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Abstract

This thesis is devoted to studying numerical methods for solving Markov backward
stochastic differential equations (BSDEs) with discrete features.

Chapter 2 considers BSDEs driven by continuous-time finite state Markov chains
(CTMCs), a class of BSDEs with discrete state space. The contributions in this
chapter are divided into the following three results: (1) We construct multi-stage
Euler-Maruyama methods for Markov BSDEs driven by CTMCs and observe that
the methods are equivalent to exponential integrators for solving associated systems
of ordinary differential equations (ODEs). (2) Motivated by the feature that expo-
nential integrators avoid the stiffness of equations, we propose to use the multi-stage
Euler-Maruyama methods for solving stiff BSDEs driven by CTMCs arising from
spatial discretizations of BSDEs driven by Brownian motion. We also illustrate the
effectiveness of the presented methods with a number of numerical experiments in
which we treat nonlinear BSDEs arising from option pricing problems in finance.

Chapter B is an extension of the results presented in Chapter B. The previous
chapter considers the BSDEs with the terminal times being deterministic, whereas
the target of this chapter is BSDEs with bounded stopping terminal times. In this
case, multi-stage Fuler-Maruyama methods for Markov BSDEs driven by CTMCs
result in exponential integrators with a slight modification. Numerical experiments
are also presented; there, nonlinear BSDEs arising from pricing barrier options are
considered.

Chapter @ is devoted to constructing a sparse grid-based multilevel spatial dis-
cretization for solving Markov BSDEs driven by Brownian motion. Utilizing the
idea of the sparse grid combination technique, the method efficiently approximates
high-dimensional Makov BSDEs (driven by Brownian motion) with a combination of
multiple Markov BSDESs driven by CTMCs on grids with different resolutions. Simi-
lar to the previous chapters, we present numerical experiments for solving nonlinear
BSDEs arising from option pricing problems, and both BSDEs with deterministic
and bounded stopping terminal times are considered.

Chapter B considers BSDEs whose temporal structures are discrete, namely, back-
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ward stochastic difference equations (BSAEs). Because an arbitrary noise distribu-
tion is allowed for BSAESs, the equations are advantageous to model various situations
in discrete time. We construct a sparse grid-based numerical method for solving high-
dimensional Markov BSAEs. There, conditional expectations are approximated with
sparse grid quadratures and the nestings of conditional expectations and nonlinear
functions are approximated with sparse grid interpolants. These approximations re-
sult in a significant reduction of the computational cost. The performance is also
confirmed through a simple example numerically.
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Chapter 1

Introduction

1.1 Background

Backward stochastic differential equations (BSDEs) have been playing a powerful
tool in various fields including optimal controls, partial differential equations and
mathematical finance. They were originally introduced by Bismut [[7, 8] in the context
of stochastic control problems. Pardoux and Peng later introduced general nonlinear
BSDEs driven by Brownian motions as noise process, typically written as

T T
yt:€+/ f(S,yS,ZS)dS—/ Z:dWS, tE [O,T] (11)
t t

Here, (W)iejo,r) is a Brownian motion, ftT ZrdWy is Ito’s stochastic integral, and
the data (&, f), a pair of a terminal condition £ (a random variable) and a driver
[ (a function), is given in advance. A solution of (IT) means a pair (V:, Z¢)icfo,n]
of adapted processes that satisfies (I0). Since the later 1990s, the study of BSDEs
has been highly connected to mathematical finance. It has provided a multitude
of research topics leading to the development of BSDE theory and its applications.
For example, hedging derivative securities under nonlinear wealth process dynamics
(e.g., different interest rates for borrowing and lending), dynamic risk measures and
recursive utilities are successful applications of BSDEs. For details, see El Karoui et
al. [44].

Numerical methods for solving such BSDEs have been developed in different
directions. One may employ Euler-Maruyama methods to approximate them with a
stochastic difference equation. Taking its conditional expectation and together with
an approximation of conditional expectations, a numerical formula that is evaluated
in a backward manner is obtained. For example, Gobet et al. [32] proposed least
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2 | Introduction

square Monte-Carlo (LSMC) methods that approximates conditional expectations
on a finite linear combination of (predetermined) basis functions. Another direction
is connected to partial differential equations (PDEs): Solutions of BSDEs being
Markov, written in the form

T T
Ve = g(Xr) +/ f(s, X, Vs, Z4)ds —/ Z,dW;, (1.2)
t t

t t
Xy = xo + / w(s, Xs)ds + / o(s, Xs)dWs, (1.3)
0 0

can be represented using solutions of second order semilinear parabolic PDEs due to
the nonlinear Feynman-Kac formula. Here, p : [0,7] x R — R? o : [0,7] x R? —
R>4 [0, T] x RTx R x R? - R and g : R — R are deterministic functions,
zo € RY, and process (X4)ecpo,r is interpreted as the state variable of a system. Using
the nonlinear Feynman-Kac formula, we can calculate solutions of BSDEs through
PDE solvers such as finite difference methods or finite element methods. For details
on such approach, we refer to Douglas et al. [27] and Milstein and Tretyakov [64].

