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Abstract

In this thesis, we prove the measurability of an event for which a general continuous–
time stochastic process satisfies a continuous–time Metric Temporal Logic (MTL) for-
mula. Continuous–time MTL can define temporal constraints for physical systems in
natural way. Then several researches deal with the probability of continuous MTL
semantics for stochastic processes. However, proving measurability for such events is
by no means an obvious task, even though it is essential. The difficulty comes from
the semantics of “until operator”, which is defined by the logical sum of uncountably
many propositions. Given the difficulty involved in proving the measurability of such an
event using classical measure-theoretic methods, we employ a theorem from stochas-
tic analysis. This theorem is utilized to prove the measurability of hitting times for
stochastic processes, and it stands as a profound result within the theory of capacity.
Next, we provide an example that illustrates the failure of probability approximation
when discretizing the continuous semantics of MTL–formulas with respect to time. Ad-
ditionally, we prove that the probability of the discretized semantics converges to that of
the continuous semantics when we impose restrictions on diamond operators to prevent
nesting. Furthermore, we propose a new discretization of one–dimensional stochastic
differential equation using time–change method and estimate its discretization error.
Then we apply the scheme to the approximation of the probability of MTL events for
time–inhomogeneous SDE.
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Chapter 1

Introduction

In this thesis, we prove the measurability of the event that the sample path satisfies
the conditions defined by metric temporal logic (MTL) and consider an approximation
of the probability of such events. Specifically, we prove the measurability of any event
defined by the MTL–formula. Additionally, we investigate methods for approximating
the probabilities of these events and demonstrated, through counterexamples, that the
approach proposed in previous studies generally does not converge to the true proba-
bility. Conversely, by imposing stronger constraints than previous studies, we provide
proof that similar approximations converge to the true probability.

MTL is a fragment of temporal logic. Temporal logic is a set of rules for combining
conditions on sample paths. Defining rules for combining conditions allows for the
inductive definition of a set of propositions following those rules. A distinctive feature
of temporal logic is its ability to create conditions that depend on the progression
of time, and it can generate arbitrarily complex conditions. While Boolean algebra
makes similar rules, Boolean algebra permits only logical negation and disjunction, and
conditions depending on the progression of time cannot be formulated. Temporal logic
can be seen as an extension of Boolean algebra in a sense, as it allows the combination
of conditions depending on the progression of time with Boolean algebraic operations.
Another characteristic of temporal logic is that these complex propositions can be
expressed using simple symbols.

Such specification of time–dependent properties are considered for model check-
ing [BK08]. Model checking is a technique to check automatically whether an auto-
mated system works correctly. It was first proposed in the 1980s by European [QS82]
and American [CE82] researchers independently, to attempt to assess the correctness of
computer programs automatically without a large amount of human ingenuity. Nowa-
days model checking is being extended to real–time probabilistic system validation
for unmanned aerial vehicle (UAV), biology, and motion planning for robotics, etc
(see [PHLS00, JP14, WRW+16, JL12, FT15]). Typical questions treated by model
checking are:

• Safety: Can a system avoid an unsafe event permanently?
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• Liveness: Will a system eventually reach a required event?

• Fairness: Will a repetitive attempt to carry out a task be eventually granted?

All of these properties can be represented by temporal logic.
In particular, Metric Temporal Logic (MTL) is applied in fields such as robotics

and biochemistry, utilizing the ”until operator” symbol. For instance, in a scenario
where multiple drones are autonomously delivering goods, a proposition like ”Complete
delivery to point A within 2 hours of dispatch, followed by delivery to point B within
1 hour, without colliding with other drones in the meantime” can be defined using
MTL symbols. In financial engineering, MTL can interpret parts of derivative payoffs.
For knock-in options, the payoff occurs if the asset price reaches a certain level by the
expiration. The proposition ”The asset price reaches a specified level at some time
before expiration” can be expressed using MTL symbols.

In this thesis, we investigate events where the sample path of a continuous–time
stochastic process satisfies continuous–time Metric Temporal Logic (MTL, see [GR21]).
MTL has variations such as continuous–time MTL and discrete–time MTL depending
on how it is defined. When defining conditions for sample paths, using the same MTL
symbols can have different meanings depending on whether it is defined in continuous
or discrete time. Discrete–time MTL considers only states at pre–defined discrete time
points and defines conditions based on them. On the other hand, continuous-time MTL
has the advantage of considering states continuously over real–time [FR10].

In the sample path of a continuous–time stochastic process, states corresponding
to all real–time points are determined. Therefore, even if conditions are defined at
discrete time points using discrete-time MTL, it is generally impossible to consider
states between those time points, potentially missing important events occurring at
some continuous time. Applying continuous–time MTL to sample paths allows for
considering important events that may occur between discrete time points.

The problem of applying continuous–time MTL to continuous-time stochastic pro-
cesses and calculating probabilities is studied in the field of cyber–physical systems [CL07].
Cyber–physical systems involve close interactions between computers and physical el-
ements, with examples including autonomous vehicle systems, medical monitoring, in-
dustrial control systems, robotics systems, recycling, and autopilot aircraft. These sys-
tems often experience influences from turbulence, molecular–level noise, or human un-
certainty. Previous research has attempted to define complex conditions using continuous–
time MTL for such systems and calculate the probabilities of satisfying those conditions.

Now, a nontrivial problem that arises is the measurability of events satisfying con-
ditions defined by MTL. When conditions are defined using MTL for sample paths, en-
suring the measurability of events satisfying those conditions is essential for discussing
the probability of satisfying the conditions. Probability is defined only for events with
measurability, and the analysis of probability variables and processes begins by ensur-
ing measurability. However, applying continuous–time MTL to sample paths does not
immediately lead to measurability from conventional results in probability theory. The
reason is that the ”until operator” in continuous–time MTL combines an uncountable
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number of conditions to define new conditions. Generally, the measurability of events
is guaranteed only for countable combinations, making it challenging to immediately
deduce the measurability of events expressed by MTL.

In this thesis, we apply a theory called Capacity Theory [Del72] to prove the measur-
ability of any event defined by Metric Temporal Logic (MTL). Capacity Theory ensures
measurability under projections. Initially, we show that the until operator in MTL can
be represented by a projection. Then, by applying the results of Capacity Theory to
the representation of the until operator, we inductively prove the measurability of any
event defined by MTL. While obtaining the results of measurability, we impose certain
assumptions on the probability process, which are commonly applicable in the theory
of stochastic analysis. Therefore, our results resolve the foundational non–triviality in
discussions, including previous research.

With this result, it is ensured that probabilities can be defined within the con-
ventional framework. However, the problem of actually calculating these probabilities
remained.

Therefore, we tackle the problem of approximating the probabilities of continuous-
time MTL using a method similar to previous research. Previous studies addressed
the problem of approximating the probabilities of continuous–time MTL by defining
discrete–time MTL corresponding to continuous-time MTL. Since the probability of a
sample path satisfying conditions defined by MTL cannot be analytically determined
without a priori knowledge of the sample path itself, previous research defined similar
conditions in discrete–time MTL for each condition in continuous–time MTL. Adopting
this definition allows for using the same symbols in continuous–time MTL and discrete–
time MTL to define conditions with similar meanings. Thus, in discrete–time MTL, it
was expected that as the time intervals became smaller, approaching zero, the conditions
would converge to those expressed by continuous-time MTL. In other words, it was
speculated that by approaching zero in the discretization of time, discrete-time MTL
would converge to continuous–time MTL, and attempts were made to approximate the
probabilities defined by continuous–time MTL.

However, in this thesis, we show that this approximation generally does not con-
verge to the true probabilities. In previous research, the approach involved narrowing
the time interval of discrete–time MTL to zero while simultaneously approximating the
continuous–time probability process. Previous research cited the fact of distribution
convergence as the basis for the approximation, but it is not immediately evident that
probability convergence follows from distribution convergence. Using specific counterex-
amples, we show that the probability defined by discrete–time MTL does not converge
to the corresponding probability defined by continuous–time MTL.

On the other hand, we prove that when a continuous-time stochastic process is mod-
eled by a stochastic differential equation (SDE), restricting the symbols representing
Metric Temporal Logic (MTL) converges to the true probability. Without restrictions
on the symbols representing MTL, the until operator can be nested in multiple layers,
leading to complex conditions. The counterexamples we provide in this thesis involve
defining intricate conditions by nesting the until operator in 2 or 3 layers. We explore
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the approximation of probabilities when the until operator is not nested in more than
2 layers and specifically apply MTL to sample paths of continuous–time stochastic
processes described by SDEs.

In Chapter 2, we resolve foundational discussions in previous studies and demon-
strate cases where conventional methods are not applicable. Furthermore, we show
that under certain limitations, conventional methods can be applied. This result indi-
cates the need for a more rigorous investigation of conventional findings and discussions
about how far the conditions can be extended. More precisely, we obtain the following
results:

(i) We identify a counterexample of an MTL–formula such that the probability de-
rived from the discrete semantics, referenced for the exact solution of the SDE,
does not converge to the probability derived from the continuous semantics for
the exact solution.

(ii) When we restrict the syntax of the MTL formula such that the until operator does
not nest (referred to as [MTL–formula), the probability for the exact solution of
the SDE, based on discrete semantics, converges to the probability based on
continuous semantics for the exact solution of the SDE.

(iii) Under appropriate conditions on the SDE, we show the convergence of the prob-
ability that a locally uniform approximation of the solution satisfies the discrete
semantics to the probability of continuous semantics for the exact solution.

In addition to these results, we propose a new discretization of stochastic differen-
tial equations in Chapter 3. Specifically, we present a new discretization method for
stochastic differential equations without drift terms and prove its strong convergence
to the true weak solution. To calculate the probabilities satisfying MTL, it is necessary
not only to discretize MTL but also to discretize the solutions of stochastic differential
equations. This is because the solutions of stochastic differential equations are gener-
ally not explicitly obtainable and need to be approximated through discretization. As
a result, we obtain a strong convergence rate of the discretization which is finer than
Euler’s method when the diffusion coefficient is β–Hölder continuous with β < 1/2. In
addition, we show that the new scheme can be applied to the approximation of the
probability of [MTL in continuous semantics for the exact solution.
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Chapter 2

On the metric temporal logic for
continuous stochastic processes

2.1 Introduction
Stochastic processes have emerged as a valuable tool for analyzing real–time dynamics
characterized by uncertainties. They consist of a family of random variables indexed in
real–time and find applications in diverse domains such as molecular behavior, mathe-
matical finance, and turbulence modeling. To formally analyze the temporal properties
of real–time systems, Metric Temporal Logic (MTL) has been introduced as a logi-
cal framework, specifying constraints that real-time systems must satisfy (see Chapter
VI in [Pri67]). The increasing demand for MTL specifications in industrial applica-
tions [Koy90, CZ11, KF08] has sparked interest in investigating the probability that
a stochastic process satisfies the semantics of MTL–formulas. In contrast to discrete–
time stochastic systems, which are limited to describing events within a discretized time
domain, continuous–time MTL allows for the precise representation of constraints on
events occurring between discrete times.

This chapter focuses on MTL–specifications on stochastic systems interpreted by
the continuous–time domain. In particular, we are interested in the probability in
which an MTL–formula is satisfied by a continuous–time stochastic system. However,
before discussing the probability of event occurrences, it is crucial to make sure of
the measurability of these events. Although previous research [FT15, JP14, MLD16]
considered the probability of events in which an MTL–formula is satisfied, they did not
prove the measurability of such events. The subtle problem arises in the definition of
probability because temporal operators in MTL are defined by unions of uncountably
many sets, while measurability is guaranteed in the case of a union of countably many
sets in general.

In this chapter, we prove the measurability of events where sample paths of stochas-
tic processes satisfy the propositions defined by MTL, under mild assumptions. We
assume that the stochastic process is measurable as a mapping from the product space
of the time domain and the sample space — a common assumption in stochastic analy-
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sis. Although establishing measurability for events represented by MTL–formulas with
temporal operators is made challenging by the presence of the union or intersection of
uncountably many sets in the definition, we overcome this difficulty by introducing the
concept of reaching time for sub-formulas of the given MTL–formula. By leveraging the
reaching time, we prove the measurability of the sub-formulas inductively. In the proof
of measurability of MTL–formulas, we utilize the measurability of the corresponding
reaching times. The measurability of such reaching times itself is non–trivial and proven
using the theory of capacity (see [Del72]).

While establishing measurability shows that the probability of continuous-time MTL
semantics for stochastic processes is well-defined, the problem of calculating such prob-
abilities remains a challenge. Although the previous researches [FT15, MLD16] pro-
posed an approximation by discretizing the semantics of MTL–formulas with respect
to time, we show that probability based on discretization does not converge the prob-
ability based on continuous semantics in general. We give an example that involves
multi–level nested temporal operators. This motivates the need for a more compre-
hensive and precise discussion of approximations, which has been generally overlooked
in previous studies. As a part of such an effort, we show that if a formula only has
simplified temporal operators, and these operators never appear in nested positions,
the discretization converges the continuous semantics.

In summary, this chapter contributes to the understanding of the probability founda-
tion and approximation for stochastic processes satisfying continuous-time MTL seman-
tics. We investigate the measurability of events, provide proofs under mild assumptions,
and explore the possibility of approximation by discretization with respect to time. Our
findings shed light on the challenges involved and emphasize the importance of refining
approximation techniques in future studies.

This chapter is organized as follows. In Section 2.2, we refer to some related works
and the novelty of our results compared to previous studies. In Section 2.3, we provide
a comprehensive exposition of the fundamental concepts that will be utilized exten-
sively in this chapter. These include the definitions of measurability, probability space,
stochastic process, Brownian motion, stochastic differential equation, and metric tem-
poral logic. In Section 2.7, we prove the measurability of the path of a stochastic process
satisfies the semantics of the MTL–formula in both continuous and discrete sense. In
Section 2.8, we provide a counterexample that the probability that a stochastic process
satisfies the discrete semantics of an MTL–formula does not converge to the probability
of path satisfying the semantics of the same MTL–formula in a continuous sense. On
the other hand, in Section 2.11, we prove the convergence of probability of discrete
semantics for general stochastic differential equations (SDEs) under some restriction on
the syntax of propositional formulas. We set the restriction so that temporal operators
do not nest.

As a result, we show that the convergence result relies on the depth of nests of
temporal operators in an MTL–formula.
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2.2 Related Works
Temporal reasoning has been extensively studied (for an overview, see [GR21]), and
it has gained increasing attention due to the growing demands in various industrial
applications for real-time systems.

Pnueli [Ami77] introduced linear temporal logic (LTL) as a means to express qualita-
tive timing properties of real-time systems using temporal operators. Koyman [Koy90]
extended this logic to include quantitative specifications by indexing the temporal op-
erators with intervals of time, leading to the development of metric temporal logic
(MTL). Unlike other extensions of LTL with timing constraints, such as timed proposi-
tional temporal logic (TPTL) [AH89], MTL does not allow explicit reference to clocks,
making it practical for implementation. A more detailed survey of temporal logic for
real-time systems can be found in [Kon13].

In this chapter, we focus on MTL for a continuous–time stochastic process with
a continuous state space. Such processes are commonly used as probabilistic models
to describe various phenomena with continuous or intermittent effects caused by en-
vironmental noise. In particular, the process represented by the stochastic differential
equation (SDE) is widely used of model statistical dynamics, asset prices in mathemat-
ical finance [Shr05, Shr04], computer network [ARA00] and future position of aircraft
[JPS03], to named a few [KF08, JP14, PAM17].

Considering the wide range of applications, it is natural to consider the probability
in which the given stochastic system satisfies properties defined by MTL–formulas. The
previous studies [FT15, MLD16] already considered the probabilities in which stochastic
systems satisfy MTL properties and gave an approximation based on the discretization
of time and state spaces.

However, to talk probabilities consistently, we need to show the measurability of
events under consideration. The subtle problem arises in the definition of probability
because temporal operators in MTL are defined by unions of uncountably many sets,
while measurability is guaranteed for the unions of countably many sets in general.
The previous studies did not prove but simply assumed the measurability of events in
which stochastic processes satisfy the MTL–formula. Further, their approximation by
discretization assumed that the timed behavior of stochastic processes satisfies Non–
Zenoness, which means that the behavior does not change its value infinitely in finite
time. However, stochastic processes, such as solutions of SDEs, generally do not satisfy
Non–Zenoness assumption, because of the inherent “rough” properties of stochastic
processes, as they are neither smooth nor differentiable everywhere (see, for example,
Chapter 2 in [KS91]).

In this chapter, we prove the measurability of events in which stochastic systems
satisfy MTL–formulas interpreted by the continuous–time domain, under mild assump-
tions, with reference to the fundamental theory of stochastic analysis which is devel-
oped to study the approximation of probability measures by describing the structure
of classes of sets [Del72, Kec95]. Our result guarantees the existence of probability in
which stochastic systems satisfy MTL–formulas.
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Further, we give examples in which probabilities defined by discretization do not
converge to probabilities defined in the continuous–time domain, even if the time in-
terval used for discretization goes to 0. Our examples show that the approximation by
discretization, proposed by previous studies, does not work in general. Our examples
involve either the until operator, or triple nesting “always” and “possibly”.

On the positive side, we show that if MTL–formulas only have “always” and “pos-
sibly” operators and they do not nest, discretization of time converges to probability
defined in the continuous time domain.

2.3 Preliminaries
In this section, we introduce several fundamental concepts that are discussed throughout
this chapter. To begin, let us start with the definition of measurability and probability
space. When defining an event, it is crucial to ensure that the event is measurable to
give meaning to its probability. Once the probability space is defined, we proceed to
define the product space of two probability spaces. Next, we define a general stochastic
process and its path. Following that, we introduce the definition of Brownian motion
and stochastic differential equation. These two concepts are fundamental to stochastic
analysis and form its core. Lastly, we introduce the syntax and semantics of MTL–
formulas, which are defined for every path of a stochastic process.

2.4 Measurability and Probability
In this subsection, we introduce the basic definitions used in the measure theory and
probability. Readers who are familiar with these theories may skip this subsection.
More details are available in [Rud66].

Definition 1 (σ–algebra and Measurable space). Let Ω be a set and F be a family
of subsets of Ω, i.e., F ⊂ 2Ω. F is called σ–algebra if it satisfies the following three
conditions:

(i) Ω ∈ F and ∅ ∈ F .

(ii) If A ∈ F , then Ω \ A ∈ Ω.

(iii) If An ∈ F for i = 1, 2, 3, · · · , then
⋃∞
i=1An ∈ F and

⋂∞
i=1An ∈ F

If F is σ–algebra, (Ω,F) is called measurable space. If (Ω,F) is a measurable space
and A ∈ F , we say that A is F–measurable or merely measurable.

Definition 2 (Borel space). Let E be a topological space. A measurable space is called
Borel space on E, denoted by (E,B(E)), if B(E) is the smallest σ–algebra which contains
every open set. Every set belonging to B(E) is called Borel set.
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Definition 3 (Measure space and probability space). Let (Ω,F) be a measurable space.
A function µ : F → [0,∞] is called a measure on (Ω,F) if µ satisfies the following two
conditions:

(i) µ(∅) = 0.

(ii) If Ai ∈ F for i = 1, 2, 3, · · · and Ai ∩ Aj = ∅ for j 6= i, then

µ(
∞⋃
i=1

Ai) =
∞∑
i=1

µ(Ai).

We call the triplets (Ω,F ,P) measure space.
Especially, if P(Ω) = 1, we refer to a measure P on (Ω,F) as a probability, and

call (Ω,F ,P) a probability space.

Definition 4 (Lebesgue measure). Let E = [0,∞) or Rn with the natural topology and
(E,B(E)) be Borel space on E. It is well known that there exists a unique measure µ
on E such that

µ(
n∏
i=1

〈ai, bi〉) =
n∏
i=1

(bi − ai), (2.1)

for every rectangle
∏n

i=1〈ai, bi〉 on E. We call such a measure Lebesgue measure.

Definition 5 (Complete probability space). A probability space (Ω,F ,P) is said to be
complete if every subset G of a measurable set F such that P(F ) = 0 is also measurable.

Definition 6 (Almost). (i) Let (X,A, µ) be a measure space, and let P (x) be a
proposition defined on x ∈ X. We say that P (x) holds for almost all x ∈ X if
there exists a measurable set N ∈ A such that µ(N) = 0 and NC ⊂ {x ∈ X;P (x)}.

(ii) Let (Ω,F ,P) be a probability space, and let P (ω) be a proposition defined on
ω ∈ Ω. We say that P (ω) holds almost surely if there exists a measurable set
N ∈ F such that P(N) = 0 and NC ⊂ {ω ∈ Ω;P (ω)}.

In the context of probability theory, the phrase “almost surely” is often denoted as
“a.s.”. Hence, we frequently use the notation P (ω), a.s. to indicate that P (ω) holds
almost surely.

Remark 1. Whether P (ω) holds almost surely depends on the probability measure P.
When we specially focus on the probability measure P, we express that “P (ω) holds
almost surely P” or “P (ω) holds a.s. P”.

Remark 2. Let P1(ω) and P2(ω) be two proposition defined on ω ∈ Ω. If P1(ω) holds
almost surely and P2(ω) holds almost surely, then both P1(ω) and P2(ω) hold almost
surely. To see this, let Ω1 ∈ F and Ω2 ∈ F and suppose that Ω1 ⊂ {ω ∈ Ω;P1(ω)}, Ω2 ⊂
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{ω ∈ Ω;P2(ω)}, and P(Ω1) = P(Ω2) = 1. Then Ω1 ∩ Ω2 ⊂ {ω ∈ Ω;P1(ω) and P2(ω)}
and

P((Ω1 ∩ Ω2)
C) = P(ΩC

1 ∪ ΩC
2 ) = P(ΩC

1 ) + P(ΩC
2 )− P(ΩC

1 ∩ ΩC
2 ) ≤ P(ΩC

1 ) + P(ΩC
2 ) = 0.

Therefore, P(Ω1 ∩ Ω2) = 1.
By repeating similar arguments, we can see the following statement: if Pi(ω) holds

almost surely for i = 1, · · · , n, then P1(ω)∧, · · · ,∧Pn(ω) holds almost surely.

Definition 7 (Product measurable space). Let (G,G) and (H,H) be two measurable
spaces. The product σ–algebra of G and H, denoted G ⊗ H, is the smallest σ–algebra
on G × H which contains all set of the form A × B, where A ∈ G and B ∈ H. The
resulting measurable space (G × H,G ⊗ H) is called the product measurable space of
(G,G) and (H,H).

Fact 1. Let (G,G) and (H,H) me two measurable space, x ∈ G, y ∈ H, and E ∈ G⊗H.
Then the following two measurability holds:

{y ∈ H; (x, y) ∈ E} ∈ H,
{x ∈ G; (x, y) ∈ E} ∈ G.

Definition 8 (Product measure space). Let (Ω,F ,P) be a probability space. Let E =
[0,∞) or Rn with the natural topology, and (E,B(E), µ) be the measure space with the
Lebesgue measure µ defined in Definition 4. It is well known that there is a unique
measure P⊗ µ on (Ω× E,F ⊗ B(E)) such that

P⊗ µ(A×B) = P(A)× µ(B) (2.2)

for every A ∈ F and B ∈ B(E). We call such measure the product measure of P and
µ. The resulting measure space is denoted as (Ω× E,F ⊗ B(E),P⊗ µ).

Definition 9 (Measurable function). Let (G,G) and (H,H) be two measurable spaces.
A function X : G→ H is said to be G/H–measurable if X−1(B) ∈ G for every B ∈ H.

Definition 10 (Random variable). Let (Ω,F ,P) be a probability space and (E,B(E))
be the Borel space on a topological space E. An E–valued function X on (Ω,F ,P) is
called a random variable if X is F/B(E)–measurable.

If there is no ambiguity, an E-valued random variable is simply called a random
variable.

Definition 11 (Law of a random variable). Let (Ω,F ,P) be a probability space, (E,B(E))
be the Borel space on a topological space E, and X be an E-valued random variable.
It is well-known that σ(X) := {X−1(B);B ∈ B(E)} is a sub σ–algebra of F , and thus
the mapping B 7→ P(X−1(B)) is a probability measure on (E,B(E)). We refer to this
mapping as the law of X, often denoted by PX .

