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1. #8

1.1 IRIILEF—EBFIIZE 1T 5 CO, BEHHE DHIR

SR B AR & L KEAENT, AT T AR ERAEMITEE L RITL
BOBERLRETH L, KR LA LZIET 572012, IREERT AFEHEOKR
EHI A 8 5 D HEHIRIC K L TSRO SN TV D, =X —EMIzB VT,
BIROMRFIZ LD CO2 DHEHEHKA RO B TWD, £ 2T, HAEMEE
TRNF— (FHrx) B, o ofE L AKBSOT =T 28T
LHERTI v g kNFEE, BEERARER EOEKILRPHREI N TWD,

1.2 BAAREIRILXF—LEREBORTUOUYIL

B rERICE LTI, KELIE &R HE O LILR I FHCHIFF ST
W5 2 KBTS LR FEIL, HUIEGEITH D b DO DIERICRK X 2 ART
YU NEATHEZRAF P THDLH, KGR F—IZ o0 T, FRKY
4x10% B] O =R /X — N HERICHE SN TR Y . 20 5 B 5x10* EJ [T
ROZHHAAREZLOTHD EHEINTWD 3, BT R — (2O TIL,
HIEK T 1x107 MW O =R/ X — 2 H I HIHRETH 5 LHER ST\ 5D
=T, MBS A A= R NBEOK ) T RV — 72 E O OfD TR
TRIZOWTIE, EIROW KIER O Gl LXK RS & i LTSV
2RERRT VNN ERELTNDS 59,

FERCBI L ik, AR D 1 IR FILF—THEEICH LT 72% & W ) R 22
EBENJEHENTEY ., 2095 63%28 100CKM THEHEIN TS 10, L7z
> T, BEAOHBFMASG COr HEHERIFICEH 5 LI5S, Bl 21X, REmRH
1000 MW, ZE = 40% Tl S U5 A R KT EFTTIE, 1500 MW 2324 &
LCHEH &SN D, I Z OPEBD 1% E2EXUICEHRTE R, 15 MW OFEX %
BITHEONDZ LD, ARBEEHTZV O CO2HEHE% 90 gco/MI LA
ET DL, FEIRNE 40%DFRKIIEEIT TOREL Z OHRNLHELND
ERCRETEE, M 11X10°tD COZHITE 5 Z it b, =721,
ZORERERIT 1 AFEMERS ) CEKHER LA TH Y . BEHOBERIL
ZE LTV,

PLEZESE 25 & FRCHREDNIIRG S D KL E. B3 O H i B
AT, +EHTE TV RS LW AHEO =X LX—Ji CRAIH=x /L
F—) I L TAEIFHAERZBRET L TS Z &b EETH 5,



1.3 BEHEMICLHARIAIRIILET—FA

BT, BREREM, FEM AL, RIERO =R —HRITB W TR IS
RERBEEIZHE S Z ERHff s LTy S KR 2L F—DF20FIH %2
Hig L7o@Emhif & LCix, FicB—EXILAH (Thermo-electrochemical
conversion) IZIEHBEE > TV D, *}‘—Eﬁ AL T 1%, BRI Z I
LT EZERICERT 2B OBMETH 5, Bt FE (Thermo-
electrochemical cell) . Thermally regenerative electrochemical cycle (TREC) .
Thermally regenerative battery (TRB)., iEE%ENT7E (Reverse electrodialysis)
L BEOVAT ARHESHTND

1.3.1 BLFE;

B FEMOBM X 2K 1-1 1R 7, BVbFEmIL. [EWEOBR{LETENM
DOIRERAEZFIH L, EMEOREZICL > THRETHEMTHD 1726, £
LB ORE L., BAIREH - OEWEOILE TEMNMEE (BT—X
v AR [mV K1) SREEK]OFEE 2D, FUREZETHLE—Xy 7 RER
REWEEERBENNDREL 2D, BUYLFEMOE—~y 7425 Se 13— 12 (1-
Dick-oTERSN S,

AS
Se=—% (1-1)

ASIE, EWEDOKRIG=y hre—Ths (X1-2), niZBEE T, FIX7
7 IT—ERTHLH, LEB->T, EPWEE L TRIE=Y b BE—RREVEE
LR IR Z /IS H 2 & TRVWE -y VREEGL LN TE D, LTI
IEBWTHRBASHNONTWAIEMEIZZ =ua/7 = 7 =R ([Fe(CN)s]*
By THY ., KEKFTR-14 mV K REOE—Xy 715852 HT 5, 20
— Ry JAREE BB [Fe(CN)s* P 2 1EWE & L TR EME 2B L-E
sk 22232527 M OTEWE AR LTl R 20202426 7 B By R D)

FIZANTF 2N 7 ST D, Z O, mIRAIAREANZ I DIEWE DR
Fﬁm%ﬂ%bt@m%ﬁm_owfeﬁiéMTwé X 1-3 [ZRT kol
mm@kﬁm@TMmmk TLARDREILIC KX 25T 5 Z &R TR

RIRBEM DN R L > TE =Ry VIR EHERT L2 &R TE D, HlxIX, 7
7%//m%ﬁ%%%ﬁﬂé@m%ﬁﬁﬁmm¢@%%§@ﬁﬁﬁﬁ@ﬁ@
DTREL 2D EEFAHL, [Fe(CN)* P2 DT —X v 745450 %-3.73 mV K!
FTCMESEDLZLENTEDS B I/ ROBYLFEBEMIZHA A h—4 A MEAAE
MEIGHT 2 2 LT TOmEICREKRFHE 2S5 L, B—y 7558 4Em LS
BHZENTESD 08, T R/ TaR ) — L E2IEWE L LB E]
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TlX, BEMEZ T ' oS LL FICET 5 Z & T8 b DREABR T

RS, mWE—_y 7R (99 mVK!Y) 2B LN TED X,
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Fig. 1-1. Schematic of the thermo-electrochemical cell.
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Fig. 1- 2. Reaction entropy of the redox couple.
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Fig. 1-3. Strategy for increasing the Seebeck coefficient by utilizing temperature-
dependent solubility of the reductant.