BSDEs driven by Brownian motion and numerical methods for solving them
have been studied in details from both theoretical and application points of view,
but meanwhile, BSDEs with different features has also been considered and studied.
In this thesis, we are interested in the following two types of BSDEs with “discrete
structures”.

BSDESs Driven by Continuos-Time Finite State Markov Chains Continuous-
time finite state Markov chains (CTMCs) are stochastic processes that take values
in discrete state space. In [I5], Cohen and Elliott presented a result on the existence
and uniqueness of solutions of BSDEs driven by CTMCs:

m=5+/ h@nﬂz¢m—/ ZrAM,, te0,T]. (1.4
Jt,T] Jt,T]

Here, (M;)scjo,r] is a martingale related to a CTMC (X;)sepo,r) and the data (h,§)
is given in advance. Further studies on such kind of BSDEs can be found in [I6, 21,
20, 4], for example. In [Z1], a nonlinear Feynman-Kac type result is obtained; they
revealed that solutions of Markov BSDEs driven by CTMCs written as

E=E@+/

hXs_,s,Ys, Zs)ds — / Z*dMs,
1t,T]

6,71

can be represented using solutions of systems of ordinary differential equations (ODEs).
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Backward Stochastic Difference Equations Backward stochastic difference
equations (BSAEs) are counterparts of BSDEs in discrete time. In [I7], Cohen
and Elliott considered BSAEs driven by arbitrary finite-state processes:

T-1 T-1

Yi=E6+4 ) F(s,Ye, Zon) = Y Z(Mypy — M,), te{0,1,....T—1}. (L5)

s=t s=t

Here, the driving process M, is allowed to an arbitrary martingale with independent
increments. In the cases of the driving process being infinite-state, the corresponding
BSAEs are written as

T—1 T-1
Yi=E6+) F(s.Ye, Zon) = Y Z(Mypy — M)+ Ny — Ny, t€{0,1,...,T -1},
s=t s=t

(1.6)
where an additional orthogonal martingale N is required to be solved together with Y
and Z; it is a direct consequencce of the Galtchouk-Kunita-Watanabe decomposition
[79]. We can also choose M as an arbitrary (square integrable) martingale with
independent increments. Compared to the continuous-time framework, BSAEs can
be used to model more various situations in applications. For details, see |17, B].

1.2 Summary

In this thesis, we study and develop numerical methods for BSDEs driven by CTMCs
and BSAEs. As seen later, we can exploit their distinctive features to improve the
effectiveness of the numerical computation. Before moving on to the next chapter,
we present a summary of contributions.

Chapter

Numerical methods for computing the solutions of Markov BSDEs driven by CTMCs
are explored. We construct multi-stage Euler-Maruyama methods for them and
observe that they are equivalent to exponential integrators for solving an associated
system of ODEs. Taking advantage of this observation, we propose to use these
multi-stage Euler-Maruyama methods for effectively solving “stift” Markov BSDEs
driven by CTMCs arising from the spatial discretization of Markov BSDEs driven
by Brownian motion. We also illustrate the effectiveness of the presented methods
with several numerical experiments in which we treat nonlinear BSDEs arising from
pricing problems of European options in finance.
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Chapter

The results obtained in Chapter B are extended to Markov BSDEs with terminal
times being bounded stopping times. Similarly to the case of BSDEs with deter-
ministic terminal times, which we treated in the previous chapter, multi-stage Euler-
Maruyama methods are equivalent to exponential integrators with slight modifica-
tions, and together with spatial discretizations, we can utilize them to solve BSDEs
with bounded stopping terminal times driven by Brownian motion effectively. In
numerical experiments, we focus on BSDEs driven by Brownian motion arising from
pricing barrier options and confirm the efficiency of our methods.

