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L —¥ (Laser : Light amplification by stimulated emission of radiation) . fg[AI1H: & ICRMEICE L,

TH W ROBMIN (ae—L v ) 2REx®2EEBTHSZ, a—L v R THMELTE
L\:t~v/f&v—%tiﬁﬁﬁhbtofmﬂfé L etc x| IERIT/NE R IC
BT 22 ENARETH B, L — P DOIEARFHIT 1958 4E1C C. H. Townes 12 X - TIRE X N 1],
1960 FiZ T. Maiman E+IC X o TL —FRIRBEH L 72[2]. L — FILEMT0 B & FEE B IC FHT
eiEREZ D726 L, 20 HidRKDOFEHDO—D L INTW 3

L—HF L —F e VAL —F o o0 FEAFHICHEING, v R id, FNZRE
F O OEE ) T, SV REOF WL —FIIFHRE OYHIRR 2 2 5 Z L 3A[RETH D |
TN ZCIEBERANIC R & 2 BEZ S 72 597, 2023 F£HAE, 2V (10%) B, ~4 7 v (10°) B,
F7 (10°) B, =2 (10 #., 7=z F (105 B, Z2L<7 b+ (10" BEcEHIN TS
[3]le 7 F 700 F ) BOANLRIEEZFOL —FIE SNV AL =Y, BTz 2ot af
BEO SV REEFFO L —FIHE VAL =3 7 oL RMEE RO L — PR s L 2 L
—FLMEIND T ALV, Fig. L1 ICRT L IIC, Thoo L —Foffiiv— 27 oo
D, @G CEb) e L —FEBEZERT 2082 H 5, Cho oL —FIIMEERYE, B, 5
M &k~ o ciEH I Tn 3

ISR L —FI3IER %awvvxrbg%%/)f: SN uJ FREOEZANF—ThEw L — P
(W/em?) ZEH T2, LarL, ZomLL —FEEEE ., L —PEENTO L —FIVE 2185
LD, BNV AZIANT —DESIIREECTH - 72, 1985 H1C D. Strickland i+ & G. Mourou
Lo 2R L 72T v — 7L 28R (CPA: Chirped Pulse Amplification) 1 X V| & L2 T4
A¥—DEERPERE N4, CRICE Y, BEAAZL—F R VRS KGR S ., Z
DIV AR & @ L — R 2152 LT, PRI, SR FERURLH. mdEE g RlE, BiE
75 E DRI CHEEREH 2 R LT,

Ultrashort pulse laser

o
=

100 fs
——p B

Peak power (W)
<
=

2

Time
Fig. 1.1 Schematic diagram of the approximate peak power of continuous wave and pulse laser.

1



1-1-22 v —¥imL

2023 FHED HARIC BT, DrEinfbic X W AEFBA 2R L w2 RICh 5, 2057
B DK T IS 2 720 icid, ER—AY77Z 0 oyt EEsm L2 2 ALK TH 2,
FHEE M o 1 B i3 B EFE o H_ L HNfifEo [ B2 K & AEEE RO, ﬁ’%@d<bﬁ¥
ICBWTIE, REAEL ToT miB{bIc X 2 5503, RERAM O U IC X 2 RGN O K.
rnfEABAEPEIC X B APl B, 2 L CHEANBERE IC X 2 MHinffifEa b7 & % btémb
MAasIThb v, HEEEED M EARRI N T3, L —FEIRIRL CEECER L, L
H, v v 7o ScHEEEEOR LICKE CEHBL T3

L — PN TI3 A B E e OB, a0 EEICE LT, MEORB T, YK, KL,
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VS RO L nTE S, . LV IEIRBEMELZT TR TR, TIRFv I 2T 3
v 7 AR R ESREAARNCR L TN TS AIBETH 2, ML —FIMT N7 X — 2 OFf#IL, <
N O SRR TH& I bR TITY 2L AEETH Y, FrdEEER FIcRaRTH 3,

1-1-3 BE AR L —¥IL

AV ZA L =M, €afld o7 = 4 POV REZFFOBRE SV AL =3 % Fw T
bNUBMIGFETH 5, TOFEIE. 1996 FICH] D TERIFB~DREE RS T CHEM T 8HE X
., D%, ZOEWIEE L WE»SIACEHINT W B[5-7], @I SV AL =T, BE
BRIANF—MRIC X > TWEDBRESARERT 7L —v a vBREZEL 2, $7-. SARIEOH
T XD BADIERD TN T K I3 A LB E 2 LTS FIcifl cRdE N L3RBT % 5,
Fig. 1.2 13, @7 =& M, v afh, ©F /B A AL —FIC k28R TMLOEERE
PEMHE(SEM: Scanning electron microscope)iC & 2 BIEFEREZ R L CTWwWb, 74 ML R L —H
ICEBIMLTIEANY 287K, WEOEIITR O ey, BRI = A ¥ —fific L v, &
AN ST ICYE R ERIRL LN TELRDTH S, — ., vah vz —Fick 3L
FERA RIS R O, N BRSNS 5, F 7V AL —FIC X 3T TiEAN Y 28K % <
BFELT0D, 207D, INTHEICANY ORERDERGERD D, T, BEENT 270, &
JEIEREDZAL 3K & <. MORVRHE IR A2 ST RIREER H 5, 2D X 1T, L REDOFE WL —
ML CRBEEZR/NNRICI 2, SHERRENMIAARETH 5, 72, L—FERROEED
MEBEYNCHIEL, 77 v — a VEBEZ B2 25 2% ET 2 2 & C, BRI X 0 2 m
THEHTEZ 3[8], ZAIRBFMIICRS S, YIKMLTICHEHTE 5[9], Fig. 1.3 1T X9
IS, b=V ZER L 2B o T\, EEHE 2 GIE L AR 2T 5 L c, mmE %Y
Wi LTxEBTE 2,



(a)

St-10

Fig. 1.2 SEM photograph of a hole drilled in a 100 pm thick steel foil with (1) 200 fs, 120 uJ, F = 0.5 J/cm?,
(b) 80 ps, 900 wJ, F = 3.7 J/em?, (¢) 3.3 ns, 1 mJ, F = 4.2 J/cm?, laser pulses at 780 nm [5].

101

n=20 n=30 n=40 n =350 n =060

Fig. 1.3 Development of the kerf during cutting of Si using femtosecond laser pulses (wavelength: 780 nm,
pulse width: 150 fs, repetition rate: 1 kHz, pulse energy: 600 pJ, cutting speed: 30 mm/min, number of
repetitions: n) [9].

BRIV AL —FINTAx, RS TLUIRIM TSz <, v —¥HREmAHMESE (LIPSS: Laser
induced periodic surface structure) % FIF U 72 FeB00) 2 N L5 B A3 FAE S %0 LIPSS 13, MR 2 iSRS
FRVEEOH WL —F RS 5 2 & T MRERIICEK TN S L — FIEREE O JEHkE % 15
3[10]o LIPSS DIEHK X 71 = X Lk, AL L MRIRAICTE 2 77 X=¥[11]. 72 1FEELIE[12]
EDTHIC K o TEEBEDTEE I NG Z L ITRERL TS EEZ LN TS, LIPSS I —L —
PRI NAZER YD THE I N, #HEL —F CTHERIIATRETH 328, B L 2L —H%
w3 2 & X EBHZ LIPSS O E L 0 S W EH T LIPSS T3 nlRETH 5[13], 7
= L MV R L —F & 7z LIPSS JEK Dl % Fig. 1.4 1IR3, KREMEE O LIPSS (% LSFL(low-
spatial-frequency LIPSS) & WX, R D5 L b D27 LIPSS % HSFL(high-spatial-frequency
LIPSS) & MEIX 4L 5 [14], PPEIRIAIIC 2 @ X 5 EARGE 2 TE 3 5 Z L CidnlE, e atkne. g
P &, B4 BRRER T 535 2 LA TE 5,



Fig. 1.4 SEM photographs of a titanium sheet surface irradiated by N = 50 fs-laser pulses (laser wavelength:
790 nm, pulse width: 30 fs, and repetition rate: 1 kHz) in air. (a) Fluence 0.13 J/cm?, (b) 0.09 J/cm?, the

horizontal arrows indicate the orientation of the laser beam polarization [ 14].

1-1-4 BEAAVZRL—FITIC X 28EHANS

R TPV LI A8 5 Tb N T E RFWBNAMLTETH 508, Thik~A427av)
JA=FIVDRT—VCERT LI L IEERERYED 5, AAROWEYCEHY. B X OWEF
DA raeF ) A= VAT =N DR MRS . SRR RHE IR T 5, b
DI 2 FER IR 5 2 & T, MRHC S K OFFE AR T 53 2 AlReMER A2 5, DT 7'a —
FIENAFIAT 4 7R LTHILN BE AL AL — M T CHIEALIER I WS, LTI,
BRSNS AL —FITAC X > TS T & 2BEEHE 0 REH 2 W oM T 5, 31 2HIREN
MokliEcd 2, HARR T, HOKER EXRAEICHM ARE@Er o L TkEEZELTw
5 (v =225, LN FiRE LT3 7 v RLAEWa—T 4 v I X W kEEZB( L AT
20, MATEDHENH 5, D7D, EOED X S ZYHNEHEL &S 67 7u —FI3H
HEFTH%, Fig. 1.5 & Fig. 1.6 ICRT X 51, @RSV 2 L — WS X v, PRI I LIPSS A1
TREMAN RS TIMTEET LT, EEPLRY ~—7 EOMENCEKIEE {15 T % 2[15,16],
IO OEMIFFEAME TR O v F v 7RO MU, NRYIREOWEGEE. I 7 —~DfbEE
Bilk, Big7x CiCEHBRT 2, 72, BRI EE L 288 % v — MRIcT 3 2 & T, ithoBi %
flHc&E 2~4 7 g% FKCE 2, A4 7 o JilIx U 7 3RO RREE O 3 7 B D oo
b, TRA VT TEMCIRIA R T . ER. A EEBTHEERKEI R L Tw
5, LT, AL —VFIRENIC X D REM S 2R L, BUKMEAM ST 5 2 & bA[RETH 5[17],
BUKMEDO A G ISR OB 2 B & . A OMBICHITcE 2, 2o XHic, BEAA VAL —F
T X 23FENEOHIENIZ% K Of&ICGHEATE 2,
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fi ‘.ﬁi.uﬂ e LE '_.;w T, "f ‘ Fig. 1.5 LIPSS created on copper
' . . fF19) 1 :

W “},.“. LR AL L -“,':, ‘ showing a water contact angle of
e lli;'p,* HtipN . | 147°(left)y and on  PDMS
oo (TR ur I Gty LU ML Polydimethylsil howi

!ﬂu":m:yj,l.".l.l‘.' !’%.. .vl*f’f IR e i (Polydimethylsiloxane) showing a

M 5-*-',m,‘_ il
"L» i "l-,: by tdd

contact angle of 125°(right) [15].

Fig. 1.6 Micro-bumps with nano-
bumps created on copper showing a
water contact angle of 165°(left) and
on PDMS showing a contact angle of
153°(right) [15].

2 OHBEINFRMEORIETH 2, ZNBIMEONOWICRSL KFFE s+ 5 L %53, H
RFUCT I\ C L ko BIZERTHNC & 2 (il 70 282 MY O BeHIIC X - T D KA A D TIK L,
KECHEFTCON DI ICEN D (FERXT AHE), 72, MMORIIIC X o TROE DR % K43
223 TEL, CoOMERMERTICEE T2 2L T, BEDOHREZER, KE T2 741 %—
RIA—T A4V ELTUCHT S L2 TE 5[18,19], Takaku H . Fig. 1.7 IR T X HicT7vIF
DBE AN AL —=FILTIC L ) AT AMEREE L, KEBEORIMEBIN 7 4 v 2 — %8S L 72,
D7 4 N2 —3EFEEEFD GreenBank Lz fHid MUSTANG2 L o — N — ICHEH X v, FHREL
HIFFFEICEHERL T d, flicd . KEREZEBL7ZT 4 A 7L 4 2 AN F RO B v K
B, FFEOHEL NI S22 &B~0E O, Mi~DIGHS I T3,

1400
I 1200
1000

800

Fig. 1.7 Images of one side of the
%0 fabricated filter. The other side is
%0 identical. (a) A photograph of the
20 entire filter. The ruler is graduated
okm yp to a length of 300 mm. (b) An
enlarged area. (c) Rendering of
confocal microscopy scanning of
the SWS [18].



3 O H XM EFENE DFERR T H 5, Fig. 1.8 1R & 5 Io MBERINIC LR IBIR 2 TP 5 2 & T,
D OIS 2 REF L 29 < L, BRI O TP ER OGN HIkS 2, EHREHO
TANF BT S8, R OfE 2 5 2 BN S 2 20, 2o Ol
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Fig. 1.8 (a) Plane view and (b) 2D image of a laser-dimpled steel sample. Dimples are typically 4 to 5 um
deep and 100 um in diameter [20].
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Fig. 1.9 Dependence of the Cu ablation rate
on incident laser fluence with 70 fs pulse.
The dotted and dashed-dotted curves are the
calculated ablation rates based on a thermal
model (logarithmic dependence). The solid
curve is the calculated ablation rate obtained
with the assumption of a 3-photon
absorption [22].
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Fig. 1.10 Ablation depth per pulse for copper
with 500 fs to 4.8 ps laser pulses [6].
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Table 1 Optical properties of typical metals for light at a wavelength of 800 nm.

Metal n: Refractive  «: Extinction ~ R: Reflection a: Absorption L,,: Penetration
index coefficient rate coefficient (m™) depth (nm)
Mg [29] 1.4230 7.1347 0.8997 1.1207x108 8.9229
Al [30] 2.3737 7.5226 0.8603 1.1817x108 8.4628
Fe [31] 3.1897 3.9835 0.6182 6.2573x107 15.981
Cu [30] 0.1051 5.1413 0.9848 8.0759x107 12.383
Ag[30] 0.0640 5.6781 0.9923 8.9191x107 11.212
Au [30] 0.1042 5.2237 0.9854 8.2054x107 12.187
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Fig. 1.11 Qualitative time dependence of electron
and lattice temperature in the skin layer. The
dotted line is a Gaussian shape of a fs-laser pulse;
indicates the energy equilibration time [35].
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dq
Q= arr = a(1 - R)lyexp(—az) (1.8)
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Fig. 1.12 Electron (a) and lattice (b) temperature versus time and position into a copper sample for an
absorbed fluence just above the threshold for ablation (0.14 J/cm?). The black line in (b) indicates the

ablation temperature [32].
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Fig. 1.13 Snapshots of femtosecond laser ablation simulations reveal evolving ablation mechanisms with
increasing fluence, (a) spallation, (b) phase explosion, and (c) fragmentation. (d) A graphical representation

highlights the divergent ablation mechanisms influenced by injection fluence and depth (t =200 fs)[46,48].
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Fig. 1.14 Snapshots showing the
development of the ultrashort shock
wave from an MD simulation at an
absorbed laser fluence of 1.57 J/cm?.
The material is Nickel [60].
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Fig. 1.16 TEM image observed 3 um from the surface after an ultrashort shock pulse (Laser wavelength:

800 nm, pulse width: 130 fs, pulse energy: 10 mJ, estimated average fluence 130 J/cm?, in air). (a) General

image. (b) Enlarged view showing a uniform dislocation network structure [68].
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i (v v Iy v a v R YD) IEEEE (X v 7L — PR Y LI
i (FY L P Aky), SEBEY BRCENZ v 77 E) e, BAEVEFIGER X L Tw
%,

L—HFr—=vreix, /B2 —F2H KR CiTbi b RKINSKEEMNTH 5[76],
ZOFETIE, F/R AL —FHEFHIC X > CTRAETZ 77 X< 2KTHLUAD, BOCEEITES
15T, MEREOWMIHAE 2 EHT 2, 5/ v 2L —$INTIEE., B8 X 308
{LDEE 7%, CDzo, MEIRBICIZRGRL v FeEEEER COBIEE 2+ 2 & 28—
FC, RADOECEHFELZNGE T 25[80], 2—T 4 VIZOEI TRV L —FLr—=v7
(LSPwC: LSP without coating) D&, K@ OIS ERICT) BRI X 2 EMEIG T TH
D, FERICHEBE R RENLETDH 5[81-85], ¥ a v b —=v 7 ClLilHE., EMEEIGH DA
HEZXE 300um BRETHH, Wl T>ay b —=v 7 ClRZOBEI KT yim BETH 3
(Fig. 1.17(a)) [73]e — i 7/ BV R L —=F == v 7 X o TR G S N B JEMREIC T OB X
X VAT AL F =G TEE L, 100 mJ T 1 mmFEE, 10 mJ T 200 um F2E TH 2 (Fig. 1.17(c))
[85]c T AU O TR IC AT 528 & IR T 5 2 & BRI 5[86,87], T HIC, TNbH
DIGTATGIC X o TRMETLHM & L TG D 10 fFU RICIERINZ 2 e 2RI T3
(Fig. 1.17(b), (d))o FFICHTZERRPESE Tl Z DRV E COJEMRE IG5 D55 2> & . 100 mJ
BEOL - —=v 7R EMALIN TS (LSP Technologies Inc.)

AN AL —FEHOTRAHFTITH) L= —= v Il F 74 L —3% v —=v 7 (DLP:
Dry laser peening) & Ff:3[88,89], M YL AL —HF, KKAHFHTH +oA@EBENEERTE, K
BREDT I AHLIADIE ZLTEE L, T2, BV AR X BB IIHI . &F
KB ICHEEEE 2T HED Ry, 2F 0, FILEZLEE ., KA ClTAfER F 74 2L —
FE—=v 7 Thbh, ¥—=v 7 ORMHFEZ LT 2 TR H 5, EERIC, XV RATALF -8
600 pJ, 1.0 mJ DFEFE SNV AL —FIC XY | EHEEEIC OG5 E & LTH 100 um DfEDE H 1L
T\ 5 (Fig. 1.17(e))o RIS TIRIE D 65 ANt T & P U T 57 @ ds 10 f5LA L ITIER T % 2 23,
EICHIRIED G A, B F 0 ME R O e W57 5B AS R 035 H LT 5 (Fig. 1.17(D). & LT8R
DRAEMEDESG L CE Y | KICTIRIEDL S, FMERFEICIC X ) REoBRREZMGICE 2
729, FED 58 100 pm NE D S BN A Uzl L <, BiohIEEOSEA, RE ozt
L7720 ThdLeEZLNTVS, FI4L—Ft—=v 27Tk EEBICEMELICH % 15
TENL, O —=v 7 FEXY S ENEIREZR/ O N 2 AREEL S 5,

TD7DITE, BASNVAZANT—DOIEHBPENTH L EFE 2 b5, [88]DHFFEIC LiX, F
ISRV AL =P == T DTN F AR L [FBRIC, B3 2T A0 ¥ — 13 MR SN
DBEADBRN T &R I N T B, MRS GRE % &t b R ok s+ = 5.
FEHFFEIRET 258D H 525, —MRINICIZ X D IECR SR RIFRETREEZ b 253 L I nT
Wb, FRIC, MZEO X —e v 7L — Pl MR &I RIEE 2 Z T T WEM i, EiE
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Fig. 1.17 Depth profiles of residual stress and fatigue test results obtained by various peening techniques.
(a), (b) SP and FPSP on aluminum alloy (A17075-T6) [73]. (¢), (d) LP of various pulse energies on high
tensile steel (HT780) [85]. (e), (f) DLP on aluminum alloy (A12024) [88].

16



1-3-3 RRHFTORBEBE VAL —FML

FIA4L—HFr—=v 273 1m] OBEA VAL —FEZHWEL —FINLETHE, ZDTH
AE—F7rT vy 2CHEST2 L K 10J/em* D7 ATy ZFEICEEY L, 7 7L — 3 a VEIfE X
DY HIRERINIVRATH S, M7 NI Y AFEBOBRE VAL =TI, L —FEEnT
PENE LT 7=y a VINTLIGHTE S, L2LAaRS, RAHFTOE 7 /v v Ao #EHE
POV AL =PI — IR & XN T %, Zhao & 13, BEZEHFCTOMRE SV AL —FT 7L —
vavEIBTINZ VARG U THEMT 20 LT, KAFTOT 7L —v a vEIITIE LR
AL B EERMEL TWAH[90], Fig. 1.18 iICit, BEEZMFTERATICEFLT 7L —v 3 VgL
DL —FRERFER R E N T %, Fig 1.18 NOFEERT — % O 5| H Sk 42,43,44 12, Kl oS
FICHR 91,9293 ICHHIG L TV 5, L —HIEEDH) 3.0x108 Wem? Z 82 6 L, HEZELRRDT 7L
—a VIEIICENENE Z L0 b, TOEWIE, KATTOPI 77 X~ A e ik i~
DIANVF—HEPRE VI &, T TR CCIRE 7 7 v THRBFEL T b L
INTWB[94,95], ZD-®, @7 VT Y AEBOME SV AL —FITIcEWTE, L—FE XK
[OMEERZEHETE AW EEZONS,

0.1 1 10 100
% A Experiment in [42] @ Experiment in [44] 2
4 1 A Experiment in [43] ——Simulation in air a4
£ -5-3-5 7 ——Simulation in vacuum 3.5
w - L
.g" —2'_2: | : , I ;5 Fig. 1.18 Ablation depth per
€ = i i " pulse as the function of laser
- 2 1 [ [ ~ 2 intensity. Pulse duration of
-] g_ 1.5 1 : Regime2 ' - 1.5 100 fs, wavelength of 800 nm,
e 4 Regime 1 : : A -1 target material: aluminum [90].
0.5 - i i - 0.5
0 4 0

0.1 1 10 100
Laser intensity (X103W/cm?)

