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Abstract

This thesis is devoted to studying numerical methods for solving Markov backward
stochastic differential equations (BSDEs) with discrete features.

Chapter 2 considers BSDEs driven by continuous-time finite state Markov chains
(CTMCs), a class of BSDEs with discrete state space. The contributions in this
chapter are divided into the following three results: (1) We construct multi-stage
Euler-Maruyama methods for Markov BSDEs driven by CTMCs and observe that
the methods are equivalent to exponential integrators for solving associated systems
of ordinary differential equations (ODEs). (2) Motivated by the feature that expo-
nential integrators avoid the stiffness of equations, we propose to use the multi-stage
Euler-Maruyama methods for solving stiff BSDEs driven by CTMCs arising from
spatial discretizations of BSDEs driven by Brownian motion. We also illustrate the
effectiveness of the presented methods with a number of numerical experiments in
which we treat nonlinear BSDEs arising from option pricing problems in finance.

Chapter 3 is an extension of the results presented in Chapter 2. The previous
chapter considers the BSDEs with the terminal times being deterministic, whereas
the target of this chapter is BSDEs with bounded stopping terminal times. In this
case, multi-stage Euler-Maruyama methods for Markov BSDEs driven by CTMCs
result in exponential integrators with a slight modification. Numerical experiments
are also presented; there, nonlinear BSDEs arising from pricing barrier options are
considered.

Chapter 4 is devoted to constructing a sparse grid-based multilevel spatial dis-
cretization for solving Markov BSDEs driven by Brownian motion. Utilizing the
idea of the sparse grid combination technique, the method efficiently approximates
high-dimensional Makov BSDEs (driven by Brownian motion) with a combination of
multiple Markov BSDEs driven by CTMCs on grids with different resolutions. Simi-
lar to the previous chapters, we present numerical experiments for solving nonlinear
BSDEs arising from option pricing problems, and both BSDEs with deterministic
and bounded stopping terminal times are considered.

Chapter 5 considers BSDEs whose temporal structures are discrete, namely, back-
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ward stochastic difference equations (BS∆Es). Because an arbitrary noise distribu-
tion is allowed for BS∆Es, the equations are advantageous to model various situations
in discrete time. We construct a sparse grid-based numerical method for solving high-
dimensional Markov BS∆Es. There, conditional expectations are approximated with
sparse grid quadratures and the nestings of conditional expectations and nonlinear
functions are approximated with sparse grid interpolants. These approximations re-
sult in a significant reduction of the computational cost. The performance is also
confirmed through a simple example numerically.
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Chapter 1

Introduction

1.1 Background
Backward stochastic differential equations (BSDEs) have been playing a powerful
tool in various fields including optimal controls, partial differential equations and
mathematical finance. They were originally introduced by Bismut [7, 8] in the context
of stochastic control problems. Pardoux and Peng later introduced general nonlinear
BSDEs driven by Brownian motions as noise process, typically written as

Yt = ξ +

∫ T

t

f(s,Ys,Zs)ds−
∫ T

t

Z∗
sdWs, t ∈ [0, T ]. (1.1)

Here, (Wt)t∈[0,T ] is a Brownian motion,
∫ T

t
Z∗

sdWs is Itô’s stochastic integral, and
the data (ξ, f), a pair of a terminal condition ξ (a random variable) and a driver
f (a function), is given in advance. A solution of (1.1) means a pair (Yt,Zt)t∈[0,T ]

of adapted processes that satisfies (1.1). Since the later 1990s, the study of BSDEs
has been highly connected to mathematical finance. It has provided a multitude
of research topics leading to the development of BSDE theory and its applications.
For example, hedging derivative securities under nonlinear wealth process dynamics
(e.g., different interest rates for borrowing and lending), dynamic risk measures and
recursive utilities are successful applications of BSDEs. For details, see El Karoui et
al. [45].

Numerical methods for solving such BSDEs have been developed in different
directions. One may employ Euler-Maruyama methods to approximate them with a
stochastic difference equation. Taking its conditional expectation and together with
an approximation of conditional expectations, a numerical formula that is evaluated
in a backward manner is obtained. For example, Gobet et al. [32] proposed least
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2 | Introduction

square Monte-Carlo (LSMC) methods that approximates conditional expectations
on a finite linear combination of (predetermined) basis functions. Another direction
is connected to partial differential equations (PDEs): Solutions of BSDEs being
Markov, written in the form

Yt = g(XT ) +

∫ T

t

f(s,Xs,Ys,Zs)ds−
∫ T

t

ZsdWs, (1.2)

Xt = x0 +

∫ t

0

µ(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs, (1.3)

can be represented using solutions of second order semilinear parabolic PDEs due to
the nonlinear Feynman-Kac formula. Here, µ : [0, T ] × Rd → Rd, σ : [0, T ] × Rd →
Rd×d, f : [0, T ] × Rd × R × Rd → R and g : Rd → R are deterministic functions,
x0 ∈ Rd, and process (Xt)t∈[0,T ] is interpreted as the state variable of a system. Using
the nonlinear Feynman-Kac formula, we can calculate solutions of BSDEs through
PDE solvers such as finite difference methods or finite element methods. For details
on such approach, we refer to Douglas et al. [27] and Milstein and Tretyakov [54].

BSDEs driven by Brownian motion and numerical methods for solving them
have been studied in details from both theoretical and application points of view,
but meanwhile, BSDEs with different features has also been considered and studied.
In this thesis, we are interested in the following two types of BSDEs with “discrete
structures”.

BSDEs Driven by Continuos-Time Finite State Markov Chains Continuous-
time finite state Markov chains (CTMCs) are stochastic processes that take values
in discrete state space. In [15], Cohen and Elliott presented a result on the existence
and uniqueness of solutions of BSDEs driven by CTMCs:

Yt = ξ +

∫
]t,T ]

h(t, Ys−, Zs)ds−
∫
]t,T ]

Z∗
sdMs, t ∈ [0, T ]. (1.4)

Here, (Ms)s∈[0,T ] is a martingale related to a CTMC (Xs)s∈[0,T ] and the data (h, ξ)
is given in advance. Further studies on such kind of BSDEs can be found in [16, 21,
20, 14], for example. In [21], a nonlinear Feynman-Kac type result is obtained; they
revealed that solutions of Markov BSDEs driven by CTMCs written as

Yt = X∗
TG+

∫
]t,T ]

h(Xs−, s, Ys−, Zs)ds−
∫
]t,T ]

Z∗
sdMs,

can be represented using solutions of systems of ordinary differential equations (ODEs).
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Backward Stochastic Difference Equations Backward stochastic difference
equations (BS∆Es) are counterparts of BSDEs in discrete time. In [17], Cohen
and Elliott considered BS∆Es driven by arbitrary finite-state processes:

Yt = ξ +
T−1∑
s=t

F (s, Ys, Zs+1)−
T−1∑
s=t

Zs(Ms+1 −Ms), t ∈ {0, 1, . . . , T − 1}. (1.5)

Here, the driving process Ms is allowed to an arbitrary martingale with independent
increments. In the cases of the driving process being infinite-state, the corresponding
BS∆Es are written as

Yt = ξ +
T−1∑
s=t

F (s, Ys, Zs+1)−
T−1∑
s=t

Zs(Ms+1 −Ms) +Ns −NT , t ∈ {0, 1, . . . , T − 1},

(1.6)
where an additional orthogonal martingale N is required to be solved together with Y
and Z; it is a direct consequencce of the Galtchouk-Kunita-Watanabe decomposition
[29]. We can also choose M as an arbitrary (square integrable) martingale with
independent increments. Compared to the continuous-time framework, BS∆Es can
be used to model more various situations in applications. For details, see [17, 6].

1.2 Summary
In this thesis, we study and develop numerical methods for BSDEs driven by CTMCs
and BS∆Es. As seen later, we can exploit their distinctive features to improve the
effectiveness of the numerical computation. Before moving on to the next chapter,
we present a summary of contributions.

Chapter 2

Numerical methods for computing the solutions of Markov BSDEs driven by CTMCs
are explored. We construct multi-stage Euler-Maruyama methods for them and
observe that they are equivalent to exponential integrators for solving an associated
system of ODEs. Taking advantage of this observation, we propose to use these
multi-stage Euler-Maruyama methods for effectively solving “stiff” Markov BSDEs
driven by CTMCs arising from the spatial discretization of Markov BSDEs driven
by Brownian motion. We also illustrate the effectiveness of the presented methods
with several numerical experiments in which we treat nonlinear BSDEs arising from
pricing problems of European options in finance.
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Chapter 3

The results obtained in Chapter 2 are extended to Markov BSDEs with terminal
times being bounded stopping times. Similarly to the case of BSDEs with deter-
ministic terminal times, which we treated in the previous chapter, multi-stage Euler-
Maruyama methods are equivalent to exponential integrators with slight modifica-
tions, and together with spatial discretizations, we can utilize them to solve BSDEs
with bounded stopping terminal times driven by Brownian motion effectively. In
numerical experiments, we focus on BSDEs driven by Brownian motion arising from
pricing barrier options and confirm the efficiency of our methods.

Chapter 4

In Chapters 2 and 3, we proposed to apply spatial discretizations to BSDEs driven by
Brownian motion and solve the obtained BSDEs driven by CTMCs using the multi-
stage Euler-Maruyama method we constructed. With an argument based on the
idea of sparse grid methods, we present a multilevel spatial discretization methods
in which high-dimensional Markov BSDEs driven by Brownian motion are approx-
imated a combination of multiple Markov BSDEs driven by CTMCs on grids with
different resolutions. Through several numerical experiments, we illustrate the effi-
ciency.

Chapter 5

Chapter 5 studies numerical methods for solving Markov BS∆Es. We focus on those
whose state space is high dimensional and present sparse grid-based numerical meth-
ods for solving them. Specifically, we calculate conditional expectations appeared
as integrals on high dimensional domains with sparse grid quadratures and replace
nestings of them and nonlinear functions with sparse grid interpolations. The pre-
sented method can calculate solutions accurately and efficiently. We also present an
error estimate and demonstrate them through a numerical experiment of a simple
case.



Chapter 2

Multi-Stage Euler-Maruyama
Methods for Backward Stochastic
Differential Equations Driven by
Continuous-Time Markov Chains

2.1 Introduction

2.1.1 Overview

In this chapter, we are interested in a different class of BSDEs, that is, (Markov)
BSDEs driven by continuous-time Markov chains (CTMCs), written as

Yt = X∗
TG+

∫
]t,T ]

h(Xs−, s, Ys−, Zs)ds−
∫
]t,T ]

dM∗
sZs,

and study numerical schemes for solving them. Here, (Xt)t∈[0,T ] is a CTMC having a
finite state space I, N := #I, G ∈ RN , h : I × [0, T ]×R×RN → R, and (Mt)t∈[0,T ]

is the associate martingale with X (ses Section 2.3 for the details). A “nonlinear
Feynman-Kac type” formula for such Markov BSDEs driven by CTMCs has been
derived in [21, 26]; the solutions of the BSDEs can be represented using solutions of
the associated systems of ordinary differential equations (ODEs).

The main contributions of this chapter are summerized as follows.

1. We observe that Euler-Maruyama temporal discritization methods for solving
a Markov BSDE driven by a CTMC is equivalent to exponential integrators
[41] for solving the associated system of ODEs. (See Section 2.3.)

5
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2. We introduce multi-stage Euler-Maruyama methods for efficiently solving “stiff”
BSDEs driven by CTMCs. Together with a spatial discretization, they can be
applied to solve BSDEs driven by Brownian motion. (See Section 2.3 and
Section 2.4.)

2.1.2 Organization

The chapter is organized as follows: At the end of this section, we introduce nota-
tions frequently used in the chapter. In Section 2.2, we present preliminary results on
BSDEs driven by CTMCs and ones driven by Brownian motion that are required for
the subsequent arguments. In Section 2.3, we construct multi-stage Euler-Maruyama
methods for BSDEs driven by CTMCs and observe that they are equivalent to expo-
nential integrators, solvers that calculate stiff systems of ODEs successfully. Section
2.4 presents an application of the multi-stage Euler-Maruyama methods to BSDEs
driven by Brownian motion, in which we present a concrete discretization and the
resulting BSDE driven by a CTMC. Section 2.5 provides experiments highlighting
the effectiveness of our schemes. Specifically, we treat option pricing problems un-
der nonlinear wealth dynamics with several asset price process models, such as the
Black-Scholes model and stochastic volatility models including the SABR model.

2.1.3 Notations

For N ∈ N, ei means the i-th unit vector in the Euclidean space RN whose i-th
element is 1. The notations | · | and ‖ · ‖ represent the absolute value and the
Euclidean norm, respectively. Note that we will also use a stochastic seminorm
represented as ‖ · ‖v; for the definition, see (2.5). For any matrix Q, Q∗ denotes
the matrix transposition, Q+ denotes the Moore-Penrose inverse, and Tr(Q) denotes
the trace of Q. For any vector v, diag(v) is a diagonal matrix whose i-th diagonal
element is e∗i v. For any two vectors v, w ∈ RN , denote

v ≤ w ⇐⇒ e∗i v ≤ e∗iw, i = 1, . . . , N.

We set as follows.

• C([0, T ] × R) and C(R) are the sets of R-valued continuous functions defined
on [0, T ]× R and R, respectively.

• Cb([0, T ]×R) and Cb(R) are the sets of R-valued bounded continuous functions
defined on [0, T ]× R and R, respectively.
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• C2
b (R) is is the set of R-valued, twice continuously differentiable functions u

such that ∂xu, ∂xxu as well as u are in Cb(R).

• C1,2
b ([0, T ] × R) is the set of R-valued functions u, which is once continuously

differentiable in its first argument, twice continuously differentiable in its sec-
ond, and ∂tu, ∂xu, ∂xxu as well as u are in Cb([0, T ]× R).

Here, ∂tu(t, x) :=
∂u

∂t
(t, x), ∂xu(t, x) :=

∂u

∂x
(t, x) and ∂xxu(t, x) :=

∂2u

∂x2
(t, x). For a

vector-valued càdlàg stochastic process Xt, Xt− denotes the left limit and ∆Xt :=
Xt − Xt−. Additinally, if Xt is a semimartingale, 〈X,X〉 denotes the predictable
quadratic variation matrix. Throughout the chapter, we will work on a probability
space (Ω,F ,P) and a finite time horizon T > 0. For k,m ∈ N, a filtration F with
the usual conditions, and a square-integrable càdlàg F-martingale M , we define the
following spaces of stochastic processes.

• L2(F,Rk) is the set of càdlàg F-adapted processes X : [0, T ] × Ω → Rk with

E
[∫

[0,T ]

‖Xt‖2dt
]
<∞.

• S2(F,Rk) is the set of càdlàg F-adapted processes Y : [0, T ] × Ω → Rk with

E
[
sup

0≤t≤T
|Yt|2

]
<∞.

• L2(〈M〉,F,Rk×m) is the set of F-predictable processes Z : [0, T ] × Ω → Rk×m

with

E

[∣∣∣∣∫
[0,T ]

ZtdMt

∣∣∣∣2
]
= E

[∫
[0,T ]

Tr(Ztd〈M,M〉tZ∗
t )

]
<∞.

2.2 Setups and Preliminary Results

2.2.1 BSDEs driven by a CTMC

Let X = (Xt)t∈[0,T ] be a continuous-time, finite-state Markov chain with state space
I = {e1, . . . , eN}, for some N ∈ N. Suppose that X is defined on the filtered
probability space (Ω,F ,P,G) where G := (Gt)t∈[0,T ] is the completion of the filtration
generated by X. Note that X is a càdlàg pure jump process in this case.

X is associated with a family of Q-matrices; recall that N ×N matrices Qt, t ∈
[0, T ] are called Q-matrices on I if e∗iQtej ≥ 0 for all i 6= j and

∑
j e

∗
iQtej = 0

for all i. We suppose Q-matrices appeared in this chapter are uniformly bounded
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in time t. Note that some literature refer to its transpose as Q-matrix such as
[28, 15]. We sometimes call Qt as the transition rate matrix for X. For pt = (P(Xt =
e1), . . . ,P(Xt = eN)) and t ≥ 0, we see that it satisfies the following Kolmogorov’s
forward equation

dpt
dt

= ptQt. (2.1)

Hence, the transition probability matrix of X, given by

Φ(t, s) :=

P(Xt = e1|Xs = e1) . . . P(Xt = eN |Xs = e1)
... . . . ...

P(Xt = e1|Xs = eN) . . . P(Xt = eN |Xs = eN)


for t ≥ s satisfies the following equations

dΦ(t, s)

dt
= Φ(t, s)Qt, Φ(s, s) = I, (2.2)

dΦ(t, s)

ds
= −QsΦ(t, s), Φ(t, t) = I, (2.3)

for t ≥ s ≥ 0 where I is the N × N identity matrix. (2.2) and (2.3) are referred
to as the forward and backward Kolmogorov equation, respectively. X is time-
(in)homogeneous if Qt does (not) depend on t ∈ [0, T ]. Note also that the transition
probability of the time-homogeneous chain X with a transition rate matrix Q is the
matrix exponential Φ(t, s) = exp((t− s)Q).

From Appendix B in [28], X has the following semi-martingale representation

Xt = x0 +

∫
]0,t]

Q∗
sXs−ds+Mt. (2.4)

Here, x0 ∈ {e1, . . . , eN} and Mt is an RN -valued G-martingale. The predictable
quadratic covariation matrix of M is given by

〈M,M〉t =
∫
]0,t]

(diag(Q∗
sXs−)− diag(Xs−)Qs −Q∗

s diag(Xs−))ds,

which is also shown in Appendix B in [28]. Let ψt := diag(Q∗
tXt−)− diag(Xt−)Qt −

Q∗
t diag(Xt−). Note that ψt is a predictable process, valued in N ×N real symmetric

nonnnegative semi-definite matrices. For later use, define the seminorm for z ∈ RN

by
‖z‖2v := z∗(diag(Q∗

tv)− diag(v)Qt −Q∗
t diag(v))z, (2.5)
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where v ∈ {e1, . . . , eN}. Note that ‖ · ‖v depends on t when Qt is time-dependent.
The following Itô’s isometry is a key property of this seminorm for v = Xt−. That
is, for any RN -valued predictable process Z, it holds

E

[(∫
]s,t]

Z∗
udMu

)2
]
= E

[∫
]s,t]

‖Zu‖2Xu−du

]
for t > s ≥ 0. (2.6)

The proof is given in [17]. We also define the equivalence relation Z ∼M Z ′ on
RN -valued predictable processes as ‖Zt − Z ′

t‖Xt− = 0, dt⊗ dP-a.s.
In [15], Cohen and Elliott treat BSDEs driven by a CTMC in the form of

Yt = ξ +

∫
]t,T ]

h(t, Ys−, Zs)ds−
∫
]t,T ]

dM∗
sZs, (2.7)

where ξ is an GT -measurable square-integrable random variable, h : Ω× [0, T ]×R×
RN 3 (ω, t, y, z) 7→ h(ω, t, y, z) ∈ R is G-predictable in (ω, t) and Borel measurable
in (y, z). The following result on the existence and a uniqueness of the solution
(Y, Z) ∈ S2(G,R)× L2(G, 〈M〉,RN) of (2.7) has been established.

Theorem 2.2.1 ([15]). Assume that,

E
[∫

]0,T ]

h(t, 0, 0)2dt

]
<∞,

and that for some constant L > 0,

|h(t, y, z)− h(t, y′, z′)|2 ≤ L(|y − y′|2 + ‖z − z′‖2Xt−), dt⊗ dP-a.s. (2.8)

for all y, y′ ∈ R and z, z′ ∈ RN . Then, it admits a unique solution (Y, Z) ∈ S2(G,R)×
L2(G, 〈M〉,RN). We remark that it is unique up to indistinguishability for Y and up
to ∼M equivalence for Z.

Remark 2.2.1. Since ‖z‖2ei ≤ 3 max
j,k=1,...,N

|e∗jQtek| · ‖z‖2 for z ∈ RN , (2.8) leads to

the usual Lipschitz continuity as |h(t, y, z) − h(t, y′, z′)|2 ≤ L(|y − y′|2 + ‖z − z′‖2),
dt⊗P-a.s. Note that, however, the converse does not hold; there does not exist C > 0
such that ‖z‖ ≤ C‖z‖ei for all z. Taking z1 = (1, 1, . . . , 1) ∈ RN , it is easy to see
‖z1‖2ei = 0 < N = ‖z1‖2.

Next, we consider the Markov BSDE driven by a CTMC of the form

Yt = X∗
TG+

∫
]t,T ]

h(Xs−, s, Ys−, Zs)ds−
∫
]t,T ]

dM∗
sZs, (2.9)
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where G ∈ RN and h : {e1, . . . , eN} × [0, T ] × R × RN → R is a Borel measurable
function. Associated with (2.9), setting t ∈ [0, T ] as the starting time for the BSDE,
we consider

X t,ei
s = ei +

∫
]t,s]

Q∗
uX

t,ei
u− du+Ms −Mt, s > t,

X t,ei
s = ei, s ≤ t,

Y t,ei
s = (X t,ei

T )∗G+

∫
]s,T ]

h(X t,ei
u− , u, Y

t,ei
u− , Zt,ei

u )du−
∫
]s,T ]

dM∗
uZ

t,ei
u , s ∈ [0, T ].

(2.10)
Then, we give the following nonlinear Feynman-Kac type result. Recall that, similar
statements can be found in [21, 26].

Theorem 2.2.2. Assume that there exists a constant L > 0 such that

|h(ei, t, y, z)− h(ei, t, y
′, z′)|2 ≤ L2(|y − y′|2 + ‖z − z′‖2ei), (2.11)

for any y, y′ ∈ R, z, z′ ∈ RN , t ∈ [0, T ] and i = 1, . . . , N , and
∫ T

0
h(ei, u, 0, 0)

2du <
∞. Define H : [0, T ]× RN → RN such that

e∗iH(t, z) = h(ei, t, e
∗
i z, z) for t ∈ [0, T ], z ∈ RN , i = 1, . . . , N.

1. For a solution Ut of the system of ODEs

dUt

dt
+QtUt +H(t, Ut) = 0, UT = G, (2.12)

(Y t,ei
s , Zt,ei

s ) = ((X t,ei
s )∗Us, Us) ∈ S2(G,R) × L2(G, 〈M〉,RN) uniquely solves

(2.10).

2. Conversely, for a unique solution (Y t,ei
s , Zt,ei

s ) ∈ S2(G,R)× L2(G, 〈M〉,RN) of
(2.10), a continuous function Vt = (Y t,e1

t , . . . , Y t,eN
t )∗ satisfies V ∼M Zt,ei for

i = 1, . . . , N and t ∈ [0, T ], and solves (2.12).

Proof. See Section 3.7.1.

Remark 2.2.2. If we assume the continuity of t 7→ h(ei, t, y, z) for all i, y, z addition-
ally, a uniqueness of (2.12) immediately holds from the well-known Picard-Lindelöf
theorem (e.g. Theorem 110C, P.23 in [12]).
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Corollary 2.2.1. Under the square integrability t 7→ h(ei, t, y, z) in [0, T ] and the
uniform Lipschitz continuity (2.11), a unique solution (Y, Z) of (2.9) is also a unique
solution of

Yt = X∗
TG+

∫
]t,T ]

X∗
s−H(s, Zs)ds−

∫
]t,T ]

dM∗
sZs. (2.13)

Moreover, the relation

Yt = X∗
t Ut up to indistinguishability and Z ∼M U

holds, where U is a solution of (2.12).

2.2.2 BSDEs Driven by a Brownian Motion

Let W = (Wt)t≥0 be a d-dimensional standard Brownian motion. Let F = (Ft)t≥0 be
the completion of the filtration generated by W . We consider the following Markov
BSDE driven by Brownian motion.

Xt = x0 +

∫ t

0

µ(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs,

Yt = g(XT ) +

∫ T

t

f(s,Xs,Ys,Zs)ds−
∫ T

t

Z∗
sdWs,

(2.14)

where µ : [0, T ] × Rd → Rd, σ : [0, T ] × Rd → Rd×d, f : [0, T ] × Rd × R × Rd → R,
g : Rd → R are Borel measurable, and referred to as the drift coefficient, the diffusion
coefficient, the driver and the terminal condition, respectively. Assuming that, there
exists L > 0 and p ∈ N such that

‖µ(t, x)− µ(t, x′)‖+ ‖σ(t, x)− σ(t, x′)‖ ≤ L‖x− x′‖,
|f(t, x, y, z)− f(t, x, y′, z′)| ≤ L(|y − y′|+ ‖z − z′‖),

‖µ(t, x)‖+ ‖σ(t, x)‖ ≤ L(1 + ‖x‖2),
|f(t, x, y, z)|+ |g(x)| ≤ L(1 + ‖x‖p),

(2.15)

for all t ∈ [0, T ], x, x′, z, z′ ∈ Rd and y, y′ ∈ R, (2.14) has a unique solution
((Xt)t∈[0,T ], (Yt)t∈[0,T ], (Zt)t∈[0,T ]) ∈ S2(F,Rd)×S2(F,R)×L2(〈W 〉,F,Rd). X is some-
times referred to as the state process, and it is solvable independently of (Y ,Z).

The nonlinear Feynman-Kac formula describes the relation between (2.14) and{
∂tu(t, x) + Ltu(t, x) + f(t, x, u(t, x), σ∗(x)∇xu(t, x)) = 0, (t, x) ∈ [0, T ]× Rd,

u(T, x) = g(x), x ∈ Rd.

(2.16)
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Here,

Ltu(t, x) =
d∑

i=1

µ(i)(t, x)
∂u

∂xi
(t, x) +

1

2

d∑
i,j=1

(σσ∗)(i,j)(t, x)
∂2u

∂xi∂xj
(t, x) (2.17)

is the infinitesimal generator of the Markov process X ,

∇xu(t, x) =

(
∂u

∂x1
(t, x), . . . ,

∂u

∂xd
(t, x)

)∗

∈ Rd

is the gradient vector, µ(i)(t, x) is the i-th component of µ(t, x), and (σσ∗)(i,j)(t, x)
is the (i, j)-th component of σ(t, x)σ∗(t, x). The precise statement is as follows.

Theorem 2.2.3 (The nonlinear Feynman-Kac formula (e.g. pp.487-489 in [19])).
Suppose that µ, σ, f and g are defined as above. For (t, x) ∈ [0, T ]×Rd, let (X t,x,Y t,x,Z t,x)
be a unique solution of the Markov BSDE

X t,x
s = x+

∫ s

t

µ(τ,X t,x
τ )dτ +

∫ s

t

σ(τ,X t,x
τ )dWτ for s ≥ t,

X t,x
s = x ∈ Rd for s ≤ t,

Y t,x
s = g(X t,x

T ) +

∫ T

s

f(τ,X t,x
τ ,Y t,x

τ ,Z t,x
τ )dτ −

∫ T

s

(Z t,x
τ )∗dWτ for s ∈ [0, T ].

(2.18)
Then,

1. for every classical solution u ∈ C1,2([0, T ] × Rd;R) of (2.16), such that, for
some K > 0,

|u(t, x)|+ ‖∇xu(t, x)‖ ≤ K(1 + ‖x‖) for (t, x) ∈ [0, T ]× Rd (2.19)

a unique solution of BSDE (2.18) is represented as

Y t,x
s = u(s,X t,x

s ), Z t,x
s = σ∗(X t,x

s )∇xu(s,X t,x
s ) for s ≥ t. (2.20)

(The inequality (2.19) is sufficient for showing (Y t,x
s ,Z t,x

s ) is of the class S2(F,R)×
L2(〈W 〉,F,Rd).)

2. Suppose further that f and g are Lipschitz continuous and uniformly continuous
with respect to x, uniformly in t. Then, u(t, x) := Y t,x

t is a viscosity solution
of (2.16).
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3. Additionally, if for each R > 0 there exists a continuous function mR : [0,∞) →
[0,∞) such that mR(0) = 0, and

|f(t, x, y, z)− f(t, x′, y, z)| ≤ mR(‖x− x′‖(1 + ‖z‖))

holds for y ∈ R, x, x′, z ∈ Rd such that max{‖x‖, ‖x′‖, ‖z‖} < R, then a unique-
ness of u also holds.

Remark 2.2.3. Viscosity solution is a weak solution of PDEs, which allows us to
regard a continuous function, not smooth enough, as a solution. It coincides with the
classical solution if the coefficients of PDEs satisfy some regularity conditions. For
the details, see [19, 75, 60, 23] and references therein.

2.3 Multi-Stage Euler-Maruyama Methods
In this section, we introduce several (multi-stage) Euler-Maruyama methods for solv-
ing BSDEs driven by CTMCs. Hereafter, we always assume that (Xt)t∈[0,T ] is time-
homogeneous, namely, the transition rate matrix Qt equals some constant matrix Q
for all t. The transition expectation is then represented as the action of a matrix
exponential on the present state Xt. This can be seen from

E[Xs|Xt] =
N∑
i=1

eiP(Xs = ei|Xt) =

P(Xs = e1|Xt)
...

P(Xs = eN |Xt)

 = e(s−t)QXt, (2.21)

for all t ≤ s ≤ T .
Euler-Maruyama methods are constructed in the following two steps:

1. Slice the time interval [0, T ] into a temporal grid {0 = t0 < t1 < · · · < tM = T}
and derive a stochastic difference equation on the grid.