Chapter @

In Chapters 2 and B, we proposed to apply spatial discretizations to BSDEs driven by
Brownian motion and solve the obtained BSDEs driven by CTMCs using the multi-
stage Euler-Maruyama method we constructed. With an argument based on the
idea of sparse grid methods, we present a multilevel spatial discretization methods
in which high-dimensional Markov BSDEs driven by Brownian motion are approx-
imated a combination of multiple Markov BSDEs driven by CTMCs on grids with
different resolutions. Through several numerical experiments, we illustrate the effi-
ciency.

Chapter B

Chapter B studies numerical methods for solving Markov BSAEs. We focus on those
whose state space is high dimensional and present sparse grid-based numerical meth-
ods for solving them. Specifically, we calculate conditional expectations appeared
as integrals on high dimensional domains with sparse grid quadratures and replace
nestings of them and nonlinear functions with sparse grid interpolations. The pre-
sented method can calculate solutions accurately and efficiently. We also present an
error estimate and demonstrate them through a numerical experiment of a simple
case.



Chapter 2

Multi-Stage Euler-Maruyama
Methods for Backward Stochastic
Differential Equations Driven by
Continuous-Time Markov Chains

2.1 Introduction

2.1.1 Overview

In this chapter, we are interested in a different class of BSDEs, that is, (Markov)
BSDEs driven by continuous-time Markov chains (CTMCs), written as

h(Xs_,s,Ys_,Zs)ds—/ AM? Z,,
J6.7)

Y, = X7G+ /
Jt.T]
and study numerical schemes for solving them. Here, (X);c(o.77 is a CTMC having a
finite state space Z, N = #Z, G € RV, h: T x [0,T] x R x RY — R, and (M,);epo,1]
is the associate martingale with X (ses Section for the details). A “nonlinear
Feynman-Kac type” formula for such Markov BSDEs driven by CTMCs has been
derived in |21, P6|; the solutions of the BSDEs can be represented using solutions of
the associated systems of ordinary differential equations (ODEs).
The main contributions of this chapter are summerized as follows.

1. We observe that Euler-Maruyama temporal discritization methods for solving
a Markov BSDE driven by a CTMC is equivalent to exponential integrators
[aT] for solving the associated system of ODEs. (See Section 23.)

5



6 | Multi-Stage Euler-Maruyama Methods for BSDEs Driven by CTMCs

2. We introduce multi-stage Euler-Maruyama methods for efficiently solving “stiff”
BSDEs driven by CTMCs. Together with a spatial discretization, they can be
applied to solve BSDEs driven by Brownian motion. (See Section P23 and
Section 2Z4.)

2.1.2 Organization

The chapter is organized as follows: At the end of this section, we introduce nota-
tions frequently used in the chapter. In Section P22, we present preliminary results on
BSDEs driven by CTMCs and ones driven by Brownian motion that are required for
the subsequent arguments. In Section P23, we construct multi-stage Euler-Maruyama
methods for BSDEs driven by CTMCs and observe that they are equivalent to expo-
nential integrators, solvers that calculate stiff systems of ODEs successfully. Section
24 presents an application of the multi-stage Euler-Maruyama methods to BSDEs
driven by Brownian motion, in which we present a concrete discretization and the
resulting BSDE driven by a CTMC. Section P23 provides experiments highlighting
the effectiveness of our schemes. Specifically, we treat option pricing problems un-
der nonlinear wealth dynamics with several asset price process models, such as the
Black-Scholes model and stochastic volatility models including the SABR model.

2.1.3 Notations

For N € N, ¢; means the i-th unit vector in the Euclidean space R" whose i-th
element is 1. The notations | - | and || - || represent the absolute value and the
Euclidean norm, respectively. Note that we will also use a stochastic seminorm
represented as || - ||,; for the definition, see (23). For any matrix @, Q* denotes
the matrix transposition, @™ denotes the Moore-Penrose inverse, and Tr(Q) denotes
the trace of ). For any vector v, diag(v) is a diagonal matrix whose i-th diagonal
element is efv. For any two vectors v, w € R, denote

v<w <<= ev<ew, i=1,...,N.
We set as follows.

e C([0,7] x R) and C'(R) are the sets of R-valued continuous functions defined
on [0,7] x R and R, respectively.

e Cy([0,T)xR) and Cy(R) are the sets of R-valued bounded continuous functions
defined on [0, 7] x R and R, respectively.
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e C?(R) is is the set of R-valued, twice continuously differentiable functions u
such that d,u, 0,,u as well as u are in Cy(R).

