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1.1. HEYEIZHT D AR &1t

BN R FE s O EBUZ AT 72 BHEAHEE STl Y, BICKRS A AR TiX 2050 4F 0 —
Rr==2—hr7/ (CN) ZHIETE LTS D, Fig. 1.1 BIO 1.2 3R 2 EE O£
ITRFIZI51T D COp HEH RS L O ORPEHEICK T 528G 27T 2. BB IIEGE M
Ll UC, HAZEEE R (ks L7 B o EEICHE LZEREA R U2b D) H720 O COo;,
PEHHENZ <, ARICBT HMPEHEDOR 15%%2 5 5. HEVESHERRR(LICS 2 55
BIIREL, £V —BD COMEHN KD LT 5.

TV UBREN LIS BT O COy PR E AR 5 2 & 1E, TabbRkE zm LS
HDHLWI 2L THD. EBEMIT 1970 FROFE KB LOE _RAA Vv a v 7 220
WCRGRICEA TS, BT ¥ U MERECE TR D22 IR, #5030 kBT ST I D,
HREE & LEBICEE L TEBY, 100 kg DEEEBICEIVRE X 1 km/L A1 ET25 5D
NTWD 9. BEEO RIS THER S TWD 25, 1990 £UZA YD, CAFE

(Corporate Average Fuel Efficiency) #2350k S 4172 2 & 2326612, SRR 2 KT 5 Z
EIRTE D EIENOME AN L7z, 2000 45 F CTIXBIRMBEEDS 590 MPa o Fi#E )
SRR EIRTH - 7228, ITHETIL 980~ 1470 MPa #kiAME FH STk v 9, —EEMIZHB VT
1800 MPa ikl & AL STV D .
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Fig. 1.1 Comparison of CO, emissions among various kinds of transportation?.
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Fig. 1.2 Percentages of CO, emissions from various kinds of transportation in total emissions in Japan?.

HRREAL A EBRTDUOFEE LT, 7=y 20HA D b TE 7=, HRME
ELTHEMWDYGE, TV ARBIC LD B2 ERT 2008 TR/ TH LN, THI=U L

DYE, VAT TR, O, #ER ERGIENR SO0 Z LR TH S.
T AGME T — R RT R EOFEWE M, MHMIE AN A=A T = AR RT B — A
72 E ORI, BEMIEY a v I X T— (AT ATV T) VT T L— L ED
BHERTAR OB, $BEM T A v a U EEVEEMENER SN S E IR L TE
WA SNTWD OO, E£70, IfFEE—% — DA TETT 5 EXH B H (Electric Vehicle, EV)
WEHRIZE R LooH DN, © Y CBRENH & [FERICE R LD =— XTm\V. BV ITEITHR
D COx HEHI 72 <, BBAMINVNIW—FT, T VU & [AZEONRHREA i3 572
DITIE 60~100kWh L~V D REREME BT DLENH D 0. ZO &) 056, &KS5
m BREDOHEPIRE WETITREREN 2 B ERD, BRENCET 5= /L X —R3 8N4
L8, BIHEFRENETHEM S OBHHER)REL 2D, BV ORT vy L%
RARRIZHEET D22 ERH LN 0. 20720, Ny T U —2 G EERR TORE(R) EV
BT OHEDOE D E RS> TIND.

12. HEfEEO~ LV F<F U 7 AL
HAAREOBLE T, 7TAIoULAFL D bE LB E ZEX B 50, 222 v



LHELTRSEEmS D, Sk LS CIIEBIICH AT 2008 REETH 5. Thwz,
WMETNI=T L, SHIZIEFEY TR T LOMRR EOBEM B Z, KD b e e
R A MIEDLE CHEMBEN CRET 2~V T~T U T EE NS K L TW\W5. Fig. 1.3
FREN R~ VT~ T VT IVEIZEBT 2 8RO LR 2 md 1219, B IZ L > TH
BHERIT R D0, TAI =T ANREBIT60%L FEH I —2bd 5. 2 Smiz
FEOHEHREWEOLE, A OBELIEBE LTI AV I = LE2Z ] LT~
T U T AAEEDIZ D D3, EEPERROMIMEZ R LoD, mWBERIIREFGHND & ORE
RbHD .

1.3. vV F <7 U TIOVHEIRIZEB T DA

YNF T U T NVEERIECB T A RERBEOOL DL LTHEERET OND. R
LA L OBEE CIE R AR » MNEBEST — 7 5872 E ORMEEN VWb D 19,
UL s, BESEFELAERERETHES T2 Z LIZREETH S, Fe & Al OFfRIRE
X% Fig. 1.4 \Z5R~3 17, %9 400°CLL_EIZHB VT Al Fe FAYEBT 528 19, Z iR EERIC
I7% Fe H1~D Al DR KEEREITHN 30wt% TH Y, ZhLl Lo Al BIFET 256130 E M
{64 (Intermetallic Compound, IMC) JEZTET 5. IMC D 5 5, AlICxE LT Fe OfAkLL
D3R Z U FeAl X° FesAl 72 £ D Fe-rich IMC £ & 7 — A & 73 300 ~ 600 Hv T 5 DI}

wt%
Car
Steel | Aluminum | CFRP | others

AUDI

Q7 48 52 - -
Cadillac

CT6 38 62 - -
BMW
7 SERIES 66 26 3 5

Fig. 1.3 Percentages of materials in representative multi-material cars (author originally made this

figure based on data of presentation materials'?'4).
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Fig. 1.4 Fe-Al phase diagram!'?.

L, Fe lZxt LT Al DAY K E W FerAls X° FesAlis 72 £ D Al-richIMC D E >y ) — Aff S
I3/ 1000 Hv & Fe-rich IMC @ 1.5~3.0 iV METH 0, FEFIZHE 1920, gL 71 =
LEVEMASE CHEAT A, ZAO&RIE IMC B2 LT#EASN5. Bk Alrich
IMC (X Fe-rich IMC & bl U CARRD B I =R L — ML, IZIEARATREIC RS 2 23
W, 2D XD I MEER IR TR TR S W2 BRIC S RO SR & 72 0 3 <, KT
O A4 C 2 2. BB EOBESTIZIIF A R ERSPNES L TAR SN, FA
Wris I OVHIBERE 2 HUEELL B & 32 2 & CHERHONE AR T 2008 KN TH L.
LT NI =T LOEMEETIIINORELZFIZ K M, BTG 7R & @Ok IERED
TR INDMAICEA T2 Z LITRETH 5.

Z D128, BUE TIIBEA T & IR S T2 VAR 2 W2 OB TR L 7ro T D, I
W K LTS AL Fig. 1.5 127”8 Self-Piercing Rivet (SPR) & Flow Drill Screw (FDS)
THY, VTNHERESGORIKHELTWD. SPRIFNVTFEXALEHEH LTI Ry b &

PHESEAFTHIADERIETH Y, EETIIm B & ST LT h M EE & 72
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Fig. 1.5 Process flows of (a)SPR, (b)FDS.

STW5., —FHT, 7= LM O X 5 22 P2 LT, N FReoF A & 24

NI AT 2 ORREEL 720, FHATERWEERHDH. 20X 9 M EHos LCix, #
Y B ITRXTVERWTHMNST 782 (BLFRAIT 78 2 LS 5) LTHAET S FDS
BHAWSNDS. FDS IEEmWHEZZE L TROILL KM ), HEME 22XV REliTh D
Z LA, SPR EH#ELT 1 KHIY OWEIZET DRI 2 ~ 4 fFR <, #EIZET
LA RREL 75T L B0, @RI LTI N RER T LMLERDH Y, TEPEX D
L9, AR YUOHE LA LR T 2D 7 T v FREEH/LNRNT &L
fix ORERH D, LoLRen b, HEMEWREZR AT 7 & A DEEGIEIZR G, BURER
T L TN =0 LM OHES TIX FDS 2T 2 0 —ixi L e > Tnd . RERR



~)F=T U TIVHIZET D SPR & FDS Offi i &% Fig. 1.6 (Z/~d 1219, Bff|C K-> TH
BN, 1 BOHE|IZOE SPRITET A, FDS I EAMAIN TS,

L4, L—HEFIH Lic BfES RS

CN ZER T 272D, S ORI HERBEEPMNEICRD LESH, RO E 71
L= A OBERITEINT 2 LHEESND. ZORE, TAOMEIOES 2 X N OKEIX
HEGREIZ D EFE 2 bILD. £ 2T, FDS X 0 2726 FE A2 FEBLT 5720, RUET
FAMT 7 2 A 0EnH TG S ATREZR L — PRI Lz, b— P EREIIRE 1 mm ©
HHAR R £ D ZE AR BV CIABEHE 6 m/min TOlE LA REETH Y, R CHMT 7 & A
DIERVEHE T DT — 7 IRBER T 7 A~ I L IR L T OB 5 (5L ETH D 2. &
HIZ, BHET A ¥ =0 — LV TR, B Ex2 W5 0NEN RN, #EaX Mz
HIENTES.

1.4.1. L—HNTL

L—IXERE CHY, @RICRHT 2 REOHREFRL—FOERMCLVIREL,
AR ZFH/ET 52 E TRARAEL L. L—VORE (NU—EE) NTEBROKE I|E|%
Hnt(Ho kHicksns.

1= =22 B 1)
Car SPR | FDS
Ag? ' 2855 | 604
C%"T”éac 357 | 745
. gEMI%/IVES 606 | 154

Fig. 1.6 Usage of SPR and FDS in representative multi-material cars (author originally made this

figure based on data of presentation materials'?'4).
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ZIT, IIFEE, nlZEIE, DLOEETHD. N —EEXL—PINLTICEIT 5E
FpRTRA—=ZOOEDTH Y, MTICIEG Ul R EN R 5. T —HE LSRN T
Bt % Fig. 1.7 12779 2. EERCLHAVWLNDERINEFRIMERIZH H L —V Tl £
IMTOHATL 104~ 108 W/em?2, 77 L—3 3 UIILOHATE 108 ~ 1014 W/em? 23 /8T — 4
EOBHRETHD. EWHEATRIEICE TN, XU —EHEEMN 10*~ 10° W/em? O fElE Tl Fig. 1.8(a)
RTME ORI ZF & A EED R VBB ER OVERNE T D, ZOSEEARTEL, 1§
DIRVEHEE — RPERT 5. 78T —FE2 10° Wem? DL EOFIRIZ 70 5 LM B OZFE M IE
2V, ZOKBEIZ LY Fig. 1.8OIIRT L 5 72 L—HFRREBIZF — A — /L & FET 5N
RBPELD. L—FEF—R— LV NEECEL BN A4 0 IR L7203 b JEE A~ > THBEI L,
Z OWFECTHEHIRIN SN D . ZAUC k0, BYREA L g LT L—FRL RIS, K
DIRWEIARZGDH T ENAlREE 72 5.

3w 7O L—HF— EIpL—HF—
BT F77L—iavinT
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Fig. 1.7 Influence of power density on various kinds of laser processing®®.

Keyhole
Molten pool
Base metal
(a) (b)

Fig. 1.8 Schematic illustrations of (a)conduction, (b)keyhole mode welding.



F— R — VIR RE I I 1T DIRWVERIAZE, ¥ — R — VRIS & 2R E721) T2 <
RN OB b 552 Z LRI TND 2. BT I I O BT
WIZRIT DIEDARICER LRk (w7 3=0), BhPMAEE~NT5Z L TR
REND EBEZDNTEY 303D, BRIOEESFMFIC IV AT S, JIALIE WC k% F L
—H L L THEA LY 7AZ A L X RIS LY, WHGEE XV &8 T 3 5 E,
R 1 HEOWGIA BRI I TER S 40, 2 &0 RPN I 361 2 AR C o 2l
ENFREE 2D EHEHOMNCT LTS 2. I 61T, F—R—/LJE B Clya b 50
D) RN PBIE SN TR Y, TSR HEDESROERG R ZES 2 LD, TREA
FICHFELTVND EEZ LN TND 2,

B, BRI R e T 4 RANRy ZOREICHEST L Z EAHEIh TG 232
3. Rr 7 1% Fig. 1.9@)IRT & 2 RIBHGBNICER SN KK BTHL. L—F
BRI DR e U7 1%, OBEBERHCERMNE~MRA L7220 LBRFER AT 2D
BEFESRECTO RT v 7 2D, @F —FR—/LJE TN LV ERT HEEZ LR TWD. A
ZIEEIE & 7o TN 2 B8 528, VRS2 D R~ 1M7> 9 5RO G I N
THHAIFAMA~EH SN, BeoT o R8F e A EFRE LN,

A%y BT O F 0> B oy BE L= SRk 3R L 7= b O TH Y, Fig. 1.90b)NIRT
BHREBBO~NZHTHDLT VX —T A NEHFFET D, ANy ZORET HHEMTTIEF—
A=V AR B W THBEEWGIRNLBAE T TEB Y, 2L B F2REB LT
B EEZBLND.

ZOE DT, F—rAR— NVRIEEE TR — R L L ORI N OGRS TS
BRI THY, ZNLDOEBEZHET L2 L NBIGIRICE N TRD TEHETH S.

1.42. HEHEHLIZBIT D L— LR L OWLE &L
FWVAEFEVEDS R D B HENEORLE T, @R CIRIAA 2503V — kR — L7l

(a) (b)

Fig. 1.9 Representative welding defects: (a) porosity, (b) underfill.