2. Take conditional expectations and suitably approximate the (Riemann) integral
part that appeared.

Let (Y, Z) = (X∗Z,Z) be a unique solution of a BSDE driven by a CTMC (2.13).
Discretize [0, T ] on a uniform grid tm = m∆t for m = 0, 1, . . . ,M , where ∆t =
T/M . We immediately see that (Ytm)Mm=0 satisfies the following stochastic difference
equation

Ytm = Ytm+1 +

∫
]tm,tm+1]

X∗
s−H(s, Zs)ds−

∫
]tm,tm+1]

dM∗
sZs, (2.22)
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form = 0, 1, . . . ,M−1. Taking the conditional expectations E[· · · |Xtm ] in both-hand
sides of (2.22), we observe that

Ytm = E[Xtm+1|Xtm ]
∗Ztm+1 +

∫ tm+1

tm

E[Xs|Xtm ]
∗H(s, Zs)ds. (2.23)

We can consider the following Euler-Maruyama-type approximations from (2.23):

(The Lawson-Euler Method). The simplest would be

Ytm ≈ E[Xtm+1|Xtm ]
∗Ztm+1 +∆tE[Xtm+1|Xtm ]

∗H(tm+1, Ztm+1). (2.24)

From (2.21), (2.24) is reduced to

Ytm ≈ X∗
tm

(
e∆tQZtm+1 +∆te∆tQH(tm+1, Ztm+1)

)
. (2.25)

As a consequence, we have the following 1-stage Euler-Maruyama scheme.{
ZM

tM
:= G,

ZM
tm

:= e∆tQ(ZM
tm+1

+∆tH(tm+1, Z
M
tm+1

)), m = 0, 1 . . . ,M − 1,
(2.26)

which is known as the Lawson-Euler method [47] for solving system of ODEs (2.12).
Note that we take Y M

tm
:= X∗

tmZ
M
tm for m = 0, 1 . . . ,M .

(The Nørsett-Euler Method). We can consider another (1-stage) Euler-Maruyama
approximation as

Ytm ≈ E[Xtm+1|Xtm ]
∗Ztm+1 +

(∫ tm+1

tm

E[Xs|Xtm ]
∗ds

)
H(tm+1, Ztm+1). (2.27)

From (2.21) as before, (2.27) is reduced

Ytm ≈ X∗
tm

(
e∆tQZtm+1 +∆t

(∫ 1

0

e(1−θ)∆tQdθ

)
H(tm+1, Ztm+1)

)
, (2.28)

and we haveZ
M
tM

:= G,

ZM
tm

:= e∆tQZM
tm+1

+∆t

(∫ 1

0

e(1−θ)∆tQdθ

)
H(tm+1, Z

M
tm+1

), m = 0, 1 . . . ,M − 1.

(2.29)
It is known as the Nørsett-Euler method [22] for solving system of ODEs (2.12).
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(The ETD2RK Method). We can consider 2-stage Euler-Maruyama methods,
as well as 1-stage ones. For example, a 2-stage Nørsett-Euler-Maruyama method is
described as

Ytm ≈ E[Xtm+1|Xtm ]
∗Ztm+1 +

∫ tm+1

tm

E[Xs|Xtm ]
∗(

H(tm+1, Ztm+1) +
H(tm, Ztm)−H(tm+1, Ztm+1)

∆t
(tm+1 − s)

)
ds

≈ E[Xtm+1|Xtm ]
∗Ztm+1 +

(∫ tm+1

tm

E[Xs|Xtm ]
∗ds

)
H(tm+1, Ztm+1)

+

(∫ tm+1

tm

(tm+1 − s)E[Xs|Xtm ]
∗ds

)
H(tm, ζm)−H(tm+1, Ztm+1)

∆t
,

where ζm is defined by

ζm = E[Xtm+1|Xtm ]
∗Ztm+1 +

(∫ tm+1

tm

E[Xs|Xtm ]
∗ds

)
H(tm+1, Ztm+1).

From (2.21), it results in



ZM
tM

:= G,

ZM
tm

:= e∆tQZM
tm+1

+∆t

(∫ 1

0

e(1−θ)∆tQdθ −
∫ 1

0

e(1−θ)∆tQθdθ

)
H(tm+1, Z

M
tm+1

)

+ ∆t

(∫ 1

0

e(1−θ)∆tQθdθ

)
H(tm+1, ζ

M
m )

ζMm := e∆tQZM
tm+1

+∆t

(∫ 1

0

e(1−θ)∆tQdθ

)
H(tm+1, Z

M
tm+1

), m = 0, 1 . . . ,M − 1,

(2.30)
which is known as the second-order exponential time differencing Runge-Kutta (ETD2RK)
method [22] for solving system of ODEs (2.12).
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(General s-Stage Exponential Integrators). Furthermore, we consider general
s-stage Euler-Maruyama methods taking the form of

ZM
tm = χ0(∆tQ)Z

M
tm+1

+∆t
s∑

i=1

bi(∆tQ)Gmi,

Gmi = H(tm+1 − ci∆t, ζ
M
ni ), for i = 1, . . . , s,

ζMmi = χi(∆tQ)Z
M
m+1 +∆t

s∑
j=1

aij(∆tQ)Gnj, for i = 1, . . . , s,

(2.31)

for m = 0, . . . ,M − 1. Here, ZM
tm approximates Ztm , Gmi is the i-th internal stage,

s ∈ N is the number of stages, ci are real numbers, and χi, aij and bi are functions
constructed from “ϕ-functions” defined by

ϕl(Q) =

∫ 1

0

e(1−θ)Q θl−1

(l − 1)!
dθ for l ∈ N, and ϕ0(Q) = eQ.

For example, the three methods mentioned above are obtained from the settings:

• Lawson-Euler: s = 1, χ0(z) = ez, χ1(z) = 1, a11(z) = 0, b1(z) = ez and c1 = 0.

• Nørsett-Euler: s = 1, χ0(z) = ez, χ1(z) = 1, a11(z) = 0, b1(z) = ϕ1(z) and
c1 = 0.

• ETD2RK: s = 2, χ0(z) = ez, χ1(z) = 1, χ2(z) = ez, a11(z) = a12(z) = a22(z) =
0, a21(z) = ϕ1(z), b1(z) = ϕ1(z)− ϕ2(z), b2(z) = ϕ2(z), c1 = 0 and c2 = 1.

Note that the multi-stage Euler-Maruyama method (2.31) is the same as exponential
integrators (exponential Runge-Kutta methods) for solving systems of ODEs (2.12).
For details on exponential integrators, we refer to [41], a comprehensive survey. We
remark on the following:

Remark 2.3.1. It is known that using exponential integrators for numerical calcu-
lations of “stiff” systems of ODEs work well. Here, a differential equation is called
stiff if explicit methods become numerically unstable unless the step size is taken to
be extremely small. It seems to be difficult to formulate a precise mathematical def-
inition of stiffness, but such an equation includes some terms that can lead to rapid
variation in the solution. As for the historical development of the notion of stiff-
ness, we refer to [37, 67]. As described in [37, 68, 69, 70, 73, 12], it is known that
the method-of-lines approach for solving parabolic PDEs (that is, the discretization
of the spatial variable) often results in large stiff systems of ODEs, and exponential
integrators are considered to be effective for these systems as seen in [38, 39, 55], for
example.
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Remark 2.3.2. χi, aij, bi and ci in (2.31) are prescribed parameters to be set so
that we can obtain various schemes that have (stiff / nonstiff) orders of convergence.

Remark 2.3.3. Exponential integrators exploits matrix functions ϕl. However, eval-
uating them numerically is not straightforward and has been studied in numerical
literature. A standard approach that is widely used is a combination of Padè approx-
imations and scaling-and-squaring methods. Although it enables efficient evaluation,
note that it is only applicable to ϕl of moderate dimension. For solving ODE systems
whose dimension is large, it is advantageous to apply Krylov subspace methods; in-
stead of evaluating ϕl itself, its action on a state vector is approximated with a vector
on a Krylov subspace whose dimension is small.

2.4 Application to BSDEs Driven by Brownian Mo-
tion

In this section, we are interested in computing Markov BSDEs driven by Brownian
motion (2.14) with an appropriate spatial discretization. From a probabilistic point
of view, it can be seen as approximating a BSDE driven by a Brownian motion with
a BSDE driven by a CTMC. From a differential equation point of view, on the other
hand, it can be seen as the method of lines, approximating a second-order parabolic
PDE with a system of ODEs. As mentioned in remark 2.3.1, the method of lines
discretization of parabolic PDEs leads to stiff systems of ODE, and our multi-stage
Euler-Maruyama methods efficiently work for them. One can represent this situation
as Figure 2.1.

Parabolic PDE

Brownian BSDE CTMC BSDE

ODE system

Exponential
Integrator

-

Method of lines

-

Spatial discretization6

?

Nonlinear
Feynman-Kac

6

?

Cohen-Szpruch[21]

PPPPPPPq

�������1

Variation
-of-constants

Euler-Maruyama(∗)

Figure 2.1: A diagram representing the relation between key ingredients for the
argument up to here on this chapter. It is based on the diagram given in [21]. The
arrow denoted as (∗) has been newly drawn by the arguments in section 2.3.

We present a construction of Markov BSDEs driven by CTMCs from spatial
discretization of Markov BSDEs driven by Brownian motion. Through the method
of lines discretization to the associated second-order parabolic PDEs, systems of



18 | Multi-Stage Euler-Maruyama Methods for BSDEs Driven by CTMCs

ODEs are obtained. We see that the systems of ODEs are equivalent to Markov
BSDEs driven by CTMCs. Hereafter, we focus on (2.14) such that (Xt)t∈[0,T ] is
time homogeneous, namely, µ(t, x) and σ(t, x) do not depend on t. Then, we can
simply write µ(t, x) = µ(x) and σ(t, x) = σ(x), and the subscript of the infinitesimal
generator can also be omitted: Lt = L.

2.4.1 The Case of 1-dimensional State Space

First, we shall discuss the case of d = 1 for simplicity. Let a strictly increasing
sequence Π = {xi}N0

i=−N0
of length N := 2N0 + 1 be the set of nodes on R and

define δxi := xi+1 − xi for −N0 ≤ i < N0. For any function v : R → R, let
vΠ = (v(t, x−N0), v(t, x−N0+1), . . . , v(t, xN0))

∗ ∈ RN be the evaluation of v over Π.
Then, derivatives evaluated at nodes of Π are replaced by

∂v

∂x
(x−N0)

...
∂v

∂x
(xN0))

 ≈ D1u
Π,


∂2v

∂x2
(x−N0)

...
∂2v

∂x2
(xN0))

 ≈ D2u
Π.

Here, N ×N -matrices D1 and D2 are defined by

e∗iD1ej =



−δxi
δxi−1(δxi−1 + δxi)

, j = i− 1,

δxi − δxi−1

δxiδxi−1

, j = i,

δxi−1

δxi(δxi−1 + δxi)
, j = i+ 1,

0 otherwise,

for −N0 < i < N0,

e∗−N0
D1ei = e∗N0

D1ei = 0, for −N0 ≤ i ≤ N0,

(2.32)

e∗iD2ej =



2

δxi−1(δxi−1 + δxi)
, j = i− 1,

−2

δxiδxi−1

, j = i,

2

δxi(δxi−1 + δxi)
, j = i+ 1,

0 otherwise,

for −N0 < i < N0,

e∗−N0
D2ei = e∗N0

D2ei = 0, for −N0 ≤ i ≤ N0,

(2.33)
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that result from the central difference scheme, and we denote ei as the (i+N0+1)-th
unit vector in RN whose (i+N0+1)-th element is 1. We then solve, in place of PDE
(2.16), a system of N ODEs in what follows:

dUΠ
t

dt
+QUΠ

t + F (t, UΠ
t ) = 0 for t ∈ [0, T ], UΠ

T = G. (2.34)

Here, G = (g(x−N0), . . . , g(xN0))
∗ ∈ RN , F : [0, T ]× RN → RN is defined by

F (t, z) =

f(t, x−N0 , e
∗
−N0

z, σ(x−N0)e
∗
−N0

D1z)
...

f(t, xN0 , e
∗
N0
z, σ(xN0)e

∗
N0
D1z)

 , (2.35)

and
Q = diag(µΠ)D1 +

1

2
diag((σ2)Π)D2

approximates the infinitesimal generator L of X . Using (2.32) and (2.33), each
element of Q is

e∗iQej =



σ2(xi)− δxiµ(xi)

δxi−1(δxi−1 + δxi)
, j = i− 1,

(δxi − δxi−1)µ(xi)− σ2(xi)

δxiδxi−1

, j = i,

σ2(xi) + δxi−1µ(xi)

δxi(δxi−1 + δxi)
, j = i+ 1,

0 otherwise,

for −N0 < i < N0,

e∗−N0
Qei = e∗N0

Qei = 0, for −N0 ≤ i ≤ N0.

(2.36)

In Section 2.8, we give a convergence result of (2.34) to (2.16) in a case which a
unique classical solution of (2.16) exists.

Theorem 2.4.1 (Convergence). Consider the case of d = 1 and take a spatial grid
Π(N,∆x) := {i∆x}N0

i=−N0
for some ∆x > 0. Suppose that Assumption 2.8.1, 2.8.2 in

Section 2.8, and (2.16) admits a unique solution u. (For example, (2.16) is uniquely
solvable in the case of Lemma 2.8.1.) Denote U (N,∆x)

t as a unique solution of (2.34)
in the case of Π(N,∆x). For any compact set K ⊂ R, it holds

lim
∆x→0

lim
N→∞

sup
−N0≤i≤N0
i∈Z,i∆x∈K

|u(t, i∆x)− e∗iU
(N,∆x)
t | = 0,

where ei is the (i+N0 + 1)-th unit vector in RN whose (i+N0 + 1)-th element is 1.
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Thus, for obtaining the system of ODE which approximate the PDE with a small
error in given bounded K, we should take a sufficiently small k > 0 and expand the
spatial grid for sufficiently large N that depends on k.

2.4.2 The Case of d-dimensional State Space

Using the Kronecker product “⊗”, the argument in the case of d = 1 can be carried
out in multidimensional cases, that is, for any d ∈ N. For p = 1, . . . , d, let a strictly
increasing sequence Π(p) = (x

(p)
i )

N
(p)
0

i=−N
(p)
0

of length N (p) = 2N
(p)
0 + 1 be the set of

nodes on the p-th axis in Rd, and let D(p)
1 and D(p)

2 are the corresponding N (p)×N (p)

difference matrices defined by (2.32) and (2.33), constructed on Π(p). Consider the
grid on Rd by

Π = Π(1) ⊗ Π(2) ⊗ · · · ⊗ Π(d) = (xi = (x
(1)
i1
, x

(2)
i2
, . . . , x

(d)
id
) : i = 1, . . . , N),

where N :=
∏d

p=1N
(p) is the total size of Π, and multi-indices (i1, i2, . . . , id) are

ordered lexicographically. For v : Rd → R, first and second derivatives along the
p-th axis are approximated by

∂v

∂x(p)
(xi) ≈ e∗i D̃

(p)
1 vΠ and

∂2v

(∂x(p))2
(xi) ≈ e∗i D̃

(p)
2 vΠ,

where matrix D̃(p)
k for k = 1, 2 and p = 1, . . . , d is given by

D̃
(p)
k := IN(1) ⊗ · · · ⊗ IN(p−1) ⊗D

(p)
k ⊗ IN(p+1) ⊗ · · · ⊗ IN(d) .

In multidimensional cases, we additionally need to specify the approximation of cross
derivatives since L possibly contains them. In this work, we approximate the cross
derivative along the p-th and q-th axes as

∂2v

∂x(p)∂x(q)
(xi) ≈ e∗iD

(p,q)
1 vΠ,

where

D
(p,q)
1 := IN(1) ⊗ · · · ⊗ IN(p−1) ⊗D

(p)
1 ⊗ IN(p+1) ⊗ · · ·

⊗ IN(q−1) ⊗D
(q)
1 ⊗ IN(q+1) ⊗ · · · ⊗ IN(d) ,
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for p < q. In this situation, Q is defined by

Q =
d∑

p=1

diag((µ(p))Π)D̃
(p)
1 +

d−1∑
p=1

d∑
q=p+1

diag(((σσ∗)(p,q))Π)D̃
(p,q)
1

+
1

2

d∑
p=1

diag(((σσ∗)(p,p))Π)D̃
(p)
2 (2.37)

Defining F : [0, T ]× RN → RN by

F (t, z) =

 f(t, x1, e
∗
1z, σ

∗(x1)(e
∗
1D̃

(1)
1 z, . . . , e∗1D̃

(d)
1 z)∗)

...
f(t, xN , e

∗
Nz, σ

∗(xN)(e
∗
ND̃

(1)
1 z, . . . , e∗ND̃

(d)
1 z)∗)


and G = (g(x1), . . . , g(xN))

∗, the system of ODEs results in the same form as (2.34):

dUΠ
t

dt
+QUΠ

t + F (t, UΠ
t ) = 0, UΠ

T = G. (2.38)

2.4.3 Probabilistic Interpretation

Recall that Q in (2.36) or (2.37) is constructed from the spatial discretization of the
infinitesimal generator L. In the probabilistic manner, it is natural to interpret Q as
the Q-matrix of a time-homogeneous CTMC. Since Q might no longer be a Q-matrix,
it is required to see the “validity” conditions of Q to be the Q-matrix. In the case
of d = 1, one can easily give the following sufficiency condition. It guarantees the
validity of a CTMC constructed by Q provided the spatial difference is sufficiently
fine.

Proposition 2.4.1 (Validity). Q defined by (2.36) is the transition rate matrix of a
continuous-time Markov chain if

0 < max
−N0≤i≤N0−1

{δxi} ≤ min
−N0≤i≤N0
µ(xi) ̸=0

{
σ2(xi)

|µ(xi)|

}
. (2.39)

Additionally, if the above inequality is strict, e∗i−1Qei and e∗i+1Qei are positive for all
i = −N0 + 1, . . . , N0 − 1.

Proof. See Section 2.7.2.
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Note that validity conditions in multi-dimensional settings would be more compli-
cated; the existence of terms that involve cross derivatives occasionally violates the
definition of Q-matrices. Our approach presented in Section 2.3, that substantially
solves systems of ODEs using exponential integrators, works without any issues at
least numerically, regardless of the validity. However, in certain situations when we
need to simulate the CTMC, we should instead employ several discretization schemes
that avoid the invalidity issues [10, 52].

Assuming the validity of Q, let X be a finite-state Markov chain with Q as its
Q-matrix. We now consider the Markov BSDE arising from (2.34) as

Yt = X∗
TG+

∫
]t,T ]

X∗
s−F (s, Zs)ds−

∫
]t,T ]

dM∗
sZs. (2.40)

Thus, we can regard (2.40) as spatially discretized counterpart of (2.14), and applying
exponential integrators to (2.34) is equivalent to the (multi-stage) Euler-Maruyama
methods of (2.40).

We give a result on a uniqueness of (2.40) under standard conditions. Theoretical
justification of this probabilistic interpretation is completed with it.

Proposition 2.4.2. Suppose that
∫ T

0
f(t, x, 0, 0)2dt < ∞ for any x ∈ Rd, and that

for some L > 0,

|f(t, x, y, z)− f(t, x, y′, z′)|2 ≤ L(|y − y′|2 + ‖z − z′‖2)

for all t ∈ [0, T ], x ∈ Rd, y, y′ ∈ R, and z, z′ ∈ Rd. Suppose further that Q is valid,
e∗i D̃

(p)
1 1 = 0, and that

e∗jQei = 0 =⇒ e∗jD̃
(p)
1 ei = 0 for p = 1, . . . , d, (2.41)

for i, j = 1, . . . , N . Then, (2.40), which is derived from the Markov chain approxi-
mation of (2.16), has a unique solution.

Proof. See Section 2.7.3.

Remark 2.4.1. As a related study on CTMC approximation of SDEs, we refer to
[53, 24, 49, 46, 25].

Remark 2.4.2. In [21], the authors presented a CTMC version of least-squares
Monte Carlo methods. Although this type of method is also a natural counterpart
of numerical solutions of Markov BSDEs based on the Euler-Maruyama temporal
discretization, we note that it is not suitable to solve CTMC-driven Markov BSDEs
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arising from spatial discretization of Brownian motion-driven Markov BSDEs. A
major bottleneck is that the resulting Q-matrix may contain quite larger absolute
values. To illustrate it, suppose that µ(x) = µx, σ(x) = σx, and δxi ≡ ∆x > 0.
Plugging them into (2.36), we obtain

e∗iQei−1 =
σ2i2 − µi

2
, e∗iQei+1 =

σ2i2 + µi

2
.

If i is nearby N and N is large, these elements take large values, which implies the
resulting Markov chain jumps too rapidly. It interferes with us simulating CTMCs
naively using Gillespie’s exact simulation or the 1st-order approximation of the tran-
sition probability matrix; the former suffers from a tremendously large number of
jumps, and the latter method requires the temporal step small enough for each row of
the resulting matrix to represent probabilities.

2.5 Numerical Results
In this section, we demonstrate the efficiency and stability of the numerical approach
presented in Section 2.4, using several examples. We apply spatial discretization to
the BSDEs driven by Brownian motions, obtain BSDEs driven by CTMCs (i.e. a sys-
tem of ODEs), and calculate numerical solutions using multi-stage Euler-Maruyama
methods (i.e. exponential integrators.) Before moving on to specific results, we
explain the details on settings in what follows:

Spatial Discretization We approximate the unbounded spatial domain of the
problem at hand with a bounded one. Because all of the BSDEs we solve in this
section have (0,∞)d as spatial domains of them, we approximate as

(0,∞)d ≈ [0, 2x1]× · · · × [0, 2xd] (2.42)

for some x1, . . . , xd > 0, or sometimes as

(0,∞)d ≈ [∆x1 , 2x1 −∆x1 ]× · · · × [∆xd
, 2xd −∆xd

] (2.43)

for small ∆x1 , . . . ,∆xd
> 0. The latter is applied to the problems that should be

evaluated only at points on the first quadrant. Here, (x1, . . . , xd) is a point at which
we want to evaluate the numerical solution.

Throughout the section, ΠUnif
x (xleft, xcenter, xright, Nx,0) = (xi)

Nx,0

i=−Nx,0
means the

standard one-dimensional uniform grid such that x−Nx,0 = xleft, x0 = xcenter and
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xNx,0 = xright. We occasionally omit its arguments and simply write ΠUnif
x . In addition

to the uniform grid, a non-uniform grid is also employed for spatial discretization.
We use a version of the (one-dimensional) Tavella-Randall-type grids [63] in what
follows:

xk =


xcenter + g1 sinh

(
arc sinh

(
xcenter − xleft

g1

)
· k

Nx,0

)
, k = −Nx,0, . . . ,−1, 0,

xcenter + g2 sinh

(
arc sinh

(
xright − xcenter

g2

)
· k

Nx,0

)
, k = 1, 2, . . . , Nx,0,

(2.44)
where Nx := 2Nx,0 + 1 is the grid size, xleft and xright are the leftmost and rightmost
points of the domain, xcenter ∈ (xleft, xright) is the central point of the grid, and g1
and g2 are parameters for the left- and right-side of the grid, respectively. Note that
x−Nx,0 = xleft, x0 = xcenter and xNx,0 = xright. Intuitively, setting g1, g2 � xright − xleft
leads to the grid that is highly concentrated around xcenter. It is commonly used
in numerical computation for pricing options to mitigate the effect of the non-
linearity of the payoff function [9, 53, 63]. Similarly to the uniform grid, denote
ΠTR

x (xleft, xcenter, xright, Nx,0, g1, g2) as the Tavella-Randall grid (2.44) whose parame-
ters are (xleft, xcenter, xright, Nx,0, g1, g2).

Figure 2.2: g1 = g2 = 50.0

Figure 2.3: g1 = g2 = 5.0

Figure 2.4: g1 = g2 = 0.5

Figure 2.5: Examples of Tavella-Randall grids with xleft = 0, xcenter = 100, xright =
200, Nx,0 = 100 and g1 = g2 ∈ {50, 5, 0.5}.

Temporal Discretization We employ solvers implemented in DifferentialEqua-
tions.jl [62], listed below:

• LawsonEuler : A single-stage method of classical/stiff order 1/1, referred to as
the Lawson-Euler method [47].
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• NorsettEuler : A single-stage method of classical/stiff order 1/1, referred to
as the Nørsett-Euler method or ETD1RK method [22].

• ETDRK2 : A 2-stage method of classical/stiff order 2/2 [22].

• ETDRK3 : A 3-stage method of classical/stiff order 3/3 [22].

• ETDRK4 : A 4-stage method of classical/stiff order 4/2 [22].

• HochOst4 : A 5-stage method of classical/stiff order 4/4, developed by Hochbruck
and Ostermann [39].

Taking temporal grid size Nt ∈ N, we calculate solutions on the grid ΠUnif
t (Nt) =

(i∆t)Nt
i=0 using these exponential integrators. Here, ∆t = T/Nt is the step size. Note

that a large-scale system of ODEs is obtained from the spatial discretization in each
experiment. In this case, employing Krylov subspace methods in evaluating matrix
exponentials and related ϕ functions is more effective, as described in Remark 2.3.3.
In all the experiments, we use the Arnoldi iteration with a size-m Krylov subspace,
which is readily available on all the solvers above. For simplicity, we always take
m = 100.

A Least-Squares Monte Carlo Method: A Reference BSDEs (driven by
Brownian motion) that appeared in this section include those whose analytical solu-
tions are unknown. In experiments of those BSDEs, as a reference, we shall report
numerical solutions using the least squares Monte Carlo (LSMC) method [50, 32, 3]
using Laguerre polynomials as

polyLagp (x) =

p∑
k=0

(−1)k

k!

(
p

k

)
xk, p = 0, 1, 2, . . . . (2.45)

Note that for the multi-dimensional case, the basis function corresponds to the Carte-
sian product of (2.45). Since LSMC methods include randomness, we independently
calculate solutions for 50 times, and report the mean values, the standard deviations,
and the total runtimes.

Implementation All of our experiments were performed on a 3.70 GHz, 64-GB
RAM Linux workstation. Our code was written entirely in Julia [5] and all the plots
were produced using Plot.jl [13]. The full code for the experiments is available at
https://github.com/kanekoakihiro/EMCTMCBSDE.

https://github.com/kanekoakihiro/EMCTMCBSDE
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2.5.1 European Call Option under the Black-Scholes Model

First, we consider a linear BSDE arising from pricing a European call option under
the Black-Scholes model:

St = s0 +

∫ t

0

µSsds+

∫ t

0

σSsdWs,

Yt = (ST −K)+ −
∫ T

t

rYtdt−
∫ T

t

ZtdWt.

(2.46)

Here, K is the strike price of the European call option, T is the maturity, r is the
interest rate, and St is the spot price of the underlying risky asset with initial price
s0, appreciation µ and volatility σ. Then, terminal condition YT = (ST − K)+ =
max{ST −K, 0} is the payoff of the European call opton, and the solution Yt = Y t,St

t

means the price of the option at time t ∈ [0, T ] and spot price St. For details on
the derivation of (2.46), see Section 4.5.1. (p.91) in [75]. Using the cumulative
distribution function of the standard Gaussian distribution Ψ(x), the solution can
be evaluated as {

Yt = St ·Ψ(d1)−K exp(−r(T − t)) ·Ψ(d2),

Zt = St ·Ψ(d1)σ,
(2.47)

where d1 and d2 are constants as follows

d1 =
ln
(St

K

)
+
(
r + σ2

2

)
(T − t)

σ
√
T − t

, d2 =
ln
(St

K

)
+
(
r − σ2

2

)
(T − t)

σ
√
T − t

.

We choose the parameters of (2.46) as follows:

T K r µ σ
1 100 0.03 0.03 0.2

Despite a pretty simple case, its spatial discretization leads to a stiff system of
ODEs. To this end, we discretize (2.46) on the Tavella-Randall grid ΠTR

x with
(xleft, xcenter, xright, Nx,0, g1, g2) = (0, 100, 200, 1000, 50, 50) and calculate solutions of
the resulting system of ODEs using DP5, an implementation of the Dormand-Prince
explicit solver in Julia, for different time steps Nt. Consequently, we observed that
it requires approximately 58005 steps along the temporal direction to achieve the
“stable” solution; otherwise, terribly large and rapid oscillations occur in some parts
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of the numerical solution. Fig. 2.6 shows the surface plots of the numerical so-
lutions of (t, x) 7→ Y t,x

t for 57990, 57995, 58000, and 58005 temporal steps, re-
spectively. For visibility, the surfaces displayed are the 30 × 30 arrays uniformly
sampled from numerical solutions whose values heve been clipped in the [0, 250]
range. Absolute errors of Y t,x

t at (t, x) = (0, 100), maximum absolute errors of Y t,x
t

in (t, x) ∈ ΠUnif
t × ([80, 120] ∩ ΠTR

x ) and runtime in seconds are reported in Table
2.1. These results epitomize how stiff systems arise from the spatial discretization of
parabolic PDEs and prevent explicit solvers from calculating solutions efficiently.

Nt = 57990 Nt = 57995 Nt = 58000 Nt = 58005
Sup Error 3.304e+31 1.727e+18 1.218e+5 1.326e−2
Abs Error 1.989e+12 1.324e+3 4.612e−4 4.612e−4

Runtime [s] 600.51 629.94 665.08 668.86

Table 2.1: Results on numerical solutions of (2.46) using DP5 for different Nt. Here,
we spatially discretize (2.46) on ΠTR

x and solve the resulting system of ODEs. Here,
the parameters of ΠTR

x are xleft = 0, xcenter = 100, xright = 200, Nx,0 = 1000,
and g1 = g2 = 50. For each Nt, the numerical solution is evaluated on the grid
ΠUnif

t (Nt) × ΠTR
x . The maximum absolute errors in ΠUnif

t × ([80, 120] ∩ ΠTR
x ) are

reported on the row of “Sup Error”, the absolute errors at (t, x) = (0, 100) are on the
row of “Abs Error”, and the runtimes in seconds are at the bottom line.

Let us solve the system of ODEs constructed from above using exponential in-
tegrators. Table 2.2 reports the results of HochOst4, a 4-stage exponential integra-
tor of order 4, for different temporal steps Nt. It successfully calculates solutions
without suffering from huge errors as appearing in DP5, and provides accurate solu-
tions with fewer temporal steps; for example, the solution calculated using HochOst4
with Nt ≥ 200 has achieved the same level of accuracy as the one using DP5 with
Nt = 58005.

