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Abstract

This thesis delves into the intricacies of linear regression in machine learning, specifically focusing on

its applications in diverse dimensions, causal discovery, and managing model complexity as follows:

We first study how dropout layers in neural networks can mitigate the double descent phenomenon. We
demonstrate theoretically and empirically that optimal dropout in linear models can prevent this phe-
nomenon. We estimate the true coefficients using a generalized ridge-type estimator and show that op-
timal dropout leads to a monotonic test error curve, even in nonlinear neural networks. This finding
suggests the effectiveness of dropout regularization in managing risk curves and explains the absence of

double descent in models employing similar regularization techniques.

Then we extend the Linear Non-Gaussian Acyclic Model (LiNGAM) to Functional LINGAM (Func-
LiNGAM), capable of handling infinite-dimensional data, such as fMRI and EEG datasets. This devel-
opment addresses the limitations of the original LINGAM in processing such complex datasets. We the-
oretically validate the identifiability of causal relationships in these high-dimensional spaces and employ
functional principal component analysis to manage data sparsity. The effectiveness of Func-LINGAM is

demonstrated through synthetic and real fMRI data analysis.

In conclusion, this thesis presents a comprehensive exploration of linear regression in machine learning,
contributing to both theoretical understanding and practical methodologies. By focusing on two inter-
connected areas—the application of Func-LiNGAM in infinite-dimensional spaces for causal discovery
and the effective use of dropout regularization to address the double descent phenomenon—we have ad-
vanced the knowledge of linear regression’s versatility. These studies offer valuable insights into the
field and provide practical tools for dealing with complex, high-dimensional datasets. They showcase

the potential of linear operators in advancing machine learning research.
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Chapter 1

Introduction

1.1 Motivation

Causal Discovery with Functional Data Analysis: It’s crucial to emphasize the significance of apply-
ing functional data analysis to neuroimaging data, particularly in EEG causality studies. Functional data,
inherently infinite-dimensional, necessitates specialized approaches like Func-LINGAM. Conventional
models may lead to incorrect causal inferences, as standard methods may overlook the intricate struc-
ture of such data. Functional data analysis, through techniques like smoothing, reveals hidden patterns
and connections, crucial for accurate causal discovery in EEG data. This approach, already impactful in
various fields, offers a robust framework for unraveling complex causal relationships in brain activity,
making it pivotal for advancements in neuroimaging and related research areas.

Double Descent: Dropout is a well-established regularization technique for training deep neural net-
works. Its primary objective is to prevent ’co-adaptation” among neurons by randomly excluding them
during training (Hinton et al., 2012). Dropout’s effectiveness extends across various machine learning
tasks, ranging from classification (Srivastava et al., 2014) to regression (Toshev and Szegedy, 2014).
Notably, dropout played a vital role in the design of AlexNet (Krizhevsky et al., 2012), significantly
outperforming its competitors in the 2012 ImageNet challenge. Given dropout’s proven efficiency in
mitigating overfitting (Srivastava et al., 2014) and its wide applicability, we propose that it may signifi-

cantly mitigate the double descent phenomenon. This leads us to the following question:
Under what conditions and how does dropout mitigate the double descent phenomenon?

We acknowledge that the double descent phenomenon exists under both sample-wise and model-wise
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conditions. This paper investigates its occurrence in both linear and nonlinear models to enhance test
performance while avoiding unexpected non-monotonic responses. Eliminating the double descent phe-
nomenon has indeed become a prominent research topic. For instance, ridge regularization can alleviate
double descent (Nakkiran et al., 2021b), as can early stopping (Heckel and Yilmaz, 2021).

1.2 Organization and Contribution

The thesis is organized as follows: In Chapter 1, we briefly introduce the motivation of this thesis and
present a summary of contributions. In Chapter 2, we propose an infinite-dimensional causal discovery

framework for functional data. In particular,

Contribution of Chapter 2:

e We establish a framework for discovering causal orders for random vectors and functions, moving

beyond the traditional focus on random variables.

e We theoretically prove that it is possible to identify the causal order under non-Gaussianity for

random vectors (Theorem 5).

e We further demonstrate the identifiability of the causal order for non-Gaussian processes in infinite-

dimensional Hilbert spaces (Theorem 8).

e To verify the validity of our method, we performed extensive experiments with simulated data
as Table 2.1. Empirical results demonstrate the identifiability. The results show that it performs
worse as the number of functions increases, which is reasonable. But as the sample size increases,
it performs better. We need more data for larger dimensions, but the required amounts are still

reasonable.

In Chapter 3, we theoretically prove that dropout can drop double descent. In particular,

Contribution of Chapter 3:

* Eliminating the Sample-Wise Double Descent. We empirically validate the monotonicity of the
test error as the sample size increases (see Figure 3.1) and theoretically prove the monotonicity of

the second-order Neumann series test error. We plan to detail the exact solution in future work.

* Eliminating the Model-Wise Double Descent. We empirically demonstrate the monotonicity of

the test error as the model size increases.
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* Multi-layer CNN. We provide empirical evidence showing that dropout can alleviate the double

descent in multi-layer CNNs.

In Chapter 4, we summarize the proposed methods and provide a comprehensive discussion of their

strengths and limitations. We also provide a discussion about possible directions for the follow-up work.



Chapter 2

Functional LINGAM

2.1 Introduction

Numerous empirical sciences strive to uncover and comprehend causal mechanisms that underlie a wide
range of natural phenomena and human social behavior. Causal discovery has a wide range of applica-
tions, including biology (Sachs et al., 2005), climate studies (Ebert-Uphoff and Deng, 2012), and health-
care (Lucas et al., 2004). When determining the cause-and-effect relationship between variables, such
as X7 and X5, detecting their dependence alone is insufficient for determining the causal direction, i.e.,
whether X7 — X5 or X9 — Xj.

Causal analysis based on the LINGAM, proposed by Shimizu et al. (2006), addresses this challenge by
identifying the causal directions in linear relationships. Specifically, supposing there is no latent common
cause for X and Xo, it figures out the causal direction between them by checking which of the following
two models holds: Xo = aX; + eand X; = o’ X5 + ¢, where X7 1 eand Xy 1L € and a,da’ € R.!
The sufficient and necessary condition of the identifiability is that LINGAM requires at most one of the
noise terms (including the root causes) to be non-Gaussian to make it possible to identify unique causal
directions. Notably, zero correlation is synonymous with independence in Gaussian variables, making it

impossible to distinguish between the two causal models when X; and X5 are Gaussian.

In this linear, Gaussian case, one can only end up with the so-called Markov equivalence class (all mem-
bers of the equivalence class have the same conditional independence relations), even when adhering
to faithfulness assumption (Spirtes et al., 2000; Pearl, 2000). For instance, the three Directed Acyclic
Graphs (DAGs) connecting three variables, such as X1, X9, X3, in Fig. 2.1 are Markov equivalent be-

!X, 1l X3 denotes the independence of X and Y.
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Figure 2.1: Structure learning methods like the PC algorithm cannot distinguish these causal graphs that have the
identical probability distribution P(X1X2)P(X2X3)/P(X2) (Left). But LINGAM can differentiate them via the

non-Gaussian assumption (Right).

cause they have the same distribution in the Gaussian case. Here faithfulness refers to the property where
any independence relations observed in the data can be explained by the causal relationships represented
in the graphical model. However, this is not the case anymore in non-Gaussian cases. Due to this signif-
icant advancement, LINGAM can uniquely determine the causal ordering among variables solely based

on observational data, even without assuming faithfulness.

For the converse, the Darmois-Skitovich theorem (D-S) is employed to prove the identifiability of causal
direction. From D-S, if at least one of the variables X; and X5 are non-Gaussian, then only one unique
direction of X; — X5 and Xy — X exists. The Darmois-Skitovich (D-S) theorem originally focused
on one-dimensional Gaussian random variables. Interestingly, Ghurye and Olkin (1962) expanded its
application to random vectors, while Myronyuk (2008) generalized it to Banach spaces. In our paper,

random elements that take values in a Banach space are called random functions.

This paper establishes a novel functional framework for modeling the causal structure of multivariate
functional data, which is the realization of random functions. It is important to note that functional data
is inherently infinite-dimensional. If we apply conventional models such as PC or LINGAM directly,
we might incorrectly identify causal relationships, as shown in Fig. 2.2. To demonstrate the benefits of
functional data analysis (Ramsay and Silverman, 2005), we provide an example in Fig. 2.3, illustrating
how smoothing the discrete points enables us to capture missing information. Functional data analysis
has gained prominence in diverse fields, including neuroimaging (Wainwright, 2019), finance (Tsay and
Pourahmadi, 2017), and genetics (Wu and Xu, 2020). Exploring causal relationships among random

functions presents a significant challenge in multivariate functional data analysis.