11



Definition 12 (Lebesgue integral and expected value). Let (R,B(R)) be the Borel space
on R. Suppose that (G,G, µ) is a measure space and f : G→ R be a G/B(R)–measurable
function. The Lebesgue integral is defined as the following four steps:

1. Let B ∈ G and define 1lB : G→ {0, 1} as

1lB(x) :=

{
1, if x ∈ B

0, if x /∈ B.
(2.3)

We call f : G→ [0,∞) Simple function if

f =
n∑
i=1

αi1lBi
, (2.4)

where B1, B2, · · · , Bn are elements in G and α1, α2, · · · , αn are nonnegative real
numbers. Let A ∈ G. Define the Lebesgue integral of the simple function f with
respect to µ as ∫

A

fdµ :=
n∑
i=1

αiµ(Bi ∩ A). (2.5)

2. Let A ∈ G and f : G → R be a nonnegative G/B(R)–measurable function. The
Lebesgue integral of f with respect to µ is defined as follows:∫

A

fdµ := sup

{∫
A

gdµ ; g is simple function such that g ≤ f

}
. (2.6)

3. Let A ∈ G and f : G→ R be a G/B(R)–measurable function. Let f+ := max{f, 0}
and f− := −min{f, 0}. It is well known that f+ and f− are G/B(R)–measurable
and then

∫
A
f+dµ and

∫
A
f−dµ can be defined. When

∫
A
f+dµ <∞ and

∫
A
f−dµ <

∞, we define the Lebesgue integral with respect to µ as∫
A

fdµ :=

∫
A

f+dµ−
∫
A

f−dµ. (2.7)

If A = G, then we denote
∫
A
fdµ as

∫
fdµ.

4. Let (Ω,F ,P) be a probability space and X be a R–valued random variable such
that

∫
Ω
X+dP < ∞ and

∫
Ω
X−dP < ∞. Then

∫
Ω
XdP is called the expected

value of X, denoted by E[X].
Remark 3. In this chapter, we use another type of notation for the Lebesgue integral
to accommodate different situations:∫

A

fdµ =

∫
A

f(x)µ(dx) (2.8)

Especially, if µ is a Lebesgue measure, we denote the integral of x 7→ f(x) as following:∫
A

f(x)dx (2.9)

12



Definition 13 (Density of random variable and absolute continuity).

(i) Let (Ω,F ,P) be a probability space, (Rn,B(Rn)) be a Borel space, and X be an
Rn–valued random variable on (Ω,F ,P). Let ([0,∞),B([0,∞))) is a Borel space
on [0,∞) with the natural topology. A B(Rn)/B([0,∞))–measurable function f is
called the density of X if the following holds:

P(X−1(B)) =

∫
B

f(x)dx, ∀B ∈ B(Rn).

If there exists such a function f , we say that X has a density.

(ii) If X has a density, we say that the law of X is absolutely continuous with respect
to the Lebesgue measure.

In the following sections, we frequently use the notion of almost sure convergence
of random variables:

Definition 14. Let (Ω,F ,P) be a probability space, and let (E, d) be a metric space.
Let X and Xn;n = 1, 2, · · · be E–valued random variables. We say Xn converges almost
surely to X if there exists a measurable set N ∈ F such that P(N) = 0 and

Xn(ω)
n→∞−→ X(ω)

for every ω /∈ N .

2.5 Stochastic process
Definition 15. Let (Ω,F ,P) be a probability space and E be a Polish space. A family
of E–valued random variables X := {Xt}t≥0 indexed by time parameter t is called a
stochastic process:

Ω
Xt−→ E

∈ ∈

ω 7−→ Xt(ω)

Following the convention of stochastic analysis, we say X is measurable if it satisfies
the following assumption:

Assumption 1. The function (ω, t) 7→ Xt(ω) is F⊗B([0,∞))-measurable, which means
that the inverse image {(ω, t);Xt(ω) ∈ B} belongs to F ⊗ B([0,∞)) whenever B is a
Borel set in E.

Remark 4. Under Assumption 1, Xt is F/B(E)-measurable for all t ∈ [0,∞).

13



We denote a path t 7→ Xt(ω) of {Xt}t≥0 as X(ω) for every ω ∈ Ω:

[0,∞)
X(ω)−→ E

∈ ∈

t 7−→ Xt(ω)

Remark 5. Suppose that (Ω,F ,P) is a complete probability space. If Xt is F-measurable
for all t ∈ [0,∞) and the path X(ω) is right- or left-continuous almost surely, then X
is measurable (see 1.1.14 in [KS91]).

2.5.1 Brownian motion
When studying properties of distributions of general continuous stochastic processes
and topics such as convergence of discretization, including numerical computations, it
is common to first discuss examples related to a Brownian motion as it is the most
representative continuous stochastic process. Now, we present the definition of the
Brownian motion:

Definition 16. Let (Ω,F ,P) be a probability space. A d–dimensional stochastic process

X := {Xt}t≥0 = {(X(1)
t , · · · , X(d)

t )}t≥0

with state space Rd is called standard d–dimensional Brownian motion starting at x ∈ Rd

if

(i) P(X0 = x) = 1,

(ii) The path t 7→ Xt(ω) is continuous with probability one,

(iii) For any s, t ≥ 0, t > s implies that Xt −Xs ∼ N (0, (t− s)Id) i.e., Xt −Xs has
normal distribution with mean zero and covariance matrix (t − s)Id, where Id is
the (d× d) identity matrix.

(iv) If s ≤ t ≤ u, then Xu −Xt is independent of σ(Xv; v ≤ s), where σ(Xv; v ≤ s) is
the smallest sigma algebra which contains σ(Xv) for all v ≤ s.

The existence of a Brownian motion is established in Section 2.2 of [KS91], relying
on the richness of the underlying probability space.

Next, we introduce the absolute continuity of the hitting time of the one–dimensional
Brownian motion: We show that the hitting time has positive density.

Fact 2 (See 2.8.11 in [KS91]). Let {Xt}t≥0 be a one–dimensional Brownian motion
starting at x ∈ (0,∞). Choose a > x and define two hitting times as follows:

T0 := inf{t ≥ 0;Xt = 0},
Ta := inf{t ≥ 0;Xt = a}.

14



Then for t > 0:

P[T0 ∧ Ta ∈ dt] =
1√
2πt3

∞∑
n=−∞

[
(2na+ x) exp

{
−(2na+ x)2

2t

}
+(2na+ a− x) exp

{
−(2na+ a− x)2

2t

}]
dt, (2.10)

P[T0 ∈ dt, T0 < Ta] =
1√
2πt3

∞∑
n=−∞

(2na+ x) exp

{
−(2na+ x)2

2t

}
dt, (2.11)

P[Ta ∈ dt, Ta < T0] =
1√
2πt3

∞∑
n=−∞

(2na+ a− x) exp

{
−(2na+ a− x)2

2t

}
dt. (2.12)

Theorem 1. Let Γ1(t), Γ2(t) and Γ3(t) be density functions in (2.10), (2.11) and
(2.12), respectively. Then Γ1(t), Γ2(t) and Γ3(t) are positive for almost all t ∈ (0,∞).

Proof. Let C+ := {t ∈ C; Re t > 0}. Consider the mappings

Γ
(n)
1 (t) :=

1√
2πt3

n∑
k=−n

[
(2na+ x) exp

{
−(2na+ x)2

2t

}
+ (2na+ a− x) exp

{
−(2na+ a− x)2

2t

}]
,

Γ
(n)
2 (t) :=

1√
2πt3

n∑
k=−n

(2ka+ x) exp

{
−(2ka+ x)2

2t

}

Γ
(n)
3 (t) :=

1√
2πt3

n∑
k=−n

(2ka+ a− x) exp

{
−(2ka+ a− x)2

2t

}

as functions on C+ to C. Then Γ
(n)
1 (t), Γ

(n)
2 (t) and Γ

(n)
3 (t) are holomorphic on the

domain C+. Since Γ
(n)
1 (t), Γ

(n)
2 (t) and Γ

(n)
3 (t) converge uniformly on every compact

subsets of the domain, Γ1(t), Γ2(t) and Γ3(t) are holomorphic on the domain C+ (see
Theorem 10.28 in [Rud17]).

Let us show that there is no limit point of {t ∈ C+; Γi(t) = 0} for i = 1, 2, 3. If there
exists some limit point, then Γ1(t) = Γ2(t) = Γ3(t) = 0 for all t ∈ C+ (see Theorem
10.18 in [Rud17]). However, we obtain from 2.8.13 in [KS91] that∫ ∞

0

Γ2(t)dt = P[T0 < Ta] =
a− x

a
> 0,∫ ∞

0

Γ3(t)dt = P[Ta < T0] =
x

a
> 0.

Therefore, all elements in {t ∈ C+; Γi(t) = 0} (i = 1, 2, 3) are isolated in itself. Thus
we can conclude that Γi(t), (i = 1, 2, 3) are positive for almost all t ∈ C+.
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2.5.2 Stochastic differential equation(SDE)
Let us now proceed to define time–homogeneous stochastic differential equations in a
rigorous manner:

Definition 17. Let bj(x), σi,j(x); 1 ≤ i, j ≤ d be Borel functions from [0,∞) × Rd

into R, and define the (d × 1) drift vector b(x) = {bi(x)}1≤i≤d and the (d × d) dis-
persion matrix σ(x) = {σi,j(x)}1≤i,j≤d. Let (Ω,F ,P) be a probability space that sup-
ports a d–dimensional Brownian motion {Wt}t≥0 = {(W (1)

t , · · · ,W (d)
t )}t≥0. We call a

d–dimensional stochastic process {Xt}t≥0 = {(X(1)
t , · · · , X(d)

t )}t≥0 a strong solution
of the d–dimensional stochastic differential equation (SDE){

dXt = b(Xt)dt+ σ(Xt)dWt,

X0 = ξ ∈ R.
(2.13)

if {Xt}t≥0 satisfies the following four properties:
(i) {Xt}t≥0 is adapted to the filtration induced by Brownian motion (see 1.1.9 and

5.2.1 in [KS91]),

(ii) P[ω ∈ Ω;X0(ω) = ξ] = 1,

(iii) P[ω ∈ Ω;
∫ t
0
{|bi(Xs(ω))| + σ2

i,j(Xt(ω))}ds < ∞] = 1 holds for every 1 ≤ i, j ≤ d
and 0 ≤ t <∞, and

(iv) the integral version of (2.41)

Xt = X0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dWs; 0 ≤ t <∞,

or equivalently,

X
(i)
t = X

(i)
0 +

∫ t

0

bi(Xs)ds+
d∑
j=1

∫ t

0

σi,j(Xs)dW
(j)
s , 0 ≤ t <∞, 1 ≤ i ≤ d,

holds almost surely. Here, the term
∫ t
0
σi,j(Xs)dWs represents the Itô’s stochastic

integral, defined as the limit of the following stochastic process (refer to Chapter
3 in [KS91]):

∞∑
k=1

σi,j(X k
n
)(W k+1

n
∧t −W k

n
∧t). (2.14)

Remark 6. Brownian motion {Wt}t≥0 starting at x ∈ Rd itself is a solution {Xt}t≥0

of following d–dimensional SDE: {
Xt =

∫ t
0
IddWs

X0 = x,

where Id is the d–dimensional identity matrix.
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Remark 7. Brownian motions and SDEs are well-known to be continuous stochastic
processes. Therefore they satisfy Assumption 1.

2.6 Metric Temporal Logic (MTL) and its semantics
In this section, we introduce the formal definition of MTL (Metric Temporal Logic)
formulas for a given path. We begin by assuming a set of atomic propositions, denoted
as AP , which is typically defined as a finite set. The MTL formulas are then defined
as follows:

Definition 18 (Syntax of MTL-formulas). We define MTL-formulas for a continuous
stochastic process {Xt}t≥0 using the following grammar:

1. Every atomic proposition a ∈ AP is an MTL formula.

2. If φ is an MTL–formula, then ¬φ is also an MTL–formula.

3. If φ1 and φ2 are MTL-formulas, then the conjunction of φ1 and φ2, denoted as
φ1 ∧ φ2, is also an MTL formula.

4. If φ1 and φ2 are MTL–formulas, and I represents an interval on the domain
[0,∞), then the formula φ1UIφ2 is an MTL formula.

The grammar above can be conveniently represented using the Backus–Naur form:

φ ::= a | φ1 ∧ φ2 | ¬φ | φ1UIφ2,

Remark 8 (“Until” operator). In (3) in the definition 18, UI is called an until operator.
The interval I appearing in the until operator UI can be closed, left open, right open,
or purely open. This means that I can take the form I = [a, b], (a, b], [a, b), or (a, b),
respectively. Furthermore, when I is unbounded, it can only be of the form I = (a, b)
or I = [a, b), where b can take the value ∞.

We proceed to define two types of semantics for the previously presented syntax:
one for the continuous time domain and the other for the discrete-time domain.

Definition 19 (Continuous Semantics of MTL-Formulas). Consider a path X(ω) of the
stochastic process {X}t≥0 with a fixed ω ∈ Ω. Additionally, for each atomic proposition
a ∈ AP, let us assign a Borel set Ba on the domain E. The continuous semantics of
MTL formulas is recursively defined as follows:

X(ω), t |= a ⇐⇒ Xt(ω) ∈ Ba

X(ω), t |= ¬φ ⇐⇒ not [X(ω), t |= φ]

X(ω), t |= φ1 ∧ φ2 ⇐⇒ X(ω), t |= φ1 and X(ω), t |= φ2

X(ω), t |= φ1UIφ2 ⇐⇒ ∃s ∈ I s.t.: X(ω), t+ s |= φ2 and
∀s′ ∈ [t, t+ s), X(ω), s′ |= φ1
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Definition 20 (Time set). We introduce the notations JφK, JφK(t), and JφKω as follows:

JφK := {(ω, t);X(ω), t |= φ},
JφK(t) := {ω;X(ω), t |= φ},
JφKω := {t ≥ 0;X(ω), t |= φ}.

In particular, we refer to JφKω as the “time set” associated with φ.

Definition 21 (Discrete Semantics of MTL-Formulas). Let us consider the path X(ω)
of {Xt}t≥0 and the assignment Ba for an atomic proposition a ∈ AP, as well as
Definition 19. For any n ∈ N, we denote {k/n; k ∈ N} as N/n. The discrete semantics
of MTL formulas for any t ∈ N/n is defined recursively as follows:

X(ω), t |=n a ⇐⇒ Xt(ω) ∈ Ba

X(ω), t |=n ¬φ ⇐⇒ not [X(ω), t |=n φ]

X(ω), t |=n φ1 ∧ φ2 ⇐⇒ X(ω), t |=n φ1 and X(ω), t |=n φ2

X(ω), t |=n φ1UIφ2 ⇐⇒ ∃s ∈ I ∩ N/n s.t.: X(ω), t+ s |=n φ2 and
∀s′ ∈ [t, t+ s) ∩ N/n, X(ω), s′ |=n φ1

For t ∈ N/n, we denote by JφKn(t) the set {ω;X(ω), t |=n φ}.

Remark 9 (Constants, Disjunction, Diamond operator and Box Operator). We often
use two constants of propositional logic > (top) and ⊥ (bottom). Top means undoubted
tautology whose truth nobody could ever question, while bottom means undoubted con-
tradiction. These two constants can be represented as

> = φ ∨ ¬φ
⊥ = φ ∧ ¬φ

by arbitrary MTL–formula φ. We often use the following notation:

φ1 ∨ φ2 = ¬((¬φ1) ∧ (¬φ2)),

♦Iφ = >UIφ,
�Iφ = ¬(♦I¬φ),

We refer to ♦I and �I as the diamond and box operators, respectively. In the continuous
and discrete semantics, the following equivalences hold:

X(ω), t |= ♦Iφ⇔(∃s ∈ I)[X(ω), t+ s |= φ],

X(ω), t |= �Iφ⇔(∀s ∈ I)[X(ω), t+ s |= φ].

X(ω), t |=n ♦Iφ⇔(∃s ∈ I ∩ N/n)[X(ω), t+ s |=n φ],

X(ω), t |=n �Iφ⇔(∀s ∈ I ∩ N/n)[X(ω), t+ s |=n φ].
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2.7 Proof of Measurability
As introduced in Definition 3, the probability P(F ) can only be defined for a measurable
set F . Therefore, in order to define P(ω ∈ Ω;X(ω), t |= φ) or P(ω ∈ Ω;X(ω), t |=n

φ), it is necessary to show the measurability of JφK(t) = {ω ∈ Ω;X(ω), t |= φ} or
JφKn(t) = {ω ∈ Ω;X(ω), t |=n φ}, respectively. Since the definition of the discrete
semantics of MTL involves the intersection or union of at most countably many sets,
the measurability of JφKn(t) follows immediately. Then P(ω ∈ Ω;X(ω), t |=n φ) can
be defined. However, the measurability of JφK(t) is not straightforward. Then it is not
obvious whether P(−omega ∈ Ω;X(ω), t |= φ) can be defined or not.

To illustrate the difficulty, let X be an E–valued stochastic process, a, b be atomic
propositions, and I be an interval on [0,∞). Then X(ω), t |= a is equivalent to Xt(ω) ∈
Ba for some Borel set Ba, and X(ω), t |= b is equivalent to Xt(ω) ∈ Bb for some Borel
set Bb. Since Xt is F/B(E)–measurable, then JaK(t) = {ω ∈ Ω;Xt(ω) ∈ Ba} belongs
to F and hence P(ω ∈ Ω;X(ω), t |= a) can be defined. P(ω ∈ Ω;X(ω), t |= b) can be
defined for the same reason.

However, can we define P(ω ∈ Ω;X(ω), t |= aUIb)? From the definition of the until
operator, X(ω), t |= aUIb is equivalent to the following:

(∃s ∈ I)[Xt+s(ω) ∈ Bb and (∀s′ ∈ [0, s))[Xt+s′ ∈ Ba]].

Therefore,

JaUIbK(t) =
⋃
s∈I

⋂
s′∈[0,s)

{ω ∈ Ω;Xt+s(ω) ∈ Bb} ∩ {ω ∈ ω;Xt+s′(ω) ∈ Ba}.

Although the measurability of {ω ∈ Ω : Xt+s(ω) ∈ Bb} ∩ {ω ∈ Ω : Xt+s′(ω) ∈ Ba} fol-
lows from the F/B(E)–measurability of Xt+s and Xt+s′ , the representation of JaUIbK(t)
involves uncountable intersections and unions of these sets. Since measurability is
guaranteed to preserve under countable unions or intersections, the measurability of
JaUIbK(t) = {ω ∈ Ω;X(ω), t |= aUIb} is not obvious. Thus, we have observed that the
challenge arises when dealing with the until formula UI .

In this section, we show the measurability of MTL assuming that the underlying
probability space (Ω,F ,P) is complete. To show the measurability of the event JφK(t) =
{ω,∈ Ω;X(ω), t |= φ} for arbitrary MTL formula φ under the completeness, we utilize
a profound theorem from the theory of capacity. By employing capacity theory, we
show the measurability of the projection. Since we can represent the until operator UI
using an inverse image of the reaching time of an MTL formula, the inverse image is
represented as the projection of measurable set on Ω× [0,∞) to Ω.

Throughout this section, suppose that the probability space (Ω,F ,P) is complete.
In order to show the measurability of until formulas, we introduce reaching time of a
set B on Ω× [0,∞]:
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Definition 22. Consider a subset B of Ω×[0,∞). The reaching time or debut τB(ω, t)
of B is defined for each ω ∈ Ω as the first time s > t at which (ω, s) reaches B, given
by:

τB(ω, t) := inf{s > t; (ω, s) ∈ B},

where τB(ω, t) := ∞ if {s > t; (ω, s) ∈ B} = ∅.

Lemma 1. For any subset B of Ω×[0,∞), the reaching time τB(ω, t) is right-continuous
with respect to t ∈ [0,∞).

Proof. Assume τB(ω, t) > t. We can express τB(ω, t) as t+α for some α > 0. According
to the definition of τB(ω, t), for every s in the interval (t, t+α), it holds that (ω, s) /∈ B.
Therefore, we have τB(ω, s) = t+α for such s, and as a result, lims↓t τB(ω, s) = t+α =
τB(ω, t).

Assume τB(ω, t) = t. For every ε > 0, there exists δ ∈ (0, ε) such that (ω, t+δ) ∈ B.
Therefore, τB(ω, s) ≤ t+δ < t+ε for every s ∈ (t, t+δ), which implies lims↓t τB(ω, s) =
t = τB(ω, t).

The following lemma serves as an abstract version of Proposition 1.1.13 in [KS91].

Lemma 2. If a stochastic process {Yt}t≥0 is [0,∞]-valued and right-continuous, then
the mapping (ω, t) 7→ Yt(ω) is F ⊗ B([0,∞))/B([0,∞])-measurable.

Proof. For t > 0, n ≥ 1, and k = 0, 1, . . ., we define Y (n)
t (ω) = Y(k+1)/2n(ω) for k

2n
<

t ≤ k+1
2n

, and Y
(n)
0 = Y0(ω). The mapping (ω, t) 7→ Y

(n)
t (ω) from Ω× [0,∞) to [0,∞] is

demonstrably F ⊗ B([0,∞))/B([0,∞])-measurable. Furthermore, by right-continuity,
we have Y (n)

t (ω) → Yt(ω) if n→ ∞ for any (ω, t) ∈ [0,∞)×Ω. Consequently, the limit
mapping (ω, t) 7→ Yt(ω) is also F ⊗ B([0,∞))/B([0,∞])-measurable.

Now let us show the measurability of the reaching time when considering it as a
stochastic process. This result is derived from capacity theory, which guarantees the
measurability of the projection (of a well-behaved set).

Lemma 3. If B belongs to F ⊗ B([0,∞)), the mapping (ω, t) 7→ τB(ω, t) is F ⊗
B([0,∞))/B([0,∞])-measurable.

Proof. From Lemma 1, the reaching times τB(t, ω) := inf{s > t; (ω, s) ∈ B} are right-
continuous with respect to t ∈ [0,∞). Then it is enough to show that ω 7→ τB(ω, t) is
F/B([0,∞])–measurable because of Lemma 2. From the definition of τB(ω, t), we can
represent {ω; τB(ω, t) < u} by using projection mapping π : Ω× [0,∞] → Ω as

{ω; τB(ω, t) < u} = π(B ∩ {Ω× (t, u)}), ∀u ∈ [0,∞].

Since [0,∞] is a locally compact space with countable basis, F is complete, and the set
B ∩ {Ω × (t, u)} belongs to F ⊗ B([0,∞)), we can apply Theorem I-4.14 in [RYs91]
to show π(B ∩ {Ω × (t, u)}) ∈ F . Therefore, {ω ∈ Ω; τB(ω, t) < u} ∈ F for all u ≥ 0,
which implies the F/B([0,∞])–measurability of the map ω 7→ τB(ω, t).
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The subsequent lemma regarding the two types of subsets follows directly from basic
arguments in measure theory.

Lemma 4. Let B ∈ F ⊗ B([0,∞)). Let f and g be functions from Ω × [0,∞) to
[0,∞], which are F ⊗ B([0,∞))/B([0,∞])-measurable. Then, the following sets are
F ⊗ B([0,∞))-measurable.

{(ω, t) ∈ Ω× [0,∞); f(ω, t) ≥ g(ω, t)}, (2.15)
{(ω, t) ∈ Ω× [0,∞); (ω, f(ω, t)) ∈ B}. (2.16)

Proof. Since f and g are F ⊗ B([0,∞))/B([0,∞])–measurable, the set (2.15) is F ⊗
B([0,∞))–measurable.

Because f is a F ⊗ B([0,∞))/B([0,∞]) measurable function, f̃(ω, t) = (ω, f(ω, t))
is F ⊗ B([0,∞))/F ⊗ B([0,∞])–measurable function. By considering B as a subset
of Ω × [0,∞], it becomes F ⊗ B([0,∞])–measurable. Consequently, f̃−1(B) is F ⊗
B([0,∞))–measurable. Because

{(ω, t) ∈ Ω× [0,∞); (ω, f(ω, t)) ∈ B} = f̃−1(B) ∈ F ⊗ B([0,∞)),

The lemma holds.
Now, we can proceed to prove the measurability of JφK and JφK(t).

Lemma 5. Let φ1 and φ2 be two MTL-formulas and suppose that both Jφ1K and Jφ2K
are in F ⊗ B([0,∞)). Then {(ω, t);X(ω), t |= φ1UIφ2} belongs to F ⊗ B([0,∞)).

Proof. In order to prove this lemma, we put

τ1(ω, t) := τJφ1KC (ω, t) = inf{s > t;X(ω), s 6|= φ1},
τ2(ω, t) := τJφ2K(ω, t) = inf{s > t;X(ω), s |= φ2}.