Nt = 10 Nt = 20 Nt = 50 Nt = 100 Nt = 200 Nt = 500 Nt = 1000
Sup Error 5.102e−1 1.374e−1 1.384e−2 1.326e−2 1.326e−2 1.326e−2 1.326e−2
Abs Error 2.611e−1 2.638e−2 1.092e−3 4.693e−4 4.612e−4 4.612e−4 4.612e−4
Runtime[s] 1.56 2.33 5.43 12.21 19.73 49.26 96.63

Table 2.2: Results on numerical solutions of (2.5.1) using HochOst4 in the same
situation in Table 2.1.
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(a) Nt = 57990. (b) Nt = 57995.

(c) Nt = 58000. (d) Nt = 58005.

Figure 2.6: Plots of numerical solutions of (2.5.1) using DP5 for different Nt. The
spatial grid is ΠTR

x whose parameters are xleft = 0, xcenter = 100, xright = 200,
Nx,0 = 1000, and g1 = g2 = 50. For visibility, data plotted are 50 × 50 arrays
uniformly sampled and clipped into range [0, 250].
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2.5.2 European Call Option with Higher Interest Rate for
Borrowing

Next, consider a nonlinear version of (2.46):

St = s0 +

∫ t

0

µSsds+

∫ t

0

σSsdWs,

Yt = (ST −K)+ −
∫ T

t

[r(Ys −
Zs

σ
)+ −R(Ys −

Zs

σ
)− +

µ

σ
Zs]ds−

∫ T

t

ZsdWs,

(2.48)

which comes from considering a more practical case that the borrowing interest
rate R is higher than the lending interest rate r. Here, (x)+ = max{x, 0} and
(x)− = min{x, 0} for x ∈ R. For details on the derivation of (2.48), Section 4.5.1.
(p.91) in [75]. We choose the parameters of (2.48) as follows:

T µ σ R r K
1.0 0.03 0.2 0.3 0.01 100

We discretize 2.48 on the Tavella-Randall grid ΠTR
x with xleft = 0, xcenter = 100,

xright = 200, Nx,0 = 1000, and g1 = g2 = 50, which is the same as before. Unlike the
previous experiment, however, we cannot evaluate numerical errors, since we do not
know the analytical solution of (2.48). We only focus on numerical solutions of Yt =
Y t,s

t at (t, s) = (0, 100). Table 2.3 reports numerical solutions using different exponen-
tial integrators and the runtimes in second. For each scheme, when Nt increases, the
numerical solution seems to converge approximately Y0,100

0 ≈ 26.3305. We observe
that multi-stage methods (ETD2RK, ETD3RK, ETD4RK, and HochOst4) converge
faster than single-stage methods (Lawson-Euler and Nørsett-Euler). As a reference,
we calculate the solution Y0,100

0 using the LSMC method with Laguerre polynomials
(2.45) up to p-th order for different parameters. Here, the number of Monte Carlo
simulations is M = 222, and the pair (Nt, p) of the number of temporal steps Nt and
the maximal order p are taken from {(6, 6), (7, 7), (8, 8), (9, 9)}. The LSMC solution
of Y0,100

0 is evaluated 50 times independently, and we compute the sample mean, the
unbiased standard deviation and the total runtime. The results of the numerical
solution of the LSMC method are reported in Table 2.4.
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Nt = 10 Nt = 20 Nt = 50 Nt = 100 Nt = 200

Lawson-Euler
[47]

Y0,s0
0 25.0377 26.3522 26.3545 26.3437 26.3372

Runtime [s] 5.26 0.61 1.52 2.81 5.40

Nørsett-Euler
[22]

Y0,s0
0 26.0777 26.4527 26.3881 26.3597 26.3452

Runtime [s] 1.25 0.53 1.30 2.51 5.23

ETD2RK
[22]

Y0,s0
0 25.8658 26.3182 26.3310 26.3307 26.3306

Runtime [s] 1.51 1.27 2.89 5.85 10.78

ETD3RK
[22]

Y0,s0
0 26.1212 26.3137 26.3302 26.3305 26.3305

Runtime [s] 1.78 1.71 3.81 8.02 16.68

ETD4RK
[22]

Y0,s0
0 26.0947 26.3136 26.3302 26.3305 26.3305

Runtime [s] 3.10 2.72 6.47 14.35 27.32

HochOst4
[39]

Y0,s0
0 26.1080 26.3136 26.3302 26.3305 26.3305

Runtime [s] 2.28 2.79 6.84 14.27 29.64

Table 2.3: Numerical solutions Y0,100
0 and its runtime in seconds using different

exponential integrators. Here, we spatially discretize (2.48) on ΠTR
x and solve the

resulting system of ODEs. Here, the parameters of ΠTR
x are xleft = 0, xcenter = 100,

xright = 200, Nx,0 = 1000, and g1 = g2 = 50.

M (Nt, p) = (6, 6) (Nt, p) = (7, 7) (Nt, p) = (8, 8) (Nt, p) = (9, 9)

4194304
mean 26.1462 26.2239 26.3001 26.3404
std 0.0457 0.0386 0.0611 0.0580

Runtime [s] 1436.79 1706.81 2021.94 2340.43

Table 2.4: Results on numerical solutions Y0,100
0 of (2.48) using the LSMC methods

with Laguerre polynomials up to p-th order for Nt time steps. Here, M = 4194304 is
the number of samples for the Monte-Carlo approximation. We run the LSMC algo-
rithm 50 times independently and collect each Y0,100

0 . The row of “mean” and “std”
reports their sample means and sample (unbiased) standard deviations, respectively.
The bottom of the table reports the total CPU times required for the 50 experments.

2.5.3 European Options under Stochastic Local Volatility Mod-
els

In this section, we consider BSDEs arising from the valuation of European options in
stochastic local volatility (SLV) models, a class of Markov BSDEs with 2-dimensional
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state processes. A general form of stochastic volatility models is given in [24] as
St = S0 +

∫ t

0

ω(Ss, vs)ds+

∫ t

0

m(vs)Γ(Ss)dW
(1)
s ,

vt = v0 +

∫ t

0

µ(vs)ds+

∫ t

0

σ(vs)dW
(2)
s ,

(2.49)

where 〈W (1),W (2)〉t = ρt with ρ ∈ (−1, 1). Let L =

(
1 0

ρ
√

1− ρ2

)
be the lower

triangular matrix constructed from the Cholesky decomposition C = LL∗ of C =(
1 ρ
ρ 1

)
. Since W = L−1

(
W (1)

W (2)

)
is a 2-dimensional standard Brownian motion, we

can reformulate (2.49) as

Xt = X0 +

∫ t

0

µ(Xs)ds+

∫ t

0

σ(Xs)dWs for t ∈ [0, T ],

where

Xt =

(
St

vt

)
, µ(x) =

(
ω(x1, x2)
µ(x2)

)
, σ(x) =

(
m(x2)Γ(x1) 0

0 σ(x2)

)
L.

Similarly to the arguments in Section 4.5.1. (p.91) in [75], we formulate Markov
BSDEs describing the price of European options. Consider the self-financing portfolio

∆t =

(
∆1

t

∆2
t

)
consisting of ∆1

t assets of St and ∆2
t assets of vt and bonds with

borrowing rate R and lending rate r. Let Vt be the wealth dynamics of ∆t. The
self-financing condition reads

dVt = [r(Vt −∆∗
tXt)

+ −R(Vt −∆∗
tXt)

−]dt+∆∗
tdXt.

Consider that ∆t hedges the European option with payoff g(ST ). Denoting Yt := Vt

and Zt := ∆∗
tσ(Xt), we obtain

Yt = g(ST )−
∫ T

t

f(s,Xs,Ys,Zs)ds−
∫ T

t

Z∗
sdWs, (2.50)

where the driver is

f(t, x, y, z) = r(y − z∗σ(x)−1x)+ −R(y − z∗σ(x)−1x)− + z∗σ(x)−1µ(x).

Then, Y t,Xt
t is the price of the European option.
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Before moving on to the specific results, we note what follows: (1) Unlike the
cases considered in the previous two experiments, we need to discretize the two-
dimensional process Xt = (St, vt). To this end, we construct the Kronecker product
of two grids as described in Section 2.4.1. Specifically, St is discretized on the Tavella-
Randall grid ΠTR

x and vt is on the uniform grid ΠUnif
x . (2) BSDE (2.50) contains

the evaluation of σ(x)−1, and we should set each grid carefully; if Γ(x), m(x) or
σ(x) take zero at x = 0, grid (2.43) should be chosen rather than grid (2.42). (3)
We calculate numerical solutions using the LSMC method for reference. Since the
Euler-Maruyama discretization paths can take negative values, coefficient functions
defined only on (0,∞) (e.g. the square root) may fail to evaluate. To avoid it, the
absolute value is taken under such coefficient functions.

2.5.3.1 European Put Opton under the Heston-SABR Model with Higher
Interest Rate for Borrowing

The Heston-SABR SLV model [71] takes the following form.

St = S0 +

∫ t

0

b · Ssds+

∫ t

0

√
vsSβ

s dW
(1)
s

vt = v0 +

∫ t

0

η(θ − vs)ds+

∫ t

0

α
√
vsdW

(2)
s

(2.51)

We apply (2.5.3.1) to (2.49), and consider BSDE (2.50) with g(s) = (K − s)+ a
payoff function of a European put option. We choose the parameters of (2.5.3.1) as
follows:

T β η θ α ρ b K R r
1.0 0.7 4.0 0.035 0.15 −0.75 0.01 100 0.07 0.01

In this experiment, we are interested in numerical solutions of Y0 = Y0,(s0,v0)
0

at (s0, v0) = (100, 0.4). As noted before, since the driver of (2.50) contains the
evaluation of inverses of

√
vtSβ

t and α
√
vs, we need to design the spatial grid to

contain only points in the first quadrant. To this end, we set the spatial grid
onto [∆1, 2s0 − ∆1] × [∆2, 2v0 − ∆2], where ∆1 = s0/N

(1)
0 , ∆2 = v0/N

(2)
0 . We

take (N
(1)
0 , N

(2)
0 ) = (100, 15), and the resulting spatial grid ΠTR

x ⊗ ΠUnif
x contains

(2×100+1)× (2×15+1) = 6231 points in the reculangular domain [100/100, 200−
100/100]× [0.4/15, 0.8− 0.4/15](≈ [1, 199]× [0.0267, 0.7733].) For g1 and g2, we take
g1 = g2 = 1.

Numerical solutions using exponential integrators are reported in Table 2.5. As
Nt increases, the solutions seem to converge approximately Y0,(100,0.4)

0 ≈ 5.6394. As
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before, faster convergence of multi-stage methods than 1-stage methods has been
confirmed. Numerical solutions using the LSMC method is given in Table 2.6.

Nt = 10 Nt = 20 Nt = 50 Nt = 100 Nt = 200

Lawson-Euler
[47]

Y0,(s0,v0)
0 4.7985 5.5605 5.6015 5.6211 5.6302

Runtime [s] 22.79 29.70 66.15 129.13 255.58

Nørsett-Euler
[22]

Y0,(s0,v0)
0 4.9076 5.5662 5.6234 5.6326 5.6360

Runtime [s] 14.71 26.26 61.46 116.11 231.01

ETD2RK
[22]

Y0,(s0,v0)
0 4.9348 5.6006 5.6368 5.6393 5.6394

Runtime [s] 26.15 43.70 112.08 221.11 443.11

ETD3RK
[22]

Y0,(s0,v0)
0 4.9329 5.6014 5.6369 5.6393 5.6394

Runtime [s] 33.04 66.37 159.77 341.57 724.57

ETD4RK
[22]

Y0,(s0,v0)
0 4.9521 5.6015 5.6369 5.6393 5.6394

Runtime [s] 63.90 121.81 293.59 566.32 1150.64

HochOst4
[39]

Y0,(s0,v0)
0 4.9328 5.6013 5.6369 5.6393 5.6394

Runtime [s] 60.23 114.64 285.99 551.47 1117.35

Table 2.5: Numerical solutions Y0,(100,0.4)
0 and its runtime in seconds using dif-

ferent exponential integrators. Here, we spatially discretize (2.50) on ΠTR
x ⊗

ΠUnif
x and solve the resulting system of ODEs. Here, the parameters of

ΠTR
x are (xleft, xcenter, xright, Nx,0, g1, g2) = (1, 100, 199, 100, 1, 1), and of ΠUnif

x are
(xleft, xcenter, xright, Nx,0) ≈ (0.0267, 0.4, 0.7733, 15).

M (N, p) = (6, 6) (N, p) = (7, 7) (N, p) = (8, 8) (N, p) = (9, 9)

1048576
mean 5.5956 5.6132 5.6247 5.6249
std 0.0153 0.0153 0.0179 0.0192

Runtime [s] 3250.84 4737.51 6788.49 9863.74

Table 2.6: Results on numerical solutions Y0,(100,0.4)
0 of (2.50) under the Heston-

SABR model (2.51) using the LSMC methods with Laguerre polynomials up to p-th
order for Nt time steps. Here, M = 220 = 1048576 is the number of samples for the
Monte-Carlo approximation. We run the LSMC algorithm 50 times independently
and collect each Y0,(100,0.4)

0 . The row of “mean” and “std” reports their sample means
and sample (unbiased) standard deviations, respectively. The bottom of the table
reports the total CPU times required for the 50 experments.
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2.5.3.2 Calls Combination with Different Interest Rates under the Hyp
Hyp SLV Model

Consider the Hyp Hyp SLV model [43] defined as:

St = S0 +

∫ t

0

b · Ssds+

∫ t

0

σ0 · F (Ss)G(vs)dW
(1)
s ,

vt = v0 −
∫ t

0

κ · vsds+
∫ t

0

α
√
2κdW (2)

s ,

(2.52)

where

F (x) =
[
(1− β + β2) · x+ (β − 1) · (

√
x2 + β2(1− x)2 − β)

]
/β,

G(v) = v +
√
v2 + 1.

We apply (2.52) to (2.49), and consider BSDE (2.50) with

g(s) = (s− 95)+ − 2(s− 105)+,

which is a payoff function of a combination of two European call options. We choose
the parameters of (2.52) as follows:

T β κ σ0 α ρ b K R r
1.0 0.25 0.5 0.25 0.3 0.8 0.04 100 0.06 0.006

We discretize Xt in the same way of Section 2.5.3.1 except the discretization of St;
because the payoff function g is non-smooth at s = 95 and s = 105, we should em-
ploy the concatenation of two Tavella-Randall grids ΠTR

x with (xleft, xcenter, xright) =
(1, 95, 100) and (xleft, xcenter, xright) = (100, 105, 199); the other parameters are com-
monly taken as Nx,0 = N

(1)
0 /2 = 50 and g1 = g2 = 1.

Results on numerical solutions using exponential integrators are shown in Table
2.7. Numerical solutions of Y0,(s0,v0)

0 at (s0, v0) = (95, 0.4), (100, 0.4), (105, 0.4) have
been reported; as Nt increases, they seem to converge towards

Y0,(95,0.4)
0 ≈ 4.4061, Y0,(100,0.4)

0 ≈ 5.8218, and Y0,(105,0.4)
0 ≈ 5.6394.

Numerical solutions using the LSMC method are presented in Table ??.
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Nt = 10 Nt = 20 Nt = 50 Nt = 100 Nt = 200

Lawson-Euler
[47]

Y0,(95,0.4)
0 4.5589 4.4829 4.4368 4.4214 4.4137

Y0,(100,0.4)
0 6.0971 5.9595 5.8768 5.8492 5.8355

Y0,(105,0.4)
0 5.9113 5.7756 5.6938 5.6665 5.6529

Runtime[s] 15.32 24.69 57.58 113.83 231.95

Nørsett-Euler
[22]

Y0,(95,0.4)
0 4.5561 4.4787 4.4343 4.4200 4.4130

Y0,(100,0.4)
0 5.9936 5.9035 5.8531 5.8371 5.8293

Y0,(105,0.4)
0 5.7821 5.707 5.6652 5.6520 5.6456

Runtime[s] 13.52 22.99 52.94 108.18 198.73

ETD2RK
[22]

Y0,(95,0.4)
0 4.4217 4.4115 4.4074 4.4065 4.4063

Y0,(100,0.4)
0 5.8444 5.8294 5.8236 5.8224 5.8220

Y0,(105,0.4)
0 5.6631 5.6473 5.6412 5.6400 5.6396

Runtime[s] 22.80 41.33 99.87 206.08 419.02

ETD3RK
[22]

Y0,(95,0.4)
0 4.4082 4.4068 4.4063 4.4062 4.4061

Y0,(100,0.4)
0 5.8248 5.8227 5.8220 5.8218 5.8218

Y0,(105,0.4)
0 5.6424 5.6403 5.6396 5.6395 5.6394

Runtime[s] 36.45 64.68 157.76 327.25 631.46

ETD4RK
[22]

Y0,(95,0.4)
0 4.4080 4.4068 4.4063 4.4062 4.4061

Y0,(100,0.4)
0 5.8243 5.8226 5.8220 5.8218 5.8218

Y0,(105,0.4)
0 5.6421 5.6403 5.6396 5.6395 5.6394

Runtime[s] 59.71 113.26 257.03 499.43 1060.09

HochOst4
[39]

Y0,(95,0.4)
0 4.4080 4.4068 4.4063 4.4062 4.4061

Y0,(100,0.4)
0 5.8244 5.8226 5.8220 5.8218 5.8218

Y0,(105,0.4)
0 5.6421 5.6403 5.6396 5.6395 5.6394

Runtime[s] 59.85 113.38 275.02 544.55 1043.06

Table 2.7: Numerical solutions Y0,(s0,v0)
0 at (s0, v0) = (95, 0.4), (100, 0.4), (105, 0.4) of

(2.52) and its runtime in seconds using different exponential integrators. Here, we
spatially discretize (2.50) on ΠTR

x ⊗ΠUnif
x , and solve the resulting system of ODEs. We

employ concatenation of two Tavella-Randall grids ΠTR
x with (xleft, xcenter, xright) =

(1, 95, 100) and (xleft, xcenter, xright) = (100, 105, 199) in the St-direction. In both
grids, we take Nx,0 = 50 and g1 = g2 = 1.
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M (S0, v0) (N, p) = (6, 6) (N, p) = (7, 7) (N, p) = (8, 8) (N, p) = (9, 9)

1048576

(95, 0.4)
mean 4.4666 4.4503 4.4448 4.4369
std 0.0138 0.0140 0.0145 0.0178

(100, 0.4)
mean 5.7952 5.7897 5.7851 5.7824
std 0.0200 0.0207 0.0196 0.0253

(105, 0.4)
mean 5.6619 5.6384 5.6293 5.6384
std 0.0250 0.0299 0.0350 0.0331

Avg Runtime [s] 3614.21 5123.17 7363.07 8898.37

Table 2.8: Results on numerical solutions Y0,(100,0.4)
0 of (2.50) under the HypHyp

SLV model (2.52) at (s0, v0) = (95, 0.4), (100, 0.4), (105, 0.4) using the LSMC meth-
ods with Laguerre polynomials up to p-th order for Nt time steps. Here, M =
220 = 1048576 is the number of samples for the Monte-Carlo approximation. For
each (s0, v0), we run the LSMC algorithm 50 times independently and collect each
Y0,(s0,v0)

0 . The row of “mean” and “std” reports their sample means and sample (unbi-
ased) standard deviations, respectively. The bottom of the table reports the average
of the total CPU times for the three cases.

2.6 Conclusion

A Markov BSDE driven by a CTMC associates with a system of ODEs. With ar-
guments based on this observation, we proposed the multi-stage Euler-Maruyama
methods for the BSDE, directly related to exponential integrators for solving the
system of ODEs. Together with a suitable spatial discretization, these methods can
be applied to solve BSDEs driven by Brownian motion. The efficiency of our nu-
merical methods has been confirmed through numerical experiments using derivative
pricing problems in mathematical finance.

2.7 Proofs

2.7.1 Proof of Theorem 2.2.2

Proof. For a solution Ut to (2.12), the Itô formula immediately implies (Yt, Zt) =
(X∗

t Ut, Ut) solves (2.9).
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Let t1 and t2 be fixed. Without loss of generality, assume that t2 > t1.

Y t1,ei
t1 − Y t2,ei

t2 = E[Y t1,ei
t1 − Y t1,ei

t2 + (X t1,ei
t2 )∗Vt2 − e∗iX

t2,ei
t2 ]

= E
[∫

]t1,t2]

h(X t1,ei
u− , u, Y t1,ei

u− , Zt1,ei
u )du−

∫
]t1,t2]

dM∗
uZ

t1,ei
u

+

(∫
]t1,t2]

Q∗
uX

t1,ei
u− −Mt2 +Mt1

)∗

Vt2

]
= E

[∫
]t1,t2]

[h(X t1,ei
u− , u, Y t1,ei

u− , Zt1,ei
u ) + (X t1,ei

u− )∗QuVt2 ]du

]
Hence,

|Y t1,ei
t1 − Y t2,ei

t2 | ≤ C
√
t2 − t1

√∫
]t1,t2]

E[|h(X t1,ei
u− , u, Y t1,ei

u− , Zt1,ei
u ) + (X t1,ei

u− )∗QuVt2|2]du

Using the uniform boundedness of Qu, the Lipschitz continuity of h, evaluate the
integrand as

|h(X t1,ei
u− , u, Y t1,ei

u− , Zt1,ei
u ) + (X t1,ei

u− )∗QuVt2|2

≤ C(|Y t1,ei
u− |2 + ‖Zt1,ei

u ‖2
X

t1,ei
u−

+ |h(X t1,ei
u− , u, 0, 0)|2 + sup

0≤s,u≤T
i=1,...,N

|e∗jQsVu|2).

Recall that Qs is assumed to be uniform bounded and that

E
∫
]t1,t2]

|h(X t1,ei
u− , u, 0, 0)|2du =

N∑
j=1

∫
]t1,t2]

|h(ej, u, 0, 0)|2P(X t1,ei
u = ej|X t1,ei

t1 = ei)du

≤ C sup
j=1,...,N

∫
]0,T ]

|h(ej, u, 0, 0)|2du.

Hence,

|Y t1,ei
t1 − Y t2,ei

t2 | ≤ C
√
t2 − t1

(
E
[
sup

0≤u≤T
|Y t1,ei

u |2 +
∫
]0,T ]

‖Zt1,ei
u ‖2

X
t1,ei
u−

+ sup
i=1,...,N

∫
]0,T ]

|h(ei, u, 0, 0)|2du+ 1

]
du

)
,

from which the continuity of t 7→ Y t,ei
t directly follows, as well as of Vt. Using

(∆X t,ei
u )∗Vu = ∆((X t,ei

u )∗Vu) = ∆Y u,X
t,ei
u

u = ∆Y t,ei
u = ∆M∗

uZ
t,ei
u = (∆X t,ei

u )∗Zt,ei
u ,
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we obtain
∫
]0,t]

(dX t,ei
u )∗(Zt,ei

u − Vu) = 0. Notice that∫
]0,t]

dM∗
u(Z

t,ei
u − Vu) = −

∫
]0,t]

(X t,ei
u− )∗Qu(Z

t,ei
u − Vu)du = 0,

since any predictable finite variation martingales starting at 0 takes zero constantly
(e.g. Corollary 8.2.14, p.204 in [19].) Hence

E
∫
]0,T ]

‖Zt,ei
u − Vu‖2Xt,ei

u−
du = E

∣∣∣∣∫
]0,T ]

dM∗
u(Z

t,ei
u − Vu)

∣∣∣∣2 = 0,

which means Zt,ei
u ∼M Vu. Together with the Lipschitz continuity,

h(X t,ei
u− , u, (X

t,ei
u− )∗Vu, Z

t,ei
u ) = h(X t,ei

u− , u, (X
t,ei
u− )∗Vu, Vu), du⊗ dP-a.s.

Plugging it into the conditional expectation representation of Y t,ei
t , we obtain for

t ∈ [0, T ],

e∗iVt = Y t,ei
t = e∗iΦ(T, t)G+ e∗i

∫
]t,T ]

Φ(u, t)H(u, Vs)du,

which results in the variation-of-constants of (2.12) in what follows:

Vt = Φ(T, t)G+

∫ T

t

Φ(s, t)H(s, Vs)ds.

2.7.2 Proof of Proposition 2.4.1

Proof. We show e∗jQei ≥ 0 for i 6= j and
∑

i e
∗
jQei = 0 for all j = 1, . . . , N . It is

trivial for j = 1 and N since e∗1Q = e∗NQ = 0. Let j = 2, . . . , N − 1 be fixed. The
condition

∑N
i=1 e

∗
jQei = 0 clearly holds since

e∗iQei−1 + e∗iQe
∗
i+1 =

σ2(xi)− δxiµ(xi)

δxi−1(δxi−1 + δxi)
+
σ2(xi) + δxi−1µ(xi)

δxi(δxi−1 + δxi)

= −(δxi − δxi−1)µ(xi)− σ2(t, xi)

δxiδxi−1

= −e∗iQei.

We remain to prove the nonnegativity of off-diagonal elements of Q. Denote µ(xi) =
µ(xi)

+ − µ(xi)
−, where

µ(x)+ = max {µ(x), 0} (≥ 0) and µ(x)− = −min {µ(x), 0} (≥ 0).
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We obtain

σ2(xi)− δxiµ(xi)

δxi−1(δxi−1 + δxi)
=
µ(xi)

−

δxi−1

+
σ2(si)− (δxi−1µ(xi)

− + δxiµ(xi)
+)

δxi−1(δxi−1 + δxi)
(2.53)

and

σ2(xi) + δxi−1µ(xi)

δxi(δxi−1 + δxi)
=
µ(xi)

+

δxi
+
σ2(xi)− (δxi−1µ(xi)

− + δxiµ(xi)
+)

δxi(δxi−1 + δxi)
. (2.54)

The first terms on the right-hand side of (2.53) and (2.54) are clearly nonnnegative.
Under the condition (2.39), we obtain

σ2(xi) ≥ max
1≤j≤N−1

{δxj} · |µ(xi)| = max
1≤j≤N−1

{δxj}(µ+(xi) + µ−(xi))

≥ δxi−1µ
−(xi) + δxiµ

+(xi),

so that the second terms in (2.53) and (2.54) are nonnegative. Moreover, if (2.39) is
strict, (2.53) and (2.54) are positive.

2.7.3 Proof of Proposition 2.4.2

In this subsection, IN is the N × N identity matrix, δij is the Kronecker’s delta,
1 = (1, 1, . . . , 1)∗ ∈ RN , and

ψM1,ei = diag(M∗
1 ei)−M∗

1 diag(ei)− diag(ei)M1. (2.55)

for N ×N matrix M1. We sometimes omit subscripts when they can be unambigu-
ously determined from the context.

Step 1. Let h(ei, t, y, z) := f(t, xi, e
∗
i z, σ

∗(xi)(e
∗
i D̃

(1)
1 z, . . . , e∗i D̃

(d)
1 z)∗) for t ∈ [0, T ],

i = 1, . . . , N , y ∈ R and z ∈ RN . The Lipschitz continuity for f implies

|h(ei, t, y, z)− h(ei, t, y
′, z′)|2

≤ L(|y − y′|2 + ‖σ∗(xi)(e
∗
i D̃

(1)
1 (z − z′), . . . , e∗i D̃

(d)
1 (z − z′))∗‖2).

To obtain the desired result, it is sufficient to show

‖σ∗(xi)(e
∗
i D̃

(1)
1 (z − z′), . . . , e∗i D̃

(d)
1 (z − z′))∗‖2 ≤ C‖z − z′‖2ei (2.56)
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for some constant C > 0 for any i = 1, . . . , N . As the left-hand side of (2.56) can be
represented as a quadratic form of symmetric matrix

M0 :=
d∑

p,q=1

(σσ∗)(p,q)(xi)(D̃
(q)
1 )∗eie

∗
i D̃

(p)
1 , (2.57)

(2.56) is equivalent to the positive semi-definiteness of Mi,C := CψQ,ei −M0. Before
showing this, we require several lemmas in Step 2.

Step 2. In this step, for any N × N matrix M1, we denote M (N−1)
1 as the (N −

1)× (N − 1) matrix obtained by removing the last row and column vector of M1.

Lemma 2.7.1. Let M1,M2 be N × N real symmetric matrices satisfying M11 = 0
and M21 = 0. If M (N−1)

1 is positive definite, cM1 −M2 is positive semi-definite for
sufficiently large c > 0.

Proof. Let λ1 > 0 be the minimum eigenvalue of M (N−1)
1 , and λ2 be the maximum

eigenvalue of M (N−1)
2 . cM

(N−1)
1 −M

(N−1)
2 is positive definite for c > (λ2/λ1) ∨ 0.

Indeed, for any non-zero vector z, we see that

z∗(cM
(N−1)
1 −M

(N−1)
2 )z ≥ cλ1‖z‖2 − λ2‖z‖2 > 0.

Since any real symmetric matrix M0 satisfying M01 = 0 has the following block
matrix representation

M0 =

(
M

(N−1)
0 −M (N−1)

0 1

−1∗M
(N−1)
0 1

∗M
(N−1)
0 1

)
,

the quadratic form of M can be written as

z∗M0z = (x∗, y)

(
M

(N−1)
0 −M (N−1)

0 1

−1∗M
(N−1)
0 1

∗M
(N−1)
0 1

)(
x
y

)
= (x− y1)∗M

(N−1)
0 (x− y1),

(2.58)
for z = (x∗, y)∗ ∈ RN . Applying M0 = cM1 −M2 to (2.58), the quadratic form takes
a positive value for z = (x∗, y) except x − y1 = 0, and takes zero if x − y1 = 0.
Hence the positive semi-definiteness of cM1 −M2 is obtained.

