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Abstract

This study aims to employ nonlinear continuum mechanics and differential geometry to
model and evaluate dislocation microstructures. The kinematics of the continuum are defined
by three configurations: the reference, intermediate, and current configurations, which are
formulated on a Riemann-Cartan manifold. The intermediate configuration is determined by
solving the Cartan first structure equation, whereas the stress equilibrium equation determines
the current configuration. The process of modeling dislocations entails describing them as a
continuous dislocation density distribution, and doing numerical analysis through the
utilization of the finite element method.

The initial part of the study examines the mechanism of material strengthening by means
of kink deformation. At first, we performed a quantitative validation of the current dislocation
model by employing grain boundary theory. Afterwards, we simulated the growth mechanism
of ortho-type kink deformation by employing an arrangement of edge dislocations. The
research indicates a notable concentration of stress near the termination of the kink interface,
which is caused by the production of disclinations. The kink-strengthening mechanism is
further explained by considering the strain energy, stress field distribution, and elastic
interaction between disclinations.

The second issue being examined is to demonstrate the existence of disclinations inside
the kink microstructure. Although it is widely accepted that the kinked deformation
microstructure contains disclinations, a rigorous mathematical demonstration of this
phenomenon is still lacking. This study utilizes the holonomy method to prove the existence of
disclinations by the evaluation of the Frank vector. The accuracy of this method is confirmed
by employing ortho kink models featuring diverse dislocation arrangements. Subsequently, the
ridge kink deformation models utilize the holonomy method to showcase a precise correlation
between the holonomy analysis and theoretical predictions. This method offers a numerical
assessment of the Frank vector for each given arrangement of dislocations.

Finally, the study examines the effects of size on elasto-plastic deformation in nanoscale
materials using the Eshelby twist and twist boundary models. Although the models have
different dislocation configurations, they both display the same twisting deformations. The
objective is to understand the fundamental mechanism responsible for the twisting deformation
in both models by analyzing the distribution of plastic deformation fields. The analysis
demonstrates that the Eshelby twist encompasses two plastic deformation components that

contribute to the twisting effect, whereas the twist boundary model encompasses four



components. Furthermore, it has been discovered that only Burgers vectors of the same polarity
are capable of causing twisting deformation in the twist boundary model. The extent of twisting

distortion, known as the twist angle, is especially important at tiny scales.
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Chapter |

General Introduction

1.1. Research background

1.1.1. Lattice defects in nanocrystalline materials

Dislocations are one of the line defects within crystalline solid materials. These defects
come in three types: edge dislocations, screw dislocations, and mixed dislocations that contain
both types. Their existence in nanocrystalline solids stands as a pivotal lattice defect, exerting
influence over the mechanical properties of the materials, encompassing high-yield strength,
ductility, and fracture toughness [1].

The Volterra dislocation model stands as one of the most classical representations of
dislocations based on continuum mechanics [2]. Within this model, the atomic misalignment
resulting from dislocations is represented by discontinuity function that is incorporated into the
continuum mechanics analysis. It is widely recognized that this model can accurately reproduce
the stress field distant from the dislocation line [1]. Nevertheless, the linear approximation in
the constitutive equation falls short in elucidating nonlinear finite deformations, resulting in
the emergence of stress singularities within this dislocation model. The issue of stress
singularity can be addressed by employing the theory of continuously distributed dislocation
density [3]. An early instance of this theory is the Peierls-Nabarro model [4, 5]. This model
introduces dislocations distributed continuously in the plane corresponding to the slip surface,
with a linear elastic body assumed in the areas both above and below the dislocations.
Consequently, each stress component is recognized to be nonsingular [5]. Nevertheless, it is
crucial to emphasize that this model does not account for geometrical nonlinearity.

Yavari and Goriely have recently developed a differential geometry-based nonlinear
continuum mechanics for dislocations [6]. This is an updated version of the traditional non-
Riemannian dislocation theory that was first developed by Kroner and Seeger [9], as well as
Kondo [7], Bilby et al [8]. This mathematical framework merges the theories of continuous
dislocation distribution and geometrical elasto-plasticity that can simultaneously solve both
stress singularities and geometrical nonlinearities. They have also offered analytical solutions

under particular boundary conditions for nonlinear stress and strain fields.



1.1.2. Kink deformations and disclinations of the LPSO-type Mg alloys

The Mg alloys exhibiting the long-period stacking ordered (LSPO) type demonstrate
excellent mechanical characteristics, characterized by their lightweight nature, high-yield
strength, and reasonable plastic elongation [10, 11, 12]. Magnesium predominates in these
alloys, with trace amounts of Zn and rare earth metals. Previous research has shown that the
unique plastic deformation mode known as kink deformations is responsible for their
exceptional mechanical characteristics. These deformations manifest as localized bends within
the material and represent a common type of deformation observed in crystalline solids.

Kink band formation in single Cd crystals was first observed by Orowan [13] in the
early 1940s [13]. These kink bands commonly form in materials with a layered microstructure,
where the active slip direction aligns parallel to the basal plane and undergoes uniaxial
compressive loading. It was also pointed out that kink deformation has two distinct
morphologies: ortho- and ridge-kinks. Hess and Barret postulated a kink deformation process
based on dislocation, derived from the experimental study [14]. They explain how kinks form
and grow on the basis of the dislocation motion under compressive loading. Numerous
experiments have indicated that the majority of kink bands in LPSO-type Mg alloys originate
from kink boundaries characterized by a misorientation angle of less than 15 degrees [1, 15].

Kink deformation has garnered significant interest as a possible novel strengthening
mechanism for crystalline materials due to its distinction from the traditional plastic
deformation mode. The majority of prior studies have indicated that the strengthening
mechanism in kink formation is attributed to dislocations acting as a hindrance to the motion
of dislocations. But in this instance, it is important to take into account how disclinations
contribute to the kink-strengthening mechanism. Using rank-1 connection analysis, Inamura
predicted the presence of disclination at the tip of a ridge-type kink. [16]. It is generally known
that crystalline solids that contain isolated disclinations accumulate much higher elastic strain
energy than that contain isolated dislocations. To uncover the process of kink strengthening, it

will thus be necessary to clarify the existence of disclinations in the LPSO-type Mg alloys.

1.1.3. Eshelby twist and twist boundary in the nanowire materials

With dimensions in the nanometer range, nanomaterials have special mechanical
characteristics that set them apart from their bulk counterparts. They are appealing for a variety
of applications in fields like electronics, medical, coatings, and other industries because of their

special qualities [17]. These nanodevices are closely related to their functions, so it is important



to synthesize them while controlling their shape and to assemble the nanomaterials that make
up the device in the desired shape. It is known that such nanomaterials may also contain
dislocations, and the amount of deformation that occurs in nanomaterials is significantly greater
than that in bulk materials. This is the realization of size-dependence of nanomaterials. A
typical example of this phenomenon occurs in PbS nanowires due to screw dislocations [18].
A spiral mechanism has been observed for the growth of nanowire materials during deposition,
leading to nanowires with screw dislocations at the centre. The morphology of nanowires
exhibits a twisted crystal orientation along the longitudinal direction. In addition, this
phenomenon has also been observed in other nanowires containing screw dislocations and
showed the same results. Furthermore, the finite deformation theory can therefore be used to

accurately estimate dislocation-induced deformation in nanomaterials.

1.2.  Purpose of the research

This study aims to provide dislocation-based modeling and numerical analysis for
lattice defects utilizing nonlinear continuum mechanics based on differential geometry, as
described in the previous section. More specifically, we incorporate the dislocation-based
model into the planar array of edge dislocations that forms the kink deformation. In addition,
nonsingular stress fields, elastic interactions between disclinations, and elastic strain energy
are discussed as mechanisms of material strengthening. On the other hand, we also implement
the dislocation-based model into Eshelby twist and twist boundary and reveal the similarity

between them.

1.3.  Structure of this dissertation

This thesis has the following structure. The background of the research and its goals
are covered in Chapter 1. The differential geometry theory for dislocations is summarised in
Chapter 2. First, we provide the reference R, intermediate B, and current S states of Riemann-
Cartan manifold kinematics. This yields the gradient of plastic deformation, and the
Riemannian metric on the intermediate state can be found using this technique. Next, we
develop the weak form of the stress equilibrium equation for hyperelastic St. Venant-Kirchhoff
material. The gradient of elastic deformation, which is associated with elastic deformation, is
provided by this solution. We present the dislocation-based modeling for ortho-kink

deformation in chapter 3 and explain how elastic strain energy, the distribution of the stress



field, and the interactions between disclinations contribute to kink strengthening. The
holonomy analysis to confirm the existence of disclinations by calculating the Frank vector is
explained in Chapter 4. Several dislocation configurations for the two-dimensional ridge kink
model are built. In chapter 5, screw dislocations are examined and included into the twist

boundary and Eshelby twist models. Chapter 6 concludes with some closing remarks.



Chapter II

Modeling of Lattice Defects Based on Continuum Mechanics and
Differential Geometry

2.1.  Linear and nonlinear elasticity theories

2.1.1. Linear elasticity theory

We begin by partitioning the smooth boundary 9} of a three-dimensional elastic body
Q into two distinct subsets: I', and Iy. Here, I, represents a Dirichlet boundary condition
exhibiting zero displacements, while Iy denotes a Neumann boundary condition involving
surface tractions. The entire region of Q is subject to both a volume force f; (where i =
1, ...,n)and a surface force g; acting on I'y. Let u; represents the displacement of Q resulting
from external forces. For the displacement vector u; (x) within an n-dimensional elastic body,

the strain tensor ¢;; is defined as follows

_1 aui_l_auj 51
Eij_Z ax] axi ( )

The elastic constant tensor of an isotropic elastic body is defined using Lamé constants A and

u as follows.
Cijir = A6i;6k1 + 16y 85 + ud; 6 (2.2)

Moreover, the stress tensor o;; of an n-dimensional elastic body is defined from Hooke’s law

using the elastic constant tensor C; j; as
0ij = Cijki€ri (2.3)

The connection between g;; and €;;, which defines the stress-strain relationship, is called the
constitutive equation. Additionally, the strain energy density W of an n-dimensional elastic

body is defined as

W =2 Ciji€ij€a = 5 0ij€ij (2.4)

Therefore, the functional I[w;] is thus defined as



=J WdV—j fl-uidV—f gu;ds (2.5)
Q Q Q

Following the variational principle, the functional I[u;] becomes a stationary value when its
first variant 81 equals zero. Let a be a small quantity (Ja| «< 1), and h; be any function that is
continuously differentiable, satisfying zero at I',. Consider the transformation u; — u; + ah;,
the resulting change in the functionals is denoted as Al = I[u; + ah;] — I[u;]. Here, Al =
abl + 0(a?), where the primary linear term 81 represents the first variation of the functional

I. Based on the definition we have,
AI = f (W(u’l.] + ahi,j ) - fi(ui + ahi)) dV
Q

— f gi(ui + ahl)dS —f (W(uw) — flul)dV +j giul-dS (2 6)
r

N Q I'n
= f (W(ui'j + (lhi'j) — W(ul’])) av — Off flhldV — fo glhldS .
Q Q Iy
The first term on the right side of the equation's Taylor expansion yields
fﬂ (W (i + ahyy) =W (uiy) = W(uy)) dv = af Fa MV + 0(@?). (2.7)

As a result, the first variation &1 of the functional becomes

dl[ul + ah;]
6l = f Fw ——h;jdV — f fih;dV | g;h;dS
Ui r
N (2.8)
=J Cijkleklhi,jdv —J flhldV —j glhldS
Q Q Tn
Therefore, based on the variational principle where §1 equals zero, we obtain
f Cijkleklhi,jdv —f flhldV —f glhldS = 0. (2 9)
Q Q I'n

In this case, the variational principle applied to the functional | yielded an equation known as

the equation of stress equilibrium in its weak form.



2.1.2. Nonlinear elasticity theory

It is widely recognized that linear elasticity is only applicable for infinitesimal
deformation, i.e., it cannot be used for large plastic deformation. As indicated in Equation (2.
1), it is called Cauchy strain, which remains solely accurate for small deformations. Therefore,

for large deformations, the following equation can be employed

1<6ui ou; 6um6um>

By =3\ax, T ax,  ox, o, (2.10)

This is referred to as the Green strain tensor. Equation (2. 10) above illustrates the Green strain
tensor includes a squared term related to the displacement w;, specifically the second term on
the right-hand side. This term is recognized as the geometric nonlinearity term. In the following,
the equilibrium equation of weak form stress in nonlinear elasticity theory is derived using the
variational principle as is the case of linear elasticity theory.

Eyj(wij + ahiy) = Eij(uiy) +3

v 2
ox; " ox, T ox, ox; ' ax; ax,-) +0(a) 2. 11)

1<ahi ORj  Ohy Oy, Oty Ohy,

= Eyj(ui;) + adE;;(uyj, hyj) + 0(a?)

Thus, we obtain

1 <6hl~ Ohy | Oy Oty | Oty ahm>

4By his) =5\ 5%+ ax, T 9%, ax, T ox, 9%, (2.12)

Next, concerning the strain energy density in Equation (2. 4), we also consider the

transformation of displacement u; ; — u; ; + ah; ; such that

1
W= (u;+ah;;) = > CijirEij (wi j + ahyj)Ep (u j + ahy ) (2.13)

= W(u;;) + aCijiudE;j(us j, by j)E(ug ;) + 0(a?)