JE VB IX, REGIWE OFOMERTFARIEVEI» L, SEFET 22 L CHAERT %,
WL ECEGICN L TWE OINE IZEE S E L CTibh 2 23, TRGOEE ISR L TGS D IERR
ok, B 2 IZIERIE iR e BRI T X A A B, IE DJEITR L WIIUREUIYWE O BT HEIE
SIRICARTE 3 5 723 TR RES CIOLEIR-CEIGETR ICRR OBRPBAE L 2, 20 X5 gy
JEEIG NS 2 VE DRk 4 7 IERRIZIGE % IERIE I EBIR & W 52[96-98], - SV A L —HF DI
BUIIER ISR TH 2720, KRAF O L AL —FERBIRICENT, L—F & KAOMEAE
FDREREE LY KITT,

1-3-4 KRFOME VAL —FEIRICER T 2 B ELRR

KAHF OV 2 L —FRRITEH T 2 I EATRRIT IO — 2R L KA ERED 25
CI NG,

LA =R (BXKNFED —%E, Optical Kerr effect) : Y& h —2h 5% WG U T fi e iR AR
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DHAEEDBZACT 2R TH 5[99], T OxRIZ, BEH O =FIC BT 5 =R DIEFIE R H
A E > TE D, TNEIEL TCERDOIEMIEN AR L RS, YE O BT R 3B IREO —3 (L
— IR ICHFI L CELT 270, ZNITROBLRNFNEL DEIThE, ZoHRITROR
TEIND,

n* = ny+nyl (1.9

n 3 — 1R L XN 2% R T, RO A —5EILEFE EOE%EFf> Th . L — FimEIc el
L CBITR AT 2 2 & Ao T W 3, D 2RI RN 23— Tl WigE, ZERINICE
PR MBI E I, TN HDEMICHFE R Z MIT T, KK D —188n, % KD 2 Fikix, 1990 4F
R SBRIC2 T TIREALEINTE Y, Z2oficiFACERDEIE. HOMMHEHRIC X 3 2<
7 PVEALDHE, Ry T T w— T kR EGRITIC X B RAZ(COHIE R & % { DEENTF
EBEETN TV 3B[100-109], T 5 DEEFERS S, L —FHED 800 nm D5 THEE X Nizn,
D% ¥ & DR % Fig. 1.19(@) IR L TWw 5, FEERICH WL —F D OV RFICIG L T, 71—45
Bon, DEIRMEIMERICH 2 2 EBHL 2 TH 2, ZOBIMIFZKIETHMT 2 7~ v —MBRD%HE
BREAEEZ LN TS, 72, n,DEIZL —F OREIBEE (721K ERE) TKET 2 2 &bt
NTHY[102]. TN % Fig. LI9O)ICRT, ERAD ZFFEDML D L ks &, H—I5E0 M
FTHHEAPRINT NS, 2D XHIC, KA —FRITL —FERE, SV RIE, L — Ik ET
LIEREARFZIRRTH Y VAL —FEICHEEL 5 2 %, nd., BRXDON /7 —%15% (HOKE:
Higher-Order Kerr Effects) 1Z2WT b #aiA 7 & T 3 H3[103-123], MRSV 2 L — FIRHEISR
ICBWTIE HOKE O I TcE |, “RDNEH — R ETOER T THL LI NTWw D,

(a) (b)
=9 > 1.05
mo 7 LE) 0.95
s [32] Tz 09
=3 =
%ﬂ 4 [30]. :(\l 085 J
[ 0.8
a3 . [310s y
o 27 [28]3 [29] 2 075
o2 [27] =
s §=
=1 [26], £ 07
5o [23] o2 065
M0 25 50 75 100 125 150 175 200 225 0 500 1000 1500 2000 2500
Laser pulse duration (fs) Laser wavelength (nm)
(a) Pulse duration dependence of Kerr index n,, (b) Laser wavelength dependence of Kerr index
laser wavelength: 800 nm [101]. n,, pulse duration: 40 fs [102].

Fig. 1.19 Dependence of Kerr index n, on laser component.

I. 7~V —%1% (RamanKerreffect) : 7~ v 1 —%Ri1Z. DT OFET < VR IC K > T
PEPEHTI2HRCTH 5, HFA—RIZ, Feb L 2BRIN 2B FIE S Iz T, 7~ v h—
R X BBERDDBEENS 2 ERHMON TV E([124], FET~ VR & 13, S EEDEL D 7

18



W TOMEERATALX =23 8Y] T 5 2 e ic Xk o CHllnEE B I N2 HWRTH 5, 1D
HBEE) O JSEICITET 70 fs FREED D22 & I N TV B A, <A RERZN LY DEVEETH - T
b, TABEGBEZ NG, 7~V IR E R MIT TR H 5[125], T~V —
ShE X BRI 72 7 — %053 (instantaneous Kerr effect) 1% L C. 7z 4 — 2% (delayed Kerr effect)
EDMEN D, oV ABEICH L CHEBBIE I N3 2 #RERAI 2> 5. Miguez & 13 2017 FFic 7~ v
=R EE L TN 70 7 —F5 By e @ XD X D IR T Z L 2 RE L TV 5[109,126].

T
Noeff = N2l + N ori {1 — exp <_ a)} (1.10)

Ny et BRI 72 7 — 58 ng ot P FIC K D 5 — 388 1 ¢ B DICEREHL ©1: LV ZETH 5,
TN DEIFEERFERS OHE S, I —fEE NV RREOBFREZHL ICT 22 LA TE 2,
Fig. 1.20 IZ/R 3 X 5 1C, L —HFIEE 800 nm ICBJ 3 EHPLME., T TV IThl3 3 K7 h—
fa8ing o p 135NV ABRITIRIF L T 2, e, TP —HOaFI3ERRKF (Bl i, 7r=v) T
HY, EEGEESERC S0, H—IERE AV RRICE LT ETH D,

~ 10
B - Air
N 0,
g 8- |-,
oo —— Ar
g o
= Fig. 1.20 Pulse duration dependence of Kerr
g 4r s index n, considering Raman scattering, laser
» B
3 B A wavelength: 800 nm [109].
g 2L =
i Lo o2
B
>
M 0 1 1
100 1000

Laser pulse duration (fs)

1. L —%EEE (Laserionization) : KRA°CH 7 A EOGFEHEE Ic W, HI2HEZE2 5E
LmERMb 5 Z & CEMIEL S, KIRTRDO K S i, BEh o HHREFEEORINTEITR
YT 20, L—FEIRICEELY RISTIERE L ERHE L LT ES T bR 5,

Ne?

w?gym

n= |1- (1.11)

NIZAHEFHEETH 5, 1960 FFRICFI VR TERIEE DO L —F 2T I, ZhLlk, =3I
L 2EHE (44 OMERTERICITDNIz, RARUIFICERD T LBRI T2 ORI, &
WY P ¥y oy TERFOMBRK TS 5, EIMEBUN DR DO HF 1L, KT AVLF =N B F
Yy TERBABZERTERVED, TINERTICRKATZERT S, L2 LS, BHMEN
KEL, HFEEREGE, —DOBEFPMERDNAZFARFICPINL, NV F¥ vy 72EZT
BHET 2 LR TE B, ZOHRE LT WINERE (MPL: Multiphoton Ionization) & F:53[127,128],
XHIC, 1979 FFICBENEBTFDOIANF—ZATZ bADHIEDL L, FFEOHEA# B L2 A LF—D
Nt % AT U CERES 2 B EE (ATL Above-Threshold Ionization) & FEIE I 2 IR b s X
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N72[129-131]e %A WIGERE DX % Fig. 1.21 1R,

hw
Tonization Lllliiisr A A
N N hw N A
A A
I, X I, | ho I | Ao
A A
hw| hw hAw
Ground state —

Multiphoton ionization Above-threshold ionization

Low > High
Laser intensity

Fig. 1.21 Multiphoton ionization model.

% ST IGEFE D BEERIINFER| Z H W CRD X S IckKFT 2 L B TE S,

I
[ \N
Wup (1) = oy (_hw0> (1.13)

?E%Eo:%%i&%d%¥§ﬁ Bfilglalld a KON SVERBER ST, L, - B A A vtz 2
NE¥— hwy HTIHAAF— [ L—HBE Wyp () 2 L —FTREIC mﬁtt~%%+
eFHNIC ﬁﬁ?é FRAEWTI A 2 2% 3o ERAEWTI AR 3 SR e Bl T A 1C iof*b%ﬂﬁwﬂmﬂ
FFE DN BEEEWT AL BB 3 5 720 EEIEME XS TIINEREIC LR TN,
NF 2 7250l 13, SOt FIIRERED SCRCH 75 L — PRSI T O A HMTH 5, L —F
Bc X 2EHTIZ, KV T UE—TFT 4 TIANVF—DEBIAUARTH S, KvFuE—F 47T
AAF — i, EEICIRIESZAL T 2 BRI IC B 2N MER T2 FROFR T Vo vy LT A F
— %Y. L—FIC L 2 EHER, BETRLV-PLPICFET 200, FONLEREFT vy i3

—AF M ANF LR TRE=T 4 TIAAX—U,OME 725,

IL,+U
- [_p P] +1 (1.14)
hw,
BFORYTUHE—T 4 TIZALF—FRDO LI LRI LD,
22
Up(eV) = yreche 9.337 X 10~ ¥ I(W /cm?)A? (um) (1.15)
Uy : RYTBE—T 4 7ZANVF— e: BAFE, m: HE, E: L—VELSKRE, o: L —

f@%%ﬁﬁ%%ﬁov~$ﬁ§ﬁuﬂwmﬁﬁﬁumiéa f%@fxTn% T AT T AN
F—I3FE—A ﬂ“/ﬂﬁlz\ll/ﬁ?*— CFRIEORE X LY, LT IRINEREZ R IC

L — PR A 104 Wiem? ICES 5 & L —FEGOEEN RIEMIC i@byxw%%%%éﬁc

CHEHET 5 b v A VEEBE (TI Tunneling Tonization) 234 U 5[134], & DIREETIZ, BT 2EH T
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B2RYTHE=T 4 TIAALF=DE A F VLAV F - L RAREICR S, Lo T, FHFIC
%ﬁéhfmé BT L—VEGBICEOLDLNTVWEETLOMICIE, KT vy vORERENE
L7, FER. Fig. 1.22 IR T X518, JRFICHBI N T 3EF B L —FEBLOFE T

$%W«@ﬁf%5io Chb, I HIT, L—VIEED 105 Wem? R IC#ET 5 &, JR %
KT Vv YV EHAZEITALF—L_vIick ), FEEEIF] 4 4 vt (BSI: Barrier Suppression
Ionization) & L CTHIS N 3R AFHA: 94 3 [135,136].

Laser electric field

A AN

Atomic potential Fig. 1.22 Two processes of photoionization.
Ground state Multiphoton ionization, Tunneling ionization.
Multiphoton ionization Tunneling ionization
Laser intensity
10" W/ecm? > 10 W/ecm?

%N FINEREE b v A VEHEIHERNICRET 2HRTH Y, o ZHMEICKT 22 L1
#EL Vv, 1965 4. Keldysh 13, L — ﬁ%ﬁumtfaég@ SHEA = X LDIR & 7R B R
ERLiE %Tﬂg” L72[137]e F Y AAVRIRDPEZ 21T, BTN 7 Zi# 3 5 O I Z R 235
DEGEADORHE AT = X0 b+5 agk%unx%ﬁv55

Iy 1.16

Ve = F ( )

o, 1 117

eE, Ve S 20 (1.17)

v ¥ A A b AN F—% OB F%%?‘alni@ELiﬁ%ﬁMbot%@ﬂU?w

EX%EFDHEECH - 72 @“CZ’D D, THIFETFBNY THERT ZDICHEREE 2R, A
WNIELOZRE 2R T, TNODOEEPIL &, XL HricEkEns,
21

_ eEO p \/

eEO

(1.18)

20

yiZ Keldysh X7 X =2 L LTHION S, y LK 1DHE, NI T Zdiid 5 OB R oot L
TELGOEALHDITE N0, v A VEBR TN &7 5, W, y>» 1054, B o2
NY T HEETZOICHELRER L ) W20, Py AABHIIEC 5. ST IRINE A Y
B e, vy~ 1054, Z X TIRINEREE + v ALBEEOM S 234 U 2 WTREME DS H 5, #EMl 7k
TS 2 FICRED 23, Keldysh (3/KRE T DEHERE Wy pqysn Z 7t H T 2 X2 EH L, L — ViR
DI E I T, F 72, 1966 F1C 1% Perelomov, Popov, Terent’ev HIC & o TH L WEEfE T L TH
% PPT E T AR X N7-[138-140], PPT E T A TIILE TR T OEMER ZHE 3R, LY &
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Z2ETOWEAEZET S L CTHREL o7z, I HIT, PPTETATIE, BENTLEREN TOE
BERARD B =0, EIEEMARET S I ERTE 3[141], TOBIEEZMRZT-ETFT AL ZBEIE
PPT €7 L &ML, F 72, 1986 4FIC X Ammosove. Delone, Krainov IC & - T b ¥ 4 VEERER % 5T
3% ADK & FADHEER S N72[136,142], ADK £ 7 1d, Keldysh /¥ 7 X — Xy « 0.5D 8410
JATE, ML —PHRERIERIC 5 TR L ERNIC BT 2 T L AURE T, £ D, ADK €
FHUEPPT ETFALICEWTL —FHRED S WHIR 2 - 7254 L %ilicd 3 2 L 22 L 72, PPT
E7 v, EIE PPT €7V, ADK 7 VOERERGEMR & EFER»r OB INS | BRI TL
BRI TOBHROLLE % Fig. 1.23 IS8T, EIE PPT £ 7 L O EHERIZ, 102 Wem> FRE DKL —
PHRIEA S 1015 W/em? FREE D L — FHREE O IR HIPH TREHER & IcR Bl T, Lk
o T, KAFOME VAL —FEIGEHRICE W T, BIEPPT T A TH 5,
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Fig. 1. 23 Comparison of calculated and experimental results with and without an effective residual ion

charge for the PPT model, ADK model, modified PPT model. (a) Oxygen, (b) Nitrogen [141].

IV. ERE#M (Impact ionization) : L — ¥ X 21 EBENAEIICMA T, BT ALF—%Ko
B AR T L 22T 5 © & CEEEOVE U 3 BIR B W L 1A, BB, $TL—
Bl X o CTHOH S h7s [ T oS BIBIGH I X 0 BB A A ¥ — 2 EHL, A Lz F
—LOEE = AN F— % FFo 7 REECHMWR F LR T 208 LD L5, 2D, MZEEHEE

C2ECTICIEMEY = 2 I REOEILENH Y, 7 = & ML R L —FIc B 2 EeEM o E
I/NX {7 B[143], —J7. SNV RIERE aREDO ANV AL —F CIRIEREHOFE L ZERT 54
BRH Y, CNFWEY BT T AV EERETIHLELD 5[144]), L —FEEHREICE T, 2
BHERZFRT 2L LT, BETHEEOARE R CEEEMEZTLNICEET 2 k(1240
BT L BT T X O RBICEIET B IE(144]), %72 RET 30 F — 5310 & %

22



W T F oD BEGR M 2 SAE B ICE RIS 2 HiE[143,145] %2 ERTFET 5, T b DFEFEkIZE R 2 2 b
IEWD D B A, EEBEHEREYNICEET 3 =013, BRI R S F Y AT U ClY) e 22
ETAERHATLIERET L,

ERERMEAE L. BT AL ¥ — 2P LRE v — 22 H W CERIICHE SN TWn» 5,
ZDfER%E Fig. 124 IORT, EFIAVF =D FOHRE— A XLz F -2 B TS
A, HREHMAE Y e Th b, BRI TOF A LA MLz ALF—131207eV TH Y, EHRS
FDE—AF LT AN F =13 1558 eV TH B, TNEHEZ BB LT VX — 0 b 2 2Bk kS
I LIE®, BT ALF =239 100 eV FEEOHPH T — 7 ITE L, Z DEESCH T T 5.
BB, AT MIZAINT-DRECERSTFOHD, BREST L0 D KE LEEEMMTHEL R,
REL, COEBIFETE -2 EHOCCETIAALT—2FHEL. o T ICBEHT2HETH L 720,
B2 EEERFIC XL — P ERFEE LAWK CITbN 5, EoEBREL —F STl Koo T
23 F LA MIRAE (light-dressed states) & IEIENZIRFEICH B Z L IO T3, ZTHIFHIC X
> CTETEENMMIVPKE CEELZT, HTenTroEr’ZbT 2 RETH 5[146], Z DFER,
IR L — I N CIIE BN EE O LT3 L0 oTE D, 2021 SEDOMETIIT AT
v OE BRI FHEIRF O 2 510722 S AN X VL I E T \W» 5[147], 7272 L,
MRS TCERDTICNL TR LR MRELZEZRE L ZEHREHTHEOM LI 2B o Tk
53, KAHFToO L —PFEEHREIC B W I EEREORB I I D X 2K S & L ICHESLE
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Fig. 1. 24 Measurements of impact ionization cross sections as a function of electron energy. (a) Oxygen,
total cross section (-.-), O>" cross section (-o-), O*+O cross section (-o-), (b) Nitrogen, total cross section (-

.-), N2" cross section (---), N*+N cross section (-o-) [145].
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Fig. 1.25 Schematic representation of the focusing-defocusing cycles undergone by the intense core of the

beam. The solid curves indicate the diameter of the intense core. The filamentation length is the distance

covered by these cycles [124].
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Fig. 1.26 Schematic diagram of fluence region for each ultrashort pulse laser processing method.

—J7. M7V A OBE SV AL — Lo cld, —fofEicn3T 27 7L —va v
R -V MR ERNICTHEIN TV B, ZRICET A IaL—va v olWEEIc ks
L TN F ZfThbN TRy, 72, MTICHELAZL —F 52— 2 DHRED FNEHTH 5,
TN, B7LVZ VY ADREANLVAL —FHEEMNTICEWT, L—=% X7 X =X DEED O I TG

25



RICE2E T OYHBIRPEET 27-.0TH 5,
B 74Ty AR A L =PI B 3 WHIER OMET % Fig. 127 1IOR T, L—¥ 3
7/—&@?%# BE Y, FTRROIFMIENA TR O E L Z T, L —F AL T 5,
RICHGINTZVADT 7=y a VEBRMPEZY, 77— a VIROEEE P EREI NS, 20
BRSO BEER T L, #EIMLER I 5, CPS B L — ¥l L~ FEHICm T Tt
INOOYMIER 2L, M Lo 2T 2 EREFICERETH B,

(@) § Fslaser focusing (b) « /

e \ /
;,,7::77 ‘ '

B ect —
1
Plasma ‘ ]
I
]

1
]
Q- defocusing ll

Penetration
depth

Electron diffusion
Electron-phonon coupling

‘ Material

(c) Ablatlon plume

N
/ Plasma

expansmn

-y

Shock wave
propagation

(d) Ablation Heat affected zone

pressive residual stress
Fig. 1.27 Schematic diagram showing the sequence of physical phenomena in ultrashort pulse laser

processing. (a) nonlinear laser propagation process, (b) laser absorption, heating process. (c) Ablation, shock

wave propagation process. (d) Shock-affected and heat-affected zones after ablation.
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Table 2 Laser parameters of previous studies of ultrashort pulse laser propagation simulation.

Ref. Wavelength ~ Pulse width Pulse energy =~ Beam radius Focal length NAx10°
[165] 800 nm 50 fs 0.02~4.0 mJ 4.2 mm 100~3800 mm 1.1~42
[166] 806 nm 45 fs 1.0,4.0 mJ 15 mm 273,136,91 mm 55,110,165
[167] 800 nm 100 fs, 1 ps 0.1~1.2mJ 13~20 mm 646 mm 23
[168] 1053 nm 0.5~10 ps 0.04~9.0J 45 mm 3m 15
[169] 744 nm 100 fs 0.15~2.0 mJ 1.5,40mm 395 mm~2.5m 0.6~38
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Table 3 Laser parameters of previous studies of ultrashort pulse laser processing and numerical simulation.

