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Abstract

This thesis delves into the intricacies of linear regression in machine learning, specifically focusing on
its applications in diverse dimensions, causal discovery, and managing model complexity as follows:

We first study how dropout layers in neural networks can mitigate the double descent phenomenon. We
demonstrate theoretically and empirically that optimal dropout in linear models can prevent this phe-
nomenon. We estimate the true coefficients using a generalized ridge-type estimator and show that op-
timal dropout leads to a monotonic test error curve, even in nonlinear neural networks. This finding
suggests the effectiveness of dropout regularization in managing risk curves and explains the absence of
double descent in models employing similar regularization techniques.

Then we extend the Linear Non-Gaussian Acyclic Model (LiNGAM) to Functional LiNGAM (Func-
LiNGAM), capable of handling infinite-dimensional data, such as fMRI and EEG datasets. This devel-
opment addresses the limitations of the original LiNGAM in processing such complex datasets. We the-
oretically validate the identifiability of causal relationships in these high-dimensional spaces and employ
functional principal component analysis to manage data sparsity. The effectiveness of Func-LiNGAM is
demonstrated through synthetic and real fMRI data analysis.

In conclusion, this thesis presents a comprehensive exploration of linear regression in machine learning,
contributing to both theoretical understanding and practical methodologies. By focusing on two inter-
connected areas—the application of Func-LiNGAM in infinite-dimensional spaces for causal discovery
and the effective use of dropout regularization to address the double descent phenomenon—we have ad-
vanced the knowledge of linear regression’s versatility. These studies offer valuable insights into the
field and provide practical tools for dealing with complex, high-dimensional datasets. They showcase
the potential of linear operators in advancing machine learning research.

i



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Organization and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Functional LiNGAM 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Linear Non-Gaussian Acyclic Model (LiNGAM) . . . . . . . . . . . . . . . . . 7

2.2.2 Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.3 Random functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Extension to Functional Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 LiNGAM for Random Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 LiNGAM for Random Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.3 Causal Inference in Multivariate Scenarios . . . . . . . . . . . . . . . . . . . . 16

2.4 The Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

ii



CONTENTS iii

2.6 Actual Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Dropout Drops Double Descent 24

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Drop Double-Descent in Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.1 Monotonicity in Sample Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.2 Monotocity in Model Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.3 Multi-layer CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6.1 Proof of Theorem 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.7 Experiment Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.7.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Conclusion and Future work 39

4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 Double Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.2 Functional Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



CONTENTS iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



List of Figures

2.1 Structure learning methods like the PC algorithm cannot distinguish these causal graphs that have

the identical probability distribution P (X1X2)P (X2X3)/P (X2) (Left). But LiNGAM can dif-

ferentiate them via the non-Gaussian assumption (Right). . . . . . . . . . . . . . . . . . . . . 5

2.2 Illustration of why the original LiNGAMdoes not work. The Left Graph: original two
stochastic processes with their causal relationships; The Right Graph: a possible situation
where we sample the time series but miss the causal relationship. . . . . . . . . . . . . . 7

2.3 Illustration of Why Func-LiNGAMWork. (Smoothing: Functional data analysis) The
Left Graph: with the worst situation when we sample the time series and miss the causal
relationship, where we get g and f have no causal relationship. The Right Graph: we
can complete the discrete points into smooth curves with the Functional data analysis,
capturing extra information when choosing suitable bases. . . . . . . . . . . . . . . . . 8

2.4 Illustration of Different Kinds of Multivariate Time Series Causal Graphs. Left:
Full-time; Middle: Window; Right: Summary (this paper). . . . . . . . . . . . . . . . . 19

2.5 Brain Connectivity Graphs (Left: 2D , Right: 3D). . . . . . . . . . . . . . . . . . . . . 23

3.1 Test Risk of Sample-Wise Double Descent with Dropout. γ denotes the probability
of dropout as R. The number in the legend is the present probability. p = 500 and
the sample size of the x-axis. The sample distribution x ∼ N (0, Ip), y = xTβ∗ + ϵ,
ϵ ∼ N (0, 0.25), β∗ ∼ U(0, 1) and ||β∗||2 = 1. . . . . . . . . . . . . . . . . . . . . . . 25

3.2 The Largest eigenvalue of Sample Correlation Matrix (Q ∈ Rn×p). X-axis denotes
the number of sample n, Y-axis denotes the magnitude of largest eigenvalue and n ∈
N, p = 500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

v



LIST OF FIGURES vi

3.3 Test Risk with Number of Sample in linear regression with Dropout probability 0.8.
The test error curves decrease with the optimal dropout rate. The X-axis in this figure is
the dimension of the parameter (0.8 is a pseudo-optimal value). The Y-axis is test risk. . 32

3.4 Test Risk with Number of Sample in Nonlinear Model with Dropout using Fashion-
Mnist. The test error curves are decreasing with optimal dropout. X-axis: sample size;
Y-axis: Test risk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Test Risk with of model size in Linear Regression with Dropout. The test error curves
decrease with the optimal dropout rate. X-axis: the dimension of the parameter; Y-axis:
Test risk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Test Risk with Number of width parameter in 5 layer-CNNwith Dropout. The x-axis
is CNN width parameter (left: 0% label noise with Adam; right: 20% label noise with
SGD). We can see dropout drops double descent.(γ: present rate) . . . . . . . . . . . . . 34

3.7 Train Loss with width parameter in 5 layer-CNN with Dropout (left: Adam, right:
SGD). X-axis is CNN width parameter . . . . . . . . . . . . . . . . . . . . . . . . . . 34



List of Tables

2.1 Evaluation of Func-LiNGAM with various number p of functions. The causal graph is
as f1 → f2 → · · · → fp (50 trials). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

vii



Chapter 1

Introduction

1.1 Motivation

Causal Discovery with Functional Data Analysis: It’s crucial to emphasize the significance of apply-
ing functional data analysis to neuroimaging data, particularly in EEG causality studies. Functional data,
inherently infinite-dimensional, necessitates specialized approaches like Func-LiNGAM. Conventional
models may lead to incorrect causal inferences, as standard methods may overlook the intricate struc-
ture of such data. Functional data analysis, through techniques like smoothing, reveals hidden patterns
and connections, crucial for accurate causal discovery in EEG data. This approach, already impactful in
various fields, offers a robust framework for unraveling complex causal relationships in brain activity,
making it pivotal for advancements in neuroimaging and related research areas.
Double Descent: Dropout is a well-established regularization technique for training deep neural net-
works. Its primary objective is to prevent ”co-adaptation” among neurons by randomly excluding them
during training (Hinton et al., 2012). Dropout’s effectiveness extends across various machine learning
tasks, ranging from classification (Srivastava et al., 2014) to regression (Toshev and Szegedy, 2014).
Notably, dropout played a vital role in the design of AlexNet (Krizhevsky et al., 2012), significantly
outperforming its competitors in the 2012 ImageNet challenge. Given dropout’s proven efficiency in
mitigating overfitting (Srivastava et al., 2014) and its wide applicability, we propose that it may signifi-
cantly mitigate the double descent phenomenon. This leads us to the following question:

Under what conditions and how does dropout mitigate the double descent phenomenon?

We acknowledge that the double descent phenomenon exists under both sample-wise and model-wise

1



CHAPTER 1. INTRODUCTION 2

conditions. This paper investigates its occurrence in both linear and nonlinear models to enhance test
performance while avoiding unexpected non-monotonic responses. Eliminating the double descent phe-
nomenon has indeed become a prominent research topic. For instance, ridge regularization can alleviate
double descent (Nakkiran et al., 2021b), as can early stopping (Heckel and Yilmaz, 2021).

1.2 Organization and Contribution

The thesis is organized as follows: In Chapter 1, we briefly introduce the motivation of this thesis and
present a summary of contributions. In Chapter 2, we propose an infinite-dimensional causal discovery
framework for functional data. In particular,

Contribution of Chapter 2:

• We establish a framework for discovering causal orders for random vectors and functions, moving
beyond the traditional focus on random variables.

• We theoretically prove that it is possible to identify the causal order under non-Gaussianity for
random vectors (Theorem 5).

• We further demonstrate the identifiability of the causal order for non-Gaussian processes in infinite-
dimensional Hilbert spaces (Theorem 8).

• To verify the validity of our method, we performed extensive experiments with simulated data
as Table 2.1. Empirical results demonstrate the identifiability. The results show that it performs
worse as the number of functions increases, which is reasonable. But as the sample size increases,
it performs better. We need more data for larger dimensions, but the required amounts are still
reasonable.

In Chapter 3, we theoretically prove that dropout can drop double descent. In particular,

Contribution of Chapter 3:

• Eliminating the Sample-Wise Double Descent. We empirically validate the monotonicity of the
test error as the sample size increases (see Figure 3.1) and theoretically prove the monotonicity of
the second-order Neumann series test error. We plan to detail the exact solution in future work.

• Eliminating the Model-Wise Double Descent. We empirically demonstrate the monotonicity of
the test error as the model size increases.
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• Multi-layer CNN.We provide empirical evidence showing that dropout can alleviate the double
descent in multi-layer CNNs.

In Chapter 4, we summarize the proposed methods and provide a comprehensive discussion of their
strengths and limitations. We also provide a discussion about possible directions for the follow-up work.



Chapter 2

Functional LiNGAM

2.1 Introduction

Numerous empirical sciences strive to uncover and comprehend causal mechanisms that underlie a wide
range of natural phenomena and human social behavior. Causal discovery has a wide range of applica-
tions, including biology (Sachs et al., 2005), climate studies (Ebert-Uphoff and Deng, 2012), and health-
care (Lucas et al., 2004). When determining the cause-and-effect relationship between variables, such
as X1 and X2, detecting their dependence alone is insufficient for determining the causal direction, i.e.,
whether X1 → X2 or X2 → X1.

Causal analysis based on the LiNGAM, proposed by Shimizu et al. (2006), addresses this challenge by
identifying the causal directions in linear relationships. Specifically, supposing there is no latent common
cause forX1 andX2, it figures out the causal direction between them by checking which of the following
two models holds: X2 = aX1 + ϵ and X1 = a′X2 + ϵ′, where X1 ⊥⊥ ϵ and X2 ⊥⊥ ϵ′ and a, a′ ∈ R.1

The sufficient and necessary condition of the identifiability is that LiNGAM requires at most one of the
noise terms (including the root causes) to be non-Gaussian to make it possible to identify unique causal
directions. Notably, zero correlation is synonymous with independence in Gaussian variables, making it
impossible to distinguish between the two causal models whenX1 and X2 are Gaussian.

In this linear, Gaussian case, one can only end up with the so-called Markov equivalence class (all mem-
bers of the equivalence class have the same conditional independence relations), even when adhering
to faithfulness assumption (Spirtes et al., 2000; Pearl, 2000). For instance, the three Directed Acyclic
Graphs (DAGs) connecting three variables, such as X1, X2, X3, in Fig. 2.1 are Markov equivalent be-

1X1 ⊥⊥ X2 denotes the independence ofX and Y .

4
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Figure 2.1: Structure learning methods like the PC algorithm cannot distinguish these causal graphs that have the
identical probability distribution P (X1X2)P (X2X3)/P (X2) (Left). But LiNGAM can differentiate them via the
non-Gaussian assumption (Right).

cause they have the same distribution in the Gaussian case. Here faithfulness refers to the property where
any independence relations observed in the data can be explained by the causal relationships represented
in the graphical model. However, this is not the case anymore in non-Gaussian cases. Due to this signif-
icant advancement, LiNGAM can uniquely determine the causal ordering among variables solely based
on observational data, even without assuming faithfulness.