This research is motivated by brain-effective connectivity (Advani et al., 2020), which explores the di-
rectional effects between neural systems. Learning brain-effective connectivity networks from electroen-
cephalogram (EEG), functional magnetic resonance imaging (fMRI), and electrocorticographic imaging
(ECoG) records is crucial for understanding brain activities and neuron responses. Modeling these mul-

tivariate processes and accurately estimating effective connections between brain areas pose significant
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challenges due to the continuous nature of the data and the need to treat the data as functions, considering
the small time intervals between adjacent sample points. Previous studies, such as Qiao et al. (2019),
has explored the functional aspects of the Gaussian graphical model by estimating the inverse covariance
matrix. Nakkiran (2019) introduced the functional directional relationships under Gaussian assumption,
enabling the determination of a directed acyclic graph (DAG) up to its equivalence class. The previ-
ous version of this paper Yang and Suzuki (2022) discussed the identifiability without considering one
important point for functional data: the covariance operator’s non-invertibility. Moreover, the previous
algorithm for functional data is not accurate because it only tests the independence of every principal
component rather than the whole random vector. Zhou et al. (2022) developed a novel Bayesian network
model for multivariate functional data. Roy et al. (2023) considers the directed cyclic model for func-
tional data. In contrast to previous works, our approach differs in that we first establish the identifiability
of random vectors. Subsequently, we demonstrate the identifiability of random functions considering the

non-invertibility and extend it into multivariate scenarios. Our contributions are as follows:

e We establish a framework for discovering causal orders for random vectors and functions, moving

beyond the traditional focus on random variables.

e We theoretically prove that it is possible to identify the causal order under non-Gaussianity for

random vectors (Theorem 5).

e We further demonstrate the identifiability of the causal order for non-Gaussian processes in infinite-

dimensional Hilbert spaces (Theorem 8).

e To verify the validity of our method, we performed extensive experiments with simulated data
as Table 2.1. Empirical results demonstrate the identifiability. The results show that it performs
worse as the number of functions increases, which is reasonable. But as the sample size increases,
it performs better. We need more data for larger dimensions, but the required amounts are still

reasonable.

The structure of the paper is as follows. Section 2.2 provides the necessary background information to
comprehend this paper. This includes introducing the LINGAM, infinite-dimensional Hilbert spaces, and
random elements (random functions). Section 2.3 and 2.4 present the main theoretical results extending
the LINGAM and outlines the corresponding procedure. Section 2.5 and 2.6 present the experimental

results. Section 2.7 summarizes the key points.
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y 9@)=1-flz+1) y |9(2)=0-f(z)
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/\ Sampling 3 3 3
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Figure 2.2: Illustration of why the original LINGAM does not work. The Left Graph: original two stochastic
processes with their causal relationships, The Right Graph: a possible situation where we sample the time series

but miss the causal relationship.

2.2 Background

2.2.1 Linear Non-Gaussian Acyclic Model (LINGAM)

This section introduces the concept of the LINGAM for inferring the causal relationships among random

variables.

Suppose two random variables X1, X5 € R, we want to identify the causal directions of either X; — X»
or Xo — X;. More specifically, our analysis assumes that X; and X5 are linearly related and have zero
means. Such as

Xi=e, Xo=aXi+es, 2.1

Xo = 6/1, X, = a'Xg + 6/2 (2.2)

with a,a’ € R and E[e] = E[¢/] = 0. To be simple, we let
a#0,orad #0, (2.3)

to avoid X; 1l Xs. Specifically, in the context of LINGAM, under the assumption of the noise terms,
denoted as € and €, are independent of their respective covariates, X1 and X5 in (2.1) and (2.2). Therefore,
based on the condition of X 1L ey or Xo 1L €/, we determine the true causal model to be either (2.1) or
(2.2). It may initially appear that distinguishing between (2.1) and (2.2) is not possible, in other words,
X, and X5 could satisfy both equations for certain values of a, d/, ea, and €}, where X; L ez and
Xo 1L 6'2. LiNGAM claims that this inconvenience occurs if and only if X; and X5 are Gaussian. In

other words, we can identify (2.1) and (2.2) if and only if at least one of X; and X5 are non-Gaussian.

For the sufficient part, we show that if variables are both Gaussian, then causal order is unidentifiable.

Suppose X1, X2 both are normally distributed, and the model (2.1) with X; 1L es is true for certain a
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Figure 2.3: Illustration of Why Func-LINGAM Work. (Smoothing: Functional data analysis) The Left Graph:
with the worst situation when we sample the time series and miss the causal relationship, where we get g and f
have no causal relationship. The Right Graph: we can complete the discrete points into smooth curves with the

Functional data analysis, capturing extra information when choosing suitable bases.

and e. Let 02, 02 be the variances of 1 and e3. Then, from E[ejez] = 0, we have
el = aey + es 2.4)

ey =e1 —a'el =e; —ad(aer +e3) = (1 —da)ey —desy, (2.5)

and E[efeb] = (1 — a’a)o? — a’a5 , which means that choosing

2
/ agq
o = (2.6)
a20? + 02

will make the E[e}e}] = 0 too. We call W and Z jointly Gaussian if the two random variables can be

represented as =A

] where A € R?*2 and U, V are independent Gaussian.

The well-known property states that independence is equivalent to zero correlation for jointly Gaussian
variables’. By checking €} and e}, belonging to joint Gaussian distribution, we can conclude that €] is

independent of ¢/,. Consequently,(2.2) holds with Xy 1L ¢ for the corresponding o/, €'.

For the necessary part, assume that X 1L € for (2.1) and Y 1L € for (2.2) both hold simultaneously for
certain a, a’, ¢, €, where o’ satisfies (2.6). Therefore, this means that a,a’ # 0 due to (2.3) and (2.6).

Now note the statement as follows:

Proposition 1 (Skitivic (1953); Darmois (1953)). Letm > 2 and independent random variables &, ..., &, €
R. Lettwo linear form Ly = > " e;§;and Ly = > " i€, if Ly UL Lo, forav, ..., cum, B, ..., Bm €

R. Then the random variable &; such that «;3; # 0 belongs to Gaussian fori =1,...,m.

2Suppose Z and W be binary taking +1 equiprobably and zero-mean Gaussian. Then, ZW and Z are not jointly Gaussian.
Even though E[ZW - Z] = E[W] - E[Z?] = 0 but they are not independent.
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Following (2.4)(2.5)(2.6) and the Proposition 1, then

(e1,€2,a,1,1 —ad', —d’) = (&1,&, a1, az, 1, B2)

2 2
g ao
:(X7€7a717 2 L

)

a20? + 02 a20? + o2
By combining (2.3), X1, € belong to Gaussian, then X5 is also Gaussian-distributed.

Proposition 2 (Shimizu et al. (2011)). Assuming (2.3), we can identify the causal order using LINGAM

if at least one of two random variables belongs to non-Gaussian.

We can also identify the causal orders among multiple random variables. Suppose there are three lin-
early related random variables X7, X9, X3 with zero means. Then, six potential causal orders exist, for
instance, Xo — X; — X3, and X3 — X9 — X;. First, we determine the top of them. Assuming X is
independent of { X5 — a X7, X5 —a' X1} fora,a’ € R, which means X is the top variable. Furthermore,
suppose that Xo — a X7 is independent of X5 — a’ X7 — a” (X3 — aX;) for some a” € R, then regarding
the X5 as the middle and X3 as the bottom. We obtain the causal order X; — X9 — Xj3. Following the
steps, we can identify the causal order for X7, Xo, X3. Furthermore, we can estimate the causal order for

an arbitrary number of random variables like

i—1
Xi=) bi;jX;+e;
j=1
where b; ; € R and noise e; is non-Gaussian for p random variables X1, ..., X,.

2.2.2 Hilbert Spaces

A Banach space is a complete normed vector space where completeness ensures that all Cauchy sequences
converge within the space. It combines linearity, completeness, and the norm to provide a framework for
studying mathematical structures and functions. More precisely, in our context, we consider the set of
functions as a Hilbert space, denoted by .77. A Hilbert space is a Banach space equipped with an inner

product that induces the norm, ensuring completeness.

We define a linear operator Ty : 57 — % over R as a mapping that satisfies the linearity property:
To1(af + Bg) = aTay f + B9 for f,g € 4 and «, 5 € R. Furthermore, T5; is said to be bounded if
there exists a positive constant C such that ||T2; f||2 < C|| f]|1 holds for all f € 7. Here, || - ||1, || - ||

denote the norms within 7, .74, respectively.

For any bounded operator T : 4 — 7, there exists its adjoint operator or dual operator, a unique

bounded linear operator 75, : % — 77 such that the following equality holds: (7% f1, f2)2 =
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(f1, 151 f2)1 for fi € JA and fo € 4. The operator 1%, is the adjoint operator of T;. If Ty = T3,
we say that T5; is self-adjoint. Moreover, if the dimension of JZ is finite, the self-adjoint operator 75

is symmetric.

2.2.3 Random functions

Functional data analysis involves considering each individual element of data as a random function. These
functions are defined over a continuous physical continuum, which is typically time but can also be spatial
location, wavelength, probability, or other dimensions. Functionally, these data are infinite-dimensional.
Random functions can be interpreted as random elements that take values in a Hilbert space or as stochas-
tic processes. The former approach provides mathematical convenience, while the latter is more suitable
for practical applications. These two perspectives align when the random functions are continuous and

satisfy a mean-squared continuity condition.

Formally speaking, if a mapping X : Q@ — R is measurable from a probability space (2, F, i) to
(R, B(RR)), then it is a random variable:

B e BR) = {w € Q|X(w) € B} € F,

with the Borel sets B(R). Similarly, if x : @ — % is measurable from (Q, F, ) to (€, B(¢)), then

it is a random function (or random element) in a Hilbert space .77:
BeB(#H)= {weX(w)e B} eF,

with the Borel sets B(#) w.r.t. the norm of 7. Let E be one set, we suppose that every entry f of 7
isa function f : £ > x — f(z) € R.

The mean of the random function  is defined using the Bochner integral® as J. q Xdu, under the condition
that the expectation of ||x|| is bounded. Moreover, if the means of x1, y2 in % are m, we give the

definition of the covariance operator % : 5 — ¢ of random functions x1, x2 when 57 := 4 = J5:

(Hgr,g2) = ( /Q (x1 — m, 1) (x2 — m))du, g2) = /Q (x1 — 1, 91) (xz — 0, ga)di

for g1, go € . By using orthonormal bases {e; } in 7, we can compute the covariance values (% ¢e;, e;)

for all pairs of indices 7 and j. Generally, if x1 L 2, then we get (£ g1, go) = 0 for g1, g2 € .