Ref. Wavelength Pulse width Pulse energy Beam radius Focal length NAx10?
[170] 800 nm 200 fs I mJ 2 mm 75 mm 27
[171] 775 nm 150 fs 0.1 mJ 4.83 mm 21 mm 23
[172] 775 nm 150 fs 0.2m] 4.83 mm 21 mm 23
[173] 800 nm 43 fs 2~34 uJ 1.5 mm 75 mm 20
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Fig. 1.27 Flow chart of this study.
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2 (d 1 0\(0 16_62262+162
dz2  \o¢ vy(w) 0t/ \93§  vy(w) ot - 0¢2 vg(w) 060t vy%(w) 072
(2.71)
92 9?
atz ~ ar2
o A (2.67) IE T % &
92 92 92 2 02 1 02 1+xM)a2E 1 a2%P
—+— |E+ (=5 — + — E—( XV PE _ N (2.72)
0x? = dy? 0¢2  vy(w)déor  vy%(w)dt? c? 0t?  c?gy 012

TZT, EXRPy 30y, )0 iCch 5, mimogEE FE2idict e, X2BHET 5L,

?E 2 0%E <62 az> {(1+X<l>) 1 }aZE 1 8%Py,

— = (—+—|E —
08?2 vy(w)déor 6x2+6y2 + c? vg2(w)) 012 c?gy 072

(2.73)

PLlbEX Y v 2 EER R C O EN TR0 R T iz,

E

r's 1

o > (z,t)

Fig. 2.2 Schematic diagram
showing a change of reference
frame from the laboratory to the
pulse local frame (z,t) —
(¢,7) , where 1t denotes the
» z,&  retarded time in the pulse frame:

T T, PR & BEEHE IS O WTCEHIIAT 2, BAURZRIIFEBBICKE T 2720, & 5 K
AR NPT BEE. GIROFIZRA213TTH B, HBJHEEA<RT FAUIBA0ICE W
T, Tl WEOERNGEDEEE 2 DL, DEAFuIRDIHIICKREINS,

ko+Ak
u= f cos{kz — w(k)t}dk (2.74)
ko—Ak
Aw
Ak =— (2.75)
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RIGIEHO 7z —E L LEK L7, 22T, AREEEEEEk,DOEY TT74 7 —EHT 5L,
dw d*w
(k) = (ko) + (k k) 7 o

(2.76)
ke,

1 2
+E(k_k0)

k=kq

ZIZTC, ETAUBEHUBOSIHEZ BET 256225 L.

w(k) = w(ke) + (k — ko) (2.77)

doo|
dk k=k0

ko+Ak do
u= f cos {kz — (u)(ko) + (k — ko)—| > t} dk
ko—Ak dk lg=r,

j-k0+Ak {( dw ) < dw
= cosi|lz—— t|k—|wlky) —k —| >t}dk
ko—Ak dk =k, 0 O dk g,

2 ) dw
= —————costkyz — w(ky)t}sin| Akz — Ak — t
dw dk | =k
X — = t 0
dk =g,
sin {Ak (z _do t)}
dk k=k, w(ko)
= 2Ak cosykg|z———¢
dw k
Ak (z _do t) 0
dk =,

Cokdic, BhsEo _EHEOWORE LTEINS, Bk So2IREE LTE5 25L&,

(2.78)

u = A(x, t)cos{kyz — w(kgy)t} (2.79)
, dw
sin {Ak (Z ~ K K=k t)} . dw
A(x,t) = 2Ak 70 = 2Ak sinc{Ak| z — A t (2.80)
Ak (Z -7 t) k=ko
dk =k,

PRMEBEIELA (x, ©) (£, 27T sinc BB DIZRZFi b | t*’}‘?ﬁbl‘i—i i ZIxITENCARIR S 5. T Rb

b, TNEBEDEMITH 5, AR T 22 PR & WO, R D{REE L D HE L vy (w)
LLTEHREINDG, T42bb, HEEr (0)ERDLIITRING,

dw
vg(0) = —- . (2.81)
Bult & OWUHEMRN THGEBIC X > TIREIL TH Y. Z OO % HHEE v, (0) & 5,
v, (@) = wg:)) (2.82)

DX, JRCFRIIA =7 b v & Ko B ORI 35 TS & BREREE O )7 % % &
T HREND B, A BT ICBE U R IR = 2L F — RO mEICBEEST 5,
T DX Iealibir, WoXP., AAHEE, FRRE oA X % Fig. 2.3 ICRT, 7. Fig. 2.4 IC W&
DAKTF R TRT, T2 T, AP KEL R I EHFLOEIEROIEIILL b, 2D &iF, HE
AR PARREL DL, FHROME, T2bb SV RAEPHEL bl 2R LTWS, BRI
I B DERFENRRT, Z FE ORI IS T o T v i FFo VAL —F 2 FE 2 B L |
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TZ
)
) exp(iowT)dT

(2.83)

2
0

U(T) = exp <—

BRI PPN

i

nN#w7—Y &L, FREGEE T

-
—

(2.84)

[e] TZ

(w) = f exp <——2
—o0 0
exp(—ax? + bx)dx

U
AT 2R TS 2 B TE,

-
—

(2.85)

_[m b?
“Na exp 4a
2, .2

[

(2.86)

RIS 5 &

-~
-

FIEIL D # EERTE D XD

(2.87)

(2.88)

—HFIE L, XVIEVEABEARZ AR, Z D70, @R VR

SRR

DI

=l
(5:]

Thbb, 2L R

IS 2 PR AR T & e,

]

ﬁ)ro\ >)/_\'0:u

oME

-
—

L —FIFR GBI AT P v ifEb,

Fig. 2.3 Schematic diagram showing
envelope, carrier wave, pulse wave,
phase velocity, and group velocity.
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sinc{Ak(z -1 t)} —Ak=1

—Ak=5
0.75 .
L]
=
=
= 05F
=
g
]
E 0251 Fig. 2.4 Schematic diagram showing
g NP ‘é‘)"v" n ﬂ WA~ envelopeAk-dependence.
3 ~ N\ VU UU A g
025+
0.5
20 15 10 5 0 5 10 15 20

INnFCoHEMTIX. BERPIFEE BT 2720, BERP-ETHND Z &R0, Thid
QINKNCEXIEEEHL R TH L, L2 L s o, IWEP AR T 2 BE VAL —FicEW»
TREXREZERT 2L TES, FRIEMHE LD ICEBLTIHRIBEL D, TNETELE T
2o 277 DIELLDSF T DA FEE B w (k) I DT Y 207201 1E. wk) kD —XEcHRK X
NEREDRD 5, BATkFT L,

w(k) = vk (2.89)

Ao 2ARBAKERLYeTch -0, UKIEeThD, vidfTEOERTH ., MK
BB or—ETHs LEET,

k
# = constant (2.90)

Z DD D AR L FRRE 2 KD 5 & |

)

v, = - =, (2.91)
dw

vy = 7 = (2.92)

Thbb, HEELHHENFLWE IR, SRELZEAT L0 TE 5, B OER
BT, 277N Z0 72 T MF R B0 ATH 5, B h O BRI DM I BTk, R
G U CIRITR BT 2720, RO LI ICHR 3,

o) = 2.93

w( )_n(w) (2.93)
wk) ¢ )

- () # constant (2.94)

P8 JETRER & B D H i3 AT BEUARTF S 2 BT H V. —E TR R, L7zt > T, BETOEN
BEOEMICHE T, MR BT 2 LidTE v, ZOGE HEE L FEEEZ KD 5 &
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w(k) c

Vp = n(u)) (2.95)
Lo 1
9 dk % n(oo)_l_?m (@)
c
_ n(w) v
N 149 dn(®) 149 a)pdn(u)) (2.96)
n(w) dw n(w) dw

(AR L BRI &5 O b A EREUCRAE 3 5, . AR REE Tk, ﬂ?ﬁ%@)ﬁ%&*ﬁzﬁﬁiﬁz I
BT, FEBPREL 213 EETNTE(0)DKREL LD, Thbb, EEXIEVIZ EEITES
{7235, ZOX5 RITIE, JEBITRO AR I ZIEOEZ R b BEED K & L dEkiklz &
HEEIANE D, Thbb, FERAEVIZEFREEINS L, FRARVIZEFHEE S L Z W
TEeRIRNT, ZOMR, BGKAED DWMREART P efioga. DAY P ANORIERKIT
AT L TR L, FIER S PEN TR T 2 R PBR I NS, 20X ) iR ORMMZAE
FRTHRPOEL T3 FEE SR XN S, F 72, BRI B BT 5 L R
F X — TNV REIEIN D, A RO b AR DT 4 7 —ERICE W T, (2.76) D405
SRR ERS 2 L3 TE Ry, 2L, —RIYIC iﬁl_*’“‘lﬁ%%fﬁ“é G AN i
ECREPARETH 5 &L SN T WD, FEHE B IEE R IGE 1T, T AUFHEMIES EE SN 5,
A5 —IH O —FE A THIIHRRE 28 U, AR =1H o RS 1‘7“15(“1@ IHEERE RN T A =2 TH Y,
INHIFEBRMICRD SN2 EERYHEETH 5,

2-5-2  JABEEEER L 2R ER

2. 73) R EBE GRS cRlik - 5 & R HE A T2, A EHRIChR 2, 207D, K
T CTORBITIEICOWCHAT 5, Rl & FEBGEHIR 02 id 7 — ) 22 WmAM o b,
EEORY FAEX(r,)ICN T2 7 — ) 24l 207 — Y TEMRIIRO X 5 ICEHRI NG,

F[X(r,t)] = Rk, w) = f X(r, t)e ikr=00g3rqt (2.97)

— 00

F YRk, )] =X, t) = C 21)4 f Xk, w)ei k=D d3kde (2.98)

Al ZEfSAEIR & I BGEIS RN 3 B LB IE A\ 7 o R[S A SRR BRI 1 25 g T kv s,
fhe DBEEHEERO7ZD0297). Q9)RICIH I BTy — ) &M, Wiy — ) A ERT S

FIX(r,t)] = R(r,w) = j oo)?(r, t)el@tdt (2.99)

FX(r, 0)] = X(r o) = %foo)?(r, w)e tdy (2.100)

—RANCHW SN S 7 — ) AL RO S PNIEANTH D EICHERLRVETH DL, 7
A7 2 VEREZ 7 — ) BT 2 BRIC B @M 2 RAUCR T, oM ST OEH & I3
54



Bof 50 EE¥TH 5,

aX(r,t
3:[ (r,t)
ot

] = —iwX(r,w) (2.101)

FERHIR HAIC, (2.100) o il & B 5 &

X(r,t) 1 (* 0 P ity
ot ml) 3t (r,w)e )

=5 [ ko weto 2.102)
21 )_ o
Ihd b,
FH(—iw)X(r, w)]| = ax(grt, 2 (2.103)
JEE GRS C O BGE. JEIE I BRPy, % T N ENE, Py kT 5 L,
fFPEY——'E( ) (2.104)
p iwE(x,y,¢w .
oP R
fF[ a;VL] = —iwPy.(x,y,& w) (2.105)
o Z.73)RITRLA L.
0%E ’; w 0E B 0? 0? 5} w? 2 w? p 2106
6_5,2+ lvg((ﬂ)a_i__ W-I_W - (w)_vgz(oo) c2¢, M (2:106)
J1 (€Y
k(w) =53———t€£——932 (2.107)

Db JMEEURIC 51 5 5L A SR © 0 BB R A A & ik,

2-5-3 NV ATEBERERIC BT 5 MR, FEEEER 0 S EREHRAER

BRI OL %z X Y ERICER T 5 72010, UL Z I 5 ., B OB TlX, B
BRI DD HFDITNIOHUNERICOHELSLETH 205, SIHFROGITIE 2 OFFI2FER X .
SFEa R M EREIRCX B, 277 L. BHA 2NV R Y, AR 2 IREN ST AR 2 B
RTIZOUMBIMOCIET R ITE T % v, —MIIC, BEASVA L —F ML cHWO N8+ 7 =
L FLLED L RETIR, 10 L EDEAE TN B 720, WO EMRIC X 2 WrEHE 258 i AThE
Thb, (x,y,2t) EEZTOUMKRITRMNATHGZ O TWE, L ZAFEBEER (x,y,§,7) TD
g IE, 2.69)XDBREHWTR.68) AL L.

E(x,y,§,1) =E(x,y,& 1) exp [i {kof — Wy (‘L’ + L)}] (2.108)

vy (w)
(&, 7)) TEH L,
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E(x,y,§1) =Exy,§ 1) exp [i {(ko - %) §— wor}] (2.109)
g

I X0, BHEKEOEHGERXTH 52.73)Ric2.86) N Z A TR,
WOTEZERICEHE L TBL e, XD XS5k B,

J0E ] Wo 1€ Wy ] Wy
e Qo I el Gyl e i
, Wo J . Wy
= exp [l {(ko — m) &— wor}] {% +i (ko - m)} & (2.110)
J0E ] Wy i€ ] Wy
Fri exp [l {(ko m)f wot}] e —lwgy exp [l {(ko — vg(u))) & — wor}] E

= exp [i {(ko - %) & — wor}] (% - iwo) & (2.111)
9

T/, ZFREOMOIEIERD X S Ick B,
€
(1)0T}:|a_f

WAGREIRT R & 72 %

0%E

a_ezze"p[i{<k° 7w ))5 “"’T}]af“ <"° g(w)>e"p[{<k°_vgazz>))f_
“( 7 ))e"”[ {< 7y )> }]3‘;

e >> (ka5 )*’H(" ) “"’T}]Sz

=exp[i{<k0— (w) £— wyt { ky — g(0)>aa§ (ko_vg“zz))”g (2.112)

0’E [k . wg 0E
e = et (ka5 £ - o] oz -0 e’“*’[ (o =
—iwgy exp i{(ko e )>E — }] e —iwy X (—iwy) exp [i {(ko — vgaézo)> & — wor}] &

, wg 02 0
= exp [1 {(ko — m)f — a)or}] (6 > ZLwoa— — Wy )8 (2.113)
0’°E 0 <6E) d

Ja
dgar  0¢ \or =§ex”[ {(k(’ g(w)>f_ }] (ﬁ_l“"’)g
" 0% . i wo 0E
R G R | ol ) () B

vy (w) ot

k e & Wo Ik Wo c
-wwx[Kolu@% %%Leﬂwx%ovaa%wPKo i)~

vy (w)
- Kk P | | Y AR N KA Kk £ (2114)
B o vg((o) 0 oéot 0 vy (w) Fr 06{ 0 g( W)

TNH DR~ DA, IFREHIHIC S BRI TH 5, JERIE 2Py,

DA E Py, & L.
Py (x,y,&,7) = Py(x,v,&,7) exp [i {(ko - %) & — wor}] (2.115)
9
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FERIE 0 D el ik O —FE I H 13(2.112) 3 & FRICEI R T &

62PNL_ . k Wo az 2i 9 2 P 2.116
oz = P\ hw)* T 0T \ae T H g T 07 )P (2116)

o z2.73) TR AT 2, GHEBEEIEMCH 2720, TERADOHG T Licidihd 5, 3XTD
B TR O EE D IFPRE TR B,

0%E 2 0%E
08?2 vy(w)déor

3 0% (e wg 0 . wg 2
= a_sz+2‘< °‘vg(w)>ﬁ‘< °‘vg(w)> ¢

2 9% . wo \ 0 d " wo |,
B vy (w) {6561 ti ( 0 vg(u))) ot ~ gz ¢ T wo < 0~ g(m)>}

(@73) %) =

ALY DY VoL ST Y {PYRNIICY S B S (2.117)
T 9¢2 o vy(w)dt) 08 0 vy (w) 0 vy(w))  vy(w)adt '
i 14xM) 1 )o%E
| ) = [ _
<(2 73) R ,‘> { = (@) 37
14 x® 1 62 G,
:{( = ) 72 (@) 210)06 —wy? | E (2.118)
SIS, 1 0%Py, 1 (02 G, 5
(2.73):\ =75 = T 902 T e F—leoa—wo PuL (2.119)

enBYRicchnbzRAL, EEREFEZELAICE LD B &,
9%¢E pik 2 9\oE _ [(0* @ 0? e (i W, y wy 2i a(S
agz T\ M Ty wyar)ag T a2 Tay2) T T\ T @) I T i) gt ar

+ (1+x) ! AP 2) g 4 AP P (2.120)
c? vg%(w)) \ 072 tWogs ~ @o c?g arz 15 0o* ) P '

LXL;@ o3V AT AT R T 35 0T B R O el AR s A R X B I e 23, IR I T

o TNOIFREMEGE CER T 5 LR ARG O NS 20, FEEGEE cOEHIC DWW T

rbnﬁlﬂﬂ@“% (2.106) % TSR TR 3 5 7= 01, FIREGEIRIC 31 2 EBGE L GiERE D BEfR % 3k
o QINKDOEFEEZH T, 2.109)R DM % Ko » 7 — ) =Z5#a L,

E(x,y,§,w) = foo E(x,y,&,1) exp{ <k0 — oo_) &— iwor}ei“”dr (2.121)
—00 vg
Wy *© .
E(x,y,§, ) = exp{ (ko ——> f}f E(x,y, &, 1)el@-®)Tdy (2.122)
Vg —o
E(x,y,&w) = exp{ (ko _v_> f}E(x Y, &0 — wy) (2.123)
9

Tk b KefllhC O WASHRE (x, , &, D) 1. BB CTIXE(x, y, &, w — wo) TH b . JE B <
TEEEEL7Z2bDTH L, 2106)RICNERAT L0, MOHEEZERNICEHET 5, (2.123)
AWML ZETMIT L.
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oF AT Y RO 2.124
R R

S HICHUZETHMY L,

0*E , wg 92 ] wp\ 0 wo\?) .
N A T

106N L EZRAL, TRTCOEPIE TR EEE 7 13bRE T2 &

N A L (e
- l —— | -— l—yzz+1 -—
FIZ Oy Jar 0 v, |98 0y,

92 9%\ . 5 w? ). o .
=— ﬁ-l__ E—1k ((U)—v " € — PuL (2.126)

dy?
SHETZLENICE LD, BT 5L,

9% w—wy) € 9> 0%\ . 5 w-—wo\) . ? .
g

2T, k(w)ZERDEIICEERET S L,

W — Wy

k(W) = ko + (2.128)
9
92€ N AP . w?
O k() = (21 P Ve k() — 2 _ 2 212
oE2 + 2ik(w) 3% <6x2 + 6y2>€ {k*(w) — x*(w)}E Ze, Pui (2.129)

T AE L R EIEAE R UC 35 1T B JREGEI O TSR 5 FE X © % U . NEE (Nonlinear Envelope

Equations) & I3, Z o /7 2 REE]Eh < ¥ ov R EBUEBIE R I B 1T 5 i ioi i< bh %
QI20)RZ 77—V ZEHT 2 Lick>THEPNS, T2, (2.99). (2.100) L b, EHEHR O KR
il & I BBEEIR O BRIEIZ R D LS ICER I TWw 5,

A 1 r®. )
FUE( w — wo)] = E(r,7) = E_f E(r,w — wgy)e He=0)Tq, (2.130)

i3 % IRl T L

0E(r, 1) 3 i oo ié(r ©— )e_i(m—mo)l'dw
ot 2m)_,ot ' °

= ifoo{—i(oo — W)}, w — wg)e HO=®)T g, (2.131)
- 21t . 0 ’ 0 .
I,
T‘lﬁ—iﬂn——m¢3503w——woﬂ==agg:T) (2.132)

CNICER LT, QINA %2 7 — ) 228419 2 b | R EE T IC{—i(w — wo)}ZfAAT 2 Z & iC

%‘gb<\
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0% (L 2 i ) 06_ (0 &\,
9gz T\ T T (@) T T 0 5 T T ax2 T 9y

i Wy i Wy 2i . A
(=525 {0 ) * oo
; {(1 )1

c? vg%(w)

} {—i(w— 0\)0)}2 — 2iwo{—i(w — wo)} — woz]é

1 ~
+CZ_EO [{—i(w — wp)}* = 2iwo{—i(w — w)} — wo?] Py, (2.133)
INERMT 5 L, FRICQI2)AZGEOoN S, ZO X 5T, Wkl & FRBEEEIC B T 5 (Ll
BRIFE—TH 225, FIRBGEERIC BT 25083 EETH 5, T AR EEEEIC B T 5 5k
FFRXEZEY D,

2-5-4 RREEBELIZEA L 72 SRR ER

1 LRI (SVEA: Slowly Varying Envelope Approximation) T, (2.129)=.® D5 1H 1%
WL, IOCHRERRICT 2, o, 7205 —THOMOME S —IH O MEHE It~ <+
SHTNE W EERFT %,

~

2ik(w) 2—§ (2.134)

HEBEUDPELCHPICEN LR, 2GR L TWAIRNEZE 2 %, ELPICZL L TWE Ly
5 DIL, WEEEOHMU/NRIEEiAz DRI LT, 2 D& BAuIZITTOUICTT L THaIc/hE v
WIHIEKRTH L, T4bb,

284

oe|

|Au| < |ul (2.135)
W% AETEI S &

Au « |2 2.136

36) <z 2136)

TCT, NIFEREE, dLCRERLY FHGEHTH 255,

|Au <<|u|<|u|<|21T |—|k | (2.137)
agl < [agl = IR0 S ¥ T oot '
T, birEU®R
_0%¢ (2.138)
'l.l—aE .
CEEZEZEITXD,
Gl « |k o€ (2.139)
082 0 9t '
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(2128)RDk(W)DEFL V| k(w) = kg TH 2525, (2.134)H L7z TN 5, BRIV L —FIT
DX 9 HHOEBTIE., UEROZLITHERE DG I L CTHmic/hNE Wiz fRalfgitr iz
W7zINnsd, Zhib, 2106000 _EoMupHEITEHEAT s e8TE, XKXD X Hick s,
0E i <62 02 ) .k (w) - k¥ (w) . i w?
vz

9 2x(w) \ox2 E+i 2x(w) €+ 2x(w) ¢, Pu (2140)

(2.140)xX %. NEE-MA (MA: Minimal Approximation) EFES, [FIBRIC, WAGHRICH L CTidZe <
BIGOREL P RELITT 2EBIT D (2.83)RD DM TEZ HHTE, SEWA (Slowly evolving

wave approximation) & P35,

2-5-5 SRR, BEEEES B OEM

(2.140)1E. EDESMDIEMRICH LT 3 DDERESG T2 2 & 2 EKT 2, A5 —TEIZ T,
B IEIE R BEHIIIERIEO TS B, T T TIEROEBOERTTEICOWTERIAT 3, FEikic
KT DHER 7 P vk(w) i, FOREBw, Db T4 7—EHT LX), KDL %
EFRE R D,

d?k
k(w) = ko + (0 — u)o)—| 4z (co 0o o (2.141)
w=w, dw? —wg
FREE OEFRR.81) L D,
dk 1 B 1 5142
dwly, wg 422 _1@ (2 )
dk =g,
d*k

k(w) =ko+ (0 — ooo)—+ (co W)= (2.143)

7] dw o

0

FAE T L 5 THOMIZQR.105) R Dk(W)DERZ DD DTH L0, ZNERIEHICHBIET S L.
RDESIRIN5,
, d%k

1
k(w) —x(w) = E((D — W) FPY]

(2.144)

W=y

ZDX5iC, k(w)—k(w)DIHEIZTA 7 —EHOERXDETERI LB TE S, BEIcET L,

400 (l)
k(@) — k(w) = z =qf (2.145)
=2
dlk
o _
kP == (2.146)
W=y
Q=w-—w, (2.147)

T, RIORDEWMAFREROAAE —THEZRD X 5 AT 5,
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k2 (@) — k(@) = 2x(w){k(0) — (@)} + {k(w) — k(w)}? (2.148)
Q145K LV, k(w) —k(W)DF—F—%FE 2 5 L,
k(w) — k(w) = 0(Q?) (2.148)
TZT, 07 v XA YDRiETHh s, QISREGUFE JHOF —X—%E2 D L,
{k(w) — x(w)}?* = 0(Q") (2.149)

L= >T, (2. 148)ﬂ&3mf751_*“16@75 FEUR—HE R TOERITNE L oY) & 1%
I ds, Thickh, (2140)ﬁ I DB G 2 b,

aé i o ﬁNL
—=—A

e ( S8 + k(@) ~ K@) + 5T

Z OIEi /2% GFEA: Generalized Few-cycle Envelope Approximation & P55, & 72, (2.145)7L & U |

IHICEETE,

(2.150)

A ) +oo 0 i 2.4
oE i A k A i 0Py
—=——A j 0 ! —_— 2.151
3%~ Zx(w) lg“{; T }’5+2K(w) e, (2.151)

GFEA iICBEWTOoOH 2R T 2002 {To72720, ZOHICEWTHoOHZHEHEL TI W,

2,0 k@ @
%Ql = %92 + %93 +0(0% (2.152)
=2

kP ERERE BT A — 2 LIPD, ERRIICKRD bRT03, ThED,

o€ _ 1 — A E+ ko 02€ + k(3)93£ Lo Pu (2.153)
13 ZK(w) L l 2 l 6 2k(w) c? € '
BELND, DN EWEE, 0D EHT LB TE,
o¢ LI ky” 028+ ©* P (2.154)
0% ZK(w) L l 2 2k(w) c? € '
(2.65) & FIkIC, BIIHZERT 256 1Cld, B WiHREIEg % Fv <.
N . (2) : 2D
& i ko i WPy 1 w J
- Y 02 R
o€ ZK(w) Ty et 2 %€ + 2x(w) ¢? €, ZK(a)) c2 €0 (2155)