For the converse, the Darmois-Skitovich theorem (D-S) is employed to prove the identifiability of causal
direction. From D-S, if at least one of the variables X1 and X2 are non-Gaussian, then only one unique
direction of X1 → X2 and X2 → X1 exists. The Darmois-Skitovich (D-S) theorem originally focused
on one-dimensional Gaussian random variables. Interestingly, Ghurye and Olkin (1962) expanded its
application to random vectors, while Myronyuk (2008) generalized it to Banach spaces. In our paper,
random elements that take values in a Banach space are called random functions.

This paper establishes a novel functional framework for modeling the causal structure of multivariate
functional data, which is the realization of random functions. It is important to note that functional data
is inherently infinite-dimensional. If we apply conventional models such as PC or LiNGAM directly,
we might incorrectly identify causal relationships, as shown in Fig. 2.2. To demonstrate the benefits of
functional data analysis (Ramsay and Silverman, 2005), we provide an example in Fig. 2.3, illustrating
how smoothing the discrete points enables us to capture missing information. Functional data analysis
has gained prominence in diverse fields, including neuroimaging (Wainwright, 2019), finance (Tsay and
Pourahmadi, 2017), and genetics (Wu and Xu, 2020). Exploring causal relationships among random
functions presents a significant challenge in multivariate functional data analysis.

This research is motivated by brain-effective connectivity (Advani et al., 2020), which explores the di-
rectional effects between neural systems. Learning brain-effective connectivity networks from electroen-
cephalogram (EEG), functional magnetic resonance imaging (fMRI), and electrocorticographic imaging
(ECoG) records is crucial for understanding brain activities and neuron responses. Modeling these mul-
tivariate processes and accurately estimating effective connections between brain areas pose significant
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challenges due to the continuous nature of the data and the need to treat the data as functions, considering
the small time intervals between adjacent sample points. Previous studies, such as Qiao et al. (2019),
has explored the functional aspects of the Gaussian graphical model by estimating the inverse covariance
matrix. Nakkiran (2019) introduced the functional directional relationships under Gaussian assumption,
enabling the determination of a directed acyclic graph (DAG) up to its equivalence class. The previ-
ous version of this paper Yang and Suzuki (2022) discussed the identifiability without considering one
important point for functional data: the covariance operator’s non-invertibility. Moreover, the previous
algorithm for functional data is not accurate because it only tests the independence of every principal
component rather than the whole random vector. Zhou et al. (2022) developed a novel Bayesian network
model for multivariate functional data. Roy et al. (2023) considers the directed cyclic model for func-
tional data. In contrast to previous works, our approach differs in that we first establish the identifiability
of random vectors. Subsequently, we demonstrate the identifiability of random functions considering the
non-invertibility and extend it into multivariate scenarios. Our contributions are as follows:

• We establish a framework for discovering causal orders for random vectors and functions, moving
beyond the traditional focus on random variables.

• We theoretically prove that it is possible to identify the causal order under non-Gaussianity for
random vectors (Theorem 5).

• We further demonstrate the identifiability of the causal order for non-Gaussian processes in infinite-
dimensional Hilbert spaces (Theorem 8).

• To verify the validity of our method, we performed extensive experiments with simulated data
as Table 2.1. Empirical results demonstrate the identifiability. The results show that it performs
worse as the number of functions increases, which is reasonable. But as the sample size increases,
it performs better. We need more data for larger dimensions, but the required amounts are still
reasonable.

The structure of the paper is as follows. Section 2.2 provides the necessary background information to
comprehend this paper. This includes introducing the LiNGAM, infinite-dimensional Hilbert spaces, and
random elements (random functions). Section 2.3 and 2.4 present the main theoretical results extending
the LiNGAM and outlines the corresponding procedure. Section 2.5 and 2.6 present the experimental
results. Section 2.7 summarizes the key points.
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Figure 2.2: Illustration of why the original LiNGAM does not work. The Left Graph: original two stochastic
processes with their causal relationships; The Right Graph: a possible situation where we sample the time series
but miss the causal relationship.

2.2 Background

2.2.1 Linear Non-Gaussian Acyclic Model (LiNGAM)

This section introduces the concept of the LiNGAM for inferring the causal relationships among random
variables.

Suppose two random variablesX1, X2 ∈ R, we want to identify the causal directions of eitherX1 → X2

orX2 → X1. More specifically, our analysis assumes thatX1 andX2 are linearly related and have zero
means. Such as

X1 = e1, X2 = aX1 + e2 , (2.1)

X2 = e′1, X1 = a′X2 + e′2 (2.2)

with a, a′ ∈ R and E[ϵ] = E[ϵ′] = 0. To be simple, we let

a 6= 0 , or a′ 6= 0 , (2.3)

to avoid X1 ⊥⊥ X2. Specifically, in the context of LiNGAM, under the assumption of the noise terms,
denoted as ϵ and ϵ′, are independent of their respective covariates,X1 andX2 in (2.1) and (2.2). Therefore,
based on the condition ofX1 ⊥⊥ e2 orX2 ⊥⊥ e′2, we determine the true causal model to be either (2.1) or
(2.2). It may initially appear that distinguishing between (2.1) and (2.2) is not possible, in other words,
X1 and X2 could satisfy both equations for certain values of a, a′, e2, and e′2, where X1 ⊥⊥ e2 and
X2 ⊥⊥ e′2. LiNGAM claims that this inconvenience occurs if and only if X1 and X2 are Gaussian. In
other words, we can identify (2.1) and (2.2) if and only if at least one of X1 and X2 are non-Gaussian.

For the sufficient part, we show that if variables are both Gaussian, then causal order is unidentifiable.
Suppose X1, X2 both are normally distributed, and the model (2.1) with X1 ⊥⊥ e2 is true for certain a
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Figure 2.3: Illustration of Why Func-LiNGAM Work. (Smoothing: Functional data analysis) The Left Graph:
with the worst situation when we sample the time series and miss the causal relationship, where we get g and f

have no causal relationship. The Right Graph: we can complete the discrete points into smooth curves with the
Functional data analysis, capturing extra information when choosing suitable bases.

and ϵ. Let σ2
1, σ

2
2 be the variances of e1 and e2. Then, from E[e1e2] = 0, we have

e′1 = ae1 + e2 (2.4)

e′2 = e1 − a′e′1 = e1 − a′(ae1 + e2) = (1− a′a)e1 − a′e2 , (2.5)

and E[e′1e′2] = (1− a′a)σ2
1 − a′σ2

2 , which means that choosing

a′ =
aσ2

1

a2σ2
1 + σ2

2

(2.6)

will make the E[e′1e′2] = 0 too. We call W and Z jointly Gaussian if the two random variables can be

represented as

[
Z

W

]
= A

[
U

V

]
where A ∈ R2×2 and U, V are independent Gaussian.

The well-known property states that independence is equivalent to zero correlation for jointly Gaussian
variables2. By checking e′1 and e′2 belonging to joint Gaussian distribution, we can conclude that e′1 is
independent of e′2. Consequently,(2.2) holds with X2 ⊥⊥ ϵ′ for the corresponding a′, ϵ′.

For the necessary part, assume that X ⊥⊥ ϵ for (2.1) and Y ⊥⊥ ϵ′ for (2.2) both hold simultaneously for
certain a, a′, ϵ, ϵ′, where a′ satisfies (2.6). Therefore, this means that a, a′ 6= 0 due to (2.3) and (2.6).
Now note the statement as follows:

Proposition 1 (Skitivic (1953); Darmois (1953)). Letm ≥ 2 and independent randomvariables ξ1, . . . , ξm ∈
R. Let two linear formL1 =

∑m
i=1 αiξi andL2 =

∑m
i=1 βiξi, ifL1 ⊥⊥ L2, forα1, . . . , αm, β1, . . . , βm ∈

R. Then the random variable ξi such that αiβi 6= 0 belongs to Gaussian for i = 1, . . . ,m.

2Suppose Z andW be binary taking±1 equiprobably and zero-mean Gaussian. Then, ZW and Z are not jointly Gaussian.
Even though E[ZW · Z] = E[W ] · E[Z2] = 0 but they are not independent.
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Following (2.4)(2.5)(2.6) and the Proposition 1, then

(e1, e2, a, 1, 1− aa′,−a′) = (ξ1, ξ2, α1, α2, β1, β2)

= (X, ϵ, a, 1,
σ2
2

a2σ2
1 + σ2

2

,− aσ2
1

a2σ2
1 + σ2

2

)

By combining (2.3), X1, ϵ belong to Gaussian, then X2 is also Gaussian-distributed.

Proposition 2 (Shimizu et al. (2011)). Assuming (2.3), we can identify the causal order using LiNGAM
if at least one of two random variables belongs to non-Gaussian.

We can also identify the causal orders among multiple random variables. Suppose there are three lin-
early related random variables X1, X2, X3 with zero means. Then, six potential causal orders exist, for
instance, X2 → X1 → X3, and X3 → X2 → X1. First, we determine the top of them. Assuming X1 is
independent of {X2−aX1, X3−a′X1} for a, a′ ∈ R, which meansX1 is the top variable. Furthermore,
suppose thatX2 − aX1 is independent ofX3 − a′X1 − a′′(X2 − aX1) for some a′′ ∈ R, then regarding
theX2 as the middle andX3 as the bottom. We obtain the causal orderX1 → X2 → X3. Following the
steps, we can identify the causal order forX1, X2, X3. Furthermore, we can estimate the causal order for
an arbitrary number of random variables like

Xi =
i−1∑
j=1

bi,jXj + ei

where bi,j ∈ R and noise ei is non-Gaussian for p random variables X1, . . . , Xp.

2.2.2 Hilbert Spaces

ABanach space is a complete normed vector space where completeness ensures that all Cauchy sequences
converge within the space. It combines linearity, completeness, and the norm to provide a framework for
studying mathematical structures and functions. More precisely, in our context, we consider the set of
functions as a Hilbert space, denoted by H . A Hilbert space is a Banach space equipped with an inner
product that induces the norm, ensuring completeness.

We define a linear operator T21 : H1 → H2 over R as a mapping that satisfies the linearity property:
T21(αf + βg) = αT21f + βT21g for f, g ∈ H1 and α, β ∈ R. Furthermore, T21 is said to be bounded if
there exists a positive constant C such that ‖T21f‖2 ≤ C‖f‖1 holds for all f ∈ H1. Here, ‖ · ‖1, ‖ · ‖2
denote the norms within H1, H2, respectively.

For any bounded operator T21 : H1 → H2, there exists its adjoint operator or dual operator, a unique
bounded linear operator T ∗

21 : H2 → H1 such that the following equality holds: 〈T21f1, f2〉2 =
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〈f1, T ∗
21f2〉1 for f1 ∈ H1 and f2 ∈ H2. The operator T ∗

21 is the adjoint operator of T21. If T21 = T ∗
21,

we say that T21 is self-adjoint. Moreover, if the dimension of H is finite, the self-adjoint operator T21

is symmetric.

