSEIC LB IR ORmEBLE LI 2 A,
F=214J/cm? (Figure 5.92) TIXELE ~2 um OHF| 2T v F 2 FIREDBE SO
2L, F=1069,3028 JJem? (Figure 5.9b) Tix XLV I 7aKmnA ol %
FBAREBRILIELLD 7V AHKTHBIE I N &b, 74 Mh—~L,
TH M IBN, THRAB=ZIALDONTNENT ) U DEAHEEBO R Y
H—IZ20 9D EERBLTND.

W e

50 pm 10—11111

Figure 5.9. SEM images of the surfaces of glycine crystals after laser ablation. The laser
fluence was set to (a) 214, (b) 1069, and (c) 3208 J/cm?. The yellow arrows indicate the
focal spot.
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EEE, ZNETWHL ONDOEAITHZRIC T = A PP L —HF —HEHNC X 52
FERBED A B = X LANWEIN TS, FliE L —Y—E—=2 7 D T,
L—W—T 7 L— 3 N2 Ko THE S A ERE & EER THILD 2N
AT D RS S TUNH[153, 154]. Asahi & Yoshikawa 51, $i7 % o
T = OEERERE 7 2 A ML= =T T L= a L LTI T A b E
MEgse, I0EWL—YF—T N A TIZT T A L NOLENITLO L
DONLEATHZ 2R LZ[76]. ZOfEIE, 74 A= L7t
ML L TV D ATREMEZ /R LTV D, BIZ Wang 11X, mffukL
JAWE D 7 = b L —V—Z RS LB O RFTAR)S, WEBRT Y v AD
TX T N> T NAEBEED 7 77— A NAT v T o TVAHEREL TS
[146]. F7z, KD 7 = A "L —F =T T L — 3 TiE, 1K (F:
SEAMENL) BT 5 Z ENMBNTEY[59-62], Z0 X5 KT EE
DIEREYA L7205 BH[155-157]. 2D LIS, 7=b WL —F—T77 1L
—va I F U TDR, 7T AT —vay, K RIEOIEEL,
BE LR, O LERBRENRT VU OZBAHEBED b T—Illxo72 5 2
bid.

WIZ, MmN OSSN RE LV HEVEBIC O W TEERT S, T
WFIEIZBNT, 7V v U DS TR 0 DB E IR < KFET 5 2 L 3
XN TUVWA[134, 135, 148, 158]. Bl 21 Isakov & 1%, FHXHEEE 23 25%% FA]
5 EZAEE B —y) PABICES RS2 &2 R L7[158]. —JF Jiang &
1%, FEXHBENE L RDICoN, ZMHERE BoaE/idp—y) OBEENHE
<72% (30%: 24 pm/h, 50%: 126 — 312 pm/h) & LTV A[135]. £720 618,
FEERDJE D &2 I R T IVA ANV T 7o T LB EE DN SHMICES 2D 2 L A
L7 (0.015-18 um/h, B — aorp—y) [135]. AWFZRIZEBWTEH, fidmx HZE
fb& (~1kPa, Figure 5.10) (T < & FHESREIE B 23 dib NI O AHBRRS B (Figure
58) CIFFAFICETEL< L2 RN L (~03 pm/h). T HDORRIT,
REHPOKGFPREBOEITEZFIIT L THD 2 EE2PEICRLTNS. B
BTV v oGl XA 2 3728 (Figure 5.11), RRFOKGTFIET Y &
CAESORMICHEICNE TS, AT, 7V ¥ Ukididkics Ui
UARRME 2 7R3 728 (~ 240 g/L at 25°C [159]), FEEREBMED 7Y ¥ 13Ky
FTOWEICIVEEZSLT 2o TWVBIEETTHD. 29 Vo ERIC K Y MR
BlIKkgFickoTREEND EEZDND. LN T, NG CHIEE
RS VB & Ui, fdmPNEBIicKo 0307 nZ EICERT L EE
n5.
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Figure 5.10. Crossed Nicols images of a B-form glycine crystal that was incubated at the
low vacuum environment (~ 1 kPa). The scale bar represents 0.2 mm. The solid and
dashed red lines indicate the region where the phase transition was already progressed at

¢t =0 h and where the transition was progressed for 0 h <7< 164 h, respectively.

59



=0 min =20 min =30 min

=40 min =50 min =60 min

=70 min = 80 min =90 min

Figure 5.11. Deliquescent behavior of a B-form glycine crystal. Water droplets were put

0.5 mm

in the sample chamber without contacting to the crystal.