BRI, JIRILA 7 P AT I/NE G ERGE L 72356, [T & IERTE I IC & % h 5 I 2 T b
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Vo =<v+1> (2.1941)

¢M@=F&L7meMﬁ—fMy (2.1949)
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Fig. 25 1R, A 72 LT F A~ DN S BB T O L — FHIE RS 3 © & 45T
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Fig. 2.5 Laser intensity dependent ionization rates of oxygen and nitrogen molecules calculated by the PPT

model for a laser wavelength of 800 nm.
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Fig. 2.6 The experimental total impact ionization cross sections for 0, » 05,0 + 0 and N, - N2+, N* +
N [18].
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0°E wg?
2 =~ 5 AGy. ) explilkoz — wot)} +c.c. (2.234)
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92 92 92 9 X ( X(l)) 2
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T HEFEFIIEL 72 IRBIR D BRI 72720 2 b I3ufEfic oo & 5,
HIT s W CTREABIWHE, AR AHIIITHHELEA D 729,
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2-5-4 T/~ L 72 #R A g A oA I X 0 |
o +a2 A+ 2ik aA—o (2.237)
ox2 T 9y2 Hog, = '
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AR L 2 WHEEREESR coftd 3 I S,

o 10 A+ 2ik aA—O 2.238
ar2 trr At Hkeg, = (2.238)

AT 2L —=FHAZF I AT T v e —LTHDI DL, EBAZH T, ROX S ICHY TV
T DREZARE ST 5,

A(r,z) = Ay exp{S(2)r? + T(2)} (2.239)

TNHEQ2)ICRAT Z -0 ICMEET2FE L.

g—f = 25(2)rAy exp{S(2)r? + T(2)} = 25(2)rA (2.240)
02 0
— = —{2rS(2)A} = {25(2) + 4S?(2)r*}A (2.241)
ar ar
0A as oT as dT
= = (rz — 4= )AO exp{S(2)r? + T(2)} = (r =+ E)A (2.242)

AEX D, 2238):iIkD k5 icLBI b,

[{25(2) + 4S2(2)r2}A + 25(2)A] + 2ik, (r Z—S + ZZ)A —0 (2.243)
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ERTDATH L0, MERICINSZENTES, Hizic, C,=iBeEL T EITLD,

A(r,z) = A, ! - exp{ iko_ rz} (2.253)
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z—ipB Bk ikyz
A(r,z) = A, pra:Y exp {2(22 ‘:Bz) rz} exp {2(22—3_82)1"2} (2.254)
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A(r,z) < exp <— (:2 ) (2.255)
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2 ik
A(r,2) = Ao#exp {_wz—(z)} exp {2;(02) rz} (2.260)
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Fig. 2.7 Characteristic changes during Gaussian laser propagation. (a) beam radius, (b) curvature radius.
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BRimL v XOMERER &5 & Nl L L ERRip DALED /77 ADEHZRDFEd(p) I1E.
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Fig. 2.8 Schematic diagram of spherical plano-convex lens.
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K7 ADIEIRIT 1S5 BETH 5720, HWEEEDOIEIE ENRBEEPIHAICNE SRS, 2Lk
A, HI7A%BEZ L THELBMEEIZ. ROBY TH 3B,
exp{ikoAd;(p)}

-1
= exp {—iko (n!;R ) (x? + yz)} (2.269)
l
AT v —FEi@hoz=zI1cL v XZ2EL L&, 226)RICH W TCRAIDO M 2 KT IHIT,
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Fig. 2.9 Characteristic changes during Gaussian laser focusing. (a) beam radius, (b) curvature radius.
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Fig. 2.10 (a) Fluence distribution during Gaussian laser focusing, (b) magnified view.
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3-2-1 EEME

AfgEclid, R HT780 25l & L CH w7z, H\v72 HT780 Ofb Ak % Table 3.1 i,
BRI ME % Table 3.2 1R, HT780 SRERH 1 134 10 mm DR TH 5, L —FIEE O FiULE
& LT, Mi7KIFEER#800, #1200, #2000 IZ X 2 EER., Kiff 1 um DX A4 Y E v FRTFZH VRN

7 WHE (BRIHE) %17 72,
Table 3.1 Chemical compositions of HT780.

C Si Mn P S Cr Mo \Y Nb Fe
0.14 0.35 1.17 0.006 0.001 0.08 0.12 0.08 0.02 Bal.

Table 3.2 Mechanical properties of HT780.
Yield stress (MPa) Tensile strength (MPa) Elongation (%)

820 854 29

3-2-2 L—FREESF. L —FMIEHF

AW CfEH L 72 85 S v 2 L —F 2 & X, Light conversion, Inc #® PHAROS TH 5, & D&
DOHFLFERIT 1028 nm, v — A8 (L= 1/e? & 72 5 H48%) 1F 1.75mm, ALV RAT AL
F—lE Iml, A VERLEEBIZ1kHz TH 5, L — VLN 1/e? L 7 5 -0 AMRIZHRFE ¥V R
i 180 fs 2> HEFT -V AME 20ps T THAATH 5, L —PFHEOLHELBIRCTER S LS L RIEIC
BHET L, BEASVAEEZ 21 s 725, KETOAALRFEDOERIZ, L —FREN1/e2t 2 D
NNVRMRE T B, L—WRESMEIT VST Vi Th b, £ L —FRREAIZ. Sr R A
AF—% 0.95m) ITH— L. SV RIMEE 180 fs 225 8 ps £ TEL X ¥, A RIBIRGEMEICEH T3,
L — I E, EATEEE 70 mm DERIAFI L v X B 7, B AR ER AR 546.1 nm 1Cx
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EWINIVRAEEDPEE L WEEZONT VL0 THE, 77— a VIEIRRICNT 501
ABDOAT v 72D 5 2 LI XY BHED 72 ) OB ERZRT AL -V 2 ERT 5,

Coverage(%) = mD?/4d? x 100 (3.1)

2T . D v Iy ay PTBIFET 70—y a YiEum), diZoSV AR O AT v TR (um) T

Hb, T7TL—va VRIDEFEMEEBZICE VIRET 2, KAEBRTIE, 7L =T % 4000%IC 5
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FAOWTHEE 2T 7L — a vEEFHI L 728558, 231 — 21 2000%75° 5 4400%F TO LD & %
AT, ¥—=v 730 R UJEBE % 500 Hz & L TIT - 72,

¥ 72, KEZERTO L —FHEEFEERZIT-> 72, Fig. 3.1(d)ICRT LI I, X-Y HEIAT VI F v
VN—Z YT, FoRIcE B ZRRE L2, 2OF v v N— 13X 20mm TH Y |, JEAHHK) 1 mm
DA T ATERI N, MAMREZER Y T2 H L CEZEL & 21T 7z, FEEZEEIL 10Pa AT
KEZETH D,

Ultrashort laser pulse

Ablation area

Wavelength: 1028 nm HT780
Pulse width:180 fs ~ 8 ps (10 % 10X 10 mm?)
1
1
1
L ~ 1
Plano-convex lens X-y stage inti
70 mm Irradiation area
(a) Irradiation method of ultrashort pulse laser. (b) Laser irradiation mark.
chamber
20 mm
gﬁss
X-y stage
—
vacuum pump
(c) Scan 1rrad1at10n method of the ultrashort pulse lasers. (d) Experimental setup in vacuum.

Fig. 3.1 Schematic illustrations of the experimental setup of dry laser peening.
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iR S ‘Eﬁﬁﬁ% ET 7L —va VR R ICBIRE ST 20, %ﬁ’la@?ﬂﬁﬁﬂf% (SEM
Scanning Electron Microscope, JEOL tL#, JSM- ITSOO) W TBE 21T > 7,

324 L—VFEMBEICLET L - a VBIE

COLABRICHKTEL 727 7L — v a VAR R T T 2 72010, »9L R0 180 fs. 1 ps. 4 ps DEAFIC
BWT. T 7L —v a VIEXIDORIEZITo 72, 2 OWEICIT L — FREMEE (F — = v 28 VK-9700)
ZAEM L 72, MIERF O FEH1 50 5T, “FHiJT A D3 fERE L 0.2913 pm. IR JTH D ¥ v F 1 0.02 pm

85



L7z, 1 MO TIRT7T 7L —ya VXN L, BHIEERKE W0, 8 RIS HI
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FT, 025mm Z L ICBIEL, BRICEI T 7L —v g vIEIBHRR AR L 72, BEZEL TR, T
TL—va VEIRKE Wz, BEREIZ 4R L,

3-2-5 coso HRIC X AT I M OERE LA EHE

SOV RIEE L — PR ORE B X CRNEOICTIREBIC T THEZFMIT 5720, F 7
AL —Fr—=v 7 %ol 0t LT cosa #EIC & 2REICTTHIE 21T - 72, X #EREE G HIE
I sin?W B —MRETH B 23, M R R R E R S B & 72 5, — 77 T cosa K135
REfE c D PIE D FIRETH 5 [19], FREIGTMEICIT X MEREISTTHELEE (v Ty 78 |-
X360s) ZH\T. 5 2.2807 ATH B Cr EFERD Ko #t % SBHEEMHNICH L T 35 degree TAH & ¢
T2 o FRFTICRE S 3 M IZQIDIE & L7z, ilklo ¥ v 713 224 GPa, K7V v HiZ 028 & L 7=,
FIAL—Fv—=v 7%l alehicrt L <. BRI & X IEFEICEE 2 RAICHE VIR L,
R TTRI DRI 040 % BIERIC K D 72, RIS 11 5% E SRR IERE % FH 72,

3-3 EBRHR

3-3-1 EEEMEE. EERE THEMSNIC X 2 REHEEEER

Hl I, »¥L i 180 fs, 500 fs, 1 ps DM IC BT % F 5L E © O REHR OB R % Fig. 3.2(a)-
(IR T, ERfERBRT 2 X9 i1c, BERERTOERLLRDLDIDTHZ, Z2NZ OISR
EEEOfE% Table 3.3 1278 T, BEHEO N ABEMSTIC X 2 HE 13, B & I L CHBICE R T 250
e L7, WBEHEEEOFM A ERIT SEM BZRICTIT 5. A RIEECWEMFIR L, EhfET
DIBEHEREAKRE L, 77—y a VEEBA/NI W 223905, FIA4L—Fr—=vZicksn
T, BMIAAF =R ==V 7R LT 223 H 5720, BHEDHZ Y DT AL F—,
TNITVZFRELTRETHBEEZOND, LD o> T, EAMBICRES S, B cREHE
DRZEIDVHR/NE R BMEZHERL 72,

(a) 180 fs. (b) 500 fs. (c) 1 ps.

Fig. 3.2 Optical microscope images of irradiation marks at the focal position for each pulse width.
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Table 3.3 Measurement of irradiation area radius at the focal position.

Pulse width Radius of irradiation marks (pm)
180 fs 107
500 fs 78
1 ps 67

RIT, 2V AME 180 fs, 500 fs. 1 ps. 2 ps. 4ps. 8 ps DESFM TR/ L 7n 5 BHHE D E LM
BISHER % Fig. 3.3 IO T, 7o, m/NRTEEERE % Table 3.4 ISR 3, XL A1 180 fs, 500 fs,

PEIT SV ANE 1ps L EDSEET 40 um FREE L —ETH 2 DI LT, »SLVAIE 1 ps AKdili D&M T
BIBEHEAEA L CLE D e BHL 2 TH 5,

(a) 180 fs. (b) 500 fs. (c) 1 ps.

(d) 2 ps. (e) 4 ps. (f) 8 ps.

Fig. 3.3 Optical microscope images of minimum irradiation marks for each pulse width.

Table 2.4 Measurement of minimum irradiation area radius.

Pulse width Radius of irradiation marks (pum)
180 fs 81
500 fs 57
1 ps 43
2 ps 38
4 ps 33
8 ps 41
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HAFTAMEIC X B RAHREBIE X, @BEERE oSO CRNERZHE L -, EEIE0RIN
ZERNCIE, L —FHRENC X 2 MIMEECIRILIHERE, 7 7 X~ RS E0C X 2 (LR R, JE B~
DEILENC X BRI s & DORREMED B %, 2 & C IHEHE % X 0 FElicBl5 3 2 729 12, SEM
I X B IBHRBIZ 21T o 72, Fig. 3.4(2)ICEABAMER IC X 2 ISHRBIZR R % | Fig. 3.4(b)-(d)IC SEM
I & 2 GRS R LR T, CFBEMERHE c Ao n 2 MRICE B L 2288881, SEM IC X 2 #1%
DR, B DIRIETT IR U CHEE 72 77 1A JEHAR 2= MW RS S TR S 1L 2 T T H 5 2 & 0347
Polz, ZORMAMZMIMEEIZE | ECn Lz L —HERmENESE (LIPSS: Laser Induced
Periodic Surface Structure) TH 0. 7 VTV ZADBE~E+ mI/em* L D5 WlE SV 2L — ¥ % 17
422 LickoTIRENDE HDTH B[20,21], L7223- T, HFHEMEES SEM B CHE &
NBWEERIZ, BEALZL —FHREZ0DICX > THEINZbDTH Y, 77 X~ilEg
ALY HERE 70 & D RN 2B X 5 b D Tld7n v,

(a) Observation with an optical microscope.

(b) Observation with SEM.

m

(c) Magnified view of area (c). (d) Magnified view of area (d).

Fig. 3.4 Observation of irradiation mark upstream of the focal point.

KT, HEALE AT o BEHRBIERE B2 W T, Fig. 3.5(a)-(d)ICn 7, FBEMETIC X 2T T
. 77U RS CHBE L, AORBEEIENCTEET 2720, BEROHEICITBENEENE, —
7. SEM B <t AR+ o AMEICE VT HFOLHDOT 7L —v 2 ViEOIMENIC LIPSS &
BRETFIET 5 2 e Sb o7z, L72A > Ty 2V REDS 1 ps ARl D S&tF CHSHRE AR E WH
iz, L—¥EERFEPZN L, L —FREEES AL T3 2 L ickRRT 3,
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(b) Observation with SEM.

P

(c) Magnified view of area (c). (d) Magnified view of area (d).

Fig. 3.4 Observation of irradiation mark upstream of the focal point.

PEoz o, BREL C L — IR SRR 2 RIS L 72, SLEBMEI L SEM
IC X ZBHEICHEL 2 b 2 mildE k. WATSHEEHER On 2 {83 2 L cirA#HiNTh o 72, %
T T, MBI X D, OV AIE 180 fs, 500 fs, 1 ps IC 35 1) % £ s A7 4 o W GHE - 2k
Brkoi, ErfiEzhoc, R 2RELZAT Y2 ET1 ATy 75720 50 um T
B8 & &, Hif2ICH mm FEE OHIFIC B 1T 2 MR PERZIUG L7, BREZIRET 5720, B
22h© b RO FEER 21TV HEEHRE R 2 S L 72,

BB 2 BN RE C IRE L, EBRfEE ROz, AV v T v L —FENFHEILE S
ALl 2 BN CTH 5 72, & 5 e BICHIROAIEICH 2 MFHEPFEOBRAEZIIG L. &/
Feikx A CIREHEHERS 23 i D AR & 72 2 A SERLiE & L 7z, B8 & KA o fEfifriE % It
T 5720, BEGEETORL —FENRERTCHEBTZAEIN Imm OF 7 AROHELHIET
%, Fig. 3.5 IR T X 91C, BARIEITELZFFOEAIDERE 2 2t s 2856, ERliEZTohr
B OBEIT 5, Fig. 3.5 IMHNEIER 1 I b RE L, EAVEIEE 2 X0 b4Milicd 285
HERLTCWD, ZOHAOERMEOHIEFIEIZUTO®EY Th 5%,
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Fig. 3.5 Schematic diagram of rays as they pass through different media on their way to collection.

LB CERAZEEICAR T 2L —F RO AFTHICOWT, XROAXDEKY 7o,

h
sinf; = ———— (3.2)
NS
Snell @(%EIJ X D N *Hiﬁ@*ﬁ%nlz%ﬁﬁ (R N
1 h
sinf, = —sinf; = ——— (3.3)
Nniy Nq2+/ (hZ + RZ)
77 AT OE—BITHIE & 5 BITAIE O & X DR 1,
h' = dtan#, (3.4)
B IRPTALE 2> & Wi 72 7 E T o 13,
h—nh'
d' = tanb, (3:5)
B 2 2> O 7= 7 fE A K T ORREER 13,
h — dtanf, dR
Rr=d+d =d+——=d+R - (3.6)
tand, 123/ nizR2 + (nf, — Dh?

R'—R=d ar 3.7)
n12\/n%2R2 + (nf, — 1)h? .

DAFIEDOE ShKFET 5720, ERTROTLRITPTIVEL D, BEF v v N—DFEI
20 mm. PRERH OE X 2310 mm TH 2720, 77 2D 6B R £ COMEREIX 10mm TH 3,
ERALED B RANCAIE T 2 LIREL 72 & 47 ARZEET 5 L —F & — L5134 250 pm
TH5, % BT 2L —FOESAMEIZ 034254 mm BFICH D, HE 250 um 2T 5L —
FOEHNIE T 034257 mm £ TICH D, ZDEFDTH 30nm THY, 77 ARIC X 2 EHE
TOIFRTIREHTE 2I13E/NE Vv, 22T, A 7ARICE 2 ERMEOTNEZRK 035mm & L,
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200

i 200
= 80 fs 1 ® |80 fs 2
® |ps 1 ® |Ips 10
A 4 ps 1 - A 4 ps
¥ 1psinvac I 1 i c
150 ps 1n vacuum | 150 v 1 psin vacuum 10! =
) ! F4 el g o g
E 1 ~
f]m_ - AA‘A % 913555"5& 10" =
2 or b 2 100 2
5 . A 3 =
w3 Ab =] Q
& Cp & 10" 3
v NWW =
50} 50
v o, 1072
1
1
0 : I : 0 10°
3 2 -1 0 1 2 -3 ) -1 0 1 2
Distance from the focus (mm) Distance from the focus (mm)
(a) Experimental results at 180 fs, 1 ps, and 4ps. (b) (a) with ideal fluence distribution.

Fig. 3.6 Profile of irradiation area radius transition with SEM.
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L—FITIc BT, BPHEEHERS L I T 7L — v a VBB L EECcH 5, HZEHicE
J 2oL RIE 1ps St . KAHFICET S 180fs, 1ps. 4ps DEEFICBT LT 7L —v 2 vy
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VERZ I, LW T 5, FEE 0S5 mm OHPFATOAT 7L —v 3 VIEI PR E W
Bd 5, —H. “SARIE 1 ps &fF @ HEE) TIZ LR 225mm 2 HRA T 7L — a ViEX
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T 7L — g VEBOAMINC T WL — FIBRTEIEANIZ & A S L TR, RRIC, SV RE 4 ps
Stk B EEE) Tld, ERO07Smm 2257 7L —va vAthE Y, EAMEBETROENT L —
vavyrglLsd, cICXY, RAHPCIREZEEMFL IR 2T 7L —vavofdme iz, S
AMFITIG U CEAREFD 7 7L — v a VIHMDZ L35 2 &R E Tz,

Pulse width 1 ps, 2.95 mm upstream Pulse width 1 ps, 1.5 mm upstream

Pulse width 1 ps, 2.25 mm upstream

1 150
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-2 e -2
2.5 25 -2.5
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(a) At 2.95 mm upstream. (b) At 2.25 mm upstream. (c) At 1.5 mm upstream.
150 Pulse width 1 ps, 0.75 mm upstream | 150 Pulse width 1 ps, focal position ; l50Pulsc width 1 ps, 0.75 mm downstream i
100 0.5 100 0.5 100 0.5
0 0 0
Y 05 E 5 g _ 0 - 05 B
E s F 2 B ) =
2 o 1 ER 4= Z o0 1=
= 5 7 o 5
15 2 -5 2 15 &
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(d) At 0.75 mm upstream. (e) At the focal point. (f) At 0.75 mm downstream.

Fig. 3.7 Ablation distribution at each focusing position for a pulse width of 1 ps in vacuum (4 shots).
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0 Pulse width 180 fs, 2.95 mm upstream Pulse width 180 fs, 2.25 mm upstream

50 Pulse width 180 fs, 1.5 mm upstream
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(a) At 2.95 mm upstream. (b) At 2.25 mm upstream. (c) At 1.5 mm upstream.
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(d) At 0.75 mm upstream. (e) At the focal point. (f) At 0.75 mm downstream.
Fig. 3.8 Ablation distribution at each focusing position for a pulse width of 180 fs (8 shots).
T Pulse width 1 ps, 2.95 mm upstream i 150 Pulse width 1 ps, 2.25 mm upstream i Pulse width 1 ps, 1.5 mm upstream i
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(a) At 2.95 mm upstream. (b) At 2.25 mm upstream. (c) At 1.5 mm upstream.
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(d) At 0.75 mm upstream. (e) At the focal point. (f) At 0.75 mm downstream.

Fig. 3.9 Ablation distribution at each focusing position for a pulse width of 1 ps (8 shots).
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(d) At 0.75 mm upstream. (e) At the focal point. (f) At 0.75 mm downstream.

Fig. 3.10 Ablation distribution at each focusing position for a pulse width of 4 ps (8 shots).
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Fig. 3.11 The transition of ablation area in the propagation direction for each pulse width.
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Fig. 3.12 Pre-pulse and post-pulse in CPA laser systems [24].
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Fig. 3.14 Comparison of pulse width dependent residual stress profiles.

97



i x direction i y direction
50 T 50 ;
0
A
-50 | ,ﬁ -~ .ﬂ/+
o o100 -y s L CREEER .
ey 150 - # a # ,O'
3 = R o
. 2 --“UE Ko + -
2. 8 250, e “ 2
B g o g ‘ ’
@ 72300 By + o
=) | . WA / -
3- 3 S350 7 & 5 e —-o- 180 fs|
a- 7 -400 _go -@ =+ 500 fs
- e 4= o GO =0 lps
450 S
< ST 2ps
-500 —A 4ps
—550,_',- | 8 ps
600" 4 " s 1 i s 1 1 1 -600 il s s 1 i s 1 1 1
0 5 10 1s 20 25 30 35 40 45 50 0 5 10 1s 20 25 30 35 40 45 50
Depth from the surface (um) Depth from the surface (um)
(c) Residual stress in the x direction. (d) Residual stress in the y direction.