BHEMFIHEN TN 249, L LAaRS, F—R—VIAREMICARLZETHY, 7 ALY
MENZL R DIZEEDRLEMITIREL 25 3. £, b o#@by, F—AhR—/LORREIC
PR e o7 4 I EOBRBERMGDBFRIND D5 32384 Rua v r 4 R0T7 v H—7
A VT FRMEZ IR T SE2 2 &b, HBEHRE TIT 20 bR M PR #IPHN O %
AR LD 80 IR OREITIN A, BESWEBIE, A I =2 ) 778D
BEEZB IR Z & TREZEMOME ZRAE L TV D 4549,

143, LT =0 A0 L—PIEBEOBIR

HEIHERE ISR D @mE M & 7 =0 LM OS2I FDS Z W25 D21 T
HY, L—VIEEE AW ERIE 2 E TSR, VRO A E A~ F A5 %
T 5HITBWT, FDS FIFEOMKFRE LG OINLLNNEEILRDL EBZOND. FATHZEIZ
BT, WE 1.0~ 1.6 mm, FFBRE 0.6 ~ 1.5 GPa #k D ik 180 & HZ 3.0 mm D7 /L3 =
U LGB DORAIZIST D FDS fEFOF AWM BRI IX 6 ~ 10 kKN L3E I TV D 4D,
75, HUE 14mm, BHFFREE 1.5 GPa kO IEH & HRIE 3.0 mm DTV T =7 AE@OHGH
2B D L— BT OEAW S EREIL 3.9 kKN TH Y 9, L —HEBoE ATk
FREDOKIBRBENLETHD.

13.THAZI@Y, HilE 7 =0 AOEWMEHEIZB O TEm WM TFRE 2152 729120
Al-rich IMC D4R EIHIT 2 HERH 5. L—FREIZIABFIEAELS TH Y, IMC BE
SEMBETELREELRDH D Z 0D, TNETEHOBFN RSN TEL. B, K
HIZEIT 5 IMC JBIE 1%, Al-rich IMC & Fe-rich IMC Z &b 72 E X &R d .

Table 1.1 (28— 7 /L =0 LD L—HEFEICHT 2 AT Z 7~ . WTHOEICE
WTHHMND L—F 2R LEHEEZ B 2> TV DHD, ZHUTBERT VI =0 LD
lZ L2 IMC BOEREZMZ 57L& 2 Hi5. Rathod HiX, IMC EIE S ORI fF
VY, IMC BRI ED 2D Al-rich IMC OFIGMERT 5 Z L 2H 6L TS 9. IMC 8
JEEZBBLZ 10 um LUF & LEGAICRERMFRELGOLND ZEARENTND &
49-50,54-55,58-39.6D)  F 7=, MRFIMEICKI LTI IMC JBIR S DA 5T, BEEBENRE < %
THZELHLMNERSTND 29, T =0 AORMEN S WG, BHESRES IMC
BRNICENCR e T A BRAET D Z L BRENTND 325),



Table 1.1 Previous research concerning laser lap-welding of steel to aluminum.

Upper sheet Insert IMC layer
Auth . . . L heet . .
uthors (laser irradiation side) ower shee material thickness
DP 600 6082-T6
50) - ~
Yuce et al. 0.8 mm 1.0 mm 5~80 um
. Q235 6061
51) - ~
Cui et al. 15 mm 15 mm 5~10 pm
6000 series
DCo04
Sierra et al.> 1 Ocr?lm aluminum - 5~25um
’ 1.2 mm
16L 1
Yang et al.>® S;J:i’mi 0 801611(1n - No mention
AISI304 6061
54) _ ~
Yang et al. 2.0 mm 0 5~90 um
IF steel 1050
55) _ ~
Jaber et al. 1.0 mm 30 3~11 um
SUS304 5083
Ezazi et al.>® 1.0 mm 30 Flux No mention
Carbon steel 5052-0
Rathod et al.*? a(r) 50 Elilee " Flux ~20 um
Carbon steel 5052-0
Kutsuna ez al.'® a(; 50 Itlnjnee 1.0 mm Flux ~20 pm
XF350 5083-H22
57) _ ~
Meco et al. 2.0 mm 6.0 5~20 um
DP 600 AA 6061
Indhu et al.*® - 3~13
ndhweta 2.5 mm 3.0 mm Hm
DCo04 6111-T4
59) i, ~
Pardel et al. 1.0 mm 1.0 mm 5~35um
SPCC A6111-T4
60) - ~
Lee et al. 1.0 mm 1.2 mm 1.5~5pum
DP 590 A6022-0
Borrisutthekul et al.®) - ~50 pm
1.2 mm 1.6 mm
201 2
Chen et al.®? Sltésm?n ISOOrsnm Ni foil 20 um
235 5052
Chen et al.® l% m 1.0 mm Cu foil 30 um
DC04 6016 Ni, Si, Z
Long et al.®¥ b oL An No mention
1.0 mm 1.0 mm powder
2 1
Wang et al.® 1% rijn 460016nm Al5Si foil 2 ~ 60 um
IF steel 6061
Takemoto et al.®® 1 Osnifn 1.0 mm Zn filler ~50 pm

Al-rich IMC DR & ZAKIHT 2 72, TR Bz & 71 I =7 AFICHFHAL, IMCED
FARR & I L 7R e 3> % . Chen 13, Ni<° Cu &AL L—W T 25 2 & TIMC
JEOEI MR L, @BEEZFALRVIEE & U CRFIREN M L35 2 & aWs L
TS @O, o hEE L LT, SBMRCIIAEZRIALEZHbH S &6,



ZOEHIZ, IMC EBORESOMAR, S OIIEARMEAHETLZ T, T rI=y
LD L —PIEBHET D FIRE NG FHEAIRETH D, —J7, DT DREBEREOEIC LY
MFRENKE BT D2 E0RHEINTND 99, EIERGETIEIIN Ty RICHE
T OGN T AOIEYEEIZ LY, T A TONRY —EEN 10 ~ 20%E 8 L1525 49, 20Tk
0, BEAFO L —PIEBEEIT CIERZE L CaVWERRE 2152 2 &3 CREEE E 2 i
L. RIEOWFRICENT, BE—A7 v 7 7 A UliHZB 2729 2 LT, IMC EEE% 10 um
RWITIHITE DB/ RENTVWD . BT —A7 817 7 A HEITER ST
HHEWMTHY, SBIL G RTDAREMESH D EHBESND. LOLARRL, BE—AF 17
7 A VHIEIC L0 IMC JBAMEIT 5 A = X L0572 71 7 7 A VB L Cidseaicix
HALNER->TELT, KEMOEMUIZITRHEZE TS BN,

1.5, a— )V RAZL—KEz g s LTRA LM E TV =0 A0 L—V s

AW TIE, BEDMET NI =T AEE&0 L —FIEEWE 2 R MICSGET 5 Z L2
-C, BBHEMEICKT 2HED L —FREEIITChH D3 — A — VIEREE R L2223 5
b, IMC JE DA A HIE FTRE 2T Bl S FE 2 BT T 5.

Fig. 1.10 [CAMIZE CHigTT 28875277, 207w A TIETREZ#E 71 =7 A
IR, S TREZ L—YEEE L, PR E 70 =0 MIHNOFETREICHES T2
LT, MEMICME T VI =Y L EEST D, PRI L OF —R— VBREHEC BN T
ZE L CRMERIBEE R T 280D, SRMEIE 375, L—PIEHICB VT
IRHEETREZGHT-DITIE, ARSI 0.5mm L EME e Z ERHEINTND Z &0

Laser

—

Interlayer

Aluminum -

1st step 2nd step
Forming interlayer Laser welding of
on aluminum surface steel to interlayer

Fig. 1.10 Schematic illustration of laser lap-joining of steel to aluminum with interlayer.
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5O, HREEOEZIZ0S5mm LY b RET5.

PRI L TV =0 AEBREICHEE TE D FEBE LT, JEIE SDIEHES @, A%y
YT ORENHD. LLRRG, BT VI =0 L 722 & O 225 a1 L
TICARAIHIFI 2> B 258 L. FE 7z, YRGS 130 TR 230 TR <, AEMEZZER S
o BEEERGETIIERA LIZK W, ARy X ) o7 lmBES Eoa—T7 4 v @R
BT 52 ENRETHLE, WITNOFELIREEZ AT 5.

AWFFETIE, MO Thie TR @<, TV I =05 RIZI U A— MVEZ ORI Z R
TELFREL L TEMECERL, TORTHHEEREDOREWEEZGOND T —/L R X
7 L— (Cold-spray, CS) Zf&ifL7=. CS THW 2 IEE ORI L O 1 & 2 DX
% Fig. 111 \ZR7. RTIETIE AV bE&RmEEEY L, EMeR LicEET S Z &
CTRIEZ TR T 5. @RHRITETIEONEBT A5 2 A~ AS L Cadfb L,
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Fig. 1.11 Schematic illustration of cold-spray (a) machine, (b) process.

U DIATRL T D FEM 72\ LA~ DI #~ Z #  (mechanical interlocking) (255 7 > 1 —%)h
BYLRAFTEAD=ZRLDOEDE L TEZILNTNS ),
CS (ZBIT BERI R ORATHEENIRQ)~ @) R TEE TR S D 479,

3 2
4m dp\ du, T dy
(3) Pp (7) O (5) Pg (7 (ug = up) |y — 1, @
Pg
P = RT, (3
R
u; =M VETQ 4

ZZT, pp, dy, up (TRT O, EEE, FTATEE, Cpl3fiiRE, pg, uglIMEEIT 2 D
B, WK, Py, Ty, Ry\IEBYH ADIED), RE, ERARER, Mz~ > 3, RIZ—RRIKE
8, y, mIZVEBIH 2 DB, Sy T RERT. R F ORI THEE IR F B L OMEEI T A, /X
JCBEE LB NT A—Z Lo TRESIND. (FERITADENB L CREREWIEE
B OFRATHEE T 725 79, FTo, BT R L L UILRMABAERZHAND 2 &R
ThoN, BHREEELTHTEMNESL, OB ORE WA T LEZFHTSZ LT
bt amE b LT <25, AMZITHEFE RO T A %G 5729, Fig. L11(@IZR"dT X9
RPREEITHINE Sy (RAa—R) 2827290 ZARHWLNL. < v EIE, XL Ol
BaEHW TGO Lo TERENT, J ANBRICE > T—EMICRED.

)

y+1
A 1 ((y—-1M?+2\20-D
A M

Ap y+1

13



Z T, AIMEEDAEIZEBIT D AVvoOWmEE, AridAe— M CoRmfgEs <.
RLF-DMREE DD/ SWITE, IR B EE = R X — (3D %, —TJ7, KiFoD
ELAED Hum DB E, FbF RO R BEZE RS D E B I L > THRATA T S 4, BELIC <722
Dz, —MRENCEREIAum OMKBFHSND . £z, CS 2 ETMARIEETIX
MARDLZEMAGTEN RO DL D T2, WEIMEICEN IR RKZH WD OR—EKHTHh 5
80 TERNZIE, @RHOZIXT b~vA ZEICI WV RESND. ZOHETIIRROW
Gt L CHEFER 2R E 1T ThHRILT 5. ZOBKRE LTHAZ WD FEE T A
7 h~A X (Gas-atomization, GA) %, K& H\5FELZKT b~ A X (Water-atomization,
WA) 1LV D . GA EIIFE—RIICERST VAL R EORIGEWET ABHNSLN L1289
W OWHIRRE ISR 1T DWW HEE AR LS, ERIROMENE LS. —F, WAETIZAER
T D v B EE A3 D T <, i o ) TERIRAL T 2 BN EERE 23578 T 5720, MARITIER
RERD. IHIT, WAIETIE GATEL HIR LT, BRICER STLDKHE, BEREN L8,
Ziud, 7 h~A ZTRTROITTFTKROGMLIENET L, BICBOKENERT S Z
&8, T b~ A ZBRORBEBACSNEZETT 2 TRICBWTKREZ NS Z & B R
LT efEsND.

Fe(l) + H2,0(g) = FeO(s,)) + Hz(g) (6)

CS TIHEEIRT OMFEZHENZVIELE, EDRITRILE 25 3. 2, KFRE
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IO XL, WMEMEMENEOBLE T, CSIZBITDHEEHHARL LT GA HOIEH »
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WV T, CS HEOEMREICHEY, BREFREZRIEEI T A EN I I ONRE TR KT 7
MPa, 1100°CIZEZE L THEY %, WA TH 95%LL EOEWAEDRNBELILTND 0. JiH)
BB 2REICR L Th,  ANA~ORKREAFTEESET D L THRIRAK ST
% 8. Fiz, FFERIRORLT & HWZIE ) BPRIEOBEERENEL 25 LOBRELH D .
ST & 0 VR U 72 Bk B D 6 A5 SRS | BRSO R OB L0 B2 208, BB L% 30~
90MPa Th 5 LGS TIHY 9, ZAIUIMMOEHE L R L TEWEEZ R LT D %
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T4 HPIEL, @O E A R CE D LA ML T S 2 LAY, CS KA hiE
ELTHALIEE TV =0 20 L—FEEOFERIICTIIARAIR EEZ BND.

1.6. AHFFED H 36 K OME Rk

AREFFETIL, @EAEE TV =7 A8E0 L —FiEE (LUTESES LT 5) O
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BB ERMA L2225, IMC EOARZ il TR 22 i a FE L LT, CS Bz
J& & LTHM LIz b —98s (BUFBRIE LT 2) 2R_%ET 5.