In the context where each element in 7 is a mapping from E to R, a random function x : Q@ — 7

takes values x(w,x) € R for eachw € Q and x € E. Furthermore, if we fix w € Q, x(w, -) represents a

3See the definition of the Bochner integral in HSING and EUBANK (2015).
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random function from E to R. Henceforth, we adopt the notation x(-) to represent the random function
X(w, +). This convention is analogous to the simplification employed for random variables, where X (w)
is denoted as X. Note that a mean m random function Y is referred as a Gaussian process if for any
n > 1, the random vector [x(z1),. .., x(zn)] of length n follows a Gaussian distribution with mean

[m(z1),...,m(x,)], z1,...,2, € E.

When the Hilbert space 7 has a finite dimension d, the covariance operator can be represented by
a covariance matrix, denoted as ¥ € R?*¢. This matrix is positive definite. Consequently, we can
define the eigenvalues {\;} and eigenvectors {¢; } of ¥.. Each vector in .7 can be expressed as a linear
combination of the eigenvectors, specifically as Ele (X, ¢i)pi. Moreover, for (X, ¢;), the variance is

given by ;. Then, for random function x;, if .77 is an infinite-dimensional function space,

Proposition 3 (HSING and EUBANK (2015)). Let {\;} and {¢;} denote the eigenvalues and eigen-
functions obtained from the eigenvalue problem ¢ ¢; = \j¢;, © = 1,2, . ... With probability one, x can
be represented as:

X =Y (0w di,
=1

where (x, i) » denotes the inner product between x and ¢; in €. Additionally, mean of x is zero, and

Jor (X, ¢i) s, the variance is equal to \;.

It is important to note the close relationship between stochastic processes and random functions. A set of
random variables { X (¢) };cr can be considered a stochastic process if the function X : Q@ x ' — R is
measurable with respect to the probability space (2, F, 1) and the measurable space (R, B(R)) for each
t € E. It is worth mentioning that certain stochastic processes can also be regarded as random functions
(HSING and EUBANK, 2015).

2.3 Extension to Functional Data

In this section, we generalize the concept of LINGAM from random variables to encompass both random

vectors and random functions.

Previous works have extended the D-S to encompass various scenarios. These extensions include incor-
porating random vectors (Ghurye and Olkin, 1962) and random functions in a Banach space (Myronyuk,

2008) as substitutes for random variables.
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2.3.1 LiNGAM for Random Vectors

As shown by Shimizu et al. (2011), the identifiability of non-Gaussian random variables is outlined in
Proposition 2. However, this proposition does not extend to the case of random vectors or random func-

tions. This section provides proof of identifiability for non-Gaussian random vectors.

Proposition 4 (Multivariate Darmois-Skitovich (Ghurye and Olkin, 1962)). Let L1 = Y ;" A€ and
Ly =", B;&" with mutually independent k-dimensional random vectors &' and invertible matrices

A;, B; fori=1,...,m. If L\ and Lo are mutually independent, then all £ are Gaussian.

Now we consider the identifiability of the following model when x,y € R™ and invertible matrix A €

R™*™M e1 |l e9 and zero means,

/
€1,

xr = €1, Yy
y = Ax + €9, x=Ay+é, 2.7
€f=Aer+e, e=(1—AAe — Ale,.

We assume
A or A’ is invertible. (2.8)

Then, we have the following theorem.

Theorem 5. Assuming (2.8), which extends (2.3), we can identify the causal order between random

vectors X1, Xo : Q© — R™ of dimension m € [1, 00) if and only if at least one of them is non-Gaussian.

Proof. Since €1 1L €9, Fe} = F€,, = 0, and they are Gaussian random vectors with covariance matrix
Y1, X9, respectively. Then the correlated coefficient p = 0 <= Cov(€},€,) = AX, (I - ATA’T) —
Y AT =0 <= €] 1L ¢, thatis, when A’ = ¥ AT (A% AT + ¥5)~1, the causal relation between z, y
is unable to be identified. This also satisfies the condition of €] L ¢, is that they follow the Gaussian

distribution from the Proposition 4. O

2.3.2 LiNGAM for Random Functions

In this subsection, we present results that demonstrate identifiability can be achieved in non-Gaussian
scenarios in infinite-dimensional Hilbert spaces as Theorem 8. In extending our approach to multivariate
scenarios, we adopted methodologies from Lemmas 1 and 2 of DirectLiNGAM (refer to (Shimizu et al.,

2011)). This involved identifying the exogenous function (see Appendix) and using residuals for causal
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ordering, paralleling the process in Direct-LiNGAM. Owing to the procedural similarities with multivari-
ate functions, we omitted a detailed proof in our main text, choosing to apply these established principles

to our context. We have included the preliminary proof in Section 2.3.3 for clarity.

Let J#, 74 be Hilbert spaces. Assume that there are two causal models for f; € J#4 and fy € 54,

fi = hi, fo = To1f1 + ha,

2.9)
fa=hi, J1="Tiaf2+ h.

where random functions {hi, hl} € JA and {h), ho} € J%. We also assume the covariance operator
J1 of hy, 59 of ho have positive eigenvalues (> 0). The 1o : 5% — A, 1 : 4 — 5 are
linear bounded operators between 771, 74, and we identify the order by examining whether ho 1L f; or
hi AL fo.

A bounded linear operator 7' : J#] — .7 is considered continuous if the set {T'(f)|f € U} C 4 is
open for any subset U C 7. Similarly, the inverse image U is also open. Furthermore, an operator

T : 74 — 5% is said to be invertible if it is both one-to-one (injective) and onto (surjective).

Let’s confirm the statements before proceeding with our discussion:

* Proposition 6: There is an equivalence between independence and non-correlation for jointly Gaus-
sian random functions. In other words, if x; and y3 are jointly Gaussian random functions, they

are independent if and only if they are uncorrelated.

* Proposition 7: The Darmois-Skitovich (D-S) theorem can be extended to random functions in

Banach spaces.

The following Proposition 6 establishes the equivalence between independence and non-correlation for

random functions in Banach spaces, which also includes Hilbert spaces as a special case.

Proposition 6 (van Neerven (2020)). Suppose x, x' are joint Gaussian in Banach spaces. Then, x 1L X’
if and only if they are uncorrelated.

Proposition 7 (Darmois-Skitovich in Banach Space(Myronyuk, 2008)). Suppose thatn > 2, and random
Sunctions &1, .. ., &, arein a Banach space. Let Ly =Y ;" | Ai&, Lo = Y ;" | B;&; with some continuous
linear bounded operators Ay, ..., Am, and B1, ..., By,. If L1 1 Lo, then &; is a Gaussian process for

i =1,...,m with invertible A;, B;.

Theorem 8 (Causal Identifiability). If either T2 or I3, is invertible, the causal order between random
functions in infinite-dimensional Hilbert spaces can be identified if and only if at least one of them is a

non-Gaussian process.
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Proof. For the sufficiency, from (2.9), we first assume the f; = hy, fo = 151 f1 + ho, and represent the

noise functions b, hfy with hq, ho:

By = fa = Torh1 + ho

2.10)
hy = fi — Tiafo = ha — Tho(Torh1 + ho) = (I — Ti9To1)hy — Tizhs .

Because h), b, are formed as the linear combinations of two independent Gaussian random functions
hi1, ha, we can conclude that k] and R, are jointly Gaussian (van Neerven, 2020). Then from Proposition
6, the zero-correlation implies independence. Since hy 1L ho and hy € J4, ho € 54, the cross-

covariance operator %1 is zero:

(H1291,92) 0y = /Q(h1,91>%<h2792>% =0

for any g1 € JA,g92 € . Then, the cross-covariance operator %7, between h and h}, is

(K901, 92) 1 = /Q<(I — T19T51)hy — Th2ha, 1) m (To1ha + he, 92) mdp

:/((I—T12T21)h1791>%(T21h1,92>%dﬂ+/<—T12h2,91>32ﬁ<h2792>;f2du
Q Q

* * " 2.11
:/Q<h1,(I—T12T21) g1>3ﬁ<h1,T21gz>Mdu—/§1<h27T1291>%<h2792>%du @1

= (I — Ti2To1)" g1, T5192) s — (H22T1291, 92) 5
= (To1 2t (I — T3, T75) 91, 92) e — (Ha2 11991, 92) 5

for any g1 € 74,90 € J%, where J#11, 5o are the covariance operators of Ay, ho, respectively. We

assume that J#71, %52 are not zero. If 7}, = 0, then we require
H Ty = Tio{Ton 1 Ts, + Haa} . (2.12)

We have
(211) =0 T21<%/11(I — T2>'<1T1*2) = %QTI*Q

& Tyt = (To1711 151 + Ha2)Ti < (2.12)

However, the covariance operator K17 and Koo are not invertible because of they are compact operator:

* A covariance operator is trace-class operator (Theorem 7.2.5 in HSING and EUBANK (2015));

* A trace-class operator is Hibert-Schmidt operator (Theorem 4.5.2 in HSING and EUBANK (2015));

An Hilbert-Schmidt operator is compact (Theorem 4.4.3 in HSING and EUBANK (2015));

* A compact operator is not invertible (Theorem 4.1.4 in HSING and EUBANK (2015)).
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Then we know covariance operators are not invertible. But here, we need to notice that we can always

define a Moore-Penrose inverse to make the equation (2.12) hold if
Im (11 T5)) € Im ({To111T) + H22}) (2.13)
and the following is bounded (Li, 2018):
{To 01Ty + Ao} 1 Ty (2.14)
Then the problem becomes determining the Images and boundness.