—J7, BB OB H D ROVHEES I, MaREoMIEgB TH D L
Ezohd., TOHHEO 12& LTE, HESNIZAHIEEEED (~ 100 pm/h),
FEERR O T 7 L—3 g  ORBRICHIE S VAR OB (Figure 5.5d, ~ 140
um/h) LIEEFEUENLTH L. £, ToF L T OMENEL R DHIoRT
FRERRE DI 2 A X I3 dE< 725 2 &b (Figure 5.8b), MIRIZIIT D ikaaER
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OB BERERLE T TS, B, RO 2fafmn sV r/msg ) —v
W L1234 (Figure 5.12), Figure 5.8 D X 9 72 BARE 72 2 B O FRERRE 258
NSNS otz 2L, ZV i3y ) — st L ThEVIRIT A
W2 (25°CIZEBWT 80 fFIF EKR LD H/hEW160]), 7V > 2o F13RiE T
LHEVEIK Z NSRS, FRIC K o THEBBEERSRSAEHO b D & H~
TR o Tl EEZBND.

t=0h t=10h

Figure 5.12. Crossed Nicols images of the phase transition dynamics induced by laser
ablation of inside of the crystal (~ 5 um from surface) in saturated ethanol solvent. A
single femtosecond laser pulse was shot through an objective lens (40x, NA = 0.75) at ¢
=0 h. The laser fluence was set to /= 150 J/cm?, which is 2.3 times larger than F. The
yellow arrow indicates a focal spot. The scale bar represents 0.1 mm. The transition
velocity that was measured every 5 hours was 3 — 12 um/h, which is approximately more
than 10 times slower than that in air (Figure 5.3). Note that the propagation of the
transition was still slow (~ 12 um /h) for 20 h — 25 h where the transition front already
researched to the crystal surface according to the transition velocity in crystals shown in

Figure 2b.
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Figure 5.13 1%, AFFEDOT7 = b ML —Y =T T L—aickp 7V
fiti il D ZTARERRE O EKAE (REEIIAR) 2Dt THD. M
T OHEIZBWT, ZRMEBRIET 7 L— a VIENDIRE 72, Figure 5.5 &
Figure 5.8 DFERITHES &, LI DR E OEIG 1308 LR 1 & dh
N TIRIEFER T D B2 OND. =y T I RnkEdzRml JJ_ L7-%a,
REF DK FIZFPT SN TR E I TERHEIEMHT S (~ 100 um/h)
Fry F 7 BREMNEBICALE LTS, fmNEo 7 U o v iEzExf o
KT DEBEEZTFIZ W, FHEEIXIEE 71 <‘:7J<3;ﬁr'1/\ ScH Uk
TWWoL Y a2 (02-25umh). =L T, HEBBNEREmIZET D &,
MR OIS IES NS, 20k 5, 7=L ML=V =TT L —1 g
D 3WILIM LA ZBRET 5 2 & C, HHEEBEEOZEE LT Z LAk,

Crystal
Phase transition rapidly
Fs laser irradiation propagates at crystal surface
at crystal surface (~100 pm/h)
b Crystal
¢ .
]
<, =
* P
2 v
- Phase transition proceeds
Fs lalser irradiation slowly in a crystal
at inside of a crystal (0.2—2 .5 um/h)
Transition front reaches Phase transition rapidlv
1aiiali 11 11 L 1d 18 Lw - :
to ervstal surface ropagates at crystal surface
L Tyoaldl sUll Lele - -
) (~100 pm/h)

Figure 5.13. A schematic illustration of the process of laser ablation-induced

polymorphic phase transition from (a) surface or (b) inside of glycine crystals.

62



5-5 thFiEx L DHE

=10 min =20 min =50 min

(b) 1.0

—— Ablated area
—— Surroundings

0.8

0.6 —

0.4

0.2

Normalized intensity (a.u.)

0.0 | 1 |
1000 2000 3000 4000 5000

Raman shift (cm?)

Figure 5.14. Photochemical laser ablation of a B-form glycine crystal. (a) The crossed
Nicols image of phase transition dynamics in a B-glycine crystal that was triggered by
cutting with a UV laser. UV laser pulses (£ = 0.5 uJ/pulse, At ~ 10 ps, 200 kHz) were
shot to the crystal through a convex lens (f= 50 mm) at # = 0 h. The yellow dashed line
corresponds to the position where laser was shot. Scale bars represent 0.2 mm. This
experiment was carried out under the humidity of ~ 65%. (b) Raman spectra of ablated
area and surrounding area of the crystal. The broad spectral shape that was measured at
the ablated area is probably attributed to fluorescence of photochemical products that was
generated by UV laser irradiation. It should be also noted that the polymorphic phase
transition of B — o was confirmed for all trials (6 trials), which is coincident with a

previous study with a UV lamp.[161]