By Lemma 2, τ1 and τ2 are F ⊗ B([0,∞))/B([0,∞])-measurable.
We only prove the case where I = [a, b]. The cases for other forms of I can be

proved in similar ways. For simplicity, suppose that a > 0. Then X(ω), t |= φ1UIφ2

holds if and only if X(ω), t |= φ1 holds and one of the following possibilities holds:

1. X(ω), t+ a |= φ2 holds and τ1(ω, t) ≥ t+ a

2. X(ω), t+ b |= φ2 holds and τ1(ω, t) ≥ t+ b holds

3. τ2(ω, t+ a) < t+ b, X(ω), τ2(ω, t+ a) |= φ2 and τ1(ω, t) ≥ τ2(ω, t+ a) hold

4. τ2(ω, t+ a) < t+ b, X(ω), τ2(ω, t+ a) 6|= φ2 and τ1(ω, t) > τ2(ω, t+ a) hold
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By F ⊗ B([0,∞))/B([0,∞])–measurability of τ1 and τ2,

{(ω, t); τ1(ω, t) ≥ t+ a},
{(ω, t); τ1(ω, t) ≥ t+ b}, and
{(ω, t); τ2(ω, t+ a) < t+ b}

are in F ⊗ B([0,∞)). Thanks to Lemma 4,

{(ω, t); τ1(ω, t) ≥ τ2(ω, t+ a)} and
{(ω, t); τ1(ω, t) > τ2(ω, t+ a)}

are in F⊗B([0,∞)). Since τ2(ω, t+a) is F⊗B([0,∞))/B([0,∞])–measurable and then

{(ω, t);X(ω), τ2(ω, t+ a) |= φ2} = {(ω, t); (ω, τ2(ω, t+ a)) ∈ Jφ2K},
{(ω, t);X(ω), τ2(ω, t+ a) 6|= φ2} = {(ω, t); (ω, τ2(ω, t+ a)) /∈ Jφ2K}.

From Lemma 4, both sets are in F ⊗ B([0,∞)). This completes the proof of F ⊗
B([0,∞))-measurability of X(ω), t |= φ1UIφ2.

Theorem 2. For each MTL-formula φ, JφK is F ⊗B([0,∞))-measurable and JφK(t) is
F-measurable for all t ≥ 0.

Proof. We can prove the measurability of JφK by induction on φ.

• Atomic Formula: If φ is an atomic formula, then JφK belongs to F ⊗ B([0,∞))
because the mapping (ω, t) 7→ Xt(ω) is F ⊗ B([0,∞))/B(E)-measurable.

• Negation: If JφK belongs to F ⊗ B([0,∞)), then J¬φK = JφKC clearly belongs to
F ⊗ B([0,∞)).

• Conjunction: Suppose φ1 and φ2 are two MTL formulas, and JφiK is F⊗B([0,∞))-
measurable for i = 1, 2. Then it is straightforward to show that Jφ1 ∧ φ2K =
Jφ1K ∩ Jφ2K is also F ⊗ B([0,∞))-measurable.

• Until Operator: From Lemma 5, we can obtain F ⊗ B([0,∞))-measurability of
Jφ1UIφ2K.

Once we have shown that JφK belongs to F ⊗ B([0,∞)), the fact that JφK(t) ∈ F
follows.

Since the domain of P is F , we can define P(ω;X(ω), t |= φ) for all φ and t ∈ [0,∞).
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2.8 Discretization of MTL formula: Counterexam-
ples

Fu and Ufuk [FT15] proposed a methodology for approximating the probability that
the solution of a controlled stochastic differential equation (SDE) satisfies an MTL
formula. Their approach involves discretizing both the time and state space of the
SDE. By utilizing a reachability problem for a timed automaton generated by the SDE
and MTL formula, they derive probabilities based on this discretized semantics.

The authors argue that the convergence of their simulation is a result of the conver-
gence in distribution of the approximated SDE, whose state space has been discretized.
They claim that this probability obtained from the discretized approach converges to
the probability derived from the continuous-time semantics of the original SDE.

However, in this chapter, we show that for a one–dimensional Brownian motion,
denoted as X, the probability obtained using the discretized semantics does not nec-
essarily converge to the probability obtained using continuous semantics. This failure
arises because a reaching time of the Brownian motion may have positive density.

It is worth noting that a Brownian motion can be viewed as a solution of the
stochastic differential equation (SDE) (see Remark 6). Furthermore, every SDE without
control can be regarded as a special case of controlled SDEs. Consequently, Brownian
motion can serve as an illustrative example of a solution to a controlled SDE. Hence,
our counterexample aligns with the scenario presented in [FT15].

2.9 Deterministic case
Before going to the probabilistic example, we start from a deterministic case. Using the
deterministic case, we express the discrepancy between the continuous semantics and
the limit of the discrete semantics. In Fu and Ufuk [FT15], they defined the continuous
time semantics as Definition 19 (see Definition 3 in [FT15]), while claiming that the
continuous semantics is equivalent to the limit of discrete semantics (see Section D
in [FT15]). However, we can see that the limit of discrete semantics does not coincide
with continuous semantics.

To see this, let t 7→ Xt a deterministic time evolution which satisfies Xt(ω) = t for
all t ≥ 0 and ω ∈ Ω. Since the path X(ω) and the state Xt(ω) does not depend on ω,
we omit the argument ω. Define an atomic formula a as

X, t |= a⇔ Xt > 1.

Then clearly X, t 6|= a for t ≤ 1 and X, t |= a for t > 1. Note that the truth value of
X, t |= a is left continuous on (0, 2).
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Truth value of X, t |= a

0 t

TRUE

1 2

FALSE

Let I := [0, 2] and φ := ¬aUIa. Now we show that the discrete semantics of φ does
not converge to the continuous semantics of it. In particular, we show X, t 6|= φ for all
t ∈ [0,∞), while X, t |=n φ for all t ∈ 0, 1/n, · · · , 1 if n ≥ 2. Indeed, because of the
left–continuity of the truth value of X, t |= a on (0, 2], we have for every t ∈ [0, 2] that
X, t |= a leads the existence of some t′ < t such that X, t′ |= a. This contradicts the
definition of X, t |= ¬aUIa. On the other hand, suppose that t ∈ {0, 1/n, · · · , 1}. Then{

Xt+s ≥ 1, for all s = 0, 1/n, · · · , 1− t

Xt+s > 1, for all s = 1− t+ 1/n, 1− t+ 1/n, · · · ,

which implies{
X, t+ s 6|=n a, for all s = 0, 1/n, · · · , 1− t

X, t+ s |=n a, for all s = 1− t+ 1/n, 1− t+ 1/n, · · · .]

Taking s = 1− t+ 1/n, we can see that

• s ∈ [0, 2] ∩ N,

• X, t+ s |=n a, and

• X, t+ s′ |=n ¬a for s′ = 0, 1/n, · · · , s− 1/n.

Then we obtain X, t |=n ¬aUIa.

2.10 Probabilistic case: The case of one–dimensional
Brownian motion

Now let us extend the previous deterministic example to the stochastic case. First of
all, there is an evident example such that the probability of the discrete MTL–formula
does not converge to that of the corresponding continuous MTL–formula:

Theorem 3. Let X := {Xt}t≥0 be one-dimensional Brownian motion starting at zero.
Consider the case that a, b are atomic formulas such that X(ω), |= a ⇔ Xt ∈ Ba

and X(ω), t |= Bb, where Ba := (−∞, 1) and Bb := (1,∞). Let p := ¬(a ∧ b) and
φ := ♦〈S,T 〉p. Then P(ω;X(ω), 0 |=n φ) does not converge to P(ω;X(ω), 0 |= φ).

Proof. Since X0 6= 1 and Xt has density for all t > 0, P(ω;Xt(ω) = 1) = 0 for all
t ∈ [0,∞) ∩ Q. Hence the sigma-additivity of probability measure implies P(∃t ∈
[0,∞) ∩Q, Xt = 1) = 0. Then P(ω;X(ω),Λn(0) |=n ♦〈S,T 〉p) = 0 for every n, S, T and
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then P(ω;X(ω),Λn(0) |=n φ) = 0. On the other hand, if τ1(ω) := inf{t ≥ 0;Xt(ω) =
1} ∈ (S, T ) then X(ω), 0 |= φ. From Theorem 2 and the monotonicity of probability
measures, then P(ω;X(ω), 0 |= φ) ≥ P(τ1 ∈ (S, T )) > 0 and then P(ω;X(ω), 0 |=n φ)
does not converge to P(ω;X(ω), 0 |= φ).

This counterexample comes from the fact that we can make the propositional for-
mula p such that the corresponding set Bp has Lebesgue measure zero. When we
consider the convergence of an MTL–formula with the diamond operator in such a set-
ting, the counterexample above definitely arises. Moreover, such a counterexample is
avoided in applications.

Therefore, from now on, we consider only the case that all propositional formula
has the corresponding set with at least a positive Lebesgue measure.

2.10.1 The case of the single until formula UI

Condition 1. Let I = 〈T1, T2〉 be a positive interval on [0,∞). In other words, T1, T2
are positive constants with 0 ≤ T1 < T2 ≤ ∞ and I be an interval with endpoint T1, T2,
i.e., I = [T1, T2], [T1, T2), (T1, T2], or (T1, T2).

Now we show the following statement:

Theorem 4. Let {Xt}t≥0 be standard one-dimensional Brownian motion starting at
x ∈ (0, a). we assign an closed set Bp := [0, a] with a > 0 for an atomic proposition
p, i.e., define X(ω), t |= p ⇔ Xt(ω) ∈ Bp. If we put Condition 1 on an interval I in
[0,∞): Then P(ω;X(ω), 0 |=n pUI¬p) does not converges to P(ω;X(ω), 0 |= pUI¬p)
even if n→ ∞.

To show this statement, we list some facts about one-dimensional Brownian motion.
Firstly, the following statement is obvious because {Xt}t≥0 is continuous with respect
to t ∈ [0,∞) and Bp is a closed set:

Proposition 1.

P(ω;X(ω), 0 |= pUI¬p)
=P(ω;∃t ∈ I s.t. Xt(ω) /∈ [0, a] and ∀t′ ∈ [0, t), Xt(ω) ∈ [0, a])

= 0.

Therefore it is enough to show that P(ω;X(ω), 0 |=n pUI¬p) converges to a positive
number.

Fact 3 (see 2.7.18 in [KS91]). With probability one, the path of a standard one-
dimensional Brownian motion changes its sign infinitely many times in any time interval
[0, ε], ε > 0.

Remark 10. Put Bp := [0,∞). Define an atomic formula p as X(ω), t |= p ⇔
Xt(ω) ∈ Bp. Then the truth value of X(ω), t |= p changes infinitely in [0, ε] for any
ε > 0, almost surely. When we see the truth value as the timed behavior of X(ω), then
the timed behavior has non–Zenoness almost surely.
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Fact 4 (Strong Markov property of Brownian motion). Let {Xt}t≥0 be one-dimensional
Brownian motion and Γ be a Borel set of R. Define a random time τp := inf{t ≥ 0;Xt ∈
Γ}. Then {Xτp+t −Xτp}t≥0 is also one dimensional Brownian motion starting at zero.

Fact 5 (see 2.6–2.8 in [KS91]). Let us define τp := inf{t ≥ 0;Xt ∈ [0, a]}. Then τp has
a density function on [0,∞).

The next lemma follows from the similar discussion as the proof of Proposition
2.8.10 in [KS91]:

Lemma 6. If T1, T2 satisfies 0 < T1 < T2 <∞, then P(τp ∈ (T1, T2)) > 0.

Proof. We can see the conclusion immediately from Theorem 1.
The following statement can be shown using Fact 3, Fact4, and Fact 5.

Lemma 7.

P(ω;∀t ∈ [0, T ], Xt(ω) ∈ [0, a];∃t ∈ [0, T ], Xt(ω) ∈ {0, a}) = 0, (2.17)

Proof. By the subadditivity of probability, the left–hand side of (2.17) is bounded by

P(ω;∀t ∈ [0, T ], Xt(ω) ∈ [0, a];∃t ∈ [0, T ), Xt(ω) ∈ {0, a}) (2.18)
+P(ω;∀t ∈ [0, T ], Xt(ω) ∈ [0, a];XT (ω) ∈ {0, a}) (2.19)

(2.19) is clearly zero because XT has density. Then it suffices to show that the prob-
ability (2.18) is zero. Set τp as well as Fact 4 and X̃t := Xτp+t − Xτp for t ≥ 0, then
{X̃t} is standard Brownian motion starting at zero. Since it follows from Fact 3 that
X̃t changes its sign in any time interval [0, ε], ε > 0 with probability one, there almost
surely exists t ∈ [0, ε] such that Xτp+t /∈ [0, a]. Then we conclude that there is t ∈ [0, T ]
such that Xt(ω) /∈ [0, a] and that ∃t ∈ [0, T ), Xt(ω) ∈ {0, a} is equivalent to τp < T
with probability one. Since τp has a density, the left hand side of (2.17) equals to

P(ω;∀t ∈ [0, T ], Xt(ω) ∈ [0, a]; τp < T )

=P(ω;∀t ∈ [τb, T ], Xt(ω) ∈ [0, a]; τp < T ). (2.20)

With probability one, X̃t changes sign in interval [τb, T ) and therefore (2.20) equals to
zero.

The following proposition is shown by proof similar to Proposition 1.1 in [Gob00].

Theorem 5. Let τ (n)p := inf{t ∈ N/n;Xt /∈ [0, a]}. Then 1l{T1<τ (n)
p ≤T2}

(ω) converges
almost surely to 1l{T1<τp≤T2}(ω) as n → ∞. In particular, P(ω;X(ω), 0 |=n pUI¬p)
converges to P(τp ∈ (T1, T2]) as n→ ∞.
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Proof. From the definition of τ (n)p , X(ω), 0 |=n pUI¬p if and only if T1 < τ
(n)
p ≤ T2.

The convergence of P(ω;X(ω), 0 |=n pUI¬p) to P(τp ∈ (T1, T2]) follows from the almost
sure convergence of 1l{T1<τ (n)

p ≤T2}
(ω) to 1l{T1<τp≤T2}(ω) and bounded convergence theorem.

Therefore it is sufficient to show that 1l{T1<τ (n)
p ≤T2}

(ω) converges to 1l{T1<τp≤T2}(ω) almost
surely. Since τp > T implies τ (n)p > T for any n ∈ N and T > 0, we obtain

1l{τ (n)
p >T}(ω)− 1l{τp>T}(ω)

=1l{τ (n)
p >T}(ω)1l{τp>T}(ω) + 1l{τ (n)

p >T}(ω)1l{τp=T}(ω)

+ 1l{τ (n)
p >T}(ω)1l{τp<T}(ω)− 1l{τp>T}(ω)

=1l{τ (n)
p >T}(ω)1l{τp=T}(ω) + 1l{τ (n)

p >T}(ω)1l{τp<T}(ω) (2.21)

The first term in the last line of (2.21) equals zero almost surely because τp has a
density function on [0,∞). Then it remains to show that the second term goes to zero
as n→ ∞. From Lemma 3, when τp < T , there exists some t ∈ (τp, T ) such that Xt > a.
Since the path of {Xt}t≥0 is continuous almost surely, there almost surely exists some
δ > 0 such that Xt′ > b for t′ ∈ [t− δ, t+ δ]. Then τ

(n)
p < T for any n > 1/δ. Thus we

have shown that the first line of (2.21) converges to zero almost surely. The statement
of the theorem can be obtained by 1l{T1<τ (n)

p ≤T2}
(ω) = 1l{T1<τ (n)

p }(ω) − 1l{T2<τ (n)
p }(ω) and

1l{T1<τp≤T2}(ω) = 1l{T1<τp}(ω)− 1l{T2<τp}(ω).

The next two lemmas follow immediately from Fact 5 that τp has a density.

Lemma 8. Put Condition 1. Then P(τp ∈ I) = P(τp ∈ (T1, T2)).

Lemma 9. For every T ∈ [0,∞), 1l{τ (n)
p =T} converges to zero almost surely.

Proof. Note that

1l{τ (n)
p =T} = 1l{τ (n)

p =T}1l{τp=T} + 1l{τ (n)
p =T}1l{τp>T} + 1l{τ (n)

p =T}1l{τp<T}.

From Fact 5, the first term on the right–hand side equals zero almost surely. Since
p is atomic, {t ∈ N/n;X(ω), t |=n p} ⊂ {t ∈ [0,∞);X(ω), t |= p} and hence τp > T

implies τ (n)p > T . Then we obtain that the second term equals zero. For the last term,
suppose τp < T . Then as in the proof of Theorem 5, Lemma 3 implies that τ (n)p < T
for sufficiently large n and hence the last term converges to zero almost surely.

Theorem 6. Under Condition 1, it holds that

P(τ (n)p ∈ I) → P(τp ∈ (T1, T2)), n→ ∞.

Proof. Condition 1 implies

|1l{τ (n)
p ∈I} − 1l{τ (n)

p ∈(T1,T2]}
| ≤ 1l{τ (n)

p =T1}
+ 1l{τ (n)

p =T2}
.

From Lemma 9, the right–hand side converges to zero almost surely. Then Theorem it
follows from 5 and Lemma 8, P(τ (n)p ∈ I) → P(τp ∈ (T1, T2]) = P(τp ∈ (T1, T2)) > 0.
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Therefore we can conclude Theorem 4 because Lemma 6 states P(τp ∈ (T1, T2)) > 0,
while P(ω;X(ω), 0 |= ¬pUIp) = 0.

2.10.2 The case of the diamond operators ♦I with the open
intervals I

In the previous section, we show the counterexample of the discretization caused by the
semantics of until formula:

X(ω), t |= φ1UIφ2 ⇐⇒ ∃s ∈ I s.t.: X(ω), t+ s |= φ2 and (2.22)
∀s′ ∈ [t, t+ s), X(ω), s′ |= φ1.

Here, remark that φ1 holds until just before φ2 happens and it does not have to hold at
the timing that φ2 happens.

Then it is natural to consider whether the same discretization converges when we
define the until formula as follows:

X(ω), t |= φ1UIφ2 ⇐⇒ ∃s ∈ I s.t.: X(ω), t+ s |= φ2 and (2.23)
∀s′ ∈ [t, t+ s], X(ω), s′ |= φ1.

The only difference between the previous definition is that here we require φ1 to hold at
the time φ2 happens. Note that we can give the semantics (2.23) of the until formulas
a representation by the semantics (2.22):

∃s ∈ I s.t.: X(ω), t+ s |= φ2 and ∀s′ ∈ [t, t+ s], X(ω), s′ |= φ1

⇐⇒ ∃s ∈ I s.t.: X(ω), t+ s |= φ2 ∧ φ1 and ∀s′ ∈ [t, t+ s), X(ω), s′ |= φ1.

Then the definition of MTL using the semantics (2.23) of the until formulas is a subclass
of the semantics using (2.22) in the sense that every semantics of MTL–formula given
by (2.23) can be represented as an MTL–formula given by (2.22).

Actually, in this section, we show that there is a counterexample of the discretization
of whichever semantics we choose. We make a counterexample of an MTL–formula in
which all temporal operators are of the form ♦I or �I . When we restrict all temporal
operators to be such forms, the semantics of the until operator is consistent with the
choice of (2.22) or (2.23). Indeed, we obtain the following equivalence of diamond
operators in both semantics of the until operator.

X(ω), t |= ♦Iφ ⇐⇒ ∃s ∈ I s.t.:X(ω), t+ s |= φ, ∀t ∈ [0,∞)

X(ω), t |=n ♦Iφ ⇐⇒ ∃s ∈ I s.t.:X(ω), t+ s |=n φ ∀t ∈ N/n.

Now let us propose the counterexamples. Consider the case thatX is one-dimensional
Brownian motion starting from 0. Let p be an atomic formula, Bp := [1,∞) be
the set associated with p and τp(ω) := inf{t ≥ 0;Xt(ω) ∈ Bp}. In other words,
X(ω), t |= p⇔ Xt(ω) ≥ 1 and τp(ω) = inf{t ≥ 0;X(ω), t |= p}.
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Put

φ1 := �(1,2)(♦(1,4)p ∧ ¬♦(1,3)p) (2.24)
φ2 := (♦(1,3)φ1) ∧ (¬♦(1,2)φ1) ∧ (¬♦(2,3)φ1), (2.25)
φ3 := ♦(1,2)φ2, (2.26)
ψ := (¬p) ∧ (¬♦(0,8)p) ∧ φ3. (2.27)

In one line,

ψ := (¬p) ∧ (¬♦(0,8)p) ∧ ♦(1,2)[(♦(1,3)�(1,2)(♦(1,4)p ∧ ¬♦(1,3)p)) (2.28)
∧(¬♦(1,2)�(1,2)(♦(1,4)p ∧ ¬♦(1,3)p)) (2.29)
∧(¬♦(2,3)�(1,2)(♦(1,4)p ∧ ¬♦(1,3)p))]. (2.30)

In this setting, the following statements hold.

Proposition 2 (Remark 2.8.3 in [KS91]). τp(ω) has positive density on [0,∞).

We will take ψ as a counterexample that P(ω ∈ Ω;X(ω), 0 |=n ψ) does not converges
to P(ω ∈ Ω;X(ω), 0 |= ψ). We show that P(ω ∈ Ω;X(ω), 0 |=n ψ) = 0 for sufficiently
large n ∈ N, while P(ω ∈ Ω;X(ω), 0 |= ψ) > 0.

Before showing that ψ is the counterexample, let us describe the meaning of the
formula ψ. Note that the following equivalences hold:

X(ω), 0 |= ψ ⇔ [X(ω), 0 |= (¬p) ∧ (¬♦(0,8)p)] and [X(ω), 0 |= φ3],

X(ω), 0 |=n ψ ⇔ [X(ω), 0 |=n (¬p) ∧ (¬♦(0,8)p)] and [X(ω), 0 |=n φ3].

Let τ (n)p (ω) := min{t ∈ N/n;X(ω), t |=n p}. Then X(ω), 0 |= (¬p) ∧ (¬♦(0,8)p) and
X(ω), 0 |=n (¬p)∧(¬♦(0,8)p) means that τp ≥ 8 and τ (n)p ≥ 8, respectively. By combining
these meanings with the semantics of X(ω), 0 |= φ3 and X(ω), 0 |=n φ3 respectively, we
show that X(ω), 0 |= ψ is equivalent to τp ∈ (8, 9) almost surely, while X(ω), 0 |=n ψ is
equivalent to X(ω), 0 |=n ⊥ almost surely.

Now we estimate the probability P(ω ∈ Ω;X(ω), t |= ψ) of continuous semantics of
ψ.

Lemma 10. Suppose that τp(ω) ≥ 6. Then Jφ1Kω has an isolated point τp(ω)− 5 with
positive probability. Moreover, X(ω), t 6|= φ1 for t ∈ [0, τp(ω)−5)∪(τp(ω)−5, τp(ω)−3).
In other words, 

X(ω), t 6|= φ1 for 0 ≤ t < τp(ω)− 5,

X(ω), t |= φ1 for t = τp(ω)− 5,

X(ω), t 6|= φ1 for τp(ω)− 5 < t < τp(ω)− 3.
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t

Truth value of X(ω), t |= φ1

0

TRUE

τp(ω)τp(ω)− 5 τp(ω)− 3

FALSE

Figure 2.1: The truth value of “X(ω), t |= φ1”.

Proof. Note that τp(ω) < ∞ almost surely. Suppose τp(ω) ≥ 6. Then X(ω), t 6|= p for
t < τp(ω) and inf{t ≥ 0;X(ω), t |= p} = τp(ω).

Truth value of X(ω), t |= p

0 t

TRUE

6 τp(ω)

FALSE

From the definition of τp(ω), if t ≤ τp(ω) − 4, there is no s ∈ (t + 1, t + 4) such
that X(ω), s |= p, which implies X(ω), t 6|= ♦(1,4)p. Again from the definition of τp(ω),
if t ∈ (τp(ω)− 4, τp(ω)− 1), there exists some s ∈ (t+ 1, t+ 4) such that X(ω), s |= p.
Thus we obtain

{
X(ω), t 6|= ♦(1,4)p for t ≤ τp(ω)− 4,

X(ω), t |= ♦(1,4)p for τp(ω)− 4 < t < τp(ω)− 1.