Next we prove Im(A) C Im(A + B). Note that if A is positive semidefinite and (Au,u) = 0, then
Au = 0. To see why, let vq, ..., v, be an orthonormal basis of eigenvectors of A (so A v; = \;v;) and
write u =y " ; (u, v;) v;. Then

n

(Au,u) = Z (u, ) N =0

i=1
together with \; > 0 implies that (u, v;) = 0if A\; > 0sou € ker(A). To prove thatIm(A) C Im(A+B),

it is enough to prove that
ker(A + B) = Im(A + B)* C Im(A)* = ker(A) (2.15)

let u € ker(A + B). Then 0 = ((A + B)u,u) = (Au,u) + (Bu,u) which implies that (Au,u) = 0,
so u € ker(A). Then (2.13) satisfys. Now we consider the boundness. As we know, the eigenvalue of
A + B (positive semidefinite) is bigger than A or B, which means the inverse eigenvalue of A + B will
be smaller than the inverse eigenvalue of A or B. Moreover, the smallest eigenvalue of the covariance
operator tends to 0, then (A + B)T A is bounded. Then we say the equation (2.12) holds. We can check

more details in the Appendix.

Conversely, we first let h; L hg and A} 1L Y in (2.9) hold true simultaneously for some 772, 151, and
we want to prove that hq, he, b/, h}, belong to Gaussian under (2.12). Note that a Hilbert space is a special
case of Banach space. Then we use the Proposition 7. We assume that 775 is invertible without losing
generality. Next we show that the eigenvalue of 17275, is less than 1, which means that I — T7575; is
invertible (see Theorem 3.5.5 in HSING and EUBANK (2015)). To achieve this, we multiply (2.12) by

T51 from the left-hand side, then we obtain
T Ty = TorTio{To1 01 T5, + oz},

which means that the eigenvalue of 751772 is less than 1. Noting that 75,715 and T1275; share the
eigenvalues:

To1Tiou = U = TioTo1Tiou = )\leu = T19T51v = AU
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for A # 0, u € 5, and v := Tiou € 7, we have proved that the eigenvalue of 71575 is less than 1.

Then, as we did in (2.2.1), we correspond
(h1.ho, Tor, I, 1 — To1T12, —Thi2) = (&1, &2, A1, A2, By, Ba))

where A1, As, By, Bs are invertible.

2.3.3 Causal Inference in Multivariate Scenarios

In the context of multivariate cases, we introduce two lemmas following Shimizu et al. (2011):

1. Lemma 9 identifies the exogenous function.

2. Lemma 10 establishes the causal order among residuals.

By analyzing residuals, we can determine the causal order of random functions. This is achieved after
identifying an exogenous function, which, under the assumption of no latent confounders, corresponds
to an independent external influence. The independence of these residuals is assessed through a series of

pairwise regressions.

Lemma 9. For multivariate case, a random function f; is exogenous if and only if f; is independent of
its residuals th) = fi = Tijfj forall i # j.

Proof. For the sufficiency, if f; L hY) | assume fj is not exogenous, then f; = >, P, Tikfr +

.
h; = Zker T, Zl# Tiihy + hj, where P; means parents of f;. Then hgj) = (I - TyTyu)fi —
T3 3 ke p, pwi Tin S = Tighy = (I = TijTji) 32 s Tighg = Tij 2 e p; hi Tik 2125 Thihi — Tijhy. The
two formulas are composed of linear combinations of external influences other than £, from Prop. 7, all
the functions are non-Gaussian, then hz(.j ) JL f;, then it contradicts. Therefore, f; should be exogenous;
For the necessity, if f; is exogenous, f; = hj, fi = T f; + hy with hy AL fj h = 324 Tighy, we
()
i

So far, the lemma has been proven. O

know the residual error h,;”’ = h;. Then, we know f; 1L hz(j ) from the independence of noise functions.

Lemma 10. Let k,(;) (i) is the causal order of r,gj ), k(i) denotes a causal order of f;. Then, the same
ordering of the residuals r; = hgl) = fi—Tinfi,i =1...,p— 1is a causal ordering for the original

observed functions as well: k(1) < k,;)(m) < k(1) < k(m).

Proof. When we determine the exogenous function f;, we need to estimate the p — 1 residuals of fi:

ri=hY = fi ~Tufr = Yz Lijfi + T = Tnfr = 32,4 Tijfj,i = 1,...,p — 1, which is
U _

i =

T = Z#l T Zk# Tjrhy. For the residual of 7o = fo — T f1 = ho (second function) is r
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T —Ti’jrj = Z#I T;; Zk?éjg Tjihi+Tiyho — Tlyho = Z#I T;; Zk;ﬁﬂ Tjji:hy forall i # j. From the
independence assumption of noise functions, we know ro 1L 7“1(2). Then we know the causal relationships
of residuals r;,7 = 1,...,p — 1 are the same as f;,i = 1,...,p — 1 with the Tz’j because what we need
to do is to test the independence between r; and its residual r, U

i

Extending the notion, we can determine the order among any number of random functions such as f; =

23;1 T; ;fj + h; with non-Gaussian h; and bounded linear operators T; ;; H; — H; for p random
functions f; € Hy,..., f, € Hp.

2.4 The Procedure

Consider one model from (2.9):
fa=Toufi+hs. (2.16)

Then let’s notice the statement as follows:

Proposition 11 (HSING and EUBANK (2015)). Let T : A — % be a compact* bounded linear
operator, {\;} be the eigenvalues, and {e1 ;} and {ez j } be the sequences with orthonormal eigenvectors
of T*T and T'T™, respectively. Then

Tf=> X{f,eri)mea

i=1

with f € 4.

Following the notation in Proposition 11, we write the three terms 151 f1 = Z;’il Aifiieii, fa =
Z?il fgﬂ'ez,i, hg = Z?il h27i627i. Then, (2.16) becomes:
Theorem 12. Suppose that Ty : 4 — 3 is compact. If we regard the bases of 1 and 7 as {e1;}
and {ez2;}, respectively, then

J2.i = Nifri+ hay (2.17)

fori=1,2,..., where \y > Xg > ---.

To ensure convergence of the eigenvalue sequence {\;}, we suppose that the operator T5; is compact.
Without compactness, the {\;} would not be convergent. Practically, we approximate the infinite-
dimensional random functions f1 € J4, fo, ho € J% by finite length M random vectors. We select

the bases {e1;}}, and {e2;}}, to minimize the approximation error.

“We define a bounded linear operator T : #; — % to be compact if, for any bounded infinite sequence { f, } in 74, the

sequence {7 f, } has a convergent subsequence in .7%3.
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FPCA offers a more effective fit than PCA for raw data dimensionality reduction, particularly with time-
series data like fMRI and EEG, where dimensions vary with sampling frequency (e.g., 100Hz vs. 1Hz).
As frequency increases, dimensions approach infinity. FPCA overcomes this by approximating infinite
dimensions through orthogonal bases, preserving maximal original data information and capturing latent
details beyond traditional sampling. Figures 2.2 and 2.3 demonstrate FPCA’s necessity for functional

data.

The other merit of using the FPCA (functional principal component analysis) approach is its efficiency.
We assume the following procedure: first, we approximate the W time points sampled from functions by
the L coefficients of the basis functions (B-spline). Then, we transform it by the M coefficients of the
basis functions defined above. The time complexity is as follows. M < L < W and the time complexity
C'(M) of the proposed procedure is much less than C'(W). For example, Shimizu et al. (2011) evaluated
the complexity of their method as C(W) = O(n(Wp)3¢? + Wp)*g?), where ¢ (< n) is the maximal
rank found by the low-rank decomposition used in the kernel-based independence measure, although the
proposed procedure requires additional O(nL? + L?) complexity for the covariance matrix O(n.L?) and

eigenvalue decomposition O(L3).

This paper primarily examines the summary causal relationships among random functions, focusing less
on specific time points or partial windows in temporal data. There are three graphical representations of
causal structures in temporal data, namely, the full-time causal graph, the window causal graph, and the
summary causal graph (Gong et al., 2023). The full-time causal graph, illustrated on the left in Fig. 2.4,
depicts a complete dynamic system, representing all vertices including components f1, ..., f, at each
time point ¢, connected through lag-specific directed links such as ff_k — f;. However, due to the
challenges of capturing a single observation for each series at every time point, constructing a full-time
causal graph can be complex. To address this, the window causal graph concept is introduced, which
operates under the assumption of a time-homogeneous causal structure. This graph, shown in the middle
of Fig. 2.4, works within a time window corresponding to the maximum lag in the full-time graph. On
the other hand, the summary causal graph, displayed on the right in Fig. 2.4, abstracts each time series
component into a single node, illustrating inter-series causal relationships without specifying particular
time lags. The complexity of this summary graph depends on the choice of multivariate dependence
measure, such as mutual information or HSIC. The algorithmic complexity for generating this graph is
similar to that of DirectLiINGAM. Fig. 2.4 visually compares these different types of causal graphs for

multivariate time series.
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Full-time Window Summary

Figure 2.4: lllustration of Different Kinds of Multivariate Time Series Causal Graphs. Left: Full-time; Middle:
Window, Right: Summary (this paper).

2.4.1 Algorithm

To show how to implement this method, we provide algorithm pseudocode and empirical experiments
to demonstrate the efficiency. The algorithm presented in this study shares similarities with the greedy
search method of DirectLiNGAM. However, it diverges in two key aspects: first, we leverage Functional
Principal Component Analysis (FPCA) for data preprocessing, and second, our independence test consid-
ers multivariate relationships rather than univariate ones. This makes Func-LiNGAM straightforward to
implement. For the purpose of this paper, we focus on providing a basic implementation without delving
into enhancing search methods or other optimizations, as they are not the primary focus of our research.

The whole algorithm is as Algorithm 1.