T UOIT, BIFSIEOBE SRS TR 2B RGES L OGRS 2 B & U7z R SR
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TARRY T4 BELDZ L, ZRIUCE Y GERABRIZB W TS B2 £ C 2568035
v, BIE—T I =0 L5 T 5358 & i U CIEFFIRENMEN. L 25 Z & 2 5
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52 L, BHESBOGEMNELE L ORI EHEE OB EAEO AL L, Ar T
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WEHLNCT L. 61T, Re T 4 2T 5720, FE L 2R 5E/mNTICEEND
LILDINBA~D g e 2 A - T, VA4 B O BERE 3 FE O T O Al NS o i ik
LA AIREZRIR R 7 v R 2 T 5. &k, MFmE A~ LT RIROE S BER LR
SOEBE ERIE L, FIRFEOUEC X DM TIRE O m ErSSCE A IR LB
RL7aMETFIRE 215 2 T2 DI B FER I DWW T BT T 5.

CS Bl @ik I & 7L I =0 AEEO L —VFEAIZBIT 2B L LCHAT 5 FIE
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Fig. 1.12 Flow chart of this research.
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ME RS E DERT o~ AT ~T ) T AEENR L OFERCHEA SN TV 5. MEIOIRE &
BRECHRONT A ZRTHEE LT, HEECHAES LIZULIFAVWSN S, Fig. 2.1
I~ TF~T7 ) T VETHER SN T BRER MBI O IR R X Oz R/ D ~ 7
VT BROREHETRLIIE (CFRP) (IENT-FEE A L C0D 2, Bk X FAE <,
HRASOFIZ 20, TAI =0 MIINOMEIE D bZMThH D0, v~ VF~T VT
WVHIZBWTE B SN TV D, FRICEZEMEREDNBLR S 412 S 2kt LTI, B E)D5R
B, MIPEICEBNT AL TROT VI =0 AREMAEERT 2280302 2. ok 5kt
25 b & BT RS E OB DO < TIE, AT 7 & ADBE1ETEd % Flow Drill Screw

MEOEREE BT

500 B8 (g/cm?) 7.9 45

= - JOJ 7 BAREE
T 400 || BALNL
e
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2
B 1500MPa
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# 100 ‘
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Fig. 2.1 Specific strengths and rigidity of various kinds of materials®.

@ Reproduced in part from K. Maeda ef al., Journal of Laser Applications 33, 042017 (2021)
https://doi.org/10.2351/7.0000490, with the permission of AIP Publishing.
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BRFSIE LT D) 2B L Lz, BRIETIE, 7=y 20ERmIIH L CEFEO—FT
b5 CSITEVBEBREDER VLR L, TOBKIKEHE L —FEEET 5 2 & TH
BRI L T VI =0 b AT 5.

—F, EHEEZEMSETEGEICR s T B ET L2 ERHEINTND Y. %
D —FE T D CS BEZEMT HBRBIEICR N TS, WHERICR e T ¢ OFAEDNE
BREND. AT 4 DFERIFITATHY, MR EOBEEICBNTY, KBELERRLITE
RLTeARa T o BBAET D2 ENRESNTND 319 BIRIEIZB W TRBERO R &
T A REZIHT D-020E, CSITBITLEEMARE LTHRAEHEDDIRNT AT b~
A X (Gas-atomization, GA) #kf3&HW2 O MYI LB 2 HN 5 1. Lo LR s, GA gk
BHIFERIZEMTH Y, DMBREG A M2 H o TEHBIECKH L TTTE IS 2N EE bR

Steel

Laser
Steel coating ‘
Aluminum
1st step 2nd gtep
Forming steel coating Laser welding of
on aluminum surface steel to coating

by cold-spray

Fig. 2.2 Schematic illustration of laser lap-joining of steel to aluminum with CS steel coating.
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EHEMET S, BARIEICBT S LV —FREEROR e U7 o BAEGEEZH LT H E LI,
BEREHEA &L OMFRMELE LB 200, S5, ORIV BRIIEOREZ I L,
ARBFFED BAE 2 5 NS Z R ET .

22. FEBITIE
221, a— /)L KA L—

Table 2.1 1% CS S:fb & R, TV ANZHHE LIc@ikEE S A 7 OWEE (77 A~k
W3R PCS-100) % VT, Table 2.2 (TR $ 7L =0 AHEM OREN 2B TH 5
A7204 7V =0 L5 (LT A7204 LREHT ) K ~ES 2 mm OS2 TERL LT,
AR YA R 3x125%40 mm TH Y, A7 L—EFTiE Fig. 2.3 12T XL 212, EFFHM0
#4040 mm OFIPH & L7z, FUEHY RITIT WA 868 2 65 L7=. ¥Ry & Table2.3 (2,
SEM BELE L O EE /3 A4ii % Fig. 2.4 (R 9. R AR X F I IREN S 5 Wy T HlES: (A
op¥ERln Ry b7 #— RPS-0105) (2 CHIE L.

ERI L7 CS o 7Tkt LT, A7 L—Hif e CHIWE, A Z 3 272wy, P

(KEYENCE #1:# VHX-8000) |Z CREWR Rk Lz, £DHk, A—7 vV —RXY 7
=7 Image] ZfEH L, 1.11x1.48 mm OFPHIZ 5 5[ ILORMEFEOEIE % B EOKALE

Table 2.1 CS conditions.

. High pressure and

Machine .
high temperature type

Carrier gas Nitrogen
Gas pressure 5 MPa
Gas temperature 1273 K
Substrate AT7204
Powder Steel
Coating thickness 2mm
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Table 2.2

Chemical compositions and tensile strength of A7204.

Zn Mg Cu TS
(mass%) (MPa)

4.56 1.18 0.02 370
40 x 40 (Unit: mm)

/ Steel coating
(2.09
Aluminum
(3.0
40
125

Fig. 2.3 Schematic illustration of CS sample.

Table 2.3 Chemical compositions of powder.

C Si Mn P S H N 0
(mass%) (ppm)
0.004  0.01 0.14  0.004 0.010 24 <50  >1000

60

< 50 E R dso: 43.1 um
2 40
& 30
3 E
g 20
w10 F

0 )

Fi

7

<20 20~38 38~53 53~63 63~75 75~106

Particle size (um)
(b)

. 2.4 (a) SEM image, (b) diameter distribution of powder.
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FOHEIY ML, SHEERICHE L7, SATIEARIENE T R flfig — IR IE - BVREFETE
WL BIRoT.

=T v =0 ARHEIZEIT D IMC JBOAERA A TR0, CSY U T VEbA 4
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EE Y FI120.1um & L7z,

BN D AW R LRI Y 7L & LT, Fig. 2.5 1293k 2 Ahion Tl CTERY
L7o. AW EREFNREBR ORI % Fig. 2.6 (237, A 7 L— NIl S 720k
RCTTVI=vLz7L— MEICERE L, 250 kN JTHES| R (B /et AG-
25TD) ZHWTCHIENHBET 2 ETT A I =T AR LA T 2 —2 M LIAALTE. R
BOREE (T 10 mm/min & U, 3 [BIOREDOF-EE 2 A Mg &R E & E&R LT,

(Unit: mm)

" Steel
“ocoating 3

Fig. 2.5 Schematic illustration of shear test specimen.

(Unit: mm) | 20 20
4
V]
/| 63
75 i ;
25 specimen
3—1> «— 80
100

Fig. 2.6 Schematic illustration of shear test and actual image of test jig.
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222, L—HWREE
FERIZH N b — P EIEE O 7R OIS X % Fig. 2.7 12, L —WiEHSE% Table 2.4
R, RIS ICITIR 1070 nm, HKH ) 6 kW ORI O 7 7 A /— L—HF
(IPG Photonics f:# YLS-6000) Z M\ 7=, T~y RIZIZA VN A% v F (YE-DATA %
8MC22A-3C001A) ZfHHAL, AR > MEMR330um 725 X HITHE L. IMLAICBITS
E— A7 87 7 A V% Fig. 2.8 ILRT. ARy MEIL—FDAFZRALF—D 86%N1 1 F
nNoge L.

Fiber laser
[ Wavelength: 1070 nm ]
BPP: 4 mm mrad

Delivery fiber

(¢100 pm) Collimation lens

(f=72 mm)

Dichroic mirror £§ To.tal reflection
mirror

Drive control

X Z galvo unit
unit J
Focusing lens
| XY ;cannm_gt Total reflection
galvo mirror uni mirror
Cover glass 3D scanning

Compressed galvanometer

i ny] Specimen

Fig. 2.7 Schematic illustration of set-up for welding experiment.

Table 2.4 Laser welding conditions.

Laser Fiber

Wavelength 1070 nm

Fiber core diameter | 100 um

Spot size 330 um (Dsgs)

Laser power 1750 ~ 3250 W
Power density 2.0 ~ 3.8x10° W/cm?
Scanning speed 67 mm/s
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(yun "que) Ayisusyu|

Fig. 2.8 Beam profile.

TS ORI % Fig. 2.9 12777, Table 2.5 (SR THUE 1.4 mm, RAFHRE 1.5 GPa ko
By b ARZ T E CS T VICER, BRD L= R RN LiIsE L. L—F oD
BALHIRERRN T LT ARy F T AEREL, L—FEEHRK
WER L. F—F— W LD 19, /U —FE 2.0~3.8x10°W/em? D&M TH A 15
Zhol, IN—LBLOANy ZEREOHT, bEHREES EF 30 mm OLEICTT
By hEEE L. ks LT, BE 1.4 mm OF v AKX TR ERIE 5 mm O A7204

EEEAMTLER L. PRBOAEICL S PHRTFORBEIL 64mm & L, REDE

LR OMRFIRE~DEENEL NI DI L.

Weld bead (Unit: mm)
Steel coatlng
Aluminum
(3.09
40 x 40
125

(@)
(5.0%) ’

(b)

Fig. 2.9 Schematic illustrations of laser welds (a) with coating, (b) without coating.
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Table 2.5 Chemical compositions and tensile strength of hot-stamping steel.

C Si Mn P S TS
(mass%) (MPa)
0.21 0.04 1.20 0.008 <0.001 | 1481

VERLU 7212kt U, e BieE (KEYENCE #18 VHX-8000) % W CAMEIRE 24 2 72
ofc. Fiz, T a2 EEESR T M IS COIlTE, W KO 7 U CEREIRIKIRIRIZ K D
R % B 2, EIRBEMEEIC CaElim 2 #8152 L. BIRIECER L -k RIc o0 Ty,
WrimBlsits, A —7 v Y —AY 7 b =7 Image] M L, BRESBEKICED LR &
7 4 OREEOEIGEZR T 4R E LTHH L., S5IZ, 250 kN FRES IR (5
AR AG-25TD) Z AW TR AMSERERZ 3 27 > 72, Fig. 2.10 129 XK 91T,
HIRIB L OCS Y T NDF v v 7 IS AR EIRZ, WMTF ¥ > 7 5 o ikl FIZEE L.
F18RE X 10 mm/min & L7z,

2.3. EBRFERB L OB
23.1. T/ RAT L —RIEOKFLER L ORI E E D T AR &

Fig. 2.11 1% CS IEOWim G E 273 . KALFIL 0.2% TH Y, CSIZ L 72 % 15
HZENTE, FIEPICEEND HBLON, 0 BOOHHER% Table 2.6 (239, KK
HHZE EN D A ARG EIE Table 2.3 ISR MRP O T A58 L RFETH 7.

Shim '

plate

¥

Fig. 2.10 Schematic illustration of tensile-shear test.
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Porosity: 0.2%

Fig. 2.11 Cross-section image of CS coating and its porosity.

Table 2.6 H, N and O contents (ppm) in CS coating.

H N )
19 33 >1000

232, =)V RAF L—F— 7L 2 =7 LR E O/ K ORI % 550 E

CS =T V2 =0 LSBT DT SR & Fig. 2.12 (277, FfiTIZES 2 um
F2E D Fe-Al HHAIEHUB SR SN TRY, BEREZ LT LA LBEXONDIEEINI Y
0y A— hA =2 —0 IMC BOERITRED biviehoT-.

Steel coating Al
Aluminum Normalized profiles — Fe
10
S o8
o
@ 0.6
Analyzed 2 04
line @
g 02
£
0.0 S
0 1 2 3 4
Distance (um)
(b)

Fig. 2.12 (a) SEM image of interface between coating and aluminum in CS sample, (b) results of line

analysis at interface.
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BRI & AT 5 BB RTHE Tl oo BEIERHIIRE 52 2 72 3 (K1)
FAU S Fig. 213N T K DI — 7 /L I =7 LS CREETAME U7z

2.3.3. BHASIEOMEFFrME
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Fig. 2.13 (a) Adhesive shear strength, (b) representative surface-view of fractured sample.

Power density (10 W/cm?)
2.6 2.9

Surface
Steel
Cross-
section
Aluminum

Fig. 2.14 Cross-section images of laser welds without coating.
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RS IMC BIZEMT5Z2 L THELDEENTED D, FICE Yy I—AEIDRKE Al-
rich IMC WTERERICHAE LT W EHEZEIND. @AY —BEXRFTIEIZEOT LI =
U LANERT D7, Al NKEICEVE U7 etk 2easia g 200 Alrich IMC 2SS 4L
RTNEEZEZLN, ZTNOICEVENBNBEF I RoT- LIRS,

Fig. 2.16 |3BARIECTIER L= F OB L OWH G E 2 /R7. /3T —EE O
VY, TARITIEL 720, U 2.6x10 W/em? LL_EIZ 38U T — B2 IR OB A TR E A e
R 27O TER 0.5 mm L EOEASRI NG L. Fo, 3L A EDOERMFICENT
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EE E
c £ 12 41 1.2 é
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S o B S
Sg 08 f 108 ¢
3 04 | - Jo4 3
[}
o m

O
00 —-—2r—— 100
20 22 24 26 28 30 3.2

Power density (x108 W cm2)

Steel

Dy _
Aluminum
Wlnf

Fig. 2.15 Influences of power density on penetration depth into aluminum and bead width.
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Power density (X106 W/cm?)