The equilibrium equation for the weak form stress in nonlinear elasticity theory is derived from

the variational principle, and it is as follows

f CijidE;; (ui;hi)Ekl(ui)dej fmhmdv'l'f Imhmds. (2. 14)
Q Q r

N



2.2.  Dislocation mechanics based on differential geometry

This section provides definitions of Riemannian metrics and affine connections, which
generalize inner products and directional derivatives from Euclidean spaces to manifolds.
These features play a crucial role in the theory of geometric lattice defects. The Riemannian
metric and connection serve to generalize the inner product and vector translation from
Euclidean space to other spaces, such as manifolds. Connections are characterized by their
torsion tensor and curvature tensor, and lattice defect modeling is carried out in connection,
without affecting the Riemann metric. This implies that a single Riemannian metric can define

two manifolds with different connections.

2.2.1. Riemannian Metrics

The set of tangent vectors at point x on the manifold M creates a vector space referred
to as the tangent space T,,M. Within this tangent space T,,M, the equation defines a symmetric
bilinear map that is non-negative given by the following equation

9x: TMXT,M >R, x€M. (2.15)

By definition, this map constitutes the inner product within the tangent space T,,M. When this
inner product is assigned to all points across the manifold, and denoted by C* as the collection
of inner products g = {g,}xen, it is termed a Riemannian metric. This g serves as a
Riemannian metric for any C* class vector field on the manifold M, where g(X,Y) isa C®
function on manifold. A manifold M having a Riemannian metric g attached to it is called a
Riemannian manifold. In local coordinates, g, is expressed in terms of the local coordinate

system z as follows
9x = 9;;(0)(dz") ® (dz). (2. 16)

The magnitude of the tangent vector X, at a specific point x on the manifold can be determined
using the Riemannian metric g(x) established on the manifold M. This is achieved through the
evaluation of the inner product of the tangent vector X, , as indicated by the following

expression

Xl = v gx X, V) (2.17)

Within Riemannian geometry, the notion of the angle between two tangent vectors X, and Y,
at a point x on the manifold M holds significant relevance in understanding the geometry of

the manifold. The angle created by the inner product g, between the vectors in the tangent



space T,;M is the exact definition of this angle. To be more precise, the angle 6 between X, and

Y, is determined by the following equation

_ 1 9x Xy, Yy) 2 18
0(X,,Y,) = cos <—|Xx||Yx| ) (2. 18)

where |X,| and |Y,| represent the magnitudes of the tangent vectors X, and Y, respectively.

2.2.2. Affine connection
An affine connection represents a framework that specifies the directional derivative
on a manifold M. Consider X(M) as the collection of all C* class vector fields within the
manifold M, and let vX € X(M) denote any C* class vector field on M. A mapping
V:X(M) x X(M) - X(M) is termed an affine connection on M if it adheres to the following
property:
e The first parameter should exhibit C* (M) linearity: V(f(X) + hY,ZX) = fV(X,Z) +
hv(Y,Z),vX,Y,Z € X(M),Vf,h € C*(M).
e Fulfills the Leibnitz rule with respect to the second parameter: V(X, fY) = X[f]Y +
fV(X,Y),X,Y €X,a€R
In this case, the directional derivative of the function f with respect to the vector field X is

represented by X[f], this can be expressed in local coordinates as:

i
X[f] = X! — (2. 19)
[f1=x"
Likewise, the local coordinate representation for the directional derivative of vector X with

respect to Y can be derived using the definition of affine connection V in the following manner

k

.aY .\ 0
— k
VyY = <X‘ 37 + Fl-leY1> 37E (2. 20)

Here, Fl-’j represents the connection coefficient, and the method for directional differentiation
is determined based on the connection coefficient Fi’]‘-. Moreover, it is possible to construct an
infinite number of affine connections V that satisfy the two given properties on a manifold M.
These distinct affine connections can be differentitated by examining the geometric
characteristics attributed to V, the torsion tensor T, and the curvature tensor R. The definitions

for each of these connections are provided below



T(X,Y) = VyY —VyX — [X,Y], (2.21)
R(X, Y)Z = VvaZ - VyVXZ - V[X,y]z. (2 22)
The expression [X, Y] refers to the Lie bracket product of the vector fields X and Y. This

product can also be represented in local coordinates as follows

(2. 23)

Y .axf> 0

X, Y= X - —Y! - -
X, ] ( dzt 0zt ) 07/

In a manifold M equipped with a Riemannian metric g, an affine connection V is considered
compatible with the metric g when it meets a specific condition.
Z,(2,Y) =gV, X,Y) + g(Z,V,Y) (2. 24)

2.2.3. Weitzenbock connection
The Weitzenbock connection, which exhibits a non-zero torsion tensor and a zero-
curvature tensor, aligns with the Riemannian metric g. The connection coefficient l“l-’j can be
employed to describe each coefficient of the torsion tensor Tj"k associated with the
Weitzenbock connection in the subsequent way
Th =Th — T (2. 25)
In other words, the connection coefficients jik for the Weitzenbock connection exhibit

asymmetric when the subscripts interchanged, aligning with the coefficients jik of the torsion

tensor. An affine connection with a non-zero curvature tensor and a non-zero torsion, the Levi-
Civita connection is found to be in line with the Riemann metric g. Thus, the connection

coefficient Fj"k IS represented as

. iLridg,; 0 2g;
r}lk:g_< gl]_l_ Gue _ 91k> (2. 26)

2 \ozk ~ 9z/ 9zl
Here, g* represents each component of the inverse matrix formed when g;; is considered as a
matrix, specifically the inverse matrix corresponding to the Riemannian metric g;;. Therefore,

using these connection coefficients allows the expression of the curvature tensor for the Levi-
Civita connection as follows

i i

P dly; 0Ty

JRLT gzt T azk

The curvature tensor associated with the Levi-Civita connection is sometimes referred to as the

- Flimrl?} + T (2.27)
Riemann curvature tensor.
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2.2.4. Kinematics of Riemann-Cartan manifold

The geometric lattice defect theory in Riemann-Cartan manifolds outlines the
kinematics of a continuum containing lattice defects. The reference, intermediate, and current
states are the three states that are used in this framework to express the kinematics of the
continuum, as shown in

Figure 2. 1. The reference state signifies a perfect crystal, the intermediate state
represents a virtual state accomodating lattice mismatch due to defects, and the current state
corresponds to a mechanical equilibrium state that incorporates elastic relaxation caused by
lattice mismatch. The deformation gradient can be deecomposed multiplicatively as F = F, -
F,, is linked to these states. The deformation gradients are represented by the symbols F, and

F,, respectively.

dx3 Plasticity

Elasticity

Figure 2. 1 demonstrates that elasto-plastic deformation can be determined as the product of
elastic deformation F, and the plastic deformation F,, as expressed as F = F, - F,.

The line elements representing the three states are noted as (dx!)=
(dx',dx?,dx?) , (9%) = (®4,9%9%) , and (dy')= (dy',dy?dy3) , respectively.

Consequently, the linear transformations are defined by the deformation gradients, leading to:
9= (B)'dx), dy'=(E)i, dy'=Fidx = (E)L(E,)" dx/ (2. 28)
- pj i y = e/j¥ Yy = Jj - e’k pj . )

The right Cauchy-Green tensors of each state can represented by the Riemann metrics gz, gz,

and gs. The Riemann metric associated with each state can be expressed in the following forms
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gz = 6;;dx' @ dx’ (2. 29)
gz =5;0' @V = 5ij(Fp):((Fp){dxk ® dx' (2. 30)
ayi ayj

i axk dek ® dxl (2 31)

Furthermore, the Green strain tensor E quantifies the elastic deformation by measuring the

gs = 8;dy' @ dy’ = §,;(F)L(F)9* @ 9t =5
disparity between the Riemannian metric in the present state and the intermediate state.

i
E= %(95 —gs) = 71((176)}{(176){ — (Fp)k(pp){) dx* ® dx. 2.32)

This equation quantifies the elastic strain discrepancy between the current and intermediate

states, revealing the effect of lattice defects inducing lattice mismatches.

2.3.  Cartan first structure equation

We demonstrate how to solve the Cartan first structure equation for a given distribution
of dislocations in order to determine the intermediate state B. It is known that in a Weitzenbock
manifold, the torsion tensor Tjik satisfies the Cartan first structure equation as follows

i i
_i _ a(Fp)k_a(Fp)] ~0
Jk 0xJ axk |

(2. 33)

Here, Tjik represents the torsion tensor, and (Fp)l, denotes the plastic deformation gradient.
j

Equation (2. 32) involves (Fp);, which is obtained by solving the subsequent optimization
problem related to the provided torsion tensor T]‘k
Minimize G[F,] + L[E,, 1], (2.34)
Subject to (F,)\ N/ = 0. (2. 35)

The function G[F,] signifies the residual norm within the Cartan first structure equation
associated with F, . Meanwhile, L[F,, 1] represents a functional involving F, and an

unspecified multiplier A, derived through the Lagrange undetermined multiplier method.
Furthermore, N denotes the normal vector field at the boundary of the reference state that yields

the unit normal vector. The expressions for G and £ are outlined as follows
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1 .

j<k

a(FP)i-
— ]
L= L —6”/115,-,(W av (2.37)

Here, ¢, is represented as

o5, (5,

jle = ik oy dxk (2. 38)

The variables F, and 4 are determined using the variational principle for the optimization
problem in Equations (2. 34) and (2. 35) concerning the Cartan first structure equation.

Consider H as a test function satisfying H]-"Nf =0, and € as a positive real number. By

substituting (Fp)j, in Equation (2. 38) with (Fp)j, + eH/ to obtain ¢/ (e), the first variation

8G|F,] of G[F,] can be expressed as follows

1 )
> f Z Suci(€)ch(e)av
€=0 2R Tk

dck.(e)
jk
= .L Zdichjlk(E)dV

d
(Sg[Fp] ~ de

j<k
d ; d i . d i .
= T — | 5= 1) — — 0.
J, Zooeerh (o @ ) 5 (@) ) hcom)
OH. OH]
:-fyz Z&l'(ﬁ_axk (v
j<k
. . l l
B f 26 oni  aHM (0(F,), O(Fp)j dV 2.%)
r = B\ oxi  axk OxJ oxk :

On the other hand, the first variant §£[F,, 1] of L[F,, 1] is expressed by substituting (Fp)]i, in

Equation (2. 37) with (Fp)j, + eH!, and replacing A by A + en as a test function as follows
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&mﬂzy

€le=o

d i ;
L (—61'1 (/1[ + Enl)ajka_xk ((Fp)j + EH]-L)> dv

d i ; g
[ (e (), ) -+ en )

i .
1 a(FP)] ! aH]l
= | | s — sty | av

i

9(F,). oH
]
= L —8un'Sjx |4V + JR < SuM 8k — >dV (2. 40)

The integral parts in the first and second terms of Equation (2. 40) adhere to the subsequent

relation:

SL[F, 2] :LR<_ ( an' k(F) )>SR+L llaa ,l( Jk(F) av

(2. 41)

k. (8,118, H} 56/1[5 ‘d

+ aR(—N ( il ]kH]))SR-I_ R ilﬁ ]kH] |74
Additionally, the conditionals for (Fp); and H; are
i .
(RN =0

1-1].1'1\/1' =0 (2.42)

Consequently, the expression (2. 41) can be reformulated as follows

on' i oAl i

= S &5 HI 2.43
SL[E,, 4] L (511 o sjk(Fp)]_ + 8 57 ek} | dV. (2. 43)

In order to stabilize the numerical computations and resolve the ambiguity associated with A
and n, Equation (2. 43) is redefined by introducing new undefined multipliers r and s,

presented as follows

_ on’ e 0L 2. 44
SL[E,, 2] = i 5i,-ﬁ5jk(17p)j+5uﬁ5jkﬂj dav. (2. 44)

By solving the weak form §G + 6L = 0 through the variational principle, F, and A can be
derived for any arbitrary dislocation distribution fk This approach allows the determination

of the Riemann metric g for the intermediate state B, as explained in the preceding section. To

solve this weak form and find F, and g for different dislocation configurations.
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Chapter 111

Differential Geometry-Based Nonlinear Continuum Mechanics
Modeling and Numerical Analysis of Kink Deformation

3.1.  Introduction

Magnesium alloys possessing the long-period stacking ordered (LPSO) structure
demonstrate remarkable mechanical properties, including a lightweight composition, a yield
strength above 600 Mpa, and a satisfactory plastic elongation [10, 11, 12]. These alloys are
mostly made of magnesium, with trace amounts of zinc and rare earth metals. These
constituents organize into clusters that align along the basal plane of the hexagonal lattice,
producing a layered microstructure with the a-Mg and LPSO phases arranged in sequential
order. This unique microstructural feature is commonly known as the mille-feuille structure.
Previous research has revealed that kink deformation, a special kind of plastic deformation, is
the source of the improved mechanical characteristics of LPSO-Mg alloys. Consequently, kink
deformation has garnered considerable attention as a potential novel mechanism for enhancing
the strength of crystalline solids.

Orowan first proposed the idea of kink deformation in the 1940s after making an
important discovery while performing uniaxial compression on a single cadmium (Cd) crystal
[13]. This study notably looked at circumstances in which kink deformation developed when
the loading direction was parallel to the basal plane. Further studies employing Zn single
crystals conducted by other researchers verified the existence of kink bands [19, 20]. These
investigations revealed that kink deformation is common in multilayer structures when the
direction of active slip is restricted within a plane parallel to the compression direction.
Furthermore, a dislocation-based kink deformation model was put forth in light of Hess and
Barret experimental studies. By taking into account the avalanche of edge dislocations, this
model explains the nucleation, growth, and feature of severe bending deformation close to the
kink interface. It is presently unclear how to quantitatively validate this concept, despite the
fact that it offers a phenomenological knowledge of the macroscopic morphology and kink
microstructure.