Note that the W means the sampled time points from one random function. As the intrinsically infinite-
dimensional property of functional data, we need to approximate W with efficient finite representation
(FPCA with principal component number M (M < W)). The number M can be decided by the ex-
plained variance ratio (95% or 99%). To be simple, here we let all the M of random functions be the

same.

2.5 Experiment

To validate our method, we conducted comprehensive experiments using simulated data, as shown in Ta-
ble 2.1. We observed an improvement in performance as the sample size increased across multiple func-
tions. Notably, precision decreased monotonically and Structural Hamming Distance (SHD) increased
monotonically as the number of functions (p) grew. Our data generation process, following the settings

in Qiao et al. (2019), involved n x p random functions, defined as:

Xi;(t) = o(t) 76y (2.18)
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Algorithm 1 Func-LiNGAM (Can be regarded as vector-based DirectLiNGAM but with FPCA prepro-

cessing.)

1:

Input: Each function has W time points, then construct W p-dimensional random vector f (W Full-
time points) for p functions, a set of its variable subscripts U and a Wp x n data matrix as F', initialize

an ordered list of functions K = () and m := 1;

. Output: Adjacent Matrix T’ € RP*P

: Use FPCA for finite approximating each random vector to make their dimensions from Wp to Mp,

where M is the number of principal components.
repeat

(a) Perform least squares regressions of the approximating random vector fi € RM on fj € RM
forall i € U\K (i # j) and compute the residual vectors r’/) and the residual data matrix RU) from

the data matrix F for all j € U\ K. Find a variable fm that is most independent of its residuals:
= in MI ( foU K) :
fm arg min fi U\

where M I is the independence measure such as mutual information or other measures.
(b) Append m to the end of K.
(c) Let f:= r(m), F =R,

until p — 1 subscripts are appended to K

Append the remaining variable to the end of K.

. Construct a strictly lower triangular matrix T by following the order in K, and estimate the connection

strengths Tij by using least squares regression in this paper.
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where 7 represents the 4,5, sample (¢ = 1, ...,n), and j denotes the j;, random vector. The vector d;; € R
can be an arbitrary non-Gaussian random vector. Here we generated these by first creating random vectors
Qij ~ N (0, I5), then we square each element of the vector to get d;;. The five-dimensional Fourier basis

¢(t) was also used. We modeled the causal relationships in ¢; as follows:
51’0 = €0, (52‘1 = B1,05i0 + €1, ceey (Sip = Bp,p—l(si(p—l) —+ €p (2.19)

where u; ~ N (0, I5), then we square each element of the vector to get ¢;. To be simple, we set By ;1 =
Is,1 = 1,...,p. The sample size is n = {100,200, 300,700}, p = {5, 10,20, 30,50, 70}, and the
observed values, g;;(tx), follow

gij(te) = Xij (t) + €iji,

where e; i, is derived from the square of the random variable g; 5, where g;j5, ~ N(0,0.25). Specifically,
€ijk = qu .- Due to the squaring of a normally distributed variable with a variance of 0.25, the resulting
distribution of e;;;, can be described as a Gamma distribution with a shape parameter of % and a scale
parameter of 0.5, applicable fori = 1,...,nand j = 1,...,p. Every random function is sampled at

W = 1000 equidistant time points, 0 = £1,...,t1000 = 1.

We employ B-spline bases as a fitting technique for each random function instead of the Fourier basis to
represent the actual data accurately. B-spline bases offer more flexibility and can capture the complex
shapes and patterns present in the data. After fitting the random functions with B-spline bases, we cal-
culate each random function’s estimated principal component scores. These scores are derived from the
basis coefficients, with the number of calculated principal component scores limited to the first M com-
ponents (M < W). The choice of M allows us to control the dimensionality of the data representation,
providing a balance between capturing the most important variability in the data and minimizing com-
putational complexity. By calculating these estimated principal component scores, we obtain a concise
representation of the data that encapsulates its essential characteristics while reducing its dimensionality.
This approach allows for efficient analysis and interpretation of the random functions within the context
of our methodology. We set M = 5 (99% explained variance ratio) for the B-spline. Cross-validation can
also obtain the optimal M. However, we set the parameters to ensure they maintain as much information
as possible. We evaluate the Func-LiNGAM with Precision, Recall ratio, F1-score, and SHD (Structural
Hamming Distance in Tsamardinos et al. (2006)) in 50 trials as Table 2.1. The smaller the SHD, the better
the performance. To clarify, our objective is to demonstrate an implementation example rather than to

propose a superior algorithm through comparison.
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Various number of functions (mean + standard deviation)

Data size  Metrics
p=>5 p=10 p=20 p=30 p=>50 p=7170

Precision 0.76 £0.14 0.64+0.10 0.57+0.09 0.40+£0.06 0.30+0.04 0.25+0.03
Recall 0.99+£0.04 0.95£00 0.90£0.07 0.754+0.07 0.65+0.04 0.59£0.04

=100 F1 0.85+£0.10 0.76£0.08 0.70£0.09 0.524+0.07 0.41+0.05 0.35£0.03
SHD 1.404+£0.95 5.03£1.91 13474417 33.47£6.56 74.73+£9.86 119.47+10.70
Precision 0.83+0.14 0.76+0.29 0.72+0.07 0.70£0.06 0.54+0.05 0.46 +0.07
Recall 1.00£0.00 0.80+0.24 0.994+0.01 097+£0.03 0.88£0.03 0.81+0.07

=200 F1 0.90+£0.08 0.78+£0.27 0.83£0.05 0.814+0.05 0.67+£0.05 0.59£0.07
SHD 097+£091 3.63£458 7.70£2.35 1253+3.36 37.03£6.60 66.20=+12.79
Precision 0.85+0.13 0.79+0.28 0.75+£0.07 0.74+£0.05 0.70+£0.05 0.60£0.04
Recall 1.00£0.00 0.844+0.23 1.00+£0.00 0.99+0.01 0.99£0.01 0.93+0.03

" =300 F1 092+0.08 0.81£0.26 0.86+0.05 0.85+0.03 0.82+0.03 0.73£0.04
SHD 0.80£0.75 3.17+£443 6.57+£2.50 10.27+2.41 21.27+4.36 42.90=£6.25
Precision 0.92+0.10 0.81+0.08 0.80+£0.07 0.78+0.05 0.74+0.03 0.70 £0.02
Recall 1.00£0.00 1.004+0.00 1.00+£0.00 1.00£0.00 1.00£0.00 0.95%0.05

=100 F1 0.96+£0.06 0.88+£0.05 0.88+0.04 0.87+0.03 0.85+0.02 0.83£0.05
SHD 040+£0.55 2.50£1.20 4.96+2.06 8804234 17.40+£2.97 32.70+4.37

Table 2.1: Evaluation of Func-LiINGAM with various number p of functions. The causal graph is as fi — fo —
<o = fp (50 trials).

2.6 Actual Data

This section demonstrates the application of the proposed approach to analyzing brain connectomes for
functional magnetic resonance imaging (fMRI) data. The fMRI data (Richardson et al., 2018) is prepro-
cessed by downsampling it to a resolution of 4mm, with a repetition time (TR) of 2 seconds. This data
consists of 155 subjects (n = 155), 168 time points (W = 168), and 17 parcels (p = 17). During
the study, 155 participants took part in the fMRI scans. Among them, 122 participants were children,
33 were adults. The participants were instructed to watch a short animated movie that aimed to evoke
various mental states and physical sensations about the characters depicted in the movie. Our objective
is to investigate the causal relationships between various brain regions when individuals watch the short
film, regardless of age. To check the Gaussianity of the observed functions, we performed the Shapiro—
Wilk normality test (Shapiro and Wilk, 1965) on p = 17 parcels at each W = 168 time point. The null
hypothesis (i.e., the observations are marginally Gaussian) was rejected for many combinations of scalp
position and time point, and therefore, the non-Gaussianity of the proposed model is deemed appropriate.
Next, we estimate the adjacency matrix between the parcels with the number of principal components
M = 5. The adjacency matrix reveals the presence of connections between specific parcel pairs. To vi-
sualize the brain connectivity and causal relationships, we present a 2D graph using the Nilearn Python
package and a 3D graph using the BrainNet Viewer (Xia et al., 2013) (Fig. 2.5).
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Yeo Atlas 17 thick (func)

Figure 2.5: Brain Connectivity Graphs (Left: 2D , Right: 3D).

2.7 Conclusion

We have introduced a novel framework called Func-LiNGAM, which aims to identify causal relation-
ships among random functions. For the theoretical foundation of Func-LiINGAM, we have proven the
identifiability of both non-Gaussian random vectors (Theorem 5) and non-Gaussian processes (Theorem
8). Additionally, we have proposed a method to approximate random functions using random vectors
based on Functional Principal Component Analysis (FPCA). Empirically, we demonstrate that the pro-
posed procedure of Func-LiNGAM achieves accurate and efficient identification of causal orders among
non-Gaussian random functions. Furthermore, we have preliminarily applied Func-LiINGAM to analyze
brain connectivity using fMRI data. Our framework combines theoretical advancements with practical
applications, showcasing its effectiveness in identifying causal relationships among random functions

and its potential for various domains, such as brain connectivity.



Chapter 3

Dropout Drops Double Descent

3.1 Introduction

Recent investigations have shown that over-parameterized models, including linear regression and neural
networks (Belkin et al., 2019, 2020; Hastie et al., 2019; Cun et al., 1991; Nakkiran et al., 2021a; Opper
and Kinzel, 1996; Advani et al., 2020), demonstrate significant generalization capabilities, even when
the labels are influenced by pure noise. This unique characteristic has attracted considerable academic
attention, posing significant challenges to traditional generalization theory. A key framework, "Double
Descent,” helps explain this behavior (Belkin et al., 2019). In the under-parameterized realm, as we
increase the number of model parameters or sample sizes, the test error initially shows a reduction, as
illustrated by the peak curve in Figure 3.1. Intriguingly, as we transition into the over-parameterized
domain, instead of increasing, the test error continues to decrease, revealing an unexpected secondary

descent phase.