Fig. 3.14 Continued.
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NTB[23-26], S NE DI TIE. NA 2L RR, 2LV AT R AF — 13— IC[RE S, Bk
FEPE N REIE O MR 72 AR IC IZ 2 o T Zr v, SR 26 TSV AT A F —{RIFEZ iFIA L
TW3 2, 2o 2340 TH Y, K7Ly RFEHOMETH 2, I lc, TNbDOIFEIT
FRNECOMTIC ERAESNTE Y EHEED 702 v 2540 L — FREHLE 2 Z 2 72T
CRERERTORY, L—F ==V 7D X ) AE7 ALY ZFROBE L AL —FTICE
W, EEMEZ T TREERD 7V v 202 8O i B LB TH 5,
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ARETIE mIFLD NNV AT AN F =% AT BE VAL =TI BT 5 ERER A L.
TR IEE R HREHO 2L 32, 72 4 25 & afho v GG 2 IERIARE
R ZITV. B IC BT 2 SV RO ELZHO 2> & 35, dHHEMERO Y1 %253 2
OIEIECHL L o BB C 7 7L — v a VI OHER & i3 2120, @ CHHE
PN X BRI AT PAELE DRI EIT o T2o OV AR T & O ZRLH 72 JERE IR o BRfE
R A LI, L —PINTEM D mE t & I THR O FHNCLEEAR R TH 5,

42 EE - H{EHE
4-2-1 KRROFEMEHFZRRIC X 2 v —FHEEE{CEHH

I. RRDIFEMEHAFERRIC X 5 H A AMHER

KADIFIZHF BRI X 2 B R JEITREZ I L — PR DBE S - 7 VT v Z53FRIC
AR RIT L., RN REITEZ I —FORBEEA <7 b v (ERARZ b)) EEEKRIT
o TR ICRIAVIKEARASRZ PV ERFEORA—N—a VT 4 =2 —LKDFEYL, a=h 1T
Ivva VI bHEIN5[27,28], HONMMHET % EHICEHT 2, 25 I il s 5 Fhol A E R
WDV EEZ D, TDLE, PO vk (O RETERZED -0, 2 ERRICKES
2B LCER S,

E(z,t) = %EO exp{i(ky(t)z — wyt)} + c.c. 4.1

ko(t) = %n(t) (4.2)
ZJTIANCERBEL 72 T et L 72 & & . (4.1)DAIHEG X,
¢ =ko(t)L — wyt (4.3)

1 JERBRL D TE T LIRS & 72 0 OAIHHZ L ETH 5 20 5 BUNKE B 72 b OBUIMIAEZE L& % I
IRFJE B w (6 L EFRT 2 L.

d¢ , Oko(t) _ we On(t)

w(t) = T 5f = Wo~ ot W — L——=—= = wo + dw(t) (4.4
5w(ﬂ::—L%?agg) (4.5)

7272 Ly BT OREZ A E L v & ZICHLABIEEIC R 2 XS ICAT 25 27, Sw(t)3)H
BEZEAETH S, 2L, BEREBEEUTEITR ORI M OME X 120 U CEE T 5, Rk
ELDIEMELEE D L Eow(t) <0, FEfEE e & HICEIFTEI/NS SR b L Z26w(t) >0
5, TDXIITHANZABBEEDOJEITHR LT &, AV ZAHEEOHZZHRH T ¢ 28R % HD
RrAHZE A & S

H =R X BIEITEL  Cnger (3. 1 —F58n, & L —VIRENKE T 5729,
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Ngerr(t) = ng + 21 (¢) (4.6)

L — YR8 O RIA N — i T > T v L= L RE L, EITER ORI 2 S & |

2t2
I(t) = exp — =z “4.7)
p
OMNgerr (t) aI(t) 4t 2t2
T =N, 7 =N, g exp\— g (48)

INXY, AR —FEIFEOEEE < 0TIE, Sw(t) <0TH V., BRI TR 5, EREA~
7 Y NFIEDSHEICIERS7-0, Ly FY 7 EdEH, A AL —FEREDKBt > 0TI,
Sw(t) >0TH Y, BEHRFFIEEIL L35, ERARZ P VIZEDOHHICIAR 57280, 7Ar—v 7 b &
DE Do TDX DI A =B RITTEHPELA =7 P A% IES AL B R OWFICIRT 2 FH % Fio,
77 A= BRI X B TR ZE Ay 10sma s BRI 7 X~ Ep, & AMEFHEEp IR T 2 720,

p(t) p(t)
n = [1- ~1— 4.9
plasma De ch ( )
anplasma(t) — _Lap(t) (4.10)
Jat 2p, Ot

@GORXTCIIEBEBETEENER 7 7 A~vEEIC R THI/NE W EEEL, mllEEL 72, B
SN AL =PRI I, BHEF & A 4 v OIS I34AE Cx v, L —FEHECHEZEERIC X - T,
HHEHETEZIIEEMULET 2720, SV L —FEaEkiiE Icswt) >0THh 5, LizBoT, 77
R BT JEBBA =7 P VR IERF MO BRINT 2EH %2 R2, 37hbb, IEARZ Pz 7
—HEDHICT 7 T35,

PAEX Y. v —FENFFDO I A~ 7 P VLT KRRDIFIE A EBHRITIKE L, 2 d ol
TE NI ST 2 JERRIE IR O B ICEHBR T 2 £ ZE 2 b b, £ 2T, Rl v 2L —
EHBDOL =TI LT, NV PR T 4 2R HaEmEHCTHEERARZ A EHIE L 72,
BI VAL —HREE T 3 HEE U < PHAROS TH %, PHAROS DL —HFHER AT b L%
Fig. 4.1()C 3, EBHEMFL LT, VAT A F—0.95m] ISHi— L.~V A% 180 fs, 300 fs,
500 fs, 700 fs, 1ps. 2ps. 4ps. 15ps & L7z,

I XY FRXZR7 4NV A VX —BREEBHIE

Bandpass Filter, THORLABS #, FLH-1030-10) Z&#&E L., #E# L 7z L —F = A v ¥ -tz M
WTIZAALF—FHllZ To 7z, AWV P27 4 V20 RERRES Fig 4100)I0RT, £
72\ Fig. 3.1(c)ICFEEiv v + 7 v 7R3, BRI L v X o fEEEREE 70 mm, 150 mm Z W T,
IO DB NIC X 2 ELMEBET L7z, SY F X7 4 A2 D2 S, L —F 2 EREAS T
iz, BREATFML Yy X2 WCTL —F 2R L, RENRSEEL L,
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L PR EACEERAFROV—FERET v 7 7 4 VEIE

IHICFEL S EEE L2 BT 272010, 3 )dr (Ocean Optics 2, NIRQuest512) % i\ CikE
7u 77 ANVHEERIT - T 0 teRIEE X 2900 nm 25 1700 nm £ TR T 2 2 L 28H[RETH B,
DHEICIZHT 7 AN=FHCTAST 208, K7 74 N—TOIEME AR FRREZB =01, L
— DT PICIED o I ERIER T COMEZITI, L—F 22 AR TE /29, Fig 3.1(d)IC
RT X, L—¥ARE I N AHEEE 12 BICHEIL CHIEZ{T- 72, kb, BHTOL—HiL
IR0 BB L T B720, ThLONENERHRETHZ L ICHET S,

FLH1030-10 Transmission
1.0 -
104 ﬂ
B.A0y E
3 5
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g 04} E 404
- | =
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0.2t = 201
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(a) Wavelength spectrum of PHAROS. (b) Wavelength transmission property of BF.
Plano convex Lens Bandpass filter
Laser
) » Power detector
Spectrometer
Plano concave Lens BF .
Laser
Power detector
Spectrometer
O :Measurement point
(c) Experimental setup for laser detection. (d) Measurement points on the irradiation area.

Fig. 4.1 Schematic diagram of experiment to measure wavelength spectrum change.

422 KRROEREHERRZER L 72 L — FENREELT O BEE S %

KADBHEREZ A8 2 2 WE DI v 2 L —FHENRICIE, RADIERIEEFIRRIC X 28
FREZARAEL 5, L—FEEMmeHIICHH SN S CCD A A 77 &1k, SEEo#E v 2L
=PIz bR\, EIRMICERREO L —FIEERLZ O 2 5Hll3 2 Z L3 L v, EER
PN ANEE R YRR 2 3 2 113, HERICE OBy S 2L —v a VAR TH %,

KRADIEMIENF AR % E R L 72 IR 35 2 Toii L 72 BUBERTHRICH W 72 FEHR
ravs 4 vH—RREROEY TH 5,
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% _ iAE _%@y5+ 1 - @le +i2 ‘R [Tt —1)]
5= T e~ iy g o~ IE + i Ona | Ryexpl-T(e—)
1W(DKh
x sin[wp(t = D] [E()2dre — 5 @ “?@m ‘ﬂs—omg%)u+4mm;me (4.11)
s »C, B-HIEEYT, 5 IHIZ R B O FEANHEIZIERIE AR TH 5, =T

3 —EhR, FBPUIEHIE D < v R, RRIEHII KRR OERIC X 2 = A v F -k, %ﬁﬁ@%
HIE 7T X~ BEBIZ T T RA~T 7+ —h> v %R, R 27 4 v 7=
DEEFIEICIE, X AT Y v b XT v 77—V ik (SSFM: Split Step Fourier Method) 23F &

5101, @ 1D FET. 8 FERIELFRI R LK Y 2o 6, TERWICRD X 5 IcRHTE
%,

—=(D+L+N)E (412)
HRETDIXEWT, LIXBIEDEL NI EERICIG T 2, SNIEEL 2 LT,
E@) =&exp{(D+L+N)¢} (4.13)
WUNBEREdE 72 T HEA 72 & & DIRIZRDIEY TH 5,
EE+de)=Epexp{(D+L+N)(E+dd}=E@) exp{(D + L+ N)dé¢} (4.14)

ZofRERickEnC, HETRIEICHET 2 2 LT, KobilzitErsc et s, At
IZ. 2 XD Adams-Bashforth i % F\ > TIERRIEE % 5 J& L 7-9L9K Crank-Nicolson £ %8 H L. [l &
IR EN R 2 RIRFCER L, 08037 — ) 22 WmE2 R L2, 2o oftBFEL2 A
ICHEDIRT AT Y v b AT v FHRICE Y, KoEEIREIT) LTk 5,

I MfroBEFEFE: 27 v 27 =2y v (Crank-Nicolson) % 1T XD X 5 7 RS 2R
DEMEFIHE L TH %,

0A 9%A
415 BT, K, D 1 B H 2 AERE T, 22 D 2 B IHZ 2 ROHuLAED 2 HLY |

+1
AV A A =24+ AT
At Ax?

(4.16)

72720.j=01.2,,(M - 1D)DEFMEEE T2, @d16)X1Fj =1,2,--,(M —2)ICHBTHD LD, j =
0,(M —DICOWTIZ, BEREE A2 G52 20ERD 5, hOREE2E 2, XD X 5 icfiiigib 2 &

AT — AF = 2B(A},, — 24T + AT ,) (4.17)
= a2 4.18
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INEGRE LTINS, —) T, Bilt, D 1 B IEZ IR0, 2y D 2 BEMTIHZ 2 )
DHLEDTZI S &

]
At Ax?

AR —AF AR - 247t 4 AT
! L=qa ! I (4.19)

B7% gk 3 % &
A — AT = 2B(ATS] — 247 + AT (4.20)

T S I D, DS EEE FERIICBI LT 1 ROBEE, ERNICBI L Tk 2 RKEETH B,

7 vy =any vikid, Kl 103 1 RSB IE % 2 RO HLAET, 22 D 2 B IEZ 2 XD
FOESENZLDTH Y, Jﬁ*ﬁ DHFZER & HiT 2 TAEETH 5, B e L CTizBifiE4.17)
R & ffiE@4.19) RN E L v,

n+1 n n n n n+1 n+1 n+1
A A] _aA]_l_l_ZA] +Aj_1+aAj+1 _ZA] +Aj_1

J
ST Ax? Ax? (4:21)
B M CHiifgftd 5 &
APFT — AP = B(ATH — 247+ + A1) + B(AT,, — 247 + AT,) (4.22)
T, ATHIN#RD XD ICEET B L.
AJA} = AT,y — 247 + A, (4.23)
AT — AT = B(AJAT* + AJAT) (4.24)
Tolaj 2 T8 cRdid 4 % & |
- AN+1
-2 1 0 01 A0+1
1 -2 1 0 - ;|| AT
0o 1 -2 1 0 - ARt
ajar=| (4.25)
0 1 -2 1 o0 |l4ay
: 01 =2 1 [[anty
L0 e 0 1 =2 _Aﬁtll_
@20 E W Z L i 3 b
1 _
(1= BADAT* = (1 + BADAT} (4.26)

(426) N IFMADHELSTRATH Y | Kihlt, DIREAT 2> LAt AT 2RO BN D, THERE
BATHIL_, LyZHWTERT L,
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LA = L A} (4.27)

L_=1-84A (4.28)

L, =1+ pA] (4.29)

j=0,(M —1DicxIET 2 11TH. MITHDONZ FriconwTld, BREMICS U2 E% 5 2 5 S E
BB eaFRL, AT CTERRT S &,

[Co-  C1- C2,- vt Cm-z— CMm—2-  Cm-1-][A0H]
_ﬁ 1+ Zﬁ _ﬁ 0 0 A111+1
0 —B 1+28 - 0 - ;o |lan+
L_A]Tl“ = (4.30)
: v 0 =B 1428 —P o ||anty
0 w0 =B 1428 —p ||am
ldo-  dy- dy,- o dy-z— dy-z-  dy-1,-1lAYY
[Co+  C14 C24+ v vt CM-34+  CM-24+ Cm-1+|[ AG
B 1-28 B 0 - 0o || a7
0 g 1-28 B 0 - ; An
LAY = (4.31)
; 0 B 1-28 B I |
0 0 p 1-28 B |4k,
-d0,+ d1,+ d2,+ dM—3,+ dM—2,+ dM—1,+- 11}'1—1-

Bl 2 1E, %Il BV TARL = AT, xy  ICBWVTAYL =0 WOBEREN RSO, g =1, ¢o_ =
Ldy-1+ =18 L. ZDMiDc,d%x¥ v & FNITHICEREF 2w T Lo citEcz 2, 20K
B WT, LW THILT 2 i 22 ST, HALADLTIL. =1TH 5729,

APt = LT AT (4.32)

ZD X, B, DIREAT R E UL, ROWFH by, DIREATI 2K D 55, WIHISAIFAD & 5T
REEBE 2 onnE, ZDROEEZFRTE S, Ubhnir 7 v s =ary viEostETiETS
%,

MGy 2T 4 v —TiIER@IDRicEs T, BFEDFRITZ F v 7 =ary vikz v
T 9. BHHD A ZIY L, MEFEERRT 2L, MTFTO XS IcRITE 3,

0E i az+1a c 433
0t 2ko\0r2 ror (4.33)
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72720, r=0lcB0nTld, Rokric5ze6ns,

0 _ ¢ 62+a2 £ 4.34
08 2ko\0r2 = or2 (4:34)

CNEFTANMERERICEWT, x=y=rt5&LEMTH 2, 43)RXITBWT, rO W IH
MO LESERY, r=jArTH B EEHAVD L, BRETIE.

gt — gr _ i Ef— 28+ &1 N igﬁ*l - &4 (4.35)
AE 2k, Ar? jAr  2Ar '
@ADKEFRIC, XD X HICHERT 5 L
n+1 n ; 1 n n 1 n
J J
_ 14 4.37
" 4ky Ar? (4.37)
@23)RD Lo, {THINERD LI ICERT S &,
AJEN = (1+i)£-” —2&EM + (1—i> EN (4.38)
J 2j j+1 J 2j j-1 )
EM — €l = 2i84] € (4.39)
FiAI8) & ATFIR R c Rl T 2 &
) 170 O 0 - —8(1)1+1_
Uuq -2 V1 0 EIH-l
0 uz _2 UZ 0 R 8;1-'_1
AJE" = (4.40)
0 uy_s -2 wvy_3 0 [|EntS
: 0 Uy— —2 vy ||ENTS
o .. 0 uy—; —2 llenti]
=1 ! 441
=1+ ! 4.42
R FORIC X U | wy, v 3 ICiREE T B8 & 75 5, Tk FRICIERIL <
+1 — 9 +1
ENTT =& =2i84] €} (4.43)

@3N L @a)yRof%EHY 2 CHl-7227 v =ary vikix
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EMT — & = i6(4JEN + AJEMTT) (4.44)

444X E KL & LT 5 &

(1 —i6AEMT = (1 + i6A)E] (4.45)

INZRERITHILL, LW TET &,

L_EMt =L,& (4.46)
L_=1-i84] (4.47)
L, =1+i84] (4.48)

j=0,(M-1DicIET 3 11TH. MITHDO X2 P AiconTld, BREMICS U -iE 5 2 5 45
BHbLrHEEL, TIEXTRRT S L,

[ Co,— Cq,— Ca— Cpm-3,— Cym-2,— CM-1,— |
—iduy; 1+4+2i6 —idv, 0 e 0
L_= (4.49)
N O —i5uM_3 1 + 2l6 —i6UM_3 0
0 R 0 _i5uM_2 1 + 215 _ide—Z
| do— dq- dy e o dpy—3- dy—2 - dy-1,- |
[ Co,+ C1,+ C2,+ - - CM-3+ CMmM-2+ CM-1+]
i5u1 1 - 218 i6v1 0 b O
0 idu, 1—-2i6 iév, O :
L, = (4.50)
: 0 idupy_z 1—2i6 idvy_3 0
0 b 0 i6uM_2 1 - 216 i6vM_2
-d0,+ d1,+ d2,+ dM—3,+ dM—2,+ dM—1,+-

L —PEBGEHEICB T 25RELE . r=0. r=MM-DAriiBVTHE 2615, r=(M - 1DAro
BRGFE. BETmME IR LY, L=V ELEYr LTI X, dy- =1, ZOfho
diZ€nm &L, FICER = 03 Y 37D, r=0DEREMFIZL —FELOHEE AL TH B,
KA ICE™, ZABEL, r=0TCOHFLENEEDS &,

dEN  EN — &N
0 L=0 (4.51)
Jar 24r

r =07z TR ARERIZ@39ThY, chik s v r=ary vikckidd s L,
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, gr-&g i , e s Ely— 28 + €1, (4.52)
A8 2k, Ar? Ar? '
@37 ZH T, RH T LB 2 &
—2i8ETH + (1 + 4i8)EN™ — 208" = 2i8E]; + (1 — 4i8)EN + 2i8E], (4.53)
TN = 0D B 72 T IR TH D |
—208EM + (1 + 4i8)EPTT — 2i8EMT = 2i8ET + (1 — 4i8)EN + 2i8E™, (4.54)

ZOHBERDTRToOnEHWT, BEREM@SHR 2281 X v, YISO v — 33l R e
BB, n=0ICBTHERFAFZH T, BANRMECLY ., nicbBw» CREREF 3L
E.on+LTHFVTHEREHSMmZI NIV, nicB W TERLt 2T %,

EM =&n (4.55)
Ihx@54)RRAT 2 L,
=206 + (1 + 4i8)EFTY — 2i6EMY = 4i5ET + (1 — 4i6)ER (4.56)
(4.56)R 25, epft =¢erfle hafEFEXTHNIT LV, ZD2DDEMIL.
(1 + 4i6)ETHY = 4iSEMT + 4i6ET + (1 — 4i6)EY (4.57)
ThHhb, TNEWTZT LI ICE4)RDREE G2 NIT L\, (446)XDr = 0i1c BT 5 HERIL,
Co—E ey EP ey BT = o EF e L ET o+ ey—14ERq (4.58)
& & YA DIRE ZXw & L,
Co-EFt oy _ETT =  EF + 1 4 ET (4.59)
INRESHRIC—HTNIT I 7zo,

Co = 1+4i8, ¢ =—4i§ (4.60)

Cow = 1—4i6, ¢, =4ib (4.61)

PLEX Y SR zii7z L72ATHIL_. L 3BT DY TH 5,
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14+ 4i6 —4ié 0 0
—idu; 1428 —ibv, 0 :
0 —idu, 1+4+2i6 -—idv, O
L = ' (4.62)
0 —iduy_z 1426 —idvy_3 0
. 0 _i8uM_2 1 + 2l8 _i(SUM_Z
1 —4i6 48 0 0
i5u1 1 - 2’.6 i8v1 0 b :
0 iSu, 1-2i8 ibv, O
L, = (4.63)
0 ibuy_s 1—2i6 i6vy_s 0
H 0 i5uM_2 1 - 216 i5‘UM_2

(@46)RiIcEH T, 4.32)R & FIBRICL_ D THIL 2 mi i 22 S B i,
Et =1L &N (4.64)
L— Vo 2525 it kY, I 2EEL EkEtRE2T) LA TE B,

II. IERIEEZZE L -BITOBYEEFEFE 1 2 XD Adams-Bashforth %% FH 72558 Crank-
Nicolson {E IR D & 9 IEMIBIEZ & R AR oBEFE AL Td 5,

e i <62

19
%= \at e >£+N(£) (4.65)

JERIPIRIZE B T 2 HICIKE T 523, REFHECTIIRO@EY TH 5,
ko o ' -
N(E) = ln—nz(l —a)lE+ ln—nzaf Ry exp[—T'(t — 7)] sin[wg(t — )] |E(T)|*dTE
0 0 —00
_EW(I)Kth(pnt - p) IB( 0)

> 7 E— (1 +iwgt)pE (4.66)

2 XD Adams-Bashforth 53, RERZ & 1 DHTORZIC BT 2 IERIBIEEZH WS 2T, 77V
gZmany ko ROEBE B R DT ICIERIEHEOKE B 2T 2 L BT B,

3 1
EM -l =is(AJEM + 41EMT) + ( N + 5N 1) (4.67)

NI = N(&")4¢ (4.68)

[T Il 2 CIERRIZIE & 2L IO K 5 56, FHE a X FMIZIERICE L R b 729, Bk
TS, 2070, fFFEAAZMP L FRETILERD S, BPTHICOWTEZZ F v 7 =al
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VURERIL XD KA TE 5729,
n+1 n 3 n 1 n—-1
L&Y = L,E] +<EM +5N; ) (4.69)
4.64)R & [FIERIC L. O THI L2 2 g i 2l 2> & B34

3 1
5F4=E?P¢T+§Nﬁ+§WPq (4.70)

T XY, BT & IR R e B L ARG 2T S L8 TE B,
I FEOBAEGIEAE  7fUE 7 — ) =L WEHWCEHE T 2 2 83 TE 2, (41X 5778
HEHY T &,

o kiPo%e -
98 = ' 92 (4.71)