Steel

Steel

- coating
section

Aluminum

1 mm

Penetration

depth (mm) 0.05 0.51 1.14 1.54
Porosity
rate (%) 0 24.5 21.7 30.7

Fig. 2.16 Cross-section images of laser welds with coating.

TN 30.T%IE LTz, AT (3R E CS ZE~ORALRES OBIFRZ Fig. 2.17 1278
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~ 30 + e
L& ; <& ® Steel coating
% 20 <
> i Porosity Aluminum
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2 10 |
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Fp: P ty rat
0.0 0.5 1.0 1.5 2.0 p: Porosity rate

Ap: Area of porosity

Penetration depth into Ay Area of weld metal

CS coating Deg (mm)

(a) (b)
Fig. 2.17 (a) Relationship between porosity rate and penetration depth into CS coating, (b)

explanatory diagram of porosity rate and penetration depth into CS coating.
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Fig. 2.18 (a) Results of tensile tests of laser welds without coating, (b) schematic illustrations of

fractured tensile test samples.
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Fig. 2.19 (a) Results of tensile tests of laser welds with coating, (b) schematic illustrations of

fractured tensile test samples.
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| Steel coating

Aluminum

Fig. 2.20 Cross-section image of tensile test specimen, fractured in weld metal.
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Fig. 2.21 Research goal and subjects.
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BIFE HNu T REEREOMRH

3. LI

AIEICBW T, a2—/L KA 7 L— (Cold-spray, CS) Rz i@ s LCRIH L-giE 7
NI =y LD L—YEES (LUFBRIELRET 2) CTiE, L—VEERICRr o7 0 9338 4E
L, SIRRBRIC ISV TS BN 2 L C 55800 5 2 &, ZIUSTRE L CHEFIREE AMK
TT2ZExWLMILT.

Re v 7 4 I ZKWEMEERECHT v 7ENT2bDTHY, L—HEEICE T 5581
ORI RN ~EA L2 B 720 LRBAS R A R 1), @F — R — /VIEE 3Dz LY
AT D Z ERME I TS, BIEICBWT, BFEICBIT 2R 7 o7 1% CS RIEIZE
K9~ % AIREMEAS R S L7z,

BIIEICRBIT DD O L S TH H R e v T 4 O E EHT 5720, KT TR
BT o ORAEMEOMINCEGITe. XU DIC, ) TLH A A X BRI X 2 i
NS OBIIBIE & F2hi L, F—R— VO A s L OSKIEORAER T2~ T. S HIT, R
BT A WNEDOH AR E L, KIEPICEEND T AR & OBMREH HNTT 5.

3.2. FEEGE
32.1. UTNHE A L X BBiEiR

HERFI2I3 2 B L W CARUE 1.4 mm, REBFFREE 1.5 GPa fRD AR v k2 2 & T it LUK
JE 3 mm D A7204 7V =7 554 (LT A7204 Lt %) MWz, BB YA XX
WFALD 50x3 mm & L7z, Fig. 3.1 ISR T X918, FEHMARE LTKT h~A X (Water-
atomization, WA) #Fy2fEH L, A7204 FmEIZk LT CSIZXEV/EE 2 mm O EZ TR
L7z, CSIE2FEER—DFRMFIZTRBIRo7=.

FERIZHN e b — P EAEE O 7R OIS X %2 Fig. 3.2 12, WS4 Table 3.1 IR
T L= PRIRSITIZIEE 1030 nm, fKHT) 16 kW OERRIROT 27 L—H
(TRUMPF 18 TruDisk16002) % FV 7o, 8RO 1 Sz L —% % 27 £8 200 um O
FTUNY =T 7 A NX=TI L~y RMBEL, T~y RNOa ) 2— kL X LU0
KL XREHWTAR Yy MEMR 270um L7205 X IZE L. T RICBITAE—A7 R

b Reproduced in part from K. Maeda et al., Journal of Laser Applications 33, 042017 (2021)
https://doi.org/10.2351/7.0000490, with the permission of AIP Publishing.
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(Unit: mm)

Aluminum Steel coating
(3.0Y (2.0
)d_ﬂ,s
50

Fig. 3.1 Schematic illustration of CS sample.

Disk laser
[ Wavelength: 1030 nm ]
BPP: 8 mm mrad

Delivery fiber
(6200 pm)

Processing L
Collimation lens
head (<=L (500 mm)

— Focusing lens
Cover glass (f=280 mm)

Compressed

ar  FTmIm Specimen
X axis stage

Fig. 3.2 Schematic illustration of set-up for welding experiment.

Table 3.1 Laser welding conditions.

Laser Disk
Wavelength 1030 nm

Fiber core diameter | 200 pm

Spot size 270 um (Dsgs)
Laser power 2750 W

Power density 4.8x10% W/cm?
Scanning speed 67 mm/s

77 A )VE Fig. 3.3 17T, ARy MLV —HFDOAFZRLF—0D 86% N E ENHEE L
7o, CSH UMK L TRy hAZ 7l ERIRETHB LA 7 —Y Rk v b
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Fig. 3.3 Beam profile.

L, $ARERE~L—FZRE L. F—Fh— s 25 L9, /U —5E 48x10° W/em?
DEMCEEA B 2k olc. MBAOREFHM LTI L= RIS LI AT =
EEAELTZ. = L2BROANy ZREOHT, EREmD 1 30 mm OEIZT
Ty b ERE LT

Fig.3.4 (XU 72 A b X Sty O EZRT. v~ 7875 —0 A XHER, A A
—VITA TV T AT =R L TEEmEEI AT (T A A—=TT 7/ nP—th
B GX-8) MY TN EPATRIAIT 2 X5 ICEE L, XMEshoxt L Cissism e
MEICAST S W72, XBROBEELEL LOEERITEEI 160kV, 600 pA & L, XHRE—
B HOHRER L OXRF — A A=A T v 7 74 T —RIOHEHIZ N2 25 mm,

High-speed camera (Unit: mm)
with image intensifier

Laser
Steel coating (2.0Y)

®,— Aluminum (3.0%)

s / 0O
o AN
W ot

8@

X-ray source
Fig. 3.4 Schematic illustration of experimental set-up for X-ray transmission observation.
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630 mm & L7z, EHEN AT DT L—AL— KNI 1000 fps & L, REEFIAA & RISk 2
BRtA L7z,

322 W7 4 O AGH

PRI 321 ERI—DFR Y FRAZ TR LU CS o v E v, ERICHN
7o L—WIABREE O R OB X % Fig. 3.5 12, WS % Table 3.2 1" d. L—RIRE
L 321 LRE—ObDOE AW, L—YPRIERN O TSN L— Y &2 2 78 200 pm D
TUNY =T 7 ANRN=TM L~y R~MEEL, L~y FRNO=a Y A— F L XEBILUE
JL U REAWVT ARy MEDS 200 um £ 725 X OICEN L. MTRICBT S —A7 1
77 A V% Fig. 3.6 IZ/RT. CSH U7 MR LTAR Yy M AZ i 2 ERRETHE)

Disk laser
[ Wavelength: 1030 nm ]
BPP: 8 mm mrad

Delivery fiber
(¢200 pm)

Proceshsmg Callimation lens
ea (f=200 mm)
— Focusing lens
Cover glass (f=200 mm)
Compressed

ar Ty Specimen
X axis stage

Fig. 3.5 Schematic illustration of set-up for welding experiment.

Table 3.2 Laser welding conditions.

Laser Disk
Wavelength 1030 nm

Fiber core diameter | 200 pm

Spot size 200 um (Dsgs)
Laser power 1500 W

Power density 4.8x10° W/cm?
Scanning speed 67 mm/s
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Fig. 3.6 Beam profile.

1A 7T —Y kizty bL, $REm A~V —FEZRHN L, S—F— WG L5 L5, X
U —FJE 4.8x108 Wiem? DM Tl A B 2 o7z, BRA ORF M & FEATIC L — V0 i
BIEND LI AT —VEERIELLE. TV —L2BLUANR Y XBREOHRKT, ERFEENIDS E
7730 mm OLEICTT Ay b EFLE L.

WFIZHRE LR T A ITHEND T AL, WEBSE &5HEF (Q-Mass, Y/
> T I ERL M-401QA-MUSY) THIGE L7 8. 1178 8x10°Pa DEEEZE Nz TH o
JAZXF L CHEZE 2mm @ RYVTHHEIZEB 2220, Ra T 40 bW A& S, Q-Mass
THHT LTz, ANa T A fLElE, e X SEeiE s 2725 2 L CHE L.

3.3, ERERB IO
3.3.1. R T ¢ OERZEE)

Fig.3.7 1X 0.05s D X #E i T EZ -7, PO TAXEREPIAG) b ORR @R H 4

X-ray images Tmm
T=005s T=010s T=015s
Porosity

Keyhole

Steel
coating

Aluminum

Fig. 3.7 X-ray images of welded areas.
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T X BRI LV =R — VB L OVERMN TR e &7 « 34 U DR 20N BB 21 52
T&. F—=FR—/MTRIRLE L TB Y, AT TOREITRO benoTo. X# T8
REINTRIBOEMZEE % Fig. 3.8 1[TRT. F—h— VEEAIO CS BIEN S 34 LT
RITEEMNZ EH~BE L, RERICE T vy TSR e YT g Lol

UEXY, BERIECBI AR T £ 13F— AR —/VREICL VAL 50T, IRREL
TR B SN T AN EZBE L, BEAG TR v 7Snd 2 LIc kv F
ELleEeEz bl

332, Ru LT 4 DI ARGy

Table 3.3 I& Q-Mass (Z X VG ONTeAR v > T ¢ O T AR DOHRERZ AT m I3
ENTA A OEE, 134 A OEMETHY, @HEz=1 THDH. GENDIHTADELLIL
Hy THY, FEVITRILKERT AL RS Oz, 331128V TC, KIRITIERL L7 BN
MBELTWZ LoD, RIEFIZEEND HICLY Ho 2R LIZ AR mnEBE 2 5
5. Table2.6 (2”9 X D12, BIEHIZIZIH 2N 19ppm & EN 5. &R L 748k 12 10 ppm
PLED H mEENL5EE, BERIZKILNAET D Z EnME SN TEBY 9, EilkEFfIz
BENDHEIIR T ZERT DD THLEEZLND.

7=0.173s T=0174s T,=0175s T,=0.176s

- Steel

Bubble L

Steel
coating

Keyhom
—

Welding direction

Fig. 3.8 Movement of bubbles in molten pool, captured by real-time X-ray observation system.
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Table 3.3 Result of gas analysis in porosity.

m/z Estimated Spectral intensity ratio
gas specimen (%)
2 H- 74
15~29 Hydrocarbons 26

UEXY, RavT A 3RBECEENS H OS5, EEHTICER CX eholeb on
KipLhoTRBEIL, ZO—HPEERGTHENT v 7ENDTETERT D EEZBNT.

7285, Q-mass ([CBWTIRILKERT A GBI TNDR, ZAGIFFEEH KR TH D8
Bz AL EENRNIE 19, BUERICAR T U7 0 S E 0D ATREME MBSO T
RNz & O, MPRIREICA A LB/ EoFY, 2139 7 AglEific Ry
JRPHEE BRI N O LT LR SN D.

34. £&0

BIRIEICRIT DR v T ¢ ORAEMMEL ERINCHONI L. U T A A L X HiEE
R B2, KJAN CS KIFEN XV AELLZ LA R LT, £, Ay T filEENR
HHADEZLIZH THHZ L EZWALMNIC LI, Ar T I IEBEICEENRLIHDO Y B, &
AP ICEE CERDP ST b ORRIE L > THEIL, ZO—HBERERAT TR v 7
NDHZETHENRTDEEZLNT.
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BAFE Ru T 1 2ERET D 0 OREEA DOBE FEC

4.1. 1ZLHIZ

AT £ CTOMFIZT, 2—/ KA L— (Cold-spray, CS) Rz gL LCRIF LT
LT NI =0 LD —VHES (LLFRARBIELLHT D) ITBWTRET IR T 113,
KIEIZZEND H DD G, WEEHPICER CE RholcbORKia o TEBEIL, 0D
—HWABEREGT N v 7SN ETERT L2 LB NE oz 3T 2L, Kid
N7y 7IET, WA~ S EL Z ENTENETAR R T 4 2R TH 2 &N
AREL B X BILD. FATHIRIZRE W T, BWRIMNIZ T 2 K0d OB ENIE I SB S D
ZEDNRENTWD D, F =R — U1 05 CTIIRIE T 0 EJ7 ~[70: 5 B s A2 T TE Y 9,
TS ko TRIAITEMm A ~Z L, MRS D Z e H 5 2. T O, WeE
DUEEHE NS, KILOBENEE 2 E EIMB~ I S B AT @< 725 B X
bibd.

EEREZES T52 L THEESOMIEENMET T2 2 LAVRENTVD 9. Zhid,
NIRRT ENLHREH T2 O ORABERINT 70 LHELE SN D.

E=% @)

ZIC, EFHAIRME S -0 OBABE, PIXL—YV A, viEEEE, dIARy MEE
AT EDOTWD, R EOREEEEIEEREIZ IV HIETETH L B2 6ND.
FERM NI AT 2 el U O < s iRFu @) e s 9, Zhic kv xyaidom
Hwans.

CpApu?
== ®)

Z 2T, FITIAREGT, Cp 3 iuiRE, AlTSIE 2 iU TRE 2R A~ LI RFOIfifE, p
WIRDEEE, wiXBHNOME 274, RE)NSH LMY, FHAERIIIB A
ERELRY, ZAUMEL TREHIMEENLT <R D, bbb, Githomd{kic
DRIAOBENEEZ R THIENTELEEZZ2HND.