Lemma 2.7.2. For i, j = 1, . . . , N and any matrix M1,

ψM1,eiej = (e∗iM1ej)(ej − ei)− δijM
∗
1 ej. (2.59)
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Proof. We can see it directly as:

ψM1,eiej = diag(M∗
1 ei)ej −M∗

1 eie
∗
i ej − eie

∗
iM1ej

= e∗iM1ej · ej − δijM
∗
1 ei − e∗iM1ej · ei = (e∗iM1ej)(ej − ei)− δijM

∗
1 ej.

Lemma 2.7.3. Let i = 1, . . . , N be fixed, and M1 be a matrix satisfying e∗iM1ej > 0

for all j ∈ {1, . . . , N} \ {i} and e∗iM11 = 0 (Note that e∗iM1ei = −
∑N

j=1,j ̸=i e
∗
iM1ej.)

Then, ψ(N−1)
M1,ei

is positive definite.

Proof. Since (2.59), e∗iM1ej for j 6= i is strictly positive under the assumption of this
lemma. Thus ψ(N−1)

M1,eN
= diag(e∗NM1e1, . . . , e

∗
NM1eN−1) is positive definite obviously.

Let x ∈ RN−1 \ {0} and i < N be fixed.

x∗ψ
(N−1)
M1,ei

x =
N−1∑
j=1

N−1∑
k=1

[(δjk − δki)e
∗
iM1ej − δije

∗
iM1ek]e

∗
kxe

∗
jx (2.60)

= [(δii − δii)e
∗
iM1ei − δiie

∗
iM1ei]e

∗
ixe

∗
ix

+
N−1∑
j=1
j ̸=i

[(δji − δii)e
∗
iM1ej − δije

∗
iM1ei]e

∗
ixe

∗
jx

+
N−1∑
k=1
k ̸=i

[(δik − δki)e
∗
iM1ei − δiie

∗
iM1ek]e

∗
kxe

∗
ix

+
N−1∑
j=1
j ̸=i

N−1∑
k=1
k ̸=i

[(δjk − δki)e
∗
iM1ej − δije

∗
iM1ek]e

∗
kxe

∗
jx

(2.61)

= −e∗iM1ei(e
∗
ix)

2 − 2

N−1∑
j=1
j ̸=i

e∗iM1eje
∗
jx

 e∗ix+ N−1∑
j=1
j ̸=i

e∗iM1ej(e
∗
jx)

2. (2.62)

Note that −e∗iM1ei > 0. The discriminant of (2.62) as a quadratic polynomial of e∗ix
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can be evaluated in what follows:N−1∑
j=1
j ̸=i

√
e∗iM1ej(

√
e∗iM1eje

∗
jx)


2

+ e∗iM1ei

N−1∑
j=1
j ̸=i

e∗iM1ej(e
∗
jx)

2

≤
N−1∑
j=1
j ̸=i

e∗iM1ej

N−1∑
k=1
k ̸=i

e∗iM1ej(e
∗
jx)

2 + e∗iM1ei

N−1∑
j=1
j ̸=i

e∗iM1ej(e
∗
jx)

2

=
N−1∑
j=1

e∗iM1ej

N−1∑
k=1
k ̸=i

e∗iM1ej(e
∗
jx)

2,

(2.63)

where we have applied the Cauchy-Schwarz inequality to obtain the first inequality.
The assumptions onM1 leads to

∑N−1
j=1 e

∗
iM1ej = −e∗iM1eN < 0, and the discriminant

(2.63) is negative for any x. Hence (2.62) is always positive which amounts to the
positive definiteness of ψ(N−1)

M1,ei
.

Step 3. Suppose that e∗iQ contains no elements that equal 0. Then, Q satisfies
the assumptions of Lemma 2.7.3, and the positive definiteness of ψ(N−1)

Q,ei
is obtained.

ψQ,ei1 = 0 is clear, and M01 = 0 follows from assumption 2.41. Applying M1 =
ψQ,ei1 and M2 = M0 into Lemma 2.7.1, the positive semi-definiteness of Mi,C is
obtained for sufficiently large C > 0.

Step 4. In the case of e∗iQ possibly containing element 0, the following arguments
are required for obtaining the desired result. To this end, We additionally introduce
some notations: Denote ei,N as the i-th unit vector in RN whose i-th element is 1.
Note that we sometimes omit subscripts N and simply write ei when they can be
unambiguously determined from the context. For N -dimensional vector v, denote
I(v) = {n1, . . . , nK} ⊂ {1, . . . , N} as the collection of indices of the elements that
are non-zero. Similarly, for a N × N real symmetric matrix M1, denote I(M1) =
{n1, . . . , nK} ⊂ {1, . . . , N} as the collection of indices of non-zero row/column vectors
in M1. In both cases, nk is sorted in ascending order, and K means the total number.
For a N ×N matrix M1 and a collection of indices J = {n1, . . . , nK} ⊂ {1, . . . , N},
denote MJ

1 as a K ×K matrix obtained by removing the rows and column vectors
that do not belong to J . Equivalently, it can be defined by

MJ
1 = IJ ,NM1I

∗
J ,N , (2.64)
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where IJ ,N is a N ×K matrix as

IJ ,N =
(
en1,N . . . enK ,N

)
.

Note that IJ ,NI
∗
J ,N = IK . First, we confirm the follwing two lemmas.

Lemma 2.7.4. Let J = {n1, . . . , nK} ⊂ {1, . . . , N} be a collection of indices. For
any N ×N matrix M1,

e∗k,KM
J
1 el,K = e∗nk,N

M1enl,N for k, l = 1, . . . , K.

Proof. It immediately follows from (2.64):

e∗k,KM
J
1 el,K = e∗k,KI

∗
J ,NM1IJ ,Nel,K

= e∗k,K

e∗n1,N
...

e∗nK ,N

M1

(
en1,N . . . enK ,N

)
el,K = e∗nk,N

M1enl,N ,

for k = 1, . . . , K.

Lemma 2.7.5. Let J = {n1, . . . , nK} ⊂ {1, . . . , N} be a collection of indices and
M1 a N ×N matrix satisfying M11 = 0. If I(M1) ⊂ J , then MJ

1 1 = 0 holds.

Proof. Note that M1ei,N = 0 for i 6∈ J since I(M1) ⊂ J . Hence,

e∗k,KM
J
1 1 =

K∑
l=1

e∗k,KM
J
1 el,K =

∑
i∈J

e∗nk,N
M1ei,N + 0

=
∑
i∈J

e∗nk,N
M1ei,N +

∑
i ̸∈J

e∗nk,N
M1ei,N =

N∑
i=1

e∗nk,N
M1ei,N = e∗nk,N

M11 = 0,

for k = 1, . . . , K.

Now, we proceed to show the positive semi-definiteness of Mi,C . If e∗iQ = 0, it
is trivial since Mi,C equals the zero matrix. Hereafter, we suppose that e∗iQ 6= 0.
Clearly, Mi,C is positive semi-definite ifMI(Mi,C)

i,C is positive semi-definite. We confirm
the relationship between I(Mi,C), I(e∗iQ), I(ψQ,ei) as well as I(M0).

Lemma 2.7.6. Let N ∈ N be fixed. (ei,N is abbreviated to ei in this lemma and its
proof.)
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1. For all C > 0, i, j = 1, . . . , N ,

ψQ,eiej = 0 ⇐⇒ e∗iQej = 0 =⇒M0ej = 0, (2.65)
e∗iQej = 0 =⇒Mi,Cej = 0. (2.66)

2. For sufficiently large C > 0,

Mi,Cej = 0 =⇒ ψQ,eiej = 0, (2.67)

for i, j = 1, . . . , N .

Therefore I(Mi,C) = I(e∗iQ) = I(ψQ,ei) ⊃ I(M0) holds for sufficiently large C > 0.

Proof. 1. For i 6= j, ψQ,eiej = (e∗iQej)(ej − ei) implies that e∗iQej = 0 if and only
if ψQ,eiej = 0. For i = j, 0 = ψQ,eiei = −Q∗ei ⇐⇒ e∗iQei = 0. Hence
ψQ,eiej = 0 ⇐⇒ e∗iQej = 0 is obtained for any i, j.

Next, assume that e∗iQej = 0. (2.41) leads to e∗i D̃
(p)
1 ej = 0 for all p = 1, . . . , d,

which yields M0ej = 0.
Finally, (2.66) can be seen using (2.65).

2. Take

C > sup

{
e∗kM0ej
e∗kψQ,eiej

: k = 1, . . . , N and e∗kψQ,eiej 6= 0

}
∨ 0,

where sup ∅ = −∞. Assuming that e∗kψeiej 6= 0 for some k ∈ {1, . . . , N},

e∗kMi,Cej = Ce∗kψQ,eiej − e∗kM0ej > 0.

It contradicts that e∗kMi,Cej = 0.

Denote I = {n1, . . . , nK} := I(Mi,C) = I(ψQ,ei,N ) = I(Q∗ei,N), and denote K as
its total number. Observe that

MI
i,C = CψI

Q,ei,N
−MI

0 . (2.68)

As we suppose e∗iQ 6= 0, e∗iQei < 0 and hence i belongs to I. Take i ∈ {1, . . . , K}
that satisfies i = nq. For any k, l = 1, . . . , K,

e∗l,Kψ
I
Q,epek,K = e∗nl,N

ψQ,epenk,N = e∗nl,N
[e∗p,NQenk,N(enk,N − ep,N)− δp,nk

Q∗enk,N ]

= e∗q,KQ
Iek,Ke

∗
l,K(ek,K − eq,K)− δe,ke

∗
l,K(Q

I)∗ek,K

= e∗l,K [e
∗
q,KQ

Iek,K(ek,K − eq,K)− δe,k(Q
I)∗ek,K ] = e∗l,KψQI ,eq,Kek,K ,

where we used Lemma 2.7.4. As a result, we obtain ψI
Q,ei,N

= ψQI ,eq,K . Notice what
follows:
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• ψQI ,eq,K and MI
0 are symmetric.

• Since I(ψQ,ei,N ), I(M0) ⊂ I, Lemma 2.7.5 implies ψI
Q,ei,N

1 = 0 (i.e. ψQI ,eq,K1)
and MI

0 1 = 0.

• Since QI = QI(e∗iQ), e∗qQIel > 0 for k ∈ {1, . . . , K} \ {q} and e∗qQ
I
1 = 0.

Applying M1 = QI to Lemma 2.7.3, we obtain the positive definiteness of
ψ

(K−1)

QI ,eq,K
.

Thus we can apply M1 = ψQI ,eq,K and M2 =MI
0 to Lemma 2.7.1, and we obtain the

positive semi-definiteness of MI
i,C .

2.8 Convergence Results

In this section, we establish a convergence result for the numerical solution discussed
in Section 4 to the true solution of BSDE (2.14). For simplicity, we only consider a
situation with (i) one-dimensional space variable, (ii) the corresponding PDE being
uniquely solvable in the classical sense, as well as (iii) a spatial discretization using
central difference with constant step size i.e. δxi ≡ ∆x > 0.

Throughout the section, the following notations are introduced;

qf : [0, T ]× R× R× R× R 3 (t, x, z, p, r)

7→ µ(x) · p+ σ2(x)

2
· r + f(t, x, z, σ(x) · p) ∈ R.

(2.69)

U
(N,k)
t is a unique solutions of (2.34) for N and k. (2.70)

Denote (2.16) as{
∂tu(t, x) + qf(t, x, u(t, x), ∂xu(t, x), ∂xxu(t, x)) = 0, (t, x) ∈ [0, T ]× R,
u(T, x) = g(x), x ∈ R.

(2.71)

The present analysis in this section is mainly based on the textbook written by
Walter et al.[72]. Suppose that the following conditions are satisfied.

Assumption 2.8.1 ([72], pp.287 and 302). 1. µ(x), σ(x) and f(t, x, y, z) are twice
continuously differentiable in all variables. f and its first- and second-order
derivatives are bounded and uniformly continuous in (t, x, y, z) ∈ [0, T ]×R×B
for any bounded set B ⊂ R2.
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2. For some constant C > 0 and a continuous function λ : [0,∞) → (0,∞)
satisfying

lim
s→∞

λ(s) = ∞ and
∫ ∞

0

ds

s · λ(s)
= ∞, (2.72)

it holds

f(t, x, y, 0)∨(−f(t, x,−y, 0)) ≤ C+y·λ(y), for any (t, x, y) ∈ [0, T ]×R×[0,∞).

3. σ2(x) > 0 for any x ∈ R.

4. For any M > 0, there exists C0 > 0 and λ0 : [0,∞) → (0,∞) satisfying the
following conditions:

• λ0 is continuous and satisfies (2.72).
• For (t, x) ∈ [0, T ]× R, |y| ≤M and z ≥ 0,

|z|∂yf(t, x, y, σ(x)z) ≤ |z|λ0(z) + C0.

5. g ∈ C2
b (R).

We obtain the following lemmas. For details, see [72], Chapter IV, Section 36.

Lemma 2.8.1 ([72], p.292). Cauchy problem (2.71) with µ(x), σ(x), f(t, x, y, z) and
g(x) satisfying Assumption 2.8.1 is uniquely solvable if g is three times continuously
differentiable and g, ∂xg, ∂xxg and ∂xxxg are bounded and Lipschitz continuous.

Lemma 2.8.2 ([72], p.301). If (2.71) satisfying Assumption 2.8.1 (not necessarily
the case in Lemma 2.8.1) admits a unique solution u, then for every ∆x > 0, the
infinite system of ODEs,de

∗
iU

(∞,∆x)
t

dt
= qf(t, i∆x, e∗iU

(∞,∆x)
t , e∗iD1U

(∞,∆x)
t , e∗iD2U

(∞,∆x)
t ),

e∗iU
(∞,∆x)
T = g(i∆x),

(t, i) ∈ [0, T ]×Z,

(2.73)
which is derived from the spatial discretization described in Section 4 with step size
∆x, admits a unique solution U (∞,∆x) : [0, T ] 3 t 7→ U

(∞,∆x)
t = (e∗iU

(∞,∆x)
t )i∈Z ∈ l∞.

Here, l∞ is the Banach space consisting of all real sequences x = (xi)i∈Z with finite
supremum norm ‖x‖∞ = supi∈Z |xi|, and

e∗iD1U
(∞,∆x)
t :=

−1

2∆x
e∗i−1U

(∞,∆x)
t +

1

2∆x
e∗i+1U

(∞,∆x)
t ,

e∗iD2U
(∞,∆x)
t :=

1

∆x2
e∗i−1U

(∞,∆x)
t +

−2

∆x2
e∗iU

(∞,∆x)
t +

1

∆x2
e∗i+1U

(∞,∆x)
t ,
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for i ∈ Z. Furthermore, U (∞,∆x) converges to u in the following sense; for any
compact set K ⊂ R,

lim
k→0

sup
t∈[0,T ],i∆x∈Z

i∆x∈K

|u(t, i∆x)− e∗iU
(∞,∆x)
t | = 0.

Note that Walter et al. [72] do not consider results on the convergence of “trun-
cated” finite systems of ODEs (2.34) to (2.73). Fortunately, it can be carried out
by the standard diagonalization argument using the Arzelà-Ascoli theorem. To this
end, suppose the following Lipschitz condition additionally.

Assumption 2.8.2. There exists L > 0 such that

|f(t, x, y, z)− f(t, x, y′, z′)| ≤ L(|y − y′|+ |z − z′|)

for any (t, x) ∈ [0, T ]× R, y, y′, z, z′ ∈ R.

It leads to the Lipschitz continuity of F defined by (3.31), and (2.34) admits a
unique solution U (N,∆x). Then, we define U (N,∆x)

= (e∗iU
(N,∆x)

)i∈Z ∈ l∞ for N ∈ N
as

e∗iU
(N,∆x)

=


e∗NU

(N,∆x), if i = N + 1, N + 2, . . . ,

e∗iU
(N,∆x), if i = −N,−N + 1, . . . , N − 1, N,

e∗−NU
(N,∆x), if i = −N − 1,−N − 2, . . . .

Lemma 2.8.3. Suppose that Assumption 2.8.1 and 2.8.2 hold, and that Cauchy
problem (2.71) admits a unique solution u. Then, for any ∆x > 0,

lim
N→∞

sup
t∈[0,T ],−N≤i≤N

|e∗iU
(∞,∆x)
t − e∗iU

(N,∆x)

t |∞ = 0.

Here, U (∞,∆x)
t ∈ l∞ is a unique solution of (2.73).

Proof. Let ∆x > 0 be fixed.

Uniform Boundedness of (U
(N,∆x)

t )∞N=1. Note that

sup
N∈N

|e∗iU
(N,∆x)
T | ≤ ‖g(x)‖∞, sup

(t,x)∈[0,T ]×R
|f(t, x, 0, 0)| < C, (2.74)

which follow from 5 and 2 in Assumption 2.8.1, respectively. For N ∈ N and i = ±N ,
2 in Assumption 2.8.1 and the Lipschitz continuity 2.8.2 lead to

|f(t, i∆x, e∗iU
(N,∆x)
t , σ(i∆x)e∗iD1U

(N∆x)
t ))| = |f(t, i∆x, e∗iU

(N,∆x)
t , 0)| ≤ C+L|e∗iU

(N,∆x)
t |.
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These estimates imply

|e∗iU
(N,∆x)
t | ≤ C + ‖g(x)‖∞ + L

∫ T

t

|e∗iU (N,∆x)
s |ds for i = ±N. (2.75)

Applying the Grönwall inequality to (2.75), we obtain

|e∗−NU
(N,∆x)
t | ∨ |e∗NU

(N,∆x)
t | ≤ eLT · [C + ‖g(x)‖∞] =: c1, (2.76)

for any N ∈ N and t ∈ [0, T ]. For N > i > −N , notice that using (2.74) and the
Lipschitz continuity,

|f(t, i∆x, e∗iU
(N,∆x)
t , σ(i∆x)e∗iD1U

(N,∆x)
t )|

≤ C + L

[
|e∗iU

(N,∆x)
t |+ ‖σ‖∞

|e∗i+1U
(N,∆x)
t |+ |e∗i−1U

(N,∆x)
t |

2∆x

]

≤ (C ∨ L ∨ L‖σ‖∞
2∆x

)[1 + |e∗iU
(N,∆x)
t |+ |e∗i+1U

(N,∆x)
t |+ |e∗i−1U

(N,∆x)
t |],

and

µ(ki)·
|e∗i+1U

(N,∆x)
t |+ |e∗i−1U

(N,∆x)
t |

2k

+
σ2(i∆x)

2

2|e∗i+1U
(N,∆x)
t |+ |e∗iU

(N,∆x)
t |+ 2|e∗i−1U

(N,∆x)
t |

2k2

≤ 2

(
‖µ‖∞
2∆x

∨ ‖σ‖2

4∆x2

) i+1∑
j=i−1

|e∗jU
(N,∆x)
t |.

Let C ′ := C ∨ L ∨ L∥σ∥∞
2∆x

, C ′′ = 2
(

∥µ∥∞
2k

∨ ∥σ∥2
4∆x2

)
, and c2 := C ′ + C ′′. Since

|e∗iU
(N,∆x)
t | ≤ ‖g(x)‖∞ + C ′T + c2

∫ T

t

i+1∑
m=i−1

|e∗mU (N,∆x)
s |ds

≤ ‖g(x)‖∞ + C ′T + c2

∫ T

t

sup
|j|<N

j+1∑
m=j−1

|e∗mU (N,∆x)
s |ds

≤ ‖g(x)‖∞ + C ′T + 2c2c1T + 3c2

∫ T

t

sup
|j|<N

|e∗jU (N,∆x)
s |ds
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for N > i > −N , we obtain

sup
t∈[0,T ],|i|<N

|e∗iU
(N,∆x)
t | ≤ e3c2T [‖g(x)‖∞ + C ′T + 2c2c1T ] =: c3.

Therefore, supt∈[0,T ] ‖U
(N,∆x)

t ‖∞ = sup
|i|≤N

|e∗iU
(N,∆x)
t | ≤ c1 ∨ c3 =: c4.

Uniform Boundedness of (
dU

(N,∆x)
t

dt
)∞N=1 It follows from∣∣∣∣∣de∗iU (N,∆x)

t

dt

∣∣∣∣∣ ≤ C + L|e∗iU
(N,∆x)
t | ≤ C + Lc4

for i = ±N , and∣∣∣∣∣de∗iU (N,∆x)
t

dt

∣∣∣∣∣ ≤ C ′ + 2c2c1 + 3c2 sup
|i|<N

|e∗iU (N,∆x)
s | ≤ C ′ + 2c2c1 + 3c2c4

for N > i > −N . (dU
(N,∆x)
t

dt
)∞N=1 has an uniform upper bound c5 := (C +Lc4)∨ (C ′ +

2c2c1 + 3c2c4).

Equicontinuity of (U
(N,∆x)
t )∞N=1 It follows from the mean value theorem and the

uniform boundedness of (dU
(N,∆x)
t

dt
)∞N=1. Precisely, for any t, t′ ∈ [0, T ], −N ≤ i ≤ N ,

and N ∈ N,

|U (N,∆x)
t ei − U

(N,∆x)
t′ ei| ≤ sup

s∈[0,T ]

∣∣∣∣∣dU (N,∆x)
s ei
ds

∣∣∣∣∣ |t− t′| < c5|t− t′|,

which immediately leads to the equicontinuity.

Equicontinuity of (
dU

(N,∆x)
t

dt
)∞N=1. Let s, t ∈ [0, T ] be fixed. Since (

dU
(N,∆x)
t

dt
)∞N=1 is

uniformly bounded, using the mean value theorem,

|f(s, i∆x, U (N,∆x)
s ei, σ(i∆x)e

∗
iD1U

(N,∆x)
s )− f(s, i∆x, e∗iU

(N,∆x)
t , σ(i∆x)e∗iD1U

(N,∆x)
t )|

≤ L

(
1 ∨ ‖σ‖∞

∆
x

) i+1∑
j=i−1

|e∗jU (N,∆x)
s − e∗jU

(N,∆x)
t |

= 3Lc5

(
1 ∨ ‖σ‖∞

∆
x

)
︸ ︷︷ ︸

=:c6

·|s− t| = c6|s− t|

(2.77)
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and

|f(s, i∆x, e∗iU
(N,∆x)
t , σ(i∆x)e∗iD1U

(N,∆x)
t )− f(t, i∆x, e∗iU

(N,∆x)
t , σ(i∆x)e∗iD1U

(N,∆x)
t )|

≤ sup
t′∈[0,T ]

|∂tf(t′, i∆x, e∗iU
(N,∆x)
t , σ(i∆x)e∗iD1U

(N,∆x)
t )| · |s− t|

≤ sup
(t′,x,y,z)∈[0,T ]×R3

|∂tf(t′, x, y, z)| · |s− t| < c7|s− t|.

(2.78)

Using (2.77), (2.78) and the triangle inequality,

∣∣∣∣∣de∗iU (N,∆x)
s

dt
− de∗iU

(N,∆x)
t

dt

∣∣∣∣∣
≤ |f(s, i∆x, e∗iU (N,∆x)

s , σ(i∆x)e∗iD1U
(N,∆x)
s )− f(t, i∆x, e∗iU

(N,∆x)
t , σ(i∆x)e∗iD1U

(N,∆x)
t )|

+ C ′′ [|e∗i+1U
(N,∆x)
s |+ |e∗iU (N,∆x)

s |+ |e∗i−1U
(N,∆x)
s |

]
≤ [C ′′ + c6 + c7] · |s− t|,

from which (
dU

(N,∆x)
t

dt
)∞N=1 enjoys the equicontinuity.

Convergence. Let (Nn)
∞
n=1 be an arbitrary subsequence of N. Applying the Arzelà-

Ascoli theorem ([56], P.290) guarantees the existence of convergent subsequences

U
(Nn(j),∆x)

t and
dU

(Nn(j),∆x)

t

dt
. Let U (Nn(∞),∆x)

t and
dU

(Nn(∞),∆x)

t

dt
be the limit functions

of t in the sense as

lim
j→∞

sup
t∈[0,T ]

‖U (Nn(∞),∆x)

t − U
(Nn(j),∆x)

t ‖∞ = 0,

lim
j→∞

sup
t∈[0,T ]

∥∥∥∥∥dU
(Nn(∞),∆x)

t

dt
− dU

(Nn(j),∆x)

t

dt

∥∥∥∥∥
∞

= 0.
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Using the triangle inequality,∣∣∣∣∣de∗iU
(Nn(∞),∆x)

t

dt
− de∗iU

(Nn(j),∆x)

t

dt

∣∣∣∣∣
=

∣∣∣∣∣de∗iU
(Nn(∞),∆x)

t

dt
− qf(t, i∆x, e∗iU

(Nn(j))

t , e∗iD1U
(Nn(j))

t , e∗iD2U
(Nn(j))

t )

∣∣∣∣∣
≥ −c8 sup

t∈[0,T ]

‖U (Nn(∞))

t − U
(Nn(j))

t ‖∞

+

∣∣∣∣∣de∗iU
(Nn(∞),∆x)

t

dt
− qf(t, i∆x, e∗iU

(Nn(∞))

t , e∗iD1U
(Nn(∞))

t , e∗iD2U
(Nn(∞))

t )

∣∣∣∣∣ .
Considering j → ∞ yields

de∗iU
(Nn(∞),∆x)

t

dt
= qf(t, i∆x, e∗iU

(Nn(∞))

t , σ(i∆x)e∗iD1U
(Nn(∞))

t , e∗iD2U
(Nn(∞),∆x)

t )

for t ∈ [0, T ] and i ∈ Z, which implies that U (Nn(∞),∆x)

t solves (2.73). Using a
uniqueness result in Lemma 2.8.1, we obtain U (∞,∆x) = U (Nn(∞),∆x). As (Nj)

∞
j=1 is

arbitrary, we obtain the desired result.

Theorem 2.8.1. Suppose that Assumption 2.8.1, 2.8.2 and (2.71) admits a unique
solution u. For any compact set K ⊂ R, it holds

lim
∆x→0

lim
N→∞

sup
−N0≤i≤N0
i∈Z,i∆x∈K

|u(t, i∆x)− e∗iU
(N,∆x)
t | = 0.

Proof. The argument follows from Lemma 2.8.2, 2.8.3 and the triangle inequality;

sup
i∈Z

i∆x∈K

|u(t, i∆x)− e∗iU
(N,∆x)
t | ≤ sup

i∈Z
i∆x∈K

|u(t, i∆x)− e∗iU
(∞,∆x)
t |+ ‖U (∞,∆x)

t − U
(N,∆x)
t ‖∞

→ sup
i∈Z

i∆x∈K

|u(t, i∆x)− e∗iU
(∞,∆x)
t |, N → ∞.

→ 0, ∆x→ 0.





Chapter 3

Multi-Stage Euler-Maruyama
Methods for Backward Stochastic
Differential Equations Driven by
Continuous-Time Markov Chains
with Bounded Stopping Terminal
Times

3.1 Introduction

3.1.1 Overview

In the previous chapter, we studied numerical methods for solving Markov BSDEs
driven by time-homogeneous CTMC (Xt)t∈[0,T ] in what follows:

Xt = x0 +

∫
]0,t]

Q∗Xs−ds+Mt,

Ys = X∗
Tζ +

∫
]s,T ]

H(Xr−, r,Yr−, Zr)dr −
∫
]t,T ]

dM∗
rZr.

(3.1)

We focused on that the solution satisfies Yt = X∗
t Vt up to indistinguishability and

Z ∼M V for a deterministic process Vt that solves an associated system of ODEs and
constructed multi-stage Euler-Maruyama methods for solving (3.1) in Section 2.3;

53
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interestingly, we observed that the methods are equivalent to exponential integrators
for solving the systems of ODEs associated with (3.1). Noticing that exponential
integrators are known as solvers that mitigate numerical instabilities referred to as
the “stiffness”, Section 2.4 proposed to use these methods to solve (3.1) that comes
from a spatial discretization of Markov BSDEs driven by Brownian motions; such
(CTMC-)BSDEs typically associate with stiff systems of ODEs.

In this chapter, we extend these results into a stopping terminal time counterpart
of (3.1), that is,

Xt = x0 +

∫
]0,t]

Q∗
sXs−ds+Mt,

Ys = X∗
T∧τζT∧τ +

∫
]s,T ]

1{r≤τ}H(Xr−, r,Yr−, Zr)dr −
∫
]t,T ]

dM∗
rZr.

(3.2)

Here, τ is a stopping time defined by τ := inf{t ≥ 0 : Xt 6∈ Ξ} for some subset Ξ ⊂ I,
and ζt is deterministic. As seen later, similarly to the case of the terminal times
being deterministic, the solution of (3.2) can be expressed using the solution Vt of
an associated system of ODEs as Yt = X∗

t∧τVt∧τ and Zt ∼M Vt1{t≤τ}, and the multi-
stage Euler-Maruyama methods results in the calculation of Vt using exponential
integrators. In the same way of Section 2.4, we also can utilize the methods to solve
stiff BSDEs driven by CTMCs arising from the spatial discretization of BSDEs driven
by Brownian motion with bounded stopping terminal times.