Studies conducted by Tokuzumi and Inamura have revealed a strong correlation
between the generation of disclinations and kink deformation, based on both theoretical and
experimental evidence [21, 16]. However, the precise way in which the mechanisms of kink

deformation and disclinations contribute to strengthening the material remains unclear. One
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reason for the difficulty in understanding kink deformation is the challenge of using continuum
mechanics to model dislocations. Since the constitutive equation uses a linear approximation,
classical dislocation theory is unable to adequately explain stress fields surrounding the
dislocation core and nonlinear finite deformation [2, 1]. As a result, it is inappropriate for kink
deformation analysis. Subsequently, assuming a continuous distribution of dislocation density
and providing analytical solutions for nonlinear stress fields, Yavari and Goriely [6] have made
significant progress in developing a nonlinear continuum mechanics approach for dislocations
on the basis of differential geometry, which was first proposed by Kondo [7], Bilby et al. [8],
and Kroner et al. [9]. This theory, however, has drawbacks when it comes to kink deformation
analysis because it necessitates a high number of dislocations. In order to tackle these
challenges, Kobayashi and Tarumi [3] proposed a weak-form formulation of the geometrical
dislocation theory into finite element analysis. A dislocation-based model for kink deformation
that incorporates geometrical nonlinearity without leading to stress singularity can be
constructed by applying this theoretical framework.

This work aims to develop a kink deformation model based on dislocation using
differential geometry-based nonlinear continuum mechanics. Furthermore, we seek to analyse
the stress fields around a kink interface and find out how the kink deformation affects the
strength of LPSO-Mg alloys. Here, we provide a quick overview of the study. An outline of
the differential geometry based theory for dislocations is given in the next section. First, we
present the Riemann-Cartan manifold kinematics, which comprises three different states. More
specifically, taking into account the specified dislocation distribution, the intermediate state is
found using the Cartan first structure equation. The stress equilibrium equation for St. Venant-
Kirchhoff hyperelastic material is then derived in weak form. We solve these two governing
equations using the finite element method in order to do the numerical analysis. We next go on
to show the outcomes of the numerical analysis. First, we check that our model is accurate by
looking at the bending angle that the deformation field causes. Next, in order to comprehend
the kink growth process, we examine the elastic strain energy involved and examine the
accompanying stress fields. Finally, we examine how the elastic interaction of disclinations

and self-energy lead to material strengthening mechanisms.

3.2.Mechanics of Dislocations Using Differential Geometry
3.2.1. Kinematics of Riemann-Cartan manifold
The explanation of dislocation kinematics is elucidated within the framework of the

Riemann-Cartan manifold. This framework pertains to a preexisting mathematical framework
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[6, 3]. This mathematical framework consists of three different states of a continuum: the initial
state R, the intermediate state B, and the final state S. Moreover, these configurations are also

associated with the multiplication of the deformation gradients, expressed as F = F, - F,,.
Let's have a look at the local coordinate systems (dx!) = (dx!,dx?,dx?), (9¢) =
(91,9%,9%), and (dy') = (dy',dy?, dy?) that are defined on the three states. Deformation

gradients play a vital role in establishing the linear transformations that
9= (F)\dx), dyi =), dyl =Fdx =EL(E)dx).  (3.1)
= D j ) y - e/j ’ y — 1j - e/k\Ip j . .

Likewise, the right Cauchy-Green tensors can be defined using the deformation gradient in the
following manner.
I=6,;dd ®dx), C,=06,(E) (E)dx*® dx,
lj p l]'( p)k( p)l (3 2)
C = 6;; (M (F)]dx* ® dx".

Here, the symbol &;; represents the Kronecker delta, which is a mathematical notation
indicating the equality of two indices (i.e., §;; = 1ifi = j, and §;; = 0 if { # j), whereas ®
denotes the tensor product, a mathematical operation used to combine two tensors. Within this
notion, the plastic deformation is precisely characterized as a strain that occurs without any
accompanying stress. However, the Green strain tensor E' is extremely important in measuring

the extent of elastic strain. To calculate the elastic strain, we can use the Green strain tensor E.

Hence, the Green strain tensor can be represented by the equation provided below:
_ 1 _ 6kl kol k l i j (3 3)
E—E(C_Cp)—7(FiFj_(Fp)i(Fp)j)dx Q dx/. '

It is important to emphasize the elastic deformation corresponds to the process of incorporating
the intermediate state B to Euclidean space. In order to achieve the current condition §, we

minimize the elastic strain energy.

3.2.2. Cartan first structure equation

We define the intermediate state B as the Weitzenbdock manifold. Here, we may
determine the intermediate state by utilizing the dislocation density tensor [7]. As per Nye's
theory, the dislocation density tensor is the mathematical concept that describes the continuous

arrangement of dislocations [22]. For this situation, we may confidently use the dislocation
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density tensor « to model dislocations. This tensor is determined by combining the Burgers
vector b d/dx" and the dislocation line tangent vector anjkdxk. This allows us to accurately

represent the dislocations.
a = fbin/ 5, dx* @ — (3.4)
f J dxt '

Here, the dislocation density distribution function is defined by f. By linking the dislocation
density tensor a to the continuum kinematics discussed before, we may utilize the equivalence
between the torsional form and the dislocation density tensor a, as documented by Kondo [7].
To be more specific, the torsional form t of the intermediate state B and the dislocation density

tensor a are linked together through the Hodge star operator * [6],

3.5)

T=xa = fb'nlej dx* Adx' ® Pyt

where €y, is the fully antisymmetric tensor. Yavari and Goriely, as well as Kobayashi and

Tarumi, have previously shown that the torsion 2-form 7 is connected to the plastic
deformation gradient. It can be stated as follows:

. a(Fp)i- . (3.6)
Tt = axk] dxk A dx/,

Next, we derive the specific equations to be solved. By applying the exterior derivative operator

. AR
d to the dual frame 9* defined in Equation (3. 1), we obtain the formula d9* = a:k] dx¥ A

dx’. Comparing this expression with equation (3. 6), we have the following form

Tt = dv}, (3.7
Equation (3. 7) represents a mathematical formula of the Cartan first structure equation. In the
earlier investigation conducted by Kobayashi and Tarumi, they were able to effectively solve
the problem utilizing the homotopy operator [23]. However, if the dislocation arrangement for

a kink deformation is less symmetrical, this method cannot be employed. Thus, finite element

analysis is employed to numerically solve the equation.

3.2.3. Stress equilibrium equation
After successfully solving the Cartan first structure equation, we move on to the

elasticity equation. The Green strain tensor E, as calculated in Equation (3. 3) measures the
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value of the elastic strain. In our analysis, we confidently assume that the St. Venant-Kirchhoff
hyperelastic material incorporates the elastic strain energy of the continuum, thus expanding
the concept of linear elasticity into a nonlinear elasticity. Therefore, we express the strain
energy functional in the following manner

Wiy, o) = [ 5 el £ly, ol £1y, ol vlo) 2.9

Here, C[9]Y*! represents the elastic coefficients, whereas [9] = (detd) dx* A dx? A dx3
denotes the volume form. In order to simplify the analysis, we use elastic isotropy for the
elastic coefficients. Moreover, we may represent elastic deformation by utilizing the
variational principle of hyperelastic material. The strain energy functional is minimized by
evaluating the stationary condition, 6W = 0. Let’s assume that (h%) = (h%,h% h3)
represents the test function, which fullfills the constraint A = 0 on the Dirichlet boundary.

Thus, we can articulate the stationary state in the following manner

dh™ ay™ (3.9)

L CINH By =2 Ely, 110 18] = 0,

Equation (3. 9) represents the stress equilibrium equation, and is an important component of
the geometric theory of dislocations used to explain elastic deformation. In order to answer
this equation, we can confidently utilize the finite element approach and numerically solve
equation (3. 9).

3.2.4. Modeling kink deformation using dislocation-based approach

Based on the research conducted by Hess and Barret, we have successfully created a
deformation model called the ortho kink deformation model, which utilizes arrangements of
edge dislocations [14]. Here is an overview of the kink models used in this work, as shown in
Figure 3. 1. These models are in the form of rectangular parallelepipeds with normalized
dimensions: L, /b = 4,000, L,/b = 1,000 and L;/b = 1,000, where b represents the Burgers
vector magnitude. Here, we develop two models to examine the growth mechanism of kink
interface, as depicted in Figure 3. 1. Model | demonstrates a scenario in which the kink interface
expands from one side of the model, keeping an equal length. On the other hand, Model I
exhibits a situation when the Kkink interface expands from opposing directions while
maintaining a consistent length. The parameter H, ranging from 0 to L5, denotes the length of
the kink interface expansion. Since the dislocation of the two kink interfaces has different signs,

it may be inferred that the bending angle 0 at the interfaces is similarly opposite. Once the kink
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interfaces, H = L, are fully developed, both models produce the same deformation
microstructure known as ortho-kink. While the final microstructure will stay consistent, we
expect to see a noticeable variation because of the disclinations present at the tip of the kink
interfaces.

We used the continuous distribution theory of dislocations to model the planar
arrangement of edge dislocations on a kink interface. To be more specific, the dislocation
density is determined by utilizing the level-set function. We consider f as the dislocation
density funstion and d as the distance from the kink interface center. To keep things simple,
we will assume that the dislocation density follows a linear distribution, which can be

characterized by the following form:

1 d
£(d) ={ﬁ<1_ﬁ) d<R (3. 10)
0 d>R

Here, R is the radius of the dislocation core, whereas 1/RH is used as the coefficient for
normalization. As seen in Figure 3. 1, the arrangement of the dislocation closely mimics that
of a tilt grain boundary as the kink interface expands considerably. When the ortho-kink fully
penetrates the material, meaning H = L3, it causes a finite bending deformation 6 at the
interface. The bending angle & may be associated with the Burgers vector magnitude and the

distance between the dislocations at the kink interface, referred to as h, as expressed by [1, 15]

b
tan 6 = " (3.11)

We use the finite element method to perform numerical analysis. At first, we allocate
300 meshes for the x; direction, 10 meshes for the x,, direction, and 75 meshes for the x5
direction. This gives us a total of 225,000 meshes. Nevertheless, this degree of freedom is not
enough to achieve accurate numerical results. As a result, we do local mesh refinement,
especially around the kink interfaces. This leads to a total of 8 million degrees of freedom in
the numerical analysis. In addition, boundary conditions are crucial when it comes to modeling
kink deformation. In order to obtain precise measurements of the stress field caused by kinked
deformation, it is important to reduce any mechanical limitations that may arise from the
boundary conditions. Therefore, we assign a Neumann boundary condition that is free of
traction to almost all planes in the simulation area. However, in order to avoid any movement
in a straight line, displacements are restricted to zero on the x; = 0 plane. For this numerical
study, we set b = R = 1, which means that the dislocation core radius is equal to the magnitude

of the Burgers vector. Furthermore, the stress S;; is appropriately normalized by dividing it by
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the shear modulus, which is represented as S;; — S;;/G. Likewise, we can normalize the strain
energy by dividing it by the product of the Young modulus and the magnitude of the Burgers
vector. This can be expressed as W — W /(Eb3).

L, LY
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Figure 3. 1 depicts the dislocation model in ortho kink deformation, with the following
dimensions: L,;/b = 4,000, L,/b = 1,000, and Ls/b = 1,000. (a) illustrates Model I, in
which kinnk interface grows from the same side. Subsequently, disclinations with opposite
signs will develop, as depicted in (b). (c) describes Model II, which elucidates the growth of
the kink interface from opposing directions. In (d), a disclination emerges at the termination of

the kink interface, exhibiting identical form.

3.3.Numerical analysis results for kink
3.3.1. Validation of the ortho kink deformation

Our kink model, as depicted in Figure 3. 1, consists of two kink boundaries that have
arrays of edge dislocations, both positive and negative. Let’s emphasize that we can vary the
length of the kink boundaries, which is designated as H, to better comprehend the process of
ortho-kink growth. Therefore, this part will mainly concentrate on doing an initial quantitative
validation of our kink model by analyzing the whole growth state.

Figure 3. 2(a) shows an illustration of elastoplastic deformation obtained using
numerical analysis. The parameters used are h = 10b, L), =L} = L;/3, and H = L5. The
color representation indicates the amount of displacement from the initial state. Clearly, it is
evident from the figure that the region on the left, which spans from 0 < x; < L;/3, shows

minimal change. By applying the Dirichlet boundary condition on the x; = 0 plane, we ensure
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that there are no stiff body movements allowed in the model. Similarly, the next one-third
section (2L,/3 < x; < L1/3) only shows rigid body movement along the x; axis. This
suggests that there are no mechanical restrictions on kink deformation caused by the boundary
conditions. On the other hand, the magnitude of displacement is evenly distributed throughout
the kink interfaces. This unique deformation pattern occurs only when the kink interfaces
experience sharp bending. This result clearly shows the overall shape that is similar to the
ortho-kink seen in observations [14].