X — AR — %GBT DGR O E R ERE) )L — R — LN OB B AT L D RBEET

¢ Reproduced in part from K. Maeda et al., Journal of Laser Applications 34, 042033 (2022)
https://doi.org/10.2351/7.0000754, with the permission of AIP Publishing.
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bV, KPEZED D Z & THADNEEL LG5 Z & BNEUEMHTIC ORSNTND I, X
BUEDO TR E L TROBIAS HW LR TWS 39,

T—T
P. = 0.54P,,, = 0.54P, exp (AHV - TT") 9)
M 14

ZIC, PAIRBKE, P 3BafZ&KUE, PyldRKUE (101300 Pa), AH, IZHMIE EHTZD O
SACEL, TIZe—R—VBEDIRSE, T 3Whm, Ryl bR E%E R . SALBSCW A, R
IRERUIMRHEA O & 72 D 2 & D, KBKEIRFMEHC X W ZEkd 5. Zhpx, Fig.4.11c
AT LT NI =T ANFIALYE ERITAE WA T, F—F— VEEETo
KEKEIZZE LT D B2 b5, L—VIEBEICB O TH—R—/VEET 4000 K F2EE E THNEL
ENDHERML LN TWD D, Fig 4.2 13 Table 4.1 (2R3 THMHEE 2 KON AT D Z & T
H L7 3500~4500K (Z81F % Fe B LAl OFEFIC L DBUEERLTEY, Fe i L
TAIDGATIIRBEENE LS RD T ENBFND. ZOZ b, CSH T LDEMTH D
TN =T LETHEIABDBEOILDOFMETIE, F—R—VES T TCORBKEREL 2D,
i md b TE D RN H 5 L& 2T

ARETIE, BFAFECBOWTHRAET IR e T ¢ 2R 2 FiE L LT, WRle RO & HE
DK T L OO maOmdft 2z Lz, 2N b2 FEBT 57200 FELE L
TERZEN, EEFEEPEOFERSLOT VI =7 A E TIRIABNE B S TORE:
AL, AMEERRE L. £, Ru T o RBEIEICB T 2 KIAOPEHIE 2 Mk
LIz, B TAT U NL—Y L LTHWEU 7V Z A A X S iaisy 23550 L, R
N TORIE R KOG D28 254 L7z,

Weld
pool Keyhole
Steel
Welding &8 Stcel
direction

B coating

Aluminum

(a) (b)

Fig. 4.1 Schematic illustrations of longitudinal cross-section of welding areas (a) without, (b) with

penetration into aluminum.
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Fig. 4.2 Estimated recoil pressure, driven by evaporation of Fe and AL

Table 4.1 Physical properties of Fe and Al,

Fe Al
Latent heat AH, (x10°J/kg) 6.1 10.8
Boiling temperature T, (K) 3130 2743
Specific gas constant Ry, (J/kg K) 149 308

42 EEITE
421 Rav 7 4 KET A 77 Ok

HEERPTIT 2 L W UARUE 1.4 mm, FEFFGREE 1.5 GPa #kD A v b 2 % v T it LUK
JZ3 mm D A7204 TV =7 A4 (LT A7204 EREHET D) ARz, BB X
WTILE 125%40mm & L7z, Fig. 43 129 L9212, JRE AR E LTKT h~A X (Water-
atomization, WA) #kfy4 i/ L, A7204 FREIZh LC CSIZ L W EE 2 mm ORI 2 Ak
L7z, ZA7 L—R@ATERF 7 mbmE 40x40 mm O#FIFH & L7z, CS 12 & [F—DRMHFITT

40 x 40 (Unit: mm)
/ Steel coating
(2.0Y
Aluminum

& 4 (3.09 vl
2

125

Fig. 4.3 Schematic illustration of CS sample.
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BIoT.

WG % Table 4.2 IZRT. L—VEE2EEIL 322 LRI—D b DA HWZ. Fig. 44 1%
HAEEOBA 27", Sy hAZ T HllRE CS Yo 7 L TEPRIKEETHE) 1
AT —Y Ficty ML, SItREE A~V —V 2R L, Ra T ¢ BE~B T EaE
EBIOT VI =0 ADOEIAHB DB LT DT20, ERERERL LONY —EE A fEx
Tl SHCHEEBI o, F—Fh—NEHEERAL S, NU—BE L 245100 ~
31.8x10°W/em? OFPH CTHRIE L7z, TN — LB LAy XBREOHNT, EhFm» o L
75 30 mm OALEICTT A1 b EELE LT

PRI U726 ISR U, SRS (KEYENCE #18 VHX-8000) % FW\CAMBIRE 23 2
It Fio, M A BB PG T, RS LUV U BRI KRR &
DIFRE R 0, EREEMEEIC a2 82 L. WrmBlgits, 4+—7 vy —2RY
7 b7 Image] ZHERAL, BWESBSKICHD LR T 0 ORTEOEIGEZR e T
AR LTHEM L., BHEGBNTOILHENM LR T 5 BT, EPMA (GHSRYERTH
EPMA-8050G) ([C&k o~y B I oiellioole. 7AI=ZULAETEHEALNELND

Table 4.2 Laser welding conditions.

Laser Disk

Wavelength 1030 nm

Fiber core diameter 200 um

Spot size 200 um (Dsg)

Scanning speed 1) 16 mm/s, 2) 67 mm/s, 3) 200 mm/s

1) 2.4 ~ 4.8x106 W/cm? (750 ~ 1500 W)

2) 6.4 ~ 11.1x10° W/cm? (2000 ~ 3500 W)
3) 15.9 ~ 31.8x10°% W/cm? (5000 ~ 10000 W)
1) 2.3~ 4.7x10* J/lcm?

Input energy per area | 2) 1.5~ 2.6x10* J/cm?

3) 1.3~ 2.5x10* J/cm?

Power density
(laser power)

Weld bead (Unit: mm)

Steel coating
(2.0Y

Alu(mirt\)um

3.0

yd 40
40 x 40

o
125

Fig. 4.4 Schematic illustration of laser weld.
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EPMA | & % 5L COMHT A4 50 L7z, EREE 16 35 KOV 67 mmis D5 CrERL L 7-#k
FAZOWTIE, 250kN FHRES [HRAEREE (RERUEFTR AG-25TD) & MV TR AT [5R
BRak Z/po7z. Fig. 45 (TR L OIS, #RB L CS BT NDF v v 7 Iy M
W, WT ¥ > 700k FICAE L. 5183 X 10 mm/min & L7z,

422 Aw T ARSI T D STa kA O fEE

HEEFNITIT 421 ER—DFR y 22 TR KOV AT204 2 AWZ, YT YA X
ZIF 1.4x50x3 mm, 50x50x3 mm & L7=. Fig. 4.6 [ZRT X912, FEHA L LT WA
P EA L, A7204 i~ CS IZ LV EX 2 mm O A A LT 7 skt LC,
P~ TS X VB 1 mm, 7EE 0.7 mm OXRX%E 10mm By F T4 8551, TZ~kL
—H L LTEEN100um DF 7 A7 VEREFE LT, CS1X4.2.1 LR—DFMHFIZTEZ
Ipolz. BT AT UERO SEM BB % Fig. 4.7 R T . X U 7 AT U OEEIL 193 g/em’ T
HY, ZHUIMOBEEDOR 2.5 TH D, 01, X7 AT A3 & il LT X E

LIZ< <, UTAHA L X BRSO T I OM BRI IR 2203 E C, %
BILRLT. 2070, AFETIE R L—H & LTH U T AT VBT TH D &I LTz

*

Shim
plate

\ g

Fig. 4.5 Schematic illustration of tensile-shear test.
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Drilling 0.7 mm-deep holes Inserting tungsten particles

Fig. 4.6 Schematic illustration of creating X-ray observation sample.

Fig. 4.7 SEM image of tungsten particles.

Az Table 4.3 (R Y. L—VRHEEEIT 421 LRI—-O LDV, CSH T
NI L TRy MAZ Uiz BRI KEBETHE) 1| #h2 77— hicky P L, #itkdkim
=Y ERE L7z, MBAORFHMETICL—FRREISND X5 AT — V2 #YE
L7z, TN —LBIOANNy ZBREOHNT, EREmm»S LS5 30 mm OMEIZTT 5y
~ 2Rl E L7z

Fig. 481XV 7 V2 A & X ity OAXEZRT. ~A 78 74— A XHER, A A
—VTA T T AT —E B LT @EEEN AT (T I A A=TT 7 ) ny—th
Bl GX-8) MY U TN THINT S X D ICHLE L, X#RE2 B I3 U CIREER I &
HENZASH S, XOBEELL LOEERIZENLI 140kV, 1000pA & L, X HHE—
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Table 4.3 Laser welding conditions.

Laser Disk
Wavelength 1030 nm
Fiber core diameter 200 pum
Spot size 200 um (Dgs)
Scanning speed 1) 16 mm/s, 2) 67 mm/s
Power density 1) 3.2 ~ 4.8x108 W/cm? (1000 ~ 1500W)
(laser power) 2) 11.1x10% W/cm? (3500 W)
Input energy per area D) 3.1~ 4.710" Jjem?
2) 2.6x10* J/cm?

High-speed camera
with image intensifier

Laser

Steel coating
(2.0Y

50
3 /
O
\Ne\o xo®

&

Fig. 4.8 Schematic illustration of experimental set-up for X-ray transmission observation.

X-ray source

KR OEBER L OXBRIR—A A=A T v 7 7 A4 7 —RIOERIZZENF1 29 mm,
802 mm & L7=. mHEN A TDT7 L—AL— I 1000 fps & L, WHEBHLA &[RRI SkiE 2
BRIG L 7=,

4.3 FEEHE R L OB

431 AT 4 RE~BRETEERELIOT VI =0 AOEEIAL DR

Fig. 4.9 [3EAIEE 16, 67, 200 mm/s DG THERL L 72k FO/MBLE L OWiE 5 E 27~
T WTNOEEFREICBN TSR —FEORIN L, FIALRS TN 2 %
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Power density (x10% W/cm?)

24 3.2 4.0 4.8

Steel
CI’O?S- | Steel
section coating
1 mm Aluminum
Bead
width (mm) 0.63 0.88 0.89 0.87
5:;&”&2';’; 2.21 2.51 3.17 3.44
(a)
Power density (X106 W/cm?)
6.4 8.0 9.6 1.1
Surface |Eo el Es e
Steel
Cross- Steel
section coating
1 mm | Aluminum
Bead
width (mm) 0.48 0.53 0.64 0.64
Penetration

(b)
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Power density (X10% W/cm?)
28.7 31.8

Steel
Cro§s- £ Steel
section coating
1Rt Aluminum
Bead

width (mm) 0.56 0.68 0.68 0.61 0.61 0.81

Penetration

depth (mm) 2.32 2.68 2.85 3.03 3.13 3.46

(c)
Fig. 4.9 Cross-section images of laser welds at scanning speeds of (a) 16, (b) 67, (¢) 200 mm/s.

R LTz, #il— BRSBTS B — NIRIZZ N2 0.63~0.89 mm, 0.48~0.64 mm, 0.56~
081 mm THY, EXHEE 16mm/s IZBWVTE— RiFgIdk bIsRk L., SERBEICEBIT
Au T 4% Fig. 410 \ZRT. V779 7HFORKEBICRBY O~—2713FNETh, 7
VR =T MDA D IRNEE, WIAHN O L5 TH D Z L 2Rt Fl—EARES T
T 5 &, EEEE 67, 200mm/s XV b 16 mm/s (2B WNTHRE T ¢ RITEL o7z,
a7 4 RORKMEITAEEEE 16, 67, 200 mm/s TZINEI 2.3%, 22.6%, 27.5%CTH
D, EERE 16 mm/s TINY—FEIZL LT HRE T 4 OD TORWIEHESE DG
iz, —J5, EEEE 67 BLV200mm/s IZHBW\TH, T/ =0 AFE TRIAADE LN
FHTIEARR T 4 BIITNTN 22%, 0.6%E720, KavT 4 KB TE 52 LBHL
Welpol, LEXY, EEFEEOKTFBLOT VI =0 A~OEARN KRR T 4 O
WA THDHZ L ERLT.

60



OPEN: without penetration into aluminum
SOLID: with penetration into aluminum

40 —O16 mm/s

— [ |©67 mm/s

2 C

< 30 | (4200 mm/s

o [ A

P <&

J0)

5 20 <& Ao, O

> A

3 10 | A

8 L
OD'_'DL

2.0 2.4 2.8 3.2 3.6

Penetration depth (mm)

Fig. 4.10 Relationships between porosity rates and penetration depths at scanning speeds between 16

and 200 mm/s.