WA=, %44 (UV) 2L 2 L—H%F— (1=266 nm, At~ 10 ps, 200
kHz, Figure 5.14) IZXBAfmMEmDO L —F—T 7L —Tarbito7-. 75 &,
TR T = b L —Y—T7 7 L —3 3 > (Figure 5.5, 5.8) & [AARICFRIERR A3
FERENDZEDSNoT-. UV 2L AL—HF— L5 7 7 L— g VEITA
WO E R LT Enn, (PRSP FEEL TS Z EZRLTWND
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(Figure 5.14b). ZHIZHBEDL BT, 7= b ML —F—DFE LA (Figure
5.5,5.8), FHEERBIIEINHE DIGE O ERAESEL To7z. L, 7
U3 UV L—Y—DiE (1=266nm) ([ THRWIRINZ R 7260, FEiLRE
DHT T —a YRR THDH. M, 7V id7 = ML —H—
DR (A=800nm) (Zxt L TXEAEEZATHS. LB ->T, 7=Ah MphL
—W—=T T L= a YOS TRERE AT D 2 & T, SRR O
Z 3 IRGUHNZKEEICHIE 5 Z L3k D . F72, v —F—T 1 X & B
BHIZB T 27 7L —rva VEEOED &0 RICERETHZET, 77—
3 UEEEENEE L NVICETR/AIMET 5 2 &K D, Lo T, <A
7 v A — NVAT—)VOZERGIREE CHEBER~ORIME 5 2 b5, B, Z
DEIBMBERERBIICLD L= =T 7 L — 3 T, HEfBEEO X 5 2B
DEFBNKZ SN2, = F 2 7 D22k BE 1L HRE B 0 07 A3 8 58 1R 5
(80 MHz) £V &JFBIRICHEND. EEE, ZOX 5N T7 = M L—F
—7 7 L— a3 r® 3TN TRHEIC L > T, fEEmPE TN 1 um O
v F U TN SAEE LT 5 Z LIk LT D  (Figure 5.8). 2D X
O IR ZERIREEENE, A T I K ARV (Figure 5.15) 72 oo F
ECTEATLIZ LIIMOTRETHY, 72 ML —HF =T 7L —2 3 0
LA DR 72 3 oI ZERIFICAE TH DL Z L 2R LTWA. LR
ST, RFETEL BB OZIEARERZE) 2 52T 2720 D FEHFE
2720 5 5 L WIFFTE S,

=0 min =20 min =40 min =60 min = 80 min =100 min

Figure 5.15. Crossed Nicols images of the phase transition dynamics in a B-form glycine

crystal that was triggered by mechanical pricking with a knife. The scale bar represents

0.2 mm. This experiment was carried out under the humidity of ~ 40%.

56 T&H

AT, 72 ML —HF—T T L — g 2R E U CEfET S
LT, TV U UES DS IANGERE 2 FRE R HIE T D Z kB L. 7
A ML —Y—D 3 WM TEMEZHND Z & T, 7 U v g DR ER

64



BIE) MORER (aELITy ) ~OZBMHEBOESZHIET S5 2 &0
TE, MEEBORZEM A A T I 7 AZREICBET 52 LRk, o, &
BN COFERRE E I3 BRE OZ N L0 b@EnIcED &0 ) EERFE R 42145
HTENWTET, Zx, 7V v Ui oOJEBEE N LA O TIC K&
L2 TWAHZ LA RLTWD., ZORRLL, ERAMNEEO 7 = N
L—H—D 3 RITMIEMEIC LD b0 THY, LABBEETOL—Y—T 7L
—Ta Ry N TORBIIEEZ OSBRI CIXEE DN RNETH 5.
L—H—HETIE, BEESCSVARMEREDOL —F— RT3 A= 25U T
kR 720N EE) (] AL PRGSOy, BEE) v 2, JRETRY Rl AE - F3E)
BEHZ2DTENMKDLTD, SHOERDLEMRRICLY, 2T &2 BRI
BPTEXDL2CDEEZTND. Fiz, KPEEZ LV —V—FEERA TIE49,
55, 1621 E il T14[57-62, 1632 Ml it 5 2 & T, i bl & L
TORERELSIERT DI ENTEL EHFEL TS,

AEOHBRIZHIET HRERX

Hozumi_Takahashi, Yudai Yoshimura, Ryota Murai, Ryuzo Kawamura, Mihoko

Maruyama, Masashi Yoshimura, Yusuke Mori, and Hiroshi Y. Yoshikawa*:
“Spatiotemporal Control of Polymorphic Phase Transition of Glycine Crystals by Three-
Dimensional Femtosecond Laser Ablation Processing”

The Journal of Physical Chemistry Letters 15, 180-186 (2024)

(Selected as supplementary cover art)
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F6E