1.3.2 Thermal ly regenerative electrochemical cycle

Thermally regenerative electrochemical cycle (TREC) DX % [X] 1-4 :i*‘d‘
TREC 1%, EiliRiE &S RERECOBEOELFM L, KHE YA 7 &I
TEVA ’W?ﬁ&*f‘é&fﬁfi@é 9732 EBENMES R HIEE (¥ 14 T im{m
) THREL. EENELSRDIEE (K 14 TIHREM) THRETLZ LT,
A %ﬁ‘é BHELY O REREEIELZRY T, TREC OEY 1 7 v
K 150X HIcRBT L encx, TR : FE), [TRE2: 18],

[THE 3 BRIR), TR 4 JfE) THERRS M D, TREC OFEE V O KA
FRA2)DEHICRTZENTE D,

(;_Z =S, _cathode — “e_anode (1-2)
Se_anode Se_cathode 13 FIVENWAMENE DX —X v 7425, EREDEOE—
Ny IR TH D, N(12)06, B—y 7B IEICRE 20EWE L AR
XIVEME GO DH 2 & CREEE & EEE @?ﬁ)ﬁ% <720, 11[H
DFMEY A 7 )V THY HE 55 ﬁg%ﬁ% STEDLZEWGND, ZOZ L
N, BUbEE S FRICZHEREBEmRADBBRFE STV D 2, il 21X



[Fe(CN)6]*> D ¥ — X v 7 {2 H13-1.4mV/K, Cu(NH3)">* D ¥ — X v 7 {2 5%
+1.39mV/K THY ., O DOIEWEZ A BMIZHNS Z & T, TREC OELEIE
1CERDZLIz29mVEELENT S Y, Zoftiz, H1-6I1ZR-T K912, &k
WEE AR EE O G TIHEHF A T Z LR AR b HmE SN TN D 2
Z DRIL[Fe(CN)s]** & T/ Z{EME E L7 D TH Y | [Fe(CN)s[* > BNEADE
=Xy JRE, T/EDIEOE—_y 7R E AL TWD, £/, Thb 2 20
TEWVE OFEREBMBEN NI T2 DI, IREZRIC L > TEM OGN E Wil X
HIENTED, ZHUTED, K 1-4, 1-5 12802 FKELD HREANZETT
5 L0275 (ERIREE S REREOW T CTHET A Z LN TE D),

’—' Load —e-l

Discharge

Charge
(High temperatyre)

Voltage

Anode
I\
@
<$
® ©
4
Cathode

Capacity
Fig. 1-4. Schematic of the TREC.
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Entropy

Fig. 1-5. Schematic of the T-S diagram of the TREC.
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Fig. 1-6. Schematic of the TREC that can discharge at both high and low temperatures.



1.3.3 Thermal ly regenerative battery

Thermally regenerative battery (TRB)DHEZE A4 1-7 12777, TRB %, EXAL
OGSO VIZEBEORAL « B & W o 7B T e AL > THREEITD
ZLMTELZWREMTH D, BlZIE. TUE=T ORIL - BEEIC L > THRE
9% Thermally regenerative ammonia battery®> > 233 & 41TV %, Thermally
regenerative ammonia battery OBE&EX 2 X 1-8 17”7, 1EM & BMROTEDE LW
The Cu/Cu' THY, —HOEMIRNRT VE=T KFRER>TND, TV
=T KRB TIE Cu' N7 o E=T LR EZ BT 5 2 & TELIZEILEA N
BAE 720 ARERKE LTE <, Bl EROPRIERIEEh2h(1-3),
1-4)D L 517 %,

Cu+4NH3—Cu(NH3)4>+2¢” (1-3)

Cu**+2e—Cu (1-4)
BEHZIT. TS 7%mm#5 & CRMEMIEN O EEL . HUEROIEMm
BEIFRICHERSE 5, 22X, BEROIEMR - AMEMKILE

DERIR E U THAE S, ﬁ}#ﬁﬁ(%%ﬁ5 ZENTEDLXOWEIRD, o, K
1-9 ® X HIZ, Cu/Cu?'& Zn/Zn*t & W\ o 7o B 73 D15 W)E % & I W D
Thermally regenerative ammonia battery & #&5 S L TV 5 360 ZDFRTIX, FERF
IZEAZ T TR BROLMETHY . TrE=TORIL - §#ffi 7 08 A1 I KEE
F%ﬁﬁ%%ri DH/NESLTLHEEZHS, ZHIZEY) REEIELY %j(%
RMEENEE/RDLIENTE D, £DH, BW7 vt X DA TRERTHER
*h%&ﬂmkiﬂﬁ@\@L%HZTTAtﬂmc'Uhi%?%k@é
fhic, 7 h=F VU LDOKAL - BEFEIC L > CTHRET HEMAR (Thermally
regenerative copper nanoslurry flow battery) 7237 STV 5 37, Z OEHR O
Mz 1-10 17, BRREROBEIIRKEZ oL L7 b= M LORE
WThHv., A, EBOLERITENENL(1-5). (1-600D L H1T72D,
Cu—Cu'+e (1-5)
Cu*+e—Cu" (1-6)
CuldF/ AZ V=L LTHELTWD, MEKIT. 2 >OEMRKEZRE L. £
DEMEN ST F=F IV EXUE DT 2, ZHUCXY . RISERD TH S
CuPNZE L THETE <20, X (1-7) DX R AREULRISHE Z %,
2Cu"—Cu+Cu?' (1-7)
E BT, RYRIRE OEMRZ Cu T/ A7) —ll& Cu®™ ANzl . 5y
L7e7® = b U VZENE L CENENICHIBER T 52 & T, REIREBICHAE
THLIENTED,
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High—-temperature

thermal reservoir

Thermal _ Charged
inpu
ermal energy inp state
Thermal energy emission! [ Discharged
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Low-temperature
thermal reservoir