Fig. 4.11(a) ~ (ITFARE S PITIE RS & 72 580 — 8 3.2x100 W/em?, ERHEE 16
mm/s 3 KOV —#E 6.4x10° Wiem?, ERHE 67mm/s, /X7 —HE 19.1x10° W/em?, &
AL 200 mm/s DMF TR LIk FOWBESRICH T 5 ik~ v B o 7otk R e rw 7.
SHTIERIE Mn & L7z, Table 23 31X TN2.5 T/RLZZIEY, Mn |38 & EEWFRICHE E
NOM, GAENPRKEIERD. Zhdx, MnRESA XD ERLN TO & FIEOR S

HABHEEREE B 2 2. /U —HE 3.2x10° Wem?, EAHE 16 mm/s DFMATIE, &
BEEBNICEBIT 2 Mn IBRESAN—HETHLOITK L, /T —HEE 6.4x10° W/em?, AEAH
FE 67 mm/s 35 L UVNT —FFE 19.1x10° W/em?, AEAHEE 200 mm/s DZAETIE, Mn JRES)
MINAE]—TH Y, KRR T ORI T Mn IR EMELS 2o 72, ERli o s+
JEERIIRR LB L TR0, W& iR U CIREE MRV Z & 206, FHENCEERE LA 5 @EFTC
DD, WO HEIIBEEROFE T VI = U LIV BHEIS T <, BREEE
DRI 25 B2 b5, EREWE 67 L0 200 mm/s TIXEERILO AT
THMERS N E HIZEEE L, WS R AGIRAUC K VIZE A ERBEN L 2o 7Tz, KBk
D Mn JREDERNE B S vz LR S D . EEEE 16 mm/s TIXEHEEEN T Mn
RESMNE)—TH2D Z L0, FIRLOEMMN THDIZEENTE T T2 ThH A I BT
BWTHER L2 & ER RISV A>TV D EE X b, EAERE 67 38K 200
mm/s & PR U TR B BE DR E AN 2 & VR S U7z,
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Fig. 4.11(d) ~ (DIZT VI =0 ASOEIAB DG DIV T —FFE 4.8x10° W/em?, EAHE
FE16 mm/s 38 LUV T —F L 11.1x10° W/em?, & A3 67mm/s, /37— 31.8%10° W/em?,
FEAIHE 200 mm/s DFAF THERL L 72k F O EERIE BT ek~ v B Vot R &R
T e RIE Mn B I NAL & Uiz, AR O Mn 2554 1E Fig. 4.11(a) ~ (c) & [Alkk
DM ZRLTEY, ZHLOMEND HERHE 16 mm/s TITEREE 67 LT 200
mm/s & Pl U CREFEDREE NV 2 & AVRIE S A7z, ALICBI LTI, BRI 67 36 L1200

P: power density (X10W/cm?2)
v: scanning speed (mm/s) —

P:3.2,v: 16 P:6.4,v:67 P:19.1,v: 200

=3
@
| 3
} | &
Steel '/ =
o
S
S
Steel | =
coating ©
Aluminum EFESTF¥
(a) (c)
P: power density (X108W/cm?2)
v: scanning speed (mm/s) —
P:4.38,v: 16 P:11.1,v: 67 P: 31.8, v: 200

Steel

(yun "que) Aysusyu

Steel u
coating |

Aluminum | =5

(d) (e)

Fig. 4.11 Results of EPMA analysis of laser welds at power densities and scanning speeds of (a)
3.2x10° W/ecm?, 16 mm/s, (b) 6.4x10° W/cm?, 67 mm/s, (c) 19.1x10° W/cm?, 200 mm/s, (d) 4.8x10°

W/em?, 16 mmy/s, (e) 11.1x10° W/ecm?, 67 mm/s, (f) 31.8x10° W/cm?, 200 mm/s.
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mm/s (ZFRWV TSR T OSNEE CRICIRE R m < Ro . WHG B CIIE, BB R:
ML B LT ALRENRELS 8o TWNAH I EMD, WML CSH L TALOT NI =T A
DEHRAUC X VW B ~BEh LT L B2 o d. BRI LT VI =0 M,
T =R — VEHOEMGBN~BEN T 25, EEE 67 35 L0 200 mm/s D5 TIHE
Al ERIZ 330 D BEEEFE 236D T2, 2D X 5 7R ER5 7 Al DL E T &
22D,

TV =T DASDOEEABDF O NTZ/NT — 5 4.8x10° W/em?, ERIHE 16 mm/s DA
BT DEEeE— 7 VI = U A TOBDHTHR R % Fig. 4.12 1R 7. pHronFEiT Al &
L7z, L—PEHEICL D BRENTZ IMCBOESIZBEZ 45um Th-o 72,

Fig. 4.13 [3AEERE 16 3 LT 67 mm/s DFMTHER L 72k F o5 iZBRG R 2w+, 7
FZI7HORAKFEZBLIRERRBY O~ —27 XENEN, TV =0 LASOEIARINTIROEM, T
ABWBHEFMETHDLZ EETRT. RaTT  ORENITEAERBD LRI - T B
JE 16 mm/s D6, FFICE O THRFITRE— 7 VI =0 L 5E T L7c. Jelkoi@@y,
TV =T ASDOIFEAH PG DI RT —FE 4.8x100 W/em? D&M TIE, EHEeRE TV
RV AREICBWTEZ 45um O IMC @0 AE LT, ZORMEE TV =7 A~DIEIAR
TR NT — R FE 3.2x100 W/em? D G2 I8 1T 5 AW |35 EE (Tensile-shear strength, TSS)

Weld metal Aluminum
N lized fil
‘ ormalized profile r Weld metal

1.0 ; —— 5000000,
— - )
€ 08 |  IMC layer : O Steel
> L L 45um ;
2 06 0O | Steel coating
© | 0000
g o
> |
= 04 .
@ L 5 Aluminum
o) | j
E 0.2 _ OOO oAl

0.0 CO0COOCOP v+

0 50 100 150 Analysis line

Distance (um)

(@) (b)

Fig. 4.12 (a) Result of line analysis at interface between weld metal and aluminum, (b) position of

line analysis.
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12

[ OPEN: without penetration into aluminum
10 [ SOLID: with penetration into aluminum
z L CAFF CAIF
< g CAIF CAIF
7] L
w L
— L
6 -
Al
n1 n2 n1 n2
3.2 4.8
Power density (x 108 W/cm?2)
(a)
12
[ OPEN: without penetration into aluminum
10 [ SOLID: with penetration into aluminum
g i
= L CAIF
n ° [ CAF CAIF
@ i WMF
6 -
M
n1 n2 ni n2
6.4 111

Power density (x 108 W/cm?2)

(b)

T¢ N

¢ = G GRS

CS coating-aluminum Weld metal failure
interface failure (CAIF) (WMF)

(c)
Fig. 4.13 Results of tensile-shear tests of laser welds, created at speeds of (a)16 mm/s, (b) 67 mm/s.

(c) schematic illustrations of fractured tensile test samples.
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DERAXEIZZNZI, T5kN, 79kN TH Y, #iEIE I N 04KNIEKMLTH /2. T2 b,
JEX 45 um @ IMC JEIZ L% TSS DIXR FEITE 45 BRETH L Z R oTz.
ITHFFEIC W T, EEEA TIE IMC JBIE S §um 705 35 um FRE £ THINT % &, TSS IX
FIBSUIETT 22 LAVREINTEY Y, BHFIEICKIT 5 IMC EIZ X 2B T IXEEES
LU TIREM Tho7c. 2o M E LTE, EE—T VI =7 L5 ChkBrs 4 C 55
&, TSSIIEIEDOEEREITHHIND LB NN, KL TV =U AOBEAERIT
IMC J& ORI & ol L T RIEIZR & <, IMC JBIZ X2 RIEOBEETREDK T E A
EEU oz L s 5.

EREEED 67 mm/s DIFE, R T 4 PREITE CTo U —HE 6.4x10°W/em? D 54+
IZBWT, 2% 1 (R CIEEERMKT A 2 Lz, —F, T =0 A~OEIARDE LN,
R T 4 OFRENTE A ERD BN D o To/3T —FE 11.1x10° Wem? OFAFETIE, &
NTOMFIZBNTEIE =T VI =7 LR E TR EC T2, ZRHORREY, TI=
T LASDOEGAFIZ LY Ra o7 ¢ MR S 4L, ZHUC &0 5IIERBRIC IV TR e Bkl
ZEREETE D Z &R ENT.

432 AR m v T A REERIEIC BT 2 KiadEH s X O O 28,
Fig. 414 (IR B o7 4 MF & A ERA Lo 728U — B 3.2 ~ 4.8x108 W/iem?, EATHE

T,=0490s T,=0.496s T,=0.500s T,=0.501s

)
Bubble ni‘
—

Welding direction
(a)

- Steel

| Steel
coating
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T=0257s T=0260s T,=0267s T,=0.269s

|' ‘I.I}
[ S l_l

Bubble Keyhole Welding direction
(b)

Steel

Steel
coating

T 0.167 s 1= 01698 =0171s =0.172s

I ‘} I I - Steel
| Steel
coating
Bubble Keyhole Welding direction

(c)
Fig. 4.14 X-ray images of bubbles, moving upwards, at power densities and scanning speeds of (a)

3.2x10% W/cm?, 16 mm/s, (b) 4.8x10® W/cm?, 16 mm/s, (c) 11.1x108 W/cm?, 67 mm/s.

BE 16 mm/s 38 L OV U —BEE 11.1x10W/ecm?, =& 67 mm/s DEIC BT 5 XA 0% E)
ZEha L D2 XEEer BB AR Y. KFO T dg Blaa b ofRER R 279, W
THNOFMHITEBNTYH, F—Fh— %5 TR E m~KIaDE L3 2 g sn:.
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F—Ih— % TO b L—TFOBEIREZ & 5 2 7= X SRERIE 55 % Fig. 4.15 127
=R ER E T EF L TRBY, F—h— BB THRIES M EJ A~
GINBETTWDL Z NP LN Rolc. TROHRERED, Red T s Bz A ERAEL
Ao T2 TCIE, EIEOEEIC LV A URIENF—R— % ICBIT 25nic X -
TR £ CHEIER, MBS RE SN D Z & TRIBOBRERE TO T v 78S
niEEz o,

BRI B T 2 N —Y OWRBEF M OBENEE Z Fig. 416 ([CRT . NU —#HE
3.2x10° W/cm?, AT 16 mm/s 33 L OV T — K 4.8x10% Wiem?, EAHE 16 mm/s, /3
U — I FE 11.1x108 Wiem?, EREE 67mm/s OFRFIZE T 5 b L—HF O E X ZNEh
0.09, 043, 0.45m/s ThoT=. Tibb, TILI =T A~ORIABPG LN FETIET v
=Y LASDEABDPIROVGAEOK 5 FOEETIZIZF LY A XD b L—F 03 B8 LTk
0, XVEWGRNBAERL TWD Z ERSNT.

44 £

# 3 ETHLNI LR T 4 OREEKZ S LI12, Ko T 1 DEBFIECONT
BE L7z, RIAOBFE SR E CTO b7 v T2 BiIET 5 72121, BRSNS~ P 2 (4
LUERH Y, RSB ORRHEEALR TS5, b L IXEMmAOGRVEE % FAH

T.=0534s T,=0535s T,=0.538s T,=0.546s

I l I I - Steel
| Steel
coating
Tungsten ]

particles e —
Welding direction

(@)
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T=0924s T=0927s T,=0931s T,=0932s

1 mm

TI]]

Tungsten Keyhole
particles (b)

- Steel

| Steel
coating

Welding direction

T=0232s T=0234s T=0235s T,=0.236s

| Steel
coating

Keyhol _—
E;?ffgf:: eyhole Welding direction

(c)

Fig. 4.15 X-ray images of tracers, moving upwards, at power densities and scanning speeds of

(a) 3.2x106 W/cm?, 16 mm/s, (b) 4.8x10® W/cm?, 16 mm/s, (c) 11.1x108 W/cm?, 67 mm/s.
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1 without penetration into aluminum
I with penetration into aluminum
o 0.8
I= [ Sizes of tracers:
~— 240 ~ 2
— o [ 240-260um
O
o
%S 04
P
©
% 02
>
0.0
P: 3.2 P: 4.8 P:11.1
v: 16 v: 16 v. 67

P: power density (X10°® W/cm? )
v: scanning speed (mm/s)

Fig. 4.16 Velocities in vertical direction of tracers.

EOLZENAENTHD BT TNOLDOFEBFELE LT, EARHEOEBNRIELLOT v
L= U L E THEIABLDG DIV D G COWRBEEZRF Uiz, EAEE 16, 67, 200 mm/s D5
TRZB T 2R e VT 4 RBORKMEIZZINEN 2.3%, 22.6%, 27.5% Th 0, EAEEE 16 mm/s
TR VT 4 ORD TO IR WEESBS GO, — ), E&AEE 67 35 10200 mm/s (2
BWTH, TV =7 AETHRIALRDE DN TIER e 7 4 RIZZNZEH 2.2%, 0.6%
ERY, Au T T 4 B EBTELZ RN E R DEXRY, EEEEOK TR LW
TN =T LSOEABRRE T 4 DIRBICHANTHD Z L arRmLic

BHECBIZB T 2k~ B 7o L0, TRBESANEEERE 16 mm/s TiIH—
THDHOIZH L, EBEE 67 BL200mm/s TIEARY—~THDH I LER L. ZOREN
AT D 75 BTV A B OB OEVTEK LTn D L HEZ S, EEEE 16 mm/s Tl
67 3 LUV 200 mm/s & bols U CHREFEHREE SV 2 & AVRIE ST,
ERHEDBNWEIEB LT LI =0 A~OEIABING DAL D S TER LTI,
WL B BIIRRBRICB W TRIE— T VI = o A FUE TR U, 7RG B kT % (2138 AT RE T
ot TIVI =T A~OUEABRNGOEN LM TIRIRESR L TV =7 AOREIZE
WCIEE 45 um O IMC BB STV S, 20U K 2 FE DK FIXRENTH Y,
BFEIE CIXIE S L I U CRAER S NS D IMC BIE S ORI ALK T 5 2 & 2 5
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L7,

EHIT, Au v T ARESAFC BT D KIa 0P L BRET 2720, FL—¥ 2 v
BN O U 7 A b X BRI 2B 220, F =R — IR LTSI &
> TRIANEAMANET A~ SN D Z E 2 LMT LTz, 72, TV =0 ASOEFEARD
BONIERETIE, T =U LAAOERABDIRNGE L i LT b L —Y OBEIEEN 5
EREE CREELTRY, HOGRANERIND Z 2P 60 L.