According to the lattice defects theory, a planar array of edge dislocations creates a tilt
grain boundary. The bending angle of this model is given by Equation (3. 11). This relationship
is employed to quantitatively validate the present model. Figure 3. 2(b) displays the association
between the bending angle 6 at the kink interfaces and the dislocation distance, which is
normalised by the Burgers vector, h/b. The FEM analysis findings are represented by the solid
circles, while the theoretical prediction derived from Equation (3. 11) is represented by the
solid curve. The outcome demonstrates a satisfactory level of concurrence with a minor
variation of under 13%. There are a few causes that could be causing this small divergence
from the theoretical expectations. These factors are mostly related to possible flaws in the
calculations. In general, while doing three-dimensional analysis, a significant number of
degrees of freedom are required, especially around the kink interfaces. Although we conducted
the present investigation with 8 million degrees of freedom, it is possible that the analytical

precision may still be insufficient.
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Figure 3. 2(a) shows the macroscopic deformation of the ortho kink model. Obviously, there is
a bending deformation surrounding the kink interface. The bending angle (b) is determined
using FEM analysis and it aligns quantitatively with the theoretical predictions, as described in
Equation (3. 11).
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3.3.2. Strain Energy

The ortho kink model has shown numerous crucial aspects. Firstly, it is clarified that
the pronounced bending deformation at a kink interface corresponds precisely to the Hess and
Barret model [14]. The outcome strongly indicates that the kink deformation originates from a
planar arrangement of edge dislocations. Thus, it is logical to propose that the onset of kink
formation is preceded by the generation of dislocation loops within an ideal crystal.
Nevertheless, the nucleation process may not be suitable for investigation using continuum
mechanics and may be more appropriate for atomic-level simulations such as molecular
dynamics. On the other hand, studying the energy and stress distribution in the growth process
is important in macro-scale analyses that use continuum mechanics. Multiple tests have
demonstrated that the kink interface expands during plastic deformation. However,
understanding the strain energy and the accompanying internal stress state is still a challenge,
as it necessitates nonlinear elastoplastic analysis. The increase in strain energy associated with
kink growth corresponds to the external work required for plastic deformation to occur.
Essentially, it denotes the ability of a substance to withstand deformation. This quantitative
analysis is important for comprehending the mechanics underlying material strengthening.
Therefore, the strain energy generated during the formation of a kink becomes essential.
Consequently, we will continue by making further measurements, namely measuring the
amount of strain energy in the material due to the length of the kink interface (H) and the
distance between kinks (L}).

At first, we made modifications to the kink interfaces (H) in the region of 0 to L5, with
an increase of AH = L3/10 for Model I. Concerning the distance between kinks, we set L} =
L,/3 and L, = L,/12. Figure 3. 3(a) depicts the strain energy associated with the length of the
kink interface, denoted as H. This figure illustrates the external work required to expand the
kink interface within Model 1. This outcome demonstrates that the energy exhibits nearly
perfect symmetry in relation to the length H and reaches its highest value at H/L; = 0.5. This
energy is represented as the pivotal energy point. More precisely, if the magnitude of the
external effort does not exceed this critical point, the kink can only expand until it reaches a
position that is counterbalanced by the applied external force. Exceeding this critical energy
point leads to the expansion of the interface, resulting in the formation of a microstructure
characterized by ortho-type kinks. Therefore, kink deformation can be understood as being
similar to a plastic buckling process characterized by mechanical instability. Figure 3. 3(b)

exhibits comparable outcomes derived from Model I, illustrating the same pattern as shown
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in Figure 3. 3(a) with the highest level of strain energy attained at H/L; = 0.5. In Model I, an
increase in energy levels is observed when the distances between the kink interfaces L become
longer. On the other hand, in Model Il, higher energy is linked to shorter L’ distances.

The analysis based on disclination is of significant value. According to the lattice defect
theory, it is established that a wedge disclination occurs at the end of a row of edge dislocations
[15]. Therefore, when examining the dislocation arrangement shown in Figure 3. 1, it can be
observed that two wedge disclinations appear at the ends of the internal dislocation rows within
the material (refer to Figure 3. 1(b) and (d)). Model I contains two wedge disclinations of
opposite signs, while Model Il contains two wedge disclinations of the same sign.

When the disclination signs are similar, they repel each other elastically, resulting in an
increase in strain energy as the distance between the kink interfaces, L} ', decreases. In contrast,
disclinations with opposite signs demonstrate elastic attraction, leading to a reduction in strain
energy as the distance between kink interfaces, denoted as L', increases. This elucidates the
disparity in energy levels between (a) and (b) in Figure 3. 3, which corresponds to alterations
in L. Furthermore, the energy profile is also affected by the existence of the free surface.
According to Figure 3. 2, when the kink interface is not well developed (i.e., when H is small),
the disclination is located close to the surface, leading to a lower amount of strain energy. In
contrast, when the disclination is of significant magnitude, it moves to the surface that is
opposite to its original position, leading to a decrease in strain energy as well. As a result, the
self-energy of the disclination is maximized at H/L; = 0.5, which corresponds to the point
farthest away from the surfaces. Therefore, the energy profile of kink growth is determined by
two main factors: the elastic interaction energy and the self-energy of disclinations. The energy
barrier functions as a mechanism that enhances the strength by requiring more effort to enable
the deformation of the material. The strengthening of the material caused by kink deformation
can be attributed to the creation of a disclination at the end of the kink interface growth front.

Another important conclusion derived from the results highlights the strong reliance of
the external effort required for kink deformation on the process of kink growth. This
emphasizes that it cannot be determined purely based on the shape of the kink deformation. As
previously mentioned, although the kink deformation shapes in both models look the same
when H/L; = 1.0, there is a considerable difference in the amount of external work needed.
For instance, when the inter-kink distance is reduced to L; = L, /12, the strain energy between
the two models varies by a factor of 2.7. The variation occurs as a result of the elastic interaction

energy between the disclinations. In contrast, when the distance between the kinks is greater,
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the strain energies of the two models almost coincide. Therefore, the elastic interaction between

kinks remains present to a distance of L} = L;/12, but decreases at a distance of L}, = L,/3.
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Figure 3. 3(a) displays the strain energy acquired from Model I, whereas (b) represents the
strain energy derived from Model Il. In Model I, the strain energy decreases as the kink
interfaces are closer together. In contrast, in Model 11, the strain energy increases because
disclinations with the same sign are in close proximity. It should be noted that the strain

energies are normalized by Eb3.

3.3.3. Analysis of stress fields resulting the disclinations

In the previous part, it was observed that when the kink interface length H/L; = 0.5, it
results in the maximum amount of strain energy due to the creation of wedge disclinations. An
important and fascinating question arises regarding the nature of the internal stress field that is
accountable for this state of maximal strain energy. In other words, what kind of internal stress
field forms near the wedge disclination at the growing front of the kink interface? Nevertheless,
this investigation has not been thoroughly examined due to many factors. Prior research on
disclination have predominantly utilized linear elasticity in their observations, in contrast to
the current work which is based on nonlinear elasticity. Linear elasticity is based on the
assumption of extremely small deformations, which means it cannot analyze a finite angular
change 6 caused by kink deformation. Furthermore, concerns arise with the occurrence of
stress singularity

In traditional classical lattice defect theory, it is assumed that there is an infinite increase
in stress at the centre of a lattice defect. This is analysed using the Dirac delta function [2, 1].
Unlike previous studies, the current research utilises a continuous level set function to depict
the dislocation array. This approach prevents the occurrence of stress singularities during the
analysis. The ultimate obstacle is the limitations imposed by boundary circumstances.

Traditional models of lattice defects typically focus on examining stress distributions in infinite
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structures, often neglecting finite systems that include free surfaces. As previously shown, the
presence of free surfaces has a substantial impact on the amount of strain energy, and this
applies to real-world materials as well. It is anticipated that the stress field will display distinct
distributions on the surface and in the inside. Hence, it is imperative to do a stress field analysis
within a limited area that includes free surfaces.

Figure 3. 4 illustrates the distribution of the second Piola-Kirchhoff stress S;; obtained

from Model | with a ratio of H/L; = 0.5 and L} = L,/3. Notably, we set h/b =5.6,
indicating a bending angle of approximately 6~10°. Figure 3. 4 (a), (b), and (c) depict the
normal stress components, whereas panels (d), (€), and (f) exhibit the shear stresses. It becomes
apparent that the three normal stresses, namely S;;, S,, and S;3, concentrate around the
termination point of the kink interface, rather than dispersing across the surface. Furthermore,
their arrangement in the cross-sectional direction highlights significant stress concentration
along the x5 axis, which coincides with the growth front of the kink interface. The absolute
values of the normal stress components are almost ten times more than the remaining three
shear stress components. This suggests that the normal stresses have a dominant influence on
the disclination's self-energy. Regarding shear stresses, the S,; component exhibits minimal
values, which are only found at the free surface. On the other hand, the S;, component remains
consistently tiny throughout the entire material. Therefore, the impact of these two shear
stresses on the strain energy seems insignificant. In contrast, the S;; component has significant
values that are spread out over the model. Therefore, S;5 plays a role in the long-distance
interaction between the disclination and other defects in the lattice.

Figure 3. 5 depicts the distribution of elastic stress fields obtained from Model | when
H/L5 isequal to 0.5 and L, = L,/12. There is no change in stress distribution since the shape
of the kink deformation remains the same; only the distance between kinks is modified. The
typical stress components shown in Figure 3. 5(a), (b), and (c) closely mirror those in Figure 3.
4, but there are noticeable quantitative differences. For example, there is a decrease in the
distribution of normal stresses combined with lower values of maximum stress. These changes
arise from the interaction of disclinations. Figure 3. 1(b) and (d) illustrate the presence of two
wedge disclinations with opposite signs at the kink interface tip. In Figure 3. 4, the normal
stresses in their vicinity display opposite signs. As a result, when these disclinations get closer
together, their stress fields cancel each other out, resulting in a decrease in strain energy. This
immediately leads to a reduction in the energy barrier associated with the distance between the

disclinations (see Figure 3. 3 (a)). Similarly, there are no substantial changes in the two shear
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stress components, S,5 and S;,. On the other hand, it is unexpected that the shear stress S; 3
between the disclinations of the same sign actually increases the elastic strain energy due to
their interactions. However, when compared to the typical stress, the magnitude of S;5 remains
minimal and therefore does not have a substantial effect on the energy barrier.

Figure 3. 6 and Figure 3. 7 provide an overview of the stress fields that were obtained
from Model 1. The disclinations created at the growing front of the kink interface show the
same signs, as shown in Figure 3. 1(b) and (d). As a result, the stress fields around these
disclinations also show the same signs. The strain energies derived from Model Il at the
distance L /3 roughly correspond to the results of Model I, as shown in Figure 3. 4(a) and (b).
This discovery implies that the distance L,/3 separating disclinations is sufficiently large,
resulting in the elastic interaction between them being insignificant. On the other hand, when
the distance between kink interfaces is decreased, it causes the wedge disclinations to repel
each other, resulting in an increase in strain energy. Moreover, Figure 3. 7 elucidates that this
extra energy mostly originates from the contribution of the normal stressS; ;.

The investigation of the stress field offers numerous important results regarding the
energy dynamics of the process of kink formation. Initially, the strain energy resulting from
the inter-kink distance L} = L;/3 mostly consists of the self-energies of the two disclinations.
This represents a typical energy barrier for unrestricted kink growth, without any elastic
interaction with other defects. To overcome this energy barrier, an external force is required to
enable plastic deformation, which ultimately determines the strength of kink-deforming
materials such as LPSO Mg alloys. Nevertheless, the energy barrier is significantly dependent
on the nearby microstructure because of the elastic interactions between disclinations at the
kink contacts and other defects. Hence, the energy barrier for plastic deformation might vary
considerably depending on the formation process, although having similar final kink
microstructures. Simply said, relying merely on the resulting kink microstructure after
deformation is inadequate for deducing the resistance to plastic deformation. Furthermore, the
shear stress component S;; plays a prominent role in the elastic interaction between
disclinations and other defects. It shows a wide distribution over a distance of approximately
1,000b. The Peach-Koehler force acting on a dislocation, as described by classical dislocation
theory, can be mathematically represented as F, =t; X (ai jbj) , where t;,0;;, and E;
respectively represent the tangent direction, linearized Cauchy stress, and Burgers vector of the
dislocation. The symbol x denotes the outer product. By making the simplifying assumption

that the second Piola-Kirchhoff stress S;; is equal to the linearized Cauchy stress g;;, we can
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observe that the shear stress fields S, 5 interact with dislocations that have Burgers vectors
parallel to the x3-axis. This approach is particularly fascinating when considering a hexagonal
lattice. The kink deformation in a hexagonal crystal is caused by the glide motion of a-type
edge dislocations on the basal plane, as stated earlier. In this situation, these dislocations
arrange themselves into arrays to create the kink interface, with the Burgers vector
(b, 0,0) specifically on the x5 plane. Hence, the S, 5 stress interacts with c-type dislocations
that are not in the same plane in the hexagonal lattice. Recent investigations have documented
the emergence of c-type dislocations on kink interfaces, maybe associated with the disclination

shear stress.
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Normalized stress

Figure 3. 4 shows the distribution of second Piola-Kirchhoff stress S;; generated from Model |

with H/L; = 0.5 and L} = L, /3. The normal stress components S;4, S,,, and S35 are depicted
in (a), (b), and (c), respectively. Meanwhile, (d), (e), and (f) depict the dispersion of the shear

stress fields.
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Normalized stress

Figure 3. 5 shows the distribution of second Piola-Kirchhoff stress S;; generated from Model |

with H/L; = 0.5 and L} = L,;/12. The normal stress components S;;, S,,, and S35 are
depicted in (a), (b), and (c), respectively. Meanwhile, (d), (e), and (f) depict the dispersion of

the shear stress fields.
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Figure 3. 6: shows the distribution of second Piola-Kirchhoff stress S;; generated from Model

Il with H/L; = 0.5 and L} = L,;/3. The normal stress components S;,, S,,, and Ss3 are
depicted in (a), (b), and (c), respectively. Meanwhile, (d), (e), and (f) depict the dispersion of

the shear stress fields.
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Figure 3. 7 shows the distribution of second Piola-Kirchhoff stress S;; generated from Model

Il with H/L; = 0.5 and L, = L;/12. The normal stress components S;,, S,,, and S5 are
depicted in (a), (b), and (c), respectively. Meanwhile, (d), (e), and (f) depict the dispersion of

the shear stress fields.
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Chapter IV

Investigation of the Presence of Disclinations in Ridge Kink
Deformation Through Quantitative Analysis

4.1. Research background

Layered structures are abundant in nature at different scales [24]. Examples include a
wide range of materials such as wood [25] and rocks [26], and are commonly seen in composite
33]. These materials, renowned for their stratified microstructures, have garnered considerable
attention, specifically magnesium alloys that incorporate the LPSO phase [11]. LPSO Mg
alloys are widely recognized for the outstanding mechanical characteristics, such as high-yield
strength and reasonable plastic elongation [11, 34]. Initially, the increase in mechanical
characteristics was ascribed to a reduction in particle dimensions. However, it is becoming
clear that the existence of the LPSO phase significantly contributes to the improvement of its
mechanical characteristics [10, 35]. LPSO structures are mostly formed by introducing Zn and
rare earth metals into magnesium alloys, which are subsequently distributed throughout the
hexagonal crystal lattice [37, 38]. Unlike traditional alloys, the LPSO structure exhibits a
distinctive characteristic of kink production during the process of deformation. The
extraordinary strength characteristics are associated with a special type of plastic deformation
called kink deformation [35, 39, 40]. Several investigations have been carried out to understand
the mechanism of strengthening, using methods such as grain size modifications and double
compression tests with different loading orientations [41-44]. Nevertheless, the specific
process by which kink deformation improves material characteristics is still not fully
understood.