Fig. 1-7. Schematic of the thermally regenerative battery.
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Fig. 1-8. Schematic of the thermally regenerative ammonia battery.
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Fig. 1-9. Schematic of the bimetallic thermally regenerative ammonia battery.
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Fig. 1-10. Schematic of a thermally regenerative copper nanoslurry flow battery.
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1.3.4 FEBMHEE

WEER BN 3 (Reverse electrodialysis) OB 2 [X] 1-11 1, WERE
WL, A A VS L A AV AR 2 2 BACHLE L, A AV REZEN
i&é%M&%ﬁﬁ_%ﬁ ECRATHEENMNEZEE N L L THRET D HIN
Thd B0, A AL [EA A WA T LIz A% v 7 Oiic
FR(LiR T RS 2 1 O IR WE % & D ERIR & e 3 2, IEWE OB TE T&
IR [Fe(CN)ﬁ]“-B-&D Ag/AGCL &\ o 7= RSN EMEE T &2 IV D 2 &R T&
%o WEKENT IR LK O SR EZ 2R3 2 5 E i & L CTh
ICHIF STV DA 38, IR ,%ﬂm W%éﬁé:kfﬁ%M@4ﬁ/
REEZEMOREIZHETE O, A—BRILFLRIIEHAT LI LD
T%é”“o@mmmm%ﬂ%ﬁéﬁﬁ/xTAfi ﬁ%M@mmiQ%%
RIC Lo TRELN, BA—FEXULFELL L AT L L TOWEEITHEIC
W TG T mm%&mfé ENTE D, WEKBNTRELH— ﬁkm%
BHINISA LIz v AT A &K 1-12, K 1-13127R379, X 1-12 (3R 2 K b5 B
THZETAFTVREEZDRRDERIKEBTD VAT ORI TH D, KD
GrE 3K O R RIS 5 2 & TR Z T 2 2 & TcE 5, BETY
DIbFET ut A EMAEDEIEREI AT LR EOWRENH D, K 1-13 1%, &
H (EMRE) 2RNMRTHIE AT VIBEEDRDEMIKESD VAT A
OB TH D, BlZIE. NHHCO:1% 60°CRE (TNES B Z & TR iR L T %m
MOBRINAIZOEEST 5 2 LN TE | BIRIROA A L REZEZ BRI OIRRBIZ
ETBHZENTEDH Y,
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Load
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) exchange
Cation membrane
exchange
membrane

/

\

Low-concentration
electrolyte

Fig. 1-11. Schematic of the reverse electrodialysis.
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Discharged state

\\\J/‘\\ Distillation
% of water

Heating Cooling
Charged state

$

@Ogo ®
®@ o ©

Fig. 1-12. Thermal regeneration process based on distillation of water in the reverse
electrodialysis system.
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Discharged state

® ®
O O

o O o ©

% of solute

Heating Cooling
Charged state

%

ONNO
O O
® ©®
O O

Fig. 1-13. Thermal regeneration process based on thermolysis of solute in the reverse
electrodialysis system.

1.4 RFRAIRILF—ZFRYT HENEMOBTINGEH

L3EITHI L OIT, B—EXLFAEHICE L TEEOSEsHmE ST
%y TNHDOB—BLALFEBEMICONT, B RrLERAL T RLX—]R L
T HOHMERISHT 2 2 L 2HE L CREATE EFTaEHE LT,

BV, EmEICIREZE M ET A0 TCRET LI ENTX LD,
HYERBIEREHNE LTy 2T FTATAL R EOASNERE LTOIGH
NI SN TWD, — 5T, BYLZEEMTIT, B ORI L 2 BHE R
AT, ZOBEKRERBT DX EMMEHEEL2 KELSTHOHLERD LN, IE
WV OlgkE CARANS /2D . HABENMER DS, ZO), BShRE T
BN S D 2 ENERORE EFELVL (X 1-14),
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TREC (%, 1M & AMOMEE 2T/ <, BME ORI L 28R I8 4AE L
2V, ZHICED . —RICBVEFEER LD L EERNEVMEICH D, TREC
IXFEEY A 7V E2I L CEEBED A Z ITHY | 20— ia BRI H
T 5, 2FD, —EOICIFBAEFIHT 272 DIIERBHCER T RV XF— % BA
TOMERH Y AR EVEZARITEE L < EHICHIBRAEL 5,

TRB 1%, LOB—ELALFE BN & bk U CR B E 7 f S s X
NTW5, LinL, hov 27 AL g L CTlEFIN DR CaZiEWE E T 5
VAT DRI R o TR Y . SRS 7 EPRE U A 7 ~OTPEDMR,

WERBIT BT, BRTOEMREOREEZIIL > TRENZEDIFHETH
5o REREBNEGED-OIIT— T OBWROEMEIEE 2K THLEND
L7, IRREMOEMIRICE T 2WREIIARES 2D, LY, %%
RERT HBRITEE ) L IWIERIERIIONT VAR - TEREEZRET HILEND
a3

ZDOX DT, AT TIE SNV AR — BRI A BT K —ET
HU, B (FEE) ZAMAT208ERE LTCEALIZESTHDEH01X
FEFEE LR, ERRoOSHICH LT, Efre & o3, Eire w
R DFIEDOR I NMKRO HiLD, — 5T, EFLHEIRICR Y A FFITH 7= 2 8508
AT 2 2 L CHORINE AR R T HMRICHREREBERELIDH DL EHZ X T
Do IHIT, 12 TR LI, LM DOIREBORAH = LF—bEEIC
FAELTERY , ET VT — IBK ) 78 & Ol — L % — % F 2%
T&E LEMBAN b RETT & LER D,
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Cool ing

=S S S
Anode (Low temperature) |
I Reductantf N Oxidant
W ©

A

Load

v

oG
N

Cathode (High temperature)

SSsS

Heating

Electrode distance
— » Large—>Poor mass transfer characteristics
> Small=>Poor thermal resistance

Fig. 1-14. Tradeoff between mass transfer characteristics and thermal resistance in the
thermo-electrochemical cell.