This peak phenomenon was first observed as early as three decades ago (Cun et al., 1991; Opper and
Kinzel, 1996), and its re-emergence in recent years (Belkin et al., 2019; Advani et al., 2020) underlines

the significant role it plays in research within the over-parameterized regime.

A primary objective of machine learning algorithms is to provide accurate out-of-sample predictions—
a quality known as generalization. Traditional generalization theory presents a *U-shaped’ risk curve
derived from the bias-variance trade-off (Hastie et al., 2009), which suggests the optimal model selection
occurs prior to the interpolation point (when n = p). This trade-off suggests that a small hypothesis
class lacks the expressive power necessary to include the truth function. Conversely, a larger class may

introduce spurious overfitting patterns. However, in contrast to this traditional view, the double-descent

24
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Figure 3.1: Test Risk of Sample-Wise Double Descent with Dropout. ~ denotes the probability of dropout as
R. The number in the legend is the present probability. p = 500 and the sample size of the x-axis. The sample
distribution x ~ N(0,1,), y = 2T 8* + ¢, e ~ N(0,0.25), B* ~U(0,1) and ||3*||2 = 1.

behavior, marked by a ”\/\”-shaped trend with increasing model size, implies that we can discover a

superior model with zero train and test error without succumbing to overfitting.

The reason behind the relatively recent surge in attention towards the double descent phenomenon is
somewhat elusive, but the widespread adoption of regularization methods, such as ridge regularization
(Hastie et al., 2019; Nakkiran et al., 2021b) and early stopping (Heckel and Yilmaz, 2021), designed
to nullify double descent, might provide some explanation. In this study, we focus on one of the most

popular regularization methods—dropout.

Dropout is a well-established regularization technique for training deep neural networks. It aims to pre-
vent ’co-adaptation” among neurons by randomly excluding them during training (Hinton et al., 2012).
Dropout’s effectiveness extends across a wide range of machine learning tasks, from classification (Sri-
vastava et al., 2014) to regression (Toshev and Szegedy, 2014). Notably, dropout was a vital component
in the design of AlexNet (Krizhevsky et al., 2012), significantly outperforming its competitors in the
2012 ImageNet challenge. Due to dropout’s proven efficiency in avoiding overfitting (Srivastava et al.,
2014) and its broad application scope, we propose that it may significantly mitigate the double descent

phenomenon. This leads us to the following question:
Under what conditions and how does dropout mitigate the double descent phenomenon?

We recognize that the double-descent phenomenon exists under both sample-wise and model-wise condi-
tions. This paper considers its occurrence in both linear and nonlinear models to improve test performance
without unexpected non-monotonic responses. The elimination of double descent has indeed become a

hot research topic. For instance, ridge regularization can alleviate double descent (Nakkiran et al., 2021b),
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as early stopping (Heckel and Yilmaz, 2021).

We explore a well-specified linear regression model utilizing dropout with R;; ~ Ber(vy), R € {0,1}"*P, v >
0, X € R™™P 4y € R™ S € RP, aiming to minimize the empirical risk:

L=|ly—(R+X)|3,

where * denotes an element-wise product, serving to drop parameters during the training phase randomly.
Dropout aids in preventing overfitting and offers a means to efficiently combine a wide range of different

neural network architectures (Srivastava et al., 2014).

Our Contributions. Our study tackles the aforementioned question using theoretical and empirical
methodologies. Theoretically, we explore the simplest linear regression with dropout regularization,
which echoes the influence observed in general ridge regression (Ishwaran and Rao, 2014). When con-
sidering the test error—which includes both the bias and variance of a well-formulated linear regression
model that employs dropout for isotropic Gaussian features'—we adopt a non-asymptotic perspective.
Although we couldn’t secure an exact solution to substantiate the monotonic decline of the test error,
we devised an alternative approach. Through the application of Taylor series expansion, we obtained an
approximate solution, providing persuasive evidence supporting the continuous decrease of the test error.
On the empirical front, our numerical experiments demonstrate that the dropout technique can effectively
mitigate the double descent phenomenon in both linear and nonlinear models. In more specific terms, we

demonstrate:

* Eliminating the Sample-Wise Double Descent. We empirically validate the monotonicity of the
test error as the sample size increases (see Figure 3.1) and theoretically prove the monotonicity of

the second-order Neumann series test error. We plan to detail the exact solution in future work.

* Eliminating the Model-Wise Double Descent. We empirically demonstrate the monotonicity of

the test error as the model size increases.

* Multi-layer CNN. We provide empirical evidence showing that dropout can alleviate the double

descent in multi-layer CNNSs.

3.1.1 Related works

Dropout. The purpose of dropout, as proposed in Srivastava et al. (2014), is to alleviate overfitting, and
numerous variants of this technique have been further examined in Ba and Frey (2013); Wang and Man-
ning (2013); Kingma et al. (2015); Khan et al. (2019); Lietal. (2016); Gal et al. (2017); Saito et al. (2018).

'Normal distribution with an identity covariance matrix.



CHAPTER 3. DROPOUT DROPS DOUBLE DESCENT 27

As for the theory behind dropout, Wager et al. (2013) demonstrates that it functions as an adaptive regu-
larization. Gal and Ghahramani (2016) postulates that dropout operates akin to a Bayesian approximation
algorithm—specifically a Gaussian Process, incorporating an element of uncertainty into the functioning
of black-box neural networks. Additionally, several studies have addressed the Rademacher complexity
of dropout (Gao and Zhou, 2016), and its implicit and explicit regularization (Wei et al., 2020; Helmbold
and Long, 2015).

Generalized Ridge Regression. The dropout estimator resembles a generalized ridge estimator, repre-
sented as § = (XTX +AZ,)"1X Ty, with ©,, being the weighted matrix and \ > 0. Generalized ridge
regression was first introduced in Hoerl and Kennard (2000), with numerous developments discussed
in Casella (1980); Hemmerle (1975); Hua and Gunst (1983); Ishwaran and Rao (2014); Maruyama and
Strawderman (2005); Mori and Suzuki (2018); Strawderman (1978). Nevertheless, these estimators are
typically contemplated when n > p. Hence, their impact in high-dimensional and over-parameterized
regimes is scarcely known. Wu and Xu (2020) recently provided an asymptotic view of the weighted /o

regularization in linear regression.

Dropping Double Descent. Several studies have aimed to counteract the double descent phenomenon.
Heckel and Yilmaz (2021) illustrates that early stopping can attenuate double descent. Nakkiran et al.
(2021b) argues that optimal ridge regularization has a similar effect in the non-asymptotic view, a finding
that aligns with our study. Hastie et al. (2019) further sheds light on ridge regularization, illustrating a

trend towards the same test error as the tail of double descent in model size.

3.2 Background

We consider linear regression in which p (> 1) covariates x € R? and response y € R are related by
_ . T 2
y=z'fo+e, e~N(0,05° 3.1
with unknown By € R? and o2 > 0, where the occurrences of ¢ is independent from those of z, and we
estimate 3y from n(> 1) i.i.d. training data (x1,y1),. .., (zn,yn) € RP x R.
In particular, we assume that the covariates are generated by
z ~N(0, I) . (3.2)

Thus, the covariates and response have the joint distribution D defined by (3.1) and (3.2), and we express

2" = {(xi,y:) }iq ~ D" for the training data. For each 5 € RP, we define

R(B):== E [(=z"B-y), (3.3)

(z,y)~D
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where [E [] is the expectation w.r.t. the distribution D.
(z,y)~D

Suppose we estimate 5 from the training data z” by Bn : (RP x R)"™ — RP. Then, we define

R = E FGG)= E B @ 5l — V) 6.4
zZn~Dn 2n~D"™ (z,y)~D

where E_npn[-] is the expectation w.r.t. the distribution D™. Note that (3.4) averages (3.3) over the

training data as well while both evaluate the expected squared loss of the estimation.

In this paper, we consider the situation of dropout: given the training data 2" = {(x;,y;)}/-,, for X =
[21,...,2,]T € R™Pand y = [y1,...,yn]" € R”, we estimate 3 by the 5(z") that minimizes the

training error  E  [L] for
R~Ber(vy)

L=ly—(r=X)Bl3,

where * denotes the element-wise product, each element of R € R"™*P takes one and zero with prob-
abilities v and 1 — ~, respectively, and we write r ~ Ber(~y) for the distribution. Then, the quantity

E [L] can be expressed by
R~Ber(y)

E )Ily—(r*X)BH%z E Mp|3

r~Ber(y R~Ber(7) ly =
=y y—28"EM ")y +BTE(M M)B
=y y—298"X"y+ B E(M " M)B
=|ly —vXBl3 —7*B" X X3+ B E(M"M)B
= |ly = X85+ BT (E(M M) —+*X"X)B
=y = X813 + (L =T8I3

(3.5)

where M := r % X, T’ = diag(X " X)'/2, the final equation follows from the fact that the element-wise
expectation E(M T M) is

E .
”Ykazzka t=

VY k Tk, 1 F ]
Z migMmik | =
k
for the (i, j)-th element of M " M (the off-diagonal elements of E(M " M) and v2X T X are canceled
out).