2.2.3 Random functions

Functional data analysis involves considering each individual element of data as a random function. These
functions are defined over a continuous physical continuum, which is typically time but can also be spatial
location, wavelength, probability, or other dimensions. Functionally, these data are infinite-dimensional.
Random functions can be interpreted as random elements that take values in a Hilbert space or as stochas-
tic processes. The former approach provides mathematical convenience, while the latter is more suitable
for practical applications. These two perspectives align when the random functions are continuous and
satisfy a mean-squared continuity condition.

Formally speaking, if a mapping X : Ω → R is measurable from a probability space (Ω,F , µ) to
(R,B(R)), then it is a random variable:

B ∈ B(R) =⇒ {ω ∈ Ω|X(ω) ∈ B} ∈ F ,

with the Borel sets B(R). Similarly, if χ : Ω → H is measurable from (Ω,F , µ) to (H ,B(H )), then
it is a random function (or random element) in a Hilbert space H :

B ∈ B(H ) =⇒ {ω ∈ Ω|X(ω) ∈ B} ∈ F ,

with the Borel sets B(H ) w.r.t. the norm of H . Let E be one set, we suppose that every entry f of H

is a function f : E 3 x 7→ f(x) ∈ R.

The mean of the random function χ is defined using the Bochner integral3 as
∫
Ω χdµ, under the condition

that the expectation of ‖χ‖ is bounded. Moreover, if the means of χ1, χ2 in H are m, we give the
definition of the covariance operatorK : H → H of random functions χ1, χ2 whenH := H1 = H2:

〈K g1, g2〉 = 〈
∫
Ω
〈χ1 −m, g1〉(χ2 −m)〉dµ, g2〉 =

∫
Ω
〈χ1 −m, g1〉〈χ2 −m, g2〉dµ ,

for g1, g2 ∈ H . By using orthonormal bases {ei} inH , we can compute the covariance values 〈K ei, ej〉
for all pairs of indices i and j. Generally, if χ1 ⊥⊥ χ2, then we get 〈K g1, g2〉 = 0 for g1, g2 ∈ H .

In the context where each element in H is a mapping from E to R, a random function χ : Ω → H

takes values χ(ω, x) ∈ R for each ω ∈ Ω and x ∈ E. Furthermore, if we fix ω ∈ Ω, χ(ω, ·) represents a

3See the definition of the Bochner integral in HSING and EUBANK (2015).
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random function from E to R. Henceforth, we adopt the notation χ(·) to represent the random function
χ(ω, ·). This convention is analogous to the simplification employed for random variables, whereX(ω)

is denoted as X . Note that a mean m random function χ is referred as a Gaussian process if for any
n ≥ 1, the random vector [χ(x1), . . . , χ(xn)] of length n follows a Gaussian distribution with mean
[m(x1), . . . ,m(xn)], x1, . . . , xn ∈ E.

When the Hilbert space H has a finite dimension d, the covariance operator can be represented by
a covariance matrix, denoted as Σ ∈ Rd×d. This matrix is positive definite. Consequently, we can
define the eigenvalues {λi} and eigenvectors {ϕi} of Σ. Each vector in H can be expressed as a linear
combination of the eigenvectors, specifically as

∑d
i=1〈X,ϕi〉ϕi. Moreover, for 〈X,ϕi〉, the variance is

given by λi. Then, for random function χ, if H is an infinite-dimensional function space,

Proposition 3 (HSING and EUBANK (2015)). Let {λi} and {ϕi} denote the eigenvalues and eigen-
functions obtained from the eigenvalue problem K ϕi = λiϕi, i = 1, 2, . . .. With probability one, χ can
be represented as:

χ =

∞∑
i=1

〈χ, ϕi〉H ϕi,

where 〈χ, ϕi〉H denotes the inner product between χ and ϕi in H . Additionally, mean of χ is zero, and
for 〈χ, ϕi〉H , the variance is equal to λi.

It is important to note the close relationship between stochastic processes and random functions. A set of
random variables {X(t)}t∈E can be considered a stochastic process if the function X : Ω × E → R is
measurable with respect to the probability space (Ω,F , µ) and the measurable space (R,B(R)) for each
t ∈ E. It is worth mentioning that certain stochastic processes can also be regarded as random functions
(HSING and EUBANK, 2015).

2.3 Extension to Functional Data

In this section, we generalize the concept of LiNGAM from random variables to encompass both random
vectors and random functions.

Previous works have extended the D-S to encompass various scenarios. These extensions include incor-
porating random vectors (Ghurye and Olkin, 1962) and random functions in a Banach space (Myronyuk,
2008) as substitutes for random variables.
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2.3.1 LiNGAM for Random Vectors

As shown by Shimizu et al. (2011), the identifiability of non-Gaussian random variables is outlined in
Proposition 2. However, this proposition does not extend to the case of random vectors or random func-
tions. This section provides proof of identifiability for non-Gaussian random vectors.

Proposition 4 (Multivariate Darmois-Skitovich (Ghurye and Olkin, 1962)). Let L1 =
∑m

i=1Aiξ
i and

L2 =
∑m

i=1Biξ
i with mutually independent k-dimensional random vectors ξi and invertible matrices

Ai, Bi for i = 1, . . . ,m. If L1 and L2 are mutually independent, then all ξi are Gaussian.

Now we consider the identifiability of the following model when x, y ∈ Rm and invertible matrix A ∈
Rm×m, e1 ⊥⊥ e2 and zero means,

x = ϵ1, y = ϵ′1,

y = Ax+ ϵ2, x = A′y + ϵ′2,

ϵ′1 = Aϵ1 + ϵ2, ϵ′2 = (I −A′A)ϵ1 −A′ϵ2.

(2.7)

We assume
A or A′ is invertible. (2.8)

Then, we have the following theorem.

Theorem 5. Assuming (2.8), which extends (2.3), we can identify the causal order between random
vectors X1, X2 : Ω → Rm of dimensionm ∈ [1,∞) if and only if at least one of them is non-Gaussian.

Proof. Since ϵ1 ⊥⊥ ϵ2, Eϵ′1 = Eϵ′2 = 0, and they are Gaussian random vectors with covariance matrix
Σ1,Σ2, respectively. Then the correlated coefficient ρ = 0 ⇐⇒ Cov(ϵ′1, ϵ

′
2) = AΣ1

(
I −ATA′T ) −

Σ2A
′T = 0 ⇐⇒ ϵ′1 ⊥⊥ ϵ′2, that is, when A′ = Σ1A

T (AΣ1A
T +Σ2)

−1, the causal relation between x, y
is unable to be identified. This also satisfies the condition of ϵ′1 ⊥⊥ ϵ′2 is that they follow the Gaussian
distribution from the Proposition 4.

2.3.2 LiNGAM for Random Functions

In this subsection, we present results that demonstrate identifiability can be achieved in non-Gaussian
scenarios in infinite-dimensional Hilbert spaces as Theorem 8. In extending our approach to multivariate
scenarios, we adopted methodologies from Lemmas 1 and 2 of DirectLiNGAM (refer to (Shimizu et al.,
2011)). This involved identifying the exogenous function (see Appendix) and using residuals for causal
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ordering, paralleling the process in Direct-LiNGAM. Owing to the procedural similarities with multivari-
ate functions, we omitted a detailed proof in our main text, choosing to apply these established principles
to our context. We have included the preliminary proof in Section 2.3.3 for clarity.

Let H1,H2 be Hilbert spaces. Assume that there are two causal models for f1 ∈ H1 and f2 ∈ H2,

f1 = h1, f2 = T21f1 + h2,

f2 = h′1, f1 = T12f2 + h′2.
(2.9)

where random functions {h1, h′2} ∈ H1 and {h′1, h2} ∈ H2. We also assume the covariance operator
K11 of h1, K22 of h2 have positive eigenvalues (> 0). The T12 : H2 → H1, T21 : H1 → H2 are
linear bounded operators between H1,H2, and we identify the order by examining whether h2 ⊥⊥ f1 or
h1 ⊥⊥ f2.

A bounded linear operator T : H1 → H2 is considered continuous if the set {T (f)|f ∈ U} ⊆ H2 is
open for any subset U ⊆ H1. Similarly, the inverse image U is also open. Furthermore, an operator
T : H1 → H2 is said to be invertible if it is both one-to-one (injective) and onto (surjective).

Let’s confirm the statements before proceeding with our discussion:

• Proposition 6: There is an equivalence between independence and non-correlation for jointly Gaus-
sian random functions. In other words, if χ1 and χ2 are jointly Gaussian random functions, they
are independent if and only if they are uncorrelated.

• Proposition 7: The Darmois-Skitovich (D-S) theorem can be extended to random functions in
Banach spaces.

The following Proposition 6 establishes the equivalence between independence and non-correlation for
random functions in Banach spaces, which also includes Hilbert spaces as a special case.

Proposition 6 (van Neerven (2020)). Suppose χ, χ′ are joint Gaussian in Banach spaces. Then, χ ⊥⊥ χ′

if and only if they are uncorrelated.

Proposition 7 (Darmois-Skitovich in Banach Space(Myronyuk, 2008)). Suppose thatn ≥ 2, and random
functions ξ1, . . . , ξn are in a Banach space. LetL1 =

∑m
i=1Aiξi, L2 =

∑m
i=1Biξi with some continuous

linear bounded operators A1, . . . , Am, and B1, . . . , Bm. If L1 ⊥⊥ L2, then ξi is a Gaussian process for
i = 1, . . . ,m with invertible Ai, Bi.

Theorem 8 (Causal Identifiability). If either T12 or T21 is invertible, the causal order between random
functions in infinite-dimensional Hilbert spaces can be identified if and only if at least one of them is a
non-Gaussian process.
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Proof. For the sufficiency, from (2.9), we first assume the f1 = h1, f2 = T21f1 + h2, and represent the
noise functions h′1, h′2 with h1, h2:

h′1 = f2 = T21h1 + h2

h′2 = f1 − T12f2 = h1 − T12(T21h1 + h2) = (I − T12T21)h1 − T12h2 .
(2.10)

Because h′1, h
′
2 are formed as the linear combinations of two independent Gaussian random functions

h1, h2, we can conclude that h′1 and h′2 are jointly Gaussian (van Neerven, 2020). Then from Proposition
6, the zero-correlation implies independence. Since h1 ⊥⊥ h2 and h1 ∈ H1, h2 ∈ H2, the cross-
covariance operator K12 is zero:

〈K12g1, g2〉H2 =

∫
Ω
〈h1, g1〉H1〈h2, g2〉H2 = 0

for any g1 ∈ H1,g2 ∈ H2. Then, the cross-covariance operator K ′
12 between h′1 and h′2 is

〈K ′
12g1, g2〉H2 =

∫
Ω
〈(I − T12T21)h1 − T12h2, g1〉H1〈T21h1 + h2, g2〉H2dµ

=

∫
Ω
〈(I − T12T21)h1, g1〉H1〈T21h1, g2〉H2dµ+

∫
Ω
〈−T12h2, g1〉H1〈h2, g2〉H2dµ

=

∫
Ω
〈h1, (I − T12T21)

∗g1〉H1〈h1, T ∗
21g2〉H1dµ−

∫
Ω
〈h2, T ∗

12g1〉H2〈h2, g2〉H2dµ

= 〈K11(I − T12T21)
∗g1, T

∗
21g2〉H1 − 〈K22T

∗
12g1, g2〉H2

= 〈T21K11(I − T ∗
21T

∗
12)g1, g2〉H2 − 〈K22T

∗
12g1, g2〉H2

(2.11)

for any g1 ∈ H1,g2 ∈ H2, where K11,K22 are the covariance operators of h1, h2, respectively. We
assume that K11,K22 are not zero. If K ′

12 = 0, then we require

K11T
∗
21 = T12{T21K11T

∗
21 + K22} . (2.12)

We have
(2.11) = 0 ⇔ T21K11(I − T ∗

21T
∗
12) = K22T

∗
12

⇔ T21K11 = (T21K11T
∗
21 + K22)T

∗
12 ⇔ (2.12)

However, the covariance operatorK11 andK22 are not invertible because of they are compact operator:

• A covariance operator is trace-class operator (Theorem 7.2.5 in HSING and EUBANK (2015));

• A trace-class operator is Hibert-Schmidt operator (Theorem 4.5.2 inHSING andEUBANK (2015));

• An Hilbert–Schmidt operator is compact (Theorem 4.4.3 in HSING and EUBANK (2015));

• A compact operator is not invertible (Theorem 4.1.4 in HSING and EUBANK (2015)).
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Then we know covariance operators are not invertible. But here, we need to notice that we can always
define a Moore-Penrose inverse to make the equation (2.12) hold if

Im (K11T
∗
21) ⊆ Im ({T21K11T

∗
21 + K22}) (2.13)

and the following is bounded (Li, 2018):

{T21K11T
∗
21 + K22}†K11T

∗
21 . (2.14)

Then the problem becomes determining the Images and boundness.