1.5 XHEDKEDITEL B

AKWFFEDOALE ST HZK 1-15 1ZRT, 1.4 SOBURGEFERICIE S X, fEkDE—
BRACTFEREN & B 2R E2AT AN ZaIH T2 2 ENKLETH
HLEXT, EHIT, BUIRL FTICEHKRTERO =R L X —DF R MICE T
LTI BB ARAIN T2 ENEETHDLEERT, ZOXIRTERDT,
FEHT, IEWE OB B VX —2{bIZ L > TRIET 28 7= 28 ER
BB EEFZEENR (Solvation Difference Cell, SDC) | Z# &4 L 7=, AL
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X, WHAERMO XL X —BMOM S RET D 2 L. T OIS A RN
ICHRFET D2 Z L2 AME L TTo b D TH D,

Form of energy Redox reaction-based
energy conversion system

Thermal energy —| Thermo-electrochemical cell

v Waste heat

v' Geothermal heat | | Thermally regenerative
Unutilized v Solar heat electrochemical cycle
energy
sources — Thermal ly regenerative battery

— Reverse electrodialysis

Mechanical energy This study
v Wind energy
v Hydro energy
v Wave energy
v Tidal energy

) 4

Exploration of another system

Fig. 1-15. Focus of this study.

1.6 AREWXDFERL

1 EETliE, COHIITAR DAEE T B X OB — B LA HUTSR D I r3Y
FAZOWTHR | FREORE LTV, AFEONLES T & HIZ R LT,

2ETIE, 1 ECRLEREICHTAHET Va—FD 12 LTEHEELNERE L
R ZE B O BEMEREL & FFRAZ OV TR D,

3 ETIL, IBEREBMOBERELZEET A Z L2 HME LT, BEOK
b« BEffs 7 v A CHREBAREREMRZRIE L TRKEDEIEER LT - 7ok
RlZHoWNWTiE~ %,

4 FTIE, 3E TR LEEMROESMERICHT T, BT OTEYE IR M
i L O KELR 7RI & B R U7 B RS O IOV TR D,

5 BT, WIEFZEBMOKXE T v ATHD NEREORBE] (TIXZELRY
i m e 22 S XA b ARt I LA AR E LT, EBIRIEO IR SN
R — AR B RSB R EE) IS X > CHREARERROEBMEREZEZERE L,
FEERRI R FEIE AT o T fERIZ OV TR R B,

BB, 6 ECAMILDMEE 2T,
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Fig. 2-2. Schematic of the discharge process of the solvation difference cell.
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Fig. 2-4. Schematic of the electrochemical charge process of the solvation difference
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Fig. 2-5. Schematic of the charge process based on the transfer of TS for the solvation
difference cell.

2.4 FETOLREKRETOECRD I RILIT—HLER

X (2-3), (2-6) S, KE o R LHEB o 232 B IRETH
LN, WIS ORBRIZH D Z &Ny nnDd, TRIEFNZEE MO I e O 2R8I
2-6 DL HIZT2 D, ik\ﬁm$7mtxaié%@ﬁmizw%~£m%mz

TR T, REICEDIREE & EICK DREZ LT, Wit TEbiEx
ﬁo R OEEFLREEOE(] EBTIFMICEMTH D, HETrEADAH
TRV F—ZEEAG, 1%, O, ROBEFIAH-= R LFX—Z AN TXQR-7)D L 5T
TH3Inb,

AGrc:[AGsolv (Rlean) - AGsolv (Rrich)] + [AGsolv (Orich) - AGsolv (Olean)] (2'7)

AGgo1 (Riean)+ AGsor Rpjep) 1. BRI EARIR M, miREMIZIHIT 5 R O
BRBHEZ ALY —2ZNETNHEL TS, O OEEMB BT xLX—
AGso15(Orean)+ AGgo1p (OrieITOWTHFEIEETH 5, HMEISIEL. AG, A
725, TRbLEMEETTX O, R OBBFAABE =L X —DfMBR/hE 72

28



BHINCHENTS 5. FESUG T, BREE B2 2 & T, W E f=
RO RERMORBICR ST, F72, RQ-TITEERBATH Bz 3oL ¥ —
ZHNTHQRYD L IR T L HTE D,

AG,.=AGy¢, g(rich = lean) + AGy, o (lean - rich) (2-8)

AGyy g(rich - lean) . BRI &I EEM 2> SRR I ~D R OFREERHIBATH
M XX —%FET, AGgy o(lean — rich)1E, Bk US AR LA 7> & &) i 2 4]
~O O ODFEERIBITAR T R LX—%4E1, T7hbb, A b ERIGE
FROBHBET X —OMP/NEL 22D K9 IR LB TR ESEAT (A
BT HELE LTHIRT 22 LT 5,

22T L 91T, WESHECOEVNZ LD I R ARk e %
B, BLBETENMICERDNECD E W) BRAMRITZEBEICH LN > TV D
S, ZOBBEA B R0 EBERLFEOMFICEE L, REOBKE
EWNH) T EERICL o THEMBEHZ RV —%2 tOREIZET LWV =1
X =L D JFERNEIEF I ZBMOF LR TH D,

{ Charged state

Load e

|:{>'.'|:{>

Discharged state

0 Main solvent 0 Transferred solvent R .
(MS) (TS) @®(R) Redox species

Fig. 2-6. Schematic of the charge-discharge cycle of the solvation difference cell.

29



+

Charged (R)

Change in
solvation states

Free energy

Discharged
state

0 I(\Klfér; solvent 0 ;I'_Itgr;sferred solvent OR) Redox species

Fig. 2-7. Change in free energy caused by discharge (electrochemical process) and
charge (transfer of solvent).