Truth value of X(ω), t |= p

0 t

TRUE

6 τp(ω)

FALSE

t t+ 1 t+ 4

Truth value of X(ω), t |= ♦(1,4)p

0

TRUE

tτp(ω)τp(ω)− 4 τp(ω)− 1

FALSE

Similarly, we can show that{
X(ω), t |= ¬♦(1,3)p for 0 ≤ t ≤ τp(ω)− 3,

X(ω), t 6|= ¬♦(1,3)p for τp(ω)− 3 < t < τp(ω)− 1.
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Truth value of X(ω), t |= ¬♦(1,3)p

FALSE
0 tτpτp − 3 τp − 1

TRUE

Consequently, X(ω), t |= ♦(1,4)p ∧ (¬♦(1,3)p) does not hold for any t ∈ [0, τp(ω)− 4]
and t ∈ (τp(ω)− 3, τp(ω)− 1), but it holds for (τp(ω)− 4, τp(ω)− 3]. Namely,

X(ω), t 6|= ♦(1,4)p ∧ (¬♦(1,3)p) for 0 ≤ t ≤ τp(ω)− 4,

X(ω), t |= ♦(1,4)p ∧ (¬♦(1,3)p) for τp − 4(ω) < t ≤ τp(ω)− 3,

X(ω), t 6|= ♦(1,4)p ∧ (¬♦(1,3)p) for τp(ω)− 3 < t < τp(ω)− 1.

Truth value of X(ω), t |= ♦(1,4)p ∧ (¬♦(1,3)p)

TRUE

t0 τpτp − 1τp − 3τp − 4

FALSE

To satisfy X(ω), t |= φ1, it must holds that X(ω), s |= ♦(1,4)p ∧ (¬♦(1,3)p) for every
s ∈ (t + 1, t + 2). Then X(ω), t |= φ1 does not holds for t ∈ [0, τp(ω) − 5) and
t ∈ (τp(ω)−5, τp(ω)−3) and holds on t = τp(ω)−5. Since such an isolated point occurs
whenever τp(ω) ≥ 6, we obtain the required claim.

Truth value of X(ω), t |= ♦(1,4)p ∧ (¬♦(1,3)p)

TRUE

t0 τpτp − 1τp − 3τp − 4τp − 5

FALSE

t t+ 1 t+ 2

t t+ 1 t+ 2

t t+ 1 t+ 2

FALSE

FALSE

TRUE

t

Truth value of X(ω), t |= φ1

0

TRUE

τpτp − 5 τp − 3

FALSE

Lemma 11. X(ω), 0 |= ψ is equivalent to τp(ω) ∈ (8, 9) almost surely. In particular,
P(X(ω), 0 |= ψ) > 0.

Proof. First, we note that X(ω), 0 |= (¬p)∧ (¬♦(0,8)p) is equivalent to τp(ω) ≥ 8. Since
τp(ω) has density, X(ω), 0 |= ψ implies τp(ω) > 8 almost surely.
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Suppose that τp(ω) > 8. Define

τ1(ω) := inf{t;X(ω), t |= φ1},
τ2(ω) := inf{t;X(ω), t |= φ2}.

Then, from Lemma 10,
X(ω), t 6|= φ1, for t ∈ [0, τp(ω)− 5),

X(ω), t |= φ1, at t = τp(ω)− 5,

X(ω), t 6|= φ1, for t ∈ (τp(ω)− 5, τp(ω)− 3).

(2.31)

Hence τ1(ω) = τp(ω)− 5. Furthermore, X(ω), t |= φ2 means
X(ω), s 6|= φ1, for s ∈ (t+ 1, t+ 2),

X(ω), s |= φ1, at s = t+ 2,

X(ω), s 6|= φ1, for s ∈ (t+ 2, t+ 3).

Then we can conclude from (2.31) that
X(ω), t |= ¬φ2, for t ∈ [0, τp(ω)− 7)

X(ω), t |= φ2, at t = τp(ω)− 7,

X(ω), t |= ¬φ2, for t ∈ (τp(ω)− 7, τp(ω)− 5).

This means exactly τ2(ω) = τp(ω)− 7.
Suppose that τp(ω) ≥ 9. Then τ2(ω) = τp(ω) − 7 ≥ 2. Since X(ω), 0 |= φ3 is

equivalent to τ2(ω) ∈ (1, 2), X(ω), 0 |= φ3 does not hold. Then X(ω), 0 |= ψ implies
τp(ω) < 9. Consequently, we obtain that X(ω), 0 |= ψ implies τp(ω) ∈ (8, 9) almost
surely.

Conversely, as we have seen that τp(ω) > 8 implies τ2(ω) = τp(ω)− 7, τp(ω) ∈ (8, 9)
implies τ2(ω) ∈ (1, 2). Then X(ω), 0 |= φ3, and together with τp > 8, we can conclude
that X(ω), 0 |= ψ.

Lemma 12. Let n ≥ 2, τ (n)p (ω) := inf{t ∈ N/n;X(ω), t |=n p}, and suppose that
τ
(n)
p (ω) ≥ 6. Then it holds that

X(ω), t 6|=n φ1 for t = 0, 1/n, · · · , τ (n)p (ω)− 5− 1/n,

X(ω), t |=n φ1 for t = τ
(n)
p (ω)− 5, τ

(n)
p (ω)− 5 + 1/n,

X(ω), t 6|=n φ1 for t = τ
(n)
p (ω)− 5 + 2/n, · · · , τ (n)p (ω)− 2− 2/n.

Proof. By the definition of diamond operator, X(ω), t |=n ♦(1,4)p is equivalent to

(∃s ∈ {t+ 1 + 1/n, t+ 1 + 2/n · · · t+ 4− 1/n})[X, s |=n p].
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Then we observe from the definition of τ (n)p (ω) that{
X(ω), t 6|=n ♦(1,4)p for t = 0, 1/n, · · · , τ (n)p (ω)− 4

X(ω), t |=n ♦(1,4)p for t = τ
(n)
p (ω)− 4 + 1/n, τ

(n)
p (ω)− 4 + 2/n, · · · , τ (n)p (ω)− 1− 1/n.

Similarly, we have{
X(ω), t |=n ¬♦(1,3)p for t = 0, 1/n, · · · , τ (n)p (ω)− 3

X(ω), t 6|=n ¬♦(1,3)p for t = τ
(n)
p (ω)− 3 + 1/n, τ

(n)
p (ω)− 3 + 2/n, · · · , τ (n)p (ω)− 1− 1/n.

Then we obtain
X(ω), t 6|=n ♦(1,4)p ∧ ¬♦(1,3)p for t = 0, · · · , τ (n)p (ω)− 4,

X(ω), t |=n ♦(1,4)p ∧ ¬♦(1,3)p for t = τ
(n)
p (ω)− 4 + 1/n, · · · τ (n)p (ω)− 3,

X(ω), t 6|=n ♦(1,4)p ∧ ¬♦(1,3)p for t = τ
(n)
p (ω)− 3 + 1/n, · · · , τ (n)p (ω)− 1− 1/n.

From the definition of Box operator, X, t |=n φ1 is equivalent to

(∀s ∈ {t+ 1 + 1/n, · · · , t+ 2− 1/n})[X(ω), t |=n ♦(1,4)p ∧ ¬♦(1,3)p].

Then we observe that
X(ω), t 6|=n φ1 for t = 0, 1/n, · · · , τ (n)p (ω)− 5− 1/n,

X(ω), t |=n φ1 for t = τ
(n)
p (ω)− 5, τ

(n)
p (ω)− 5 + 1/n,

X(ω), t 6|=n φ1 for t = τ
(n)
p (ω)− 5 + 2/n, · · · , τ (n)p (ω)− 2− 2/n.

Lemma 13. Let n ≥ 2. Then X(ω), 0 6|=n ψ for every ω ∈ Ω.

Proof. Define τ (n)p (ω) as Lemma 12. Since X(ω), 0 |=n ψ implies X(ω), 0 |=n (¬p) ∧
(¬♦(0,8)p), τ (n)p (ω) ≥ 8. Then we obtain from Lemma 12 that

X(ω), t 6|=n φ1 for t = 0, 1/n, · · · , τ (n)p (ω)− 5− 1/n,

X(ω), t |=n φ1 for t = τ
(n)
p (ω)− 5, τ

(n)
p (ω)− 5 + 1/n,

X(ω), t 6|=n φ1 for t = τ
(n)
p (ω)− 5 + 2/n, · · · , τ (n)p (ω)− 2− 2/n.

From the definition of the discrete semantics, X(ω), t |=n φ2 is equivalent to
X(ω), s 6|=n φ1 for s = t+ 1 + 1/n, · · · , t+ 2− 1/n,

X(ω), s |=n φ1 for s = t+ 2,

X(ω), s 6|=n φ1 for s = t+ 2 + 1/n, · · · , t+ 3− 1/n.

In other words, for X(ω), t |=n φ2 to hold, X(ω), s |=n φ1 must hold exactly on s = t+2,
and X(ω), s |=n φ1 must not hold for other s ∈ N such that t+1+1/n ≤ s ≤ t+3−1/n.
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However, X(ω), s |=n φ1 holds at two adjacent s values, namely s = τ
(n)
p (ω)−5 and s =

τ
(n)
p (ω)−5+1/n, and does not hold for other s values such that 0 ≤ s ≤ τ

(n)
p (ω)−2−2/n.

Therefore, X(ω), t |=n φ2 does not hold as long as t + 2 ≤ τ
(n)
p (ω) − 2 − 2/n, which

implies t ≤ τ
(n)
p (ω)− 4− 2/n. Since τp(ω) ≥ 8, X(ω), t |=n φ2 does not hold as long as

t ≤ 4− 2/n and hence X(ω), 0 6|=n ♦(1,2)φ2.

Theorem 7. Put ψ as Lemma 11. Then P(ω;X(ω), 0 |=n φ3) does not converges to
P(ω;X(ω), 0 |= φ3).

Proof. From Lemma 11, we have P(ω;X(ω), 0 |= ψ) = P(ω; τp(ω) ∈ (8, 9)) > 0. On the
other hand, from Lemma 13, we have P(ω;X(ω), 0 |=n ψ) = 0 for every n larger than
2. Therefore, P(ω;X(ω), 0 |=n ψ) never converges to P(ω;X(ω), 0 |= ψ).

2.10.3 The case of the diamond operator ♦I with the half–open
intervals I

Consider the case that X is one-dimensional Brownian motion starting from 0 Let p
be an atomic formula, Bp := [1,∞) be the set associated with p and τp(ω) := inf{t ≥
0;Xt(ω) ∈ Bp}.

Definition 23. Define

φ1 := ♦[1,4)p ∧ ¬♦[1,3)p, (2.32)
φ2 := �[1,2)φ1, (2.33)
φ3 := (¬♦[0,6)p) ∧ ♦[1,2)φ2. (2.34)

In one line,

φ3 = (¬♦[0,6)p) ∧ ♦[1,2)�[1,2)(♦[1,4)p ∧ ¬♦[1,3)p). (2.35)

Define τp(ω) := inf{t ≥ 0;X(ω), t |= p} = inf{t ≥ 0;Xt(ω) ∈ Bp}.

Lemma 14. Put p, φ1, φ2 and φ3 as Definition 23. Then P(X(ω), 0 |= φ3) = 0.

Proof. Note that X(ω), 0 |= ¬♦[0,6)p is nothing but τp(ω) ≥ 6.
Truth value of X(ω), t |= p

0 t

TRUE

6 τp(ω)

FALSE

From the definition of τp(ω), if t ≤ τp(ω) − 4, there is no s ∈ [t + 1, t + 4) such that
X(ω), s |= p, which implies X(ω), t 6|= ♦[1,4)p. Again from the definition of τp(ω), if
t ∈ (τp(ω) − 4, τp(ω) − 1], there exists some s ∈ [t + 1, t + 4) such that X(ω), s |= p.
Thus we obtain {

X(ω), t 6|= ♦[1,4)p for t ≤ τp(ω)− 4,

X(ω), t |= ♦[1,4)p for τp(ω)− 4 < t ≤ τp(ω)− 1.

34



Truth value of X(ω), t |= ♦[1,4)p

0

TRUE

tτp(ω)τp(ω)− 4 τp(ω)− 1

FALSE

Similarly, we can show that{
X(ω), t |= ¬♦[1,3)p for 0 ≤ t ≤ τp(ω)− 3,

X(ω), t 6|= ¬♦[1,3)p for τp(ω)− 3 < t ≤ τp(ω)− 1.

Truth value of X(ω), t |= ¬♦[1,3)p

FALSE
0 tτpτp − 3 τp − 1

TRUE

Consequently, X(ω), t |= ♦[1,4)p∧ (¬♦[1,3)p) does not hold for any t ∈ [0, τp(ω)− 4] and
t ∈ (τp(ω)− 3, τp(ω)− 1], but it holds for (τp(ω)− 4, τp(ω)− 3]. Namely,

X(ω), t 6|= φ1 for 0 ≤ t ≤ τp(ω)− 4,

X(ω), t |= φ1 for τp − 4(ω) < t ≤ τp(ω)− 3,

X(ω), t 6|= φ1 for τp(ω)− 3 < t ≤ τp(ω)− 1.

Truth value of X(ω), t |= φ1

TRUE

t0 τpτp − 1τp − 3τp − 4

FALSE

To satisfy X(ω), t |= φ2, it must holds that X(ω), s |= φ1 for every s ∈ [t + 1, t + 2).
However, there is no such t in [0, τp(ω)−2] . Indeed, for all such t, [t+1, t+2)\(τp(ω)−
4, τp − 3(ω)] and [t+ 1, t+ 2) \ (τp(ω)− 2,∞) are not empty set and any element s in
it does not satisfy X(ω), s |= φ1. Since τp(ω) − 2 ≥ 4, there is no t in [1, 2) such that
X(ω), t |= φ2 and hence X(ω), 0 6 |=♦[1,2)φ2.
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Truth value of X(ω), t |= φ1

TRUE

t0 τpτp − 1τp − 3τp − 4τp − 5

FALSE

FALSE
t t+ 1 t+ 2

FALSE
t t+ 1 t+ 2

FALSE
t t+ 1 t+ 2

t

Truth value of X(ω), t |= φ2

0

TRUE

τpτp − 2

FALSE

Next, we discretize the semantics of φ3 and give a representation of it.

Lemma 15. Put

τ (n)p := inf{t ∈ N/n;X(ω), t |=n p}.

Then τ
(n)
p (t) → τp(t) for all t ∈ [0,∞).

Proof. Since X(ω), t |=n p implies X(ω), t |= p for t ∈ N/n, τ (n)p ≥ τp. Define X̃t :=
Xτp+t−1 for t ≥ 0. Then {X̃t} is standard Brownian motion and Fact 3 implies that X̃t

changes its sign in any time interval [0, ε], ε > 0 with probability one. Since the path
of {Xt}t≥0 is continuous, there exists some δ > 0 such that Xs > 1 for s ∈ [t− δ, t+ δ].
Then τ

(n)
p < τp + ε for any n > 1/δ. Therefore we conclude the statement.

Lemma 16. Define φ1, φ2, φ3 as Definition 23. Then X(ω), 0 |= φ3 is equivalent to
τ
(n)
p ∈ {6, 6 + 1/n, · · · , 7− 3/n}.

Proof. From the definition of τ (n)p , X(ω), 0 |= ¬�[0,6)p is equivalent to τ (n)p ≥ 6. Then,
if X(ω), 0 |=n φ3, then it holds that{

X(ω), t 6 |=n♦[1,4)p for t = 0, 1/n, · · · , τ (n)p − 4,

X(ω), t |=n ♦[1,4)p for t = τ
(n)
p − 4 + 1/n, · · · , τ (n)p ,

and {
X(ω), t 6 |=n♦[1,3)p for t = 0, 1/n, · · · , τ (n)p − 3,

X(ω), t |=n ♦[1,3)p for t = τ
(n)
p − 3 + 1/n, · · · , τ (n)p .
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Since X(ω), t |=n φ1 is X(ω), t |=n ♦[1,4)p and X(ω), t 6 |=n♦[1,3)p, it holds that
X(ω), t 6 |=nφ1 for t = 0, 1/n, · · · , τ (n)p − 4,

X(ω), t |=n φ1 for t = τ
(n)
p − 4 + 1/n, · · · , τ (n)p − 3,

X(ω), t 6 |=nφ1 for t = τ
(n)
p − 3 + 1/n, · · · , τ (n)p − 1.

Now from the definition of Box operator, it holds that
X(ω), t |=n φ2,

⇔X(ω), t |=n �[1,2)φ1,

⇔X(ω), s |=n φ1 for all s ∈ [t+ 1, t+ 2) ∩ N/n.
Then the following time constraint for φ2 holds:

X(ω), t 6 |=nφ2 for t = 0, 1/n, · · · , τ (n)p − 5,

X(ω), t |=n φ2 for t = τ
(n)
p − 5 + 1/n,

X(ω), t 6 |=nφ2 for t = τ
(n)
p − 5 + 2/n, · · · , τ (n)p − 3.

(2.36)

Then together with τ
(n)
p ≥ 6,

X(ω), 0 |=n φ2

⇒τ (n)p − 5 + 2/n ∈ [1, 2) and τ (n)p ≥ 6

⇒τ (n)p = 6, 6 + 1/n, · · · , 7− 3/n.

Conversely, suppose that τ (n)p ∈ {6, 6 + 1/n, · · · , 7 − 3/n}. Then again since τ (n)p ≥ 6,
then clearly X(ω), 0 |=n ♦[0,6)p holds and the same discussion as above can be applied
to derive (2.36). Therefore X(ω), t |=n φ2 for some t ∈ [1, 2) and hence X(ω), 0 |=n

♦[1,2)φ2.

We show the counterexample that the probability of discrete semantics for a stochas-
tic process does not converge to that of continuous semantics as the time step goes to
zero.

Theorem 8. Let p, φ1, φ2, φ3 be defined as Definition 23. Then P(ω;X(ω), 0 |=n φ3)
does not converge to P(ω;X(ω), 0 |= φ3) even if n→ ∞.

Proof. From Lemma 14, P(ω;X(ω), 0 |= φ3) = 0. Hence it is enough to show that
P(ω;X(ω), 0 |=n φ3) converges to some positive number. Now define τp and τ

(n)
p as

Definition 23 and Lemma 16. Since τp has positive probability density function on
[0,∞) (see Remark 2.8.3 in [KS91]), P(τp = 6) = P(τp = 7) = 0. Then from Lemma 16,

P(ω;X(ω), 0 |=n φ3)

=P(τ (n)p ∈ {6, · · · , 7− 3/n})
=P(τp < 6 and τ (n)p ∈ {6, · · · , 7− 3/n})
+ P(τp ∈ (6, 7) and τ (n)p ∈ {6, · · · , 7− 3/n})
+ P(τp > 7 and τ (n)p ∈ {6, · · · , 7− 3/n}).
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From Lemma 15, τ (n)p converges almost surely to τp. Then it holds that

1l{τp<6 and τ
(n)
p ∈{6,··· ,7−3/n}} → 0, a.s.,

1l{τp>7 and τ
(n)
p ∈{6,··· ,7−3/n}} → 0, a.s..

while 1l{τp∈(6,7) and τ
(n)
p ∈{6,··· ,7−3/n}} converges 1l{τp∈(6,7)} almost surely. Then Bounded

Convergence Theorem implies that P(ω;X(ω), 0 |=n φ3) converges to P(τp ∈ (6, 7))
as n→ ∞. Since τp has positive density function, P(τp ∈ (6, 7)) > 0 and the statement
holds.

Just in the same way, we can show the following statement.

Theorem 9. Define

φ1 := ♦(1,4]p ∧ ¬♦(1,3]p, (2.37)
φ2 := �(1,2]φ1, (2.38)
φ3 := (¬♦(0,6]p) ∧ ♦(1,2]φ2. (2.39)

In one line,

φ3 = (¬♦[0,6)p) ∧ ♦(1,2]�(1,2](♦(1,4]p ∧ ¬♦(1,3]p). (2.40)

Then P(ω;X(ω), 0 |=n φ3) does not converge to P(ω;X(ω), 0 |= φ3) even if n→ ∞.

Remark 11. In Theorem 7, the subscripted interval for every diamond operator is
restricted to be open. In Theorem 8–9, we restrict the intervals to be left– or right–
open, and we constructed similar counterexamples. These results show that we can make
a counterexample of convergence when we allow the subscripted intervals to be open,
left–open, or right open in Definition 18. However, it remains an open problem whether
we can create a counterexample when we restrict all intervals to be closed.

2.11 Discretization of MTL formula: Convergence
Result of [MTL formula

In the previous section, we presented a counterexample of an MTL formula, illustrating
a case where its probability in discrete semantics does not converge to that in continuous
semantics. In contrast, in this section, we establish the convergence of such probabilities
by restricting MTL formulas. Specifically, we ensure that we only use diamond operators
that do not nest. We refer to these restricted formulas as [MTL formulas. While
we discussed MTL formulas for a Brownian motion in the preceding sections, we will
now present the convergence result for general one-dimensional stochastic differential
equations:
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{
dXt = b(Xt)dt+ σ(Xt)dWt,

X0 = ξ ∈ R.
(2.41)

To establish the convergence result for [MTL formulas, we impose the following con-
ditions on the SDE (2.41). These conditions are also sufficient to ensure the existence,
uniqueness, and absolute continuity of the solution.(see Appendix A):

Assumption 2.

(i) For every compact set K ⊂ R, inf σ(K) > 0.

(ii) σ is Lipschitz continuous.

(iii) b is bounded and Borel measurable.

Now let us define [MTL–formulas rigorously.

Definition 24 (Syntax of [MTL formula). Let AP be a finite set of atomic formulas.
We define the syntax of [MTL by the following induction.

(i) All atomic formulas are [MTL formulas.

(ii) If φ is an [MTL formula, ¬φ is an [MTL formula.

(iii) If φ1 and φ2 are [MTL formulas, then φ1 ∧ φ2 is an [MTL formula.

(iv) If p is a propositional formula and I is a positive interval on [0,∞), then ♦Ip is
an [MTL formula.

Here we define propositional formulas as follows:

(a) All atomic formulas are propositional formulas.

(b) If p is a propositional formula, ¬p is a propositional formula.

(c) If p1 and p2 are prpositional formulas, then p1 ∧ p2 is a propositional formula.

The semantics of [MTL are given in the same way as MTL formulas (see Section 2.6).

Definition 25 (Semantics of [MTL formulas). Let Bi, i = 1, · · · , k be Borel sets on R
and AP = {ai; i = 1, · · · , k} be the set of k atomic formulas. The semantics of [MTL
formulas are defined inductively as follows.

(i) X(ω), t |= ai ⇔ Xt(ω) ∈ Bi for i = 1, · · · , k.

(ii) X(ω), t |= φ1 ∧ φ2 is equivalent to X(ω), t |= φ1 and X(ω), t |= φ2.

(iii) X(ω), t |= ♦Ip is equivalent to (∃s ∈ I)[X(ω), t+ s |= p].
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Remark 12. Let us set σ ≡ 1 and b ≡ 0. In this case, both σ and b satisfy As-
sumption 2. As mentioned in Remark 6, the solution to the SDE (2.41) is given by
the one-dimensional Brownian motion {Wt}t≥0 itself. Therefore, the convergence result
for probabilities discussed in this section can be applied to the case of one-dimensional
Brownian motion.

Additionally, as mentioned in Remark 9, the diamond operator ♦I and the box
operator �I can be represented using the until operator. This allows us to represent
every [MTL formula as an MTL formula without nesting of until operators.

Considering the counterexample presented in Section 2.8 and the discussion about
nesting of temporal operators, we can observe the impact of nesting on the convergence
of probabilities.

We will show the result of convergence for [MTL in Section 2.13. We show the
convergence of the probability, by showing the convergence of the indicator function of
[MTL formulas. Let us define the indicator functions for MTL formulas as follows:

Definition 26. Let φ be an [–MTL formula and define random indicator functions
χφ(ω, t) and χ(n)

φ (t) as

χφ(ω, t) :=

{
1 if X(ω), t |= φ

0 if X(ω), t 6|= φ,

χ
(n)
φ (ω, t) :=

{
1 if X(ω),Λn(t) |=n φ

0 if X(ω),Λn(t) 6|=n φ,

where Λn(t) :=
bntc
n

.

The convergence of the indicator function for a formula implies the convergence of
the probability of the formula. More precisely, our proof of the convergence is based on
the following lemma:

Lemma 17. Suppose that χ(n)
φ (ω, t) → χφ(ω, t) almost surely. Then P(ω;X(ω),Λn(t) |=n

φ) → P(ω;X(ω), t |= φ) as n→ ∞.