Next we prove Im(A) ⊆ Im(A + B). Note that if A is positive semidefinite and 〈Au, u〉 = 0, then
Au = 0. To see why, let v1, . . . , vn be an orthonormal basis of eigenvectors of A (so A vi = λivi) and
write u =

∑n
i=1 〈u, vi〉 vi. Then

〈Au, u〉 =
n∑

i=1

〈u, vi〉2 λi = 0

together with λi ≥ 0 implies that 〈u, vi〉 = 0 if λi > 0 so u ∈ ker(A). To prove that Im(A) ⊆ Im(A+B),
it is enough to prove that

ker(A+B) = Im(A+B)⊥ ⊆ Im(A)⊥ = ker(A) (2.15)

let u ∈ ker(A + B). Then 0 = 〈(A + B)u, u〉 = 〈Au, u〉 + 〈Bu, u〉 which implies that 〈Au, u〉 = 0,
so u ∈ ker(A). Then (2.13) satisfys. Now we consider the boundness. As we know, the eigenvalue of
A+B (positive semidefinite) is bigger than A or B, which means the inverse eigenvalue of A+B will
be smaller than the inverse eigenvalue of A or B. Moreover, the smallest eigenvalue of the covariance
operator tends to 0, then (A + B)†A is bounded. Then we say the equation (2.12) holds. We can check
more details in the Appendix.

Conversely, we first let h1 ⊥⊥ h2 and h′1 ⊥⊥ h′2 in (2.9) hold true simultaneously for some T12, T21, and
we want to prove that h1, h2, h′1, h′2 belong to Gaussian under (2.12). Note that a Hilbert space is a special
case of Banach space. Then we use the Proposition 7. We assume that T12 is invertible without losing
generality. Next we show that the eigenvalue of T12T21 is less than 1, which means that I − T12T21 is
invertible (see Theorem 3.5.5 in HSING and EUBANK (2015)). To achieve this, we multiply (2.12) by
T21 from the left-hand side, then we obtain

T21K11T
∗
21 = T21T12{T21K11T

∗
21 + K22} ,

which means that the eigenvalue of T21T12 is less than 1. Noting that T21T12 and T12T21 share the
eigenvalues:

T21T12u = λu =⇒ T12T21T12u = λT12u =⇒ T12T21v = λv
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for λ 6= 0, u ∈ H2, and v := T12u ∈ H1, we have proved that the eigenvalue of T12T21 is less than 1.
Then, as we did in (2.2.1), we correspond

(h1.h2, T21, I, I − T21T12,−T12) = (ξ1, ξ2, A1, A2, B1, B2)) ,

where A1, A2, B1, B2 are invertible.

2.3.3 Causal Inference in Multivariate Scenarios

In the context of multivariate cases, we introduce two lemmas following Shimizu et al. (2011):
1. Lemma 9 identifies the exogenous function.
2. Lemma 10 establishes the causal order among residuals.
By analyzing residuals, we can determine the causal order of random functions. This is achieved after
identifying an exogenous function, which, under the assumption of no latent confounders, corresponds
to an independent external influence. The independence of these residuals is assessed through a series of
pairwise regressions.

Lemma 9. For multivariate case, a random function fj is exogenous if and only if fj is independent of
its residuals h(j)i = fi − Tijfj for all i 6= j.

Proof. For the sufficiency, if fj ⊥⊥ h
(j)
i , assume fj is not exogenous, then fj =

∑
k∈Pj

Tjkfk +

hj =
∑

k∈Pj
Tjk
∑

l ̸=j Tklhl + hj , where Pj means parents of fj . Then h
(j)
i = (I − TijTji)fi −

Tij
∑

k∈Pj ,k ̸=i Tjkfk−Tijhj = (I−TijTji)
∑

q ̸=j Tiqhq −Tij
∑

k∈Pj ,k ̸=i Tjk
∑

l ̸=j Tklhl−Tijhj . The
two formulas are composed of linear combinations of external influences other than hj , from Prop. 7, all
the functions are non-Gaussian, then h(j)i 6⊥⊥ fj , then it contradicts. Therefore, fj should be exogenous;
For the necessity, if fj is exogenous, fj = hj , fi = Tijfj + hi with hi ⊥⊥ fj , hi =

∑
k ̸=j Tikhk, we

know the residual error h(j)i = hi. Then, we know fj ⊥⊥ h
(j)
i from the independence of noise functions.

So far, the lemma has been proven.

Lemma 10. Let kr(j)(i) is the causal order of r
(j)
i , k(i) denotes a causal order of fi. Then, the same

ordering of the residuals ri = h
(1)
i = fi − Ti1f1, i = 1 . . . , p − 1 is a causal ordering for the original

observed functions as well: kr(j)(l) < kr(j)(m) ⇐⇒ k(l) < k(m).

Proof. When we determine the exogenous function f1, we need to estimate the p − 1 residuals of f1:
ri = h

(1)
i = fi − Ti1f1 =

∑
j ̸=1 Tijfj + Ti1f1 − Ti1f1 =

∑
j ̸=1 Tijfj , i = 1, . . . , p − 1, which is

ri =
∑

j ̸=1 Tij
∑

k ̸=j Tjkhk. For the residual of r2 = f2 − T21f1 = h2 (second function) is r
(j)
i =
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ri−T ′
ijrj =

∑
j ̸=1 Tij

∑
k ̸=j,2 Tjkhk+T ′

i2h2−T ′
i2h2 =

∑
j ̸=1 Tij

∑
k ̸=j,2 Tjkhk for all i 6= j. From the

independence assumption of noise functions, we know r2 ⊥⊥ r
(2)
i . Then we know the causal relationships

of residuals ri, i = 1, . . . , p − 1 are the same as fi, i = 1, . . . , p − 1 with the T ′
ij because what we need

to do is to test the independence between ri and its residual r
(j)
i .

Extending the notion, we can determine the order among any number of random functions such as fi =∑i−1
j=1 Ti,jfj + hi with non-Gaussian hi and bounded linear operators Ti,j ;Hj → Hi for p random

functions f1 ∈ H1, . . . , fp ∈ Hp.

2.4 The Procedure

Consider one model from (2.9):
f2 = T21f1 + h2 . (2.16)

Then let’s notice the statement as follows:

Proposition 11 (HSING and EUBANK (2015)). Let T : H1 → H2 be a compact4 bounded linear
operator, {λj} be the eigenvalues, and {e1,j} and {e2,j} be the sequences with orthonormal eigenvectors
of T ∗T and TT ∗, respectively. Then

Tf =
∞∑
i=1

λi〈f, e1,i〉H1e2,i

with f ∈ H1.

Following the notation in Proposition 11, we write the three terms T21f1 =
∑∞

i=1 λif1,ie1,i, f2 =∑∞
i=1 f2,ie2,i, h2 =

∑∞
i=1 h2,ie2,i. Then, (2.16) becomes:

Theorem 12. Suppose that T21 : H1 → H2 is compact. If we regard the bases of H1 and H2 as {e1,i}
and {e2,i}, respectively, then

f2,i = λif1,i + h2,i (2.17)

for i = 1, 2, . . ., where λ1 ≥ λ2 ≥ · · · .

To ensure convergence of the eigenvalue sequence {λi}, we suppose that the operator T21 is compact.
Without compactness, the {λi} would not be convergent. Practically, we approximate the infinite-
dimensional random functions f1 ∈ H1, f2, h2 ∈ H2 by finite length M random vectors. We select
the bases {e1,i}Mi=1 and {e2,i}Mi=1 to minimize the approximation error.

4We define a bounded linear operator T : H1 → H2 to be compact if, for any bounded infinite sequence {fn} in H1, the
sequence {Tfn} has a convergent subsequence in H2.
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FPCA offers a more effective fit than PCA for raw data dimensionality reduction, particularly with time-
series data like fMRI and EEG, where dimensions vary with sampling frequency (e.g., 100Hz vs. 1Hz).
As frequency increases, dimensions approach infinity. FPCA overcomes this by approximating infinite
dimensions through orthogonal bases, preserving maximal original data information and capturing latent
details beyond traditional sampling. Figures 2.2 and 2.3 demonstrate FPCA’s necessity for functional
data.

The other merit of using the FPCA (functional principal component analysis) approach is its efficiency.
We assume the following procedure: first, we approximate theW time points sampled from functions by
the L coefficients of the basis functions (B-spline). Then, we transform it by the M coefficients of the
basis functions defined above. The time complexity is as follows. M < L � W and the time complexity
C(M) of the proposed procedure is much less than C(W ). For example, Shimizu et al. (2011) evaluated
the complexity of their method as C(W ) = O(n(Wp)3q2 + Wp)4q3), where q (� n) is the maximal
rank found by the low-rank decomposition used in the kernel-based independence measure, although the
proposed procedure requires additional O(nL2 +L3) complexity for the covariance matrix O(nL2) and
eigenvalue decomposition O(L3).

This paper primarily examines the summary causal relationships among random functions, focusing less
on specific time points or partial windows in temporal data. There are three graphical representations of
causal structures in temporal data, namely, the full-time causal graph, the window causal graph, and the
summary causal graph (Gong et al., 2023). The full-time causal graph, illustrated on the left in Fig. 2.4,
depicts a complete dynamic system, representing all vertices including components f1, . . . , fp at each
time point t, connected through lag-specific directed links such as f t−k

i → f t
j . However, due to the

challenges of capturing a single observation for each series at every time point, constructing a full-time
causal graph can be complex. To address this, the window causal graph concept is introduced, which
operates under the assumption of a time-homogeneous causal structure. This graph, shown in the middle
of Fig. 2.4, works within a time window corresponding to the maximum lag in the full-time graph. On
the other hand, the summary causal graph, displayed on the right in Fig. 2.4, abstracts each time series
component into a single node, illustrating inter-series causal relationships without specifying particular
time lags. The complexity of this summary graph depends on the choice of multivariate dependence
measure, such as mutual information or HSIC. The algorithmic complexity for generating this graph is
similar to that of DirectLiNGAM. Fig. 2.4 visually compares these different types of causal graphs for
multivariate time series.
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Figure 2.4: Illustration of Different Kinds of Multivariate Time Series Causal Graphs. Left: Full-time; Middle:
Window; Right: Summary (this paper).