2.5 Bk

2.5.1 EMRBRXEGTOEHE

EWE ., FIRE, BEEE L L THWAWERENS DM A bETIL, R
HMIIEETH D, 2F 0, EMEREFIOHHBEIZmD TEW, 72720, &
BFIA B =RV —EWE L RO AGDRICL > TRESER L, L
MoT, BMECBHTZRAX—ELE, T720b0bEMIKDOT LI —FHEEIX
EME OFGT (EWE. FHEE, BEEIEOMAE DY) ITRFET D,

2.5.2 FTEHAIRILX—DOREE

RN B MO FE/E 7 v & A TIERB IR 2 SR A 2> B ARIR B~ 544
%ﬁ%ém ZOFERFBNFOIMEETH D, 2F0, BEFMZEBLO R
XSRS BT A2 AT 5 2 &N TE D, EOMEE LT, &
ﬁ THET m B RS U TSR RIEREO =X VX — 2 REBEBH = L — & L TH
HTEoanETons, HEINLEESEET 72 206 %K 2-8, 2-9 IZR
7
X 2-8 IIBIERIEDOTAL D BEC LA RET A TH D, ZOT oA %
4 2120%, BREEEEOBES RO R L0 5 RWKE N H 5, BT
B RIRBEO PSR LL LD O FEEBEO B AL T OREICMET 5 2 & T, BiER

30



ﬁm@V@®ﬁM&#%%%%ﬁ%Lﬂ%’wm CEET A ENTEDL, &6
(2, G Bl U Te BRI I A B S, BRI IERIR BE M D AR LIRS T AR
R ZABMOFE 7o AL LTI D, ZHUIBT R F— %ﬂmbt
ETREATHY, | ECHRZA-EXIFERO—FEZE 25, LN
ST, BEREE U CTHANBRIROE 23R 5 2 & T, FERL, HiEVIR
IREN, KBGEL & W o T ARSI BAD G IR ~DFH G DB IFF T & 5,

X 2-9 1%, BRI 2 =IISER T 2 08 ¢ 2 VW KB ek A TH
5o Rt AL, BEWEO T A ANTEEEL D /NS 2% 8~
FHANEE SN D, BikiR s R B & AR N O B AR 2 7 BER CRaBE L. &
BEMZ®ETEIZTHET, BEREZRINICBE T N TE D, JHUdk
Wizw% EFRHWERES v ATHY | BT, BRI, T, B

W72 & ORI =~ Rr VX — D H IR~ EF G R/ TE 5,

) [ 4 )
Evaporation of ¢ Condensation of
transferred solvent transferred solvent

o 0 o o
©,° |o®e
o o L) ® 0
Thermal energy inputﬁ @Emitted thermal energy
Geothermal heat Low-temperature
Waste heat solar heat thermal reservoir

Fig. 2-8. Examples of thermal charging process via evaporation and condensation.
Reproduced from the author’s work (Sci. Rep. 12, 3739 (2022)).
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membrane. Reproduced from the author’s work (Sci. Rep. 12, 3739 (2022)).
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Fig. 3-1. Cell schematic for the measurement of the redox potential. Reproduced from
the author’s work (Sci. Rep. 12, 3739 (2022)).
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Fig. 3-2. H-shaped cell for the measurement of the redox potential.
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Fig. 3-3. Glass filter installed in the H-shaped cell.
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Fig. 3-4. Column for the cation exchange process.
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Fig. 3-6. Cell for chrono-coulometry.
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Table 3-1. Components of the electrolytes. The concentrations of the redox couples
are values before the addition of solvents (acetone or water).

Main solvent * Water

Acetone

Water

0.05 mol L™ [Fe(CN)s]*"* (NH4" salt)
0.05 mol L*! Fe*** (CI" salt)

Transferred solvent

Redox couple

Table 3-2. Potential step condition for chrono-coulometry.
[Fe(CN)s]* [Fe(CN)6]>
Potential (E1) +0.5 V vs Ag|AgCl (sat. KCI) | 0.0 V vs Ag|AgCl(sat. KCI)
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Fig. 3-7. Change in the redox potentials of [Fe(CN)s]*’>* or Fe*"** caused by the
addition of solvents (acetone or water). Reproduced from the author’s work (Sci. Rep.
12, 3739 (2022)).
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Fig. 3-8. Change in the solvation states caused by the addition of acetone. Note that the
images do not represent accurate solvation structures.
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Fig. 3-9. Change in the redox potentials of [Fe(CN)s]*”>* observed following the
addition of acetone. The concentrations of the redox couples are values before the
addition of solvents (acetone or water). Reproduced from the author’s work (Sci. Rep.
12, 3739 (2022)).
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Table 3-3. Components of the electrolytes used in the charge/discharge test. The
concentration of the redox couple is for the catholyte, whereas those in the catholyte
are lower due to the addition of TS.

Main solvent (MS) Water
Transferred solvent (TS) Acetone
Molar ratio of TS in solvent Agoll B{te Cath(g) lyte
Redox couple 0.2 mol L™! [Fe(CN)6]**- (NH4" salt)
o
—
—{_Lload }—
Anode Cathode
0 0 o
Fe(CN):~ | ° Fe(CN)3~
° 0 NH,* °
o 4 o
() 0 Fe(CN)#~ Pump
°: o PV 0
Cation exchange Electrode
membrane I I
Anolyte Catholyte Q
o o
0o % o

Water Acetone

Fig. 3-10. Schematic of the flow cell system used for the discharge test. Reproduced
from the author’s work (Sci. Rep. 12, 3739 (2022)).
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Fig. 3-11. Structure of the flow-type cell used for the discharge test. Reproduced from
the author’s work (Sci. Rep. 12, 3739 (2022)).
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Fig. 3-13. Carbon paper electrode used for the discharge test.
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Fig. 3-15. PTFE gasket used for the discharge test.