Proof. From the definition of χφ(ω, t) and χ
(n)
φ (ω, t), χφ(ω, t) = 1 and χ

(n)
φ (ω, t) =

1 is equivalent to X(ω), t |= φ and X(ω),Λn(t) |=n φ, respectively. Then P(ω ∈
Ω;X(ω), t |= φ) = E[χφ(ω, t)] and P(ω ∈ Ω;X(ω),Λn(t) |=n φ) = E[χ(n)

φ (ω, t)]. Since
χφ(ω, t) ≤ 1, χ(n)

φ (ω, t) ≤ 1, and E[1] = 1, we can apply Lebesgue’s dominated conver-
gence theorem (see Theorem 1.34 in [Rud66]) to observe E[χ(n)

φ (ω, t)] → E[χφ(ω, t)].
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2.12 The case of ♦〈S,T 〉p with p corresponding to a
union of intervals

Before proving the convergence of general [MTL formulas, we first show the convergence
for a special type of [MTL formulas. In the subsequent subsection, we will present the
proof for the convergence of [MTL formulas in the general case. In this subsection, we
consider [MTL formulas of the form ♦〈S,T 〉p, where p is a propositional formula. Here,
〈S, T 〉 denotes a positive interval on [0,∞), specifically, 〈S, T 〉 represents an interval
with endpoints S and T such that 0 ≤ S < T . Note that the interval 〈S, T 〉 can be
open, left open, right open, or closed. In the proof of convergence in this case, we
utilize deep insights from stochastic calculus, namely, the notion of local maxima and
local minima of SDE (see Definition 28), and the dense property of the zero set of SDE
(see Lemma 19).

To prove the convergence in the special case of ♦〈S,T 〉p, we will introduce certain
conditions on the propositional formula p.

Definition 27. Let B1, · · · , Bn be a finite family of Borel sets on R. A pair Bi, Bj

is said to be separated when Bi ∩ Bj = ∅. We say the set {B1, · · · , Bn} is pairwise
separated when all pairs of different elements are separated.

Now we prove the following theorem:

Theorem 10. Let X be the strong solution of (2.41) satisfying Assumption 2. Let p be
an MTL formula such that X(ω), t |= p is equivalent to Xt ∈ Bp, where

Bp :=
k⋃
i=1

〈xi, yi〉 (2.42)

is a union of pairwise separated positive intervals {〈xi, yi〉; i = 1, · · · , k} on R. Here Bp

possibly equals the empty set or R. Define X(ω), t |=n p similarly. Define φ := ♦〈S,T 〉p,
and ψ := �〈S,T 〉p where 〈S, T 〉 is a positive interval on [0,∞). Then the following
statements hold:

χ
(n)
φ (ω)

n→∞−→ χφ(ω), a.s. ,

χ
(n)
ψ (ω)

n→∞−→ χψ(ω), a.s.

In particular,

P(ω;X(ω),Λn(t) |=n φ)
n→∞→ P(ω;X(ω), t |= φ),

P(ω;X(ω),Λn(t) |=n ψ)
n→∞→ P(ω;X(ω), t |= ψ).

The key to proving the convergence of MTL formulas with the diamond operator
lies in the following inclusions:

JφKω ⊂ intJφKω almost surely, (2.43)
J¬φKω ⊂ intJ¬φKω almost surely, (2.44)

41



where the time set JφKω of MTL formula φ is defined in Definition 20.
In order to show Theorem 10, we will first prove a simplified version of the theorem

in which the propositional formula corresponds to an interval. First, let us show (2.43)
and (2.44) in this case:

Lemma 18. Put Assumption 2. Let p be a propositional formula defined as X(ω), t |=
p ⇔ Xt(ω) ∈ 〈y1, y2〉, where 〈y1, y2〉 is a positive interval. Then p satisfies (2.43) and
(2.44) almost surely. Namely,

JpKω ⊂ intJpKω, a.s. ,
J¬pKω ⊂ intJ¬pKω, a.s.

To prove this lemma, we have to introduce local minima and local maxima of X:

Definition 28.

(i) Let f : [0,∞) → R be a given function. A number t ≥ 0 is called a point of
local maximum, if there exists a number δ > 0 with f(s) ≤ f(t) valid for every
s ∈ [(t− δ)+, t+ δ]; and a point of strict local maximum, if there exists a number
δ > 0 with f(s) < f(t) valid for every s ∈ [(t− δ)+, t+ δ] \ {t}.

(ii) Let f : [0,∞) → R be a given function. A number t ≥ 0 is called a point of
local minimum, if there exists a number δ > 0 with f(s) ≥ f(t) valid for every
s ∈ [(t− δ)+, t+ δ]; and a point of strict local minimum, if there exists a number
δ > 0 with f(s) > f(t) valid for every s ∈ [(t− δ)+, t+ δ] \ {t}.

Lemma 19. Let X = {Xt}t≥0 be the strong solution of the SDE (2.41) satisfying
Assumption 2. Then, the following statements hold (see A for the proof):

(i) Put

Laω := {t ≥ 0;Xt(ω) = a}, a ∈ R, ω ∈ Ω. (2.45)

Then Laω is dense–in–itself almost surely, for all a ∈ R.

(ii) For almost every ω ∈ Ω, the set of points of local maximum and local minimum
for the path t 7→ X(ω) is dense in [0,∞), and all local maxima and local minima
are strict.

Lemma 20. Put Assumption 2. Let us define an atomic formula a as X(ω), t |= a ⇔
Xt(ω) ∈ 〈y,∞), where 〈y,∞) is half-line with open or closed endpoint y ∈ R. Then a
satisfies (2.43) and (2.44) almost surely. Namely,

JaKω ⊂ intJaKω, a.s. ,
J¬aKω ⊂ intJ¬aKω, a.s.

Proof. Put Ω̃ be the set of ω ∈ Ω with the following properties:
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(i) The map t 7→ Xt(ω) is continuous,

(ii) Lyω := {t ≥ 0;Xt(ω) = y} is dense–in–itself,

(iii) the set of local maximum and local minimum of t 7→ Xt(ω) is dense in [0,∞),
and

(iv) all the local minima and the local maxima are strict

Then there exists some Ω̂ ∈ F such that Ω̂ ⊂ Ω̃ and P(Ω̂) = 1 because of Definition
17, Lemma 19. Indeed, let Ω1,Ω1,Ω3,Ω4 ∈ F be the sets of ω such that (i)–(iv) holds
respectively and P(Ω1) = P(Ω2) = P(Ω3) = P(Ω4) = 1, then P(

⋂4
i=1Ωi) = 1 follows

from Remark 2. From now on, let us prove that the formula a satisfies (2.43) and (2.44)
for all ω ∈ Ω̂.

Let 〈y,∞) be the left-closed interval [y,∞). The statement t ∈ J¬aKω is equivalent
to Xt(ω) < y. Since t 7→ Xt(ω) is continuous, the set

J¬aKω = {t ≥ 0;Xt(ω) < y}

is an open set, and therefore inclusion (2.44) holds clearly. On the other hand, due to
the continuity of t 7→ Xt(ω), if Xt(ω) > y, then it implies that t ∈ int JaKω. Hence,
it remains to show that Xt(ω) = y implies t ∈ intJaKω. Suppose Xt(ω) = y and
t /∈ intJaKω. Then, there exists ε > 0 such that (t − ε, t + ε) ∩ intJaKω = ∅. Since
(∃s ∈ (t − ε, t + ε))[Xs(ω) > y] implies (t − ε, t + ε) ∩ intJaKω 6= ∅, it follows that
(∀s ∈ (t − ε, t + ε))[Xs(ω) ≤ y]. By applying (iii), we can conclude that t is a strict
local maximum, i.e., (∀s ∈ (t − ε, t + ε) \ {t})[Xs(ω) < y], and thus, t is an isolated
point of {t ≥ 0;Xt(ω) = y}. However, this contradicts (ii). Therefore, we obtain the
inclusion (2.43) .

On the other hand, consider 〈y,∞) as the left-open interval (y,∞). Now, t ∈ JaKω
is equivalent to Xt(ω) > y. Since t 7→ Xt(ω) is continuous, the set

JaKω = {t ≥ 0;Xt(ω) > y}

is an open set, and thus inclusion (2.43) holds clearly. Moreover, due to the continuity
of t 7→ Xt(ω), if Xt(ω) < y, then it implies t ∈ int J¬aKω. Therefore, we need to
show the inclusion (2.44) when t ∈ J¬aKω and Xt(ω) = y. Suppose t /∈ intJ¬aKω,
which implies the existence of ε > 0 such that (t − ε, t + ε) ∩ intJ¬aKω = ∅. If (∃s ∈
(t− ε, t+ ε))[Xs(ω) < y], then it implies (t− ε, t+ ε) ∩ intJ¬aKω 6= ∅. Consequently, it
holds that (∀s ∈ (t − ε, t + ε))[Xs(ω) ≥ y]. By applying 19–(ii), we can deduce that t
is a strict local minimum, i.e., (∀s ∈ (t − ε, t + ε) \ {t})[Xs(ω) > y], which means t is
an isolated point of J¬aKω. However, this contradicts (ii). Thus, we obtain (2.44).

Proof of Lemma 18. Let us define atomic formulas a, b as

X(ω), t |= a⇔ Xt(ω) ∈ 〈y1,∞), (2.46)
X(ω), t |= b⇔ Xt(ω) ∈ 〈y2,∞), (2.47)
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where left endpoints y1, y2 can be open or closed and satisfy y1 < y2. Then we can
define X(ω), t |= p is equivalent to X(ω), t |= a ∧ ¬b and hence it is enough to show
that a ∧ ¬b satisfies (2.43) and (2.44) almost surely. To see this, let Ω̃ be the set of
ω ∈ Ω with the following properties

(i) The map t 7→ Xt(ω) is continuous,

(ii) the formula a satisfies (2.43) and (2.44), and

(iii) the formula b satisfies (2.43) and (2.44).

Then Definition 17 and Lemma 20 imply that there exists some Ω̂ ∈ F such that
P(Ω̂) = 1 and every ω ∈ Ω̂ satisfies (i)–(iii). Now let us show (2.43) and (2.44) for every
ω ∈ Ω̂.

(2.43): Given that

Ja ∧ ¬bKω ⊂ (intJaKω ∩ intJ¬bKω) ∪ ∂JaKω ∪ ∂J¬bKω,

and

intJaKω ∩ intJ¬bKω = intJa ∧ ¬bKω ⊂ intJa ∧ ¬bKω,

then it is enough to show

Ja ∧ ¬bKω ∩ ∂JaKω ⊂ intJa ∧ ¬bKω
Ja ∧ ¬bKω ∩ ∂J¬bKω ⊂ intJa ∧ ¬bKω.

Suppose that t ∈ Ja ∧ ¬bKω ∩ ∂JaKω. If O is a neighborhood of t, O ∩ intJaKω 6= ∅
because O ∩ JaKω 6= ∅ and (ii) hold. Since the path t 7→ X(ω) is continuous,
∂JaKω implies Xt(ω) = y1 < y2 and hence t ∈ intJ¬bKω. Let ε > 0. Since
(t− ε, t+ ε) ∩ intJ¬bKω is a neighborhood of t,

(t− ε, t+ ε) ∩ intJaKω ∩ intJ¬bKω = (t− ε, t+ ε) ∩ intJa ∧ ¬bKω 6= ∅, a.s. ,

and hence t ∈ intJa ∧ ¬bKω.
When t ∈ Ja ∧ ¬bKω ∩ ∂J¬bKω, the same argument can be applied. Thus we have
shown (2.43).

(2.44): Suppose that t ∈ J¬a ∨ bKω and let O be a neighborhood of t. Since t ∈ J¬aKω
or t ∈ JbKω, (ii) and (iii) imply that O ∩ intJ¬aKω 6= ∅ or O ∩ intJbKω 6= ∅ holds.
Since intJ¬aKω ∪ intJbKω ⊂ int(J¬aKω ∪ JbKω), it holds that O ∩ intJ¬a ∨ bKω =
O ∩ int(J¬aKω ∪ JbKω) 6= ∅. Then t ∈ intJ¬a ∨ bKω.
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We can interpret the boundary ∂JφKω of time set JφKω as the time that the indicator
function χφ(ω, t) in Definition 26 changes its value. The next lemma shows that the
boundary ∂JφKω of every MTL formula φ has Lebesgue measure zero almost surely if
the stochastic process X has a density and AP is distinct in the sense of the following
definition.

Definition 29. We say that a Borel set B on R is distinct if its boundary ∂B has
Lebesgue measure zero. We say an atomic formula a ∈ AP is distinct when the
corresponding set Ba is distinct. The set of AP of atomic formulas is said to be distinct
when all a ∈ AP are distinct.

Lemma 21. Consider the case of the distinct set AP of atomic formulas. Let (Ω,F ,P)
be a complete probability space. Suppose that X is an almost surely continuous stochastic
process such that Xt has a density for every t ∈ (0,∞). Then, for every MTL formula
φ there exists some measurable set K ∈ F ⊗ B([0,∞)) such that

(i) {t; (ω, t) ∈ K} is almost surely closed,

(ii) {t; (ω, t) ∈ K} has Lebesgue measure zero almost surely,

(iii) P({ω; (ω, t) ∈ K}) = 0 for every t ∈ (0,∞), and

(iv) ∂JφKω ⊂ {t; (ω, t) ∈ K}.

For this proposal, in the following lemma, we show that the boundary of the time
set of the form ♦〈S,T 〉φ is restricted to the shift of the boundary of the form φ.

Lemma 22. Let φ be an MTL formula and 〈S, T 〉 be a positive interval on [0,∞).
Then it holds almost surely that

∂J♦〈S,T 〉φKω ⊂ [(∂JφKω 	 S) ∪ (∂JφKω 	 T )], (2.48)

where ∂JφKω 	 S := {t− S; t ∈ ∂JφKω} ∩ [0,∞) and ∂JφKω 	 T := {t− T ; t ∈ ∂JφKω} ∩
[0,∞).

Proof. Let 〈S, T 〉 be closed interval [S, T ]. Suppose that t ∈ ∂J♦〈S,T 〉φKω. Then it is
clear that (t+ S, t + T ) ∩ JφKω = ∅. If not, there exists some neighborhood of t whose
every element s satisfies (s + S, s + T ) ∩ JφKω 6= ∅ and hence t /∈ ∂J♦〈S,T 〉φKω. Again
from t ∈ ∂J♦〈S,T 〉φKω, one of the following two statement holds:

(i) There exist some sequence tn, n = 1, 2, 3, · · · in J♦[S,T ]φKω such that supn tn = t.

(ii) There exist some sequence tn, n = 1, 2, 3, · · · in J♦[S,T ]φKω such that infn tn = t.

It is enough to show S + t ∈ ∂JφKω or T + t ∈ ∂JφKω for (i) and (ii).
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(i) Since (S + t, T + t) ⊂ J¬φKω, (S + t, S + t + ε) ∩ J¬φKω 6= φ for every positive
ε. Together with JφKω ∩ [S + tn, T + tn] 6= ∅, (S + t, T + t) ⊂ J¬φKω also implies
[S + tn, S + t] ∩ JφKω 6= ∅ for every n ∈ N. Then (S + t− ε, S + t] ∩ JφKω 6= ∅ for
every positive ε.

(ii) We can show (T + t − ε, T + t) ∩ J¬φKω 6= ∅ and [T + t, T + t + ε) ∩ JφKω 6= ∅
by showing [T + t, T + tn] ∩ JφKω 6= ∅. Indeed, (S + t, T + t) ∩ JφKω = ∅ and
[S + tn, T + tn] ∩ JφKω 6= ∅ implies [T + t, T + tn] ∩ JφKω 6= ∅.

Thus we show the statement when 〈S, T 〉 is closed. We can prove the case of 〈a, b〉 =
(S, T ), [S, T ), [S, T ) in the same way.

Proof of Lemma 21. Since the map t 7→ Xt(ω) is almost surely continuous, there exists
some N ∈ F such that P(N) = 0 and t 7→ Xt(ω) is continuous whenever ω /∈ N .
Suppose a is an atomic formula and t ∈ ∂JaKω. For any positive ε, we can find s and
s′ in the interval (t− ε, t+ ε) such that Xs(ω) ∈ Ba and Xs′(ω) /∈ Ba. This is because
t is a boundary point of the satisfaction set JaKω. Since the mapping t 7→ Xt(ω) is
continuous for ω /∈ N , it follows that Xt(ω) lies on the boundary ∂Ba. In other words,
Xt(ω) is located on the boundary of the set defined by the atomic formula a. Put
K := {(ω, t);Xt(ω) ∈ ∂Ba} ∪ N × [0,∞) and Kω := {t; (ω, t) ∈ K}. Hence we get
∂JaKω ⊂ Kω. Since t 7→ Xt(ω) is continuous almost surely and Xt has a density for
every t > 0, K is measurable, Kω is almost surely closed,

P({ω; (ω, t) ∈ K}) ≤ P(ω;Xt(ω) ∈ ∂Ba) + P(N) = 0 ∀t ∈ (0,∞).

Then it holds that ∫
[0,∞)

{∫
Ω

1lK(ω, t)P(dω)
}
dt = 0. (2.49)

By using Fubini’s Theorem (see Theorem 8.8 in [Rud66]), we have∫
Ω

{∫
[0,∞)

1lK(ω, t)dt
}
P(dω) = 0,

which implies that Kω has Lebesgue measure zero almost surely (see (b) of Theorem
1.39 in [Rud66]). When K corresponds to a formula φ with (i)-(iv), then K also satisfies
(i)-(iv) for¬φ, since ∂J¬φKω = ∂JφKω. When K1 and K2 satisfy (i)-(iv) for φ1 and φ2

respectively, K1 ∪K2 satisfies (i)-(iv) for φ1 ∧ φ2, since {t; (ω, t) ∈ K1 ∪K2} is closed,
P(ω; (ω, t) ∈ K1 ∪ K2) = 0 for t ∈ (0,∞), and ∂Jφ1 ∧ φ2Kω ⊂ {t; (ω, t) ∈ K1 ∪ K2}.
Suppose that K satisfies (i)-(iv) for φ. We show that {(ω, t); t ∈ [(Kω	S)∪ (Kω	T )]}
satisfies (i)–(iv) for ♦〈S,T 〉φ.

(i) Since Kω is closed almost surely, (Kω	S) and (Kω	T ) are almost surely closed
and then (Kω 	 S) ∪ (Kω 	 T ) is closed almost surely.
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(ii) From (2.49), it holds that∫
[0,∞)

{∫
Ω

1l{t∈Kω	S}(ω, t)P(dω)
}
dt =

∫
[S,∞)

{∫
Ω

1l{t∈Kω}(ω, t)P(dω)
}
dt = 0,∫

[0,∞)

{∫
Ω

1l{t∈Kω	T}(ω, t) P(dω)
}
dt =

∫
[T,∞)

{∫
Ω

1l{t∈Kω}(ω, t)P(dω)
}
dt = 0.

By Fubini’s theorem, we have∫
Ω

{∫
[0,∞)

1l{t∈Kω	S}(ω, t)dt

}
P(dω) = 0,∫

Ω

{∫
[0,∞)

1l{t∈Kω	T}(ω, t)dt

}
P(dω) = 0,

which implies that {(ω, t); t ∈ (Kω 	 S) ∪ (Kω 	 T )} has Lebesgue measure zero
almost surely.

(iii) When t > 0, we have

P(ω; t ∈ (Kω 	 S) ∪ (Kω 	 T ))

≤P(ω; t ∈ (Kω 	 S)) + P(ω; t ∈ (Kω 	 T ))

≤P(ω; t+ S ∈ Kω) + P(ω; t+ T ∈ Kω) = 0.

(iv) From Lemma 22, ∂J♦〈S,T 〉φKω ⊂ [(∂JφKω	S)∪(∂JφKω	T )] ⊂ [(Kω	S)∪(Kω	T )]
almost surely.

In the next lemma, we give a sufficient condition for convergence of the indicator
function of the formula with a diamond or box operator.

Lemma 23. Let X be the solution of SDE (2.41) satisfying Assumption 2. Define an
MTL formula p as

X(ω), t |= p⇔ Xt(ω) ∈ Bp

for some positive interval Bp on R. Let 〈S, T 〉 be a positive interval on [0,∞). If p
satisfies (2.43) and (2.44), the following statements hold:

(i) Define φ := ♦〈S,T 〉p. Then χ
(n)
φ (ω, t) → χφ(ω, t) for every t ∈ [0,∞).

(ii) Define ψ := �〈S,T 〉p. Then χ
(n)
ψ (ω, t) → χψ(ω, t) for every t ∈ [0,∞).

Here, χ(n)
φ (ω, t), χ(n)

ψ (ω, t), χφ(ω, t), and χψ(ω, t) are the indicator functions defined in
Definition 26.
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Proof. First, let us show that 〈t+S, t+T 〉∩ JpKω 6= ∅ implies (t+S, t+T )∩ intJpKω 6= ∅
almost surely. If ∂JpKω /∈ 〈t + S, t + T 〉 and 〈t + S, t + T 〉 ∩ JpKω 6= ∅, then it follows
that X(ω), s |= p for all s ∈ 〈t + S, t + T 〉, and therefore, 〈t + S, t + T 〉 ⊂ JpKω.
Consequently, (t + S, t + T ) ∩ intJpKω 6= ∅. Next, suppose ∂JpKω ∈ 〈t + S, t + T 〉 and
〈t + S, t + T 〉 ∩ JpKω 6= ∅. Since {Xt}t≥0 satisfies Assumption 2, Xt has a density
for t > 0 by 5. When t + S > 0, we have t + T > t + S > 0, and Lemma 21
implies that t + S and t + T do not belong to ∂JpKω almost surely. Thus, we have
∂JpKω ∩ (t + S, t + T ) 6= ∅, which implies JpKω ∩ (t + S, t + T ) 6= ∅. Therefore, we
conclude from (2.43) that (t + S, t + T ) ∩ intJpKω 6= ∅. If t + S = 0, ∂JpKω intersects
the open set of the form [0, t + T ) or (0, t + T ) on [0,∞). Then, from (2.43), we can
conclude intJpKω ∩ (t+ S, t+ T ) 6= ∅.

We can show in similar way that 〈t+ S, t+ T 〉 ∩ J¬pKω 6= ∅ implies (t+ S, t+ T ) ∩
intJ¬pKω 6= ∅ almost surely.

Now let us prove (i) and (ii). Suppose X(ω), t |= φ. Since (t+S, t+T )∩ intJpKω is a
nonempty open set, there exists s ∈ (Λn(t)+S,Λn(t)+T )∩N/n such that X(ω), s |=n p
for sufficiently large n. Hence, X,Λn(t) |=n φ. By applying the same argument, we can
show from (2.44) that if X(ω), t 6|= ψ, then X(ω),Λn(t) 6|=n ψ for sufficiently large n.

On the other hand, supposeX(ω), t 6|= φ. Then JpKω∩(S, T ) = ∅ and ∂JpKω∩(S, T ) =
∅. If t+ S > 0, according to 5 and Lemma 21, t+ S and t+ T do not belong to ∂JpKω
almost surely. Thus, there exists ε > 0 such that (t + S − ε, t + T − ε) ⊂ J¬pKω, and
hence (Λn(t) + S,Λn(t) + T ) ∩ JpKω = ∅ for sufficiently large n. If t + S = 0, since
Λn(t) = t = 0, it holds that

X(ω),Λn(t) 6|=n φ⇔ X(ω), 0 6|=n ♦〈0,T 〉p,

X(ω), t 6|= φ⇔ X(ω), 0 6|= ♦〈0,T 〉p.

Then it is clear that X(ω), t 6|= φ implies X(ω),Λn(t) 6|=n φ. Now we have shown that
X(ω), t 6|=n φ for sufficiently large n. The same argument can be applied to prove that
if X(ω), t |= ψ, then X(ω),Λn(t) |=n ψ for sufficiently large n.

Lemma 24. Suppose that a propositional formula p satisfies the conditions introduced
in the statement of Theorem 10. Specifically, let 〈xi, yi〉, i = 1, · · · , k be pairwise
disjoint positive intervals, and define Bp :=

⋃k
i=1〈xi, yi〉. Define a propositional formula

p, p1, · · · , pk by

X(ω), t |= p⇔ Xt(ω) ∈ Bp,

X(ω), t |=n p⇔ Xt(ω) ∈ Bp,

X(ω), t |= pi ⇔ Xt(ω) ∈ 〈xi, yi〉 for i = 1 · · · , k,
X(ω), t |=n pi ⇔ Xt(ω) ∈ 〈xi, yi〉 for i = 1 · · · , k.