3.1.2 Motivation : BSDEs with Bounded Stopping Terminal
Times

All of the BSDEs we treated in Chapter 2 have deterministic terminal time, denoted
as T > 0, whereas we can also consider counterparts of BSDEs with non-deterministic
terminal times. Among them, BSDEs with bounded stopping terminal times can be
solved as BSDEs with deterministic terminal times. In Brownian case, for example,
they are written as follows:

Yt = ξ +

∫ T

t

1{s≤τ}f(s,Ys,Zs)ds−
∫ T

t

Z∗
sdWs, t ∈ [0, T ], (3.3)

where τ is a {Ft}t∈[0,T ]-stopping time, {Ft}t∈[0,T ] is the completion of the filtration
generated by Brownian motion (Wt)t∈[0,T ], ξ is FT∧τ -measurable and all other con-
ditions remain the same as the determinisitc case. As the solution of (3.3) satisfies
Yt = Yt∧τ and Zt = Zt1{t≤τ}, it can be regarded as BSDEs whose terminal time is a
bounded stopping time T ∧ τ(= min{T, τ}).
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Let us now motivate (3.3) with an example in mathematical finance. Consider a
European knock-out option, a barrier option. It is paid if the underlying asset price
St = (S(1)

t , . . . ,S(d)
t ) has stayed in a prescribed open domain G. Once St hits ∂G,

the option becomes worthless and the rebate described by a function ϕ0(t, x) is paid.
We can represent the payoff of the option as random variable ϕ(T ∧ τ,ST∧τ ) where

ϕ(t, s) :=

{
ϕ0(t, s), (t, s) ∈ [0, T ]× ∂G,

(s−K)+, (t, s) ∈ {T} ×G,

and τ = inf{t ≥ 0 : St ∈ ∂G}. We are now interested in evaluating the fair price of
the option at time 0 under different interest rates for borrowing and lending. That
is accomplished by considering its hedge portfolio. Suppose that St satisfies

St = s0 +

∫ t

0

µ(Ss)ds+

∫ t

0

σ(Ss)dWs,

for some s0 > 0, µ : Rd → Rd, and σ : Rd → Rd×d being invertible, and consider
a portfolio ∆t = (∆

(1)
t , . . . ,∆

(d)
t )∗ consisting ∆

(i)
t assets of S(i)

t and bonds with bor-
rowing rate R and lending rate r. Let Vt be the wealth process of ∆t. The hedge
portfolio satisfies VT = ϕ(T ∧ τ,ST∧τ ) and the self-financing condition that reads

dVt = 1{t≤τ}[r(Vt −∆∗
tSt)

+ −R(Vt −∆∗
tSt)

−]dt+ 1{t≤τ}∆
∗
tdSt.

Here, (x)+ = max{x, 0} and (x)− = max{−x, 0} for x ∈ R. As a result, writing
Yt := Vt and Zt := ∆∗

tσ(St)1{s≤τ}, we obtain the (Markov) BSDE in what follows:

Yt = ϕ(T ∧ τ,ST∧τ )−
∫ T

t

1{s≤τ}f(s,Ss,Ys,Zs)ds−
∫ T

t

Z∗
sdWs (3.4)

where

f(t, x, y, z) := r(y − z∗σ(x)−1x)+ −R(y − z∗σ(x)−1x)− + z∗σ(x)−1µ(x).

The solution Y0 is then the fair price of the option at time 0.

3.1.3 Organization

This chapter is organized as follows: The end of this section is devoted to notations.
In Section 3.2, we introduce BSDEs with terminal times being stopping times driven
by CTMCs / Brownian motion. Section 3.3 is devoted to constructing multi-stage
Euler-Maruyama methods for solving BSDEs with stopping terminal times (3.1). We
present an application of these methods to BSDEs driven by Brownian motion in
Section 2.4, and its efficiency is confirmed by numerical results in Section 2.5; we
there focus on pricing European barrier options under nonlinear wealth dynamics.
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3.1.4 Notations

Throughout this chapter, the same notations as Chapter 2 are used.

3.2 Preliminary Results

3.2.1 BSDEs Driven by CTMCs with Bounded Stopping Ter-
minal Times

Let X = (Xt)t∈[0,T ] be a continuous-time, finite-state Markov chain with state space
I = {e1, . . . , eN}, for some N ∈ N. Suppose that X is defined on the filtered
probability space (Ω,F ,P,G) where G := (Gt)t∈[0,T ] is the completion of the filtration
generated by X. Denote Qt as the Q-matrix of X. Then, X has the following semi-
martingale representation

Xt = x0 +

∫
]0,t]

Q∗
sXs−ds+Mt.

Here, x0 ∈ {e1, . . . , eN} and Mt is an RN -valued G-martingale.
Generally, the BSDE driven by CTMC X with deterministic terminal time T > 0

is written as
Yt = ξ +

∫
]t,T ]

h(s, Ys−, Zs)ds−
∫
]t,T ]

dM∗
sZs, (3.5)

where ξ is an GT -measurable square-integrable random variable, h : Ω× [0, T ]×R×
RN 3 (ω, t, y, z) 7→ h(ω, t, y, z) ∈ R is G-predictable in (ω, t) and Borel measurable
in (y, z). Recall that the following result on the existence and a uniqueness of the
solution (Y, Z) ∈ S2(G,R)× L2(G, 〈M〉,RN) of (3.5).

Theorem 3.2.1 ([15]). Assume that,

E
[∫

]0,T ]

h(t, 0, 0)2dt

]
<∞,

and that for some constant L > 0,

|h(t, y, z)− h(t, y′, z′)|2 ≤ L(|y − y′|2 + ‖z − z′‖2Xt−), dt⊗ dP-a.s.

for all y, y′ ∈ R and z, z′ ∈ RN . Then, it admits a unique solution (Y, Z) ∈ S2(G,R)×
L2(G, 〈M〉,RN). We remark that it is unique up to indistinguishability for Y and up
to ∼M equivalence for Z.
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The main target of this chapter is the following.

Yt = ξ +

∫
]t,T ]

1{s≤τ}h(s, Ys−, Zs)ds−
∫
]t,T ]

dM∗
sZs, (3.6)

where T > 0 is a determinisitic time horizon, τ is a G-stopping time, ξ is a GT∧τ -
measurable square-integrable random variable and 1{s≤τ} is an indicator function.
Note that, taking f as above, Theorem 3.2.1 directly implies the existence and
uniqueness of the solution of (3.6). Moreover, the following proposition holds.

Proposition 3.2.1. The solution (Y, Z) of (3.6) satisfies Yt = Yt∧τ for t ∈ [0, T ]
and Z ∼M Z1]0,T∧τ ].

Proof. Since YT∧τ = ξ −
∫
]T∧τ,T ]

dM∗
sZs, we obtain YT∧τ = E[YT∧τ |GT∧τ ] = ξ. Note

that for any t ∈ [0, T ],

Yt∧τ1{t∧τ<t} = Yτ1{t∧τ<t} = YT∧τ1{t∧τ<t} = ξ1{t∧τ<t},

and

Yt1{t∧τ<t} = E[Yt1{t∧τ<t}|Gt]

= E
[(

ξ +

∫
]t,T ]

1{s≤τ}h(s, Ys−, Zs)ds−
∫
]t,T ]

dM∗
sZs

)
1{t∧τ<t}

∣∣∣∣Gt

]
= E

[
Yt∧τ1{t∧τ<t} −

∫
]t,T ]

dM∗
sZs1{t∧τ<t}

∣∣∣∣Gt

]
= Yt∧τ1{t∧τ<t} − E

[∫
]t,T ]

dM∗
sZs

∣∣∣∣Gt

]
1{t∧τ<t} = Yt∧τ1{t∧τ<t}.

Yt = Yt∧τ follows from

Yt − Yt∧τ = (Yt − Yt∧τ )1{t∧τ<t} + (Yt − Yt)1{t∧τ=t} = (Yt − Yt∧τ )1{t∧τ<t} = 0

Squaring YT∧τ leads to

ξ2 = Y 2
T∧τ = ξ2 − 2ξ

∫
]T∧τ,T ]

dM∗
sZs +

∣∣∣∣∫
]T∧τ,T ]

dM∗
sZs

∣∣∣∣2 .
Taking conditional expectation E[·|GT∧τ ], we obtain E

[∣∣∣∫]T∧τ,T ]
dM∗

sZs

∣∣∣2∣∣∣∣GT∧τ

]
= 0.

Considering the predictable quadratic variation of
∫
]T∧τ,T ]

dM∗
sZs,

0 = E
[∫

]T∧τ,T ]

‖Zs‖2Xs−ds

∣∣∣∣GT∧τ

]
= E

[∫
]0,T ]

‖Zs1]T∧τ,T ]‖2Xs−ds

∣∣∣∣GT∧τ

]
,

which implies Z1]T∧τ,T ] ∼M 0.
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In this chapter, we mainly focus on the Markov case. Let Ξ ⊂ I and τ = inf{s ≥
0 : Xs 6∈ Ξ} with the usual convention that inf ∅ = ∞. Let ζ : [0, T ] → RN and
h : {e1, . . . , eN} × [0, T ] × R × RN → R be Borel measurable functions. Then, we
consider the following Markov BSDE.

Yt = X∗
T∧τζT∧τ +

∫
]t,T ]

1{r≤τ}h(Xr−, r, Yr−, Zr)dr −
∫
]t,T ]

dM∗
rZr

Associated with it, setting t ∈ [0, T ] as the starting time for the BSDE, we consider
X t,ei

s = ei +

∫
]t,s]

Q∗
uX

t,ei
u− du+Ms −Mt, s > t,

X t,ei
s = ei, s ≤ t,

Y t,ei
s = (X t,ei

T∧τt,ei
)∗ζT∧τt,ei

+

∫
]s,T ]

1{r≤τt,ei}h(X
t,ei
r− , r, Y

t,ei
r− , Zt,ei

r )dr −
∫
]s,T ]

dM∗
rZ

t,ei
r ,

(3.7)
for s ∈ [0, T ]. Then, we give the following nonlinear Feynman-Kac type result.

Theorem 3.2.2. Assume that there exists a constant L > 0 such that

|h(ei, t, y, z)− h(ei, t, y
′, z′)|2 ≤ L2(|y − y′|2 + ‖z − z′‖2ei), (3.8)

for any y, y′ ∈ R, z, z′ ∈ RN , t ∈ [0, T ] and i ∈ Ξ, and E
∫ T

0
h(X t,ei

u− , u, 0, 0)
2du < ∞

for i ∈ Ξ. Define H : [0, T ]× RN → RN such that

e∗iH(t, z) = h(ei, t, e
∗
i z, z) for t ∈ [0, T ], z ∈ RN , i ∈ Ξ.

1. For a solution Ut of the system of ODEse∗i
(
dUt

dt
+QtUt +H(t, Ut)

)
= 0, (t, ei) ∈ [0, T )× Ξ,

e∗iUt = e∗i ζt, (t, i) ∈ ({T} × {e1, . . . , eN}) ∪ ([0, T ]× Ξc),
(3.9)

(Y t,ei
s , Zt,ei

s ) = ((X t,ei
s∧τt,ei )

∗Us∧τt,ei , Us1{s≤τt,x}) ∈ S2(G,R) × L2(G, 〈M〉,RN) is
the unique solution to the BSDE (3.7).

2. Conversely, for a unique solution (Y t,ei
s , Zt,ei

s ) ∈ S2(G,R)× L2(G, 〈M〉,RN) of
(3.7), a continuous function Vt = (Y t,e1

t , . . . , Y t,eN
t )∗ satisfies Vs1{s≤τt,ei} ∼M

Zt,ei
s for i = 1, . . . , N and t ∈ [0, T ], and solves (3.9).



3.2 Preliminary Results | 59

Corollary 3.2.1. Under the square integrability t 7→ h(ei, t, y, z) in [0, T ] and the
uniform Lipschitz continuity (3.8), a unique solution (Y t,ei , Zt,ei) of (3.7) is also a
unique solution of

Y t,ei
s = X∗

T∧τt,ei
ζT∧τt,ei

+

∫
]s,T ]

(X t,ei
r− )∗H(r, Zt,ei

r )1{r≤τt,ei}dr −
∫
]t,T ]

dM∗
rZ

t,ei
r . (3.10)

Moreover, the relation

Y t,ei
s = (X t,ei

s∧τt,ei
)∗Ut∧τt,ei up to indistinguishability and Zt,ei

t ∼M Ut1{t≤τt,ei}

holds, where U is a solution of (3.9).

3.2.2 BSDEs Driven by Brownian motion with Bounded Stop-
ping Terminal Times

Let us introduce the Brownian case of BSDEs with bounded stopping terminal times.
Let T > 0 be a (fixed, deterministic) time horizon, W = (Wt)t∈[0,T ] be a d-dimensional
standard Brownian motion, and F = (Ft)t≥0 be the completion of the filtration
generated by W . Recall that a result on the uniqueness and existence of BSDE

Yt = ξ +

∫ T

t

f(s,Ys,Zs)ds−
∫ T

t

Z∗
sdWs, t ∈ [0, T ], (3.11)

is given in what follows:

Theorem 3.2.3. BSDE (3.11) admits a unique solution (Y ,Z) ∈ S2(F,R)×L2(〈W〉,F,Rd)
under the following conditions:

• ξ is R-valued FT -measurable random variable and satisfies E[ξ2] <∞.

• f : Ω× [0, T ]× R× Rd → R is a F-measurable function that satisfies (i) there
exists K > 0 such that for all y, y′ ∈ R and z, z′ ∈ Rd,

‖f(ω, t, y, z)− f(ω, t, y′, z′)‖2 ≤ K(|y − y′|2 + ‖z − z′‖2) dP⊗ dt-a.s.,

and (ii) E[
∫ T

0
|f(t, 0, 0)|2dt] <∞.

Next, we consider the following BSDE.

Yt = ξ +

∫ T

t

1{s≤τ}f(s,Ys,Zs)ds−
∫ T

t

Z∗
sdWs, t ∈ [0, T ]. (3.12)
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Here, τ is a F-stopping time, ξ is FT∧τ -measurable, and 1{s≤τ} is an indicator func-
tion. If we take f satisfying the conditions above and ξ such that E[ξ2], we can apply
Theorem 3.2.3 and see that BSDE (3.12) admits a unique solution. Moreover, we
note that the following proposition.

Proposition 3.2.2 (Proposition 2.6 in [58]). A solution (Y ,Z) of (3.12) satisfies
Yt = Yt∧τ for t ∈ [0, T ] and Z = 0 dt⊗ P(dω)-a.e. in ]T ∧ τ, T ].

Next, we introduce a “Markov” counterpart of (3.12). To this end, let G ⊂ Rd is
a connected open set whose boundary is of class C1, and define a stopping time

τ = inf{s ≥ 0 : Xs 6∈ G}.

Then, we can formulate Markov BSDEs in what follows:
Xt = x0 +

∫ t

0

µ(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs,

Yt∧τ = χ(T ∧ τ,XT∧τ ) +

∫ T

t

1{s<τ}f(s,Xs,Ys,Zs)ds−
∫ T

t

(Zs)
∗dWs.

(3.13)

where µ : [0, T ] × Rd → Rd, σ : [0, T ] × Rd → Rd×d, f : [0, T ] × Rd × R × Rd → R,
χ : [0, T ] × Rd → R are Borel measurable. Assuming that, there exists L > 0 and
p ∈ N such that

‖µ(t, x)− µ(t, x′)‖+ ‖σ(t, x)− σ(t, x′)‖ ≤ L‖x− x′‖,
|f(t, x, y, z)− f(t, x, y′, z′)| ≤ L(|y − y′|+ ‖z − z′‖),

‖µ(t, x)‖+ ‖σ(t, x)‖ ≤ L(1 + ‖x‖2),
|f(t, x, y, z)|+ |χ(t, x)| ≤ L(1 + ‖x‖p),

(3.14)

for all t ∈ [0, T ], x, x′, z, z′ ∈ Rd and y, y′ ∈ R, (3.13) has a unique solution
((Xt)t∈[0,T ], (Yt)t∈[0,T ], (Zt)t∈[0,T ]) ∈ S2(F,Rd)×S2(F,R)×L2(〈W 〉,F,Rd). It is worth
noting that Markov BSDE (3.13) is related to a Cauchy-Dirichlet problem of second
order parabolic partial differential equations in what follows:

∂u
∂t
(t, x) + Ltu(t, x) + f(t, x, u(t, x), σ∗(x)∇xu(t, x)) = 0, (t, x) ∈ [0, T ]×G,

u(T, x) = κ(x), x ∈ G,

u(t, x) = χ(t, x), (t, x) ∈ [0, T ]× ∂G.

(3.15)
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Here, κ(x) := χ(T, x) for x ∈ G,

Ltu(t, x) =
d∑

i=1

µ(i)(t, x)
∂u

∂xi
(t, x) +

1

2

d∑
i,j=1

(σσ∗)(i,j)(t, x)
∂2u

∂xi∂xj
(t, x) (3.16)

is the infinitesimal generator of the Markov process X ,

∇xu(t, x) =

(
∂u

∂x1
(t, x), . . . ,

∂u

∂xd
(t, x)

)∗

∈ Rd

is the gradient vector, µ(i)(t, x) is the i-th component of µ(t, x), and (σσ∗)(i,j)(t, x)
is the (i, j)-th component of σ(t, x)σ∗(t, x). The precise statement is as follows.

Theorem 3.2.4 (The nonlinear Feynman-Kac formula (pp. 421–422 in [60].)). De-
note τt,x = inf{s ≥ t : X t,x

s 6∈ G} for (t, x) ∈ [0, T ]× G. Suppose that µ, σ, f, χ, κ,G
are defined as above, and also that G is bounded, χ ∈ C([0, T ]× ∂G), and

Λ = {(t, x) ∈ [0, T ]× ∂G : P(τt,x > t) = 0} (3.17)

is a closed set. For (t, x) ∈ [0, T ] × G, let (X t,x,Y t,x,Z t,x) be a unique solution of
the Markov BSDE

X t,x
s = x+

∫ s

t

µ(r,X t,x
r )dr +

∫ s

t

σ(r,X t,x
r )dWr for s ≥ t,

X t,x
s = x ∈ Rd for s ≤ t,

Y t,x
s∧τt,x = χ(T ∧ τt,x,X t,x

T∧τt,x) +

∫ T

s

1{r<τt,x}f(r,X t,x
r ,Y t,x

r ,Z t,x
r )dr

−
∫ T

s

(Z t,x
r )∗dWr for s ∈ [0, T ].

(3.18)

Then,

1. for every classical solution u ∈ C1,2([0, T ]×G;R)∩C([0, T ]×G;R) of (3.15),
the unique solution of BSDE (3.18) is represented as

Y t,x
s = u(s ∧ τt,x,X t,x

s∧τt,x), Z t,x
s = σ∗(X t,x

s )∇xu(s,X t,x
s )1{s<τt,x} for s ≥ t.

(3.19)
(The above inequality is required for (Y t,x

s ,Z t,x
s ) to be of the class S2(F,R) ×

L2(〈W 〉,F,Rd).)
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2. Suppose further that f and g are uniformly continuous with respect to x. Then,
v : [0, T ]×G→ R defined by v(t, x) := Y t,x

t is a viscosity solution of (3.15).

3. Additionally, if for each R > 0 there exists a continuous function mR : [0,∞) →
[0,∞) such that mR(0) = 0, and

|f(t, x, y, z)− f(t, x′, y, z)| ≤ mR(|x− x′|(1 + ‖z‖))

holds for x, x′ ∈ G, y ∈ R, z ∈ Rd such that max{‖x‖, ‖x′‖, ‖z‖} < R, then the
uniqueness of v also holds.

3.3 Multi-Stage Euler-Maruyama Methods

We are interested in multi-stage Euler-Maruyama methods for (3.10). In the deter-
ministic terminal time case, the solution (Y t,ei , Zt,ei) satisfies Y t,ei

s = (X t,ei
s )∗Vt and

Zt,ei ∼M Vt for Vt = (Y t,e1
t , . . . , Y t,eN

t )∗, and the Euler-Maruyama methods result
in exponential integrators for solving ODE system (3.9) which Vt satisfies. In the
stopping terminal time case, on the other hand, the solution (Y t,ei , Zt,ei) satisfies
Y t,ei
s = (X t,ei

s∧τt,ei )
∗Vs∧τt,ei and Zt,ei ∼M V 1]0,T∧τ ]. Here, Vt = (Y t,e1

t , . . . , Y t,eN
t )∗ solves

ODE system (3.9). As seen later, the Euler-Maruyama methods in this case are
accomplished by using exponential integrators for solving (3.9).

For M ∈ N, consider a uniform time partition tm = m∆t (m = 0, 1, . . . ,M)
of interval [0, T ], where ∆t = T/M is the step size. For later use, denote IΞ =
diag(1Ξ(e1), . . . , 1Ξ(eN)) and IΞc = IN −IΞ. Let (Y t,ei , Zt,ei) be the solution of (3.10)
and Vt = (Y t,e1

t , . . . , Y t,eN
t ). Suppose that Vt uniquely solves ODE (3.9). Y tm,ei

tm

satisfies the following backward stochastic difference equation.

Y tm,ei
tm = Y tm,ei

tm+1∧τtm,ei
+

∫
]tm,tm+1]

(X tm,ei
s− )∗H(s, Ztm,ei

s )1{s≤τtm,ei}ds−
∫
]tm,tm+1]

dM∗
sZ

tm,ei
s .

Plugging (Y tm,ei
t , Ztm,ei

t ) = ((X tm,ei
t∧τtm,ei

)∗Vt∧τtm,ei
, Vt1{t≤τtm,ei}),

Y tm,ei
tm = E[Y tm,ei

tm+1
|X tm,ei

tm ] +

∫ tm+1

tm

E[1{r≤τtm,ei}(X
tm,ei
r− )∗H(r, Ztm,ei

r )|X tm,ei
tm ]dr

= E[(X tm,ei
tm+1∧τtm,ei

)∗Vtm+1∧τtm,ei
|X tm,ei

tm ]

+

∫ tm+1

tm

E[1{r≤τtm,ei}(X
tm,ei
r )∗H(r, Vr1{r≤τtm,ei})|X

tm,ei
tm ]dr.
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Since

1{r≤τtm,ei} · (X
tm,ei
r )∗H(r, Vr1{r≤τtm,ei})

= 1{r≤τ} · (X tm,ei
r )∗H(r, Vr) = X∗

r∧τtm,ei
IΞcH(r, Vr),

we obtain

Y tm,ei
tm = E[(X tm,ei

tm+1∧τtm,ei
)∗Vtm+1∧τtm,ei

|X tm,ei
tm ]+

∫ tm+1

tm

E[X tm,ei
r∧τtm,ei

|X tm,ei
tm ]∗IΞcH(r, Vr)dr

(3.20)
for ei ∈ Ξc; otherwise Y tm,ei

tm = e∗i ζtm . We approximate

E[(X tm,ei
tm+1∧τtm,ei

)∗Vtm+1∧τtm,ei
|X tm,ei

tm ] ≈ E[X tm,ei
tm+1∧τtm,ei

|X tm,ei
tm ]∗Vtm+1 (3.21)

Note that the following lemma is useful to proceed:

Lemma 3.3.1. For 0 ≤ t < s ≤ T ,

P(X t,ei
s∧τt,ei

= ej|X t,ei
t = ei) = e∗i exp((s− t)IΞQ)ej for ei ∈ Ξ. (3.22)

Proof. See Section 3.7.2

Plugging (3.22) and (3.21) into (3.20),

Y tm,ei
tm ≈ e∗i

[
exp(∆tIΞQ)Vtm+1 +

∫ tm+1

tm

exp((r − tm)IΞQ)IΞH(r, Vr)dr

]
(3.23)

for ei ∈ Ξ. Hence

Vtm =
∑
i∈Ξ

Y tm,ei
tm ei +

∑
i∈Ξc

Y tm,ei
tm ei

≈ IΞ

[
exp(∆tIΞQ)Vtm+1 +

∫ tm+1

tm

exp((r − tm)IΞQ)IΞH(r, Vr)dr

]
+ IΞcζtm .

(3.24)

The variation-of-constants formula for a system of ODEs is appeared in the first
term of (3.24). Motivated by this observation, we discretize (3.24) using exponential
integrators.



64 | Euler-Maruyama Methods for BSDEs with Stopping Time Horizons

(The Nørsett-Euler Method). For example, applying the Nørsett-Euler method
to (3.24) in what follows:

Vtm ≈ IΞ

[
e∆tIΞQVtm+1 +∆t

(∫ 1

0

e(1−θ)∆tIΞQdθ

)
IΞH(tm+1, Vtm+1)

]
+ IΞcζtm .

Then, we obtain the following scheme.
V M
tM

:= ζtM
,

V M
tm

:= IΞṼtMm + IΞcζtm ,

Ṽ M
tm

:= e∆tIΞQV M
tm+1

+∆t

(∫ 1

0

e(1−θ)∆tIΞQdθ

)
IΞH(tm+1, V

M
tm+1

),

(3.25)

for m = 0, 1 . . . ,M − 1. Note that Ṽ M
tm is calculated by using the Nørsett-Euler

method for one step.

(General s-Stage Exponential Integrators). We can choose different expo-
nential integrators to calculate Utm . Specifically, the general s-stage exponential
integrators in what follows can be applicable:

Ṽ M
tm = χ0(∆tIΞQ)Ṽ

M
tm+1

+∆t
s∑

i=1

bi(∆tIΞQ)Gmi,

Gmi = IΞH(tm+1 − ci∆t, ζ
M
ni ), for i = 1, . . . , s,

ζMmi = χi(∆tIΞQ)Ṽ
M
m+1 +∆t

s∑
j=1

aij(∆tIΞQ)Gnj, for i = 1, . . . , s,

(3.26)

for m = 0, . . . ,M − 1. Here, Gmi is the i-th internal stage, s ∈ N is the number
of stages, ci are real numbers, and χi, aij and bi are functions constructed from
“ϕ-functions” defined by

ϕl(Q) =

∫ 1

0

e(1−θ)Q θl−1

(l − 1)!
dθ for l ∈ N, and ϕ0(Q) = eQ.

As a result, the following scheme is constructed.
V M
tM

:= ζtM
,

V M
tm

:= IΞṼtMm + IΞcζtm ,

Ṽ M
tm

:= (calculated using (3.26))
(3.27)

for m = 0, 1 . . . ,M−1. If necessary, one can construct Ytm and Ztm using V M
tm follow-

ing the way in what follows: (i) Simulate (Xt)t∈[0,T ] and obtain τ0,X0 and (Xtm)
M
m=0.

(ii) Y M
tm

:= X∗
tmV

M
tm∧τ0,X0

and ZM
tm

:= Vtm1{tm≤τ0,X0
}.
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3.4 An Application to BSDEs Driven by Brownian
Motion

This section is devoted to constructing BSDEs with stopping terminal times driven
by CTMCs from suitable spatial discretizations of those who are driven by Brownian
motion, and we propose to use the multi-stage Euler-Maruyama methods to solve
the obtained BSDEs driven by CTMCs. The arguments are carried out similarly
to Section 4 in the previous work with slight modifications. As described there,
this approach is motivated by the following observations: (i) Approximating Markov
BSDEs driven by Brownian motion with BSDEs driven by CTMCs can be interpreted
as the method of lines that approximates second-order parabolic PDEs with systems
of ODEs, and vice versa. (ii) Systems of ODEs arising from the method of lines
typically result in “stiff” systems that cause numerical instabilities. (iii) Exponential
integrators can solve stiff systems successfully. In this section, we briefly explain the
contruction. For details, see the previous work.

Hereafter, we focus on Markov BSDEs (3.13) such that (Xt)t∈[0,T ] is time homo-
geneous, namely, µ(t, x) and σ(t, x) do not depend on t. Then, we can simply write
µ(t, x) = µ(x) and σ(t, x) = σ(x), and the subscript of the infinitesimal generator
can also be omitted: Lt = L.

3.4.1 Method of Lines Spatial Discretization

For p = 1, . . . , d, let a strictly increasing sequence Π(p) = {x(p)n }N(p)

n=1 of length N (p)

be the set of nodes on the p-th axis in Rd, and define δx(p)i := x
(p)
i+1 − x

(p)
i for i =

1, . . . , N (p) − 1. Using the Kronecker product “⊗”, we construct the grid on Rd by

Π = Π(1) ⊗ · · · ⊗ Π(d) = (xi = (x
(1)
i , . . . , x

(d)
i ) : i = 1, . . . , N)

where N :=
∏d

p=1N
(p). Note that multi-indices (i1, . . . , id) are then ordered lexico-

graphically. For any function v : Rd → R, let vΠ = (v(t, x1), v(t, x2), . . . , v(t, xN))
∗ ∈

RN be the evaluation of v over Π. Then, derivatives evaluated at nodes of Π are
replaced by


∂v

∂x(p)
(x1)

...
∂v

∂x(p)
(xN)

 ≈ D̃
(p)
1 uΠ,


∂2v

∂x(p)∂x(q)
(x1)

...
∂2v

∂x(p)∂x(q)
(xN)

 ≈ D̃
(p,q)
1 uΠ,


∂2v

(∂x(p))2
(x1)

...
∂2v

(∂x(p))2
(xN)

 ≈ D̃
(p)
2 uΠ.



66 | Euler-Maruyama Methods for BSDEs with Stopping Time Horizons

Here, N ×N -matrices D̃1 and D̃2 are Kronecker products:

D̃
(p)
k := IN(1) ⊗ · · · ⊗ IN(p−1) ⊗D

(p)
k ⊗ IN(p+1) ⊗ · · · ⊗ IN(d) , k = 1, 2

D̃
(p,q)
1 := IN(1) ⊗ · · · ⊗ IN(p−1) ⊗D

(p)
1 ⊗ IN(p+1) ⊗ · · ·

⊗ IN(q−1) ⊗D
(q)
1 ⊗ IN(q+1) ⊗ · · · ⊗ IN(d) , p 6= q,

where IN(p) is N (p)×N (p) identity matrix, and D(p)
1 and D(p)

2 are N (p)×N (p) matrices
arising from central difference methods:

e∗iD
(p)
1 ej =



−δx(p)i

δx
(p)
i−1(δx

(p)
i−1 + δx

(p)
i )

, j = i− 1,

δx
(p)
i − δx

(p)
i−1

δx
(p)
i δx

(p)
i−1

, j = i,

δx
(p)
i−1

δx
(p)
i (δx

(p)
i−1 + δx

(p)
i )

, j = i+ 1,

0 otherwise,

for 1 < i < N (p),

e∗1D
(p)
1 ei = e∗N(p)D

(p)
1 ei = 0, for 1 ≤ i ≤ N (p),

(3.28)

e∗iD
(p)
2 ej =



2

δx
(p)
i−1(δx

(p)
i−1 + δx

(p)
i )

, j = i− 1,

−2

δx
(p)
i δx

(p)
i−1

, j = i,

2

δx
(p)
i (δx

(p)
i−1 + δx

(p)
i )

, j = i+ 1,

0 otherwise,

for 1 < i < N (p),

e∗1D
(p)
2 ei = e∗N(p)D

(p)
2 ei = 0, for 1 ≤ i ≤ N (p).