Outlet of electrolyte

Inlet of electrolyte

Fig. 3-16. Flow channel of the flow cell.
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Fig. 3-17. Experimental setup for the demonstration of the charge process based on
evaporation and condensation of acetone. Reproduced from the author’s work (Sci.
Rep. 12,3739 (2022)).
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Fig. 3-18. Charge process based on evaporation and condensation of acetone.
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Fig. 3-19. Demonstration of discharging and charging via evaporation and

condensation of acetone. Reproduced from the author’s work (Sci. Rep. 12, 3739

(2022)).
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Fig. 3-20. Potential difference between the anolyte and catholyte estimated from Fig.
3-9.
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Fig. 3-21. Relationship between the redox potential of [Fe(CN)s]*"* and electron
acceptability of solvent.
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Fig. 3-22. Electrolyte schematic describing the strategy for improvement of the cell
voltage.
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B, AREBRTHO MBI 2 TR T b FE LT,

Table 3-4. Components of the electrolytes used for demonstration of the strategy to
improve the cell voltage. The concentrations of the redox couple and supporting
electrolyte are for the anolyte, whereas those in the catholyte are lower due to the
addition of the transferred solvent (TS).

EtOH [37.1]’

Main solvent (MS) - IPA[33.5)
[Acceptor number] - DMSO[19.3]
DMF [16.0]

Transferred solvent (TS)

7
[Acceptor number] Water [54.8]

Anolyte Catholyte
) . 0.3
Molar ratio of TS in solvent 0.1 .05
0.8
Redox couple 0.0025 mol L*! [Fe(CN)s]*"* (TEA™ salt)
Supporting Electrolyte 0.05 mol L"! TEABr
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Fig. 3-23. Relationship of the OCV to the absolute differences in acceptor number
between the main solvent (MS) and transferred solvent (TS). Reproduced from the
author’s work (Sci. Rep. 12,3739 (2022)).
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Table 3-5. Comparison of the characteristics of conventional cells, concentration
cells, and solvation difference cells. Reproduced from the author’s work (Sci. Rep. 12,

3739 (2022)).
Electrochemical Driving force for Chargine process Forms of energy
cell discharge EmEPp input for charge
Difference in
standard potentials
. Reverse of .
Conventional cell | between two . Electrical energy
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different redox
couples
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transfer of TS

Concentration concentrations of

cell redox species or Transfer of ’ Thermal' cnergy
electrolytes solvent * Mechanical

energy etc.
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Solvation . .
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Charged state Discharged state

([ 0.017 M NaClI ) ( 0.093 M NaCl h
(55L) (5.5L)
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(1.0L) Discharge (1.0L)
[ ® @ || (Transfer of ions) ®
)
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o o o
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Charge

(Transfer of 4.5 L of water) Na* CF Water

Fig. 3-24. Example of the charging process for the concentration cell via the transfer
of water. In this example, we assumed the charging and discharging cycles for the
concentration cell reported in a previous study'' via the transfer of water between the
two electrolytes. Reproduced from the author’s work (Sci. Rep. 12, 3739 (2022)).
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Fig. 4-1. Relationship between the stability of solvation of the redox couple and the
state of charge for the solvation difference cell.
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Fig. 4-2. Relationship between power density and overpotential of electrochemical
cells.

4.2 EHEOERELICET HRERMRE

4.2.1 REAFE

FROME A X 4-3127F, 4.1.1 TR Y | 2 2 TIHEWE % [Fe(CN)s]*
B BRI EK, BEEEA T e LR OKITE® RUR) RS ET 5,
KA A (A A ) MBNE72 D [Fe(CN)6*P/KIEIRICR LT, BERETHD T
B~ BRI L TR O BN Z L EOHIE I LD [Fe(CN)o ]+ HE D Uk B 258l % 5
L7z, {EfMmESRmE L Cr T v —h—RoT 4 A7 EM (EF3mm)
& AglAgClLEMm (Bafn KC) ZMEHL, A7 ain A% b (SP-50,
BioLogic t1:8) % W CEN ZHE L7z,

BRI DL & K 4-1 1ITRT, [Fe(CNY]*PDxtA A Zh U v bhAF
KDY, T7vrE=0UALA4 A4 (NHs), 7T ZFALT UV E=ZT LA I
(TEA") @ 3 5&fhE LT, kA A DB KT T B Z5HME L=, A
L 72 KaFe(CN)s F 7213 KsFe(CN)s & AR L 72 KIEHRIZ DWW T, 3.2.1 TRLTEH
BT Kae NHOCEWBR L, TNETRIE5 2L CThHA 4> 2@ LI E 215
7o KIBROWET, TREKEBRE T 70°CREIDME L Tkae —CREREL
et WIEF ¥ o NN—THRYV DK ERETHZ L CHBEIEL, K'Db
TEAT~DEHIZHOWTIE, 343 CTRLULEEFETERK L, ZNE2FEEOTIE Tz
BXELZ L THESGZ, TNOOEERMT L LT, A4 VRN RRD
[Fe(CN)s]* 7KK 2 HE L=,

59



7ok, REBRTHWARIEITE TRMIETENGRE L,
Acetone Acetone

.hm M*
M* [FaCN%P [FeCN6P N
[Fe CN )6l @
M ® ¢+ ~ M*
[Fe(CN)6]4' [Fe(CN)J* @ —
M* /M+ oy W PM,[Fe(CN)g]
Counterion of [Fe(CN)s]4/3 /
(K*, NH,* or TI[E A+() )l Precipitation of [Fe(CN),]* salt

Fig. 4-3. Experimental procedure for investigation of the precipitation behavior of
[Fe(CN)s]*"* salts.

Table 4-1. Components of the electrolytes. The concentrations are the values before
the addition of acetone.