UEOFER LY, EAEE 16 mm/s O TITREEERENEN &, TV I =0 L ETH
RBBEONEFMETIRGRADSEETH D Z LB — K E 2o T, KIaPIERLAN T~
HEneT<ay, Favr BMEBLEZEEZ L.
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BSE MFME L RERMEO MR OBARE L

51 IZT®IC

AT £ TOMFIZT, 2—/ KA L— (Cold-spray, CS) Ffsiz gL L CRIF L7
LT NI =0 LD L —PHES (LLTRBIELHET D) TR e T 4 B3R 0WEE, 5l
RARBRICB W TR — 7V =0 DR TN A TS Z L 26N L. 208545, fk
FRREIIRIEOFEAREIEI NS LI ESND. bbb, BARIECKIT DikFRET
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TR L 72K FE ST A —H Lo TRESND. FBIV ADIENB L NRERNEVIEE
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DRFITEVEB TRV — 2 T L5720, AMEREICHL T3 L OEMIZ W TR
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Fig. 5.1 (Z- 3 AW [9RIRE (TSS) +-F5HRIRE (CTS) ICX Vi S D, MkFHRE
DOHEIZLE, ZHUBBEITEL< D 2T EDMBATND #9. FAMSIIERBRTIL, BT
WOBIRHIOFTIUTKK L72BEHEEE A E LD 6D, fEFORED K E 2 51E EREILS
72V, ERRFEHEEESIH SN D2, BRI LTS ABIZIT VWS 28 X, TSS
FmET 25 EEZOND. FFEIRRABR T, SEEHETLICRFFMOMPERNET .
Al —mfE MBI 2HITEE R, WPEOESVRIEDO R EWFFIZE/NS <D, 550
BT HOTHENMEET D70, CTS T LT 5B 615.

—_—
»
‘ Rotational

/ deformation

Bending

/ deformation

Fig. 5.1 Schematic illustrations of (a) tensile-shear, (b) cross-tension tests.
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CS falEz g & L TR L RS RIETIA R v MRS (2B 20178
IHETITHME SN TWDN 39, HEFIRE~I6 JUT T BURRFIE D SE 2 RFEHIIT T4 L

TR 2 E TIZRW. £ 2 TARETIE, BREICRWT, MFmE~B LT T EEOH

ERERBIVESORELHALNITLHIEAHANE L

5.2 FBRITIE
521 23— /L RAF L —

Table 5.1 1L CS &b znd. T,V ANZIE LTc@EiREES A T OEE (777 A~
F 28 PCS-100)%Z FVNT, Fig. 5.2 12" %A X3 3 X 125X 40 mm 33 L TV 3 X 150X 50 mm
D AT204 7V =0 LG4 (LT A7204 LRCHT D) REICHKIEDN 2 —TF 4 7 Sz
TN EERL LT, B RIZIZKT b~ X (Water-atomization, WA) #k¥y % FHV 7=,
A7204 BIONWA BEATREE CTHEMALZbD LF—& Lz, JEE 2.540.2 mm O A
TN =T AAEREAEEE, BB TIZED 0.6~2.0mm ~ES 2T L7z, RO

ITHEOREIIZL—Y Ky 77 —d G (Tecnar #1:#4 Coldspray Meter) Z [ L, HIE
AL AV E L.

Table 5.1 CS conditions.

. High pressure and

Machine .
high temperature type

Nozzle De-laval
Carrier gas Nitrogen
Gas pressure 3~7MPa
Gas temperature 1273 K
Substrate AT7204
Powder Steel

50 x 50 (Unit: mm)
Steel coating

L (209

Aluminum

m'ﬁ%o

Fig. 5.2 Schematic illustrations of CS samples with sizes of (a) 125 x 40 mm, (b) 150 x 50mm.

40 x 40

Steel coating

/ (2.0
Aluminum
ﬁ

125 150
(a) (b)
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ERLL7- CS o7 icxt L, A7 L—Em e CTOIlreE, MHELZ R 270, L EmE
(KEYENCE 8 VHX-8000) (& CRZEWd 2 fiksg LTz, £D%, A—7 Y —AY T Y

=7 Image J ZfEH L, 1.11x1.48 mm DOFIPHIZ 5D 5 K[ALOK MR DOEIE & B O KALR
ELTHEHM L.

B AWrEs X ORIBE ST 7 0 B A5 R EE A5l 3~ 2 72D, Fig. 5.3 B LT 5.4 (T3 AW
Fo L ONRIBIERS 5 R B AR 2 e L 7=, A Y o 7 uiduniu b Fig 5.2(a)lcsd 125
X 40 mm YA XD CS 2 7V L0 BB TIC X 0 ERBL L 7=, AW 5 10 AP AR B,
Felsa 7 L— MBS HRIETT VI =T A% 7 L— MNEIZEEE L, 250 kN HHES[HR

Steel

coating Aluminum

- Steel -
coating

(Unit: mm)
2 3
1551135 ‘/2'5
63
(Unit: mm) | 20
63
75 .
25 specimen
v /
3.1 8
100
(c)

Fig. 5.3 (a) Location of shear test specimen in CS sample, (b) dimensions and actual images of shear

test specimen, (c) schematic illustration of shear test jig with actual image of jig.
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(Unit: mm)
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Fig. 5.4 (a) Location of peel test specimen in CS sample, (b) dimensions and actual image of

specimen, (c¢) actual image of chuck jig for peel test.
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522 L—WyREE

U —WIEPR A Table 5.2 12”9, L—VHEEEEIL 222 LRI—O b0 &2 iz, L
RIZBITHE—A7 17 7 A V% Fig.5.5 IR T. ARy MEBL O LA TOE—AFIT

L—HFDAF TR X —0D 86% N EENLEE LTz,

HAHEEORA % Fig.5.6 (27”7, AW LOHF5 RV 7 2 ER 5 72
O, WE L4mm, REAREE 1L.5GPafk DA v b A K 7 HillkZ CS ¥ 7 /VIZE R, HN
) AFx X FEHAWTHERMN S L —FE2MBICEE LB ORE L, BHErl kol &
v NAZ U THRIIAIEE CTHEALELDO LR~ Lz, T —AB XAy ZRE
OHMT, ERFEHE2D EJ530 mm OMEIZET H Y MaflE Lz, ke LT, CS %
i L CTOZRWARIE 5 mm D A7204 2 IV THET (BLT EEEEHET LRy 2) 2/FRL
7=, PRBOAR L S THTORKEIL64mm & L, WEDEWNZ X DT HRE~DE

Table 5.2 Laser welding conditions.

Laser Fiber
Wavelength 1070 nm
Fiber core diameter | 100 um
Spot size 330 um (Dsg)
Defocused distance | 15 mm
Beam diameter at

630 um (Dse)

defocused position

Laser power

Power density

Described in Table 5.3

Scanning speed

67 mm/s

Weld length
(Weld diameter)

37.7 mm (¢12 mm)

(lun “gJe) Aususyul

Fig. 5.5 Beam profile.

7



Laser

Steel coating

Aluminumy
/40 mm

125 mm
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-

40 x 40 mm

Laser

.— 950 x50 mm

150 mm
(b)

Fig. 5.6 Schematic illustrations of (a) tensile-shear, (b) cross-tension samples.

BRAELRNE I L. Table 53 IV —HF B IO —FEEZRT. RIEIZBWVT,
CSHUTNDT NI =y LETHEALEZGLZ TR T o BRI TCEL 2 L2 60
WZL7c. 22T, REBRIZBWTY, 7AWI=ULNE THEIALDGELINL D&M Z BRI LT,
F—R— WEHELE 72D L9, NU—EBEIX 1.0x10° ~ 1.6x10° W/em? OFEFA CRE L. H
BEEAITOWTE, FBATHIRICTT VR = U ADFEIABRIR S 3 0.30~0.35mm & 72 5 54
TR TFHRENMEOND ZEBHLNE RS TNEZ e 19 RERIZEWTY

LRLEAZIR S OHFPA & 72 % KO (ZHIE L7z,

RS L7k FITx L, Blrds JOWHEE 2 s, © 7 U U EBREERKISKIC L DR E2k 2
7RV, FRRBEMEEIC CIRBEE M 2 852 Lo, GIWRALIENE Fig. 5.7 IR T X 91T,
FomREe Lz, SO/ MFOMETRELY, A—7 Y —ZXY 7 F 7 =7 Image ]

i LA — B R 3 KO — 7 v =0 AR T D s E A %
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Table 5.3 Laser powers and power densities.

Spray conditions Welding conditions
Coating thickness Gas pressure Laser power Power density
(mm) (MPa) (W) (106 W/cm?)

0 - 2750 0.9

0.6 5 3250 1.0

1.0 5 3850 1.2

2.0 3 5000 1.6

2.0 5 5000 1.6

2.0 7 5000 1.6
Cutting

Steel
Steel coating

Aluminum

Diameters at interfaces a) between steel sheet and coating,
b) between coating and aluminum

Fig. 5.7 Schematic illustration of cross-section observation.

7o, TNENDOEHESBICBIT 2R T 4 RKLE Yy MES bHOETEFIL. AT
A RITEHEER 2RI HD LR o7  ORIEOESG & Lz, EHIZ, Fig 58 1IRT X
N, vA 7 atyh—AH S EE (~Y U AMT-X7BFS) % AW CiR#Ee R — %
JEREAA TR O S o3 An 22 1 L7, fafEE 300 gf, PRéflRsfliL 15s & L7z,

Steel
e t,rz:i( hlckness) Stee!
‘ Bhi b | coating
I .
Center of _
weld bead Aluminum

Fig. 5.8 Schematic illustration of hardness measurement.
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MEFARE 2392 72, 250 kN FRES SRS (BERETTHER AG-25TD) #Hw
THAMBIOHTESERRES 2 o7z, HAMISIERBRICE O CIE, Fig 5.9 1O~k
, BB EOCS YT NDF v v 7 EICY DRET A, WTF ¥ v 7%z 55k i
B L7z, WTILoORBRICHE W T HEIREAEL L 10 mm/min & L, 3 BIORE CTH b7k

Wifaf O F)fE A TSS B LNCTS & LT

5.3. SRR L OVEE
5.3.1 fETFIREE~F6 LT 9 H A TR DR

Fig. 5.101X¥ Ak DA TR E ORI ERE R 2/~ T, (BB ZJES 233, 5, 7 MPalZ B 1T B
ITHEEIXZ 21679, 778, 851 misThd YV, T AD®E(GIZHEWRIFIdEdE ik L7z, CSIC
BTS2 72 DI B2, \Wibip D “critical velocity” 1%, Hi£E40 umDEERHRL1-C
BLES00m/s & HE I TS, BFEH AL DR ORI THEE L34 eritical
velocitylh & 72 o Tk 0, BIEIZHE LI-SFETHL EEILND.

Fig. 5. 1T IEOWr G E %, Fig. 5.121F RO KILE &R ORI THE O REfR 2 R~
KL F- D@ BTy, BT O KFLIRIR T 2 2o L7z, FATHED679 misD5 A,
KALRIFZ 9% TH H DK L, FATHENT78F L U851 misDA, K[ALEIX0.2% LI E
TR T L7z, ZHus, kirhmd bd 2 2 & ClZErRF O BMEETE DMIERE S 4L, Bif-[F L3
HLllewEfgasns.

*

Shim
plate

¥

Fig. 5.9 Schematic illustration of tensile-shear test.
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Fig. 5.10 Particle velocities at gas pressures between 3 and 7 MPa.

Particle velocity (m/s)

679 778 851

Fig. 5.11 Cross-section images of coatings at particle velocities between 679 and 851 m/s.

Porosity percentage (%)

0_||||||||||||||||||:||||||||L__|||||
600 650 700 750 800 850 900

Particle velocity (m/s)

Fig. 5.12 Influence of particle velocity on porosity percentage on coating.
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Fig. 5.13 3 L O 5.14 [T Z N1t AW I K OGHIBER & 8 RHmakER O fk 2R3,
TORBIKIZIBNTRIE—T VI =0 LSV TR A4 U7z, KL F ORI T EE
28 778 B X 1UN 851 mis DIGE, 679 mis D& & Flse LT AW,  RIBER A5 585 (3 RME ()
EU7. ZHUE 5.1 THRAZE Y, mEE TRITT 2R FIEmWEB = f L X —2 F 4 572
W, FEMEZERH TR A F X OEM I W TR L O FrESCMPEE T A A LT < e
0, EMEASCA = INA v F—ay I PMEES NI L HER SN D, RATHEEEN 778
BLO8EImis DLEEIET DL, BEDITINEETH HIZH DL LT AWEERE
DMEAL & 7p o7z, CS Tl Zehi - ORATHRE OFHN H D, ZH L EORE T ER)
FBOMETL, BELIZS K722 1120 F72, CS TIET TITHUIE S 7255 ioxt L CThRIF03
BRI 52 LT, == 73R IDEMIERICNMGES D . ZORBISHITEA
s AR SRR O B T NS < 7o, BEBEZ IR TS L. RERTHWZR B LW
M OMAE DR TIE, R ORITHED 851 mis £ TrEdlbdT 5 &, MEDEOKRTE L
LB E 22 EMGTR RGN DR ALY, BERENET Lz HEIR5.

160

mof n

||rmfp'|n|v|“m|1|r||||||||'n||nu '||n||m'|m—]|m|
7 8 9 gﬁg‘l p,

600 650 700 750 800 850 900 (b)

N
o
H

o

Adhesive shear strength (MPa)
3

Particle velocity (m/s)

(a)
Fig. 5.13 (a) Influence of particle velocity on adhesive shear strength, (b) representative image of

fractured shear test specimen.
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Fig. 5.14 (a) Influence of particle velocity on adhesive peel strength, (b) representative image of

fractured miniature specimen.