7\
[] DT

# 1 ECIHAMEE RIS OW TR, fhf bl O HIEI3 kR~ 72 Ry - FESE
BT AEERETH L. TOHED 1 5L LTI, FEmorA4 X% %
&« B & WV o RN RS OMERE (BRI TFFHE, XA AT ATV T ¢
RE) B EEZ L ERMLENTWANSTH S, £, fEmibidEgEc
HEITLTWD Z ERME S TWa—F, b Z 2850 - KM 28R ET
HZEITEEL <, TEROFEOLMEZ D HIETORNITmD TREZ G TH 5.
ZOXHREEICK L, FUIBEASNL AL —HF—T T L — 3D 3 RICHIH
D S)FRI R FAEEIC B H L-., SV A L —YF— 55 &, A
ICTERTRMA IR EILSFEIND 2D, 3 RooleEncE 5. Fiz,
T D% DRH IR B EDIRTED & OFEFN & BADR LI LY, WEITIEEE) (U7
) ICTBREE LT D, Z0XkoRT T L—2 g VB AR E LTHW
HZ LT, THETEEARBMENCOWT, fifbORIEAEIFESNTE -, K
HEFRSCOME L LT, FAIARTFEZ BB - Fric e bz ISH L,
flirm O - FEIEOHIECHE ML & A I 7 ADOBREIT- 7.

F2ETIE, fahbiB X OF OFIEE DB G S IZ DUV Tl X7z, Classical
Nucleation Theory 1Z3-5< &, #hid{bZ{RHET D72 DICIFR =R L X —F 72
FMEFERT X vz (= BafE, WmHE) OBERLETHD. FEfhd
BREREE (B JBEE, EE) O, 3NS50 T A —ZOFIENIC X
DiftmfFRYE L W2 D L L, KBHEERS T 7 T VT — VAT T5
W BAER ZBRE) ) & L CIBAT 2 0 TRl aa 2 DWW T, MR R BREE IR F 0
wEEEIT> CHITEDIE - EZ AT ofmaFonien tid 5. Fiz,
ZOFETEHOORMENEZ 2N ERETHZ LIIR#ETH L. —F, L—
P—=T7 7 L — 3 L DEREHIENE T, xR FEmIc OV TZE DR
WA X2 - WEHEZHIEIL7ZV, M LiBREZFEMICBIZE T 5tk
NEHENTE., 2oL REBANS, L=V =77 L — g i3iEaabil
BEE L THETHD EWVRD.

W3 ETE, L——T 7L — 3 2 kA KL OERZER Iz OV TR
Rz KOFESLITEE & 7Rl EEICEE KRB 2RI L TWAHTED, 0

66



bR A BT 5 2 I EETH D, £ I TAZETIE, L—YF—T T
—va v EBRAEDO N T—E L TUSHT S LT, KinfbimROFEM#ZE %
AT, BEASVA L —F—ZlmmHKPIZE RN T 5 &, SRk
% (~ 100 pm LAN) (S TOKEMAFEAE LZ. BEMEE FcoBigicky, KT
A MIROKDOFEFRDBHH L TWD Z ERNbhoTz, KFEITMADALTRL,
ERERBIRSOAR Z X 7 KSR, MiRIC b oA TE 52 2 2 A ML
7. B, BEIATEHAHNWSLZ LT, v~A4 7~/ m A~ LRF—
IV DRFZE R Sy ffRe T OK B OB & FERE L 7o, RFIEIKORE b & A
T IV RAERRDT-OOEMANTIECRD 95 L MFFL TV,

%4 T, ARIERIE MR ORI RIC OV TR 72, HREIER
T4t @ DAST  (4-dimethylamino-N-methyl-4-stilbazolium tosylate) (VAL
DT T~V ERAERTE LTUSHPHFREINL TS —T, F1& LTOFH
I S E e ks OER A VBRI R CTH DH. AWFFETIE, L—V—T 7L —
Va ko TSR EEFE L, ®MERSSOFEREZHKAT. DAST fhfmic
FANVA L= =2 ST U CRETET 2 &, REbh 2 DR b 2° BLEE L 7.
Z OFERES OFERIE N R IR SN TV D 2 ElbhoTe. BEI AT %
HWEBENS, BRolL—Y—T7 71 —va Bl vy T —v a7
NOFREZ L > TR ENT=7 7 7 A > MRS & L CldE L7- aTREME % AL
HL7-., KFEELZL—F—T 7 L—3 g 2 kDR EIREE L HAE Y
52 LT, BIEORIREZAT DEE 7 DAST A2 ERTE L& X TWV5D.

%5 ETIE, 7V URRmOSEMAREEFEIC OV TR, ZEMREERD
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