Then p satisfies (2.43) and (2.44). Namely,

JpKω ⊂ intJpKω, a.s. ,
J¬pKω ⊂ intJ¬pKω, a.s.
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Proof. First note that

X(ω), t |= p⇔ X(ω), t |=
k∨
i=1

pi,

X(ω), t |=n p⇔ X(ω), t |=n

k∨
i=1

pi,

where
∨k
i=1 pi = p1∨p2∨· · ·∨pk. If Bp = ∅ or Bp = R, clearly JpKω = ∅ or JpKω = [0,∞),

respectively. Hence (2.43) and (2.44) holds. Otherwise, From Lemma 18, every pi
satisfies (2.43) and (2.44) almost surely. Now we show that JpKω(= J

∨k
i=1 piKω) satisfies

(2.43) and (2.44).

(2.43): Let t ∈ J
∨k
i=1 piKω and O be a neighborhood of t. Since J

∨k
i=1 piKω =

⋃k
i=1JpiKω,

there exists some i ∈ {1, · · · , k} such that t ∈ JpiKω. Since JpiKω satisfies (2.43)
almost surely and intJpiKω ⊂ intJ

∨k
i=1 piKω, O ∩ intJ

∨k
i=1 piKω 6= ∅ almost surely.

Then
∨k
i=1 pi satisfies (2.43) almost surely.

(2.44): Let t ∈ J¬
∨k
i=1 piKω. If t ∈ intJ¬

∨k
i=1 piKω, then for any neighborhood O of t, we

have O∩intJ¬
∨k
i=1 piKω 6= ∅. Thus, it suffices to show that O∩intJ¬

∨k
i=1 piKω 6= ∅

for any neighborhood O of t whenever t ∈ ∂J¬
∨k
i=1 piKω. Since intJ¬

∨k
i=1 piKω =

int(
⋂k
i=1J¬piKω) =

⋂k
i=1 intJ¬piKω, there must exist some i ∈ 1, · · · , k such that

t ∈ ∂J¬piKω. Indeed, if t ∈ intJ¬piKω for every i, then t ∈ intJ¬
∨k
i=1 piKω.

Since t 7→ Xt(ω) is continuous almost surely and 〈x1, y1〉, · · · 〈xk, yk〉 are pairwise
separated, we have Xt(ω) ∈ [xj, yj]

C when j 6= i almost surely, and hence t ∈
intJ¬pjKω for i 6= j almost surely. Therefore, t ∈

⋂
j 6=i intJ¬pjKω. Then, (t− δ, t+

δ) ∩ [0,∞) ⊂
⋂
j 6=i intJ¬pjKω for sufficiently small δ > 0. Now, since pi satisfies

(2.43), we have (t−δ, t+δ)∩ intJ¬piKω 6= ∅. Hence, (t−δ, t+δ)∩ intJ
∨k
j=1 ¬pjKω =

(t− δ, t+ δ) ∩
⋂k
j=1 intJ¬pjKω = (t− δ, t+ δ) ∩ intJ¬piKω 6= ∅.

Proof of Theorem 10. From the condition on Bp, it is a distinct set. Then Lemma 23
and Lemma 24 implies the almost sure convergence of χ(n)

φ (ω, t) and χ
(n)
ψ (ω, t) for ev-

ery t ∈ [0,∞). Finally, Lemma 17 can be employed to show the convergence of the
corresponding probability.

2.13 The case of [MTL formulas
Now we prove the convergence result for general [MTL formulas. Let X be the so-
lution of SDE (2.41) with Assumption 2. Henceforth, we discuss under the following
assumption:
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Assumption 3. For every propositional formula p,

X(ω), t |= p⇔ Xt(ω) ∈ Bp, (2.50)

for some Bp which is a finite union of pairwise separated positive intervals on R (see
Definition 27). Here Bp may possibly be ∅ or R.

Remark 13. We give some examples of setting so that every propositional formula
satisfies Assumption 3. Let B1, · · · , Bk be positive intervals on R such that

(i)
⋃k
i=1Bi = R.

(ii) Bi ∩Bj = ∅ if i 6= j.

We define the semantics of atomic formulas AP := {a1, · · · , ak} as X(ω), t |= ai ⇔
Xt(ω) ∈ Bi for i = 1, · · · , k. Then every propositional formula satisfies Assumption 3.

Under these settings, we show the following statement.

Theorem 11. Suppose that {Xt}t≥0 is the solution of SDE (2.41) with Assumption 2.
Let AP be the set of atomic formulas such that every propositional formula satisfies
Assumption 3. Let φ be a [MTL formula. Then χ

(n)
φ (ω, t) → χφ(ω, t) almost surely for

every t ∈ [0,∞). In particular, P(ω;X(ω),Λn(t) |=n φ) → P(ω;X(ω), t |= φ) for all
t ∈ [0,∞).

Lemma 25. Put Assumption 2 and Assumption 3. Let p be a propositional for-
mula. Then χ

(n)
p (ω, t) → χp(ω, t) almost surely, for every t ∈ (0,∞). In particular,

P(ω;X(ω),Λn(t) |=n p) → P(ω;X(ω), t |= p).

Proof. First note that X(ω), t |= p is equivalent to Xt(ω) ∈ Bp for some Bp ⊂ R. Let
t = 0. Then Λn(0) = 0 and hence X(ω),Λn(0) |=n p is equivalent to X(ω), 0 |= Bp.
Next, let t > 0. By the definition of indicator functions , χp(ω, t) = 1 is equivalent to
Xt(ω) ∈ Bp and χ(n)

p (ω, t) = 1 is equivalent to XΛn(t)(ω) ∈ Bp. From Assumption 3, Bp

is distinct, then Lemma 21 implies that t /∈ ∂JpKω almost surely. Then almost surely
there exists some ε > 0 such that χp(ω, s) = χp(ω, t) for every s ∈ (t− ε, t+ ε)∩ [0,∞).
Then it holds almost surely that χ(n)

p (ω, t) = χp(ω,Λn(t)) = χp(ω, t) for sufficiently
large n.

Proof of Theorem 11. Fix t ∈ [0,∞). It is clear that φ is Boolean combination of
{φi, i = 1, · · · , k}, where φi is a propositional formula or formula of the form ♦〈S,T 〉p
where 〈S, T 〉 is positive interval and p is propositional formula. Then there exists some
function

⊙k
i=1 : {0, 1}k −→ {0, 1} such that

χφ(ω, t) =
k⊙
i=1

χφi(ω, t), (2.51)

χ
(n)
φ (ω, t) =

k⊙
i=1

χ
(n)
φi

(ω, t). (2.52)

50



From Assumption 3 and Lemma 24, every propositional formula satisfies (2.43) and
(2.44). Then we can apply Lemma 23 and Lemma 25 to show that χ(n)

φi
(ω, t) converges

almost surely to χφi(ω, t) for every i = 1, · · · , k. Then, almost surely, there exists some
large N ∈ N such that χ(n)

φi
(ω, t) = χφi(ω, t) for n ≥ N and i = 1, · · · , k. Therefore the

lefthand side of (2.52) converges to the left side of (2.51) almost surely. Once we have
shown the almost sure convergence of (2.52) to (2.51), one can apply Lemma 17 to see
the convergence of the probability.

2.14 Approximation the probability by discretiza-
tion of SDE

In the preceding sections, we have explored the approximation of probability through
the discretization of the semantics of MTL. However, given the model of a stochastic
system as an SDE, we cannot compute the probability that the system satisfies an
MTL formula solely by providing the discretization of its semantics. This is because, in
general, we cannot obtain the trajectory of the SDE in an a priori or analytical manner.
Then we approximate the trajectory of SDE by discretization such as Euler’s method:

{
dX

(n)
t = b(X

(n)
Λn(t)

)dt+ σ(X
(n)
Λn(t)

)dWt,

X0 = ξ ∈ R.
(2.53)

Using such an approximation, we show the following convergence result.

Theorem 12. Suppose that {Xt}t≥0 is the solution of SDE (2.41) with Assumption 2.
Let {X(n)

t }t≥0 be a stochastic process satisfying

(∀T ≥ 0)

[
sup
t≤T

|X(n)
t −Xt|

n→∞−→ 0, a.s.
]
. (2.54)

Let AP be the set of atomic formulas such that every propositional formula satis-
fies Assumption 3. Let φ be a [MTL formula. Then, P(ω;X(n)(ω),Λn(t) |=n φ) →
P(ω;X(ω), t |= φ) for all t ∈ [0,∞).

Remark 14. The almost sure convergence (2.54) holds when σ and b satisfies Lipschitz
condition:

|b(x)− b(y)| ≤ C1|x− y|,
|σ(x)− σ(y)| ≤ C2|x− y|.

for every x, y ∈ R and some positive constant C1, C2 (see Theorem 2.3 in [Gyö98]).

Lemma 26. Let X be the strong solution of (2.41) with Assumption 2. Put Assumtion 3
on all propositional formula p. Let 〈S, T 〉 be a positive interval on [0,∞) such that
0 ≤ S < T . Then the following statement holds almost surely:
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If

X(ω), t |= ♦〈S,T 〉p, (2.55)

for some t ≥ 0, then

(∃s ∈ (t+ S, t+ T ))[Xs(ω) ∈ intBp]. (2.56)

Proof. To avoid the trivial case, let Bp 6= ∅. Note that Assumption 3 makes ∂Bp at
most countable set on R. Let Ω̃ (Ω̂ respectively) be the sets of ω ∈ Ω such that the
following (a)–(d) ((a)–(e) respectively) hold.

(a) t 7→ Xt(ω) is continuous,

(b) Xt+T (ω) /∈ ∂Bp,

(c) Laω is dense in itself for every a ∈ ∂Bp, and

(d) all the local maxima and the local minima of t 7→ Xt(ω) are strict.

(e) Xt+S(ω) /∈ ∂Bp.

From Proposition 4, Proposition 5, Lemma 19 and Theorem 18, we obtain P(Ω̃) = 1.
When t + S > 0, we obtain P(Ω̂) = 1 in the same way. We show the lemma following
these two cases:

(i) Assume that t+S = 0 and ω ∈ Ω̃. If Xt+T (ω) ∈ intBp, the continuity (a) implies
that there exists some s ∈ (S, T ) such that Xt+s(ω) ∈ intBp. Then suppose
that Xt+T (ω) /∈ intBp. Then (2.55) implies that there exist some y ∈ ∂Bp and
s ∈ 〈S, T 〉 such that Xt+s(ω) = y. If Xt+s′(ω) /∈ intBp for all s′ ∈ 〈S, T 〉, we
can see from (a) and the assumption on Bp that Xt+s(ω) must be either a local
maximum or a local minimum. Then (d) implies that Xt+s(ω) is the strict local
maximum or the local minimum. Therefore t + s is not a limit point of Lyω.
However, this contradicts the self–dense property of Lyω. Thus we conclude that
there exists some s′ ∈ 〈S, T 〉 such that Xt+s′(ω) ∈ intBp.

(ii) Assume that t + S > 0 and ω ∈ Ω̂. If Xt+S(ω) ∈ intBp or Xt+T (ω) ∈ intBp

holds, the continuity (a) implies that there exists some s ∈ (S, T ) such that
Xt+s(ω) ∈ intBp. Then, because of (b) and (e), it is enough to show (2.56) when
Xt+S(ω), Xt+T (ω) ∈ Bp. In this case, (2.55) implies that there exist some y ∈ ∂Bp

and s ∈ (S, T ) such that Xt+s(ω) = y. If Xt+s′(ω) /∈ intBp for all s′ ∈ (S, T ),
we can see from (a) and the assumption on Bp that Xt+s(ω) must be either a
local maximum or a local minimum. Then (d) implies that Xt+s(ω) is the strict
local maximum or the local minimum. Therefore t+ s is not a limit point of Lyω.
However, this contradicts the self–dense property of Lyω. Thus we conclude (2.56).
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Lemma 27. Let X be the strong solution of (2.41) with Assumption 2. Define a
propositional formula p as

X(ω), t |= p⇔ Xt(ω) ∈ Bp

for some Bp on R such that intBp 6= ∅. Then the following holds:

(∀x ∈ R)(∀T > 0)(∃t ≥ T )[Xt(ω) = x].

In particular, it follows that

(∀x ∈ R)(∀T > 0)(∃t ≥ T )[Xt(ω) ∈ intBp].

Proof. It is clear from the time–change representation in Theorem 18 and the recurrent
property of one–dimensional Brownian motion (see 2.9.7 in [KS91]).

Lemma 28. Let X be the strong solution of (2.41) with Assumption 2. Put Assump-
tion 3 on every propositional formula p. Let 〈S, T 〉 be a positive interval on [0,∞).
Then the following statement holds almost surely:

If

X(ω), t 6|= ♦〈S,T 〉p, (2.57)

for some t ≥ 0, then

inf
s∈〈S,T 〉

{dist(Xt+s(ω), Bp)} > 0. (2.58)

Proof. For simplicity, let Bp be a nonempty set.
Suppose that 〈S, T 〉 be a unbounded right–open interval, i.e., 〈S, T 〉 ⊂ [0,∞) and

T = ∞. Then Lemma 27 clearly leads to X(ω), t |= ♦〈S,T 〉p. Since the requirement
(2.57) violates almost surely, the statement of this lemma holds almost surely.

Next, let us suppose that 〈S, T 〉 be a positive bounded interval on [0,∞). First let
S + t = 0 and suppose that X0 ∈ Bp. From Theorem 18 and Lemma 19, there exists
some s ∈ 〈t + S, t + T 〉 such that Xs(ω) ∈ Bp. Then the requirement (2.57) violates
almost surely, and the statement of this lemma holds almost surely. Next let us suppose
that S + t = 0 and X0 /∈ Bp. Let Ω̃ be the set of ω ∈ Ω with following properties:

(i) t 7→ Xt(ω) is continuous,

(ii) Xt+T (ω) /∈ ∂Bp,

(iii) Laω is dense in itself for every a ∈ ∂Bp, and

(iv) all the local maxima and the local minima of t 7→ Xt(ω) are strict.
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Then Proposition 5 and Lemma 19 implies that P(Ω̃) = 1. Now let ω ∈ Ω̃. If
infs∈〈S,T 〉{dist(Xt+s(ω), Bp)} = 0, then the continuity of t 7→ Xt(ω) implies that the
existence of s ∈ (t + S, t + T ) such that Xs(ω) = y ∈ Bp. If Xs(ω) = y is either a
local maximum or a local minimum, since {s ∈ [0,∞);Xs(ω)} is dense–in–itself, it is
not strict, which violates (iv). Therefore infs∈〈S,T 〉{dist(Xt+s(ω), Bp)} > 0.

It remains to consider the case when S + t > 0. Let Ω̃ be the set of ω ∈ Ω with the
following properties:

(i) t 7→ Xt(ω) is continuous,

(ii) Xt+S(ω) /∈ ∂Bp and Xt+T (ω) /∈ ∂Bp,

(iii) Laω is dense in itself for every a ∈ ∂Bp, and

(iv) all the local maxima and the local minima of t 7→ Xt(ω) are strict.

Then Proposition 5 and Lemma 19 implies that P(Ω̃) = 1. Let ω ∈ Ω̃. Then we can
conclude infs∈〈S,T 〉{dist(Xt+s(ω), Bp)} > 0 by the same argument as above.

Lemma 29. Let (E, d) be a metric space and f : [0,∞) −→ E be a continuous function.
Suppose that a sequence of functions fn : [0,∞) −→ E converges to f locally uniformly,
i.e.,

sup
t≤T

d (f(t), fn(t)) > 0, ∀T ≥ 0. (2.59)

Then the following hold:

(i) Let Bp ⊂ E and 〈S, T 〉 be an interval on [0,∞). If f(t) ∈ intBp for some
t ∈ (S, T ), there exists some N ∈ N, ε > 0 and δ > 0 such that [t−δ, t+δ] ⊂ (S, T ),
and n ≥ N implies

inf
s∈[t−δ,t+δ]

{
dist

(
fn(s), B

C
p

)}
≥ ε. (2.60)

(ii) Let Bp ⊂ E and 〈S, T 〉 be a bounded interval on [0,∞) and suppose that

inf
t∈〈S,T 〉

{dist(f(t), Bp)} > 0. (2.61)

Then there exists some δ > 0 such that

inf
t∈[(S−δ)∧0,T+δ]

{dist(fn(t), Bp)} > 0 (2.62)

for sufficiently large n.
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Proof. (i) Suppose that f(t) ∈ intBp for some t ∈ (S, T ). From the continuity of f ,
there exists some ε > 0 and δ > 0 such that {y ∈ R; |f(s)− y| < 2ε} ∈ intBp for
s ∈ [t− δ.t+ δ]. If [t− δ.t+ δ] 6⊂ (S, T ), retake δ as

δ −max{(t+ δ − T ) ∨ 0, (S − t+ δ) ∨ 0}
2

.

then [t−δ, t+δ] ⊂ (S, T ) and {y ∈ R; |f(s)−y| < 2ε} ⊂ intBp for s ∈ [t−δ.t+δ].
Now let N ∈ N be sufficiently large such that n ≥ N implies that

max
s∈[t−δ,t+δ]

{|fn(s)− f(s)| < ε}.

Then {y ∈ R; |fn(s) − y| < ε} ⊂ intBp for every s ∈ [t − δ, t + δ]. Therefore the
statement holds.

(ii) Suppose that

inf
t∈〈S,T 〉

{dist(f(t), Bp)} > 0.

From the continuity of f and, there exists some ε > 0 and δ > 0 such that

inf
t∈[(S−δ)∧0,T+δ]

{dist(f(t), Bp)} = ε > 0

Since T <∞, (2.59) implies that there exists some N ∈ N such that (2.62) holds
for n ≥ N .

Lemma 30. Let 〈S, T 〉 be a positive interval. Let X be the strong solution of (2.41)
with Assumption 2 and {X(n)

t }t≥0 be a stochastic process satisfying (2.54). Define p
and Bp as Theorem 10. Then the followings hold almost surely.

(i) If X(ω), t |= ♦〈S,T 〉p, then X(n)(ω),Λn(t) |= ♦〈S,T 〉p for sufficiently large n.

(ii) If X(ω), t 6|= ♦〈S,T 〉p, then X(n)(ω),Λn(t) 6|= ♦〈S,T 〉p for sufficiently large n.

Proof. (i) Let Ω̃ be the set of ω such that

– (2.54) holds, and
– (2.55) implies (2.56).

Then P(Ω̃) = 1. Now suppose that ω ∈ Ω̃. Then Lemma 29 implies that there
exists s ∈ (t+ S, t+ T ), δ > 0 and N ∈ N such that n ≥ N implies{

[s− δ, s+ δ] ⊂ (t+ S, t+ T ),

(∀u ∈ [s− δ, s+ δ])[X
(n)
u (ω) ∈ Bp].
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Take M = max{N, b1/δc+ 1}. Then n ≥M implies that

[s− δ, s+ δ] ∩ (t+ S, t+ T ) ∩ N/n 6= ∅
⇒[s− δ, s+ δ] ∩ (Λn(t) + S,Λn(t) + T ) ∩ N/n 6= ∅.

Therefore there exists some u ∈ (Λn(t) + S,Λn(t) + T ) ∩ N/n such that

X(n)(ω), u |=n p,

which implies immediately X(n)(ω), t |=n ♦〈S,T 〉p.

(ii) Let Ω̃ be the set of ω such that

– (2.54) holds, and
– (2.57) implies (2.58).

Then P(Ω̃) = 1. Now suppose that ω ∈ Ω̃.
If Bp = ∅, X(ω), t 6|= ♦〈S,T 〉p and X(n)(ω),Λn(t) 6|= ♦〈S,T 〉p clearly holds. Next let
T = ∞. Then Lemma 27 implies that X(ω), t 6|= ♦〈S,T 〉p violates almost surely,
which leads us to the conclusion. Therefore it remains to consider the case that
〈S, T 〉 is positive and bounded. Then we can use Lemma 28 that

inf
s∈〈S,T 〉

{dist(Xt+s(ω), Bp)} > 0.

Then (2.54) and (ii) of Lemma 29 implies that there exists some ε > 0, δ > 0 and
N ∈ N such that n ≥ N implies

inf
u∈[(t+S−δ)∧0,t+T+δ]

{dist(X(n)
u (ω), Bp)} = ε > 0

By take N ′ := max{N, 1/δ, 1/(T − S)}, we can conclude that

inf{dist(X(n)
u (ω), Bp) | u ∈ [Λn(t) + S,Λn(t) + T ] ∩ N/n} > ε.

for n ≥ N ′. Therefore we can conclude that X(n)(ω),Λn(t) 6|= ♦〈S, T 〉p.
Now let us show Theorem 12.

Proof of Theorem 12. Let φ be a [MTL–formula. Define χφ(ω, t) and χ̃
(n)
φ (ω, t) as fol-

lowing:

χφ(ω, t) =

{
1, if X(ω), t |= φ

0, if X(ω), t 6|= φ

χ̃
(n)
φ (ω, t) =

{
1, if X(n)(ω),Λn(t) |=n φ

0, if X(n)(ω),Λn(t) 6|=n φ
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Since [MTL–formula is a Boolean combination of propositional formulas and formulas
with diamond operators, we can write

χφ(ω, t) =
k⊙
i=1

χφi(ω, t),

χ̃
(n)
φ (ω, t) =

k⊙
i=1

χ̃
(n)
φi

(ω, t),

where φi is a propositional formula or φi = ♦〈Si,Ti〉pi with a propositional formula pi
and a positive interval 〈Si, Ti〉. Here

⊙k
i=1 is a function on {0, 1}k to {0, 1}. From

Lemma 30, we have shown that

χ̃
(n)
φi

(ω, t)
n→∞−→ χφi(ω, t) a.s. , (2.63)

when φi is of the form φi = ♦〈Si,Ti〉pi. Therefore it remains to show (2.63) when φi is a
propositional formula p. If t = 0, X(n)

t (ω) = Xt(ω) and then X(n)
t (ω) ∈ Bp is equivalent

to Xt(ω) ∈ Bp for every propositional formula p. Therefore χp(ω, t) = χ̃(n)(ω, t) for
every n. Next let t > 0 and Ω̃ be the set of ω ∈ Ω such that

(i) t 7→ Xt(ω) is continuous,

(ii) Xt(ω) /∈ ∂Bp, and

(iii) (2.54) holds.
Form Assumption 2 and Proposition 5, Xt has a density. Since Assumption 3, ∂Bp

has the Lebesgue measure zero and then {ω ∈ Ω;Xt(ω) ∈ ∂Bp} has probability zero.
Therefore (ii) holds almost surely. In addition to the fact that t 7→ Xt(ω) is continuous
almost surely, we have P(Ω̃) = 1. From now suppose that ω ∈ Ω̃. If χp(ω, t) = 1,
Xt(ω) ∈ intBp. From the continuity of t 7→ Xt(ω), there exists some ε, δ > 0 such that

(∀s ∈ [t− δ, t+ δ])[{y ∈ R; |Xs(ω)− y| < ε} ∈ intBp].

From (iii), t − Λn(t) < δ and |X(n)
Λn(t)

(ω) − Xt(ω)| < ε/2 hold for sufficiently large n.
Therefore X(n)

Λn(t)
(ω) ∈ intBp for sufficiently large n, which implies that χ̃(n)

p (ω, t) = 1

for sufficiently large n. By the same argment, we can show that χp(ω, t) = 0 implies
that χ̃(n)

p (ω, t) = 0 for sufficiently large n.
Thus we have shown that χ̃(n)

φi
(ω, t) converges to χφi(ω, t) almost surely for fixed t

and i. Therefore
⊙k

i=1 χ̃
(n)
φi

(ω, t) converges almost surely to
⊙k

i=1 χφi(ω, t) for fixed t,
and we obtain the statement of this theorem.

Theorem 13. Let X be the solution of the SDE 2.41 with Assumption 2 and φ be a
[MTL formula with Assumption 3. Let {X(n)}n∈N be a sequence of stochastic processes
which converges to X in probability with the locally uniform metric, i.e.,

P(sup
t≤T

|X(n)
t −Xt| > ε)

n→∞−→ 0, ∀ε > 0, T > 0 (2.64)
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Then

P(ω ∈ Ω;X(n)(ω),Λn(t) |=n φ)
n→∞−→ P(ω ∈ Ω;X(ω), t |= φ)

Proof. Let d be the locally uniform metric between functions on [0,∞) to R;

d(f, g) =
∞∑
n=1

sup
t≤n

|f(t)− g(t)| ∧ 1,

which implies X(n) converges to X in probability with respect to the locally uniform
metric d.