In the 1940s, Orowan first noticed kink deformation on his experiments [13].
Experimental investigation revealed that subjecting a Cd single crystal to uniaxial compression
along the basal plane led to kink deformation. Additional evidence for this discovery was
provided by Jillson and Gilman [19, 20], who verified the occurrence of kink deformation when
subjected to compressive pressure. This phenomenon was observed not only in Cd single
crystals but also in other materials such as Zn single crystals. This finding confirmed the notion
that materials with a layered microstructure are susceptible to experiencing kink deformation
due to uniaxial compression. Hess and Barret subsequently proposed the dislocation-based kink

deformation theory [14], indicating the formation of kink band occurs through the interaction
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of edge dislocations arrangements with opposing signs interact with one other. Nevertheless,
their model was unable to completely elucidate the observed augmentation in material strength
linked to kink deformation. Recent research on kink deformation has revealed that disclinations
are crucial in improving the mechanical characteristics experiencing kink deformation [21].
However, disclinations did not receive much focus until Nabarro emphasized the crucial
significance in the deformation mechanism of layered materials. [45].

Volterra subsequently introduced the notions of dislocations and disclinations to the
theory of elasticity [2]. Prior research has shown that disclinations disclinations result in
notable stress concentrations and can impede the movement of dislocations [46, 48, 49]. Here,
the kink bands act as barriers to additional deformations [21]. Furthermore, it has been
hypothesized that disclinations occur at the terminations of kink bands, when the kink bands
are incapable of penetrating the material [16]. Nevertheless, there is a lack of extensive research
on disclinations, which makes it difficult to accurately verify their existence in kink
deformation using quantitative methods. Quantitative confirmation of disclinations requires the
Frank vector measurement that signifies the intensity of disclinations [46]. Nazarov et al.
conducted a theoretical investigation to determine the misorientation angle in tilt grain
boundaries. Nevertheless, they failed to discuss the method for quantifying the intensity of
disclinations, as indicated by the Frank vector [50].

Despite numerous efforts to prove the existence of disclinations, preciesly determining
the Frank vector in any dislocation arrangements still requires careful consideration [51, 21].
An obstacle that affects these measures is that previous investigations were carried out in
traditional Euclidean space, neglecting the implications of the Riemann-Cartan manifold [6,
52]. This constraint arises due to the presence of residual tensions in objects containing
disclinations. Using the initial configuration, as typically done in conventional space, is
insufficient. One way to address this issue is to break down the deformation gradient into elastic
and plastic parts at a local level. This involves incorporating differential geometry to effectively
model disclinations. Disclinations in Riemannian manifolds are associated with the curvature
tensor in differential geometry. Hence, the lack of torsion and curvature tensors in a
conventional space makes it inappropriate for disclination modeling. In addition, the holonomy
method provides a technique for identifying curvature based on the concepts of differential
geometry.

This study aims to identify the existence of disclinations within kink microstructure

using measurement of the Frank vector. To accomplish this objective, we propose the
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utilization of the holonomy technique to assess the Frank vector of disclinations within

different dislocationo arrangements.

4.2.  Formulation of Lattice Defect Theory Using Differential Geometry
4.2.1. Dislocation Kinematics

The dislocation theory employed in this course adheres to a mathematical framework
rooted in the Riemann-Cartan manifold [6, 3]. The mathematical framework states that the
motion of a continuous material can be described using three separate configurations: the initial
reference configuration R, an intermediate configuration B, and the current configuration S.
To be more precise, the reference configuration represents an ideal crystal, the intermediate
configuration is a hypothetical state that accounts for a lattice mismatch caused by defects in
the lattice and only involves plastic deformation, and the current configuration is a state of
mechanical equilibrium that encompasses both plastic and elastic deformations. Thus, these
arrangements are linked to the multiplication-based breakdown of the deformation gradient,
where F = F, - F,. Here, F, and F, represent the plastic and elastic deformation gradients,
respectively.

Consider the line elements in three configurations: (dx) = (dx!, dx?,dx?), (9%) =
(¥1,9%,9%), and (dy') = (dy*,dy? dy®). The Riemannian metrics gg, gz and gs can be
defined in three different configurations using linear transformations.

gr=6;;dx' ®@dx), gp= 6ij(Fp);(Fp){ dx* ® dxt,
gs = 8ij(F)L(F)] dx* ® dxt.

In this context, 6;; and @ denotes the Kronecker and the tensor product, respectively. The

(4.1)

magnitude of elastic strain in the present state could be determined according to equation above,
using the Green strain tensor E. It is calculated as the discrepancy between the Riemannian

metrics in the current and intermediate states, as shown in the following equation.

1 O . ; i j
E = 5 (gs —9gp) = %((Fe)}c(Fe){ - (Fp)k(Fp)l) dx* @ dx'. (4.2)
In addition, the elastic strain is derived from the mapping of the intermediate configuration to

the conventional space by minimizing the strain energy.
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4.2.2. Determination of the plasticity equation
In the theory formulated by Nye [22], it has been suggested that dislocations can be

represented using the dislocation density tensor a. This tensor is defined as the result of

multiplying the Burgers vector b % with the dislocation line tangent vector nj6jkdxk.
. 9]
a = fbn) Gedx* @ =—. (4.3)

In this context, the function f denotes the dispersion of dislocation density. In addition, Kondo
[7] noted that the dislocation density tensor « in solid mechanics is equivalent to the torsion 2-
form t in differential geometry when the Hodge star operator * is applied, such that T =* «..

To be more exact, we possess

d
oxV

The symbol €, represents a permutation tensor. Furthermore, this torsion also implies that the

t=xa = (fbin'e,y) dx/ AdxF ® (4.4)

dislocation density can be distributed in any manner in relation to this characteristic. Previous

studies [6, 3] have previously demonstrated that the torsion 2-form 7 is connected to the plastic
deformation gradient F, in a specific manner.

Cow),

Tt = Ep dx" ANdx/.

Similarly, from the local coordinate system in the intermediate configuration, we have the

i

(4.5)

relation 9* = (Fp); dx’. Thus, it can be stated that the Cartan first structure equation can be

expressed in the following form

T = do. (4.6)
Here, d stands for the exterior derivative operator. In accordance with our research group [53],
the homotopy operator has been successfully used to solve Equation (4. 6). However, it is not
suitable for cases with lower symmetry, such as kink deformation. Hence, the finite element

method is employed to numerically solve Equation (4. 6).

4.2.3. Elasticity equation

Let y be a continuous function that maps the intermediate B to the current S
configurations, meaning it embeds the Riemann-Cartan manifold into Euclidean space. The
mapping of this embedding can be described as elastic deformation, and the magnitude of this
deformation can be quantified using the Green strain tensor, as defined by Equation (4. 2).

Additionally, we posit that the elastic strain energy of the continuum is characterized by the St.
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Venant-Kirchhoff hyperelastic material. Thus, we can express the strain energy functional for

the material that demonstrates kink deformation as follows.
1 ..
w = f > CUME Ey, det FydV. 4.7)

Furthermore, it is feasible to ascertain the state of equilibrium for the strain energy functional
described in Equation (4. 7) by applying the variational principle of hyperelastic material in a
manner that ensures that SW = 0. Let (k') = (h', h?, h®) denote the trial function that fulfills

the case h‘ = 0 on the Dirichlet boundary. Thus, the need for the system to be in a stationary

state can be formulated as

N dh™ ay"
f CUkLS, Py %Ekl detF, dV = 0. (4.8)

This equation is referred to as the stress equilibrium equation. In the geometrical dislocation

theory, the weak form equation is employed to calculate elastic deformation.

4.2.4. Measurement of Frank vectors using the holonomy approach

In order to prove the existence of disclinations, we employed the holonomy technique,
which is a concept derived from differential geometry. This approach is employed to measure
the Frank vector, which serves as an indicator of the strength of disclinations [46]. Disclinations
are regarded as curvature tensors in accordance with the geometric theory of defects [6, 52].
Evaluating the curvature would verify the presence of disclinations. In order to do curvature
analysis, we build a Riemannian manifold that demonstrates non-zero curvature. Here, the
holonomy approach offers a means to ascertain and quantify curvature.

A crucial element entails utilising the Levi-Civita connection, denoted as Fi’j, which
provides a relationship for each point in the tangent plane of a closed curve on the Riemannian

manifold. This l“l-’j Is derived from the Riemannian metric in the intermediate state and is also
related to the plastic deformation gradient F,. Therefore, the plastic deformation gradient F,
allows for the calculation of l“i’j using the Riemannian metric, as specified in Equation (4. 2).

Hence, the formulation for the Levi-Civita connection is stated as follows.

g™ <agli 091 agij)

rk = . .
Y 2 \dxJ  oxt Ox!

4.9)

In order to utilize the holonomy approach for quantifying the Frank vector, the first step
entails the identification of a closed surface, referred to as c, within the Riemannian manifold.

Next, it is postulated that the closed surface is a Frank circuit. Commencing from a specified
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point on the Frank circuit, the vector X undergoes parallel transport along the Frank circuit

until it returns to its original location, obtaining in the vector X,. The angular disparity between

X, and X, ultimately corresponds to the holonomy angle, denoted as w. The translation vector
X can be obtained by solving the equation below [54]:

i

ot

The angular disparity between these vectors is computed with the holonomy approach,

+ Theixk = 0. (4. 10)

presumed to represent the Frank vector, resulting in the following expression.

w = COS_1< gB(Xs: Xe) ) (4 11)
\/gB(Xs' Xs)\/gB(Xe'Xe) '

Afterwards, the outcomes derived from the holonomy approach is contrasted with the smal-
angle grain boundaries theory. [1].

Here, we utilize the finite element approach for our numerical analysis. In order to
facilitate this investigation, we construct a 2D square model with a mesh count of 320 in both
the x; and x, axes, yielding a total of around 102,400 meshes. Consequently, there is a need
for localized mesh refinement at the kink boundaries. As a results, localized mesh refinement
along the kink boundaries and their endpoints, leading to a total number of DOF exceeding 11

million.

4.3.  Quantitative verification of the holonomy approach

The verification of the holonomy approach is conducted on several dislocation
configurations. This quantitative validation entails the comparison of the numerical analysis
derived from holonomy approach with the predictions proposed in the thory of grain boundary
[1]. In order to carry out this comparison, a square model with two dimensions is created. The
dimensions are normalized and expressed as L,/b = 1,000b and L,/b = 1,000b. The notion
of continuous dislocation density is used to model an arrangement of edge dislocations on a
kink interface. To streamline the study, we use a linear dislocation density distribution as

described below:

1 d
Q) =[H<1_E> d<R (4.12)
0 d >R

Here, R represents the dislocation core radius, whereas L is the length of the kink boundary.

The normalized coefficient is given by 1/RL . Subsequently, we enlarged the region
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surrounding the kink interface with the intention of quantifying the disclination within this
specific area, as shown in Figure 4. 1.