Counterion Concentration of [Fe(CN)s]* Concentration of [Fe(CN)s]*
K* 0.2 mol L! 0.2 mol L!
NH4" 0.2 mol L'! 0.2 mol L*!
. 0.2 mol L! 0.2 mol L!
TEA 0.4 mol L'! 0.4 mol L*!
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Fig. 4-4. K", NH4" and TEA" salts of [Fe(CN)s]*"".
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Fig. 4-5. Potential change and precipitation caused by addition of acetone. The
concentrations of [Fe(CN)s]* and [Fe(CN)s]* before addition of acetone are both 0.2
mol L,
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Fig. 4-6. Effect of [Fe(CN)s]*/** concentration on the potential change and precipitation
caused by addition of acetone. The concentrations are the values before the addition of
acetone.
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Table 4-2. Components of the electrolytes used in the discharge test of DMSO/water-
based system. The concentrations of the redox couple and supporting electrolyte are
for the anolyte, whereas those in the catholyte are lower due to the addition of the
transferred solvent (TS).

Main solvent (MS) DMSO

Transferred solvent (TS) Water

Molar ratio of TS in solvent An(;) llyte Catl(;o91yte
Redox couple 0.15 mol L™ [Fe(CN)s]*"* (TEA" salt)
Supporting electrolyte 0.5 mol L"! TEABr
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Fig. 4-7. Experimental setup for the discharge test of DMSO/water-based system.

ek

Fig. 4-8. Anion exchange membrane used for the dischare est DMSO/water-based
system.
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Fig. 4-9. Polarization curve of the DMSO/water-based system.
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Table 4-3. Components of the electrolytes used for the symmetric system.

Main solvent (MS) DMSO

Transferred solvent (TS) Water

Molar ratio of TS in solvent 0.3,0.5,0.9

Redox couple 0.01 mol Lpmso™! [Fe(CN)s]*"* (TEA™ salt)
Supporting electrolyte 0.5 mol Lomso! TEABr

Flow channel

Potentiostat/
galvanostat

vI—=

Current collector

Electrode
Anion exchange

membrane

Electrolyte with the same composition

Fig. 4-10. Experimental setup for the electrochemical impedance spectroscopy of the
symmetric system.
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Fig. 4-11. Porous membrane used for the electrochemical impedance spectroscopy of the
symmetric system.
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Fig. 4-12. Nyquist plots of the symmetric system using the anion exchange membrane
as the separator.
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Fig. 4-13. Nyquist plots of the symmetric system using the porous membrane as the
separator.
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Fig. 4-14. Dominating factor of the overpotential in the DMSO/water-based system

(Membrane resistance).

Ideal separator

/

< Br v" High ionic conductivity

%0
><‘ i Q ¥ High barrier property toward solvents

Fig. 4-15. Ideal separator for the solvation difference cells.
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Fig. 4-16. Dominating factor of the overpotential in the DMSO/water-based system
(Electron transfer resistance).
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Fig. 5-2. Phase diagram of a UCST-type solution.
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5.1.2 Thermally regenerative battery [C{% B 5%iTHZE & AFED
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Fig. 5-5. Charging process of the TRBs in the previous studies based on the evaporation
and condensation process. This figure shows the example of the thermally regenerative
copper nanoslurry flow battery”.
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Fig. 5-6. Discharge of the solvation difference cell recharging by thermoresponsive
liquid-liquid phase separation. Reproduced from the author’s work (Sustain. Energy
Fuels 7,3832-3841 (2023)) with permission from the Royal Society of Chemistry.
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Fig. 5-7. Charge by thermoresponsive liquid-liquid phase separation. Reproduced from
the author’s work (Sustain. Energy Fuels 7, 3832-3841 (2023)) with permission from
the Royal Society of Chemistry.
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Fig. 5-8. Schematic of the charge (right) and discharge (left) of the solvation difference
cell recharging by the thermoresponsive liquid—liquid phase separation. In the
discharging process, the charged anolyte (A) and charged catholyte (B) are spent
electrochemically, resulting in the discharged anolyte (C) and discharged catholyte (D),
respectively. In the charging process, the discharged anolyte (C) is thermally
regenerated as the charged catholyte (B), and vice versa. Reproduced from the author’s
work (Sustain. Energy Fuels 7, 3832-3841 (2023)) with permission from the Royal
Society of Chemistry.
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Fig. 5-9. Phase diagram of the LCST-type electrolyte explaining the recovery of the
discharged anolyte to the charged catholyte. (B) and (C) in the panel correspond to
those in Fig. 5-8. Reproduced from the author’s work (Sustain. Energy Fuels 7, 3832-
3841 (2023)) with permission from the Royal Society of Chemistry.
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Fig. 5-10. Phase diagram of the LCST-type electrolyte explaining the recovery of the
discharged catholyte to the charged anolyte. (A) and (D) in the panel correspond to
those in Fig. 5-8. Reproduced from the author’s work (Sustain. Energy Fuels 7, 3832-
3841 (2023)) with permission from the Royal Society of Chemistry.
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5.3 BFERDELLAITE

5.3.1 =EF&E
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Table 5-1. Components of the electrolytes. The concentrations are the values before
the addition of the transferred solvents.

Main solvent Water

2,6-lutidine (LT)
2-butoxyethanol (BE)

Redox couple 0.01 mol L' [Fe(CN)s]*** (NH4" salt)

5.3.2 XBRBERLEE

BRI OIRE N BN T T HEE X 5-11 (TR T, BRI 23880
T HIZOIN T, BTV 7 LTz, DF 0 INHDORTIE, B R
FEA D FBIRR D BB & 70D, Z ORI, 34 TR X 51T, Fiat
ERBEBIEOE RO ERIZL DD EEZ LN, ERETHLKDT
I T HEEIIRLEOFRIBRBEL Vb RELS 2 7727 X EOKE 2 FRE
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MNRBWZY 7 ML EEZbND, £, LT 2N L7=R0 50NV EM L EIX
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Fig. 5-11. Potential shift of [Fe(CN)s]*”*~ caused by the increase in the transferred
solvent (TS). Reproduced from the author’s work (Sustain. Energy Fuels 7, 3832-3841
(2023)) with permission from the Royal Society of Chemistry.
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Fig. 5-12. Experimental setup for evaluation of the phase separation behavior.
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(a) Water—LT without Fe(CN)g*
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LT-rich phase