(3.29)

where ei is the i-th standard basis vector in RN(p) . We then solve, in place of PDE
(3.15), a system of N ODEs in what follows:e∗i

(
dUΠ

t

dt
+QUΠ

t + F (t, UΠ
t )

)
= 0, (t, ei) ∈ [0, T )× Ξ,

e∗iU
Π
t = e∗i ζ

Π
t , (t, i) ∈ ({T} × {e1, . . . , eN}) ∪ ([0, T ]× Ξc),

(3.30)
Here, Ξ and Ξc are

Ξ := Π ∩G and Ξc := Π ∩ ∂G,
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e∗i ζ
Π
t = χ(t, xi) for (t, xi) ∈ [0, T ]×Ξc, e∗i ζ

Π
T = (κ(x1), . . . , κ(xN))

∗, F : [0, T ]×RN →
RN is defined by

F (t, z) =

 f(t, x1, e
∗
1z, σ(x1)

∗(e∗1D̃
(1)
1 z, . . . , e∗1D̃

(d)
1 z)∗)

...
f(t, xN , e

∗
Nz, σ(xN)

∗(e∗ND̃
(1)
1 z, . . . , e∗ND̃

(d)
1 z)∗)

 , (3.31)

and

Q =
d∑

p=1

diag((µ(p))Π)D̃
(p)
1 +

d−1∑
p=1

d∑
q=p+1

diag((σσ∗)(p,q))Π)D̃
(p,q)
1 +

1

2

d∑
p=1

diag((σσ∗)(p,p))Π)D̃
(p)
2

approximates the infinitesimal generator L of X . The following proposition presents
us a probabilistic point of view of ODE (3.30). Note that its proof is the same as of
Proposition 2.4.2.

Proposition 3.4.1. Suppose that
∫ T

0
f(t, x, 0, 0)2dt < ∞ for any x ∈ Rd, and that

for some L > 0,

|f(t, x, y, z)− f(t, x, y′, z′)|2 ≤ L(|y − y′|2 + ‖z − z′‖2)

for all t ∈ [0, T ], x ∈ Rd, y, y′ ∈ R, and z, z′ ∈ Rd. Suppose further that Q is a
Q-matrix, e∗i D̃

(p)
1 1 = 0, and that

e∗jQei = 0 =⇒ e∗jD̃
(p)
1 ei = 0 for p = 1, . . . , d, (3.32)

for i, j = 1, . . . , N . Then, for any (t, ei) ∈ [0, T ]× I,

Y t,ei
s = (X t,ei

T∧τt,ei
)∗ζT∧τt,ei

+

∫
]s,T ]

1{r≤τ}(X
t,ei
r− )∗F (r, Zt,ei

r )ds−
∫
]s,T ]

dM∗
sZ

t,ei
r

which is derived from the Markov chain approximation of (3.13), has a unique solu-
tion.

3.5 Numerical Results
In this section, we demonstrate the efficiency and stability of the numerical approach
presented in Section 2.4, using BSDEs arising from pricing European barrier options.
We apply spatial discretization to the BSDEs driven by Brownian motions, obtain
BSDEs driven by CTMCs (i.e. a system of ODEs), and calculate numerical solutions
Y t,ei
t using multi-stage Euler-Maruyama methods (i.e. exponential integrators for the

associated ststems of ODEs.) First, we explain the details on settings in what follows:
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Spatial Discretization We approximate the domain at hand with a Kronecker
product of one dimensional grids Π(1), . . . ,Π(d) as described in Section 2.4. Through-
out the section, ΠUnif

x (xleft, xcenter, xright, Nl, Nr) = (xi)
Nl+Nr+1
i=1 means the standard

one-dimensional uniform grid such that x1 = xleft, xNl+1 = xcenter and xNl+Nr+1 =
xright. We occasionally omit its arguments and simply write ΠUnif

x . In addition to the
uniform grid, a non-uniform grid is also employed for spatial discretization. We use
a version of the (one-dimensional) Tavella-Randall-type grids [63] in what follows:

xk =



xcenter + g1 sinh

(
arc sinh

(
xcenter − xleft

g1

)
· k −Nl − 1

Nl

)
,

1 ≤ k ≤ Nl + 1,

xcenter + g2 sinh

(
arc sinh

(
xright − xcenter

g2

)
· k −Nl − 1

Nr

)
,

Nl + 1 ≤ k ≤ Nl +Nr + 1,

(3.33)

where Nl+Nr+1 is the grid size, xleft and xright are the leftmost and rightmost points
of the domain, xcenter ∈ (xleft, xright) is the central point of the grid, and g1 and g2 are
parameters for the left- and right-side of the grid, respectively. Note that x1 = xleft,
xNl+1 = xcenter and xNl+Nr+1 = xright. Intuitively, setting g1 � xcenter − xleft and
g2 � xright − xcenter lead to the grid that is highly concentrated around xcenter. It is
commonly used in numerical computation for pricing options to mitigate the effect
of the nonlinearity of the payoff function [9, 53, 63]. Similarly to the uniform grid,
denote ΠTR

x (xleft, xcenter, xright, Nl, Nr, g1, g2) as the Tavella-Randall grid (3.33) whose
parameters are (xleft, xcenter, xright, Nl, Nr, g1, g2).

Temporal Discretization We employ solvers implemented in DifferentialEqua-
tions.jl [62], listed below:

• LawsonEuler : A single-stage method of classical/stiff order 1/1, referred to as
the Lawson-Euler method [47].

• NorsettEuler : A single-stage method of classical/stiff order 1/1, referred to
as the Nørsett-Euler method or ETD1RK method [22].

• ETDRK2 : A 2-stage method of classical/stiff order 2/2 [22].

• ETDRK3 : A 3-stage method of classical/stiff order 3/3 [22].

• ETDRK4 : A 4-stage method of classical/stiff order 4/2 [22].
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• HochOst4 : A 5-stage method of classical/stiff order 4/4, developed by Hochbruck
and Ostermann [39].

Taking temporal grid size Nt ∈ N, we calculate solutions on the grid ΠUnif
t (Nt) =

(i∆t)Nt
i=0 using these exponential integrators. Here, ∆t = T/Nt is the step size. Note

that a large-scale system of ODEs is obtained from the spatial discretization in each
experiment. In this case, employing Krylov subspace methods in evaluating matrix
exponentials and related ϕ functions is more effective, as described in Remark 2.3.3.
In all the experiments, we use the Arnoldi iteration with a size-m Krylov subspace,
which is readily available on all the solvers above. For simplicity, we always take
m = 100.

Implementation All of our experiments were performed on a 3.70 GHz, 64-GB
RAM Linux workstation. Our code was written entirely in Julia [5] and all the plots
were produced using Plot.jl [13]. The full code for the experiments is available at
https://github.com/kanekoakihiro/EMCTMCBSDE.

3.5.1 Down-and-Out Call Option under the Black-Scholes Model

First, we consider the linear BSDE arising from pricing an European up-and-out call
option under the Black-Scholes model

St = s0 +

∫ t

0

µSsds+

∫ t

0

σSsdWs, (3.34)

where St represents the spot price of the asset with initial price s0, appreciation
µ and volatility σ. Suppose that the option has rebate 10 uniformly. Denote the
strike price as K, the barrier as B(< s0) and the maturity as T . Considering the
self-financing portfolio to hedge the option as described in Section 3.1, we obtain

Yt = ϕ(T ∧ τ,ST∧τ )−
∫ T

t

1{s<τ}rYtdt−
∫ T

t

ZtdWt, (3.35)

Here,

ϕ(t, x) =

{
0, (t, x) ∈ [0, T ]× [0, B],

(x−K)+, (t, x) ∈ {T} × (B,∞).

is the payoff of the option, τ = τ0,s0 = inf{t ≥ 0 : St 6∈ (B,∞)}, and the solution
Yt = Y t∧τ,St∧τ

t∧τ means the price of the option at time t ∈ [0, T ]. We choose the

https://github.com/kanekoakihiro/EMCTMCBSDE
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parameters of (3.35) as follows:

T K B r µ σ
1 100 110 0.03 0.03 0.2

For the spatial grid, we choose ΠTR
x with (xleft, xcenter, xright) = (0, K,B), Nl = Nr =

500), g1 = 80.0, and g2 =
xright−xcenter

xcenter−xleft
g1.

In this section, we calculate the maximum absolute errors of Y t,s
t in (t, s) ∈

ΠUnif
t × ([80, 120]× ΠTR

x ), the absolute error of Y t,s
t at (t, s) = (0, 100) and runtimes

in seconds.
Since an analytic formula of Y t,s

t using the cumurative distribution function of
the standard Gaussian distribution Ψ(x) (e.g. p.152 in [36]) is known, we regard it
as the true solution. In table 3.1 the maximum absolute errors in (t, s) ∈ ΠUnif

t ×
([80, 120]∩ΠTR

x ), the absolute errors at (t, s) = (0, 100) and its runtimes in seconds.

Nt = 10 Nt = 20 Nt = 50 Nt = 100 Nt = 200 Nt = 500 Nt = 1000

Lawson-Euler
[47]

Sup Error 1.341e+6 3.956e+0 2.270e+0 8.980e−1 8.416e−2 1.114e−2 1.090e−3
Abs Error 6.216e+2 3.282e+0 1.559e+0 5.539E − 01 6.131e−4 2.301e−4 1.055e−4
Runtime[s] 0.12 0.16 0.35 0.61 1.41 3.13 6.28

Nørsett-Euler
[22]

Sup Error 4.586e+0 3.735e+0 2.203e+0 7.149e−1 8.368e−2 1.072e−2 1.089e−3
Abs Error 4.364e+0 3.386e+0 1.766e+0 4.999e−1 4.593e−3 5.830e−5 3.110e−5
Runtime[s] 0.09 0.15 0.31 0.57 1.64 3.07 6.66

ETD2RK
[22]

Sup Error 4.586e+0 3.735e+0 2.203e+0 7.151e−1 8.368e−2 1.072e−2 1.091e−3
Abs Error 4.364e+0 3.387e+0 1.766e+0 5.000e−1 4.707e−3 1.039e−4 8.314e−6
Runtime[s] 0.21 0.36 0.58 1.44 2.42 5.86 11.86

ETD3RK
[22]

Sup Error 4.586e+0 3.735e+0 2.203e+0 7.151e−1 8.368e−2 1.072e−2 1.092e−3
Abs Error 4.364e+0 3.387e+0 1.766e+0 5.000e−1 4.706e−3 1.039e−4 8.309e−6
Runtime[s] 0.24 0.37 1.01 2.16 4.18 10.15 20.10

ETD4RK
[22]

Sup Error 4.586e+0 3.735e+0 2.203e+0 7.151e−1 8.368e−2 1.072e−2 1.092e−3
Abs Error 4.364e+0 3.387e+0 1.767e+0 5.001e−1 4.707e−3 1.039e−4 8.309e−6
Runtime[s] 0.40 0.62 1.55 3.22 6.92 16.72 30.22

HochOst4
[39]

Sup Error 4.586e+0 3.735e+0 2.203e+0 7.151e−1 8.368e−2 1.072e−2 1.092e−3
Abs Error 4.364e+0 3.387e+0 1.766e+0 5.000e−1 4.708e−3 1.039e−4 8.309e−6
Runtime[s] 0.41 0.67 1.87 3.27 6.35 15.30 30.23

Table 3.1: Results on numerical solutions of (3.35) using exponential integrators.
Here, we spatially discretize it on ΠTR

x and solve the resulting system of ODEs. Here,
the parameters of ΠTR

x are xleft = 0, xcenter = K = 100, xright = B = 110, Nx,0 = 500,
and g1 = 80, g2 = 110−100

100−0
g1 = 8. For each Nt, the numerical solution is evaluated on

the grid ΠUnif
t (Nt)×ΠTR

x . Maximum absolute errors in ΠUnif
t × ([80, 120] ∩ΠTR

x ) are
reported on the row of “Sup Error”, absolute errors at (t, s0) = (0, 100) are on the
row of “Abs Error”, and runtimes in seconds are at the bottom line.
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3.5.2 Barrier Options under Stochastic Local Volatility Mod-
els

Hereafter, we will consider barrier options under stochastic local volatility (SLV)
models. In general, SLV models are written as

St = S0 +

∫ t

0

ω(Ss, vs)ds+

∫ t

0

m(vs)Γ(Ss)dW
(1)
s ,

vt = v0 +

∫ t

0

µ(vs)ds+

∫ t

0

σ(vs)dW
(2)
s ,

(3.36)

where 〈W (1),W (2)〉t = ρt with ρ ∈ (−1, 1). Let L =

(
1 0

ρ
√

1− ρ2

)
be the lower

triangular matrix constructed from the Cholesky decomposition C = LL∗ of C =(
1 ρ
ρ 1

)
. Since W = L−1

(
W (1)

W (2)

)
is a 2-dimensional standard Brownian motion, we

can reformulate (3.36) as

Xt = X0 +

∫ t

0

µ(Xs)ds+

∫ t

0

σ(Xs)dWs for t ∈ [0, T ],

where

Xt =

(
St

vt

)
, µ(x) =

(
ω(x1, x2)
µ(x2)

)
, σ(x) =

(
m(x2)Γ(x1) 0

0 σ(x2)

)
L.

Under such St, we consider European barrier options whose payoff is written as
ϕ(T ∧ τ,ST∧τ ), where ϕ is a function and τ is the first hitting time of the barrier.
Then, the price of the option at (t,St, vt) = (0, s0, v0) is the solution of BSDE

Yt = ϕ(T ∧ τ,ST∧τ , vT∧τ )−
∫ T

t

1{r≤τ}f(r,Sr, vr,Yr,Zr)dr −
∫ T

t

Z∗
r dWr, (3.37)

where

f(t, s, v, y, z) = r(y − z∗L−1σ(x)−1x)+ −R(y − z∗L−1σ(x)−1x)−.

3.5.2.1 Up-and-Out Put Options under the Mean-Reverting SABR Model

Consider the mean-reverting SABR model [24] definied as

St = s0 +

∫ t

0

κ(ζ − Ss)ds+

∫ t

0

√
vsSβ

s dW
(1)
s

vt = v0 +

∫ t

0

η(θ − vs)ds+

∫ t

0

α
√
vsdW

(2)
s ,

(3.38)
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where 〈W (1),W (2)〉t = ρt with ρ ∈ (−1, 1), under which consider an up-and-out put
option. The payoff is then written using

ϕ(t, s, v) =

{
0, (t, s, v) ∈ [0, T ]× [B,∞)× [0,∞),

(K − s)+, (t, s, v) ∈ {T} × [0, B)× [0,∞),

where B(> s0) is the barrier, K is the strike price and T is the maturity. The
corresponding BSDE is written in the form of (3.37). The parameters of (3.38) we
have chosen are as follows:

T β κ ζ ρ ν θ α B K R r
1.0 0.8 0.3 0.7 −0.9 0.5 1.0 0.4 120 100 0.55 0.05

For the spatial grid Π(1) ⊗ Π(2), we choose Π(1) := ΠTR
x with (xleft, xcenter, xright) =

(1.0, K,B), Nl = Nr = 100, g1 = 5.0, and g2 =
xright−xcenter

xcenter−xleft
g1, and Π(2) := ΠUnif

x with
(xleft, xcenter, xright, Nl, Nr) = (0.0267, 0.4, 0.7733, 15, 15).

The result is presented in Table 3.3. As Nt increases, the solutions seem to
converge approximately Y0,(100,0.4)

0 ≈ 7.2360. Note that numerical instabilities are
appeared for Nt = 10. They are provoked by non-smoothness of f and the boundary
condition and different from the stiffness exponential integrators are targetting.

3.5.2.2 Down-and-In Call Option under the 4/2 SABR Model

The following SDE is referred to as the 4/2 SABR model, proposed in Grasselli [33].

St = S0 +

∫ t

0

κSsds+

∫ t

0

(a
√
vs + b/

√
vs)Sβ

s dW
(1)
s

vt = v0 +

∫ t

0

η(θ − vs)ds+

∫ t

0

α
√
vsdW

(2)
s ,

(3.39)

where 〈W (1),W (2)〉t = ρt with ρ ∈ (−1, 1). We consider a down-and-in call option
under (3.39), a knock-in option. Recall that, at time t = T , knock-in options are
paid if its underlying asset breaches the predetermined barrier before T ; otherwise, a
rebate is paid. Denote K as the strike price, and suppose that there is no rebate. In
this case, it is represented as a random variable ϕ(T ∧ τ,ST∧τ , vT∧τ ) with a function
defined as

ϕ(t, s, v) =

{
Ŷ t,s,v

t , (t, s, v) ∈ [0, T ]× [0, B]× [0,∞),

0, (t, s, v) ∈ {T} × (B,∞)× [0,∞),
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Nt = 10 Nt = 20 Nt = 50 Nt = 100 Nt = 200

Lawson-Euler
[47]

Y0,(s0,v0)
0 0.0097 1.7581 7.1640 7.2172 7.2277

Runtime[s] 16.38 28.53 66.04 127.67 253.40

Nørsett-Euler
[22]

Y0,(s0,v0)
0 6.2364 7.0297 7.2311 7.2335 7.2347

Runtime[s] 20.09 27.50 63.96 126.26 241.96

ETD2RK
[22]

Y0,(s0,v0)
0 7.0322 12.7319 7.2372 7.2364 7.2361

Runtime[s] 26.18 47.37 112.88 225.22 437.73

ETD3RK
[22]

Y0,(s0,v0)
0 314.9722 7.5636 7.2360 7.2360 7.2360

Runtime[s] 36.10 66.59 160.46 342.93 676.57

ETD4RK
[22]

Y0,(s0,v0)
0 −3588.9123 7.2483 7.2358 7.2360 7.2360

Runtime[s] 61.61 104.54 252.92 524.85 1039.47

HochOst4
[39]

Y0,(s0,v0)
0 7494.2639 6.8035 7.2357 7.2360 7.2360

Runtime[s] 55.99 105.88 260.48 518.88 1023.81

Table 3.2: Results on numerical solutions Y0,(100,0.4)
0 of Markov BSDE (3.37) with

(3.38) and its runtime in seconds using different exponential integrators. We
spatially discretize the BSDE on ΠTR

x ⊗ ΠUnif
x and solve the resulting systems

of ODEs. Here, the parameters of ΠTR
x are (xleft, xcenter, xright, Nl, Nr, g1, g2) =

(1.0, K,B, 100, 100, 5.0,
xright−xcenter

xcenter−xleft
g1), and of ΠUnif

x are (xleft, xcenter, xright, Nl, Nr) =

(0.0267, 0.4, 0.7733, 15, 15).

where Ŷ t,(s,v)
t is the price of the European (vanilla) call option at time t and spot

price (St, vt) = (s, v) satisfying the BSDE (with deterministic terminal time T )

Ŷ t,(s,v)
t = (St,(s,v)

T −K)++

∫ T

t

f(s,St,(s,v)
s , Ŷ t,(s,v)

s , Ẑ t,(s,v)
s )ds−

∫ T

t

Ẑ t,(s,v)
s dWs. (3.40)

Now, we are interested in Y0,(s0,v0)
0 of (3.37) for (s0, v0) = (100, 0.4). We choose the

parameters of (3.39) as follows:

T β κ ρ ν θ α a b B K R r
1.0 0.8 0.7 0.25 0.9 0.02 0.004 0.8 0.05 90 100 0.15 0.09

Since the Ŷ t,(s,v)
t is also unknown, we first solve (3.40), and then using the numerical

solution of Ŷ t,(s,v)
t for s = B, we calculate Y t,(s,v)

t . To obtain Ŷ t,(s,v)
t , we discretize

(3.40) on spatial grid Π̂(1) ⊗ Π̂(2) where

• Π̂(1) := ΠTR
x with (xleft, xcenter, xright, Nl, Nr, g1, g2) = (1, B, 2B−1, 100, 100, 50, 50),
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• Π̂(2) := ΠUnif
x with (xleft, xcenter, xright, Nl, Nr) = (0.0267, 0.4, 0.7733, 15, 15).

The spatial grid Π(1) ⊗ Π(2) on which (3.37) is discretized is chosen as follows:

• Π(1) := ΠTR
x with (xleft, xcenter, xright) = (B,K, 2K), Nl = Nr = 100, g2 = 50,

and g1 = xcenter−xleft

xright−xcenter
g2 = 1,

• Π(2) := ΠUnif
x with (xleft, xcenter, xright, Nl, Nr) = (0.0267, 0.4, 0.7733, 15, 15).

The result is presented in Table 3.3. As Nt increases, the solutions seem to converge
approximately Y0,(100,0.4)

0 ≈ 4.074.

Nt = 10 Nt = 20 Nt = 50 Nt = 100 Nt = 200 Nt = 500

Lawson-Euler
[47]

Y0,(s0,v0)
0 1.0155 2.7035 3.3656 3.6428 3.8525 3.9881

Runtime[s] 16.27 26.50 62.19 115.91 242.25 563.67

Nørsett-Euler
[22]

Y0,(s0,v0)
0 2.6224 3.4995 3.9315 4.0236 4.0540 4.0701

Runtime[s] 14.32 28.78 58.18 109.45 211.17 522.18

ETD2RK
[22]

Y0,(s0,v0)
0 2.8137 3.5893 3.9688 4.0422 4.0633 4.0738

Runtime[s] 23.40 42.02 105.36 221.58 416.25 1012.08

ETD3RK
[22]

Y0,(s0,v0)
0 2.9080 3.6321 3.9803 4.0462 4.0647 4.0742

Runtime[s] 31.56 59.38 146.88 295.14 639.15 1698.71

ETD4RK
[22]

Y0,(s0,v0)
0 2.8982 3.6268 3.9804 4.0464 4.0647 4.0742

Runtime[s] 52.00 103.71 269.59 528.56 990.81 2447.03

HochOst4
[39]

Y0,(s0,v0)
0 2.9356 3.6359 3.9811 4.0464 4.0647 4.0742

Runtime[s] 52.65 101.06 250.44 495.44 980.85 2473.19

Table 3.3: Results on numerical solutions Y0,(100,0.4)
0 of Markov BSDE (3.37) with

(3.38) and its runtime in seconds using different exponential integrators. We
spatially discretize the BSDE on ΠTR

x ⊗ ΠUnif
x and solve the resulting systems

of ODEs. Here, the parameters of ΠTR
x are (xleft, xcenter, xright, Nl, Nr, g1, g2) =

(1.0, K,B, 100, 100, 5.0,
xright−xcenter

xcenter−xleft
g1), and of ΠUnif

x are (xleft, xcenter, xright, Nl, Nr) =

(0.0267, 0.4, 0.7733, 15, 15).

3.6 Conclusion
BSDEs with terminal times being bounded stopping times are an extension of BSDEs
and have a great interest in applications. In this chapter, we constructed multi-
stage Euler-Maruyama methods for solving Markov BSDEs driven by CTMCs with
terminal times being bounded stopping times. We conducted it by extending our
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previous work in which these methods for solving Markov BSDEs driven by CTMCs
with terminal times being deterministic were constructed. The resulting method
partially employs exponential integrators to solve the associated systems of ODEs,
which can treat “stiff” BSDEs effectively. As a numerical method for solving BSDEs
driven by Brownian motions with terminal times being bounded stopping times, we
proposed to discretize them spatially and solve the resulting “stiff” BSDEs driven by
CTMCs using the presented methods. To illustrate the effectiveness, we presented
numerical experiments that treat (Brownian-)BSDEs arising from pricing problems
of barrier options.

3.7 Proofs

3.7.1 Proof of Theorem 3.2.2

Proof. For a solution Ut to (3.9) , the Itô formula immediately implies (Yt, Zt) =
(X∗

t∧τUt∧τ , Ut1{t≤τ}) solves (3.7).
Let t1 and t2 be fixed. Without loss of generality, assume that t2 > t1.

Y t1,ei
t1 − Y t2,ei

t2 = E[Y t1,ei
t1 − Y t1,ei

t2 + (X t1,ei
t2 )∗Vt2 − e∗iVt2 ]

= E
[∫

]t1,t2]

1{u≤τt1,ei}h(X
t1,ei
u− , u, Y t1,ei

u− , Zt1,ei
u )du−

∫
]t1,t2]

dM∗
uZ

t1,ei
u

+

(∫
]t1,t2]

Q∗
uX

t1,ei
u− −Mt2 +Mt1

)∗

Vt2

]
= E

[∫
]t1,t2]

[1{u≤τt1,ei}h(X
t1,ei
u− , u, Y t1,ei

u− , Zt1,ei
u ) + (X t1,ei

u− )∗QuVt2 ]du

]
Hence,

|Y t1,ei
t1 − Y t2,ei

t2 | ≤

C
√
t2 − t1

√∫
]t1,t2]

E[|1{u≤τt1,ei}h(X
t1,ei
u− , u, Y t1,ei

u− , Zt1,ei
u ) + (X t1,ei

u− )∗QuVt2 |2]du

Using the uniform boundedness of Qu, the Lipschitz continuity of h, evaluate the
integrand as

|1{u≤τt1,ei}h(X
t1,ei
u− , u, Y t1,ei

u− , Zt1,ei
u ) + (X t1,ei

u− )∗QuVt2|2

≤ C(|Y t1,ei
u− |2 + ‖Zt1,ei

u ‖2
X

t1,ei
u−

+ |1{u≤τt1,ei}h(X
t1,ei
u− , u, 0, 0)|2 + sup

0≤s,u≤T
i=1,...,N

|e∗jQsVu|2).
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Since

E
∫
]t1,t2]

|1{u<τt1,ei}h(X
t1,ei
u− , u, 0, 0)|2du

=
N∑
j=1

∫
]t1,t2]

|h(ej, u, 0, 0)|21{u≤τt1,ei}P(Xu = ej|Xt1 = ei)du

=
∑
ej∈Ξ

∫
]t1,t2]

|h(ej, u, 0, 0)|2P(Xu = ej|Xt1 = ei)du ≤ C sup
ej∈Ξ

∫
]0,T ]

|h(ej, u, 0, 0)|2du,

we obtain

|Y t1,ei
t1 − Y t2,ei

t2 | ≤ C
√
t2 − t1

(
E
[
sup

0≤u≤T
|Y t1,ei

u |2 +
∫
]0,T ]

‖Zt1,ei
u ‖2

X
t1,ei
u−

+ sup
ej∈Ξ

∫
]0,T ]

|h(ei, u, 0, 0)|2du+ 1

]
du

)
,

which implies the continuity of t 7→ Y t,ei
t . Notice that

(∆X t,ei
u )∗Vu1{u≤τt,ei} = ∆((X t,ei

u )∗Vu)1{u≤τt,ei}

= ∆Y u,X
t,ei
u

u · 1{u≤τt,ei} = ∆Y t,ei
u · 1{u≤τt,ei}.

Together it with ∆Y t,ei
u 1{u>τt,ei} = ∆Y t,ei

τt,ei
1{u>τt,ei} = 0, we obtain

(∆X t,ei
u )∗Vu1{u≤τt,ei} = ∆Y t,ei

u = ∆M∗
uZ

t,ei
u = (∆X t,ei

u )∗Zt,ei
u .

Hence
∫
]0,t]

(dX t,ei
u )∗(Zt,ei

u − Vu1{u≤τt,ei )} = 0, which implies∫
[0,t]

dM∗
u(Z

t,ei
u − Vu1{u≤τt,ei )} = −

∫
[0,t]

X t,ei
u−Qu(Z

t,ei
u − Vu1{u≤τt,ei )}du = 0,

since any predictable finite variation martingales starting at 0 takes zero constantly
(e.g. Corollary 8.2.14 p.204 in [19].) Hence

E
∫
]0,T ]

‖Zt,ei
u − Vu1{u≤τt,ei )}‖

2

X
t,ei
u−
du = E

∣∣∣∣∫
]0,T ]

dM∗
u(Z

t,ei
u − Vu1{u≤τt,ei )})

∣∣∣∣2 = 0,

which means Zt,ei
u ∼M Vu1{u≤τt,ei )} Together with the Lipschitz continuity,

h(X t,ei
u− , u, (X

t,ei
u− )∗Vu1{u≤τt,ei}, Z

t,ei
u )

= h(X t,ei
u− , u, (X

t,ei
u− )∗Vu1{u≤τt,ei}, Vu1{u≤τt,ei}), du⊗ dP-a.s.

(3.41)
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Plugging it into the conditional expectation representation of Y t,ei
t , we obtain for

t ∈ [0, T ],

e∗iVt = Y t,ei
t = e∗iΦ(T, t)G+ e∗i

∫
]t,T ]

Φ(u, t)H(u, Vs)du,

which results in the cariation-of-constants of (3.9) in what follows:

Vt = Φ(T, t)G+

∫ T

t

Φ(s, t)H(s, Vs)ds.

3.7.2 Proof of Lemma 3.3.1

Without loss of generality, we assume that t = 0 and s = T . For M1 ∈ N, let
δt := T/M1 and τM1

0,ei
= inf{l · δt : l = 0, . . . ,M1, X

0,ei
l·δt 6∈ Ξ}. From the dominated

convergence theorem,

P(X0,ei
T∧τ0,ei

= ej|X0,ei
0 = ei) = lim

M1→∞
P(X0,ei

T∧τM1
0,ei

= ej|X0,ei
0 = ei).