The first dislocation model investigates the situation where the Burgers vector is
aligned in the x; direction (see Figure 4. 1(a)). The dislocation distance h/b in this
configuration varies from 5 to 100, whereas the Frank circuit radius is determinedto be R./b =
50. A crucial point to emphasize is that the alignment of the rotation axis parallel to the
disclination line results in the formation of a wedge disclination [15]. Moreover, the
disclination is believed to form by means of a continuous dislocation distribution, which are
depicted as kink bands. The importance of applying the idea of continuous distribution in this
investigation is emphasized, as elucidated in Equation (4. 12). The magnitude of disclination
rotation is expressed as [1, 15]:

b
Wtheory = 2sin~? (H) (4.13)

Undoubtedly, the Li disclination model is unquestionably better suitable assessing
misorientation angles in high-angle grain boundaries. Hence, the model devised by Gertsman
is superior for smaller misorientation angles. Nevertheless, as this work is the initial endeavor
to quantitatively assess the Frank vector using the holonomy approach, we have decided to use
the Li model and we will compare our theoretical predictions [55]. Figure 4. 1 (b) displays the
results obtained through holonomy approach and predictions given by the theory of grain
boundary. The black circles depict the outcomes derived from the holonomy study, whereas
the solid curve corresponds to the predictions. This comparison study indicates the holonomy
approach aligns well with the predictions described in Equation (4. 13). Furthermore, there is
a clear pattern in which the size of the Frank vector escalates as the proximity between
dislocations diminishes. The increase in intensity is ascribed to the greater concentration of
dislocations created at the kink boundary, which occurs when the proximity between
dislocations diminishes. An further crucial aspect pertains to the assessment of the Frank vector
when the kink band exhibits an angle v, as depicted in Figure 4.1(c). The presence of tilted
kink interfaces is a common occurrence in kink deformations, particularly in ridge kink models.
Therefore, this aspect has significant importance. The angle i is adjusted between -40 and 40

degrees in this specific configuration.
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The Burgers vector direction aligned with the x; direction, while maintaining a consistent
dislocation distance of h' /b’ = 5 along the x, axis. Therefore, alterations in the interface angle
directly affect the theoretical prediction, which is represented as a function of the interface

angle, denoted as:

b’ cosy ) (4 14)

Wiheory = 2 sin™?! <m

The numerical analysis and theoretical predictions based on Equation (4. 14) are shown
for various interface angles, ¥, in Figure 4. 1 (d). Significantly, the magnitude of the Frank
vector decreases notably when the interface angle deviates from ¢y = 0. This phenomenon
arises due to the progressive change in the angle of the interface, resulting in a decrease of
dislocation density in kink boundary. This reduction is attributed to the consistent spacing
between dislocations in the x, axis, namely h'/b" = 5. However, the holonomy analysis
constantly shows a quantitative concurrence with the predictions, even when taking into
account different interface angles.

The validation procedure proceed with the Burgers vector aligned in parallel to the kink
interface, as shown in Figure 4. 1(e). Similarly to the preceding scenario, the validation of the
Frank vector encompasses a range of dislocation distances, specifically from 5 to 100, where
h/b is the ratio of the dislocation height to the Burgers vector. Given the parallel alignment of
the Burgers vector with the kink interface, it is expected that the magnitude of the Frank vector
will be zero. The expectation is verified by the holonomy study depicted in Figure 4. 1(f),
where a slight discrepancy is observed at h/b = 5. Nevertheless, as the majority of data points
constantly match the theoretical prediction, this tiny divergence might be deemed insignificant.
Although a significant amount of degree of freedom, exceeding 11 million, was employed, it
is still considered inadequate for achieving accuracy at short dislocation distances. However,
the results obtained from the holonomy analysis demonstrate a close agreement with theoretical
predictions, even in cases where the Burgers vector aligns parallel to the kink interface.

In order to complete the validation procedure, we examine a dislocation configuration
where the direction of the Burgers vector is always perpendicular to the kink interface. We then
systematically change the angle ¥ of the interface. In a manner resembling the situation
depicted in Figure 4. 1(b), the interface angle covers a range of -40 to 40 degrees while keeping
the dislocation distance constant at h/b = 5. Figure 4. 1(h) illustrates small discrepancies
between the results obtained from the holonomy study and the theoretical expectations. The

changes mostly occur as a result of computational inaccuracies, even though mesh refinement
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is implemented around the kink interface. Nevertheless, despite these minor inconsistencies,
the largest variation detected is 4.6%, which confirms the ongoing accuracy of calculations
using the holonomy method. Essentially, despite these little variations, the outcomes derived
from the holonomy study of the four dislocation configurations confirm the efficacy of this
approach in accurately quantifying the disclination Frank vector in various dislocation

arrangements.
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Figure 4. 1 provides a validation of holonomy method across several dislocation configurations.
(a) represents the dislocation arrangement when the Burgers vector is perpendicular to the kink
interface, whereas (b) displays the outcomes of the holonomy analysis. Subsequently, the

results of holonomy analysis, denoted as (c) and (d), are obtained specifically when the kink
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interface exhibits an angle. The conditions for obtaining (e) and (f) occur when the Burgers
vector is aligned. Finally, (g) and (h) are acquired while the interface angle always changes,

and the Burgers vector remains perpendicular to the kink interface.

4.4.  Numerical analysis results
4.4.1. Simulation of a ridge kink deformation

The preceding section has illustrated the concurrence between the holonomy approach
and the predictions [1]. This presentation showcases the effectiveness of the holonomy
approach in evaluating the Frank vector in different dislocation arrangements. However, the
previous validation was limited to a single kink interface. Thus, we broaden the utilisation of
the holonomy method to a model of kink deformation characterised by a ridge structure. Here,
we have created a kink deformation that involves three sets of edge dislocation arrays
represented by the kink interface [14]. Figure 4. 2 (a) presents a summary of the ridge-type
kink deformation in a two-dimensional model. The dimensions are normalised with L, /b =
1,000 and L,/b = 1,000. One array is linear and exclusively comprises positive edge
dislocations, whereas the other two diagonal arrays consist of negative edge dislocations. In
addition, given the slip plane is limited to basal slip, we orient the Burgers vector parallel to
this plane, namely in the x; direction.

This work emphasises three crucial factors that impact the evaluation of the Frank
vector magnitude: the ratio of dislocation distance to Burgers vector, the angle between
interfaces, and the ratio of the radius of the Frank circuit to the Burgers vector. The dislocation
distance along a linear kink interface is defined within the range of 5 to 100 times the Burgers
vector length h/b, while the interface angle ranges from 10 to 40 degrees v, and the radius of
the Frank circuit runs from 5 to 100 times the Burgers vector length R./b. Our assertion is
based on the presence of dislocations within a single slip plane. Therefore, the dislocations on
the diagonal interface are aligned in the same direction as those on the linear kink interface.
Figure 4. 2(b) displays an example of the ridge-type kink model obtained from numerical
analysis. It exhibits an interface angle of ¥ = 20° and a dislocation distance of h/b = 5.
Nevertheless, because of the unclarity of the dislocation density distribution, we focus on
examining the region around the tip of the kink interface. This precise area is where we assess
the Frank vector. The enlarged area of the kink interface, indicated by a yellow dashed box in
Figure 4. 2(b), is shown in Figure 4. 2(c). The dimensions of this extended region are L7 /b =

50 and L, /b = 50. The figure clearly shows a uniform distribution of dislocation density
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along the kink contact, which is important for applying the theory of continuous dislocation

density distribution described by Equation (4. 12).
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Figure 4. 2(a) depicts the ridge kink deformation model, where the dimensions are specified as

L;/b = 1,000 ans L,/b = 1,000. (b) shows the macroscopic deformation of the ridge kink
model. (c) presents the distribution of dislocation density, as marked in yellow box in (b).

4.4.2. Macroscopic deformation of the ridge kink model

The ridge-type kink deformation consists of three kink interfaces that are defined by
both positive and negative planar arrays of edge dislocations. The objective of this part is to
confirm if the macroscopic deformation matches the characteristic patterns reported in
experimental ridge-type kink models [21]. In order to achieve this objective, we methodically
manipulate the dislocation distance within the range of 5 to 100 times the ratio of the dislocation
height to the Burgers vector, denoted as h/b, and the interface angle between 10 and 40 degrees,
denoted as . The results constantly show a clear pattern: when the dislocation distance along
the kink interface decreases, there is significant macroscopic deformation. This correlation is
consistent with the anticipated outcome, as shorter distances of dislocation result in a greater
density of dislocations along the kink contact. This observation bears resemblance to the
investigation conducted by Pranoto et al. on ortho-type kink deformation [49], suggesting that
shorter distances between dislocations lead to higher bending angles. Hence, the number of
dislocations generated at the kink interface has a direct impact on the magnitude of
macroscopic deformation.

Figure 4. 3 illustrates the macroscopic deformation at various interface angles, while
keeping the dislocation distance at a ratio of of h/b = 5. Significantly, there is a clearly visible
protrusion on the upper surface of the model, which is a defining feature of the ridge kink

model and aligns with experimental findings [21]. This notable feature manifests as an elevated
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region with two contrasting subregions, mimicking a protuberant structure. The degree of this
significant deformation is considerably controlled by the magnitude of the interface angle.
More precisely, when  is equal to 10°, the intense deformation is limited to a certain region.
This region then gradually expands as the contact angle increases, as depicted in Figure 4. 3(a)
through (d). The macroscopic deformations produced from numerical analysis correspond
qualitatively with those found in experimental research, which validates the accuracy of the
model.

Displacement magnitude

Figure 4. 3 shows the macroscopic deformation of the ridge kink model at different interface
angles. More precisely: (a) ¥ = 10°, (b) ¥ = 20°, (¢) Y = 30°, and (d) Y = 40°.

4.4.3. Application of the holonomy method into ridge kink deformation

The comprehensive validation conducted in the preceding section, which specifically
targeted a singular kink interface, has convincingly shown that the holonomy approach fits
quantitatively with the theoretical predictions put out by the grain boundary theory [1]. The
consistency of these findings across different dislocation arrangements clearly suggests the
dependability of the holonomy method in accurately evaluating the intensity of disclinations
by measuring the Frank vector. Therefore, the purpose of this section is to expand the use of
the holonomy method to the ridge kink model in order to accurately verify the presence of
disclinations. The ridge-type kink model consists of three kink interfaces, as shown in Figure

4. 2(a). The theoretical expression for measuring the Frank vector is as follows:
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Wieheory = (2 sin™! (%) ) — <2 X 2sin7t (2% cos?y )) (4. 15)

In order to begin our investigation, we examine the Frank vector at various dislocation
distances ranging from 5 to 100. We maintain a fixed radius of the Frank circuit atR./b = 50,
while altering the interface angles. Figure 4. 4(a) displays the results obtained from the
holonomy study in conjunction with the theoretical forecasts. The holonomy analyses are
depicted using green open squares, blue open triangles, and red open circles, which correspond
to interface angles of 20°, 30", and 40°, respectively. The solid curves depict the theoretical
predictions based on Equation (4. 15) for each interface angle, aligning with the color schemes
of the holonomy analyses. The holonomy investigations at various interface angles show a
significant correlation with the theoretical expectations. This highlights the flexibility of the
holonomy analysis, expanding its usage to not only single kink interfaces but also ridge-type
kink models. Significantly, there is a clear pattern that develops, indicating that the Frank
vector generally increases as the distance between dislocations decreases. Furthermore, the
magnitude of the Frank vector consistently grows as the interface angle increases.

We will now analyze the Frank vector in relation to the radius of the Frank circuit. We
will modify the Frank circuit radii within the range of 5 < R./b < 100, while also adjusting
the interface angles between 20° < < 40°. It is crucial to mention that, for the sake of this
investigation, we established the dislocation distance as h/b = 10. Figure 4. 4 displays the
magnitude of the Frank vector determined by analyzing holonomy across four different
interface angles. The data points are depicted using various forms and colors: green unfilled
squares indicate 20°, blue unfilled triangles represent 30°, and red unfilled circles denote 40°.
The solid curves represent the theoretical predictions for each interface angle, which are
consistent with the colors assigned to the holonomy analysis. The results consistently
demonstrate a uniform size of the Frank vector, irrespective of changes in the radius of the
Frank circuit. In essence, the magnitude remains same regardless of variations in the radius of
the Frank circuit. Moreover, the highest magnitude of the Frank vector corresponds to an
interface angle of 40 degrees, which is consistent with the observations presented in Figure 4.
4(a). Although there is a little difference between the holonomy studies and the theoretical
predictions, this difference is most noticeable at the 40° contact interface. However, on average,
the deviation remains less than 9%. Therefore, despite these minor variations, the holonomy
study shows significant quantitative agreement with the theoretical expectations.

The examination of the ridge kink model reveals several points. The holonomy
approach is a reliable and effective technique for measuring the Frank vector in various
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dislocation configurations, including both singular and multiple kink interfaces, such as those
found in the ridge-type kink deformation model. We find a considerable link between the Frank
vector and both the dislocation distance and the interface angle. Significantly, we find no
discernible correlation between the magnitude of the Frank vector and the radius of the Frank
circuit. This indicates that the magnitude of the Frank vector remains constant regardless of
variations in the radius of the Frank circuit. The presence of disclinations in kink deformations

is efficiently demonstrated using Frank vector measurements achieved using the holonomy

method.
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Figure 4. 4(a) shows the magnitude of the Frank vector acquired for the dislocation distance

at various interface angles, whereas (b) represents the Frank vector with respect to the radius

of Frank circuit

4.4.4. Analysis of stress fields caused by disclinations

The magnitude of the Frank vector is determined by two crucial parameters: the ratio
of dislocation distance to Burgers vector (h/b) and the interface angle (y). Conversely,
variations in the Frank circuit's radius R./b appear to have minimal effect, suggesting that
changes in the circuit's size do not affect the magnitude of the Frank vector. Nevertheless, the
importance of the magnitude of the Frank vector becomes evident when the distance of
dislocation diminishes, and it increases significantly with greater interface angles. An
important discussion emerges over the impact of the Frank vector's size on the distribution of
the elastic stress field. The distribution of this stress field is mainly observed around the tip of
the kinks, where disclinations are formed. However, prior research has not fully explained the
finding of this elastic stress field due to multiple limitations.

Figure 5 displays the distribution of the elastic stress fields obtained from the ridge-

kink model, taking into account interface angles of 10 and 40 degrees. More precisely, we have
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established the dislocation distance to be h/b = 5 along a linear kink interface. The upper
figures illustrate the distribution of stress fields obtained at an interface angle of 10 degrees,
while the bottom figures portrays the distribution of stress fields obtained at an interface angle
of 40 degrees. Subfigures (a) and (b) depict the normal stress components, whereas subfigure
(c) illustrates the shear stress component at the 10-degree interface angle. Following that,
subfigures (d) and (e) provide the normal stress components, whereas subfigure (f)
demonstrates the shear stress for the interface angle of 40 degrees. It should be emphasized that
a stress field study was performed for interface angles of 20 and 30 degrees as well, however,
these particular findings are not included in this discussion.