2.4.1 Algorithm

To show how to implement this method, we provide algorithm pseudocode and empirical experiments
to demonstrate the efficiency. The algorithm presented in this study shares similarities with the greedy
search method of DirectLiNGAM. However, it diverges in two key aspects: first, we leverage Functional
Principal Component Analysis (FPCA) for data preprocessing, and second, our independence test consid-
ers multivariate relationships rather than univariate ones. This makes Func-LiNGAM straightforward to
implement. For the purpose of this paper, we focus on providing a basic implementation without delving
into enhancing search methods or other optimizations, as they are not the primary focus of our research.
The whole algorithm is as Algorithm 1.

Note that theW means the sampled time points from one random function. As the intrinsically infinite-
dimensional property of functional data, we need to approximate W with efficient finite representation
(FPCA with principal component number M (M � W )). The number M can be decided by the ex-
plained variance ratio (95% or 99%). To be simple, here we let all the M of random functions be the
same.

2.5 Experiment

To validate our method, we conducted comprehensive experiments using simulated data, as shown in Ta-
ble 2.1. We observed an improvement in performance as the sample size increased across multiple func-
tions. Notably, precision decreased monotonically and Structural Hamming Distance (SHD) increased
monotonically as the number of functions (p) grew. Our data generation process, following the settings
in Qiao et al. (2019), involved n× p random functions, defined as:

Xij(t) = ϕ(t)T δij (2.18)
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Algorithm 1 Func-LiNGAM (Can be regarded as vector-based DirectLiNGAM but with FPCA prepro-
cessing.)
1: Input: Each function hasW time points, then constructWp-dimensional random vector f (W : Full-

time points) for p functions, a set of its variable subscriptsU and aWp×n data matrix as F , initialize
an ordered list of functionsK = ∅ andm := 1;

2: Output: Adjacent Matrix T̂ ∈ Rp×p

3: Use FPCA for finite approximating each random vector to make their dimensions fromWp toMp,
whereM is the number of principal components.

4: repeat
5: (a) Perform least squares regressions of the approximating random vector f̂i ∈ RM on f̂j ∈ RM

for all i ∈ U\K(i 6= j) and compute the residual vectors r(j) and the residual data matrix R(j) from
the data matrix F for all j ∈ U\K. Find a variable f̂m that is most independent of its residuals:

f̂m = arg min
j∈U\K

MI
(
f̂j ;U\K

)
,

whereMI is the independence measure such as mutual information or other measures.
6: (b) Appendm to the end ofK.
7: (c) Let f̂ := r(m), F̂ := R(m).
8: until p− 1 subscripts are appended toK
9: Append the remaining variable to the end ofK.
10: Construct a strictly lower triangularmatrix T̂ by following the order inK, and estimate the connection

strengths T̂ij by using least squares regression in this paper.
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where i represents the ith sample (i = 1, . . . , n), and j denotes the jth random vector. The vector δij ∈ R5

can be an arbitrary non-Gaussian random vector. Here we generated these by first creating random vectors
qij ∼ N (0, I5), then we square each element of the vector to get δij . The five-dimensional Fourier basis
ϕ(t) was also used. We modeled the causal relationships in δi as follows:

δi0 = ϵ0, δi1 = B1,0δi0 + ϵ1, . . . , δip = Bp,p−1δi(p−1) + ϵp (2.19)

where ul ∼ N (0, I5), then we square each element of the vector to get ϵl. To be simple, we set Bl,l−1 =

I5, l = 1, . . . , p. The sample size is n = {100, 200, 300, 700}, p = {5, 10, 20, 30, 50, 70}, and the
observed values, gij(tk), follow

gij(tk) = Xij (tk) + eijk,

where eijk is derived from the square of the random variable qijk, where qijk ∼ N (0, 0.25). Specifically,
eijk = q2ijk. Due to the squaring of a normally distributed variable with a variance of 0.25, the resulting
distribution of eijk can be described as a Gamma distribution with a shape parameter of 1

2 and a scale
parameter of 0.5, applicable for i = 1, . . . , n and j = 1, . . . , p. Every random function is sampled at
W = 1000 equidistant time points, 0 = t1, . . . , t1000 = 1.

We employ B-spline bases as a fitting technique for each random function instead of the Fourier basis to
represent the actual data accurately. B-spline bases offer more flexibility and can capture the complex
shapes and patterns present in the data. After fitting the random functions with B-spline bases, we cal-
culate each random function’s estimated principal component scores. These scores are derived from the
basis coefficients, with the number of calculated principal component scores limited to the firstM com-
ponents (M ≤ W ). The choice ofM allows us to control the dimensionality of the data representation,
providing a balance between capturing the most important variability in the data and minimizing com-
putational complexity. By calculating these estimated principal component scores, we obtain a concise
representation of the data that encapsulates its essential characteristics while reducing its dimensionality.
This approach allows for efficient analysis and interpretation of the random functions within the context
of our methodology. We setM = 5 (99% explained variance ratio) for the B-spline. Cross-validation can
also obtain the optimalM . However, we set the parameters to ensure they maintain as much information
as possible. We evaluate the Func-LiNGAM with Precision, Recall ratio, F1-score, and SHD (Structural
Hamming Distance in Tsamardinos et al. (2006)) in 50 trials as Table 2.1. The smaller the SHD, the better
the performance. To clarify, our objective is to demonstrate an implementation example rather than to
propose a superior algorithm through comparison.
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Data size Metrics
Various number of functions (mean ± standard deviation)

p = 5 p = 10 p = 20 p = 30 p = 50 p = 70

n = 100

Precision 0.76± 0.14 0.64± 0.10 0.57± 0.09 0.40± 0.06 0.30± 0.04 0.25± 0.03

Recall 0.99± 0.04 0.95± 0.0 0.90± 0.07 0.75± 0.07 0.65± 0.04 0.59± 0.04

F1 0.85± 0.10 0.76± 0.08 0.70± 0.09 0.52± 0.07 0.41± 0.05 0.35± 0.03

SHD 1.40± 0.95 5.03± 1.91 13.47± 4.17 33.47± 6.56 74.73± 9.86 119.47± 10.70

n = 200

Precision 0.83± 0.14 0.76± 0.29 0.72± 0.07 0.70± 0.06 0.54± 0.05 0.46± 0.07

Recall 1.00± 0.00 0.80± 0.24 0.99± 0.01 0.97± 0.03 0.88± 0.03 0.81± 0.07

F1 0.90± 0.08 0.78± 0.27 0.83± 0.05 0.81± 0.05 0.67± 0.05 0.59± 0.07

SHD 0.97± 0.91 3.63± 4.58 7.70± 2.35 12.53± 3.36 37.03± 6.60 66.20± 12.79

n = 300

Precision 0.85± 0.13 0.79± 0.28 0.75± 0.07 0.74± 0.05 0.70± 0.05 0.60± 0.04

Recall 1.00± 0.00 0.84± 0.23 1.00± 0.00 0.99± 0.01 0.99± 0.01 0.93± 0.03

F1 0.92± 0.08 0.81± 0.26 0.86± 0.05 0.85± 0.03 0.82± 0.03 0.73± 0.04

SHD 0.80± 0.75 3.17± 4.43 6.57± 2.50 10.27± 2.41 21.27± 4.36 42.90± 6.25

n = 700

Precision 0.92± 0.10 0.81± 0.08 0.80± 0.07 0.78± 0.05 0.74± 0.03 0.70± 0.02

Recall 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.95± 0.05

F1 0.96± 0.06 0.88± 0.05 0.88± 0.04 0.87± 0.03 0.85± 0.02 0.83± 0.05

SHD 0.40± 0.55 2.50± 1.20 4.96± 2.06 8.80± 2.34 17.40± 2.97 32.70± 4.37

Table 2.1: Evaluation of Func-LiNGAM with various number p of functions. The causal graph is as f1 → f2 →
· · · → fp (50 trials).

2.6 Actual Data

This section demonstrates the application of the proposed approach to analyzing brain connectomes for
functional magnetic resonance imaging (fMRI) data. The fMRI data (Richardson et al., 2018) is prepro-
cessed by downsampling it to a resolution of 4mm, with a repetition time (TR) of 2 seconds. This data
consists of 155 subjects (n = 155), 168 time points (W = 168), and 17 parcels (p = 17). During
the study, 155 participants took part in the fMRI scans. Among them, 122 participants were children,
33 were adults. The participants were instructed to watch a short animated movie that aimed to evoke
various mental states and physical sensations about the characters depicted in the movie. Our objective
is to investigate the causal relationships between various brain regions when individuals watch the short
film, regardless of age. To check the Gaussianity of the observed functions, we performed the Shapiro–
Wilk normality test (Shapiro and Wilk, 1965) on p = 17 parcels at each W = 168 time point. The null
hypothesis (i.e., the observations are marginally Gaussian) was rejected for many combinations of scalp
position and time point, and therefore, the non-Gaussianity of the proposed model is deemed appropriate.
Next, we estimate the adjacency matrix between the parcels with the number of principal components
M = 5. The adjacency matrix reveals the presence of connections between specific parcel pairs. To vi-
sualize the brain connectivity and causal relationships, we present a 2D graph using the Nilearn Python
package and a 3D graph using the BrainNet Viewer (Xia et al., 2013) (Fig. 2.5).
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Figure 2.5: Brain Connectivity Graphs (Left: 2D , Right: 3D).

2.7 Conclusion

We have introduced a novel framework called Func-LiNGAM, which aims to identify causal relation-
ships among random functions. For the theoretical foundation of Func-LiNGAM, we have proven the
identifiability of both non-Gaussian random vectors (Theorem 5) and non-Gaussian processes (Theorem
8). Additionally, we have proposed a method to approximate random functions using random vectors
based on Functional Principal Component Analysis (FPCA). Empirically, we demonstrate that the pro-
posed procedure of Func-LiNGAM achieves accurate and efficient identification of causal orders among
non-Gaussian random functions. Furthermore, we have preliminarily applied Func-LiNGAM to analyze
brain connectivity using fMRI data. Our framework combines theoretical advancements with practical
applications, showcasing its effectiveness in identifying causal relationships among random functions
and its potential for various domains, such as brain connectivity.



Chapter 3

Dropout Drops Double Descent

3.1 Introduction

Recent investigations have shown that over-parameterized models, including linear regression and neural
networks (Belkin et al., 2019, 2020; Hastie et al., 2019; Cun et al., 1991; Nakkiran et al., 2021a; Opper
and Kinzel, 1996; Advani et al., 2020), demonstrate significant generalization capabilities, even when
the labels are influenced by pure noise. This unique characteristic has attracted considerable academic
attention, posing significant challenges to traditional generalization theory. A key framework, ”Double
Descent,” helps explain this behavior (Belkin et al., 2019). In the under-parameterized realm, as we
increase the number of model parameters or sample sizes, the test error initially shows a reduction, as
illustrated by the peak curve in Figure 3.1. Intriguingly, as we transition into the over-parameterized
domain, instead of increasing, the test error continues to decrease, revealing an unexpected secondary
descent phase.

This peak phenomenon was first observed as early as three decades ago (Cun et al., 1991; Opper and
Kinzel, 1996), and its re-emergence in recent years (Belkin et al., 2019; Advani et al., 2020) underlines
the significant role it plays in research within the over-parameterized regime.