We can consider this as a Tikhonov regularization method. Let 3’ = «/3 as in Srivastava et al. (2014).
Then, (3.5) becomes

1_
|@—XHW+—;1MHW, (3.6)
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which is minimized when 3’ is equal to

. 1— -1
By = (XTX + VVFTF) xTy. (3.7)

3.3 Drop Double-Descent in Linear Regression

In this section, we show the monotonicity of the solution in the sample size n with dropout in linear
regression, and its proof follows in Appendix 3.6.1. Hereafter, we denote 3 by Bnﬁ when we require n

and v to be explicit.

Before proving the claim, we notice that the test error is of the form

RB)= E |{a"(B-Bo)+e}?| =18~ Bol} +0?,

(z,y)~D

which is due to

o T 21 _ o T Ty(a_ T 2
vnE o (BBt Pl = B (B~ ) )T~ )T+ 0%

For the dropout estimator Eq. (3.7), the expected test error is

R(Bny) = ExE,[R(Bnr)] =ExEy[l|Bny — Boll3) + 0
= ExBy[(XTX +A8)""X Ty —Boll3] +o”
= Ex[|(XTX +A)"" X (X8 +e€) — Bol3] + o
= Ex[(XTX +A)7"'XTX — 1) Boll3] + o”Bx [ (XX + A) "' X T3] + 07

where A = 1_Tvdiag(X TX). By neglecting the constant terms, the quantity R(Bnﬁ) becomes

2
] ; 3.8)

By Ex {(I +aT) A)‘l] Bo+ o”Ex
F

H(XTX +A)_1XT

where A = A71X T X,
We evaluate the expected test error (3.8) by taking Taylor’s expansion of the matrix
-1
(I + AT) (I+A)".

Then, we claim?.

*We say f(n) = O(g(n)) if there exist b > 0 and ng > 1 such that | f(n)| < b|g(n)| for n > nq.
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Theorem 13. Leta = C < ! the expected test error (3.8) is

fla) ={1—20+ 302} 0] + %022+ D +0()

; _ v
with o = T

Note the convergence of this Neumann series. We consider the condition that the eigenvalue of A =
A~1X T X should be smaller than 1.

To prove the lemma, we notice some critical points.

I Let Q == diag(X T X), P:= Q" 2XTXQ 2, A = =2Q,and M := A"> X XA~%. Then, M

and A = A~'X T X share share the same characteristic polynomial

Pu(N) = det(A2X T XA™2 — AI) = det(A~/2)det(X T X — AZAAZ)det(A2)
= det(A " 1)det(X "X — AA) = det(A 1 X TX — AI) = Pa(N)

)

so do the eigenvalues.

2. Let Amax and Apip be the largest and smallest eigenvalues of M. Then, Apax — (1 + \/% )2 and

Amin — (1 — \/%)2 asn,p — oo with 2 — d € (0,00) if E[z*] < oo (Theorem 1.1 in Jiang
(2004)).

Hence, the maximum eigenvalues of matrices M and A are shown to approach (1+ \/% )2 asymptotically.
Moreover, our empirical investigations corroborate that the largest eigenvalue of the sample correlation
matrix M aligns closely with the theoretical prediction of (1 + \/%)2, as illustrated in Fig. 3.2. As
delineated in Lemma 2, the Taylor series expansion converges when the parameter /(1 —-y) is multiplied
to make the largest eigenvalue of M less than 1. The proof of Theorem 13 is in Appendix 3.6.1.

30 + Y\ — (1+ \/5)2 -

20 | \ largest eigenvalue of M ||

10 S i
0 ‘ e

T T T T T
0 200 400 600 800 1,000

Figure 3.2: The Largest eigenvalue of Sample Correlation Matrix ((Q € R"*P). X-axis denotes the number of

sample n, Y-axis denotes the magnitude of largest eigenvalue and n € N, p = 500
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3.4 Experiments

This section provides empirical evidence that dropout with the optimal rate can effectively eliminate the
double descent phenomenon in a broader range of scenarios compared to what is formally proven in
Theorem 13.

3.4.1 Monotonicity in Sample Size

Elimination Double Descent in Linear Regression. (Synthetic Data)

In this part, we evaluate test error using dropout with pseudo optimal probability 0.8 (from Figure 3.1) in
linear regression, the sample distribution z ~ N'(0,I,), y = 2" 8* + €, € ~ N(0,0.25), 8* ~ U(0,1)
and ||3*||2 = 1. Moreover, the monotonic curves in Figure 3.3 show that the test error always remains

monotonicity within the optimal dropout rate when the sample size increases for various dimensions p.

Random ReLU Initialization. (Fashion-MNIST)

We consider the random nonlinear features stemming from the random feature framework of Rahimi and
Recht (2007). We apply random features to Fashion-MNIST (Xiao et al., 2017), an image classification
dataset with 10 classes. In the preprocessing step, the input images vector z € R? are normalized and
flattened to [—1, 1]? for the d = 784. To make the correct estimation of mean square loss, the class labels
are dealt with the one-hot encoding to y € {é1,...,¢é10} C R, According to the given number of
random features D, and the number of sample data n, we are going to acquire the random classifier by
performing linear regression on the nonlinear embedding: X := ReLU(XW ") where X € R"*? and
W € RP*4 s a matrix with every entry sampled i.i.d from A/(0, 1/+/d), and with the nonlinear activation
function ReLU applied pointwise. This is equivalent to a 2-layer fully connected neural network with a

frozen (randomly initialized) first layer, trained with dropout. Figure 3.4 shows the monotonic test error.

3.4.2 Monotocity in Model Size

Like above setting, the sample distribution z ~ N (0, 1)), y = ' 8* + ¢, e ~ N(0,0.25), 5* ~U(0,1)
and ||8*||]2 = 1. The experiment result is the monotonic curves in Figure 3.5 show that the test error
remains monotonicity with optimal dropout as the model size increases. For the multiple descents in

Figure 3.5, the readers can find more details in Chen et al. (2021). Because we can think of the dropout
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Figure 3.3: Test Risk with Number of Sample in linear regression with Dropout probability 0.8. The test error
curves decrease with the optimal dropout rate. The X-axis in this figure is the dimension of the parameter (0.8 is a

pseudo-optimal value). The Y-axis is test risk.
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Figure 3.4: Test Risk with Number of Sample in Nonlinear Model with Dropout using Fashion-Mnist. The test

error curves are decreasing with optimal dropout. X-axis: sample size; Y-axis: Test risk.

estimator as a generalized ridge estimator:
E Ny—(r*X)BI3=lly = X85 + (1 = )TBI3
reBer(vy)

— |ly — yXT'TB)3 + (1 — 1)V|TB12 (3.9)
= ly —vX'B'|l3 + (L =753

We can think the covariates is also nonisotropic as 2’ ~ A'(0,T=2). Then, we can observe the multiple
descents as Nakkiran et al. (2021b). where M := 7 * X, I' = diag(X " X)'/2. Similar to Nakkiran
et al. (2021b), we see the triple descent with the first peak around p = 300 dimension due to the 300-
dimensional large eigenspace and the second peak at n = p. That is, the covariance has one ‘“large”

eigenspace and one “small” eigenspace.
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Figure 3.5: Test Risk with of model size in Linear Regression with Dropout. The test error curves decrease with

the optimal dropout rate. X-axis: the dimension of the parameter; Y-axis: Test risk.
3.4.3 Multi-layer CNN

We use the same setups as in Nakkiran et al. (2021a). Here, we give the brief details of the model. For

the full details, please check Appendix 3.7.1.

Standard CNNs: We consider a simple family of 5-layer CNNs, with 4 convolutional layers of widths
[k, 2k, 4k, 8] for varying k, and a fully-connected layer. For context, the CNN with width k£ = 64, can
reach over 90% test accuracy on CIFAR-10 with data augmentation. We train with cross-entropy loss and
the following optimizer: Adam with 0.0001 learning rate for 10K epochs; SGD with 0.1/ \/m
for 500K gradient steps.

Label Noise. In our experiments, label noise (Arpit et al., 2017) of probability prefers to train on samples
with the correct label with probability 0%, 20%, and a uniformly random incorrect label otherwise (label

noise is sampled only once and not per epoch).

Dropout layer. We add the dropout layer before the full-connected linear layer with the present rate

(Srivastava et al., 2014). Figure 3.6 shows the test error results. The training loss is in Figure 3.7.

3.5 Discussion

Our proof considers only the non-exact solution for the expected test error. Therefore, we cannot defini-
tively assert that the test risk decreases monotonically. However, based on our experimental results and

this non-exact proof, we propose the following conjecture:
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Figure 3.6: Test Risk with Number of width parameter in 5 layer-CNN with Dropout. The x-axis is CNN width
parameter (left: 0% label noise with Adam; right: 20% label noise with SGD). We can see dropout drops double

descent.(~y: present rate)
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Figure 3.7: Train Loss with width parameter in 5 layer-CNN with Dropout (left: Adam, right: SGD). X-axis is
CNN width parameter

Conjecture 14. Foranyn,p > 1, o2 >0, and Bo, the expected test risk is monotonic in sample as

R(Bnt1) < R(Bn). (3.10)

In future research, we aim to prove that the exact solution with dropout can mitigate double descent.