In order to begin our study, we investigate the distribution of stress fields that
correspond to a 10-degree interface angle. The model exhibits prominent stress concentrations
mostly in the upper region, while the concentration at the tip of the kink interface is rather
modest. More precisely, the concentration is only present at the abrupt protrusion in the S;;
normal stress component. In contrast, both the S,, normal stress and the shear stress S;, exhibit
a high level of concentration at the higher point of the inclined kink interface, with a small
dispersion observed around the ridge kink structure. Defining the stress field distribution at the
kink interface tip within the material is a challenging task. The uncertainty emerges because of
the short interface angle, which leads to a reduced magnitude of the Frank vector. When the
interface angle is modest, the dislocations around the kink interface tip are located in close
proximity. The presence of dislocations with opposite Burgers vector signs on the same slip
plane results in attractive interaction, effectively canceling each other out. However, when the
interface angles reach 40 degrees, the stress field exhibits a wider and more broad dispersion.

The stress field distribution at an interface angle of 1 = 40° is illustrated in Figures
5(d) to (f). These figures demonstrate a far wider distribution osf the stress field. When
examining the normal stress component S, 4, it is not only present in the sharp protrusion but
also extends towards the lower part near the termination of the three kink interfaces. The
expansion is caused by the greater separation between dislocations near the kink interface tip,
which enables each dislocation array to create its own elastic stress field. Likewise, the stress
distribution found in component S, is not confined around the ridge kink structure; instead, it
expands outward beyond the kink interface. Furthermore, the magnitudes of all the normal
stress components exceed those of the shear stress components, emphasizing the crucial role
of normal stress in enhancing material strength, supporting the previous findings of Pranoto

and colleagues [49].
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The examination of the stress fields yields numerous significant observations. The
Frank vector has a substantial impact on both the absolute values and the spatial distribution of
the stress fields. When the magnitude of the Frank vector is modest, the stress concentration is
minor and mostly limited to certain spots in the top area of the model. Nevertheless, when the
scale of the Frank vector grows, the elastic stress fields dispersion widens. Furthermore,
regardless of the angle circumstances of the kink interface, the magnitudes of the normal stress
components greatly exceed those of the shear stress components. This emphasizes the increased
impact of the typical stress components in controlling the strength of materials in kink
deformation situations, such as LPSO-type magnesium alloys. Furthermore, the dispersion of
the stress field in the S;, shear stress component plays a role in the interaction between
disclinations and other defects, due to its wider distribution throughout the medium. The Peach-
Koehler force exerted on dislocations, as described by classical dislocation theory, can be
mathematically represented as Fj, = t; X (ai jbj), where t;, o;; and b; represent the dislocation
tangent direction, linearized Cauchy stress, and Burgers vector, respectively. The cross symbol
X represents the outer product. Here, we assume that the elastic stress is equivalent to the
linearized Cauchy stress.

The analysis of the stress fields provides several key observations. Primarily, the
magnitude of the Frank vector significantly influences both the absolute values and the spatial
distribution of the stress fields. There exists a direct correlation between the magnitude of the
Frank vector and both the absolute values and the spatial spread of the stress field. When the
Frank vector magnitude is small, the stress concentration is minimal and confined primarily to
specific points in the upper region of the model. However, as the magnitude of the Frank vector
increases, the distribution of the elastic stress fields expands. Additionally, across all interface
angle conditions, the absolute values of the normal stress components substantially surpass
those of the shear stress components. This highlights the heightened influence of the normal
stress components in governing material strength in kink deformation scenarios, such as LPSO-
type Mg alloys. Moreover, the stress field distribution within the shear stress component S;,
contributes to the interaction between disclinations and other defects, owing to its broader
distribution across the medium. According to classical dislocation theory, the Peach-Koehler
force acting on dislocations can be expressed as Fy = t; X (aijbj), where t;, 0;;, and b; denote
the dislocation tangent direction, linearized Cauchy stress, and Burgers vector, respectively.
Here, the cross symbol x signifies the outer product. In this scenario, we assume that the second

Piola-Kirchhoff stress corresponds to the linearized Cauchy stress. Hence, the Peach-Koehler
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force escalates in direct proportion to the linearized Cauchy stress, thereby augmenting the
impediment encountered by dislocations, rendering their movement more arduous owing to the

resistance exerted by the stress field.

(a). (b). |
(d). (e). (f)
Lox,

Figure 4. 5(a), (b), and (c) represent the stress field distributions obtained at an inteface angle

m |
Normalized stress

of 10 degrees, whereas (d), (e), and (f) represent the stress distributions obtain at an interface

angle of 40 degrees.
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Chapter V

Modeling and Numerical Analysis of Eshelby Twist and Twist Boundary
Based on Differential Geometry

5.1.  Introduction

Nanomaterials, characterized by dimensions on the nanoscale, exhibit distinctive
mechanical properties that differ from their bulk counterparts. The strength and malleability of
metals at this size have garnered significant interest because of their potential use in ensuring
the dependability and ease of production of small-scale devices [56]. It is vital to underscore
that material properties within this scale range exhibit size-dependent characteristics. The
surface area-to-volume ratio of nanoscale materials is substantially higher than that of larger-
scale counterparts, and this factor plays a crucial role. Consequently, the increased surface area
enhances interactions between nanomaterials and their surrounding environments, resulting in
strengthened material properties. However, despite their excellent mechanical properties, it is
noteworthy that nanomaterials can also exhibit lattice defects, such as dislocations. Therefore,
understanding the behavior of dislocations in nanomaterials is crucial for effectively
controlling their mechanical properties.

The formation mechanism of nanowires is typically understood to entail a vapor-liquid-
solid process, in which metal particles serve as catalysts to promote nucleation and induce
growth in a single direction [57]. Zhang [58] discusses another method of nanowire generation
that involves an axial screw dislocation. Eshelby performed a theoretical examination of screw
dislocations that were oriented in parallel with the axis of a rod during the 1950s [59]. His work
demonstrated that screw dislocations generate torque in the finite medium, resulting in twisting
deformation, now recognized as the Eshelby twist. Subsequently, Zhu and colleagues, using
transmission electron microscopy (TEM), identified chiral branched nanowires with an axial
screw dislocation at the central axis [60]. Notably, no screw dislocation was detected in the
branches. This observation aligns with the studies of Bierman et al., who reported that the
growth mechanism of one-dimensional nanowires is not catalyst-dependent but is instead
driven by an axial screw dislocation along the length of nanowires [18]. Furthermore, twisting
deformation in nanowires can also occur when two screw dislocations intersect perpendicularly,
resulting in what is known as a twist boundary. However, the study on nanowires induced by

twist boundaries has not received widespread attention.
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The aim of this study is to demonstrate the resemblance in twist deformation caused by
the Eshelby twist and twist boundary models, utilizing nonlinear continuum mechanics

grounded in differential geometry.

5.2. Geometrical theory of dislocations
5.2.1. Riemann-Cartan manifold

We present a concise overview of the geometric theory of dislocations on the Riemann-
Cartan manifold, as formulated by Yavari and Goriely [6], and also by Kobayashi and Tarumi
[3]. In this theoretical framework, the kinematics of continuum mechanics can be described in
three unique configurations: the reference R, intermediate B, and current § configurations. The
interconnection of these configurations is achieved via the multiplicative decomposition of the
deformation gradient. To analyze the motion of a continuous material, local coordinate systems
are used for each configuration. These coordinate systems are denoted as (dx!)=
(dx',dx?,dx?), (9¢) = (9%,92,9%), and (dy') = (dy?,dy? dy®). Thus, the connection

between both coordinate systems is explained in the following manner:
, i , . .. , . . . k .
0t = (Fp)jdxj’ dy' = (F)j9/, dy'=Fdx) = (Fe);(Fp)j dx’. (5.1)
From now on, we will use the summation convention for indices that are repeated. Likewise,

we can express the Riemannian metrics gg,gg and g, for the reference, intermediate, and

current configurations using the deformation gradients.
gz = 8ydx' @ d), g = 8,;(F,). (F,) dx* ® dx,
gs = 6ij(Fe)lic(Fe){l9k ® "

In these formulas, §;; represents the Kronecker delta, and & signifies the tensor product. By

(5.2)

applying the principles of elastoplasticity theory, the elastic strain may be obtained by
analyzing the Green strain tensor E. The amount of the elastic strain is established by
comparing the Riemannian metrics in the current and intermediate configurations. The Green
strain tensor can be represented using the following expression:
1 8ij [ i i J
E=>(gs—gs) = 7(F,;F/ ~ (£,). (R,)]) dx* ® dx. (5.3)

Furthermore, the elastic deformation is determined by include the intermediate configuration
B within the conventional three-dimensional Euclidean space. More precisely, this mapping

process produces the current configuration by reducing the elastic strain energy.
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5.2.2. The dislocation density tensor and Cartan first structure equation

To simulate dislocations in nanowires, we utilise the notion of continuous distribution,
which is represented by the dislocation density tensor [22]. The dislocation density tensor
consists of two components: the Burgers vector, represented as b* 8/ (dx") , and the tangential
vector along the dislocation line, defined as n/ Sjkdx". The dislocation density tensor is defined

as follows:
o 0
a = fb'n/ §j, dx* @ Fpe (5. 4)

The symbol “f” represents the continuous distribution function that defines the dislocation
density. As per Kondo's hypothesis [7], the dislocation density tensor and the torsion 2-form
are aligned within the context of differential geometry. Hence, the utilisation of differential
geometry is crucial when applying the theory of continuous dislocation distribution. The
connection between the dislocation density tensor and the torsion 2-form is formed by applying

the Hodge star operator, as defined in Equation (5. 5)

o . 0

T=*q= Zfblnfejkldxk ANdx) @ T (5.5)
j<k

The symbol €, denotes the permutation tensor. Moreover, there is a link between the torsion

2-form 7 and the plastic deformation gradient F,, as evidenced by the following equation.

d( F,
Tt = ( p)] dx® A dx/. (5. 6)
dxk

i

By substituting 9 with (Fp)j,dxj in Equation (5. 1) and incorporating it into Equation (5. 6),

we derive the ensuing expression
t = do'. (5.7)

This expression is recognized as the Cartan first structure equation.

5.2.3. Stress equilibrium equation and elasticity equatioon

Let’s begin by examining a continuous mapping, represented as y, that describes the
transformation of the intermediate configuration B within the Riemann-Cartan manifold into
the current configuration S in Euclidean space. The present configuration § is derived by
reducing the elastic strain energy using the St. Venant-Kirchhoff hyperelastic model, as
mentioned previously. To be more precise, the strain energy functional is formulated in the

following manner.

51



1
W = L EcijklEijEkl det deV (5 8)

The elastic coefficients in this expression are represented by the symbol C; ;. To simplify the
analysis, we assume elastic isotropy by introducing a normalized shear modulus G = 1 and a
Poisson ratio G = 1. In accordance with the variational principle, the attainment of the
stationary state for the strain energy functional, W = 0, results in the elastic deformation of
hyperelastic material. Here, we propose the introduction of a test function (hi) = (h', h% h3)
that satisfies the constraint A’ = 0 at the Dirichlet boundary. Therefore, the condition of being

stationary can be expressed in the following manner
oh™ ay™
JR CijkiOmn Il 97 Lt detF, = 0. (5. 9)

This equation depicts the state of stress equilibrium in a weak form.

5.2.4. lIsogeometric analysis

This section addresses the two equations: the plasticity and the elasticity equations
numerically through isogeometric analysis (IGA). IGA is a variant of the Galerkin method that
employs non-uniform rational B-spline (NURBS) basis functions. NURBS basis functions are
utilized in IGA to concurrently represent the geometric shape and perform numerical analysis
of the domain [61]. The Cox-de Boor recursion formula provides a way to express B-spline

basis functions.

B(,i '(ti)=—§i_€’ii Bf i i () + et~ Bl . +(t),  (5.10)
Uip") g, =gl TUhet-1) g, . —gi CUpt-)\ S '
pt+Jt Jt pit+ji+1 Ji+1

J¢ represents the element number, p' denotes the polynomial degree of B-spline basis
functions, and & refers to the knot vector. The zero th-order B-spline function, denoted as
B(yi)(t"). isequal to 1if & < &' < & . Otherwise, B( i ,)(t'). The NURBS basis function
is defined by utilizing the B-spline basis function in a manner that
1 — pl 1 2 2 3 3
N'(t) = 3(111,1)(15 )B(]z,pz)(t )B(]3,p3)(t ). (5.11)

Here, t = (t1,t2,¢3) is set on the left side, and subscripts (J1,J2,J3) on the right side are
collectively represented by subscript I. Let n be the number of all NURBS basis functions

constructed in this way, then the coordinates (x*) of each point in the reference configuration
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R, the unknown function (yy*) and the test function (k) are given by coefficients (x}), (v})

and (h!) can be expressed as follows.

n

X =) AN'©, Y= Z VINI(D),  Ri(E) = Z RIN' (). (5.12)

I=1
Obviously, the coefficient x} can be determined from the reference configuration R of the
continuum to be analyzed. The coefficients y} and h! are taken such that y‘ = 0 and h! = 0
at the Dirichlet boundary I',. By substituting Equation (5. 11) into (5. 7), we obtain a nonlinear

equation simultaneously with the remaining coefficient y} as unknown.