F2EO7 ) IEABOERZHCCHAEZ 7 — ) 28T 2 &

08 kP w?
= &

%= (4.72)
NI Z KD B 2 LR TE,
) 2
é(f)==éaexp(ik°2“ €> (4.73)
WUNEEBEAE S T HEA 72 L & D IT,
(2)w2 k(Z)wz
é(f4—d€)==ésexp{i ° (S-Fdf)}==9(€)exp<i = df) (4.74)

L7hioC. (Bl ﬁiﬂﬁﬁﬁﬁﬁf‘wp< )%ﬁb%% W7 — Y T
R B C & TR B LLL K b B S, SR 5 o b ek
Bo 727 L. I B BRI S B A0 5 B, ZhbIc oL FICHIAT 3,

IV. IR OBAEGE IS © IR IL@.66) XTI g X 51T, KA —2hE,
T h =GR, KADOEH., 79 X=TF 7+ —hL v I PbR0 Lo, BT 388 % &
DI, IERIEEMEIRE L L O BEDR D 5, RfICikFET 2HIZ, 7~y =%, B1
BETHY, Zho 0RYHEFIRITEIC O WTRT,

7= v —shRICBET 2 IEIBPIEIZRDE Y TH 5,

Nraman(E) = i%nzaQ(t)E (4.75)
0

t
Q(t) = j Ry exp[—T(t — 1)] sin[wg(t — T)] |E()|%dT (4.76)

—AMBRAEERZR I TSI LIC kY, FHEEER{LTE %,
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t
Q) = f Ro exp[—I'(¢ — 1)] explion(t — )] |€(0)|dr 4.77)

=770, Qi) DETLHQ)TH 5, tITHKIFE L7 WIHE ERMS DA TH L.
t
Q;(t) = Ryexp[(—T + ia)R)t]f exp[(I' —iwg)T] |E(T)|%dT (4.78)
EDORFICE VT O Y L2 b, HUNRFEACRGE I 1T,
t+At
Q;(t + At) = Ryexp[(—T + iwg)(t + At)] f exp[(I' —iwg)7] |E(D)|?dT (4.79)

Wl % 55 ISR HiPH &2 0 E3% &
Qi(t + At) = Ryexp[(—T + iwg)t] exp[(—T + iwg)At]

¢ t+At
x U exp[(I' —iwg)7] |E(T)|%dT + f exp[(I' — iwg)T] |5(‘L’)|2d’l'} (4.80)
—oo t

CREQOF A TEE S B 6
Qi(t + 4t) = exp[(—T + iwg)At] Qi(t)
t+At

+Ry exp[(—T + iwg)(t + At)] j exp[(I' — iwg)T] |E(T)|%dT (4.81)
t

5 IO ICH RS (trapezoidal evaluation) % @] L |

t+At
f exp[(I' — iwg)T] |E()2d ~ {(t + A¢) — £}
t
x {exp[(I' — iwg)(t + A)] |E(t + A0)|? + exp[(I" — iwg)t] |E(D)]?} x% (4.82)

Inz@8)RITRAT B L, REDHTBHINS T LICHERL T,

2
Qi DPWIHLFIZ Xt uTH B0, L—Fiaite Hbe Q) DRREZBIEHEcx 5, %
Too TRVHA—NRIIER T L ICEH R 22 F2O, rzOEMETRIET 2 0ERD 5,

Q;(t + At) = exp[(—T + iwg)At] Q;(t) + {IE(t + A0)|? + exp[(—T + iwg)At] |E(D)|?} (4.83)

BT HEOBSG T 2 IFIPHIZROMY TH 5,

lW(I)Kth(pnt —p) <
2 1

Nionize & =- (4.84)

o15(wg) .
Nplasma = - IBZ ° (1 +iwet)pE (4.85)

ELLUETEEPEINSGETTH L0, BFEEpORHAEELZRONITI VW, F 2 TR
L7z— M aErEEoL — P RSBV T, BiiarzEHET 2 L,
dp op(wy)

i WD (p,, —p) + 7

115



Tl e BRI 5 2 &ic X b,

p(t + 4t) = p(t) + AW (D{p,, — p(t)} + At ——= 915(wo) p(O)I (4.87)

p

KREFICHBWTIE, BRI TLERDTFOEINLZNICOWTINEBIFIX L v, o, FRER%
BARERF TR T 2856, EFREILOETFHENIRD LS IcKIND,

dp(e)
dt

= D U (P(E) + vile + Upple + U] + 86 = 1) [ v (€Dp(€)dE’ + SEOW ()P (4.58)
0

m

IR cEEL L 22K iIZ XD X S5 ik 5,

p(e, t+ At) = p(e, t) + Atz[—vm(e)p(e, t) + v, (e + Uy)p(e + Uy, t)]

m

+A4t6(e — el)f v (€Np (€', t)de" + AtS(e)W (1) By, (t) (4.89)
0
FICEETN DN, de THEHIL I N2 AL F —eTRTIKOVCEETRIE X W, /2, &8
TZANF —eDBEMIFRDOATRING,

de _ 1e%E? v,

dt 2 m vZ,+ w?

(4.90)

Zn i CHERUE T % &

2E2

va
e(t +At) = e(t) + At S E— 4.91
(440 = €O + At 5= = (4:91)

TNICEY, ZAAVF—e@)IFT7ICe(t + A)D AN F —%FFD, BT T AL F —ITde THERIL
T5720, e(t+At)xele+ AeD T ANF —ZFFOBEBFICHIET %, EFZALF —DHIECIT
Fig. 42 KR T L 9 AR O A% F 2. T AL F—IE0e M iE CHIZICHTT 2 &,

Ae —de,
pEH(en) = (St (e (4.92)
P+ (engr) = de’: PR (en) (4.93)

DB ETDe, TITOIN S 728

dey, Ae — de,
PRI (en) = o (Ehy) + (e

) o+ (en) (4.94)

W DEHEZITI 720 e(t +At) —e(t) =de* < Ae& 725 X 5 1T+ & I AAt % 3R E L
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Fig. 4.2 Calculation of the temporal advance of the electron energy density distribution.
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PLEX Y [ErIE, 7080H. IFRIPHOBUE R 2179 2 L A TE, L -V O IEIB ket A %
T2 LB TE L Fig 43 ICGHE 7 —F v — b 2R T, TNO OEJEGIE 7 v 77 L 13 MATLAB
<a— FbL 7,
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Save and display data

v
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Propagation end?
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Fig. 4.3 Flowchart of nonlinear propagation simulation program on solving NLSE by the split-step method.

REIC, RFTRCTH WA % Tabled.1 1, FHRHIPHCFHHEAN A 7% & OFHRSEMA% Table4.2 I
T . JERIEERh R O MR R 13, PR 800 nm I B W TR e S T & 7z, — 7T, A&
DFIBMRY . K 1028 nm I 1F 2 YT 2 CHkIZBR O L Tw 3, Rk H —shEfico
Wk, 800 nm & 1250 nm @ 71 —f5EASRAERIFNTH 5 T L 2> H[29]. K 800 nm I FB T B A
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— B LT v — BB R AL 72[16,30], 7z, PPT 7 VIC X 2 EHEREIR Tk, KEIC
K FICEHE LA T 2 2 L FEETH 228, HE 800 nm BV TId, MES T LERHT
DENZENICHMGER %525 2 & CHRER R LFIREREZR C L BRI LT 5[31],
B 1028 nm 13 2 EEER O EERFE R IR I v iz R 800 nm ICX T 2 HAMKE
fif 2 VT, R 1028 nm OEEER 2R L 72, B OHZEE TIico 2 2 P HBRHEIE, v —F
T4 TAVT—=vavaB Tk iifbng 350fs & Lz, 2OMEIFEA fs 2 L afic A&
THOREMRBRICIREAFEL TSI W L ZHERL 72,

L —PEMEIRE T, S 2RO ESALE S S ET S mm (7B CHG L 72, B Smm TR
— VIR T IE . BB EIRGEE CH 2 LARE L 72, PRIV TR, Bl S mm f7E T
DY — LD 3FUEERMER L, BRI RNICIZ RSB LTIV RIED 3 5205 6 fFO#IH & L
Too BalBA AT, MIPEIHRZIELCFHETZ 2 X5 ICH3IC/NE KBE L 72, BlETHE LA IXIE
BPIEIC X 22t % Fig. 43 TRAND LM% T L 5 I L, IFEHEHOFEINS WS
ICIERA 8 BEoFHEAAZRAL, fHHEa X P2z, Tho & coBERIEIRY v 7
CPU (Corei9-11900K, Intel Corp.) Z i L CTfTh i, #4120 Fffl &2 3 2, MredEsl Rz meL
72354, R 10 BERILAN ISR T3 5,

Table 4.1 The parameter used in this calculation.

Parameter Value

ng: linear refraction index 1.000283

k(()z): group velocity dispersion 0.2 fs?/cm [32]
n,: nonlinear index coefficient 2.9x10" cm?/W [30]
a: factor for the proportion of Kerr and Raman-Kerr effects 0.5

I'"!: molecular response time 70 fs [16]

wpg: molecular rotational frequency 16 THz [16]

T.: electron collision time 350 fs [16]

0p: cross section for inverse Bremsstrahlung 9.0x102° cm?

Table 4.2 Computational dimensions for each pulse width in the numerical simulations.

Pulse width T T 13 dr dt dg
180 fs [0, 420] pm [-1.08, 1.08] ps [-5, 3] mm 0.7 pm 2.11s 0.6 pm
1 ps [0, 385] pm [-6, 6] ps [-5, 4] mm 0.7 pm 591s 1.8 pm
4 ps [0,412.5] pm [-12,12] ps [-5, 4] mm 1.5 pm 59f1s 1.8 pm
4-3 KEBRHER

4-3-1 RNV FRRT 4 AZEROVE AT —-FEEER
LY ZA~DABRIO SV AT AL F =1 0.95m) TH— L7z, BRIEFEML v XeF L v X2 iE
W5 LT, NAVAIANT =R EEBELT 5, NV F AR T 4 VR FERED SV AT AV
F—HIERER % Fig 4.4 1Cnd, IR 100mm OML v X2 X 3 KRENREETH, BT AL
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F—13H 0.6 m) IKIRT 25, SV REHRFCEFAET, TALF—JHREACLRE BHAG RS
%, RaPcoL —FENEMFICEWC, EAIERE 150mm 38X 70mm O L v X W84,
SN REHBFHCFFIR BRI AL X —DBEEPEETH L, ChiIKRAFToERITI->T, L
—PIREZCBE L2 L 2mBd 5, 72, OB ELFER 70 mm D&M Tlk, 202 LE
DRHCRE W LB I N, BHOMI DIERE AN RO E LD 5 Z L ARRIND, MU
FXEY A RERFEL L —PFRENEVEETIE, RADIEELARROZE 2 T X &
WZ EDBTRB I NI,

=]
>

- & <

A Y

fe LA wn [
. .

Transmitted energy (mJ)

=B~ concave 100/ |
025 | —A—convex f150]

=©—convex f70

107! 10° 10!
Pulse width (ps)
Fig. 4.4 Pulse duration dependence of transmitted energy by bandpass filter.
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P L v X150 LS. CFitL v X 170 B E T e 7 7 A MIERE R Z . AR RN
A1 180 fs, 500 fs, 1 ps. 4 ps S&fFIC BT, Fig. 4.5 10T, R THUOBEER & BEPOZR L 72,
BRI OEFHAGI B IR Cld iz, EERPLIESEETH 5,

SNV G 180 fs DEN LM TIZ, v —adubicry o7 b, ANEHEHCHEE R 7L —v 7 A
BEIng, 2oy 7 FRIZ 150 &R 10nm DLy Fo 7 e 25m D7 —2 7 T
HY, 10 XTI 10mm DLy K7 b #50nm D7V —2 7 b Thot, BN D
1 EHEELZAEPRE L, 43-1 OFEBRT AN F—ZLEZHHTE 5, L R0E 500 fs. 1ps D 150
SHEE 0TI, Ly FY 7 FPIRBIETE RV, TA—2 7 PO BFERITRNICIEDE S
EDEEI NG, SNV 4ps FTED 150 FETIIRE AZBIEHEINT, I0&HTTL—
7 b LR RS AICeCL D 2 RETH L, HREY 7 MIZLALELTHARVWED, 4-3-
| TRBBI ANV —EBEBEL AP o EZONSE, LEB>T, Ly F¥7 MRS RIE
180 fs DRSO AR THEL, EHROBERZNMIIFIC TNV - 7V THDLLEF R D, A=)
Rixvy FAR, ZA—FROEAAICHEEARZ P EIEF 201/ LT, KAoEHick 37
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TRART 74— ARETN=TTHDBIPERART YNV R]IKT 270, S — S5 GRS
BOTEOTLRFG LIRS R EEZ NS, KERSFIICE T 5 A 72 IR BRIT
RKRDEMTH 2 Z BRI INSG,
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0 1 2 3 4 5 6 T 8 9 1011 0 1 2 3 4 5 & 7 8 9 1011 0 1 2 3 4 5 & 7T 8B 9 1011
Measurement number in the radial direction Measurement number in the radial direction Measurement number in the radial direction
(a) Concave f100 defocusing. (b) Convex f150 focusing. (c) Convex {70 focusing.
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(d) Concave 100 defocusing. (e) Convex f150 focusing. (f) Convex f70 focusing.
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Measurement number in the radial direction Measurement number in the radial direction Measurement number in the radial direction
(g) Concave 100 defocusing. (h) Convex f150 focusing. (i) Convex f70 focusing.
MI. — IMI.
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0 1 2 3 4 5 6 T 8% 9 1011 0 1 2 3 4 5 & 7T 8 9 1011 0 1 2 3 4 5 6 T 8 9 10 11
Measurement number in the radial direction Measurement number in the radial direction Measurement number in the radial direction

(j) Concave 100 defocusing. (k) Convex f150 focusing. (1) Convex 70 focusing.
Fig. 4.5 Laser wavelength spectrum measurement under various conditions. (a)-(c) For a pulse width of
180 fs. (d)-(f) For a pulse width of 500 fs. (g)-(i) For a pulse width of 1 ps. (j)-(I) For a pulse width of 4 ps.
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U1 mm AZE TSRS AR ISR T 1 & ZER TR 0w A A UL BRAE TR L — A 5
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BB L HE L T, ¥ — 27 L — ¥R I3 10%ICI8 LT v 3,

Fig. 4.6(c),(d) XXV g 1 ps 1T 31T 2 HIPESN I & IR O L —FmE N mA b ch 5,
NV RBHRFL 725 2 LT BRTIAICE VLV ZADBEET %, Fig. 4.6(c) I HHEEN OB AT, I
MJgm e MG EDICHEICTYV ST VA THE, TOLEDODY -7 L —FimER
2410 W/em?> TH %, A REHEL K2 T, BHENAY -2 L —FiBELKTIT 5,
Fig. 4.6(d)DIEFIZENFE T, B 1mm CREFHEELRZLIR SNV, L2LAaRS, H
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SOV ANE 180 fs £ 0 b L —HiEE DK T EIG I/ X W,

Fig. 4.6(e),(D XSV A1 4 ps 1T BT 2 FRIZEICI: L IFMRIZERER O L — 2L Th 5,
SOV R 4 ps SePE TR, BRIBEEE L IR R ERFICBEE e 2 IE R b e v, BB ER O v — 2 L
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(a) In a linear propagation regime for a pulse width of 180 fs.
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Distance from the focal point in a linear propagation regime (mm)

(b) In a nonlinear propagation regime for a pulse width of 180 fs.

Fig. 4.6 Intensity distribution at laser focus under various conditions

122



Radius (pm)

Radius (um)

Laser intensity at focusing (W/cmz)

)
)

-1 0 1

N
-2
Distance from the focal point in a linear propagation regime (mm)

(c) In a linear propagation regime for a pulse width of 1 ps.
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Distance from the focal point in a linear propagation regime (mm)
(d) In a nonlinear propagation regime for a pulse width of 1 ps.

Fig. 4.6 Continued.
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(e) In a linear propagation regime for a pulse width of 4 ps.
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(f) In a nonlinear propagation regime for a pulse width of 4 ps.

Fig. 4.6 Continued.
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(a) Linear focusing. (b) For a pulse width of 180 fs.
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(c) For a pulse width of 1 ps. (d) For a pulse width of 4 ps.

Fig. 4.7 Fluence distribution (log scale) at focusing for each condition.
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Fig. 4.8 Comparison of experimental and computed results for transitions in irradiation and ablation areas

for each condition.
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Fig. 4.9 Laser intensity distribution in the frequency domain behind the focal point.
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downstream for a pulse width of 180 fs.
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Fig. 4.15 Energy efficiency used for ablation for each pulse width.
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Fig. 4.16 Pulse width dependence of process parameters affecting the peening process.
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52 EEBE. FHEAE

5-2-1 HEEAR

A Tld, Mi7ArI=v LTI =y LS A2024-T351 Zidbih & LTV, v—=Vv
ZICH T2 A2024-T351 DAL AAHRK % Table 5.1 1, BERIMEE % Table 5.2 IC7R 97, A2024-T351 &
BR 13 138 10mm O ATH 5, L—FIREORTUE L LT, M/KIFERK#2000 12 X 2 &R,
K1 um O XA v v FRTF 2RO 7HELR1T o 72,

Table 5.1 Chemical compositions (wt.%) of the 2024-T351 aluminum alloy.
Si Fe Cu Mn Mg Cr Zn Ti Al

0.0780 0.0970 4.5790 0.5340 1.5130 0.0010 0.0330 0.0237 Bal.

Table 5.2 Mechanical properties of A2024-T351.
0.2% proof stress (MPa) Tensile strength (MPa) Elongation (%)

321 464 19.2

5-2-2 L —¥FREESE. L —FMIEHF

ARECTHW @R SV AL —FHGE X, Spectra physics, Inc # D Solstice Ace TH 5, H.LiKE (T
800 nm, ¥ — A% (L — ViR 1 /e? & 72 5 H4E) 13 5.0~5.5 mm, IR A SV AT AL —1F 6.4ml,
BNV AN LA ANE TR 100 fs TH 2, IR DR LJEREUL 1 kHz TH 5, L — F RS
(350 RE % AT 100 fs ISHi— L, SV AZAALF—% 0.1m] 25 5.0m] ¥ TELE 4,
NN RAIFNF—REEHRICEH T 5, L — SR BREERE 250 mm O BREFM L v X%

253.67mm TH %, WKW EWESERHOSEERRIZ, R —VEEORE e — 2o Tlx, #iE
MEAEEL v XERRRICERIAINE S E L 2720 TH 5 (5 6 M), £/, 6 3 HL FAREORH
O CEEBEAITS 720 TH 3, Fig. 5.1@)IRT X o, IEENNE 22 X5 FhL v X ok
ICL—F % AH L, XY HEIRA 7 — ¥ RICRE L 2l I RSP c L — 2 SRE L 72,
BRIV AL —FT 7L —v a VITX o TBRE N5 SR IZ, Fig. S.10)ICRT Lo, 77 L
— v a VELIREDL O L0, B ICIIREFEERD BT I L —va v T ik, T 7
L—va VIl Z ARy FME VT 7L — e VR IR L ER T 5, = v T
Fig. 5.1(c)ICR" 9 & 9 i, il 7e L — IR & TRl R &R OB SV 2 L —F 2 HE RS
5270 RATHD, L —FIRENEZFE T 2 72010, ERNLERR TR mIcxA T —
BB X, EEAICT L —2 s YINT 21T o 72, s L — FHREEE IRBRESNE L, T
TL—vavErmERKERMUEL Lk, T, md L —FBENLmn T v RGNS
FLWEEZOLNTWEEOTH2, 77— a VHIREICHRT 20 2o 25 v FIEEE% E
5ZLiCky, BN HED Y ORMEEER ST AL -V 2 ERT S,

Coverage(%) = mD?/4d? x 100 (5.1)

ZZT. DRV VY I A ay FMcBFET7 7L —v s YEum). didoSr RO 27 v 7R (um) T
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Hb, T7L— a VERIZNFEMEERICXVRET 2, KEEBRTIZ. 7L —V% 700%I1CHE
— L. DR OEFMFICHET 2 VAR O R T v THEd %2 RE L7, #0R L EREEUT 125 Hz
LT —= v NI 2{T> 72,

Spot area
Laser Le@ XYZ stage (strong ablation area)
Metal
a0 |
(2 —
| X Irradiation area
(weak ablation area) \

(c) Scan irradiation
(a) Irradiation method of ultrashort pulse laser. (b) Laser irradiation mark. method of the ultrashort

pulse lasers.

Fig. 5.1 Schematic illustrations of the experimental setup of dry laser peening.
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— P —= v FHORER I LT, cosa BT X BEBIGTTHIE 21T > 720 BREISITHIE I3 X #7
FREICTEE (AR Ty 78 u-X360s) % V72, REBRTI, W 22897 ATH B Cr HERD
Ko #t % GURERTHNC O L L 25 degree TAS L FATICHE 3 2 Bl 2 G111 & L CHIE 217 - 72,
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5-2-6 FEREARIRETE &
KADIERIE N P IR % E B L 7= FERASIR TR L5 2 ZECRIA L 72, BUESHREICH W 72 FERR
Brav T4 v h—AREAIROEY TH 5,

; (2) 52
o0& i ko 0°E kg 1W(DKhwo(pne — p) o15(wo) ;
a—g = m 1 lTF + ln—onz E E i & ) (1 + "(DOTC)pg (52)
iz s, HIEE R, B TIHIREL B O HNHIIERIOL IR T H 5, BT

XA —FhR, FHWIEIZ 7 < v =3, FAREIRKRKAOERIC X 3 = A v F -85k, %/\IE@E'%
WIZ 779 X=~DRIN, EEIZ T IAX=T 7+ —ho v %2R, 4 TmBLEHRY, S R0EIT
100 fs £\ 7=0, T<=vh—%RIFEEL 72,
BrEEO L — FIEXERD X5 ICEHRL 72,
dp

i w)(p,, —p) (5.3)

BHERIZ PPT ET A Z VTR L 72, 55 4 EORR X 0 | fZeEHEiL v 208 100 fs TIZ1431C
INEWEEZOLNE O, BHL, BiED FERICERL 72,

KRetECTH W7 YEfE% Table 5.3 1T, FHRHEIHCERL A 7 & DEMRSAM % Table 5.4 ICRT,
RN O VB 70 B 1 L JE R 800 nm I B W CA K g X T & 272 h —F58% PPT
ETNMERLAMONEZ V2, BrOEEE 22 BRI, v —YF 74 72XV T
—va v T ifbd 350fs & L7z, 2Ot fs 25y aicBH) & ¢ TbE/BR
I KEARBELZRITE W & 2ERAL 72,

L —F Gt REIE. DTSRG THEML 72, NV AZAAF =23 1.0m) LT OHAE, ~Sv AL
DERME LY B 10mm OED S L. SV AZAALF =2 3.0m), 5.0m] o6&, Lk
15mm fZED GBI L7z, SN0 ORMRBIGBIIE £ Tld, L —PEER 0K < BB G IaEK
TOENDARETH 5 & LT, BEFTMICIEIFIEFBME O v — L5%0 3 5L L2 iR L, R
FANCIE RIS E BTV RIRD 6 5L L7z, &R A AL, S EREZIEL CEHRTE 5 X5

IS NE CRRIE L oo ABWRETE RN A ZIERIBIHIC X 225023 Fig. 4.3 %7z 37X 5 ICEHAT L.
IERREIHDFZE DN T W EICITRK 24 FOBEL2 AL, R X 227, 26D
FAECOBIEFTE X v 2 v CPU (Corei9-11900K, Intel Corp.) TIThH AL, #J 16 W], 24 HEfE % 32
35,

Table 5.3 The parameter used in this calculation.