Assume that (2.66) does not hold. Then there exists some increasing natural se-
quence {nk} and ε > 0 such that∣∣P(ω ∈ Ω;X(nk)(ω),Λnk

(t) |=nk
φ)− P(ω ∈ Ω;X(ω), t |= φ)

∣∣ > ε

for all k. From (2.64), {X(nk)}k∈N converges to X in probability with respect to the
metric d. Then there exists a sub–sequence mk of nk such that X(mk) converges to X
almost surely with respect to the metric d, which implies (2.66). This is a contradiction
to the assumption.

The next corollary follows from the fact that Lp convergence implies the convergence
in probability.

Corollary 1. Let X be the solution of the SDE 2.41 with Assumption 2 and φ be a
[MTL formula with Assumption 3. Let {X(n)}n∈N be a sequence of stochastic processes
which converges to X strongly with the locally uniform metric, i.e.,{

E
[
sup
t≤T

|X(n)
t −Xt|p

]}1/p
n→∞−→ 0, ∀T > 0 (2.65)

for some p > 0. Then

P(ω ∈ Ω;X(n)(ω),Λn(t) |=n φ)
n→∞−→ P(ω ∈ Ω;X(ω), t |= φ) (2.66)
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Chapter 3

Discretization of SDE: Time change
of the Brownian motion

3.1 Introduction
In this article, we provide a numerical method for approximating a weak solution of
a one–dimensional stochastic differential equation. There are many studies on the
numerical approximation of SDEs which converge strongly to the solution. There are a
variety of applications, including path-dependent option pricing in financial engineering.
In this work, we focus on the following one-dimensional SDE:

dXt =σ(t,Xt)dWt. (3.1)

This kind of SDE model is called a local volatility model and is popular in financial
practice. Although (3.1) does not include a drift term, we note that under appropriate
conditions, a general one-dimensional SDE with drift can be reduced to (3.1). Time–
homogeneous one-dimensional SDEs can be transformed to not have a drift term by
using a scale function in the pathwise sense, and time inhomogeneous SDEs can also
be transformed to (3.1) by using the Girsanov–Maruyama transformation in the sense
of law.

To study numerical schemes of the SDE (3.1), we need to discuss the conditions
under which the existence and uniqueness of the solution hold in various different senses:
strong uniqueness, pathwise uniqueness, and uniqueness in the sense of probability law.
Many researchers have studied the unique existence of the solution to SDEs for a long
time. The most famous condition for the strong unique existence of a solution is the
Lipschitz continuity of the drift and diffusion coefficients (see [KS91]).

According to Bru and Yor [BM02], W. Doeblin wrote a paper about this issue before
many facts about the structure of martingale were found. He showed that a diffusion
process can be represented by some stochastic process driven by a time-changed Brow-
nian motion. Although this work of Doeblin from 1940 was only made public in 2000,
the idea was rediscovered and extended in stochastic calculus, and was already in a
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textbook [IW89] by Ikeda and Watanabe in 1984, where it was shown that a certain
class of one-dimensional SDE of the form (3.1) has a unique solution represented by a
time changed Brownian motion, where the time change is given as the solution of a ran-
dom ordinary differential equation, as we discuss in the next section in more detail. We
use this representation to construct a new approximation scheme for one-dimensional
SDEs. For the time–homogeneous case, namely, σ(t, x) = σ(x) in (3.1), Engelbert and
Schmidt [ES05] gave an an equivalent condition for weak existence and uniqueness in
the sense of probability law, under which the weak solution is represented by a time-
changed Brownian motion. For time-homogeneous SDEs, an excellent survey [Tag17]
about the existence and uniqueness of SDEs is available.

The most famous numerical scheme for SDEs is the Euler–Maruyama scheme. This
method approximates a solution of an SDE in a very a similar way to the Euler scheme
for ordinary differential equations. We define the Euler–Maruyama approximations of
Xt, t ∈ [0, T ) as the solutions of

dX
(n)
t = σ(t,X

(n)
bntc
n

)dWt, (3.2)

where X0 is a given initial value. It is well known that the Euler–Maruyama ap-
proximation converges to the strong solution of a corresponding SDE uniformly in the
sense of Lp with convergence rate n−1/2 when the diffusion coefficient is Lipschitz con-
tinuous [KP09]. Under β-Hölder continuity of the diffusion coefficient σ(t, x), where
1/2 ≤ β ≤ 1, Gyöngy and Rásonyi [GR11] showed that for any T > 0 there exists a
constant C > 0 such that

{
E

[
sup

0≤t≤T
|Xt −X

(n)
t |p

]}1/p

≤


(
C
lnn

)1/2p if β = 1/2

Cn−(β−1/2)/p if β ∈ (1/2, 1)

Cn−(β/2−1/4) if β = 1

(3.3)

for any n ≥ 2 and p ≥ 2, where Xt is the strong solution of the SDE (3.1) and X
(n)
t is

the corresponding Euler–Maruyama approximation for step size 1/n.
When β < 1/2, a strong solution does not exist in general [Bar82] and no numerical

schemes have been proposed. Note that this kind of rough diffusion coefficient appears
when we deal with random medium. For example, Brox considered in [Bro86] a one-
dimensional diffusion process in which the drift coefficient is an independent white noise.
As discussed in [Bro86] and [HLM17], we can remove the distributional drift coefficient
by scale transformation and obtain an SDE of the form (3.1) with σ(t, x) = eB(s−1(x)),
where B is an independent two-sided Brownian motion and s is the scale function.

In Section 3.2, we propose a new method of approximating the SDE (3.1). In Sec-
tion 3.3, we provide the convergence rates of our method under the β-Hölder condition
with 0 < β ≤ 1 or under a certain smoothness condition. One advantage of our ap-
proach is that we approximate the weak solution, which enables us to treat an SDE that
does not have a strong solution. Our scheme is the first to achieve strong convergence for
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0 < β < 1/2, and provides a better convergence rate than in [GR11] for 1/2 ≤ β < 2/3.
In Section 4, we provide some numerical experiments on one-dimensional SDEs with a
Hölder continuous diffusion coefficient.

3.2 Discretization with time change
Let (Ω,F ,P, {Ft}t≥0) be a filtered probability space. We consider a new discretization
scheme for the one-dimensional SDE (3.1) on this space. Our method is based on the
following theorem from [IW89].

Theorem 14 (Preliminary theorem). Let {bt} be a one-dimensional {Ft}-Brownian
motion with b0 = 0 on (Ω,F ,P, {Ft}t≥0) and let X0 be an F0-measurable random
variable. Define a continuous process {ξt} by ξt = X0+ bt. Let {ϕ(t)} be a.s. a solution
of the ODE

ϕ(t) =

∫ t

0

ds

σ2(ϕ(s), ξs)
(3.4)

If we then define Xt = ξϕ−1(t) = X0 + bϕ−1(t) and F̃t = Fϕ−1(t), there exists an {F̃t}-
Brownian motion {Wt} such that ({Xt}, {Wt}) is a weak solution of (3.1) on the prob-
ability space (Ω,F ,P) with filtration {F̃t}. Moreover, if the solution of the ODE (3.4)
is unique a.s., then the solution of (3.1) is unique in law.

Remark 15. A sufficient condition for the ODE (3.4) to be well-posed for a fixed
ω ∈ Ω, is that σ(y, ξt(ω)) is locally Lipschitz continuous in y and satisfies the inequality

|σ−2(y, ξt(ω))| ≤ a(t)|y|+ b(t) (3.5)

for all t ∈ [0,∞) and y ∈ R, where a(t) and b(t) are some continuous non-negative (
and possibly random) functions of t ( refer to [Gri07]). In the next section, we will show
the convergence rate of our method, where we assume the boundedness of the diffusion
coefficient (see Condition 2). Then, it is easy to verify that the local Lipschitz continuity
of σ(y, ξt(ω)) in y is sufficient because the condition (3.5) follows from the boundedness
of σ−2(y, ξt(ω)).

The main goal of this chapter is to build a numerical approximation of a solution
{Xt} of the SDE (3.1) using Theorem 14. To approximate this time-changed Brownian
motion, we first make an approximation of Brownian motion {ξt} by {ξ(n)t } that is
a linear interpolation of a random walk generated by normally distributed random
variables, that is,

ξ
(n)
t := ξbntc/n + (t− bntc

n
)(ξ(bntc+1)/n − ξbntc/n) (3.6)
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where (ξ(bntc+1)/n − ξbntc/n) ∼ N (0, 1/n). Second, we approximate {ϕ(t)} by {ϕn(t)},
the Euler method for ordinary differential equation, namely,

ϕn(0) = ϕ(0) = 0, (3.7)

ϕn(t) = ϕn(
k

n
) + (t− k

n
)

1

σ2
(
ϕn(k/n), ξk/n

) , t ∈ (
k

n
,
k + 1

n
] (3.8)

Third, we make the inverse function τn(t) of t 7−→ ϕn(t) by

τn(t) =
k

n
+

t− ϕn(
k
n
)

ϕn(
k+1
n
)− ϕn(

k
n
)

1

n
(3.9)

where t ∈
[
ϕn(

k
n
), ϕn(

k+1
n
)
)
. We can easily check that τn(t) is the inverse function of

ϕn(t) by its definition.
Let tj, j = 0, 1, 2, · · · be defined by tj = j/n. The full algorithm for this method is

as follows.

STEP1 Construct ξtj , j = 0, 1, 2, · · · using a normal distributed random sequence {ξk −
ξk−1}k=1,··· ,j with ξ0 = X0 and compute the ϕn(tj) for each j. As we prove later,
under Condition 2, ϕn(t) is strictly increasing and ϕ(tj) goes to infinity as j → ∞.
This makes the next step valid.

STEP2 The first time ϕn(tj) crosses t (i.e., at the first step j such that ϕn(tj) > t),
calculate τn(t) using the formula (3.9) where we select k in (3.9) to be k = j − 1.

STEP3 Using τn(t) and (3.6), calculate ξ(n)τn(t)
i.e.,

ξ
(n)
τn(t)

= ξtj−1
+ (τn(t)− tj−1)(ξtj − ξtj−1

). (3.10)

We thus obtain a path of ξ(n)τn(t)
using [STEP1]-[STEP3]. The main result of this chapter

is the discretization error of {ξ(n)τn(t)
} in the sense of Lp under the Hölder condition of

σ(t, x), which is given in the next section.

3.3 Rate of convergence
In this section, we show the convergence rates of our approximation scheme. In the rest
of this chapter, we assume the following condition.

Condition 2. There are positive constants C1, C2 such that C1 ≤ σ(t, x) ≤ C2 for all
(t, x) ∈ [0,∞)× R.

Theorem 15 states that under the β-Hölder continuity of σ(t, x) with β ∈ (0, 1] our
numerical approximation converges to the exact solution in the sense of Lp uniformly,
and the convergence rate is n−α2β, where α is an arbitrary value smaller than 1/2.
Theorem 16 provides a more precise convergence rate n−α when σ is sufficiently smooth.
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Theorem 15. Let T > 0. Suppose that σ(t, x) satisfies Condition 2 and that there
exist constants β ∈ (0, 1], Cβ > 0, and LT > 0 such that for s, t ≤ T ,

|σ(s, x)− σ(t, y)| ≤ LT |s− t|+ Cβ|x− y|β. (3.11)

Let ξt, ξ(n)t , τ(t), τn(t) be defined as in the previous section. Then, for any p ≥ 1 and
α ∈ [0, 1/2), there exists a positive constant K̃T such that{

E

[
sup
t≤T

∣∣∣ξ(n)τn(t)
− ξτ(t)

∣∣∣p]}1/p

≤ K̃T n
−α2β. (3.12)

Remark 16. The conditions in the theorem above are sufficient to guarantee (3.5),
which means that a solution to the differential equation (3.4) uniquely exists.

We use the following lemma that is an immediate consequence of Theorem (2.1) in
[RYs91].

Lemma 31. Let {ξt} be Brownian motion and denote

Hα,T := sup
s 6=t
s,t≤T

|ξt − ξs|
|t− s|α

. (3.13)

Then the function T 7→ Hα,T is increasing and

E[(Hα,T )
γ] <∞

for any α ∈ [0, 1/2) and γ > 0.

Lemma 32. Suppose that σ(t, x) satisfies Condition 2 and that ϕ(t) satisfies (3.4).
Let ϕn(t) be defined as (3.8). Then ϕ, ϕn, τ, τn is continuous and strictly increasing.
Furthermore, for each γ > 0 and T > 0 the following holds

sup
t≤T

|τn(t)− τ(t)| ≤ C2
2 sup
t≤C2

2T

|ϕn(t)− ϕ(t)|

Proof. It follows from Condition 2 and equation (3.4) that ϕ and ϕn are continuous
and strictly increasing. Furthermore, it follows that

ϕ(t) ≥
∫ t

0

ds

C2
2

= C−2
2 t, (3.14)

ϕn(t) ≥
k−1∑
j=0

1

C2
2

1

n
+ C−2

2 (t− k

n
) = C−2

2 t (3.15)

for t ∈ [ k
n
, k+1

n
). Therefore ϕ(t), ϕn(t) → ∞ as t → ∞, which implies the existence,

continuity, and strictly increasing property of τ and τn. It also follows that τ(t), τn(t) →

63



∞ as t→ ∞. Because of these properties, ϕn(t) is a bijection. Then by (3.15), for any
t ≤ T , there exists t′ ≤ C2

2T such that t = ϕn(t), and therefore

sup
t≤T

∣∣ϕ−1
n (t)− ϕ−1(t)

∣∣ ≤ sup
t≤C2

2T

∣∣(ϕ−1
n (ϕn(t))− ϕ−1(ϕn(t))

∣∣ = sup
t≤C2

2T

∣∣t− ϕ−1(ϕn(t))
∣∣ .

(3.16)

Because of Condition2 and (3.4), we obtain

|ϕ(s̃)− ϕ(t̃)| ≥ C−2
2 |s̃− t̃|,

for every s̃, t̃. By taking s̃ = ϕ−1(s), t̃ = ϕ−1(t), we get C−2
2 -Lipschitz continuity of ϕ−1.

Therefore, (3.16) with the Lipschitz continuity of ϕ−1 implies

sup
t≤C2

2T

∣∣t− ϕ−1(ϕn(t))
∣∣ = sup

t≤C2
2T

∣∣ϕ−1(ϕ(t))− ϕ−1(ϕn(t))
∣∣ ≤ C2

2 sup
t≤C2

2T

|ϕ(t)− ϕn(t)| .

Thus we obtain the assertion of the lemma using the last inequality and (3.16).

Proof of Theorem 15. First, from Minkowski’s inequality, we have{
E
[
sup
t≤T

∣∣∣ξ(n)τn(t)
− ξτ(t)

∣∣∣p]}1/p

≤
{
E
[
sup
t≤T

∣∣∣ξ(n)τn(t)
− ξ bnτn(t)c

n

∣∣∣p]}1/p

+

{
E
[
sup
t≤T

∣∣∣ξ bnτn(t)c
n

− ξτ(t)

∣∣∣p]}1/p

,

where btc is the largest integer less than t. Since ξ
(n)
t is the interpolation of the

sequence {ξj/n}j=0,1,2,···, it follows that∣∣∣ξ(n)t − ξ bntc
n

∣∣∣ ≤ ∣∣∣∣ξ(n)bntc+1
n

− ξ bntc
n

∣∣∣∣ = ∣∣∣ξ bntc+1
n

− ξ bntc
n

∣∣∣
Therefore, using Minkowski’s inequality again, we obtain{

E

[
sup
t≤T

∣∣∣ξ(n)τn(t)
− ξτ(t)

∣∣∣p]}1/p

≤
{
E

[
sup
t≤T

∣∣∣ξ bnτn(t)c+1
n

− ξ bnτn(t)c
n

∣∣∣p]}1/p

(3.17)

+

{
E

[
sup
t≤T

∣∣∣ξ bnτn(t)c
n

− ξτn(t)

∣∣∣p]}1/p

(3.18)

+

{
E

[
sup
t≤T

∣∣ξτn(t) − ξτ(t)
∣∣p]}1/p

. (3.19)

Let us provide the desired conclusion by estimating the convergence rate of (3.17)-
(3.19) as n → ∞. Define Hα,T as (3.13) for (α, T ) ∈ (0, 1/2) × [0,∞) and set T ′ :=
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max{T,C2
2T + 1/n}, H̃ := Hα,T ′ (≥ Hα,T ). Because Ht is monotonically increasing

with respect to t, Lemma 31 implies{
E

[
sup
t≤T

∣∣ξ(bnτn(t)c+1)n−1 − ξbnτn(t)cn−1

∣∣p]}1/p

≤
{
E
[
H̃p

]}1/p

n−α (3.20){
E

[
sup
t≤T

∣∣ξbnτn(t)cn−1 − ξτn(t)
∣∣p]}1/p

≤
{
E
[
H̃p

]}1/p

n−α (3.21)

This gives us the rate of convergence of the terms (3.17) and (3.18). It remains to prove
that the convergence rate of the term (3.19) is n−α2β. From Lemma 31, Lemma 32 and
Hölder’s inequality, we have{
E

[
sup
t≤T

∣∣∣ξϕ−1
n (t) − ξϕ−1(t)

∣∣∣p]}1/p

≤

{
E

[
H̃pC2pα

2 sup
t≤C2

2T

|ϕ(t)− ϕn(t)|pα
]}1/p

≤
{
E
[
H̃2p

]}1/2p

C2α
2

{
E

[
sup
t≤T ′

|ϕ(t)− ϕn(t)|2p
]}1/2p

.

(3.22)

We obtain the convergence rate of (3.22) by estimating the error function en(t) :=
ϕn(t)− ϕ(t). For a positive number h, define a function ψh : [0,∞) → R as

ψh(t) :=
1

h

∫ t+h

t

(
σ−2(ϕ(s), ξs)− σ−2(ϕ(t), ξt)

)
ds.

From Lemma 31, condition (3.11) and the fact that |a−2−b−2| = |a−1+b−1||a−1b−1||a−b|
for t ≤ T ′ − h, we obtain

|ψh(t)| ≤
1

h

∣∣∣∣∫ t+h

t

{
σ−2(ϕ(s), ξs)− σ−2(ϕ(t), ξt)

}
ds

∣∣∣∣
≤1

h

∫ t+h

t

2C−3
1 LT ′ |ϕ(s)− ϕ(t)|+ Cβ|ξt − ξs|βds

≤1

h

∫ t+h

t

2C−3
1 (LT ′ + Cβ)

∣∣∣∣∫ s

t

|C−2
1 |du+ |ξt − ξs|β

∣∣∣∣ ds
≤1

h

∫ t+h

t

2C−3
1 (LT ′ + Cβ)

∣∣∣∣∫ s

t

|C−2
1 |du+ H̃|t− s|αβ

∣∣∣∣ ds.
From Lemma 31, there is a random variable R depending on T ′ that has moments of
all orders and satisfies the following

|ψh(t)| ≤
1

h

∫ t+h

t

Rhαβds = Rhαβ.
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However, from the definition of ϕ(t),

ϕ(t) = ϕ(s) + hσ−2(ϕ(s), ξs) + hψh(s) for t > s,

where h = t− s. Then for t ∈ (ti, ti+1],

en(t) =en(ti) + (t− ti){σ−2(ϕ(n)(ti), ξti)− σ−2(ϕ(ti), ξti)}+ (t− ti)ψt−ti(ti),

and by the Lipschitz continuity of σ(t, x) with respect to t,

|en(t)| ≤|en(ti)|+ (t− ti)LT ′|en(ti)|+ (t− ti)|ψt−ti(ti)|
≤(1 + hLT ′)|en(ti)|+Rhαβ+1.

We repeat this calculation for i and then by using the standard result for a geometric
series and the fact that 1 + LT ′h < eLT ′h, we have

sup
s≤t

|en(s)|

≤|en(ti+1)| ≤
i∑

j=0

(1 + hLt′)
jRhαβ+1 =

Rhαβ

LT ′
{(1 + hLT ′)i+1 − 1} ≤ Rhαβ

LT ′
{eLT ′ (T ′+1) − 1}.

(3.23)

Because of the fact that the inequality (3.23) holds for t ≤ T ′, the integrable property
of the random variable R, and the Cauchy–Schwartz’s inequality, there exists a positive
number K depending on T ′ such that{

E

[
sup
t≤T ′

|ϕ(t)− ϕn(t)|2pα
]}1/2p

≤K
(
1

n

)α2β

.

This completes the proof.

Remark 17. We have already seen that our approximation converges to the solution
of (3.1) and the rate of convergence is n−α2β. Let us compare our result with (3.3) by
Gyöngy and Rásonyi [GR11] which provide the rate of strong convergence of the Euler–
Maruyama scheme under similar conditions to ours. When p ≥ 2 and 1/2 < β ≤ 1, it
is easy to see that

−1

4
β < −(β − 1

2
)
1

2
≤ −(β − 1

2
)
1

p
.

For a given β, we can then take α ∈ (0, 1/2) sufficiently close to 1/2 such that

−1

4
β < −α2β < −(β − 1

2
)
1

p
.

Therefore, our method gives a better estimate of the convergence rate than the Euler–
Maruyama scheme for β ∈ [1/2, 1). For β ∈ (0, 1/2), the convergence of the Euler–
Maruyama approximation is not known. Furthermore, as we prove later, Theorem 16
below implies that the estimated rate in Theorem 15 is not sharp when σ is smooth.
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Remark 18. Giles [Gil08] introduced the Multi-level Monte Carlo method for reducing
the computational complexity to achieve a given mean-square-error tolerance level:

E

[(
Ŷ − E[f(XT )]

)2
]
< ε,

where Ŷ is the estimator of E[f(XT )] by combination of the Euler–Maruyama method
and the Multi-level Monte Carlo method. It is proven in [Gil08] that a better strong
rate of convergence can reduce the computational complexity. We therefore expect our
discretization scheme to be more effective than the Euler–Maruyama method for the
multilevel Monte Carlo method when the diffusion coefficient is irregular. We leave this
as work for the future.

We now provide a better estimate of the convergence rate of our scheme when σ is
smooth. Denote by Lq the class of stochastic processes {Xt} and q ∈ N such that

E[

∫ t

0

|Xs|qds] <∞, 0 ≤ t <∞,

and by σt, σx, σx,x the partial derivatives of σ :

σt(t, x) :=
∂σ

∂t
(t, x), σx(t, x) :=

∂σ

∂x
(t, x), σxx(t, x) :=

∂2σ

∂x2
(t, x). (3.24)

Theorem 16. Suppose that σ : [0,∞) × R 7→ R belongs to C2,2 and satisfies the
following conditions in addition to Condition 2:

(i) For any T > 0, there exists a constant LT > 0 such that

|σ(s, x)− σ(t, x)| ≤ LT |s− t|, ∀x ∈ R, ∀s, t ∈ [0, T ]. (3.25)

(ii) There exists some positive constants C3, C4 such that

|σxx(t, x)|+ |σt(t, x)| ≤ C3 exp{C4(t+ |x|)}, ∀x ∈ R, ∀t ∈ [0, T ]. (3.26)

Then for all T > 0, α ∈ (0, 1/2) and p ≥ 1, there exists some constant KT > 0 such
that {

E

[
sup
t≤T

∣∣∣ξ(n)τn(t)
− ξτ(t)

∣∣∣p]}1/p

≤ KTn
−α

Remark 19. Since ϕ(t) satisfies (3.4), by Condition 2, ϕ(t) is bounded by C−2
1 t. Then,

under the condition (ii) of Theorem 16, σt(ϕ(t), ξt), σx(ϕ(t), ξt) and σx,x(ϕ(t), ξt) belong
to Lq for any q ∈ N .
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Proof of Theorem 16. Under the assumptions of this theorem, (3.17)-(3.22) continue
to hold. Therefore, it remains only to estimate the convergence rate of (3.22). More
precisely, it remains to prove that for α ∈ (0, 1/2) and T > 0 there exists a constant
KT > 0 such that {

E

[
sup
t≤T ′

|ϕ(t)− ϕn(t)|2pα
]}1/2p

≤ KTn
−α.