A primary objective of machine learning algorithms is to provide accurate out-of-sample predictions—
a quality known as generalization. Traditional generalization theory presents a ’U-shaped’ risk curve
derived from the bias-variance trade-off (Hastie et al., 2009), which suggests the optimal model selection
occurs prior to the interpolation point (when n = p). This trade-off suggests that a small hypothesis
class lacks the expressive power necessary to include the truth function. Conversely, a larger class may
introduce spurious overfitting patterns. However, in contrast to this traditional view, the double-descent

24



CHAPTER 3. DROPOUT DROPS DOUBLE DESCENT 25

0 200 400 600 800 1,000

0.5

1

1.5

2 γ=0.4
γ=0.5
γ=0.6
γ=0.7
γ=0.8
γ=0.9
γ=0.95
γ=0.96
γ=0.97
γ=0.98
γ=0.99
γ=0.995

Figure 3.1: Test Risk of Sample-Wise Double Descent with Dropout. γ denotes the probability of dropout as
R. The number in the legend is the present probability. p = 500 and the sample size of the x-axis. The sample
distribution x ∼ N (0, Ip), y = xTβ∗ + ϵ, ϵ ∼ N (0, 0.25), β∗ ∼ U(0, 1) and ||β∗||2 = 1.

behavior, marked by a ”\/\”-shaped trend with increasing model size, implies that we can discover a
superior model with zero train and test error without succumbing to overfitting.

The reason behind the relatively recent surge in attention towards the double descent phenomenon is
somewhat elusive, but the widespread adoption of regularization methods, such as ridge regularization
(Hastie et al., 2019; Nakkiran et al., 2021b) and early stopping (Heckel and Yilmaz, 2021), designed
to nullify double descent, might provide some explanation. In this study, we focus on one of the most
popular regularization methods—dropout.

Dropout is a well-established regularization technique for training deep neural networks. It aims to pre-
vent ’co-adaptation’ among neurons by randomly excluding them during training (Hinton et al., 2012).
Dropout’s effectiveness extends across a wide range of machine learning tasks, from classification (Sri-
vastava et al., 2014) to regression (Toshev and Szegedy, 2014). Notably, dropout was a vital component
in the design of AlexNet (Krizhevsky et al., 2012), significantly outperforming its competitors in the
2012 ImageNet challenge. Due to dropout’s proven efficiency in avoiding overfitting (Srivastava et al.,
2014) and its broad application scope, we propose that it may significantly mitigate the double descent
phenomenon. This leads us to the following question:

Under what conditions and how does dropout mitigate the double descent phenomenon?

We recognize that the double-descent phenomenon exists under both sample-wise and model-wise condi-
tions. This paper considers its occurrence in both linear and nonlinear models to improve test performance
without unexpected non-monotonic responses. The elimination of double descent has indeed become a
hot research topic. For instance, ridge regularization can alleviate double descent (Nakkiran et al., 2021b),
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as early stopping (Heckel and Yilmaz, 2021).

We explore awell-specified linear regressionmodel utilizing dropout withRij ∼ Ber(γ), R ∈ {0, 1}n×p, γ >

0, X ∈ Rn×p, y ∈ Rn, β ∈ Rp, aiming to minimize the empirical risk:

L = ||y − (R ∗X)β||22 ,

where ∗ denotes an element-wise product, serving to drop parameters during the training phase randomly.
Dropout aids in preventing overfitting and offers a means to efficiently combine a wide range of different
neural network architectures (Srivastava et al., 2014).

Our Contributions. Our study tackles the aforementioned question using theoretical and empirical
methodologies. Theoretically, we explore the simplest linear regression with dropout regularization,
which echoes the influence observed in general ridge regression (Ishwaran and Rao, 2014). When con-
sidering the test error—which includes both the bias and variance of a well-formulated linear regression
model that employs dropout for isotropic Gaussian features1—we adopt a non-asymptotic perspective.
Although we couldn’t secure an exact solution to substantiate the monotonic decline of the test error,
we devised an alternative approach. Through the application of Taylor series expansion, we obtained an
approximate solution, providing persuasive evidence supporting the continuous decrease of the test error.
On the empirical front, our numerical experiments demonstrate that the dropout technique can effectively
mitigate the double descent phenomenon in both linear and nonlinear models. In more specific terms, we
demonstrate:

• Eliminating the Sample-Wise Double Descent. We empirically validate the monotonicity of the
test error as the sample size increases (see Figure 3.1) and theoretically prove the monotonicity of
the second-order Neumann series test error. We plan to detail the exact solution in future work.

• Eliminating the Model-Wise Double Descent. We empirically demonstrate the monotonicity of
the test error as the model size increases.

• Multi-layer CNN.We provide empirical evidence showing that dropout can alleviate the double
descent in multi-layer CNNs.

3.1.1 Related works

Dropout. The purpose of dropout, as proposed in Srivastava et al. (2014), is to alleviate overfitting, and
numerous variants of this technique have been further examined in Ba and Frey (2013); Wang and Man-
ning (2013); Kingma et al. (2015); Khan et al. (2019); Li et al. (2016); Gal et al. (2017); Saito et al. (2018).

1Normal distribution with an identity covariance matrix.
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As for the theory behind dropout, Wager et al. (2013) demonstrates that it functions as an adaptive regu-
larization. Gal and Ghahramani (2016) postulates that dropout operates akin to a Bayesian approximation
algorithm—specifically aGaussian Process, incorporating an element of uncertainty into the functioning
of black-box neural networks. Additionally, several studies have addressed the Rademacher complexity
of dropout (Gao and Zhou, 2016), and its implicit and explicit regularization (Wei et al., 2020; Helmbold
and Long, 2015).

Generalized Ridge Regression. The dropout estimator resembles a generalized ridge estimator, repre-
sented as β̂ = (X⊤X+λΣw)

−1X⊤y, with Σw being the weighted matrix and λ > 0. Generalized ridge
regression was first introduced in Hoerl and Kennard (2000), with numerous developments discussed
in Casella (1980); Hemmerle (1975); Hua and Gunst (1983); Ishwaran and Rao (2014); Maruyama and
Strawderman (2005); Mori and Suzuki (2018); Strawderman (1978). Nevertheless, these estimators are
typically contemplated when n > p. Hence, their impact in high-dimensional and over-parameterized
regimes is scarcely known. Wu and Xu (2020) recently provided an asymptotic view of the weighted ℓ2
regularization in linear regression.

Dropping Double Descent. Several studies have aimed to counteract the double descent phenomenon.
Heckel and Yilmaz (2021) illustrates that early stopping can attenuate double descent. Nakkiran et al.
(2021b) argues that optimal ridge regularization has a similar effect in the non-asymptotic view, a finding
that aligns with our study. Hastie et al. (2019) further sheds light on ridge regularization, illustrating a
trend towards the same test error as the tail of double descent in model size.

3.2 Background

We consider linear regression in which p (≥ 1) covariates x ∈ Rp and response y ∈ R are related by

y = x⊤β0 + ϵ , ϵ ∼ N (0, σ2) (3.1)

with unknown β0 ∈ Rp and σ2 > 0, where the occurrences of ϵ is independent from those of x, and we
estimate β0 from n(≥ 1) i.i.d. training data (x1, y1), . . . , (xn, yn) ∈ Rp × R.

In particular, we assume that the covariates are generated by

x ∼ N (0, Ip) . (3.2)

Thus, the covariates and response have the joint distributionD defined by (3.1) and (3.2), and we express
zn := {(xi, yi)}ni=1 ∼ Dn for the training data. For each β ∈ Rp, we define

R(β) := E
(x,y)∼D

[(x⊤β − y)2], (3.3)
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where E
(x,y)∼D

[·] is the expectation w.r.t. the distribution D.

Suppose we estimate β from the training data zn by β̂n : (Rp × R)n → Rp. Then, we define

R̄(β̂n) : = E
zn∼Dn

R(β̂n(z
n)) = E

zn∼Dn
E

(x,y)∼D
[(x⊤β̂n(z

n)− y)2] (3.4)

where Ezn∼Dn [·] is the expectation w.r.t. the distribution Dn. Note that (3.4) averages (3.3) over the
training data as well while both evaluate the expected squared loss of the estimation.

In this paper, we consider the situation of dropout: given the training data zn = {(xi, yi)}ni=1, for X =

[x1, . . . , xn]
⊤ ∈ Rn×p and y = [y1, . . . , yn]⊤ ∈ Rn, we estimate β by the β̂(zn) that minimizes the

training error E
R∼Ber(γ)

[L] for

L = ‖y − (r ∗X)β‖22 ,

where ∗ denotes the element-wise product, each element of R ∈ Rn×p takes one and zero with prob-
abilities γ and 1 − γ, respectively, and we write r ∼ Ber(γ) for the distribution. Then, the quantity

E
R∼Ber(γ)

[L] can be expressed by

E
r∼Ber(γ)

‖y − (r ∗X)β‖22 = E
R∼Ber(γ)

‖y −Mβ||22

= y⊤y − 2β⊤E(M⊤)y + β⊤E(M⊤M)β

= y⊤y − 2γβ⊤X⊤y + β⊤E(M⊤M)β

= ‖y − γXβ‖22 − γ2β⊤X⊤Xβ + β⊤E(M⊤M)β

= ‖y − γXβ‖22 + β⊤(E(M⊤M)− γ2X⊤X)β

= ‖y − γXβ‖22 + (1− γ)γ‖Γβ‖22

(3.5)

whereM := r ∗X , Γ = diag(X⊤X)1/2, the final equation follows from the fact that the element-wise
expectation E(M⊤M) is

E

[∑
k

mikmjk

]
=

 γ2
∑

k xikxjk, i 6= j

γ
∑

k x
2
ik, i = j

for the (i, j)-th element of M⊤M (the off-diagonal elements of E(M⊤M) and γ2X⊤X are canceled
out).

We can consider this as a Tikhonov regularization method. Let β′ = γβ as in Srivastava et al. (2014).
Then, (3.5) becomes

‖y −Xβ′‖2 + 1− γ

γ
‖Γβ′‖2 , (3.6)
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which is minimized when β′ is equal to

β̂n,γ =

(
X⊤X +

1− γ

γ
Γ⊤Γ

)−1

X⊤y . (3.7)

3.3 Drop Double-Descent in Linear Regression

In this section, we show the monotonicity of the solution in the sample size n with dropout in linear
regression, and its proof follows in Appendix 3.6.1. Hereafter, we denote β̂ by β̂n,γ when we require n
and γ to be explicit.

Before proving the claim, we notice that the test error is of the form

R(β̂) = E
(x,y)∼D

[
{x⊤(β̂ − β0) + ϵ}2

]
= ‖β̂ − β0‖22 + σ2 ,

which is due to

E
x∼N (0,Id),ϵ∼N (0,σ2)

[{(β̂ − β0)
⊤x+ ϵ}2] = E

x∼N (0,Ip)
[({(β̂ − β0)

⊤x})⊤{(β̂ − β0)
⊤x}] + σ2.