Note the optimal hyperparameter remains in the fixed dimension p with a changeable sample size n.
This is because the original data y from the model y = X 8 + € will change, thus affecting the common
test error. Additionally, Wainwright (2019) contains a statement about the sample covariance matrix
diag(X T X), which converges to the identity matrix for all § > 0 and ||z;||2 < V/d (Corollary 6.20 in
Wainwright (2019)):

diag(X T X)

2
Pl Ll > 8] < 2p- eap (—”‘5) G.11)

2d(1 +0)

for the E(diag(X " X /n)) = I,, and by coupling the previous conclusions, it seems that the dropout
estimator tends to the ridge estimator (LeJeune et al., 2020) and has the same asymptotic risk as the ridge

estimator in Hastie et al. (2019).
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3.6 Appendix

3.6.1 Proof of Theorem 13

The First term of (3.8)

Let A := 1_77 diag (X'X), A:=A"'X"X,and o = 1_77 We evaluate E[(1 + AT)f1 (I +A)1).
Note (1 + AT)_l (T+A)P=T-A—-AT + A%+ (AT)2 + ATA+ ... For A = (a;;), we have
aij =1 - 2k Thilhy gnd E[A] = - - I, which is due to (3.2). For A? = (b; j), we have

1= Zk
b, . = ) 2 Zk Lk,iTk h Zk; Tk hTE, 5
) 17 ' E

2 2
k Lk >k Th

and E [A?%] = (ﬁf% - I. Apparently, we have E [AT] = ﬁ -Tand E [(AT)Q} = (ﬁf

Finally, we evaluate E [AT A]. For AT A = (¢;;), we have

2
(7 Dok ThiThh D ThhThj
@i \1-5 >
h

RS
~

k xi,h Dok xi,h
so that F [¢; ;] = 0 for i # j.

E [ciq] = ( SE 2k ThiTh, h)

kakh

_ Tih i ST
—( E(Z e M) (s 1L )

Dok l’kh—FQZ Ti hTih
:< (22 #)] ) B2 winrin | =0
kkh i#]

(= E[Z ]

where we have used E (3, uTaT =E>, u? =3, o2, when u, ~ N(0,1), r = 1,2,---, are
independent. Then, from the inverse density functlon of chi-square distribution, we have E [ATA} =

2
(%) - 2 - I. Then, the first term of (3.8) is

1=
1_2<7>P+<7>2(2p+ p ) 6ol
1—v/)n 1—7 n  n—2 0

The Second term of (3.8)

Since

ﬁ

H (XTX + A) x|

= tace { (x7x+ A>_1 XT}T {(XTX + A)_l XT}
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the diagonal entries of X A~} {I — AT — A4+ A%+ (AT)2 + ATA} A71XT are

2
~y
)t = (1) S e
k "k
3
1 1vT Y Ly ilrjAi,5
(XATTAATIXT) .. (1 7) ZZkakszxk]
4
- - Y xr‘zxr]
(XA7TAZAIXT) b < ) ’
L=y Zzzkxkzzkxkj
4
_ _ v Ly iLy jCi g
(XATTATAATIX T . < )
-~ ZZkamZk%,]
forr = 1,...,n. First, we derive
Zm/_< v )QEZ > Trg _< v >2 p
— 1- (kakl) l1-v) n—2
kak,ﬂk,j
rzxr,jﬁ 2.
/ k ki T,
Y= (7)) EEA T e
r i i k ki Lak kg (kak,z)

3 2
. Y (kakﬁm) 1
(5) S e e
3 ‘]752 (kak,l Zk;ljk,] X2

3
v ) 1 2
<1—’Y ;kazz %;Z "
Please note that the distribution of pi, j is independent of 1,4, ..., x, ; (as demonstrated in the deriva-

3
tion).Hence, the expectation of ) a. is (ﬁ) (1%1 + 1) > ﬁ, when x1 ;, ... x,; are given.
k“k,i

#[2d] = (7)o ()

Thus, we obtain

On the other hand.
4
Y Ly Ty j Zk Tk iLk,h Zk T hTk,j
b,/,, = <> ) )
2 2
zr: 1= zqa:zz:zj:z xksz%gZ KT 2ok Tk
Let
B =Y e Lritr Dk ThyiThh Dk ThhTh,j
ig,h D) 2 2 2
- 2ok Ll 2ok L g >k L 2ok L h
2
Then, the >, 3 ithi = ji Z — ZkThhThi | and jts expectation is —Ls (251 + 1
O WG =18 S 2 VEuhnTar ’ AN
k,h 22k Tk

When j # i = h, it’s 2 ThiThoy , its expectation is ﬁ Since the f3; ; , with ¢, j, h
Z \/Zk xk i Zk Ik J
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different is

Z Ly Ly Zk Lk,iTk, h Zk Tp hTE,j
Zw%ika%j Ekx%i Zka%h

its expectation is ﬁ If we take expectation w.r.t. {z}, p, }, then the value becomes

Ly iLrj

DI TINES
2 2

r (kakz> kT k

= % foriid. Zy,..., Z,, has been used. Thus, the expectation is

where the fact £/ [m}
as well. Hence, E' [Y ), 3; j.n] with ¢ # j is n(np—Q) . Therefore,

4
1 [(2p—1
EIS | = (-2 1) .
Z] <1—7> n—2< n +>

Finally, we obtain E' [, ¢}] . Let

1
n(n—2)

Ty iy j Yk ThiThh Y ThhTh,j

Yigh =D
" . kakszka kakh kakh

2
Ifi = j, wehave Y , vijn = > Zk o <\/Z§:;;k\7;:xi h) and its expectation is ﬁ. If
i #Fj h=

2
TriTrj D opThiThy _ 1 >k Th,iTh,j

Yigh = =
" ka%lemzj kail Zk@“zz \/Zka:il\/zkxi]

and its expectatlon is ( 5y If 4, j, h are different, if we fix {z;} and {x} 5}, then the expectation of

Yijh =5 IQ pmpwpZ n 1s zero. Thus, we have

B[4 = (125) Gt + 2= (1)

with o = 11—7 Next, the test error is calculated by summing these terms, resulting in

{1 200+ a®= <3+2>}H5*H +a? p2

3 P -1 AP —2p—1+n
P (P2
+Oén—2< n * >+ n(n —2)

3.7 Experiment Details

3.7.1 Models

Standard CNNs. We consider a simple family of 5-layer CNNs, with four Conv-Batch Norm-ReLU-

MaxPool layers and a fully-connected output layer. We scale the four convolutional layer widths as
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[k, 2k, 4k, 8k]. The MaxPool is [1, 2, 2, 8]. For all the convolution layers, the kernel size = 3, stride =1,
and padding = 1. This architecture is based on the ‘“backbone” architecture from Page (2018). Fork=
64, this CNN has 1558026 parameters and can reach> 90% test accuracy on CIFAR-10 (Krizhevsky,
2009) with data augmentation. The scaling of model size with k is shown in ”Figure 13 of Nakkiran
et al. (2021a).



Chapter 4

Conclusion and Future work

4.1 Conclusion

In this comprehensive research, we have delved into the multifaceted world of linear operators within
machine learning, contributing significantly from both causal discovery and linear regression analysis

perspectives.

Our journey began with the introduction of Functional Linear Non-Gaussian Acyclic Model (Func-
LiINGAM), a pioneering development in causal discovery. Func-LiNGAM extends the conventional
LiNGAM framework to encompass infinite-dimensional spaces, including vectors and functions. This
expansion unlocks new horizons for uncovering causal relationships within complex datasets, such as
fMRI and EEG. The research’s theoretical underpinnings, including guarantees of identifying causal re-
lationships in infinite-dimensional Hilbert spaces, provide a solid foundation for its practical applications.
Additionally, incorporating functional principal component analysis addresses the sparsity challenge in
these datasets. Our experimental results, including the analysis of brain connectivity patterns from real
fMRI data, underscore the efficacy of Func-LiNGAM in unveiling causal connections among multivariate

functions.

Simultaneously, our exploration ventured into linear regression, particularly addressing the enigmatic
double descent phenomenon. By introducing dropout layers alongside fully connected linear layers, we
have illuminated a novel approach to mitigating fluctuations in prediction error rates as sample size or
model complexity increases. While we did not provide rigorous mathematical proof, empirical evidence
revealed a consistent relationship between dropout rate and optimal test error, thus offering insights into

the strategic use of dropout regularization in linear regression. Our pioneering investigation into the
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connection between dropout and the double descent phenomenon enriches our understanding of machine

learning model performance.

In conclusion, this comprehensive research underscores the remarkable versatility of linear operators in
machine learning. By advancing the frontiers of causal discovery through Func-LiNGAM and shedding
light on perplexing phenomena within linear regression, we contribute theoretically and practically to the
field. These studies not only deepen our understanding of linear regression but also provide pragmatic
methodologies for handling complex, high-dimensional datasets, showcasing the immense potential of

linear operators in advancing machine learning research.

4.2 Future work

4.2.1 Double Descent

In Wainwright (2019), there is statement about the sample covariance matrix diag(X 7 X) that it converges
to identity matrix for all § > 0 and ||z;||2 < v/d (Corollary 6.20 in Wainwright (2019)):

diag(XT X)

2
P 28] < 2 eop (50 @)

2d(1 +9)

for the E(diag( X7 X /n)) = I, and by coupling the previous conclusions, we say that the dropout esti-

mator is actually equal to the ridge estimator for all n, the number of samples.

In addition, we should draw attention to this transform, which if we write diag(X” X) = A, then the loss

function of original model using dropout is:
L= 11X 31l + 1AV 281
= IXAT2A25 — g + A2 (42)
— X8~ o3+~ 18'13

which the data has changed its distribution into 2’ ~ A/(0, X), with the general nonisotropic covariates,

this part may be finished in the future work.
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4.2.2 Functional Data

Proposing a novel dimension reduction approach for approximating the infinite-dimensional functional
data with kernel dimension reduction, originally designed for supervised problems, to unsupervised di-
mensionality reduction. This paper uses kernel-based independence measures to derive low-dimensional
representations that maximally capture information from functional data and minimize the redundancy
among the chosen features. We demonstrate that whenever the coefficients of functional data exhibit
a linear or nonlinear relationship, our method achieves better results for FPCA. Moreover, our method

outperforms FPCA even when the functional data is more complex.
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