We denote by C a generic constant which depends on p, α, and T , and may change
line by line. Note that ξt = ξ0 + bt, where bt is a standard Brownian motion, and let
us write Xt := σ−2(ϕ(t), ξt). Since σ(t, x) belongs to C2,2, Xt is a semimartingale and
can be written as

Xt = X0 +Mt +Bt,

where
X0 := σ−2(0, ξ0), Mt :=

∫ t

0

γsdbs, Bt :=

∫ t

0

δsds, (3.27)

and {γt} and {δt} are in Lq for any q ∈ N.
Note that

ϕn(t)− ϕ(t) (3.28)

=

∫ t

0

σ−2(ϕn(
bnsc
n

), ξ bnsc
n

)ds−
∫ t

0

Xsds (3.29)

=

∫ t

0

{
X bnsc

n

−Xs

}
ds+

∫ t

0

{
σ−2(ϕn(

bnsc
n

), ξ bnsc
n

)− σ−2(ϕ(
bnsc
n

), ξ bnsc
n

)

}
ds (3.30)

Since σ−2(t, x) is locally Lipschitz continuous in t uniformly w.r.t. x, for t ≤ T ′ we
have

E

[
sup
s≤t

|ϕn(s)− ϕ(s)|2pα
]
≤ CE

[
sup
s≤t

∣∣∣∣∫ s

0

X bnuc
n

−Xudu

∣∣∣∣2pα
]

(3.31)

+ C

∫ t

0

E

[
sup
u≤s

|ϕn(u)− ϕ(u)|2pα
]
ds (3.32)

Here we use the fact that there is a positive constant C depending on 2pα such that
|x+y|2pα ≤ C{|x|2pα+|y|2pα}. In fact, when 2pα ≥ 1 it is clear from the convex property
of | · |2pα, and C = 1 when 0 < 2pα < 1 by a simple discussion of the derivative of | · |2pα.
Since we can regard the two expectations in the left- and right-hand side of (3.31) as
functions of t, by Gronwall’s lemma, we get

E

[
sup
s≤t

|ϕn(s)− ϕ(s)|2pα
]
≤ CE

[
sup
t≤T ′

∣∣∣∣∫ t

0

X bnsc
n

−Xsds

∣∣∣∣2pα
]
. (3.33)
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Using by parts formula for tXt and sXs (s < t),∫ t

s

(Xu −Xs) du =

∫ t

s

(t− u) dXu, a.s.

and letting ti = i/n, i = 0, 1, · · ·, we obtain

E

[
sup
t≤T ′

∣∣∣∣∫ t

0

X bnsc
n

−Xsds

∣∣∣∣2pα
]
=E

sup
t≤T ′

∣∣∣∣∣∣
bntc∑
i=1

∫ ti

ti−1

Xs −Xti−1
ds+

∫ t

bntc
n

Xs −X bntc
n

ds

∣∣∣∣∣∣
2pα

=E

sup
t≤T ′

∣∣∣∣∣∣
bntc∑
i=1

∫ ti

ti−1

(ti − s)dXs +

∫ t

bntc
n

(t− s)dXs

∣∣∣∣∣∣
2pα

=E

sup
t≤T ′

∣∣∣∣∣
∫ bntc

n

0

(
bnsc+ 1

n
− s)dXs +

∫ t

bntc
n

(t− s)dXs

∣∣∣∣∣
2pα

 .
This implies that

E

[
sup
t≤T ′

∣∣∣∣∫ t

0

X bnsc
n

−Xsds

∣∣∣∣2pα
]
≤CE

[
sup
t≤T ′

∣∣∣∣∫ t

0

(
bnsc+ 1

n
− s

)
dXs

∣∣∣∣2pα
]

(3.34)

+ CE

[
sup
t≤T ′

∣∣∣∣∫ t

0

(
bnsc+ 1

n
∧ t− bnsc+ 1

n

)
dXs

∣∣∣∣2pα
]
.

(3.35)

Because of the fact that bnsc+1
n

∧ t − bnsc+1
n

= 0 for s < bntc
n

, the definition Xs =
σ−2(ϕ(s), ξs) and Condition 2, we can estimate the second term in (3.35) as follows.

E

[
sup
t≤T

∣∣∣∣∫ t

0

(
bnsc+ 1

n
∧ t− bnsc+ 1

n

)
dXs

∣∣∣∣2pα
]

=E

sup
t≤T

∣∣∣∣∣
∫ t

bntc
n

(
t− bntc+ 1

n

)
dXs

∣∣∣∣∣
2pα


=E

[
sup
t≤T

∣∣∣∣(t− bntc+ 1

n
)(X bntc

n

−Xt)

∣∣∣∣2pα
]

≤E
[

1

n2pα
sup
t≤T

∣∣∣X bntc
n

−Xt

∣∣∣2pα] ≤ C

n2pα
(3.36)
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To estimate the first term, we recall the notation (3.27) and obtain

E

[
sup
t≤T

∣∣∣∣∫ t

0

(
bnsc+ 1

n
− s

)
dXs

∣∣∣∣2pα
]

≤C

{
E

[
sup
t≤T

∣∣∣∣∫ t

0

(
bnsc+ 1

n
− s

)
δsds

∣∣∣∣2pα
]
+ E

[
sup
t≤T

∣∣∣∣∫ t

0

(
bnsc+ 1

n
− s

)
γsdbs

∣∣∣∣2pα
]}

(3.37)

Recalling Remark 19, the L2pα∨1 property of δt implies that

E

[
sup
t≤T

∣∣∣∣∫ t

0

(
bnsc+ 1

n
− s

)
δsds

∣∣∣∣2pα
]
≤ 1

n2pα
E

[∣∣∣∣∫ T

0

|δs|ds
∣∣∣∣2pα

]
≤ C

n2pα
. (3.38)

Here we have used the fact that

E

[∣∣∣∣∫ T

0

|δs|ds
∣∣∣∣2pα

]
≤ T 2pα−1E

[∫ T

0

|δs|2pαds
]
<∞

if 2pα ≥ 1 and

E

[∣∣∣∣∫ T

0

|δs|ds
∣∣∣∣2pα

]
≤ E

[∫ T

0

|δs|ds
]2pα

<∞

if 2pα < 1.
By using the Burkholder–Davis–Gundy inequality and the L2pα property of γt, we

obtain the following for the second term of (3.37):

E

[
sup
t≤T

∣∣∣∣∫ t

0

(
bnsc+ 1

n
− s

)
γsdbs

∣∣∣∣2pα
]
≤ CE

[∣∣∣∣∣
∫ T

0

∣∣∣∣bnsc+ 1

n
− s

∣∣∣∣2 γ2sds
∣∣∣∣∣
pα]

≤ C

n2pα
.

(3.39)

From (3.35) and (3.36)-(3.39), it follows that

E

[
sup
t≤T ′

∣∣∣∣∫ t

0

X bnsc
n

−Xsds

∣∣∣∣2pα
]
≤ C

n2pα
,

which concludes the proof.

3.4 Numerical example
In this section, we provide some numerical examples for the cases where the diffusion
coefficients of (3.1) are 1/3,1/2 and 3/4-Hölder continuous. As a specific example of
this kind of coefficient, we choose the Weierstrass function

∞∑
n=0

an cos(bnπx), (3.40)

70



where 0 < a < 1, b > 1 and ab > 1. According to [Har16], this function is (− log a/ log b)-
Hölder continuous. Therefore, by choosing parameters b = 3 and a = 3−1/3, 3−1/2, 3−3/4,
we can construct 1/3, 1/2, 3/4-Hölder continuous functions respectively. For the diffu-
sion coefficient to satisfy Condition 2, we set

σ(t, x) = σ(x) = ε+
a

1− a
+

∞∑
n=0

an cos(bnπx), (3.41)

with some positive constant ε > 0. Let us consider the SDE (3.1) with diffusion coeffi-
cient σ as (3.41). Since the infinite sum (3.40) is not implementable, we approximate it
by the sum of the first 1000 terms. We now compare the numerical simulation by root
square approximation error

{E[|XT − Y
(n)
T |2]}1/2. (3.42)

where Y (n)
T is discretization of solution to the SDE (3.1) by the Euler–Maruyama method

or our method. The integer n ∈ N is regarded as the same variable as n in (3.6) when
we consider the rate of convergence for the new method. When we consider the rate
for the Euler–Maruyama approximation, n is the same variable as n in (3.2). We let
T = 1, X0 = 0, and n ∈ {23, 24, · · · , 29}. Taking {Y (10)

t }t≤T as the exact solution of
the SDE (3.1), we consider the strong approximation error (3.42). Figure 3.1 shows the
error convergence of both methods.

Figure 3.1: Root mean square approximation error of the Euler–Maruyama method and
our new discretization method when n ∈ {23, 24, · · · , 29}, with sample size 105. The
above figures illustrate, from left to right, the cases of 1/3, 1/2, 3/4–Hölder continuous
diffusion coefficient. The broken line in the figure on the left is Cn−1/12, where C is
a positive constant such that C(23)−1/12 equals the error of our discretization method
with n = 23. By this line, we attempt to visualize the theoretical decay in the results
of Theorem 3.2 when the Hölder index β is 1/3. The same applies to the remaining
figures.

In all cases, the proposed method appears to achieve a faster rate of convergence
than guaranteed by Theorem 15. When the Hölder exponent is 1/3, the numerical
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approximation error of our method appears to decay linearly in log–log graph, while the
error of the Euler–Maruyama method appears to decay logarithmically. Here we remark
on the fact that the convergence of the Euler–Maruyama method is not guaranteed
when the Hölder index is less than 1/2. When the Hölder exponent is 1/2, we note
that the numerical result of the Euler–Maruyama method suggests a faster rate than
the estimate (3.3) of logarithmic convergence. Nevertheless, we observe that the speed
of convergence for the new method is faster than the Euler–Maruyama method. When
the Hölder index is 3/4, there is no apparent difference in the speed of convergence, but
the numerical approximation error of both methods seems to decay linearly in log-log
graph, as the theoretical results suggest.

3.5 Application to [MTL
In Section 2.11, we have shown that the approximation of the probability of [MTL
works when the stochastic process is a time–homogeneous SDE (2.41):{

dXt = b(Xt)dt+ σ(Xt)dWt,

X0 = ξ ∈ R.

with Assumption 2 and Assumption 3. More precisely, under these assumptions, the
probability that the exact solution of SDE (2.41) satisfies a [MTL–formula based on
the discrete semantics converges to the probability based on the continuous semantics.
We showed the convergence using the representation of the solution by time–changed
Brownian motion.

In addition, we considered in Section 2.14 the approximation of the probability
based on continuous semantics by the probability that discretization of SDE satisfies
the discrete semantics. We have shown the convergence of the probability when the
discretization of SDE converges to the exact solution in probability for the locally
uniform topology.

Then we can expect that the new discretization scheme can be applied to the ap-
proximation of the probability of a [MTL event, since the exact solution of (3.1):{

dXt = σ(t,Xt)dWt.

X0 = x ∈ R.

can be represented as a time–changed Brownian motion (see Theorem 14), and since
the new discretization scheme converges strongly to the exact solution with respect to
the locally uniform topology. Thus it is possible to approximate the probability of a
[MTL–formula for the case of the time–inhomogeneous SDE.

Theorem 17. Let X := {ξτ(t)}t≥0 be the exact solution of SDE (3.1). Let X(n) :=

{ξ(n)t }t≥0, n = 1, 2, · · · be the approximation of X defined in (3.10), respectively. Sup-
pose that σ(t, x) satisfies (3.11) with β = 1 and Condition 2. If the all propositional
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formulas satisfy Assumption 3. Then the following holds for every [MTL formula φ
and t ≥ 0:

P(ω;X(n)(ω),Λn(t) |=n φ)
n→∞−→ P(ω;X(ω), t |= φ) (3.43)

Note that (3.11) with β = 1 assures the existence of the density of X (see Theorem
IV–2.1.3 in [BH91]). Moreover, t 7→ Xt(ω) is continuous almost surely, since σ(t, x) is
bounded and satisfies (3.11).

Therefore, once we obtain the following lemma, the remaining proof of this theorem
is exactly the same as Section 2.11.

Lemma 33. Let X = {Xt}t≥0 be the strong solution of the SDE (3.1) satisfying (3.11).
Then, the following statements hold (see A for the proof):

(i) Put

Laω := {t ≥ 0;Xt(ω) = a}, a ∈ R, ω ∈ Ω. (3.44)

Then Laω is dense–in–itself almost surely, for all a ∈ R.

(ii) For almost every ω ∈ Ω, the set of points of local maximum and local minimum
for the path t 7→ X(ω) is dense in [0,∞), and all local maxima and local minima
are strict.

Proof. Since {ξt}t≥0 is a Brownian motion starting at x and τ(t) is a continuous and
strictly increasing process, we can apply the last proof in Appendix A with p(y) = y.

Corollary 2. Let X := {ξτ(t)}t≥0 be the exact solution of SDE (3.1). Let X(n) :=

{ξ(n)t }t≥0, n = 1, 2, · · · be the approximation of X defined in (3.10), respectively. Sup-
pose that σ(t, x) satisfies (3.11) with β = 1 and Condition 2. If the all propositional
formulas satisfy Assumption 3. Then the following holds for every [MTL formula φ
and t ≥ 0:

P(ω;X(n)(ω),Λn(t) |=n φ)
n→∞−→ P(ω;X(ω), t |= φ) (3.45)

Proof. Since we have shown that the X(n) converges strongly to X with respect to the
locally uniform topology, we can apply Theorem 13 immediately.
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Chapter 4

Conclusion

Our contribution in this thesis is summarized as follows:

(i) We examined the measurability of events defined by continuous MTL formulas
under the assumption of the measurability of the underlying stochastic process
as a mapping from sample and time.

(ii) We demonstrated a counterexample that highlights the lack of convergence of
the probability derived from discrete semantics to that derived from continuous
semantics, specifically when the intervals within diamond operators are allowed
to be bounded open or half–open. Then it remains to discuss the case that all
the intervals in diamond operators are unbounded or closed.

(iii) We explored the case of [MTL formulas, which only have � or ♦ without nest
as modalities, and demonstrated that the probability obtained from discrete se-
mantics converges to the probability obtained from continuous semantics for every
formula within this framework. This finding suggests that [MTL formulas exhibit
a desirable convergence property, highlighting their applicability and reliability
in capturing system behaviors.

(iv) We showed the convergence of the probability of discrete semantics for the ap-
proximation of the solution to the probability of continuous semantics for the
exact solution.

(v) We proposed a new discretization scheme of stochastic differential equations with-
out a drift term. As a result, we showed that the new discretization converges
strongly to the solution at a finer rate compared to Euler’s method when the
diffusion coefficient is β–Hölder continuous with β < 1/2. Moreover, we showed
that this scheme can be applied to the approximation of the probability of [MTL.

In light of these results, future research efforts should focus on understanding the
underlying factors and mechanisms that contribute to the convergence or divergence of
probability between discrete and continuous semantics in various formula contexts. By
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gaining deeper insights into these dynamics, researchers can enhance the effectiveness
and accuracy of probability simulations and predictions within the realm of formal
verification and system analysis.
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Appendix A

Appendices for proof of Lemma 19

In this section, we prove Lemma 19. Let us recall the claim:

Lemma 34. Let X be a strong solution of SDE (2.41) on (Ω,F ,P). Put Assumption
2. Then, the following statements hold:

(i) Put

Laω := {t ≥ 0;Xt(ω) = a}, a ∈ R, ω ∈ Ω. (A.1)

Then Laω is dense in itself almost surely, for all a ∈ R.

(ii) Almost surely, the set of points of local maximum and local minimum for the path
t 7→ X(ω) is dense in [0,∞), and all local maxima and local minima are strict.

Remark 20. We can write (i) of Lemma 19 as follows:

P(ω;Laω is dense in itself ) = 1, ∀a ∈ R. (A.2)

However, the following probability is not equal to one:

P(ω; (∀a ∈ R)[Laω is dense in itself ]). (A.3)

In fact, this equals zero. This is because every local maxima is strict almost surely.
Indeed, let Ω̃ := {ω; local maxima of t 7→ Xt(ω) is strict }. Then we obtain from (ii) of
Lemma 19 that P(Ω̃) = 1. Suppose that ω ∈ Ω̃ and Xt(ω) = a is a strict local maximum,
i.e., there exists some δ > 0 such that a > Xs(ω) for all s ∈ [(t− δ)+, t+ δ]. Then Laω
has isolated point t on s ∈ [(t− δ)+, t+ δ].

On the other hand, the following extension of (i) as follows:

P(ω; (∀a ∈ A)[Laω is dense in itself ]) = 1, (A.4)

if A is at most countable set of real numbers.

Toward this goal, we cite a similar fact about Brownian motion:
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Proposition 3 (2.9.7 and 2.9.12 in [KS91]). Let X be a Brownian motion on (Ω,F ,P).
Then the following statements hold:

(i) Put

Laω := {t ≥ 0;Xt(ω) = a}, a ∈ R, ω ∈ Ω. (A.5)

Then Laω is dense in itself almost surely, for all a ∈ R.

(ii) Almost surely, the set of points of local maximum for the Brownian path is dense
in [0,∞), and all local maxima are strict.

The next statement follows directly from Proposition 3 and the rotational invariance
of Brownian motion:

Lemma 35. Almost surely, the set of points of local minimum for the Brownian path
t 7→ Wt(ω) is dense in [0,∞), and all local minima are strict.

Proof. Let X be Brownian motion and define X̃ := {X̃t}t≥0 by X̃t(ω) := −Xt(ω). By
rotational invariance (see 3.3.18 in [KS91]), X̃ is also Brownian motion and we can
apply Theorem 3 so that the set of local maximum for X̃(ω) is dense, and all the local
maxima are strict, almost surely. Now since all the local minima of X(ω) are local
maxima of X̃(ω), then our statement holds.

Now we have shown Lemma 19 for the case of Brownian motion. It remains to
extend this statement to the case of SDE (2.41) under Assumption 2. Before showing
the solution of such an SDE, we have to guarantee the existence and uniqueness of
SDE:

Proposition 4 (5.5.17 in [KS91]). Assume that b : R → R is bounded and σ : R → R
is Lipschitz continuous with σ2 bounded away from zero on every compact subset of R.
Then, for every initial ξ ∈ R, equation (2.41) has unique strong solution.

Furthermore, we show the convergence of the probability of the MTL formula for
SDEs that have density functions. The following proposition assures the existence of
density for SDE (2.41):

Proposition 5 (Theorem 2.1 in [FP10]). Let ξ be a constant value in R. Assume that
σ is Hölder continuous with exponent θ ∈ [1/2, 1] and that b is measurable and at most
linear growth. Consider a continuous solution {Xt}t≥0 to (2.41). Then, for all t > 0,
the law of Xt has a density on the set {x ∈ R;σ(x) 6= 0}.

It is an easy task to make sure that the above two propositions can be applied to
the unique existence and absolute continuity of X under Assumption 2.

To extend Theorem 3 and Lemma 35 to the case of the stochastic differential equa-
tion (2.41), we can make use of the following representation of the solution X as a time
change of Brownian motion:
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Proposition 6 (5.5.13 in [KS91]). Assume Assumption 2. Fix a number c ∈ R and
define the scale function

p(x) :=

∫ x

c

exp

{
−2

∫ ξ

c

b(ζ)dζ

σ2(ζ)

}
dξ; x ∈ R

and inverse q : (p(−∞), p(∞)) → R of p. A process X = {Xt}t≥0 is a strong solution
of equation (2.41) if and only if the process Y := {Yt = p(Xt)}t≥0 is a strong solution
of

Yt = Y0 +

∫ t

0

σ̃(Ys)dWs; 0 ≤ t <∞, (A.6)

where

p(−∞) < Y0 < p(∞) a.s. ,

σ̃(y) =

{
p′(q(y))σ(q(y)); p(∞) < y < p(∞),

0; otherwise.

Fact 6. Let (Ω,F ,P) be a probability space.

(i) In equation (A.6), the Brownian motion {Wt}t≥0 is known to be a continuous local
martingale. The definition of a continuous local martingale can be found in 1.5.15
of the reference [KS91]. Furthermore, the stochastic integral {

∫ t
0
σ̃(Ys)dWs}t≥0 is

also a continuous local martingale, provided that the condition

P
(
ω;

∫ t

0

σ̃2(Ys(ω))ds <∞
)

= 1 for every t ∈ [0,∞)

is satisfied. This fact is also mentioned in Section 3.2.D of [KS91].

(ii) The stochastic process {
∫ t
0
σ̃2(Ys)ds}t≥0 is indeed referred to as the quadratic

variation of the continuous local martingale {
∫ t
0
σ̃(Ys)dWs}t≥0. The definition of

quadratic variation can be found in 1.5.18 of the reference [KS91]. This fact is
also mentioned in Section 3.2.D of [KS91].

(iii) Let M := {Mt}t≥0 be a continuous local martingale starting at zero and 〈M〉 :=
{〈M〉t}t≥0 be the quadratic variation of M . Consider a probability space (Ω̂, F̂ , P̂)
in which a Brownian motion exists. According to the results in 3.4.6 and 3.4.7
of the reference [KS91], there exists a Brownian motion B̃ := {B̃t}t≥0 defined on
the probability space (Ω̃, F̃ , P̃) = (Ω× Ω̂,F ⊗ F̂ ,P⊗ P̂) such that

Mt(ω) = B〈M〉t(ω, ω̃) almost surely P̃.

This provides a representation of the continuous local martingale M in terms of
the Brownian motion B̃.
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The next lemma gives a representation of SDE (2.41) by time change of Brownian
motion.

Theorem 18. Suppose that σ : R → R and b : R → R satisfies Assumption 2. Then
there exists a unique strong solution of (2.41). Moreover, there exist

• a probability space (Ω̂, F̂ , P̂),

• a Brownian motion B and an nonnegative continuous strictly increasing process{Zt}t≥0

with Z0 = 0 on (Ω̃, F̃ , P̃) := (Ω× Ω̂,F ⊗ F̂ ,P⊗ P̂), and

• a strictly increasing continuous function p : R → R

such that

Xt(ω) = p−1(p(ξ) +BZt(ω, ω̂)) 0 ≤ t <∞, (A.7)

a.s. P̃. Here ξ = X0 is the constant initial value of the SDE (2.41).

Proof. The existence and uniqueness of the solution follow from Proposition 4. Since
σ and b satisfy Assumption 2, we can deduce from Theorem 6 that there exists a
continuous injection p : R → R and a continuous function σ̃ : R → R such that
{Yt(ω)}t≥0 = {p(Xt(ω))}t≥0 is a strong solution of the SDE (A.6). From the Defini-
tion 17 of the strong solution, P[

∫ t
0
σ̃2(Ys(ω))ds < ∞] = 1 for every t. Then, by (i)

of Fact 6, we know that Yt(ω) − Y0(ω) is a continuous local martingale starting at
zero. From (ii) of Fact 6, the quadratic variation 〈Y 〉 of Y is given by {

∫ t
0
σ̃2(Ys)ds}t≥0.

Moreover, from the definition Yt(ω) = p(Xt(ω)) and the construction of σ̃ in (A.6), we
have σ̃2(Yt(ω)) > 0 for every t ∈ [0,∞). Therefore, t 7→ 〈Y 〉t(ω) is strictly increasing
almost surely. Now, by (iii) of Fact 6, there exists a probability space (Ω̂, F̂ , P̂) such
that there exists a Brownian motion B on (Ω̃, F̃ , P̃) = (Ω× Ω̂,F ⊗ F̂ ,P⊗ P̂) such that

Yt(ω) = Y0(ω) +B〈Y 〉t(ω, ω̂) almost surely on P̃.

Setting Zt := 〈Y 〉t, we obtain the desired result.

Proof of Lemma 19. From Theorem 18, we have Xt(ω) = p−1(p(ξ) + BZt(ω, ω̂)) for all
t ∈ [0,∞) almost surely in the extended probability space (Ω̃, F̃ , P̃) = (Ω × Ω̂,F ⊗
F̂ ,P ⊗ P̂), where {Bt}t≥0 is a Brownian motion and {Zt}t≥0 is a continuous strictly
increasing process.

(i) Set

Lp(a)−p(ξ)(ω, ω̂) := {t ≥ 0;BZt(ω, ω̂) = p(a)− p(ξ)}, a ∈ R, (ω, ω̂) ∈ Ω× Ω̂.

Since t 7→ Zt(ω, ω̂) is strictly increasing and continuous almost surely P̃, Theorem
3-(i) implies that Lp(a)(ω, ω̂) is dense in itself almost surely P̃. Since Xt(ω) =
p−1(p(ξ) + BZt(ω, ω̂)) almost surely P̃, the set Laω := {t ≥ 0;Xt(ω) = a} is dense
in itself almost surely P.
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(ii) Since p−1 is strictly increasing, the points of local maximum and local minimum
of X are the same as those of {BZt}t≥0. Since t 7→ Zt(ω, ω̂) is strictly increasing
P̃-almost surely, every point of the local maximum and the local minimum of
t 7→ BZt(ω, ω̂) is strict. Since Xt(ω) = p−1(BZt(ω, ω̂)) almost surely P̃, every
point of the local maximum and the local minimum of t 7→ Xt is strict almost
surely P.
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