For the dropout estimator Eq. (3.7), the expected test error is

R̄(β̂n,γ) = EXEy[R(β̂n,γ)] = EXEy[‖β̂n,γ − β0‖22] + σ2

= EXEy[‖(X⊤X + Λ)−1X⊤y − β0‖22] + σ2

= EX [‖(X⊤X + Λ)−1X⊤(Xβ0 + ϵ)− β0‖22] + σ2

= EX [‖((X⊤X + Λ)−1X⊤X − Ip)β0‖22] + σ2EX [‖(X⊤X + Λ)−1X⊤‖2F ] + σ2

where Λ = 1−γ
γ diag(X⊤X). By neglecting the constant terms, the quantity R̄(β̂n,γ) becomes

β⊤
0 EX

[(
I +A⊤

)−1
(I +A)−1

]
β0 + σ2EX

[∥∥∥∥(X⊤X + Λ
)−1

X⊤
∥∥∥∥2
F

]
, (3.8)

where A = Λ−1X⊤X .

We evaluate the expected test error (3.8) by taking Taylor’s expansion of the matrix(
I +A⊤

)−1
(I +A)−1 .

Then, we claim2.

2We say f(n) = O(g(n)) if there exist b > 0 and n0 ≥ 1 such that |f(n)| ≤ b|g(n)| for n ≥ n0.
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Theorem 13. Let α = C < 1

(1+
√

p
n
)2
, the expected test error (3.8) is

f(α) =
{
1− 2α+ 3α2 p

n

}
‖β0‖2 + σ2α2(α+ 1)

p

n
+O(

1

n2
)

with α = γ
1−γ .

Note the convergence of this Neumann series. We consider the condition that the eigenvalue of A =

Λ−1X⊤X should be smaller than 1.

To prove the lemma, we notice some critical points.

1. Let Q := diag(X⊤X), P := Q− 1
2X⊤XQ− 1

2 , Λ := 1−γ
γ Q, andM := Λ− 1

2X⊤XΛ− 1
2 . Then,M

and A = Λ−1X⊤X share share the same characteristic polynomial

PM (λ) = det(Λ− 1
2X⊤XΛ− 1

2 − λI) = det(Λ−1/2)det(X⊤X − Λ
1
2λΛ

1
2 )det(Λ− 1

2 )

= det(Λ−1)det(X⊤X − λΛ) = det(Λ−1X⊤X − λI) = PA(λ)
,

so do the eigenvalues.

2. Let λmax and λmin be the largest and smallest eigenvalues of M . Then, λmax → (1 +
√

p
n)

2 and

λmin → (1 −
√

p
n)

2 as n, p → ∞ with p
n → d ∈ (0,∞) if E[x4] < ∞ (Theorem 1.1 in Jiang

(2004)).

Hence, the maximum eigenvalues of matricesM andA are shown to approach (1+
√

p
n)

2 asymptotically.
Moreover, our empirical investigations corroborate that the largest eigenvalue of the sample correlation
matrix M aligns closely with the theoretical prediction of (1 +

√
p
n)

2, as illustrated in Fig. 3.2. As
delineated in Lemma 2, the Taylor series expansion converges when the parameter γ/(1−γ) is multiplied
to make the largest eigenvalue of M less than 1. The proof of Theorem 13 is in Appendix 3.6.1.
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Figure 3.2: The Largest eigenvalue of Sample Correlation Matrix (Q ∈ Rn×p). X-axis denotes the number of
sample n, Y-axis denotes the magnitude of largest eigenvalue and n ∈ N, p = 500
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3.4 Experiments

This section provides empirical evidence that dropout with the optimal rate can effectively eliminate the
double descent phenomenon in a broader range of scenarios compared to what is formally proven in
Theorem 13.

3.4.1 Monotonicity in Sample Size

Elimination Double Descent in Linear Regression. (Synthetic Data)
In this part, we evaluate test error using dropout with pseudo optimal probability 0.8 (from Figure 3.1) in
linear regression, the sample distribution x ∼ N (0, Ip), y = x⊤β∗ + ϵ, ϵ ∼ N (0, 0.25), β∗ ∼ U(0, 1)
and ‖β∗‖2 = 1. Moreover, the monotonic curves in Figure 3.3 show that the test error always remains
monotonicity within the optimal dropout rate when the sample size increases for various dimensions p.

Random ReLU Initialization. (Fashion-MNIST)
We consider the random nonlinear features stemming from the random feature framework of Rahimi and
Recht (2007). We apply random features to Fashion-MNIST (Xiao et al., 2017), an image classification
dataset with 10 classes. In the preprocessing step, the input images vector x ∈ Rd are normalized and
flattened to [−1, 1]d for the d = 784. To make the correct estimation of mean square loss, the class labels
are dealt with the one-hot encoding to y ∈ {e⃗1, . . . , e⃗10} ⊂ R10. According to the given number of
random features D, and the number of sample data n, we are going to acquire the random classifier by
performing linear regression on the nonlinear embedding: X̃ := ReLU(XW⊤) where X ∈ Rn×d and
W ∈ RD×d is a matrix with every entry sampled i.i.d fromN (0, 1/

√
d), and with the nonlinear activation

function ReLU applied pointwise. This is equivalent to a 2-layer fully connected neural network with a
frozen (randomly initialized) first layer, trained with dropout. Figure 3.4 shows the monotonic test error.

3.4.2 Monotocity in Model Size

Like above setting, the sample distribution x ∼ N (0, Ip), y = x⊤β∗ + ϵ, ϵ ∼ N (0, 0.25), β∗ ∼ U(0, 1)
and ‖β∗‖2 = 1. The experiment result is the monotonic curves in Figure 3.5 show that the test error
remains monotonicity with optimal dropout as the model size increases. For the multiple descents in
Figure 3.5, the readers can find more details in Chen et al. (2021). Because we can think of the dropout
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Figure 3.3: Test Risk with Number of Sample in linear regression with Dropout probability 0.8. The test error
curves decrease with the optimal dropout rate. The X-axis in this figure is the dimension of the parameter (0.8 is a
pseudo-optimal value). The Y-axis is test risk.
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Figure 3.4: Test Risk with Number of Sample in Nonlinear Model with Dropout using Fashion-Mnist. The test
error curves are decreasing with optimal dropout. X-axis: sample size; Y-axis: Test risk.

estimator as a generalized ridge estimator:

E
r∼Ber(γ)

‖y − (r ∗X)β‖22 = ‖y − γXβ‖22 + (1− γ)γ‖Γβ‖22

= ‖y − γXΓ−1Γβ‖22 + (1− γ)γ‖Γβ‖22
= ‖y − γX ′β′‖22 + (1− γ)γ‖β′‖22

(3.9)

We can think the covariates is also nonisotropic as x′ ∼ N (0,Γ−2). Then, we can observe the multiple
descents as Nakkiran et al. (2021b). where M := r ∗ X , Γ = diag(X⊤X)1/2. Similar to Nakkiran
et al. (2021b), we see the triple descent with the first peak around p = 300 dimension due to the 300-
dimensional large eigenspace and the second peak at n = p. That is, the covariance has one “large”
eigenspace and one“small”eigenspace.
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Figure 3.5: Test Risk with of model size in Linear Regression with Dropout. The test error curves decrease with
the optimal dropout rate. X-axis: the dimension of the parameter; Y-axis: Test risk.

3.4.3 Multi-layer CNN

We use the same setups as in Nakkiran et al. (2021a). Here, we give the brief details of the model. For
the full details, please check Appendix 3.7.1.

Standard CNNs: We consider a simple family of 5-layer CNNs, with 4 convolutional layers of widths
[k, 2k, 4k, 8k] for varying k, and a fully-connected layer. For context, the CNN with width k = 64, can
reach over 90% test accuracy on CIFAR-10 with data augmentation. We train with cross-entropy loss and
the following optimizer: Adam with 0.0001 learning rate for 10K epochs; SGDwith 0.1/

√
bT/512c+ 1

for 500K gradient steps.

Label Noise. In our experiments, label noise (Arpit et al., 2017) of probability prefers to train on samples
with the correct label with probability 0%, 20%, and a uniformly random incorrect label otherwise (label
noise is sampled only once and not per epoch).

Dropout layer. We add the dropout layer before the full-connected linear layer with the present rate γ
(Srivastava et al., 2014). Figure 3.6 shows the test error results. The training loss is in Figure 3.7.

3.5 Discussion

Our proof considers only the non-exact solution for the expected test error. Therefore, we cannot defini-
tively assert that the test risk decreases monotonically. However, based on our experimental results and
this non-exact proof, we propose the following conjecture:
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Figure 3.6: Test Risk with Number of width parameter in 5 layer-CNN with Dropout. The x-axis is CNN width
parameter (left: 0% label noise with Adam; right: 20% label noise with SGD). We can see dropout drops double
descent.(γ: present rate)
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Figure 3.7: Train Loss with width parameter in 5 layer-CNN with Dropout (left: Adam, right: SGD). X-axis is
CNN width parameter

Conjecture 14. For any n, p ≥ 1, σ2 > 0, and β0, the expected test risk is monotonic in sample as

R̄(β̂n+1) ≤ R̄(β̂n). (3.10)

In future research, we aim to prove that the exact solution with dropout can mitigate double descent.

Note the optimal hyperparameter remains in the fixed dimension p with a changeable sample size n.
This is because the original data y from the model y = Xβ + ϵ will change, thus affecting the common
test error. Additionally, Wainwright (2019) contains a statement about the sample covariance matrix
diag(X⊤X), which converges to the identity matrix for all δ > 0 and ||xi||2 ≤

√
d (Corollary 6.20 in

Wainwright (2019)):

P [‖diag(X
⊤X)

n
− Ip‖2 ≥ δ] ≤ 2p · exp

(
− nδ2

2d(1 + δ)

)
(3.11)

for the E(diag(X⊤X/n)) = Ip, and by coupling the previous conclusions, it seems that the dropout
estimator tends to the ridge estimator (LeJeune et al., 2020) and has the same asymptotic risk as the ridge
estimator in Hastie et al. (2019).
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3.6 Appendix

3.6.1 Proof of Theorem 13

The First term of (3.8)
Let Λ := 1−γ

γ diag
(
X⊤X

)
, A := Λ−1X⊤X , and α = 1−γ

γ . We evaluate E[(I + A⊤)−1
(I + A)−1].

Note
(
I +A⊤)−1

(I + A)−1 = I − A − A⊤ + A2 +
(
A⊤)2 + A⊤A + · · · . For A = (ai,j), we have

ai,j =
γ

1−γ ·
∑

k xk,ixk,j∑
k x2

k,i
, and E[A] = γ

1−γ · I , which is due to (3.2). For A2 = (bi,j), we have

bi,j =

(
γ

1− γ

)2

·
∑
h

∑
k xk,ixk,h∑

k x
2
k,i

∑
k xk,hxk,j∑

k x
2
k,h

and E
[
A2
]
=
(

γ
1−γ

)2
p
n · I . Apparently, we have E

[
A⊤] = γ

1−γ · I and E
[(
A⊤)2] = ( γ

1−γ

)2
p
n · I .

Finally, we evaluate E
[
A⊤A

]
. For A⊤A = (ci,j), we have

ci,j =

(
γ

1− γ

)2

·
∑
h

∑
k xk,ixk,h∑

k x
2
k,h

∑
k xk,hxk,j∑

k x
2
k,h

so that E [ci,j ] = 0 for i 6= j.