Fig. 5.15 I3k FOWrim FE 2~ KA OFRATHED 679, 778, 851 mis DILGAIZHIT D
B — R ISR OV BEERE AT 13.13 mm, 1328 mm, 13.00 mm, fE—7 /L = ARED
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Dotted line: fusion line

Fig. 5.15 Cross-section images of laser welds with coatings, created at particle velocities between

679 and 851 m/s.
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Fig. 517138 Alrds L IR OFE R 2, Fig. 5. 1815 IERBR % DAV T H 4 7~ 7
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Fig. 5.16 Hardness distribution in welds with coating, created at particle velocities between 679 and

851 my/s.
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Fig. 5.17 Influences of particle velocity on (a) TSS, (b) CTS.
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Tensile-shear test sample Cross-tension test sample
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Steel
Aluminum N
- Steel coating

. ’ .

rF g
¥
Tensile-shear test sample Cross-tension test sample

(b)

Fig. 5.18 (a) Representative surface view of fractured tensile-shear and cross-tension test samples,

(b) schematic illustrations of fracture modes.
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Fig. 5.19 Relationships between (a) TSS and adhesive shear strength, (b) CTS and adhesive peel

Adhesive peel strength (MPa)

(b)

strength.
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Fig. 5.20 [T E AT OWH EEZ/RT. TV =7 A~OFARES X 034mm Th
D, JHWE L72 0.30~0.35mm OFPFHDEIALR S GO T, MFMmEOKRTERK & 7225
AT R0y MBGEHEEBICRD LN, Red T BEBLIOE Yy MESIZZENE UK
KT 12.2%, 0.87mm T -7=.

Fig. 521 [ZFHFIETIER L -k F oM G 54 (R d. BE S723 0.6, 1.0, 2.0mm D%
HETFIZIT 28— SIS 36 1T DS HE E AT 12.84 mm,  13.06 mm, 13.28 mm, S/ —
TV =7 AREICE T DIRBEEEAAE 1241 mm, 12.53 mm, 12.69 mm TH Y, T
TOBEMEROEZR I LA ERD N o, £, WTROMT LR 7 1 FiX
LI%LLTFTH Y, By MIRD LT, EHEHEEGHTF & sk U CEBER MR RIE il S
To. ZHUE, TR =T ASOFEIAFEZ DN 0.05~0.16mm Th V), EHHEAMRT & L

TT VI =0 B~ OEARTES NS Wb LHER S .

Steel
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Pordsily

500 um 500 um

(b) (c)

Fig. 5.20 Cross-section images of laser weld without coating: (a) macro image, (b) and (c) micro

images.
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Fig. 5.21 Cross-section images of laser welds with 0.6, 1.0 and 2.0 mm-thick coatings.
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Fig. 5.22 (a) TSSs, (b) tensile curves of tensile-shear tests, (c) CTSs, (d) tensile curves of cross-

tension tests, (e) ratios of CTS to TSS of laser welds without and with coating.

A, RS2 0.6 mm LA ETHAIVUTESZES &L Tl TSS B LU CTS 215561
L LAVRENTZ. SRR L7FM T, BIRE S 2.0 mm (28T TSS B LT CTS 13
ARME 10.5kN, 45kNIZEL, TREHESEGIIH LT 2345, 58 EDEEGZ. CTS
% TSS THR L7 fBIZIEM: L & FREA, METFOEMZRTBELE LT LX LIV LD R
9, BRSO I E < 72 DM 2R L7z,

BEEEAMT O AWM X OS5 [IERBR % OAMBIE B % Fig. 5.23 IR T, W Lok
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(b)

Fig. 5.23 (a) Surface view of fractured tensile-shear and cross-tension test samples, created by direct

joining method, (b) schematic illustrations of fracture modes.
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Coating thickness (mm) m
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Steel
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Fig. 5.24 (a) Surface view of fractured tensile-shear test samples with coating, created by developed

d

joining method, (b) schematic illustrations of fracture modes.

+E R [ ERER % OSMBL T A Fig. 525 1R T, KBRS 1.0 BLO2.0 mm D5, 7
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-" . ~Steel coating - Y ~
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Fig. 5.25 (a) Surface view of fractured cross-tension test samples with coating, created by developed

N

¥
joining method, (b) schematic illustrations of fracture modes.
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PO FEFREE DS 100 MPa B4 & 0 Ic@m Ve, RIBE X723 0.6 mm LI T AL
BB L TEWVFFRENSGOND Z & &R LTc. £, KEFEES 2.0mm 2BV CHEEE
BEAIZR LT 2364, 5.8 DO AWHEIEE (Tensile-shear strength, TSS) 35 X 555k
B (Cross-tension strength, CTS) M55 Z & &/RLTZ

ARG U C, BRIBICRIT DA T ¢ ORTFIER L OWEFIRE ~3 LIF 3 R
RO AW LN Ui, AR TR AZTEN T2 8T, Rued 74 BNEEAER
<, HEHESG LV B RIBICREORWKFIMERAEETH Y, BFESFERR&EEHE 7
L2 =T AAEDOHERTECR VAL EEZ TS, AR TIIMEAOXIR LT 5B % H

96



BFHETHWONLEBENME T VI =0 bGe L LI, FRBIEORE L, MEOMAZED
HiIHEVIRES RV, BB, S8, M2TH, B EHEx OB 2fx DR
flE RPE S 1Tk L CRBEDOTEMA G SN, TOEE, AFETH ORI RVNCE
BTx5LEZD.

AT LN BB TORREZ L TICRIET 5.

B1EIHSTHY, RFEOERLE LT, 2050 FFh—Rr=a— kT NVEREMN-S T
HEEORECER M E=—ADEE 0 7D, EERRE(ESHEESNTND Z & ZIRRT
BEEILEZERTDFEO 2L LT, T VI =0 L, 7T AF v 7 7 Pk bk &0
MR CRLE T 5~ AT ~7 VT AEEN A E L LTEHEY, EFEEER~OmEHA ML
TV EEAHME 70 =0 AR OBE1Z1E Flow Drill Screw (FDS) % FV 2 O A3 i
THLN, HEAA MIBREEZAT L2 L 2iill Lic, mEdEEE 2 rRENOHFEMLNIT & A
WL —VE#ELENVWL 2L TRa X METE 2R H D Z L, FATIRICE W T
HOMNERSTVHIE T A I =T A0 L—FEBEOBBICONTE L L. £ LT, A
FED HIE LU & R LTz,

B2 BT, EENHET VI =T AEED L —TEEICB T DRI E DS ELA -
T, CSREEZEL LTRIA LI L — R 2B R Lz, FRETIIESEES L L
THEW TSS 356, ZOEMMENFEIES L. —FH T, L—FEEICBN TR YT ¢
MREELLT L, TNICLVIEHECR THREMT 2580865 2 LWL L. HEeR
WA FREDIR T 25 SR T2 00, BT 20ERH DL EEZ, TORKNERD
Ra T 4 BKKT 2 2 L EMEEOOE S L Uiz, E7z, BIRIEICBI kTG T,
ARG EORR LT, RIEFEL BT 2 0LER’H D B2 HND T LD, HkTmE
& BERFE D BR ORI Z S 5 — DO OMFERRE & L TRIE LTz,

%3 ETIE, BFEICB T 2R T « O Z EZBRICHL N L. U7 v2 A
A X BpE e 2 B 280, KWER CS BN LV AL D2 LaR LTz, £z, Aav T g
HIZEENDHTADEZ LI H THDHZ EEMOENI L. Ae v T I 3REICEEND H
D9 B, WEHATICEECE 2P bOPRIA L o TREIL, £ O—HBANEERE Fifi T h
Ty TENDLZETERTDHEBZ LN

B4 ETIE, B3 ECTHLNILER e VT  ORAEBEE D L2, Ra T o 2K
AIREZR TR OB 2 Z e o 7o, KIADEEAE TO N7 v 7 2B 27212, &
AN~ O 2R HET D LB H V), WWRle B OBEEHRE 2T S5, b L < I3
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MNOETRAVEE 2 LA ST ENFATHDLEERT.. TROOEBFEL LT, £
HWEDOBEWREBLIOT VI =0V AL THIALDRE LN DR TOEELRF Lz, &/
W 16, 67, 200 mm/s DERIEIZIB T DA 1 VT ¢ FBORKRFEILZNEIL 2.3%, 22.6%, 27.5%
ThV, EEEE 16mm/s TIIR R T 4 OO THRWEESRI GO, —F, &/
HEE 67 33 L0200 mm/s IZBWTH, T =0 AE TEIALPELNIZEETIERR &
T A RIZZNEN 2.2%, 0.6%L 720, AuTT 4 #EBTELZENHALNERoT2. B
EXy, EEFEODKTFTBIOT VI =0 A~DIEALNRT T 4 DIRBIZES TH 5
ZEEIRLE. WESBICBIIATEE Yy B IO LY, TRBESANETEE 16
mm/s TIEE—TH 2 DIk L, EAEE 67 B LU200 mm/s TIEARY—ThHHZ LERL
T, T OOPRPESIA O 75 BT VAR 8 OB R OFEVICERIN LT B L HEsR S h, RS
16 mm/s TlE 67 36 KT 200 mmy/s & FL#E U CREBNREE D IRV Z L AVRE S fvie. EARE D
BOWEEBIOT VI =0 AOEABPHELN D FMTHER LTI, WIhbolak
AR WTEIE— T /L X =7 L5 TR U, e Bkl 2 e rTie CTh 7. 743
=T LASDOEEIAB PG ONT R TIIEHESR E T VI =T LAOREIZBWTES 45 pm
D IMC BATERL STV, U X DMFREDR NMIREN TH Y, BAFIETITE
PR LW L CTHFASHES IMC JBE S OFHBIERT 5 2 2B LN L. S5,
WE T RSB 2 K0P A BEET 5720, b L—F & AW EEiN
DY TIVEA L X BFBwSE 2 22, F—=FR— R FICAER L L - T&ia
DRSS~ SN D Z L2 GNI L. 2, T I =0 ADOEIALDBHZELND
FIETIE, T =T DAOUEABDPIRNEIE L L LT N L —Y OB BENHEN 5 (FRE
FTEHEMLTEY, HOWGIRADER IS Z EAHLMNC L. BLEDOERL Y, E&
HEE 16 mm/s OFMTIHBEFEMEN BN &, T =7 A F TEIARDSE NI &M T
TGP ERTH D Z LN —K & o> T, KWEPEMHSNT~EH ST <0, Re
TTAMER LI LB b,

ST TIX, BARIEIZIT 2 RO ETRE I L OVE I D5 FIRE~J KTz o
TERAME L7z, EEREIXCSIZR T 2 MK ORATIHE & FHCBE L TR0, M7
HEERTT8 m/sLh B E IR DA XA RENEE Y, FAUISTEE L CHETF RS RIEIZ M -
THZEEWLMC U, B ABIEEREN MPalEINT % &, TSSIX0.04 kNJA L, g
BEAETRE N MPaF N % &, CTSIZ0.03kN[M E L7z, F72, REE A1 mmigm+5 &,
TSSIF2.53 kN, CTSIF2.26kNIA) L7z, SZEOE AW, FIBEREETREN & 12100 MPaf(i{
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EHFICEVEA THIUE, KIEE X230.6 mmPLl B THIVTEEHES & R L CEWIET

SRIEZIFOND Z ERE NI, ARG L7-#PH T, R 2.0 mmiZds\  TTSSH &

O CTSITFmAMELI0.5KN, 45kNIZEE L, ZH I EHHES TR L T2.34%, S.8FDEE57z.
FOREILFHES TH Y, AR TH LN RRORIEE R LT,
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A

ABFFEDOBITI L OAKRGRILOBET, KRKRT: AR L —Y 7 n v X255
BARER B0 ZHRERB LSO ZTHREEZIH Y 2T LA O THY, BATHEZH L LT
£7.

KL e ELODHITHIEY, ARRTHERBIOCTHEZHY £ LI RIORT: KT
FHITERE AR TR R RN R, RIORTE KPR TErsest MM TP ER me
Wi Bz, KIRKRT AR L— 7 vt 2200 Ve = ded ok < &
LR ET.

M LRI T, LA A DRI KBB LUIRA &Y £ LEKBRS:
R WS B~ FIRICTE S L LT

MHEERICBE LT, ZRERBLOITME 2BV £ LRIy #EaRZIZER v —3
Tr e R VTR BB L LT R ERAED D ICHTEY THAIKTIES
WE L7CRIRORSE BEAFHAITZERT JoERREMEIN TILRATIEMMT KA 1EHE FrEBhE, X
PR REEBE TEMPTeRt Mk T2 a8 R IR, SRR ERERICIEH R L L £
iz, WHEERICED L FE Fi S TRMEHIIRY £ LIERIRRE: #EAREIERT L —
V7 uv 220 il FHEMER, MmN FHEMIER, B iEF FHEMERICHK
HH L EET

R AR 2 A P < 12 S W E LIRS A = AT BARBARAT VU =2 —
a VEfTE Y — B —R R ERIOREHER L B ET. £, ML gie
TR L TIRESIESY, EonT&2fEo TWIt/ZE £ Lt SABARALR ¥
a—a Uit 2 — WHRETR AR — MR P L ETET. EEZILoT,
FEICERSIETLEZIY, 2O I®IWIIZE £ Lt BERBEREAR VU 2—v
a Ui 4 — HEAUIEE BER KAEE AR 5 NTERIZEHF L LT £

BRI, LRI TIC KA T b o T FHRICER S BEHH L BT £,
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