For r ∈ [0, T ], let PM1
r be the N × N matrix defined by e∗iP

M1
r ej = P(X0,ei

r∧τM1
0,ei

=

ej|X0,ei
0 = ei) for i, j = 1, . . . , N . Clearly, e∗iPM1

r ej = δij for ei 6∈ Ξ and r ∈ [0, T ].
Here, δij is the Kronecker’s delta. For ei ∈ Ξ, we obtain

e∗iP
M1
T ej =

N∑
k=1

PX0,ei

T∧τM1
0,ei

= ej|X0,ei
δt = ek)P(X0,ei

δt = ek|X0,ei
0 = ei)

=
N∑
k=1

P(X0,ei

(T−δt)∧τM1
0,ei

= ej|X0,ei
0 = ek)P(X0,ei

δt = ek|X0,ei
0 = ei)

= e∗iΦδtP
M1
T−δtej

In other words, the two cases mean IΞcPM1
r = IΞc and IΞP

M1
r = IΞΦδtP

M
T−δt, respec-

tively. Combining them,

PM1
T = IΞc+IΞΦδtP

M1
T−δt = (IΞc+IΞΦδt)P

M1
T−δt = (IΞc+IΞΦδt)

M1PM1
0 = (IΞc+IΞΦδt)

M1 .

Since Φδt = IN + δt ·Q+ o(∆t),

lim
M1→∞

(IΞΦδt + IΞc)M1 = lim
δt→0

(IΞ(IN + δtQ+ o(δt)) + IΞc)T/δt

= lim
δt→0

(IN + δt · (IΞQ) + o(δt))T/δt = exp(TIΞQ).





Chapter 4

A Sparse Grid-Based Multilevel
Spatial Discretization for BSDEs
Driven by Brownian Motions

4.1 Introduction

In Chapters 2 and 3, we developed multi-stage Euler-Maruyama methods for BSDEs
driven by CTMCs whose terminal times are deterministic or bounded stopping times,
respectively. We saw that these methods are equivalent to exponential integrators
for solving the associated ODEs. This observation led us to applying them to BSDEs
driven by CTMCs arising from the spatial discretization of BSDEs driven by Brow-
nian motion. In multi-dimensional settings, however, spatial discretization typically
results in CTMCs with a large state space. That brings us to a numerical limitation
known as the curse of dimensionality, and computation in more than 4-dimensional
cases is challenging.

This chapter aims to develop a CTMC approximation method of solving high-
dimensional BSDEs, which overcomes the curse of dimensionality. Specifically, we
present a multilevel spatial discretization on a sparse grid for solving Markov BSDEs
driven by Brownian motion, in which we construct a sequence of BSDEs driven by
CTMCs on grids with different resolutions and suitably superimpose their solutions.
With the help of the idea of sparse grid methods [11, 34], it reduces the computational
cost and efficiently mitigates the curse of dimensionality.

The organization of this chapter is as follows: The next section presents pre-
liminaries, in which we recall BSDEs with deterministic terminal times (or bounded
stopping terminal times) driven by CTMCs (or Brownian motion). In Section 4.3, the

79
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presented method, the sparse grid-based multilevel spatial discretization is presented.
Finally, several numerical experiments are devoted to confirming its efficiency.

4.1.1 Notations

Throughout this chapter, the same notations as Chapters 2 and 3 are used.

4.2 Preliminaries

4.2.1 Spatial Discretization of BSDEs

Let us briefly recall the spatial discretization of BSDEs driven by Brownian motion.
Let W = (Wt)t≥0 be a d-dimensional standard Brownian motion. Let F = (Ft)t≥0

be the completion of the filtration generated by W . For t ∈ [0, T ] and x ∈ Rd, we
consider the Markov BSDE driven by Brownian motion starting at time t and state
x in what follows:

X t,x
s = x+

∫ s

t

µ(r,X t,x
r )dr +

∫ s

t

σ(r,X t,x
r )dWr for s ≥ t,

X t,x
s = x ∈ Rd for s ≤ t,

Y t,x
s = g(X t,x

T ) +

∫ T

s

f(r,X t,x
r ,Y t,x

r ,Z t,x
r )dr −

∫ T

s

(Z t,x
r )∗dWr for s ∈ [0, T ],

(4.1)
or its bounded stopping terminal time version in what follows:

X t,x
s = x+

∫ s

t

µ(r,X t,x
r )dr +

∫ s

t

σ(r,X t,x
r )dWr for s ≥ t,

X t,x
s = x ∈ Rd for s ≤ t,

Y t,x
s∧τt,x = χ(T ∧ τt,x,X t,x

T∧τt,x) +

∫ T

s

1{r<τt,x}f(r,X t,x
r ,Y t,x

r ,Z t,x
r )dr

−
∫ T

s

(Z t,x
r )∗dWr for s ∈ [0, T ].

(4.2)

Here, G ⊂ Rd is a connected open set whose boundary is of class C1 and τt,x =
inf{s ≥ t : X t,x

s 6∈ G}. The nonlinear Feynman-Kac formula states connections
between these BSDEs and second-order semilinear parabolic PDEs. Let Lt be the
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infinitesimal generator of the Markov process X , that is,

Ltu(t, x) =
d∑

i=1

µ(i)(t, x)
∂u

∂xi
(t, x) +

1

2

d∑
i,j=1

(σσ∗)(i,j)(t, x)
∂2u

∂xi∂xj
(t, x). (4.3)

The PDE associated with (4.1) is
∂u

∂t
(t, x) + Ltu(t, x) + f(t, x, u(t, x), σ∗(x)∇xu(t, x)) = 0, (t, x) ∈ [0, T ]× Rd,

u(T, x) = g(x), x ∈ Rd,

(4.4)
and with (4.2) is

∂u

∂t
(t, x) + Ltu(t, x) + f(t, x, u(t, x), σ∗(x)∇xu(t, x)) = 0, (t, x) ∈ [0, T ]×G,

u(T, x) = κ(x), x ∈ G,

u(t, x) = χ(t, x), (t, x) ∈ [0, T ]× ∂G.

(4.5)
Suppose that PDE (4.4) (or PDE (4.5)) admits a unique classical solution u. Under
some appropriate conditions, we obtain Y t,x

t = u(t, x) in both cases. (For the precise
statements, see Section 2.2.2 and Section 3.2.2.)

Markov BSDEs driven by CTMCs that approximate (4.1) or (4.2) can be derived
from spatial discretizations of PDE (4.4) or (4.5). For each axis of the spatial do-
mains of the PDEs, we define a one-dimensional grid on which spatial derivatives
appeared in the PDE are approximated. With the Kronecker product, the approxi-
mated system of ODEs

dUt

dt
+QUt + F (t, Ut) = 0, UT = G, (4.6)

ore∗i
(
dUΠ

t

dt
+QUΠ

t +H(t, UΠ
t )

)
= 0, (t, ei) ∈ [0, T )× Ξ,

e∗iU
Π
t = e∗i ζ

Π
t , (t, i) ∈ ({T} × {e1, . . . , eN}) ∪ ([0, T ]× Ξc),

(4.7)
are obtained. We can interpret them from the probabilistic viewpoint. Assuming the
validity of Q, let X be a finite-state Markov chain with Q as its Q-matrix. Consider
the Markov BSDEs driven by CTMC X associated with (4.6) in what follows:

Yt = X∗
TG+

∫
]t,T ]

X∗
s−F (s, Zs)ds−

∫
]t,T ]

dM∗
sZs, (4.8)
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or ones associated with (4.7) in what follows:

Y t,ei
s = (X t,ei

T∧τt,ei
)∗ζT∧τt,ei

+

∫
]s,T ]

1{r≤τ}(X
t,ei
r− )∗F (r, Zt,ei

r )ds−
∫
]s,T ]

dM∗
sZ

t,ei
r . (4.9)

A relatively mild condition ensures each BSDEs admits a unique solution (see Propo-
sition 2.4.2). For more details on the spatial discretization, see Section 2.4 and 3.4.

4.2.2 Sparse Grids

Sparse grid methods date back to a study by Smolyak [66], in which he presented
an algorithm for constructing multivariate quadrature and interpolation rules from
a linear combination of tensor products of univariate ones in a specific manner. It
mitigates the curse of dimensionality, which conventional formulas that compute
solutions on the “full grid” cannot overcome. Beyond quadratures and interpola-
tions, the construction of sparse grids has applications to various fields such as data
mining [31] or differential equations. As introduced in Section 4.5 in [11], different
approaches have been presented to apply the idea of sparse grids to solving partial
differential equations. The most straightforward one among them will be the sparse
grid combination technique. Motivated by the observation that the sparse grid can
be decomposed to a combination of several coarser rectangular grids, this approach
constructs a numerical solution from a linear combination of numerical solutions of
PDEs on those grids. As a result, one can compute solutions by applying the PDE
solver at hand to our PDE on each resolution grid without specific treatments.

4.3 Multilevel Spatial Approximation Using Sparse
Grids

We first need to approximate the spatial domain of (4.4) (or (4.5)) with a fixed,
bounded, and rectangular domain on which we can define sparse grids. For the
sake of simplicity, we set a hypercube [−1, 1]d as such a domain; we note that the
argument in this section can be applied to arbitrary bounded rectangular domains
using dilation and translation. and p ∈ {1, . . . , d}, let χl

p = {zl,p1 , . . . , zl,pml
} ⊂ [−1, 1]

be a prescribed set of nodes parametrized by l and p; in this section, we specifically
set equidistant nodes

zl,pi =
2(i− 1)

ml − 1
− 1, for i = 1, . . . ,ml,
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with ml = 2l + 1. For t ∈ [0, T ], consider the piecewise linear interpolation of the

solution U (l1,...,ld)
t := U

χ
l1
1 ⊗···⊗χ

ld
d

t of (4.6) (or (4.7)) for Π = χl1
1 ⊗ · · · ⊗ χld

d defined as

u(l1,...,ld)(t, x1, . . . , xd) =

ml1∑
i1=1

· · ·
mld∑
id=1

U
(l1,...,ld)
t (zl1,1i1

, . . . , zld,did
)

d∏
p=1

a
lp,p
ip

(xp)

for (x1, . . . , xd) ∈ [−1, 1]d, where alp,pip
(xp) are the one-dimensional standard hat func-

tions defined as
al,pi (x) = (1− ml − 1

2
|x− zl,pi |) ∨ 0

for x ∈ [−1, 1], i = 1, . . . ,ml, l ∈ N and p = 1, . . . , d, and U
(l1,...,ld)
t (zl1,1i1

, . . . , zld,did
)

means the component of the vector U (l1,...,ld)
t corresponding to (zl1,1i1

, . . . , zld,did
) ∈ χl1

1 ⊗
· · ·⊗χld

d . The sparse grid solution with the level parameter q ∈ N is then constructed
from u(l1,...,ld)(t, x1, . . . , xd) by

uSG,q(t, x1, . . . , xd) =
∑

l=(l1,...,ld)∈Nd

q−d+1≤|l|1≤q

(−1)q−|l|1
(
d− 1

q − |l|1

)
· ul(t, x1, . . . , xd) (4.10)

for (x1, . . . , xd) ∈ [−1, 1]d, where |l|1 = l1 + · · ·+ ld for l = (l1, . . . , ld) and
(
d− 1

q − |l|1

)
is the binomial coefficient.

Numerically, we obtain an algorithm in what follows:

1. Solve systems of ODEs for each l such that q − d+ 1 ≤ |l|1 ≤ q.

2. For each multi-index l and discrete time tm, construct the d-dimensional piece-
wise linear interpolant x 7→ ul(tm,x) of {U l

tm(z), z ∈ χl1
1 ⊗ · · · ⊗ χld

d }.

3. Combine interpolants according to (4.10). The obtained function uSG,q(t,x)
can be evaluated at any x ∈ [−1, 1]d for each discretized time tm.

In particular, we propose to use the multi-stage Euler-Maruyama methods con-
structed in Section 2.3 and Section 3.3 for obtaining each solution U (l1,...,ld)

t of ODEs,
which is accomplished by employing exponential integrators. In the next section, we
illustrate the efficiency of this approach through several numerical experiments.

The numerical solution uSG,q achieves much less computational cost with a slight
deterioration in its quality, in comparison to the corresponding full grid formula i.e.
u(n,...,n) for n = q − d + 1. Specifically, the total number of spatial points that the



84 | Multilevel Spatial Discretiation on Sparse Grids for Brownian BSDEs

sparse grid formula with parameter q contains is O(2qqd−1). Taking that the full grid
formula at the same level is comprised of O(2qd) spatial points into account, it turns
out to be a significant reduction in computational complexity [34]. We can also give
an error estimate based on arguments in existing leteratures such as [34, 48, 51] .
Let α > 0 be the order of accuracy of the spatial discretization scheme. Suppose
that we know the exact solutions U l

t of each systems of ODEs in (4.10), the exact
solution u (of the approximated PDE on [−1, 1]d) are sufficiently smooth, and an
error expansion

u(t, x1, . . . , xd)− ul(t, x1, . . . , xd)

=
d∑

i=1

d∑
j1=1

d∑
j2=j1+1

· · ·
d∑

ji=ji−1+1

C(i)(t, x1, . . . , xd, hj1 , hj2 , . . . , hji)h
α
j1
hαj2 · · ·h

α
ji

exists for some bounded functions C(i) for i = 1, . . . , d. Here, hi = 2−i for i ∈ N.
Then, according to the existing literatures aforementioned, the error estimate reads

u(t, x1, . . . , xd)− uSG,q(t, x1, . . . , xd) = O(h−α
q (log2(h

−1
q ))d−1)(= O(2−αqqd−1))

as q → ∞, which is slightly worse than O(h−d
q )(= O(2−αq)) the estimate in the full

grid case.

4.4 Numerical Results

We present numerical experiments in this section. In Section 4.4.1 and 4.4.2, we con-
sider BSDEs driven by Brownian motion arising from pricing European call options
under stochastic local volatility models as treated in Section 2.5. First, Section 4.4.1
treats two-dimensional BSDEs, in which we compare the sparse grid-based multilevel
spatial discretization developed in this chapter with the “full grid-based” spatial dis-
cretization developed in Chapter 2 and confirm the efficiency of the former one. In
Section 4.4.2, we solve a four dimensional BSDE arising related to Basket options
using the presented method. A BSDE with bounded stopping terminal time is also
treated in Section 4.4.3; under the similar situation in Section 4.4.2, we consider a
BSDE arising from prising European basket barrier options. All the experiments
were conducted in the same environment as in Chapters 2 and 3, and the same
notations are used.
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4.4.1 A Comparison to the “Full Grid” Method

In this section, we consider two ways of spatial discretizations of BSDEs driven by
Brownian motion: (1) the discretization on the Kronecker product of grids (we call
it a “full grid”), the same as considered in all the experiments in Chapters 2 and 3,
and (2) the multilevel discretization on a sparse grid presented in this chapter. We
calculate numerical solutions of discretized systems of ODEs on the two grids using
exponential integrators and compare them.

Problem Setting : European Call Option under the SABR Model Con-
sider pricing a European call option under the stochastic-alpha-beta-rho (SABR)
model. It is a stochastic local volatility (SLV) model being commonly used, and
designed to model price dynamics of a forward contract. Consider the forward price
process Ft = Ste

r(T−t) for some asset price St and interest rate r. The SABR model
assumes that Ft satisfies the following SLV model

Ft = F0 +

∫ t

0

vsF
β
s dW

(1)
s , vt = v0 +

∫ t

0

αvsdW
(2)
s . (4.11)

To consider pricing of the European call option under the SABR model, we addi-
tionally suppose that the volatility process vt also satisfies vt = v0t e

r(T−t) for some
underlying asset v0t . Taking the hedge portofolio of two risky assets St and v0t and a
bond with riskless rate r into account, the corresponding Makov BSDE (4.1) becomes

Yt = (FT −K)+ −
∫ T

t

rYsds−
∫ T

t

ZsdWs (4.12)

with the state process (4.11).
Fortunately, Yt has an approximation formula in what follows:

Yt ≈ exp(−r(T − t))[Ft ·Ψ(d1)−K ·Ψ(d2)], (4.13)

where

d1 =
ln
(
Ft

K

)
+
(
r +

σ2
B

2

)
(T − t)

σB
√
T − t

, d2 =
ln
(
Ft

K

)
+
(
r − σ2

B

2

)
(T − t)

σB
√
T − t

,

and σB is the approximated implied volatility by Hagan et al. [35] defined as

σB =
vt

{
1 +

[
(1−β)2

24

v2t
(FtK)1−β + 1

4
ρβαvt

(FtK)(1−β)/2 +
2−3ρ2

24

]
(T − t)

}
(FtK)(1−β)/2

{
1 + (1−β)2

24
log2(Ft/K) + (1−β)4

1920
log4(Ft/K)

} z

χ(z)
,
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where z and χ(z) are

z =
α

vt
(FtK)

1−β2

2 log

(
Ft

K

)
, χ(z) = log

(√
1− 2ρz + z2 + z − ρ

1− ρ

)
.

In this section, we regard the solutions calculated using (4.13) as the exact solutions.
We choose the parameters as follows:

T α β ρ r K
1.0 0.4 0.9 0.3 0.05 100

4.4.1.1 Spatial Discretization on a “Full Grid”

First, we discretize (4.12) on the Kronecker product ΠTR
x ⊗ ΠUnif

x of grids similarly
to the previous experiments. Precisely, St is discretized on the Tavella-Randall grid
ΠTR

x with (xleft, xcenter, xright, Nx,0, g1, g2) = (0, 100, 200, 100, 5, 5), and vt is discretized
on the uniform grid ΠUnif

x with (xleft, xcenter, xright, Nx,0) = (0, 0.4, 0.8, 15). The size
of the resulting grid is 6231. (For definitions of both grids, see Section 2.5)

Table 4.1 reports the maximum absolute errors in (t, s, v) ∈ ΠUnif
t × ([80, 120] ∩

ΠTR
x ) × ([0.32, 0.48] ∩ ΠUnif

x ), the absolute errors at (t, s, v) = (0, 100, 0.4), and the
runtime in seconds for different exponential integrators. In this spatial discretization,
when Nt increases, the maximum absolute error and the absolute error seem to
converge towards 3.240 × 10−2 and 1.730 × 10−3, respectively. To further improve
the accuracy of the solutions, increasing the number of points of the spatial grid or
expanding the approximated domain should be required.

4.4.1.2 The Multilevel Discretization on a Sparse Grid

Next, we discretize (4.12) on a sparse grid using the algorithm presented in Sec-
tion 4.3. While the discretization on “full grids” results in a single BSDE driven
by a CTMC, it approximates BSDE (4.12) (driven by Brownian motion) with a se-
quence of BSDEs driven by CTMCs on grids with different resolutions. Recalling
that the algorithm presented in Section 4.3, the numerical solution of (4.12) can be
constructed in the following steps: (1) Let q ∈ N be fixed. (2) For each l = (l1, l2)
such that q − 1 ≤ |l|1 ≤ q, discretize St and vt on ΠTR

x (0, 100, 200, 2l1−1, 5, 5) and
ΠUnif

x (0, 0.4, 0.8, 2l2−1), respectively. Solve the resulting system of ODEs and obtain
piecewise linear interpolants on [0, 200]× [0, 0.8] for each discrete time tm. (3) Com-
bine them using (4.10). In Fig. 4.1, we specifically show the spatial grids that result
from the multilevel discretization with q = 7.
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Nt = 10 Nt = 20 Nt = 50 Nt = 100 Nt = 200

Lawson-Euler
[47]

Sup Error 4.500e−1 9.640e−2 3.264e−2 3.245e−2 3.242e−2
Abs Error 1.157e−1 1.538e−2 2.136e−3 1.853e−3 1.791e−3
Runtime[s] 20.21 24.97 58.12 120.34 238.51

Nørsett-Euler
[22]

Sup Error 4.354e−1 9.113e−2 3.053e−2 3.140e−2 3.190e−2
Abs Error 1.003e−1 8.260e−3 3.903e−4 6.003e−4 1.166e−3
Runtime[s] 14.79 24.19 56.82 106.12 212.07

ETD2RK
[22]

Sup Error 4.362e−1 9.127e−2 3.253e−2 3.240e−2 3.240e−2
Abs Error 1.117e−1 1.394e−2 1.872e−3 1.730e−3 1.730e−3
Runtime[s] 25.10 44.03 106.28 221.38 418.79

ETD3RK
[22]

Sup Error 4.362e−1 9.123e−2 3.253e−2 3.240e−2 3.240e−2
Abs Error 1.119e−1 1.397e−2 1.876e−3 1.731e−3 1.730e−3
Runtime[s] 34.49 69.38 166.38 359.62 670.06

ETD4RK
[22]

Sup Error 4.364e−1 9.126e−2 3.253e−2 3.240e−2 3.240e−2
Abs Error 1.120e−1 1.397e−2 1.876e−3 1.731e−3 1.730e−3
Runtime[s] 57.08 117.35 286.77 550.36 1077.41

HochOst4
[39]

Sup Error 4.362e−1 9.123e−2 3.253e−2 3.240e−2 3.240e−2
Abs Error 1.119e−1 1.397e−2 1.876e−3 1.731e−3 1.730e−3
Runtime[s] 56.55 110.74 270.06 541.89 1046.20

Table 4.1: Results on numerical solutions of (4.12). Here, we spatially discretize it
on ΠTR

x ⊗ΠUnif
x and solve the resulting system of ODEs. The parameters of ΠTR

x are
xleft = 0, xcenter = 100, xright = 200, Nx,0 = 1000, and g1 = g2 = 50. For each Nt,
the numerical solution is evaluated on the grid ΠUnif

t (Nt)× ΠTR
x × ΠUnif

x . Maximum
absolute errors in ΠUnif

t × ([80, 120]∩ΠTR
x )× ([0.32, 0.48]∩ΠUnif

x ) are reported on the
row of “Sup Error”, absolute errors at (t, s0, v0) = (0, 100, 0.4) are on the row of “Abs
Error”, and runtimes in seconds are at the bottom line.

Table 4.2 reports the result on the numerical solutions for different q and temporal
steps Nt. Here, we used HochOst4 to solve the resulting systems of ODEs and have
evaluated maximum absolute errors of Y t,(s,v)

t in the same grid as in Section 4.4.1.1,
namely, (t, s, v) ∈ ΠUnif

t × ([80, 120] ∩ ΠTR
x )× ([0.32, 0.48] ∩ ΠUnif

x ). We observe that
the discretization on the sparse grid can provide solutions more efficiently than on
the full grid. Table 4.3 presents the total numbers of spatial points the sparse grid
method comsumes in Section 4.2 and the numbers of the corresponding full grids.
Although the size of our “full grid” is 6231, the sparse grid approach still outperforms
in terms of runtime even if the total number of spatial points exceeds this (i.e. q > 8).
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q Nt = 10 Nt = 20 Nt = 50 Nt = 100 Nt = 200 Nt = 500

7
Sup Error 4.521e−2 4.521e−2 4.521e−2 4.521e−2 4.488e−2 4.468e−2
Abs Error 6.921e−3 6.921e− 3 6.921e−3 6.921e−3 6.921e−3 6.921e−3
Runtime[s] 1.24 2.38 5.57 10.53 20.22 48.33

8
Sup Error 3.469e−2 3.465e−2 3.465e−2 3.465e−2 3.423e−2 3.398e−2
Abs Error 2.454e−3 2.419e−3 2.419e−3 2.419e−3 2.419e−3 2.419e−3
Runtime[s] 2.20 4.08 9.34 17.38 33.07 78.77

9
Sup Error 3.961e−1 8.479e−2 3.244e−2 3.230e−2 3.189e−2 3.164e−2
Abs Error 1.193e−1 1.498e−2 1.474e−3 1.309e−3 1.308e−3 1.308e−3
Runtime[s] 3.35 6.18 14.75 28.49 53.03 127.02

10
Sup Error 5.537e+0 3.187e+0 2.353e−1 6.068e−2 3.152e−2 3.100e−2
Abs Error 4.942e+0 2.854e+0 5.267e−2 6.812e−3 1.351e−3 1.032e−3
Runtime[s] 6.75 12.74 30.60 59.37 126.54 327.56

Table 4.2: Results on numerical solutions based on the multilevel discretization on
sparse grids. The row of “Sup Error” reports the maximum absolute errors on the
same points (t, s, v) in Table 4.1 (i.e. ΠUnif

t ×(ΠTR
x ∩ [80, 120])×(ΠUnif

x ∩ [0.32, 0.48]).)

q 7 8 9 10
SG 1475 3333 7431 16393
FG 4225 16641 66049 263169

Table 4.3: SG : Total numbers of spatial points required for calculating the numerical
solution in Section 4.4.1.2. FG : The size of the corresponding full grid (2q−d+1+1)d.

4.4.2 Multi-Asset Option Pricing Using the Multilevel Dis-
cretization on Sparse Grids

This section is devoted to solving high-dimensional BSDEs arising from multi-asset
option pricing under SLV models. Consider d SLV models, that is, for i = 1, . . . , d,

S(i)
t = S

(i)
0 +

∫ t

0

ω(i)(S(i)
s , v(i)s )ds+

∫ t

0

m(i)(v(i)s )Γ(i)(S(i)
s )dW (S,i)

s ,

v
(i)
t = v

(i)
0 +

∫ t

0

µ(i)(v(i)s )ds+

∫ t

0

σ(i)(v(i)s )dW (v,i)
s .

(4.14)

Here, W (S,i) and W (v,i) are correlated as

〈W (S,i),W (S,j)〉t = ci,jt, 〈W (S,i),W (v,i)〉t = ρi,jt, 〈W (v,i),W (v,i)〉t = ri,jt.
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(a) 3× 65. (b) 5× 33. (c) 9× 17. (d) 17× 9.

(e) 33× 5. (f) 65× 3. (g) 3× 33. (h) 5× 17.

(i) 9× 9. (j) 17× 5. (k) 33× 3.

Figure 4.1: The grids arising from the multilevel discretization for q = 7 in the
situation of Section 4.4.1.2. (4.12) has been approximated with a combination of 11
BSDEs driven by CTMCs on these grids (a)-(k).

Let C =

(
CS CS,v
C∗

S,v Cv

)
be the correlation matrix, where

CS =

c1,1 . . . c1,d
... . . . ...
cd,1 . . . cd,d

 , CS,v =

ρ1,1 . . . ρ1,d
... . . . ...
ρd,1 . . . ρd,d

 , Cv =

r1,1 . . . r1,d
... . . . ...
rd,1 . . . rd,d

 .
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Using a lower triangular matrix L constructed from the Cholesky decomposition
C = LL∗ and W defined as

W = L−1



W (S,1)

...
W (S,d)

W (v,1)

...
W (v,d)


is 2d-dimensional standard Brownian motion.

As in Section 2.5 and Section 3.5, Markov BSDEs describing the price of European
options g(S(1)

T , . . . ,S(d)
T ) can be formulated by consider the hedge portfolio, which

result in

Xt = X0 +

∫ t

0

µ(Xs)ds+

∫ t

0

σ(Xs)dWs for t ∈ [0, T ]

Yt = g(S(1)
T , . . . ,S(d)

T )−
∫ T

t

f(s,Xs,Ys,Zs)ds−
∫ T

t

Z∗
sdWs,

(4.15)

where

Xt =



S(1)
t
...

S(d)
t

v
(1)
t
...
v
(d)
t


, µ(x) =



ω(1)(x1, xd+1)
...

ω(d)(xd, x2d)
µ(1)(xd+1)

...
µ(d)(x2d)


, σ(x) = diag



m(1)(xd+1)Γ
(1)(x1)

...
m(d)(x2d)Γ

(d)(x2d)
σ(1)(xd+1)

...
σ(d)(x2d)


L,

the driver is

f(t, x, y, z) = r(y − z∗σ(x)−1x)+ −R(y − z∗σ(x)−1x)− + z∗σ(x)−1µ(x),

and r and R are the lending rate and the borrowing rate, respectively.

4.4.2.1 Basket Option under Two Heston-SABR Models

Consider pricing of the European basket call option whose basket is comprised of
two Heston-SABR models. That is, the coefficient functions in (4.14) are

ω(i)(s, v) = b(i) · s, m(i)(v) =
√
v, Γ(i)(s) = sβ

(i)

,

µ(i)(v) = η(i)(θ(i) − v), σ(i)(v) = α(i)
√
v.

(4.16)
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for i = 1, 2. The corresponding BSDE is four-dimensional and results in (??) with g
replaced as

g(f1, f2) = (λ1f1 + λ2f2 −K)+,

where λ1 and λ2 are constants. Since a non-differentiability of g is appreared in the
hyperplane {(s(1), s(2), v(1), v(2)) : λ1s(1)+λ2s(2)−K = 0}, we use a linear coordinate
transformation, say

X̂t =


Ŝ(1)
t

Ŝ(2)
t

v
(1)
t

v
(2)
t

 = B


S(1)
t

S(2)
t

v
(1)
t

v
(2)
t

 , where B =


λ1 λ2 0 0
−λ1 λ2 0 0
0 0 1 0
0 0 0 1

 , (4.17)

before the spatial discretization, that turns out to be

X̂t = X̂0 +

∫ t

0

Bµ(B−1X̂s)ds+

∫ t

0

Bσ(B−1X̂s)dWs,

Yt = (Ŝ(1)
T −K)+ −

∫ T

t

f(s,B−1X̂s,Ys,Zs)ds−
∫ T

t

Z∗
sdWs.

(4.18)

The parameters chosen here are:

i T K R r λ(i) β(i) η(i) θ(i) α(i) b(i)

1
1.0 100 0.07 0.01

0.5 0.6 0.9 0.02 0.65 0.01
2 0.5 0.07 0.2 0.3 0.3 0.01

The correlation matrices are:

CS =

(
1.0 0.5
0.5 1.0

)
, CS,v =

(
0.65 0.3
−0.1 0.05

)
, Cv =

(
1.0 0.7
0.7 1.0

)
.