5.2.5. Dislocation-based modeling for nanowires

The current investigation involves the construction of nanowire models with two
unique dislocation configurations. Figure 5. 1(a) and (b) depict visual illustrations of the
Eshelby twist and twist boundary models, respectively. The Eshelby twist model is constructed
by placing a single screw dislocation at the center of the model. Conversely, the twist boundary
model is formed by the intersection of two screw dislocations, subsequently distributed along
the longitudinal direction of the nanowire, as shown in Figure 5. 1(b). Moreover, it is important
to emphasize that the dimensions of these models are normalized by the magnitude of the
Burgers vector, denoted as b. Here, both L, and L, share equal lengths within the range of
10 < L,/b < 10°. Moreover, the length of L; is tenfold greater than that of L.

In order to represent the screw dislocations in both configurations, we utilize the theory
of continuous dislocation density distribution. In this context, the variable f represents a
function that describes the dislocation density, while the variable r represents the distance from
the center of the dislocation core. The continuous distribution of dislocation density is

expressed as follows.

3 r
f) ==z (1-%) TSR (5. 13)
0 r>R

Here, 3/mR? is the normalized coefficient and R denotes the radius of dislocation core.
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Figure 5. 1 (a) illustrates the dislocation configuration for the Eshelby model, whereas (b)

shows the dislocation configuration for the twist boundary model.

5.3.  Numerical analysis results
5.3.1 The influence of material size on deformation

The nanowire model consists of two distinct dislocation configurations, as depicted in
Figure 5. 1. These configurations consist of a single screw dislocation for the Eshelby twist
model and arrays of screw dislocations for the twist boundary model. Additionally, the Eshelby
twist model is labeled as Model I, while the twist boundary model is reffered to as Model 1.
Importantly, the model dimensions are adjustable to investigate the size dependence of the
nanowires. Thus, we vary L; within the range of 10 < L,/b < 1,000, and L5 set at 10 times
the length of L;.

Figure 5. 2 illustrates the macroscopic deformation obtained from both models. Figures
(@) to (d) show the macroscopic outcomes from the Eshelby twist model, while Figures (e) to
(h) depict the macroscopic deformation from the twist boundary model. From the resulting
macroscopic deformation, several following points can be drawn as follows. First, the twisting
deformations observed in Model | (see figures (a) to (d)) agree with the experimental results
conducted by Eshelby. Notably, the twisting deformation maintains uniformity along the
longitudinal direction of the nanowire, validating the accuracy of the model derived through
numerical analysis. The second noteworthy point pertains to the twisting deformation
generated by Model Il. Although the similarities exist between the twisting deformation
produced by Model I and I1, a fundamental difference lies in the twist distribution. In Model 11,

the twisting deformation is non-uniform; specifically, it is localized around the dislocation.
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This observation is attributed to the distribution of dislocation density within the dislocation
core.

These results imply that the twisting deformation in nanowires is not solely attributed
to a single screw dislocation but instead emerges from arrays of screw dislocations, as
illustrated in the twist boundary model. However, to induce twisting deformation in Model Il
requires the Burgers vector to maintain the same sign. Differing signs of the Burgers vector
within the twist boundary model do not result in twisting deformation. This is closely related
to the distribution of plastic deformation field, which will be discussed in more detail in the
next section. Additionally, we note that the degree of twisting deformation is prominent in
smaller dimensions. However, as the material dimensions increase, the degree of twisting
deformation gradually decreases. This observation underscores the size-dependence of the
material. This suggests that twisting deformation is limited to small-scale materials and is not

observed on a larger scale, even though dislocations are present at larger scales.
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Figure 5. 2 shows the macroscopic deformation derived from the Eshelby twist and twist
boundary models. The twisting deformation in the two models exhibits similarity, despite the
differences in dislocation configurations. (a) through (d) represent the twisting deformation
demonstrated by the Eshelby twist model, whereas (e) through (h) illustrate the twisting

deformation obtained by the twist boundary model.

5.3.2 Strain energy for the Eshelby twist and twist boundary models
In the previous section, we have discussed how twisting deformation in nanowires
becomes more pronounced as they decrease in size. However, the underlying mechanisms of

twisting deformation increased significantly at smaller dimensions remains insufficiently
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elucidated. Therefore, this section aims to clarify the reasons for the increasing significance of
twisting deformation by examining strain energy across different dimensions. Figure 5. 3
shows the twist angle and strain energy obtained at various model dimensions.

Figure 5. 3 (a) distinctly demonstrates that the twist angle exhibits significant
prominence at smaller dimensions. More precisely, as the dimensions of the model increase,
the twist angle gradually decreases, highlighting the manifestation of the size effect. For a
deeper insight into twisting deformation, we further investigated by quantifying strain energy
in both models. Consequently, Figure 5. 3(b) illustrates the magnitude of the strain energy
across several model dimensions. Evidently, the strain energy exhibits a monotonic decreases
as the model dimensions increase. Thus, this observation helps to clarify why the magnitude

of the twist angle diminishes notably at larger dimensions.
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Figure 5. 3(a) represents the twist angle obtained by the Eshelby and twist boundary models,
while (b) corresponds to the strain energy. Here, both the twist angle and strain energy decrease

as the model dimensions increase.

5.3.3 The distribution of plastic deformation fields

As the Eshelby twist and twist boundary models manifest similar twisting deformation
despite significant differences in their dislocation configurations, it is apparent that the twisting
deformation from the Eshelby twist model demonstrates uniformity along the longitudinal axis
of the nanowires. Conversely, the twist deformation induced by the twist boundary model
appears non-uniform, primarily localized around the twist boundary. Hence, the objective of
this section is to examine the similarity in twisting deformations induced by both models
through the distribution of the plastic deformation field, which is derived from the Cartan first
structure equation.

Figure 5. 4 showcases the plastic deformation field distribution obtained from the

Eshelby twist model. According to the Cartan first structure equation, we obtain the plastic

deformation gradient for three components: F,”, F,>, and F,>. However, only the £, and F,”

56



components are visualized, as the Fpi component exhibits comparatively lower values.
Specifically, Figure 5. 4(a) portrays the distribution of the Fpi component in the reference

configuration, while Figure 5. 4(b) illustrates the plastic deformation field distribution in the
current configuration. Similarly, Figure 5. 4(c) and (d) depict the distribution of plastic

deformation field in the reference and current configurations for the Fpi, respectively. In the

reference configuration, it is observed that the plastic deformation field distribution
concentrates around the dislocation core. However, the plastic distribution field not only
concentrates at the dislocation core but also extends outward, reaching the surface due to the
influence of the free surface. Moving on to the current configuration, we observe that the plastic
deformation field rotates counterr clockwise around the x5 axis. Consequently, the Eshelby
twist model induces twisting deformation, which has been confirmed through experimental
study.

Remarkably, although both the Eshelby twist and twist boundary models demonstrate
similar twisting deformations, there exists a contrast in the distribution of the plastic
deformation field, even though both demonstrating rotation about the x5 axis. Figure 5. 5
portrays the plastic deformation field obtained from the twist boundary model. In contrast to
the distribution in the Eshelby twist model, the twist boundary model showcases four distinct

components: F,, F,., and F,?. Figure 5. 5(a) illustrates the F, component in the reference

configuration, while Figure 5. 5(b) depicts it in the current configuration. Notably, the plastic
deformation field in the current configuration also induces a counterclockwise twist along the
X3 axis. This twisting phenomenon is also evident in the other three components displayed in
Figure 5. 5(d), (f), and (h). Consequently, the plastic deformation field observed in the twist

boundary model results in a twisting deformation to that of the Eshelby twist model.
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Figure 5. 4 presents the distribution of the plastic deformation fields obtained from the Eshelby

twist model. (a) represents the Fpi component acquired in the reference configuration, while
(b) represents it in the current configuration. (c) and (d) show the sz components acquired in

the reference and current configurations, respectively.

There exist fundamental distinctions between the Eshelby twist model and the twist
boundary model. For instance, in the Eshelby twist model, if the sign of the Burgers vector is
reversed from positive to negative, a twisting deformation still emerges but in the opposite
twisting deformation. This contrasts with the mechanism of twist deformation in the twist
boundary model. To induce twist deformation in the twist boundary model, it is essential for
the sign of the Burgers vector to remain consistent. For instance, Figure 5. 5 is generated using
a Burgers vector with a positive sign. When the sign of the Burgers vector differs, twisting
deformations do not manifest in the twist boundary model, as the plastic deformation fields
counteract each other, preventing the formation of twist. These findings further confirm that
the twisting deformation in nanowires, typically attributed to the presence of screw dislocations,
as explained by the Eshelby twist model, can similarly arise through the twist boundary model

with the same sign of the Burgers vector.
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Figure 5. 5 exhibits the distribution of plastic deformation field obtained by the twist boundary

Plastic deformation

model. (a) shows the distribution of the plastic deformation field on the Fpi component in the

reference configuration, while (b) illustrates it in the current configuration. Similarly, (c) and

(d) show the Fp; components, (e) and (f) illustrate the Fp; components, and (g) and (h) depict

the F,2 components.
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Chapter VI

General Conclusion

6.1 Ortho-type Kink deformation
The current study involved the utilization of dislocation-based modeling and numerical

analysis to examine kink deformation microstructure. Special focus was given to the energy

and kinematics of the disclination that formed at the tip of the kink interface. The conclusion
can be succinctly stated as:

(1) The ortho-type kink deformation model is formulated by utilizing planar arrays of edge
dislocations. The dislocation density is constructed using a level-set function, and
numerical analysis is performed on the Cartan first structural equation and stress
equilibrium equation using the finite element method. The numerical simulation has almost
8 million degrees of freedom.

(2) The current numerical analysis provides evidence that our model accurately replicates the
pronounced bending deformations at the kink interface, which aligns with the appearance
of the ortho-type kink deformation reported in experimental studies. The bending angle 8
has been quantitatively verified by comparing it with the prediction provided by grain
boundary theory. With the exception of small calculation mistakes caused by the absence
of finite element meshes, there is a satisfactory confirmation of agreement for the analysis
of kink deformation.

(3) The strain energies are assessed for the growth process of the two kink models. The findings
indicate that the energy exhibits symmetry in relation to the interface length H, resulting in
the highest value when the kink interface tip is positioned at the middle of the model,
namely when H/L; = 0.5. Additionally, we discovered that the magnitude of the strain
energy may be ascribed to both the self-energy and elastic interaction energy of the
disclinations.

(4) The stress field study showed that the magnitude of the normal stress components is
approximately ten times higher than the shear stresses. Therefore, the normal stresses
contribute to the self-energy of the disclinations. Nevertheless, due to the concentration of
normal stress components in the vicinity of disclination cores, it is improbable for long-
range elastic interactions to take place. In order to have a successful interaction, the distance
should be no greater than 1,000b.

60



(5) Applying an external force is necessary to surpass the barrier of strain energy and enable
plastic deformation to occur via kink deformation. Therefore, the energy directly influences
the magnitude of deformation in materials susceptible to kinking. Nevertheless, the energy
is greatly influenced by the development process, making it impossible to deduce the plastic

deformation resistance just from the kink microstructure acquired post-deformation.

6.2 Ridge-type kink deformation
We utilized the holonomy method, which draws upon ideas from differential geometry, as

a means of identifying disclinations in kink deformations. We conducted a thorough

examination with meticulous validations and analysis of both a single kink interface with

various dislocation configurations and the more intricate ridge-type kink deformation model.

The following is a concise summary of our main findings and conclusions:

(@) The holonomy method was thoroughly validated on a single kink interface, which included
a wide range of dislocation configurations. The results demonstrated a robust concurrence
between the holonomy method and the theoretical forecasts generated from the grain
boundary theory. This validation highlights the precision of the method in measuring the
Frank vector across a wide range of dislocation configurations. The holonomy method was
applied to the ridge-type kink deformation model, resulting in a quantitative agreement
with the theoretical predictions of the grain boundary theory. Thus, this method effectively
verified the existence of disclinations in kink deformations.

(b) The development of the ridge kink model entailed the utilization of the level-set function
to depict three planar arrays of edge dislocations. The magnitude of the Frank vector is
intricately linked to both the magnitude and spatial arrangement of the stress field. When
the magnitude of the Frank vector is modest, the level of stress concentration is minimal,
mostly concentrated at specific spots in the upper region of the model. On the other hand,
when the Frank vector magnitude grows, the elastic stress field dispersion widens.
Furthermore, irrespective of the interface angle, the magnitudes of the normal stress
components continuously surpass those of the shear stress components.

(c) The holonomy method was implemented to the ridge kink deformation model, showing a
quantitative agreement with the theoretical predictions derived from the grain boundary
theory. This application success validated the existence of disclinations in kink

deformations, hence demonstrating the trustworthiness of the approach.
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(d) The magnitude of the Frank vector is primarily influenced by two key factors: the ratio of
dislocation distance to Burgers vector (h/b) and the angle of the interface (1), as indicated
by numerical analyses. Conversely, variations in the radius of the Frank circuit R./b had a

comparatively minor impact on the magnitude of the Frank vector.

6.3 Eshelby twist and twist boundary
The current study involved dislocation-based modeling and numerical analysis of the
Eshelby and twist boundary models, resulting in the following conclusions:
(a) The magnitude of twist angles is notably significant at small scales in both the Eshelby
twist and twist border instances, showing the manifestation of size dependence.
(b) The Eshelby twist is characterized by the influence of two plastic deformation components

on the twisting deformation, whereas the twist boundary is influenced by four plastic
deformation components. More precisely, the Eshelby model is controlled by the Fpi and
Fp; components, whereas in the twist boundary model, it is influenced by components F, ;
1 2 2
Fp3, Fp1 and Fp3.
(c) For the twist boundary model, only Burgers vectors that have the same sign are capable of
inducing the twisting deformation.
(d) We have effectively proven that the introduction of twist deformation in nanowires may be

achieved not only through the utilization of the Eshelby twist model, but also by employing
the twist boundary model.
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