Parameter Value

ny: linear refraction index 1.000283

k(()z): group velocity dispersion 0.2 fs?/cm [9]
n,: nonlinear index coefficient 2.9x10" cm*W [10]
T.: electron collision time 350 fs [11]

0y5: cross section for inverse Bremsstrahlung 5.5x10% cm?
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Table 5.4 Computational dimensions for each pulse energy in the numerical simulations.

Pulse energy r T g dr dt dg

0.1mJ

0.5m] [0, 600] um [-10, 5] mm

1.0 mJ [-600, 600] fs 0.75 pm 0.25 fs 75 nm
3.0mJ

5.0mJ

[0, 750] um [-15, 5] mm

5-3 EBRRR
5-3-1 SEAEEEMEEIC X 3 IEHRBIEER

FIDIT, 2N AT ANF—0.1ml, 0.5ml, 1.0mJ, 3.0mJ, 5.0m] DEFMFICE TS5, X2 HEN
METOMT VI =7 A~DBEHROBIEAE R % Fig. 5.2(a)-(e) Il /" d, HEAEIX 0.1 mJ THdE
KT BHEE Lz, $72. 2 NENOEEHNREE D% Table 5.5 ISR, JEABEMEBEIC X 2 IHSHE
DHE R & L L B IcE O T 25 e LTHIE L7z, SARIAAF —RREREMIT L,
ERECORMREREPREZLL. T 7L —va VEIBIZ/NS W, FIA L —F ¥ —= v 7icBnT,
KEBINLYRIENTH 5720, 2NV ZATF X — AR E 5o ClE S A E T oM T I
Uchd, Lizho T, ERMEBEICIRES T L CHEIRO KR E I3 5/h e 2 B2 RE L 72,

(a) 0.1 mJ. (b) 0.5 mJ.

£

(d) 3.0 mJ. (e) 5.0 mJ.

Fig. 5.2 Optical microscope images of irradiation marks at the focal position for each pulse energy.
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Table 5.5 Measurement of irradiation area radius at the focal position.

Pulse energy Radius of irradiation marks (pum)
0.1 mJ 24
0.5m] 87
1.0 mJ 158
3.0mJ 284
5.0m] 321

RIT, 2NV AT ANLF—0.1ml, 0.5m], 1.0mJ, 3.0m], 5.0mJ] DELEMLFICE T, Rhe x5
BHE 07 SR BIERE R % Fig. 5.3 1T, 7z, /NREHEECERE % Table 5.6 1IR3, »¥L A
IALF—=PRELSRZICON, EHMELY D ERAICR/NDIBEHESH LN S T &2 0h o T,
RANDHEIREIIRELS RV PR TR ERDZEBHLLTH 5, SV AT A LF—0.5m],
1.0mJ] OFEETIEIIBKRIETZ 7 v FTH Y SR IER 2 BUNSEI S EE L e v, — 77, 2SR
IAAF—233.0m) ® 5.0m) DEMETIZ. 7 7L — v a VHEBOIMANC 59 W IBEFEE 3L 25 - T
BY, T7L—=vavDIpxbF—3EKMENZ ERRBEINS,

(d) 3.0 mJ. (e) 5.0 mJ.

Fig. 5.3 Optical microscope images of minimum irradiation marks for each pulse energy.
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Table 5.5 Measurement of minimum irradiation area radius.

Pulse energy Radius of irradiation marks (pum)
0.1 mJ 24
0.5mJ 53
1.0mJ 74
3.0mJ 132
5.0mJ 200

RKAHFTOANNVNAZANF =T & OWGHRPEROMERE % Fig. 5.4 1ORT, SV AZALF —DH
M, EBRME L D D ERlco L —FREPHRTE 2, SV RIED 100fs TH D720, L
—VEEI T ICE . RADIERIEN A RROMELZZ T, L—FPRREUTILEZOND,

—FREE BEHIEHASETCHE e E2bNDE, AR AALF—05m) Tl EF 1.3 mm, 1.0mJ T
13 E7E 2.5 mm, 3.0 mJ Tl EJR 5.0 mm. 5.0mJ TlZ LR 6.5 mm ~OBEHREYTH B LEZ LN
5,

0.1 mJ
0.5 mlJ
1.0 mJ
3.0ml
_ 5.0 mJ
() o —— : : o
-15 -12.5 -10 -71.5 -5 -2.5 0 2.
Distance from the focus (mm)

*4pon

Fig. 5.4 Profile of irradiation area radius transition with optical microscope.

5-3-2 L—¥FEMECL 5T I —Y a VEBIERER

L—HFMLTICB T, 77— a VBRI RS AR & [FRRICEE CH 5, A2024-T351
BT ARAVRAZAALF - DT 7T L—v a vidi & 2 0fEEHE 2T, 7 7L —v a vElE
1205 mmANARTITo72, MTAI=ZTLLT 7L —v a vOMEHARRETH 5, Al2024 DIUE
WAEIRIC B B EAALE IR, SNSRI AALF—0.02m] KEWTRELLAESE Lz, 3FX
FRIBESEMNETDOT 7L — v a VM % Fig. 5.5 IKRT,

SNURAIANLF—DHNE &b, EEMETREBICHWT 7L —ya VBRI, L—F
NI OIER AR I N5, 3.0ml, 5.0 mJ S TIEIREHEAIEF ICKRE <. L — YRR O ix
DILVEE 10 5 THND T nd o7z, L —FHMERIIEEIV NS WA, FHIKE2E L K
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T2, FLEicizEnEFRN 10 um, 14 um BEOERWT 7L — a YRR I, % DJEBHICH
WIRBEI A2 > T b, L—FRFEHML T 5720, FOHMOECT 7L —v g VIigA L v
NZICEZLDTIEERL, TV SARERA NNV ZDHETH L EEZOLNB[12],

— M L —FHEETIR T ) V20 a vy P TR MIE 0.1%. FRAFASALZRDa v T A
X 1%FREETH 25, REBRTH W2 L —FEE D Solstice 1ZFFYFFOIRFEN L | 7V L 2D
IANF =L 2%EE, KA P SV RIT 6% IRED 5 LRI N, 7Y SR IEBD L X
BHY, ZNZTNIINI VI ALT—%REO720, 1RITHIBICELcE, BPESMECIEF I H
WINLZYRERD, TV NNV ADEEIL ONWTIIEECTHRRL, 6%fEED T AN F —ZFFDOFRR
RSV RE, A A Vo RFER 100 ns FRE Tl 32720, XA A4 VoL RIC X o TEKRINZK
R[DT T RA2RER/T 7 X< I, ERE N0, @FICEETCERVWEEZLNS, 2D
B, m] OSSN ZAZANF—FHCZL—=FT T L —vavCld, 7V vzx0av b7 A MYE
CEEBEPBETH 5,

0.1 ml, lincar focal position 0.5 mJ, lincar focal position 1.0 mlJ, lincar focal position
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Fig. 5.5 Ablation distribution at the linear focal position for each pulse energy.
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Fig. 5.6 Ablation distribution at the most focused position for each pulse energy.
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Fig. 5.7 The transition of Y center ablation area in the propagation direction for each pulse energy.
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Fig. 5.10 Depth profile of compressive residual stress after peening at the most focused position for each

pulse energy condition.
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Fig. 5.12 Intensity distribution at laser focus under various conditions.
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(h) In a nonlinear propagation regime for a pulse energy 3.0 mJ.
Fig. 5.12 Continued.
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Fig. 5.12 Continued.
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Fig. 5.13 The transition of X center ablation area in the propagation direction for each pulse energy.
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Fig. 5.14 Comparison of fluence thresholds from numerical simulation and the transition of spot area in the

direction of propagation results.
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Fig. 5.19 (a)-(e) Intensity distribution at linear Gaussian focusing for each pulse energy. (f)-(j) Relation
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energy.
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Table 6.2 Mechanical properties of A2024-T351.
0.2% proof stress (MPa) Tensile strength (MPa) Elongation (%)

316 469 18.9

6-2-2 L —¥FRFEHE. L —FIMITENE

ARETHOW R SV AL —FHGE X, Spectra physics, Inc # D Solstice Ace TH 5, H.LKE T
800 nm, ¥ — A% (L —ViRE D 1 /e? & 72 5 H4%E) 13 5.0~5.5 mm, IR K-SV AT AL ¥ —1F 6.4ml,
/NS L A MR IEEE IR TH) 100 fs TH 5, RER DR LJEBEUL 1kHz TH 5, H 5 EOMIC

v ATz, HERIEEE 30 mm (ZERIEE L v XL S EEEE 20 mm 3 BRIEIGERIE Wz
v A&z, BRIAFEFM L v XIFEFR 18mm TH Y, L v X AT 10.4 mm TH - 72,
WYL v XEHR L 256, LA ER o —EiEEcE R nwC LICHET 5, $72. iRk
100 mm DFREFL v XEHWTC, FREIZEOHET coL —FRE 1T - 7, #YnL —3H
&L R0 O2DEMFICEWT, FSEEFRMKICE—= Vv I T 2T o 7z, 72, AREERREE
DT VAN ZFEFHTE R WIZE/NIL, FAP VROV TR T 6WRETH - 7=,

6-2-3 L—VEMECXEZT L —va vEE

PO A AT L 28 L —FRENEHFICEWT, 77—y 3 VIRIHIEZITo 72, BIEICIZL —
FEMEE (F—x v 28 VK-9700) %7z, HIEREOREHEIL 20 f5F 7212 50 f5& L. “FHETM
DIRAEIX 02913 um TH Y, FIHAEOE v 713 0.02um & L7z, 1 BOBETII7 7L — 3
VIRIDNE L, GHEBRESN R E W0, 8 BIE OB 217072, T7 L —va vafliL—
FHEMBIIC X > CTHG ST — 2%, BB oM #HIEL Tk 7z,

6-2-4 coso JEIC X ARG DB X HRaAaEHE

TNLYRART 7L —3 a VEPHEBARE S X OCNEOIGTIREIC KIS THELZTHEIT 5 7-
Wi, FIA4L—HFv—=v 7B oREBH IS LT, cosa &I X RIS THIE 21T - 72, REIG
THIEICIE X SRRIC R SV R Ty 2781 1-X360s) & HV72, RFEETIE, JE 22897 A
TH 5 CrEERD Ka f % slBIRHENICN L, 25 degree TAST L. b I3 2 [l % 311)HE &
LCHIE % T o772, YV 27 FI13 6931 GPa, F7 Y /Ib130348 & L7z, £72, FIAL—Fr—=
v 7% a7 URHC O U<, EITEE & X ARG TENE 2 R AICHE VIR L, X MR- IS T)
I3 AR B IR IC KD 72, BRI - 2T v L 2D, T =7 a0 b AR R kD
B CH B~ A4 b AT — Z SUSuX360 % 7z,

6-2-5 RHEINEZER L -HEENFHEGE

ERPEEE O VIR L v X 2T 256, LY XAREWLD, FOKE &L — 3 CHEKHINE
ZIPICTE o\, BRIAINGEDE U % 55 T COMIBENRT D 7 v v R 5040 % IEREICHEfFE S 2 72
ITiE. LY RIS X 2 RHZ IR BT M & B8 3 I ) 05 BB D 5, BARIICIE, 2-11 TR

180



L7zL vy XONAHEZ 53 2 R, 2267 A Tld7a <. 22660 R 2 #H L CEHHET 2, 2 DA,

M T > T vt L — PR ORI I L vy, L — FEE Solstice D ¥ — LRICE
WL, 150 mm PAT D £ R % e o BRI L v XEERFICERIANNGE DR E8 0 BHE L 72 5,
BRIINGE % &0 - MIBEEET A U T ICHAT 2, V=V HBBETH 5 226)icx L, v
R X B DEZRET 2, Ly X e@Ad afiErsn T3 &,

r 2 Lk f
A(r,z) = By (::('2) exp {— ﬁ} exp {2;(02) rz} exp{in(z)} exp {iko(l —ny) <Rl — |RE — p2>} (6.1)

z ﬂ%%ﬂﬂ;ﬁkﬁﬁk LT, ﬂ‘?ﬂ%ﬁ}?ﬂ%ﬁﬁf%ﬁzﬁ Tt “G‘EPH&E#@”WK%%E&YG% 5, L2 Ltwbi‘f‘o

oo, %ﬁﬂﬂ — LD 1/10 AT DEREANRRHBHEL 72 Y | .ﬂbéi:rx FAIEE ISR TR B,

Z T, XV AND L —FF SV ZRIFENIC X O THRIBICENT 2720, KX L v zflic
DWVTOAFHEEI T & T, I X P2 KIRICHIHTE 2, A RFLOARDOEIEEHET 2
HikeL<, 7=V xZMmER V3, EomihEXe L <2237) A Ditill Helmholtz /712X %
BT 5L,

(')A i d
oz ZkO <6x2 )A 6.2)
B f (e, ) 2D 7 — ) ZEHFEn)DBRIZRD X 5 ICERTE 3,
F(&,m) = FIf (e, y)] = f f £ (x, )2+ ey 63)
fGoy) = FUFED)] = f f F (&, e~ 2+ dgan (6.4)

EniTzNZx, yZEH OB TH 5, (62)RDMLZx, y/iHD XKt 7 — ) TEHT 5,

- [OA(x, y, z)] _04(,n,2) (6.5)
0z
0%A(x,y,2) PAXY.2) omigees
P [ [ D iy o

(6.6) X DxDEETITH T Z W CEHR L.

2 o 0o
f TAXY2) omigresmy) gy = [PAED2D) pomicexsnn | _ o f 0A(.Y,2) smicexsny) gy
w  0x? ox ox

— 00

= —2mi¢ {[A(x, y, Z)eZHi(fx+ny)]iooo — 2mi¢ J Alx, y, Z)ezm'(foIJ’) dx}

= 41'[222] A(x,y, 2)e?™CxX+my) gy (6.7)

AL 0ttt ¢, B OEEIRIBA(x, y, 2)1Zx FADOIEBRTE R TH S L ZHWZ, T1%(6.6)
RIfRAT B Lic kY,

181



2
F [6 e y'Z)] = 4m zizf f A(x, y,2)e* ™M dxdy = 4?82 A(§,n, 2) (6.8)
YD Rk bR,

:F[Qiégffﬁfz] am?n2A(E,n,2) (6.9)

(6.5),(6.8),(6.9)K L v, (6.2)RDOMAE “KIG7 — VY =& L =R IFKRD X 5 1K B,

0A(&,n, 2) _2m?i
9z kg

NIz FIRIC O WTREZ KD 3 Z L B TE,

(& +n*)A(E,n,2) (6.10)

A,m,z) = A(¢,n,0) exp{ (Ez + 772)2} (6.11)

Thbb, YIHEEE Rt 7 — V) =& L 7-BAEA(E, n, 0)Ic (FE OBz ICNIG L - THA T %
T LT, fEZICE T BB ICE T BRAE )R LG, T BB RITT7 — ) TEfRT
LT, MEZICBT S (x,y, 2)EMICE T Ay, 2) KT L, COFEEHCLZ LT,
AR AR 2 E A A L ISR T 2 0803 e, —ED 7 — ) AWM CEEDOMEICE T 53
NAFLDL —FEEESA A RD DL B TE DL, T2, A AFLOEY =7 L —FEEL ©—7
INT Y ZDMRIZQ29NATKDO LN B 720, IV Vv ANARICEHRT B2 &b TE 5, ENIE
Bt FrIcii 72D, B OB IT L 72,

6-3 FE& RBAOEESIcE T 3 L —VENRHE
6-3-1 fEEEEE 30 mm BREFEHL v X2 AWz L — PR
POV ATANLF—54ml, SV RIE 100 fs DL —F 2/ L, ESEHE 30 mm OERIGFHL v X
IC X BINED IR WIIEEN 7 v o v A 434 % Fig. 6.1(a)lC, ERMAIINEZZRE L =8 EL 7 v o v
Ao3Afi % Fig. 6.1(b)ICA T BRIEIINZE D 72 WARTEERNEREICIZ, — AP Y o7 v L —FENFD
TINIYAGAE TR Y, K7 ATy 2131000 V/em? Zi 2 %, LA L. EREINEDAE U 34400
DENFETZ VTV ASMIIFFERTH Y, BRI ch.LEe Y v 7IRICHRE 5 72 7 VT v A5 0
BEhd, £/, RRZAVZVABELNS X0 D EHRMAIT, 1 J/em? A ED 7 v v R BEEHEIE A
V#D%b%oyh%i77v VaviHEETEARZIDOINIVRATH LD, MITWED
KTRICHEMET %5, £z, EREICHEANALELI DV DEVIALZ Y AR L —FHRLTERINTE
U *U%f77x7$ﬁﬁk@ﬁm@%ﬁﬂﬁ%ﬁ%@5ﬁ%ib%?w;kﬁvﬁéné

182



10”7

5
{107

Radius (um)
<
Fluence (Iicm™)
Radius (um)
Fluence (J cm:}

150 10°
100
50 : 10? - -
-50 | 10! { -50
-100 ]
-150 0 -150
2 0 5

10

2 -1.5 -1 0.5 0.5 2 -1.5 -1 0.5 0 0.5 |
Distance from the focus (mm) Distance from the focus (mm)
(a) Ideal focusing. (b) Considering spherical aberration.

Fig. 6.1 Calculated fluence distribution under focusing conditions with a spherical plano-convex lens with

a focal length of 30 mm with spherical aberration in the linear propagation regime.
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Fig. 6.2 Ablation distribution and calculated fluence distribution in the linear propagation regime for each

irradiation position. (a)-(c) At 2.0 mm upstream of the focal point. (d)-(f) At 1.5 mm upstream of the focal

point. (g)-(i) At 1.0 mm upstream of the focal point.
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Fig. 6.3 The transition of ablation area under focusing conditions with a spherical plano-convex lens with

a focal length of 30 mm with spherical aberration.
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Fig. 6.4 Calculated fluence distribution under focusing conditions with a 20 mm focal length objective lens

with no spherical aberration in the linear propagation regime.
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Fig. 6.5 Ablation distribution and calculated fluence distribution in the linear propagation regime for each

irradiation position. (a)-(c) At 0.38 mm upstream of the focal point. (d)-(f) At 0.26 mm upstream of the focal

point. (g)-(i) At 0.14 mm upstream of the focal point. (j)-(1) At 0.02 mm upstream of the focal point.
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Fig. 6.6 The transition of ablation area under focusing conditions with a 20 mm focal length objective lens

with no spherical aberration.

6-3-3 FErUEERE 100 mm BREFhL v X W2 L —FERRHE

FEREERE 100 mm DEKEFML Y X WT, SNV RZAALF—55m), ~LRIE 100 fs DL —
FOHMP RMIBPEN 7 v v X594 % Fig. 6.7(a)ic, EKIENGEZEE L - EL 7 v v 253
1fi % Fig. 6.7(b)IC/~ 3, FEAEERE 20 mm %° 30 mm & LB L €T, L v XEARE W20 BRI D
EIINE K 5, BRIMIGEIC X - CTHSTTEIBHERS 130 v — 7 2 2 223, b ENT 2008 1T LR
ANcFEEN L, ERRIFEAN ARSI VD RELC RS,

188



250 10°
200
150
100
50
0

9
1107 =

-50
-100

Radius {um)
Fluence {I/icm™)

-150

=200

2250 10"
-4 3 2 -1 0 |

Distance from the focus (mm)

(a) Ideal focusing.

Fig. 6.7 Calculated fluence distribution under focusing conditions with a spherical plano-convex lens with

Radius (um)

-100
-150
=200

-250

250
200

150

100

50

-50

Distance from the focus (mm)

(b) Considering spherical aberration.

a focal length of 100 mm with spherical aberration in the linear propagation regime.

FEAUPEAE 100 mm OENEF TR EZZH L 2236
Voot REE L 72, (REWRMVED EFE 3.5 mm, 2.8 mm. 2.0 mm (L&
L—ya VORI, BRAINGEZEZE L -7 v v A0d, ZLbD—

10°

1 [|r:

n i ll'l
|
4 3 2 1

1
Fluence (J/em™)

10"

SAEEH L=y ERBE L, 77— 3
BT 5 8 IR T 7
RICHEIX % Fig. 6.8

NS, MBI B B ESNE X, BREGEEZEE L -7 VTV AR E T 7L —v a v

BFELL RBME» SR L 72,

EFR35mm ETIZ, AU T v IAo2RT 7T —varyphidligin, 77—y a3 ViE

XI8MEBHZY 6um TH B, L 28mm M ETIEIL—FDOILhbErAbN, T7L— 3
VIEXIE 8um AL, T7L—vava il 7 7y P aBIREREDL, Ty 205 b 2R
10 J/em? 2> 5 20 J/em? DHIFANIC I X £ 2 #HR % KT 5, Fig. 5.6(e)IC7R L 7z FE siBEHE 250 mm L
VRAENKE BZRARY, T a VIEHFS L vE v L — FREEE I R <
«@:xw#—ﬁ%:ﬁnk thCh b, TNFERENEIC X Y 7z v 2A0HOHEER D > ¥ —

EFEL720THS5, EH20mm (IETIET 7L —2 g VIRINE 7R 528,
(D&HEIJ ICH L — PR A3 o THE Y. T 7L — 2 a VIEI R 8 um D E AL L TR,

DT Ehb, RADIFFIEHFHRICL DLV —FRBPBEL B 2RI,

189

T7L—Yav

T7L—vav



Ablation distribution at 3.5 mm upstream

200 0
150 5
100
4
50
2 o0
>
-50
£
100
10
150
-200 -12
=200 -100 0 100 200
X (um)

(a) 2D ablation distribution.

i

200 Ablation distribution at 2.8 mm upstream
150
100

-100
-150
-200
-200 -100 0 100 200
X (um)

IS

Y (um)

(d) 2D ablation distribution.

i

200 Ablation distribution at 2.0 mm upstream
150
100

-200 . -12

100
150
-200 -100 0 100 200
X (um)

IS

Y (um)
Height (um)

de

(g) 2D ablation distribution.