For (ŝ(1), ŝ(2), v̂(1), v̂(2))∗ = B(s(1), s(2), v(1), v(2))∗, we approximate the spatial domain
as (ŝ(1), ŝ(2), v̂(1), v̂(2)) ∈ [51, 149] × [−49, 49] × [0.01, 0.79] × [0.01, 0.59], and apply
the multilevel discretization on a sparse grid. We apply a Tavella-Randall grid to
the first dimension and the uniform grids to the others. More precisely, using the
notation χl

p for p = 1, . . . , d and l ∈ N in Section 4.3, we set as follows:

• χl
1 = ΠTR

x with (xleft, xcenter, xright, Nl, Nr, g1, g2) = (1, K, 149, 2l−1, 2l−1, 1, 1).

• χl
2 = ΠUnif

x with (xleft, xcenter, xright, Nl, Nr) = (−49, 0, 49, 2l−1, 2l−1).
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• χl
3 = ΠUnif

x with (xleft, xcenter, xright, Nl, Nr) = (0.01, 0.4, 0.79, 2l−1, 2l−1),

• χl
4 = ΠUnif

x with (xleft, xcenter, xright, Nl, Nr) = (0.01, 0.3, 0.59, 2l−1, 2l−1).

Table 4.6 reports sparse grid solutions Y0,(s(1),s(2),v(1),v(2))
0 at (s(1), s(2), v(1), v(2)) =

(100, 100, 0.4, 0.3) calculated using HochOst4 and their computational times in sec-
onds, for different q and Nt. The numerical solutions seem to converge towards
approximately 7.517.

q Nt = 10 Nt = 20 Nt = 50 Nt = 100 Nt = 200

8
Y0,(100,100,0.4,0.3)

0 7.50016 7.50013 7.50013 7.50013 7.50013
Runtime[s] 50.71 57.89 141.68 276.37 552.95

9
Y0,(100,100,0.4,0.3)

0 7.51457 7.51455 7.51455 7.51455 7.51455
Runtime[s] 119.65 195.74 484.67 931.01 1904.49

10
Y0,(100,100,0.4,0.3)

0 7.51522 7.51656 7.51658 7.51658 7.51658
Runtime[s] 838.15 1487.51 3376.85 6542.38 12817.34

11
Y0,(100,100,0.4,0.3)

0 7.43057 7.49986 7.51675 7.51713 7.51714
Runtime[s] 5965.28 10932.85 24935.39 48705.96 97810.97

Table 4.4: Results on numerical solutions Y0,(100,100,0.4,0.3)
0 of (4.20) using a multilevel

spatial discretization.

q 8 9 10 11
SG 36901 112105 320675 877655
FG 1185921 17850625 276922881 4362470401

Table 4.5: SG : Total numbers of spatial points of grids comprised of the sparse grid
solutions for different q. FG : The size of the corresponding full grid (2q−d+1 + 1)d.

4.4.3 Down-and-Out Basket Option under Two Heston-SABR
Models

Finally, we consider a basket barrier option under two Heston-SABR models. Con-
sider the down-and-out call option where the underlying asset is the basket λ1S(1)

t +
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λ2S(2)
t . We set

ϕ(t, x, y) =

{
0, t ∈ [0, T ], λ1x+ λ2y ≤ B,

(λ1x+ λ2y −K)+, t = T, λ1x+ λ2y > B.

and τ = inf{t ≥ 0 : λ1S(1)
t + λ2S(2)

t ≤ B}, and the corresponding BSDE is

Xt = X0 +

∫ t

0

µ(Xs)ds+

∫ t

0

σ(Xs)dWs for t ∈ [0, T ]

Yt = ϕ(T ∧ τ,S(1)
T∧τ ,S

(2)
T∧τ )−

∫ T

t

1{τ≤s}f(s,Xs,Ys,Zs)ds−
∫ T

t

Z∗
sdWs,

(4.19)

where µ, σ and f are same as before. The parameters chosen here are:

i T K B R r λ(i) β(i) η(i) θ(i) α(i) b(i)

1
1.0 100 95 0.03 0.001

0.5 0.05 1.0 0.5 0.95 0.04
2 0.5 0.1 0.08 0.03 0.2 0.1

The correlation matrices are:

CS =

(
1.0 0.5
0.5 1.0

)
, CS,v =

(
0.65 0.3
−0.1 0.05

)
, Cv =

(
1.0 0.7
0.7 1.0

)
.

Applying the linear transformation (4.17) to (4.19), that turns out to be

X̂t = X̂0 +

∫ t

0

Bµ(B−1X̂s)ds+

∫ t

0

Bσ(B−1X̂s)dWs,

Yt = ϕ̂(T ∧ τ, Ŝ(1)
T∧τ )−

∫ T

t

1{s≤τ}f(s,B
−1X̂s,Ys,Zs)ds−

∫ T

t

Z∗
sdWs.

(4.20)

Here, ϕ̂ : [0, T ]× R → R is

ϕ̂(t, x) =

{
0, (t, x) ∈ [0, T ]× [0, B],

(x−K)+, (t, x) ∈ {T} × (B,∞).

For (4.20), we discretize on the (multilevel) grids on (ŝ(1), ŝ(2), v̂(1), v̂(2)) ∈ [B, 150]×
[−49, 49]×[0.01, 0.79]×[0.01, 0.59], where (ŝ(1), ŝ(2), v̂(1), v̂(2))∗ = B(s(1), s(2), v(1), v(2))∗.
For each subgrid, we employ the Tavella-Randall grid to the first dimension and the
uniform grids to the others. More precisely, using the notation χl

p for p = 1, . . . , d
and l ∈ N in Section 4.3, we set as follows:
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• χl
1 = ΠTR

x with (xleft, xcenter, xright, Nl, Nr) = (B,K, 150, 2l−1, 2l−1), g2 = 1.0
and g1 = K−B

150−K
g2,

• χl
2 = ΠUnif

x with (xleft, xcenter, xright, Nl, Nr) = (−49, 0, 49, 2l−1, 2l−1).

• χl
3 = ΠUnif

x with (xleft, xcenter, xright, Nl, Nr) = (0.01, 0.4, 0.79, 2l−1, 2l−1),

• χl
4 = ΠUnif

x with (xleft, xcenter, xright, Nl, Nr) = (0.01, 0.3, 0.59, 2l−1, 2l−1).

Under the setting, we calculated the numerical solution Y t,(s(1),s(2),v(1),v(2))
t using our

sparse grid-based multilevel discretization with parameters q = 8, 9, 10 and 11. The
results are shown in Table 4.6. Here, we solve each ODE using HochOst4. The
numerical solutions seem to converge towards approximately 2.9554.

q Nt = 10 Nt = 20 Nt = 50 Nt = 100 Nt = 200

8
Y0,(100,100,0.4,0.3)

0 2.95842 2.95835 2.95872 2.95873 2.95873
Runtime[s] 53.02 74.83 183.73 361.43 721.02

9
Y0,(100,100,0.4,0.3)

0 2.95625 2.95554 2.95539 2.95539 2.95539
Runtime[s] 159.65 251.94 604.26 1188.12 2100.54

10
Y0,(100,100,0.4,0.3)

0 1835.09847 15711.15453 2.95538 2.95539 2.95539
Runtime[s] 924.82 1555.15 3605.58 6542.38 12817.34

11
Y0,(100,100,0.4,0.3)

0 101.29716 59724.22711 1.9379E+11 2.95543 2.95543
Runtime[s] 5529.99 9828.60 22814.82 49279.10 95128.83

Table 4.6: Results on numerical solutions Y0,(100,100,0.4,0.3)
0 of (4.20) using a multilevel

spatial discretization.

4.5 Conclusion
Motivated by the idea of sparse grid methods, we proposed a multilevel spatial dis-
cretization of BSDEs driven by Brownian motion. It approximates the BSDE driven
by Brownian motion with a sequence of BSDEs driven by CTMCs on spatial grids
with different resolutions, and the solutions are then superimposed along with the
sparse grid formula. The method significantly reduces the computational cost while
keeping accuracy. As can be seen in the numerical results, it is a promising approach
to handle high-dimensional BSDEs driven by Brownian motion efficiently.



Chapter 5

A Numerical Method for Solving
High-Dimensional Backward
Stochastic Difference Equations
Using Sparse Grids

5.1 Introduction

Backward stochastic difference equations (BS∆Es) are discrete-time counterparts
of backward stochastic differential equations (BSDEs). Their applications include
some kinds of stochastic optimal control problems and dynamic risk measures in
mathematical finance. In [18], Cohen and Elliott developed a general theory of
BS∆Es, where they suggested that BS∆Es admit unique solutions in a broader degree
of generality for the probability distributions of their noise processes compared with
BSDEs in continuous time.

In this chapter, we aim to develop a numerical method for a class of BS∆Es
with a Markov process in continuous-state space, with a focus specifically on high-
dimensional problems. It is a well-known fact that many numerical solutions of
BSDEs and BS∆Es suffer from the so-called “curse of dimensionality”, which hampers
us when computing these solutions in high-dimensional state space. To overcome this
drawback, we must appropriately treat the nestings of high-dimensional conditional
expectations that appear in these solutions.

We propose a numerical solution using sparse grids. Sparse grids construct mul-
tivariate interpolation or quadrature formulae from given univariate ones and utilize
the smoothness of the function for computational efficiency. Specifically, the non-

95
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linear functions between conditional expectations are approximated by sparse grid
interpolants, and we compute these conditional expectations through sparse grid
quadratures. Our method is based on the research of Zhang et al. [74], who pro-
posed a similar method for continuous-time BSDEs driven by Brownian motion.

5.2 Markov BS∆Es
We introduce the class of BS∆Es with a Markov process, namely, Markov BS∆Es.
Let (Ω,F ,P) be a probability space and let T = {0, 1, . . . , T} be a discrete time
set with T ∈ N. Let (ξt)t∈T\{0} be an Rd-valued independent identically distributed
sequence with E[ξ1] = 0d and V[ξ1] = Id, where 0d is the d-dimensional zero vector
and Id is the d × d identity matrix. Let F = (Ft)t∈T be a filtration generated by
(ξt)t∈T\{0}, and set F0 = {∅,Ω}. For p ≥ 1 and K ≥ 1, let Lp(RK ;Ft) denote the
set of RK-valued Ft-measurable p-integrable random variables. We define a Markov
process as

X0 = x0 ∈ Rn, Xt = f(t− 1, Xt−1, ξt) for t ∈ T \ {0},

where f : (T \ {T}) × Rn × Rd → Rn is a function such that f(t, ·, ·) is Borel
measurable for each t ∈ T \ {T}. In addition, we define the difference operator ∆ as
∆Ut := Ut − Ut−1 for a process (Ut)

T
t=0.

We consider the following Markov BS∆E:

YT = h(XT ),

−∆Yt = g(t− 1, Xt−1, Yt−1, Zt)− Z∗
t ξt −∆Mt

(5.1)

for t = T, . . . , 1, where g : (T \ {T}) × Rn × R × Rd → R such that g(t, ·, ·, ·)
is Borel measurable for each t ∈ T \ {T}, h : Rn → R is Borel measurable, and
(·)∗ is vector transposition. Here, a solution of the Markov BS∆E is a triplet
(Y, Z,M) = ((Yt)t∈T, (Zt)t∈T\{0}, (Mt)t∈T) that satisfies (5.1), such that Y is an R-
valued square-integrable adapted process, Z is an Rd-valued square-integrable pre-
dictable process, and M is an R-valued square-integrable martingale, such that
M0 = 0 and E[(∆Mt)ξt|Ft−1] = 0 for all t. We remark that since our noise pro-
cess (ξt)t∈T\{0} does not have the predictable representation property, the BS∆Es
need to be formulated with the additional term M .

Assumption 5.2.1. We assume the following conditions.

1. For any (t, At, Bt) ∈ T× L2(R;Ft)× L2(Rd;Ft)

g(t,Xt, At, Bt) ∈ L2(R;Ft).
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2. For any (t, x, z) ∈ (T \ {T})× Rn × Rd, the function

Φ(·; t, x, z) : R 3 y 7→ y − g(t, x, y, z) ∈ R

is bijective, and for any (t, At, Bt) ∈ (T \ {T})× L2(R;Ft)× L2(Rd;Ft),

Φ−1(At; t,Xt, Bt) ∈ L2(R;Ft).

3. h(XT ) ∈ L2(R;FT ).

Theorem 5.2.1. Under Assumption 1, the BS∆E (5.1) admits a unique solution.

Proof. The solution can be constructed using the backward induction in time. Clearly,
YT = h(XT ) is the solution at time T . For t = T − 1, T − 2, . . . , 0, we set

Zt+1 = E[ξt+1Yt+1|Ft],

∆Mt+1 = Yt+1 − E[Yt+1|Ft]− Z∗
t+1ξt+1,

Yt = Φ−1(E[Yt+1|Ft]; t,Xt, Zt+1).

The uniqueness and L2-integrability of the solution are clear.

We define the following continuous linear operators:

Pt−1,t : B 3 ϕ 7→ E[ϕ(f(t− 1, ·, ξt))] ∈ B,
Qt−1,t : B 3 ϕ 7→ E[ϕ(f(t− 1, ·, ξt))ξt] ∈ Bd,

where B is the space of bounded measurable functions defined on Rn. We impose
the following assumption.

Assumption 5.2.2. 1. h and Φ−1(y; t, ·, z) belong to B for all y, t, and z.

2. For all t and x, Φ−1(·; t, x, ·) is continuous.

Under Assumption 5.2.2, we define the nonlinear operator ρt−1,t : B → B by

(ρt−1,tϕ)(x) = Φ−1((Pt−1,tϕ)(x); t− 1, x, (Qt−1,tϕ)(x)).

Corollary 5.2.1. The unique solution of BS∆E (5.1) can be expressed in the form
of

Yt = Yt(Xt), Zt = Zt(Xt−1), ∆Mt = Mt(Xt−1, Xt, ξt). (5.2)
Here, Yt : Rn → R, Zt : Rn → Rd, and Mt : Rn × Rn × Rd → R are given by

Yt(x) := (ρt,t+1 ◦ · · · ◦ ρT−1,T )h(x),

Zt(x) := Qt−1,tYt(x),

Mt(x, y, e) := Yt(y)− Pt−1,tYt(x)−Qt−1,tYt(x)
∗e.

(5.3)

Hence, we can reformulate our problem of solving the BS∆E into an evaluation
of the functions Yt,Zt, and Mt.
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5.3 Computing the Numerical Solution
We are interested in computing solution (5.2) in the situation where the dimension
n of the state process X and the dimension d of the noise process ξ are rather
large (e.g. 3 ≤ n, d ≤ 10). We assume that the random variables ξ11 , . . . , ξd1 are
mutually independent and that each ξi1 has the probability density gi, where we
write ξ1 = (ξ11 , . . . , ξ

d
1). Defining the linear functional

Iϕ :=

∫
Rd

ϕ(w)gξ(w)dw1 · · · dwd,

where gξ(w) =
∏d

i=1 gi(wi) and w = (w1, . . . , wd), Pt−1,t and Qt−1,t can then be
expressed as d-dimensional integrals with the density gξ:

(Pt−1,tϕ)(x) = I(ϕ ◦ f(t− 1, x, ·)),
(Qt−1,tϕ)(x) = I(ϕ ◦ f(t− 1, x, ·)(·)).

Approximating I as some quadrature formula Î, we obtain the approximations P̂t−1,t

and Q̂t−1,t of Pt−1,t and Qt−1,t, respectively. Using these, we also define

(ρ̂u,u+1ϕ)(x) = Φ−1((P̂u,u+1ϕ)(x);u, x, (Q̂u,u+1ϕ)(x)).

We now face computational difficulties at two points. First, all the integrations we
compute have dimension d. A straightforward way to obtain d-variate quadrature
formulae is to use the tensor product construction of univariate quadratures, but its
computational cost increases exponentially with d. Second, because of the nestings of
integrations in (5.3), the computational cost of the solution increases exponentially
with T .

For the first point, we take sparse grid quadrature formulae that can alleviate
these costs by using the smoothness of integrands [42]. For the second point, we
compute the numerical solution at time t as Ŷt(x) := ρ̂t,t+1Ỹt+1(x), using a sparse
grid interpolant Ỹt+1 of Ŷt+1. A detailed explanation of sparse grid formulae is given
in Section 4.

5.3.1 Prototype of Our Scheme

Our proposed scheme for finding the numerical solution Ŷt(x) for x ∈ Rn is as follows.

• Initialize ỸT = h.
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• For u = T−1, T−2, . . . , t+1, given Ỹu+1 at time u+1, compute an interpolant
Ỹu of Ŷu = ρ̂u,u+1Ỹu+1.

• Compute Ŷt(x) = ρ̂t,t+1Ỹt+1(x).

Here, Ẑt and M̂t can be computed using Ỹt as

Ẑt(x) = Q̂t−1,tỸt(x),

M̂t(x, y, e) = Ỹt(x)− P̂t−1,tỸt(x)− Q̂t−1,tỸt(x)
∗e.

5.3.2 Truncation of State Space

The bounded spatial domain Et ⊂ Rn of each interpolant Ỹt needs to be determined.
We design them as follows. If, for example, we would like to compute Ŷ0(0), then we
evaluate the interpolant Ỹ1 on {f(0, 0, ηi)}

NQ

i=1, where η1, . . . , ηNQ
are the quadrature

points of Î. Hence, we set E1 such that {f(0, 0, ηi)}
NQ

i=1 lies in E1. Similarly, for
any t = 0, . . . , T − 1, since the interpolant Ỹt is constructed with the Nt-point set
{Ŷt(x

t
j)}Nt

j=1, and since we evaluate Ỹt+1 on {f(t, xtj, ηi)}
NQ

i=1 for the computation of
Ŷt(x

t
j) for j = 1, . . . , Nt, we set Et+1 such that

⋃Nt

j=1{f(t, xtj, ηi)}
NQ

i=1 is a subset of
Et+1.

5.4 Sparse Grids

5.4.1 Sparse Grid Interpolation

For a univariate smooth function f : [−1, 1] → R, we consider a sequence of interpo-
lation formulae (U i)∞i=1,

U i(f) =

mi∑
j=1

f(xij) · aij.

Here, mi points xij ∈ R and basis functions aij satisfy

lim
i→∞

‖U i(f)− f‖∞ = 0,

where ‖ · ‖∞ denotes the supremum norm. If we define the difference of algorithms
as

U0(f) = 0, ∆i = U i(f)− U i−1(f) for i ∈ N,
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then the sparse grid interpolant for a d-variate smooth function f , defined on [−1, 1]d,
can be defined as

Aq,d(f) =
∑
i∈Nd

|i|≤q

(∆i1 ⊗ · · · ⊗∆id)(f) (5.4)

for any q ≥ d, |i| := i1 + · · ·+ id. We also remark that more interpolating points are
used by Aq,d the larger we take q to be.

5.4.1.1 Sparse Grid Piecewise Linear Interpolation

Throughout this chapter, we adopt the sparse grid piecewise linear interpolation as
our interpolant. This is based on the following piecewise linear basis functions:

aij(x) =

{
1− mi−1

2
|x− xij|, |x− xij| < 2

mi−1
,

0, otherwise,

for i > 1, j = 1, . . . ,mi, and a11(x) = 1, where

m1 = 1, mi = 2i−1 + 1, for i > 1,

and xij are the Newton-Cotes equidistant points given by

x11 = 0, xij =
2(j − 1)

mi − 1
− 1, j = 1, . . . ,mi, i > 1.

For our error analysis, we define the function class

F r
d = {f : [−1, 1]d → R |Dαf is continuous if αi ≤ r for all i}

with smoothness r, where α = (α1, . . . , αd) ∈ N0, |α| = α1 + · · · + αd, and Dαf =
∂|α|f

∂x
α1
1 ···∂xαd

d

. Clearly,

‖f − U qf‖∞ ≤ c1,2m
−2
q for f ∈ F 2

1 ,

where c1,2 depends on the upper bound of the second derivative of f . For d > 1, the
error of the sparse grid piecewise linear interpolation is given as [2]

‖f −Aq,df‖∞ ≤ cd,2N
−2(logN)3(d−1) (5.5)



5.4 Sparse Grids | 101

for f ∈ F 2
d , where N is the number of interpolating points and cd,2 depends on d and

the upper bound of the second derivative of f .
We remark that the sparse grid interpolant based on polynomial interpolation is

also known, and its error is

‖f −Aq,df‖∞ ≤ cd,rN
−r(logN)(r+1)(d−1)

for f ∈ F r
d , where cd,r depends on d, r, and the upper bound of the r-th derivative of

f , which is superior to (5.5) when the smoothness r of f is larger than 2. However, it
requires the evaluation of Lagrange polynomials, which is computationally expensive,
and causes the Runge phenomenon, which prevents us from using the Newton-Cotes
grid. Hence, we use the sparse grid piecewise linear interpolation because of its ease
of implementation and its low computational complexity.

5.4.2 Sparse Grid Quadrature

Analogously, we can construct the sparse grid quadrature from univariate quadrature
formulae. The main difference is that each aij is a real number instead of a basis
function, and (U i)∞i=1 is a sequence of quadratures for the function f : D → R
satisfying

lim
i→∞

|U i(f)− If | = 0,

where If is the integral of f on D ⊂ R with a weight w:

If :=

∫
D

f(x)w(x)dx.

5.4.2.1 Sparse Grid Gauss-Hermite Quadrature

The Gauss-Hermite quadrature based on Hermite polynomials computes If over
D = R with w(x) = e−x2 . According to Theorem 2 in [65] and Theorem 3.9 in [30],
the error of this quadrature, U q, is

|If − U qf | ≤ c1,rm
−r/2
q

for f ∈ F̃1

r
. Here, c1,r depends on r and the upper bound of the r-th derivative of

f , and

F̃d

r
= {f : Rd → R

∣∣Dαf is continuous and ‖(Dαf)Wd‖∞ <∞ if αi ≤ r for all i},
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where Wd(x) =
∏d

i=1

√
1 + x2i exp(−x∗x

2
). For d > 1, using the discussion in [2, 57],

we obtain

|If −Aq,df | ≤ cd,rN
− r

2 (logN)(
r
2
+1)(d−1)

for f ∈ F̃d

r
, where cd,r depends on d, r and the upper bound of the r-th derivative

of f .

5.5 Error Analysis

Our numerical solutions are computed as discussed in Section 3.1. Recall that we
use the sparse grid piecewise linear interpolation Aqt,n on Et with parameter qt at
each time t. We then choose the sparse grid quadrature AqQ,d with parameter qQ
depending on the noise process of the BS∆E at hand.

5.5.1 The Gaussian Case

Assuming (ξt)
T
t=1 are Gaussian distributed, we choose the sparse grid Gauss-Hermite

quadrature formula.

Assumption 5.5.1. h, Φ−1(·; ·, t, ·), and f(t, ·, ·) have bounded derivatives up to
order r with respect to all variables.

Theorem 5.5.1. Let (xti)
Nt
i=1 be interpolating points of Aqt,n for t ∈ T and let (ηk)

NQ

k=1

be quadrature points of AqQ,d. Under Assumption 3, we obtain

max
0≤t≤T,i=1,...,Nt

|Yt(x
t
i)− Ŷt(x

t
i)|

≤ cr,n,d

{
max
1≤t≤T

[
(Nt)

−2(logNt)
3(n−1)

]
+ (NQ)

− r
2 (logNQ)

( r
2
+1)(d−1)

} T∑
u=1

Lu,

where L is the Lipschitz coefficient for Φ−1(·; ·, t, ·) and cr,n,d depends on r, n, and d.
For Ẑt and M̂t, similarly,

max
1≤t≤T,i=1,...,Nt−1

‖Zt(x
t−1
i )− Ẑt(x

t−1
i )‖ ≤ cr,n,d(NQ)

− r
2 (logNQ)

( r
2
+1)(d−1),
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Table 5.1: Relative errors (RE) and computational times (CT) in seconds for our
experiment.

qQ = 4 qQ = 5

RE CT[s] RE CT[s]
qt = 5 1.00 0.0 1.50 0.2
qt = 6 1.00 0.5 3.80× 10−1 5.0
qt = 7 1.00 8.5 9.24× 10−2 108.2
qt = 8 1.00 123.5 2.31× 10−2 1538.7
qt = 9 1.00 1341.9 5.77× 10−3 16678.3

where ‖ · ‖ denotes the Euclidean norm, and

max
1≤t≤T,i=1,...,Nt−1
j=1,...,Nt,k=1,...,NQ

|Mt(x
t−1
i , xtj, ηk)− M̂t(x

t−1
i , xtj, ηk)|

≤ cr,n,d

{
max
1≤t≤T

[
(Nt)

−2(logNt)
3(n−1)

]
+ (NQ)

− r
2 (logNQ)

( r
2
+1)(d−1)

} T∑
u=1

Lu

+ cr,d(NQ)
1
2
− r

2 (logNQ)
( r
2
+1)(d−1).

5.6 Numerical Results
Let ξ1, . . . , ξT be independent random variables where ξ1 ∼ N(0d, Id), and let (Xt)t∈T
be defined as Xt+1 := Xt+ ξt+1 with X0 = x0 ∈ Rd. That is, we take a d-dimensional
random walk as our Markov process. For the driver g and the terminal condition h,
we consider

g(x) = g̃(a∗x), h(x) = h̃(b∗x),

where g̃ and h̃ are functions defined on R, and a and b are d-dimensional real valued
vectors. We test our algorithm on the following form of BS∆Es:

YT = h(XT ), −∆Yt = g(Xt−1) + Z∗
t ξt +∆Mt.

The solution Y0(x0) has the closed form

Y0(x0) = g̃(a∗x0) +
T−1∑
j=1

E[g̃(a∗x0 +
√
ja∗ΣaZ)] + E[h̃(a∗x0 +

√
Tb∗ΣbZ)], (5.6)
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where Z ∼ N(0, 1). We then compare the true solution calculated by (5.6) and our
numerical solution. We use the sparse grid Gauss-Hermite quadrature AqQ,d with
the parameter qQ ≥ d. Also, we set q1 = q2 = · · · = qT for simplicity. We take
d = 4, T = 5, g̃(x) = h̃(x) = x2, a = b = (1, . . . , 1)∗, and x0 = 0d. All of our
experiments were performed on a 3.70 GHz, 64-GB RAM Linux workstation. Our
code was written entirely in python, using numpy and scipy. The results are shown in
Table 1. Taking sufficiently large qQ and qt (e.g. (qQ, qt) = (5, 9)) produces a highly
accurate solution. On the other hand, we observe that increasing qt does not improve
the performance for qQ = 4. That means that our algorithm had already achieved
the best performance under our inaccurate quadrature. Also, when qt equals 5,
increasing qQ worsens the overall performance because of the accumulation of errors
that come from inaccurate interpolations. These observations suggest that increasing
both parameters simultaneously is required for efficiently obtaining highly accurate
solutions.



Chapter 6

Conclusion

Throughout this thesis, numerical methods for BSDEs with discrete features were
explored.

Chapters 2 and 3 were concerned with multi-stage Euler-Maruyama methods
for solving Markov BSDEs driven by CTMCs; the case where the terminal time is
deterministic was considered in Chapter 2, and the case where the terminal time is
a bounded stopping time was considered in Chapter 3. A key observation is that
the methods are equivalent to exponential integrators, which are known to work
well for solving stiff systems of ODEs. There, we further proposed to apply the
methods to solving BSDEs driven by Brownian motion. Employing a suitable spatial
discretization for such BSDEs typically leads to “stiff” BSDEs driven by CTMCs, and
we can effectively solve them using the Euler-Maruyama methods.

Chapter 4 developed the spatial discretization that had been considered in the
previous chapters. Classical schemes of discretizing high-dimensional BSDEs result
in BSDEs driven by CTMCs whose state space is too large to calculate numerically.
Focusing on such computational issues, we proposed a multilevel spatial discretiza-
tion method for BSDEs driven by Brownian motion. Employing the idea of sparse
grids, it approximates the solution with a superposition of the solutions of BSDEs
driven by CTMCs on grids with different resolutions. This construction reduces
computational costs drastically and overcomes the curse-of-dimensionality.

In Chapter 5, we employed the sparse grid methods for solving Markov BS∆Es,
discrete-time counterparts of BSDEs. The nestings of conditional expectations that
appeared in the solution of BS∆Es at each time are approximated with the sparse
grid interpolants, and the conditional expectations are evaluated using the sparse
grid quadratures. The presented method calculates the solutions of high-dimensional
BS∆Es with less computational cost while keeping accuracy.

105



106 | Conclusion

Future Work
Various directions of further research from this work can be considered.

• In Chapter 2, we pointed out that it is not very effective to employ the Monte-
Carlo approach naively. However, in [1], the author presented a Monte-Carlo
approach to evaluate an action of a matrix exponential on a vector and observed
that it achieves higher performance than the Krylov subspace approach for
large scale problems. It might be possible to develop the technique to explore
efficient Monte-Carlo-based methods for solving BSDEs driven by CTMCs.

• We proposed to spatially discretize BSDEs driven by Brownian motion and ap-
ply the multi-stage Euler-Maruyama methods to the obtained BSDEs driven
by CTMCs. For this approach, we can consider various extensions and gen-
eralizations such as (1) employing different discretization schemes (e.g. finite
element methods or finite volume methods) or (2) considering the case where
the driving process of BSDEs is not only a diffusion process (e.g. Lévy pro-
cesses).

• The multilevel spatial discretization method, developed in Chapter 4, might
be further extended. For example, the sparse grid technique, on which the
method is based, overcomes the curse of dimensionality to some extent, but
not completely. To treat problems with higher dimensions than ten-dimension,
dimension reduction techniques such as principal component analysis [64] need
to be introduced additionally.

• For Chapter 5, the following directions of further research remains: (i) Ex-
tending our results to other cases, for example, where the noise process is not
necessarily independent. (ii) Conducting further numerical experiments for the
equations that appeared in specific problems, such as those involving dynamic
risk measurement and stochastic control problems. (iii) Performing investiga-
tions on some computational aspects, such as tuning parameters and selecting
the underlying quadrature and interpolation rules.
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