E [ci,i] =

(
γ

1− γ

)2∑
h

E

(∑
k xk,ixk,h∑

k x
2
k,h

)2

=

(
γ

1− γ

)2∑
h

E

(∑
k

xk,i
xk,h∑
k x

2
k,h

)2

(xi ⊥⊥ xh)

=

(
γ

1− γ

)2∑
h

E

(∑
k x

2
k,h + 2

∑
i ̸=j xi,hxj,h

(
∑

k x
2
k,h)

2

)
(E

2
∑
i ̸=j

xi,hxj,h

 = 0)

=

(
γ

1− γ

)2∑
h

E

[
1∑

k x
2
k,h

]
,

where we have used E (
∑

r urαr)
2 = E

∑
r u

2
rα

2
r =

∑
r α

2
r , when ur ∼ N(0, 1), r = 1, 2, · · · , are

independent. Then, from the inverse density function of chi-square distribution, we have E
[
A⊤A

]
=(

γ
1−γ

)2
· p
n−2 · I . Then, the first term of (3.8) is{

1− 2

(
γ

1− γ

)
p

n
+

(
γ

1− γ

)2(2p

n
+

p

n− 2

)}
‖β0‖2 .

The Second term of (3.8)
Since ∥∥∥∥(X⊤X + Λ

)−1
X⊤
∥∥∥∥2
F

= trace
{(

X⊤X + Λ
)−1

X⊤
}⊤{(

X⊤X + Λ
)−1

X⊤
}
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the diagonal entries of XΛ−1
{
I −A⊤ −A+A2 +

(
A⊤)2 +A⊤A

}
Λ−1X⊤ are

(XΛ−1Λ−1X⊤) . . .m′
r =

(
γ

1− γ

)2∑
i

x2r,i
(
∑

k x
2
k,i)

2

(XΛ−1AΛ−1X⊤) . . . a′r =

(
γ

1− γ

)3∑
i

∑
j

xr,ixr,jai,j∑
k x

2
k,i

∑
k x

2
k,j

(XΛ−1A2Λ−1X⊤) . . . b′r =

(
γ

1− γ

)4∑
i

∑
j

xr,ixr,jbi,j∑
k x

2
k,i

∑
k x

2
k,j

(XΛ−1A⊤AΛ−1X⊤) . . . c′r =

(
γ

1− γ

)4∑
i

∑
j

xr,ixr,jci,j∑
k x

2
k,i

∑
k x

2
k,j

for r = 1, . . . , n. First, we derive∑
r

m′
r =

(
γ

1− γ

)2

E
∑
i

∑
r x

2
r,i

(
∑

k x
2
k,i)

2
=

(
γ

1− γ

)2 p

n− 2

∑
r

a′r =

(
γ

1− γ

)3∑
r

∑
i


∑
j ̸=i

xr,ixr,j
∑

k xk,ixk,j∑
k x2

k,i∑
k x

2
k,i

∑
k x

2
k,j

+
x2r,i(∑
k x

2
k,i

)2


=

(
γ

1− γ

)3∑
i


∑
j ̸=i

(
∑

k xk,ixk,j)
2(∑

k x
2
k,i

)2∑
k x

2
k,j

+
1∑
k x

2
k,i


=

(
γ

1− γ

)3∑
i

1∑
k x

2
k,i

∑
j ̸=i

ρ̂2i,j + 1


Please note that the distribution of ρ̂i, j is independent of x1, i, . . . , xn,i (as demonstrated in the deriva-

tion).Hence, the expectation of
∑

r a
′
r is

(
γ

1−γ

)3 (
p−1
n + 1

)∑
i

1∑
k x2

k,i
, when x1,i, . . . xn,i are given.

Thus, we obtain

E

[∑
r

a′r

]
=

(
γ

1− γ

)3

· p

n− 2
·
(
p− 1

n
+ 1

)
On the other hand.∑

r

b′r =

(
γ

1− γ

)4∑
r

∑
i

∑
j

xr,ixr,j∑
k x

2
k,i

∑
k x

2
k,j

∑
h

∑
k xk,ixk,h∑

k x
2
k,i

∑
k xk,hxk,j∑

k x
2
k,h

Let
βi,j,h :=

∑
r

xr,ixr,j∑
k x

2
k,i

∑
k x

2
k,j

∑
k xk,ixk,h∑

k x
2
k,i

∑
k xk,hxk,j∑

k x
2
k,h

Then, the
∑

h βi,j,h with i = j is 1∑
k x2

k,i

∑
h

( ∑
k xk,hxk,j√∑

k x2
k,h

∑
k x2

k,i

)2

and its expectation is 1
n−2

(
p−1
n + 1

)
.

When j 6= i = h, it’s 1∑
k x2

k,i

( ∑
k xk,ixk,j√∑

k x2
k,i

∑
k x2

k,j

)2

, its expectation is 1
n(n−2) . Since the βi,j,h with i, j, h
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different is ∑
r

xr,ixr,j∑
k x

2
k,i

∑
k x

2
k,j

∑
k xk,ixk,h∑

k x
2
k,i

∑
k xk,hxk,j∑

k x
2
k,h

its expectation is 1
n(n−2) If we take expectation w.r.t. {xk,h}, then the value becomes∑

r

xr,ixr,j(∑
k x

2
k,i

)2∑
k x

2
k,j

· 1
n

∑
k

xk,ixk,j ,

where the fact E
[

Z1
Z1+···+Zm

]
= 1

m for i.i.d. Z1, . . . , Zm has been used. Thus, the expectation is 1
n(n−2)

as well. Hence, E [
∑

h βi,j,h] with i 6= j is p
n(n−2) . Therefore,

E

[∑
r

b′r

]
=

(
γ

1− γ

)4 1

n− 2

(
2p− 1

n
+ 1

)
.

Finally, we obtain E [
∑

r c
′
r] . Let

γi,j,h :=
∑
r

xr,ixr,j∑
k x

2
k,i

∑
k x

2
k,j

∑
k xk,ixk,h∑

k x
2
k,h

∑
k xk,hxk,j∑

k x
2
k,h

.

If i = j, we have
∑

h γi,j,h :=
∑

h
1∑

k x2
k,h

·

( ∑
k xk,ixk,h√∑

k x2
k,i

√∑
k x2

k,h

)2

and its expectation is d
n(n−2) . If

i 6= j, h = i

γi,j,h :=
∑
r

xr,ixr,j∑
k x

2
k,i

∑
k x

2
k,j

∑
k xk,ixk,j∑

k x
2
k,i

=
1∑
k x

2
k,i

 ∑
k xk,ixk,j√∑

k x
2
k,i

√∑
k x

2
k,j

2

and its expectation is 1
n(n−2) If i, j, h are different, if we fix {xk,j} and {xk,h}, then the expectation of

γi,j,h := 1∑
r x

2
r,i
ρ̂j,hρ̂i,j ρ̂i,h is zero. Thus, we have

E

[∑
r

c′r

]
=

(
γ

1− γ

)4

(
p2

n(n− 2)
+

2p(p− 1)

n(n− 2)
) =

(
γ

1− γ

)4 3p2 − 2p

n(n− 2)

with α = γ
1−γ . Next, the test error is calculated by summing these terms, resulting in{

1− 2α+ α2 p

n

(
3 +

2

n− 2

)}
‖β∗‖2 + α2 p

n− 2

+ α3 p

n− 2

(
p− 1

n
+ 1

)
+ α4 4p

2 − 2p− 1 + n

n(n− 2)

3.7 Experiment Details

3.7.1 Models

Standard CNNs. We consider a simple family of 5-layer CNNs, with four Conv-Batch Norm-ReLU-
MaxPool layers and a fully-connected output layer. We scale the four convolutional layer widths as
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[k, 2k, 4k, 8k]. The MaxPool is [1, 2, 2, 8]. For all the convolution layers, the kernel size = 3, stride = 1,
and padding = 1. This architecture is based on the“backbone”architecture from Page (2018). Fork=
64, this CNN has 1558026 parameters and can reach> 90% test accuracy on CIFAR-10 (Krizhevsky,
2009) with data augmentation. The scaling of model size with k is shown in ”Figure 13” of Nakkiran
et al. (2021a).



Chapter 4

Conclusion and Future work

4.1 Conclusion

In this comprehensive research, we have delved into the multifaceted world of linear operators within
machine learning, contributing significantly from both causal discovery and linear regression analysis
perspectives.

Our journey began with the introduction of Functional Linear Non-Gaussian Acyclic Model (Func-
LiNGAM), a pioneering development in causal discovery. Func-LiNGAM extends the conventional
LiNGAM framework to encompass infinite-dimensional spaces, including vectors and functions. This
expansion unlocks new horizons for uncovering causal relationships within complex datasets, such as
fMRI and EEG. The research’s theoretical underpinnings, including guarantees of identifying causal re-
lationships in infinite-dimensional Hilbert spaces, provide a solid foundation for its practical applications.
Additionally, incorporating functional principal component analysis addresses the sparsity challenge in
these datasets. Our experimental results, including the analysis of brain connectivity patterns from real
fMRI data, underscore the efficacy of Func-LiNGAM in unveiling causal connections amongmultivariate
functions.

Simultaneously, our exploration ventured into linear regression, particularly addressing the enigmatic
double descent phenomenon. By introducing dropout layers alongside fully connected linear layers, we
have illuminated a novel approach to mitigating fluctuations in prediction error rates as sample size or
model complexity increases. While we did not provide rigorous mathematical proof, empirical evidence
revealed a consistent relationship between dropout rate and optimal test error, thus offering insights into
the strategic use of dropout regularization in linear regression. Our pioneering investigation into the

39
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connection between dropout and the double descent phenomenon enriches our understanding of machine
learning model performance.

In conclusion, this comprehensive research underscores the remarkable versatility of linear operators in
machine learning. By advancing the frontiers of causal discovery through Func-LiNGAM and shedding
light on perplexing phenomena within linear regression, we contribute theoretically and practically to the
field. These studies not only deepen our understanding of linear regression but also provide pragmatic
methodologies for handling complex, high-dimensional datasets, showcasing the immense potential of
linear operators in advancing machine learning research.

4.2 Future work

4.2.1 Double Descent

InWainwright (2019), there is statement about the sample covariancematrix diag(XTX) that it converges
to identity matrix for all δ > 0 and ||xi||2 ≤

√
d (Corollary 6.20 in Wainwright (2019)):

P [||diag(X
TX)

n
− Ip||2 ≥ δ] ≤ 2p · exp

(
− nδ2

2d(1 + δ)

)
(4.1)

for the E(diag(XTX/n)) = Ip and by coupling the previous conclusions, we say that the dropout esti-
mator is actually equal to the ridge estimator for all n, the number of samples.

In addition, we should draw attention to this transform, which if we write diag(XTX) = Λ, then the loss
function of original model using dropout is:

L = ||Xβ − y||22 +
1− γ

γ
||Λ1/2β||22

= ||XΛ−1/2Λ1/2β − y||22 +
1− γ

γ
||Λ1/2β||22

= ||X ′β′ − y||22 +
1− γ

γ
||β′||22

(4.2)

which the data has changed its distribution into x′ ∼ N (0,Σ), with the general nonisotropic covariates,
this part may be finished in the future work.
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4.2.2 Functional Data

Proposing a novel dimension reduction approach for approximating the infinite-dimensional functional
data with kernel dimension reduction, originally designed for supervised problems, to unsupervised di-
mensionality reduction. This paper uses kernel-based independence measures to derive low-dimensional
representations that maximally capture information from functional data and minimize the redundancy
among the chosen features. We demonstrate that whenever the coefficients of functional data exhibit
a linear or nonlinear relationship, our method achieves better results for FPCA. Moreover, our method
outperforms FPCA even when the functional data is more complex.
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