Y (um)

Y (um)

Y (um)

Fluence distribution at 3.5 mm upstream

200 5
150
100 )
50 3
0
-50 |
-100
-150
-200
-2

00 -100 (1]
X (um)

100 200

(b) 2D fluence distribution.

200 Fluence distribution at 2.8 mm upstream

150

100

-100 0
X (um)

100 200

(e) 2D fluence distribution.

200 Fluence distribution at 2.0 mm upstream

150

100

-100 0
X (um)

100 200

(h) 2D fluence distribution.

120

40

120

Fluence (J/em?)

Fluence (J/em?)

Fluence (J/em?)

Fluence (ch1n2)

Fluence (ch1n2)

Fluence (ch1n2)

Ablation distribution at 3.5 mm upstream

80 -
70
60 -
50
40 -
30
20 -
10
0 0
-0.3
0.6
-0.9
' ' -1.2
-200 -150 -100 -50 0 50 100 150 200
Radius (pm)
(c) 1D ablation-per-shot and
fluence distribution.
80 Ablation distribution at 2.8 mm upstream
70
60
50
40 -
30
20 -
o /\NW\MM"'
0 W ;
-0.3
0.6
-0.9
' ' -1.2
-200 -150 -100 -50 0 50 100 150 200
Radius (pm)
(f) 1D ablation-per-shot and
fluence distribution.
80 Ablation distribution at 2.0 mm upstream
70
60
50
40 -
30
20 -
10
0 - 0
[ W 0.3
0.6
-0.9
' ' -1.2
-200 -150 -100 -50 0 50 100 150 200

Radius (pm)

(i) 1D ablation-per-shot and

fluence distribution.

Height (um)

Height (um)

Teight (um)

Fig. 6.8 Ablation distribution and calculated fluence distribution in the linear propagation regime for each

irradiation position. (a)-(c) At 3.5 mm upstream of the focal point. (d)-(f) At 2.8 mm upstream of the focal

point. (g)-(i) At 2.0 mm upstream of the focal point.
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Fig. 6.9 The transition of ablation area under focusing conditions with a spherical plano-convex lens with a

focal length of 100 mm with spherical aberration in the linear propagation regime.
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Fig. 6.14 Fluence dependence of process parameters affecting the peening process.

6-4-2 FEREERE 20 mm FREINEMENYL v X 2RAWES 7 mJ L —¥FiT

6-4-1 OEETIE, 7T v XD M RE O PR Z NI 2 23, EAREE)IGH o fF
R X B ESIE O WINGEIC 13T 5 LR\ 2 &R I iz, B 0% ST~ Eikic s v»C,
TNIVADMICT 7L — a VIROEERH L LEZOLNE 2O, A—DI VTV RATT 7L —
vavRONSBEETOY =V IILE T, SNV AIFAALF—% 0.5m) ICERE L. KfTD
3.8 mJ & [ARRIC FE R BEREE 20 mm BRIIDGEMIENYI L v X2 w7 &ffcy —= v 72 Efis %,

Fig. 6.15IC ==V /RO T 7L —vavinfikmd, 77—y a VEESSOum TH Y, 7
7L —va VEIIE40pm 25 50um TH S, HEL -7 7TV X(F 120)/em? TH S, D5
HlE, 6-4-1 D —=V 7EHIV LT 7L —2 a VEPINIL, VI VAR DT RICE =D,
77— a vEoEELrFHECE 5, HMARIFEIE 30 um, 20 um, 10 um O =% VT, i
BRE—=VIEFREONL TR DL T B,

194



Ablation distribution

100

Y (um)
=

-20
G -30

-50 Radius (um)

Height (um)
Height {pm)
3

A

-1 0 75 50 25 0 25 30 75 100

-100
-100 -50 0 50 100

X (um)

(a) 2D ablation distribution. (b) 1D ablation distribution.
Fig. 6.15 Ablation distribution for 0.5 mJ, f20 focusing condition.
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Fig. 6.16 Depth profile of compressive residual stress after peening for each irradiation distance.
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Fig. 6.17 Depth profile of FWHM after peening for each irradiation distance.
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Fig. 6.18 Irradiation distance dependence of process parameters affecting the peening process.
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Fig. 6.20 Depth profile of FWHM after peening for each irradiation distance.
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Fig. 6.21 Irradiation distance dependence of process parameters affecting the peening process.
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Fig. 6.22 (a) Intensity distribution at linear Gaussian focusing for pulse energy of 3.0 mJ. (b) Relation
between phase change parameter of diffraction, phase change parameter of Kerr effect, and phase change
parameter of plasma calculated from the intensity distribution at linear Gaussian focusing for pulse energy
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Fig. 6.24 Effect of ablation diameter on peening under different pulse energy conditions.

KIT, NNV AZANF—55m] DEREFEIML v RESTEEE 100 mm B v 2T 420 ¥ —
3.8 mJ DXL v XE SBEEE 20 mm LR O 7 7L — v a Y 180 um £ cov—= v 7ic Xk B
JEMERR IG5 X O EEIEOHERS O g % Fig. 6.25 1I0RT, SA AT AL F—38m] DRYL v
R P EEEE 20mm BN TIE 30 em BREO Y — 2 7L T Y R TH Y FNICHE S TEEDLE

\\\\\\\\

fETH 25, EMEBICHTGERS IFARECH L, 77— a VEVBFR—DEAFT T, £RK
TNVIVADTZ Ty bbby THACRKROEIZEONTHE 2L, AT VBRIV D7
v b by TOMOPERIENREANHITE 3 ERREING, 2L, 7T v ROGADOIR
EDD, SARIAANF—RTINVIVA, T7L—Ya VEOWERIRNTH L2720, 7Ly
2 DI BRWICE{L S ® 2 13 EOF| MR e iEmTE %,

200



3 -
0 O 20 3.8 mJx direction
- B {20 3.8 mly direction
50! ® 2.75 O 100 5.5 m] x direction
£ o ___m_ 1 ® 100 5.5 mJ y direction
= -100 | O® % Basem®al 8 25
%150 2 2 g
5 -l 8 .3 u z .. 8 Q
7 200 * =
Eo = (o] © T =] .
22502 oo § : s o ¥
é (o} o 8 o o = = O @ Base metal
R ¥ 20 3.8 mJ x direction| | 8 & - .
300__ - —.-—n ————— B 20 3.8 mly direction |.757" ----------- ‘5!- -‘_6_' ?d
p;”'_ o 8.2% proof stress| o 1100 5.5 m) x direction | |
m " ® 100 5.5 mJ y direction
1.5 :
400 © 50 100 150 200 0 50 100 150 200
Depth from the surface (um) Depth from the surface (um)
(a) Residual stress distribution. (b) FWHM distribution.

Fig. 6.25 Effect of fluence distribution on peening effect.
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Fig. 6.26 Influence of laser focusing on peening at a pulse energy of 0.5 mlJ.
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Fig. 6.27 Influence of laser focusing on peening at a pulse energy of 3.0 mJ.
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BTV EMEER SIS 5 e E iR MEs 2 T c& 2 — /7. NS AT 7L —v a vi%
TRINLPERL R EBEHEINZ, Lo T, HEBIENFZT TR, 77—y a V&R
EZW DRI G 2 2B RBI NG, TNICOWTIE, BRSO AR 7240 22 & 3 c
& B[7-11], BB SENZ GRS 2B, Gk e & D ICERENME T T2 ERNE LT, =44 F
—EHk. BMERE, HEKO 3 onETLoNS,

I TANF 18K R, EREPEGRNT 2 EHlT 28 RHZE FEL 3 5, 4
CEWENICGET 2 & BWEEAIE I NS, 2 DFE)) % 22 = A iPER S (Hugoniot elastic limit)
IR, OFBEEICKIFEL TEE B[12], 743 =7 ACx LTI3% GPa 2»5 10 GPa FETH
%5, 3= A HERAEE X 5 ) 2RO IL. MEOBEATE T RIB-CHRRFEEAN) 1
IANKE—%HBET S, ZOZAALF—HERFIENREVIZE, K& R 5[8]

IL BM2E50R CRMAZHIEZESIE ¢ Geometrical expansion effect) : 5 (3 — MM 7n i & Rk
I, BTIC X o THEER T 2 7 BBMHZSTICBIfR 7 B 3B & & D IR T 375, e
FRAEIR AMEIR X 1t U TR WIS, (NI FmEM & LCik > 2 &3 T&, [mific X 2 B0
MR T & 5, —J7 ., A BRI MR X 12 L T A (i B I3 Bk E R & L <ifbh,
[FIHTIC X BILED KR E K 72 B, B X ZEHERAGEH O PRREOR S £ T FHH. FELY D
ORI CIEBRIE & L Cib 5 ([8], & N EBTFRNR F 72 1ZRM PRI & 5, D
WAL F a5 M1 I E R A R o LT h B,

L —PHEEREOLA, T 7L —v a VEROES T IOk E 325608 — &N TH
5[13,14] 77 L —va VPEERL D SEGTEECIE, ZRITOIKMEBEIL 2 Y 2 FFocift 25, 7
Sy AEHEABOER (77 v FATIALY ZOHICE DL —FIEE) OB A I .
BRI D I % B o BRI (F7 o 7 vt E oL —FRRE) OSA I ZERAEEH & 2 nd L
T& 2, BRIEEREBIIMIEERE LD S EPTAR D ICX BT OET AR E WRFELED 5,

NI 7K (Rarefaction wave, ¥ 7z 13BBARIK) : Al iz, BIROIST 25T 29 TcH V| &
BEATE T AN A U B SONAEI & BB E IS O MEIR 0 0 A U B Ty P D 2 D DD I
KX 5[9,11], FEEAEHERICE WD 2 & T, EEBENIREREL 5, KEF#EE B D
CHEREIE, MBMERMIRS 2213 EHEL R, —f. T v VRITEBERAREIEICBEIR R <
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BB AERCERD 13 SREOEIMETENDIL LEZX LN TV B[],

FLwpe, T AHERREBLZECENEROBER T, T ALF—BROEEL
ZF A O E LB L, RICT 7L — a VPEREEE CERImE & L CETAD b %4 Ul
O, RBICHHEIEICL 2WELZ R, RENICENIZRDNS, 2O X5 REEEOEMIT. B
FEI RO TE AR TR S L, ~ 27 n Rl CIRREE N 22 v—v v (f:
iSALE-2D 72 &) Z#HWTHiE I T w3,

7z ML —FEEIC O W TIE, Shepelev 51T X o TREANCHARE & L7-[14]. 5 13918
N e RN R EE R EREN OB A gL 72, 2L T, v 7 vzl Cld, HE
AR %2 P s, FREEAR. BRI o 3 207 —X &5 T L. TelosHETiE %2 H
WTC, BIRFFOMEEE ) 2RISR T 2 LR TR 5 Ll L 72,

L FHRBEEREE : 7 7L — v a VREFE L) QRVEEBICE W T, —XIto FiEisi % K E <
%, RIzGTMDENHEBP(2)IZRD X HickI s,

P(2) = Fo (6.12)

Pyz—z
1+as2 0
\/ Bs,i lO

Py : VAR T, 1, ¢ VIAMEERNE (RS H6L). 7o @ BrERAENE. ak By Mie-Gruneisen 1k HE
FRERXICB EST 237X —2TH Y,

_1{nn+1) -G+ DG+ 2"+ (G+1)(G+2)
“=3 m—G-1Dx"+6G+1

(6.13)

Bsi =P{(n—G-Dx'+G+1} (6.14)

G : Gruneisen ~¥7 X — & x; ' B, £ OMITIREITEX 2P E 32720 DfTH b,

Pn(a_b)
n=—0—=

Fy

(6.15)

BB OfEIZZ NZF ., P, =560964 GPa, a = 1.1266, b = 09775, P, =15 GPa TH» 3, £7-. &
W& & b ICHEIRAAA 2 728,

Py z — z,
(@)= |[1+a— (6.16)
Bs,i lO

23T IR & RilIC BT T O HBIBERICS %,

1

1(2) « z1/2 (6.18)

EEENCIG U TR OEE SR 5 i, BES)IARY (L) %220 RRKERTEIMET
5, Lo, —RuOVFIHE Gk <R, TN L EBEOME—EIchins,
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I MEEREGRETE : 7 7L — 3 a VEER, X W dIRVEBIC B T, MEEHRE 2 KE T
X 256, EIrFROENHEP(r). EEIEHERI RO LRI NG,

Rq Py

T
P, R r
1+2a—°—a< ——1)
\/ Bs,i lO Ra

I(r) =1, [1+2 PoRa 7 _ (6.20)
R aBs,ilo Ra .

FREDIEIR T LFE L e rds H It RE lic s T, LITOIHIBERICH 5,

P(r) = (6.19)

1
P(r) « 3 (6.21)

l(r) o rl/4 (6.22)

L7228 > T, FHMEIRDO LA L0 SEIRICHE ) IENOEIIRE 2%, 7, FETTH~DHL
Buc Xy, HBREND LEBIEOMKIT—ETHR LY, Bk L bITHAT 2, ZOELGHRIR, &
B A PR RE IS D UL R C D B Y 32O,

I FREEEREMETE : 7 7L — v 3 VEER, L D FEWHEEIC B W ¢, BRIEE R % (KE <
2 Y6, WIrTmOENHERP(r). ERIEHEZIIZRDO L S ickI D,

R, Py
P(r)=— (6.23)
r Jl + ai& no
Bs,i lO Ra
) =1, |1+ a2 Bap, T (6.24)
r) =1, aBs,ilo nRa .

FREDMEIZ T L L e rd8S Hr It RE lic s T LUT D BIBEfRICH 5,

1
P(r) « = (6.25)
I(r) « Vinr (6.26)

L7228 T, FHEEEe MR G OSA L 0 b ieictt ) B oERIAKELSRb, /2. Ik
BT X 0 fRIE ) L ERBIEOR I —E TR, Bite L dITHET 2, O BGEHEIL, HE
VD AR AL W Y O RN RRVASR

AEDHIED O, 77V —v a VR RICEREE 223 5 2 & T, Bk~ D RAA1 725
A RAMD 2 2 L2 TE B, Fig 6.28 I, SCHR[14] T & L= VIHAE T ) 50 GPa D it % BhAk.

100 GPa Dl % FRfg Cn g, Sk cifib N 2fEIX. G = 1.2, Py = 50,100 GPa, I, = 133 nm. z, =
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270 nm TH 5, 7V 2 F 4 ¥V T A= ZICHIET B1Ex; 1% 0.05 TH o7z, T I =7 LOMHY
BB 2 3 = AR R % 5GPa E{RE L., 5GPa ICIET 2SI 2 v —= v 7R 5%
TLRBL T3, —RICOFHBRR ClX. BERIEAA Y 12 X 3 EEAA4 U, 50 GPa Tl
5um T 5GPalZiHZFE L, 100 GPa TlX 10 um TS5 GPa ICJHET 5, T 7L — a VRN nd
FCld. 7 7L — v 3 VREROE I TEERRMEE 0320 L | MR O 56 138 (2 7).
BRI RE OGEIXER GF) L b, Bl TRI N\ 0, IREERKIIE OREAKE L
INE 2T 7L —v a VERIIEEEOERICAFIETH L Z R ENd, 72, T7L—vav
BRI KE Q&b WIIAEERE )0 A BRI 23 SCHk 0@ b D56, TAYEZETE A3 AT RE 70 SEISIZ
X 10pm TH L Z e hFEINTV 5,
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Fig. 6.28 Attenuation during femto-shock wave propagation [14].

SCHRCRYE & L=V HAMTEE 77 100 GPa 1%, SCHR[1-6]D &2 b, 7 4T v Z# 5-6 Jem? ICHT G
T5EEZONE, RAHED L S 7 10Jem? 2> 5 100 J/em? D g 7 )V T v ZAGEHEOEFE S v A L —
P SAFCTIE, 100GPa X 0 bR WHIIAIFEREN 2B O N Z e B TRINE, 207D, 10 um
IV DIFECE—= v IR EE L L BARETH D, £ T T, REBREMICH O 7 HEE Y BT
FEheT7v—vaviEErefec, kideRkoTECRikfoE 2B T 5,

REM L7 vz v 2l L LT, 15 J/em?, 30 J/em?, 100 J/cm? % H5E L, FIHAE T ) % 400 GPa,
1000 GPa, 3000 GPa & L7z, 100 J/em? ICHTIG3 2 M8 E ) I3 S Tz SCHR[2] D H
F2OHEE L7, 720 ZAT VR 15)em? DEGEDT 7L — 3 a Y H5EIT 18 pm. 40 pm. 80 pm
D3IDLL, TNHIFHS5FED 250 EHEFED 0.1 ml, 05ml, 3.0m) FHFCHYT2, 7rz vy
2 30)em® DBEDT 7L —v a VHERIITOum &L, 7ALT VR 100)em> DEEDT 7L —
2 VAEFRIF 25 um, S5um D2 0L Lz, THHIIARED £100 XM, £20 D 0.5 m],
3.8 m) FFICHY T 2, WIHEERT S L O FHRIERET R R 2RI C. 77 L —v 3 vEED
b DERABARRET B AT R E#R T Fig. 6.27 1SR T,

Fig. 6.29(a),(b) £ ¥ . WIHAME ST 7] 400 GPa 554 Tk, FHIEIGIRIC 51T 2 YAMEA T nRE el & 28
A5 um TH B LRI NG, TNEV /NI BT 7L =2 a VEETOMILIE, X D iRWIBEWELE
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JEREIR L 72 5 2 & R XL B, Fig 6.29(c),(d) & b . VIHAEEEEJ) 1000 GPa §fFC ik, “FHIIsH
ICB T B EWEFETRERIE S 234 110 um TH % 2 LR E N5, Fig 6.29(e),(H & v . #IHIEET
713000 GPa §:fF Tl “FHIERIRIC 351 2 VBIEZTE ATRE R IR X 250 330 um TH V| IEFICEHEL &
TEATEDLIIERRBING, 7L, TN XV /NI BT T L —v a3 VETIEH, ROALET
BHERESB I, 77—y a vEE 25um Tl 65um, T 7L —¥ 3 VA S5 um Tl
105 um FRE QMW AT L 72 2 Z L A THIE NS,
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Fig. 6.29 Approximate calculation of pressure propagation at each initial shock pressure.
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KD TZNIZ Vv RLT 7L —vavErb, ©—= VvV I7IRM5RI O TS WEETH 5 & & 3RE
IND, H5EOESIENE 250 mm BN (FAr Ty R 150 /em?4etF) ClE. BIEEX Y b EER
i R DT HIE BT K & v ISR CERIE O HEEMEA EOfE X ) /N X wilEE
WD b mRRT 5, 7T VA 15 Jem? &R LCid, XHR[2)IC 310 2 5 TE ) #EEE <
H % 400 GPa % FH\ 7223, 1000 GPa & HEE 3~ 2 Wk b FA7E 3 %, Bl 2 1. HETE )2 600 GPa &)k
ET DL, Fig.631 DX5C, XYVRFAR—EERT I LHBTE S, HEFET)CHEBEIZSRIC X
S THEDREN D 2720, CNOLDOERWMIIHL TH S Z L ICHET 5, AERTHEERZ LI,
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Fig. 6.30 Comparison of calculated values of plastic deformation area and half-width increase area after
peening application for each irradiation condition (Condition: 250 = 15 J/cm? = 400 GPa, f100 = 30 J/cm?
= 1000 GPa, 20 = 100 J/cm? = 3000 GPa).
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Fig. 6.31 Comparison of calculated values of plastic deformation area and half-width increase area after
peening application for each irradiation condition (Condition: £250 = 15 J/cm? = 600 GPa, 100 = 30 J/cm?
= 1000 GPa, 20 = 100 J/cm? = 3000 GPa).
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LLEX Y PHAERE I 8E GPa ML L OSB3 WA MHIC v — = v 73R 558
Wik, 77—y a VRICX 2HIEZEZICZ T2 2 EBHL A TH B, BHEREBSRA L 7
DI, PIHIEREN N L CHR I T 7L —v a YREBKE L, P EREZRECE, 22
ZAWRFIEN A2 2RETH D, TI6.12)REZICODWTHL 2 &ic X b, VIHERT S
Pl 2 2 o = A RFE P, & R DRI # RO DL ENTE B,

P
P, = 0 (6.27)
Py z(Py) — z
14 x>0l 20
\/ Bs,i lO
Bsi  ((Po\’ By
Z(Po) = ZO + Flo (P_h) - 1 =~ mlopo (6.28)
0 h

Fig. 6.32 IC/" T & 9 iC, PIHAMEEE ) A2 o = A WPERFE S X 0 3+ e K& wakfFcik, 8k
LGV S I IVIIE T ) il 3%, 100 GPa FREE DB ICIE T 2 7 v v 2 (B J/em?) T
T, BEHEFATREREZ L 10 um FRE &Rz, D L HEE GPa REOHRTE 21550
5 15)/em* L E D 7 vz v 25588 TH %, 1000 GPa % it 2 2 WIHAERIT 1 4&thic s n»wCit, 2o
S AR FEICET RS 100 um U EE A28, T7L—2 3 VEFEH 100 um LUF D
SME T IR RN R D E R 2T 5, L= -> T, HAERICIIEWVERE TR, 2h
KIGL 7T 7T —va VREDOIERBRKD oD, 72720, "VAIANF—ITIE ERYH 579,
TNITVARERGDDODT 7L —vavEeiKRT52Li3 L —FFA70BRTHE, 642508
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Fig. 6.32 Depth to reach the hugoniot elastic limit for initial shock pressure assuming plane wave

propagation.
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