- : =<+— Interface

LT-lean phase
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_____ I—— Interface
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Fig. 5-13. LCST behaviors of the water—LT mixtures. (a) Binary mixture of water—LT
without (NH4)3Fe(CN)s. (b) Water—LT electrolyte with 0.01 mol L™ of (NH4)3Fe(CN)e.
The concentrations are the values before the addition of LT. Reproduced from the
author’s work (Sustain. Energy Fuels 7, 3832-3841 (2023)) with permission from the

Royal Society of Chemistry.
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Fig. 5-14. Cyclic voltammograms of the diluted LT-rich and lean phases after phase
separation in the water—LT system (Fig. 5-13). Reproduced from the author’s work
(Sustain. Energy Fuels 7, 3832-3841 (2023)) with permission from the Royal Society
of Chemistry.
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Fig. 5-15. Cloud point of the electrolyte for the water—LT system. Reproduced from the
author’s work (Sustain. Energy Fuels 7, 3832-3841 (2023)) with permission from the
Royal Society of Chemistry.
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Fig. 5-16. Effect of the concentration of [Fe(CN)s]*”>~ on the cloud point of electrolytes
in the water—LT system. The concentrations are the values before the addition of LT.
The electrolyte with 0.04 mol L™! of [Fe(CN)s]*~ was unable to be a homogeneous
system because the cloud point was lower than the room temperature. Reproduced from
the author’s work (Sustain. Energy Fuels 7, 3832-3841 (2023)) with permission from
the Royal Society of Chemistry.
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Fig. 5-17. Effect of the heating temperature of the discharged anolyte on the difference
in the concentration of the transferred solvent (TS) between the TS-rich and lean
phases. The heating temperature in the right panel (Tr2) is higher than that in the left
panel (Tui1). Reproduced from the author’s work (Sustain. Energy Fuels 7, 3832-3841
(2023)) with permission from the Royal Society of Chemistry.
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Fig. 5-18. Effect of the concentration of [Fe(CN)s]*”>~ on the cloud point of electrolytes
in the water—BE system. The concentrations are the values before the addition of BE.
Reproduced from the author’s work (Sustain. Energy Fuels 7, 3832-3841 (2023)) with
permission from the Royal Society of Chemistry.
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Fig. 5-19. Preparation procedure of the electrolytes.

95



®
o
0 — TS-rich phase
- e
Discharged | -
anolyte | = | . = =
(60 °C)
0
°{}° TS-lean phase
0 [ (Fe(CN)g*> rich)
®
valve
Lo l -
TS: Tranferred solvent
Isolation

Fig. 5-20. Experimental setup used for the isolation of the TS-rich and lean phases after
the thermoresponsive liquid-liquid phase separation. The picture represents the
separation process for the water—LT system. Reproduced from the author’s work
(Sustain. Energy Fuels 7, 3832-3841 (2023)) with permission from the Royal Society
of Chemistry.
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Fig. 5-21. Charge—discharge cycle of the water—LT system. The horizontal axis
represents the total discharged quantity during the four discharging processes. For the
third and fourth discharges, the flow cell was discharged at the constant voltage of 1
mV after the constant-current discharge to adjust the discharged quantity. Reproduced
from the author’s work (Sustain. Energy Fuels 7, 3832-3841 (2023)) with permission
from the Royal Society of Chemistry.
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Fig. 5-22. Potential of the anolyte and catholyte in the initial condition of the charge—
discharge cycle test for the water—LT system. Reproduced from the author’s work
(Sustain. Energy Fuels 7, 3832-3841 (2023)) with permission from the Royal Society
of Chemistry.
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Fig. 5-23. Estimation of LT concentration in the catholyte by using the phase diagram
in Fig. 5-15.
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Fig. 5-24. Estimation of the potential difference between the anolyte and catholyte by
using Fig. 5-11.
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Fig. 5-25. Charge—discharge cycles of the water-BE system. The horizontal axis
represents the total discharged quantity during the four discharging processes. For the
second, third, and fourth discharges, the flow cell was discharged at the constant
voltage of 1 mV after the constant-current discharge to adjust the discharged quantity.
Reproduced from the author’s work (Sustain. Energy Fuels 7, 3832-3841 (2023)) with
permission from the Royal Society of Chemistry.
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Fig. 5-26. Schematic of electrolytes in fully charged and fully discharged conditions.
Reproduced from the author’s work (Sustain. Energy Fuels 7, 3832-3841 (2023)) with
permission from the Royal Society of Chemistry.
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Fig. 5-27. Polarization curve and power density of the water-LT flow cell in the fully
charged condition. Reproduced from the author’s work (Sustain. Energy Fuels 7, 3832-

3841 (2023)) with permission from the Royal Society of Chemistry.
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Fig. 5-28. Polarization curve and power density of the water-BE flow cell in the fully
charged condition. Reproduced from the author’s work (Sustain. Energy Fuels 7, 3832-

3841 (2023)) with permission from the Royal Society of Chemistry.
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Fig. 5-29. Schematic of the assumption on the heat recovery. The total thermal energy input to
induce the liquid—liquid phase separation of the discharged anolyte can be described with the
sum of C,AT and AHyrps. In this figure, Cp, AT, and AHiips denote the heat capacity of the
electrolyte, the temperature difference between high- and low-thermal reservoirs, and the
change in enthalpy by the thermoresponsive liquid-liquid phase separation respectively.
Reproduced from the author’s work (Sustain. Energy Fuels 7, 3832-3841 (2023)) with
permission from the Royal Society of Chemistry.
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Fig. 5-30. DSC curve of the discharged anolyte of the water-LT system. Reproduced
from the author’s work (Sustain. Energy Fuels 7, 3832-3841 (2023)) with permission
from the Royal Society of Chemistry.
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Fig. 5-31. Experimental relationship between the OCV and discharged quantity from
the fully charged state to the fully discharged state for the water-LT system. Reproduced
from the author’s work (Sustain. Energy Fuels 7, 3832-3841 (2023)) with permission
from the Royal Society of Chemistry.
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