. C’; ([0, 7] x R) is the set of R-valued functions u, which is once continuously
differentiable in its first argument, twice continuously differentiable in its sec-
ond, and Qyu, O,u, Or,u as well as u are in Cy([0, 7] x R).
2
Here, Quu(t,z) = %(tw), Opu(t,x) = ?(t,x) and O u(t, z) = %(t,ZIT). For a
vector-valued cadlag stochastic process XZC, X;_ denotes the left limgiqc and AX; =
X; — X;_. Additinally, if X; is a semimartingale, (X, X) denotes the predictable
quadratic variation matrix. Throughout the chapter, we will work on a probability
space (2, F,P) and a finite time horizon 7" > 0. For k,m € N, a filtration F with
the usual conditions, and a square-integrable cadlag F-martingale M, we define the
following spaces of stochastic processes.
o [*(F,R¥) is the set of cadlag F-adapted processes X : [0,7T] x Q — R* with

E / | 2dt
LJ[0,T]

o S?(IF,R¥) is the set of cadlag F-adapted processes Y : [0,T] x Q — R* with

E | sup D&]Q] < 0.

l0<t<T

< 0Q.

o L2((M),F,RF¥*™) is the set of F-predictable processes Z : [0,T] x Q — RF*™

with
/ Z,dM,
[0,7]

2.2 Setups and Preliminary Results

2

E

:EU Tr(Z,d(M, M).Z})| < .
0.7]

2.2.1 BSDEs driven by a CTMC

Let X = (Xy)iejo,r) be a continuous-time, finite-state Markov chain with state space
Z = {e1,...,en}, for some N € N. Suppose that X is defined on the filtered
probability space (2, F,IP,G) where G := (G;);cp,1) is the completion of the filtration
generated by X. Note that X is a cadlag pure jump process in this case.

X is associated with a family of Q-matrices; recall that N x N matrices Q;,t €
[0,T] are called Q-matrices on 7 if efQe; > 0 for all i # j and ), e;Qie; = 0
for all 7. We suppose Q-matrices appeared in this chapter are uniformly bounded
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in time t. Note that some literature refer to its transpose as Q-matrix such as
[28, 15]. We sometimes call @; as the transition rate matrix for X. For p, = (P(X,; =
e1),...,P(X; = en)) and t > 0, we see that it satisfies the following Kolmogorov’s
forward equation

d
% = Qe (2.1)
Hence, the transition probability matrix of X, given by
O(t,s) = L
P(Xt:61|Xs:€N) P(Xt:€N|Xs:eN)

for t > s satisfies the following equations

dq)c(;t’ ) =O(t,5)Q, P(s,s) =1, (2.2)
dq)c(;’ ) 0.(ts), Bt =1, (2.3)

for t > s > 0 where [ is the N x N identity matrix. (E2) and (223) are referred
to as the forward and backward Kolmogorov equation, respectively. X is time-
(in)homogeneous if @); does (not) depend on ¢t € [0,7]. Note also that the transition
probability of the time-homogeneous chain X with a transition rate matrix @) is the
matrix exponential ®(¢,s) = exp((t — s)Q).

From Appendix B in [28|, X has the following semi-martingale representation

Xt =Xy + / Q:Xs,dS + Mt. (24)
10,2]

Here, zo € {e1,...,en} and M; is an R¥-valued G-martingale. The predictable
quadratic covariation matrix of M is given by

(M, M), = /]Ot] (diag(Q: X, ) — diag(X, )Q,s — Q% diag(X,_))ds,

which is also shown in Appendix B in [28]. Let ¢ = diag(Q; X;—) — diag(X;—)Q: —
Q); diag(X;_). Note that 1), is a predictable process, valued in N x N real symmetric
nonnnegative semi-definite matrices. For later use, define the seminorm for z € R¥
by

215 = 2" (diag(Qjv) — diag(v)Q; — Q7 diag(v))z, (2.5)
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where v € {ey,...,ex}. Note that || - ||, depends on t when @, is time-dependent.
The following Itd’s isometry is a key property of this seminorm for v = X;_. That
is, for any R"-valued predictable process Z, it holds

2
(L)
1s,t]

The proof is given in [I7]. We also define the equivalence relation Z ~); Z’ on
RN -valued predictable processes as ||Z; — Z/||x,_ = 0, dt ® dP-a.s.
In [15], Cohen and Elliott treat BSDEs driven by a CTMC in the form of

E

=F {/ ||Zu||§(udu} fort > s> 0. (2.6)
Js.t]

Y: =£+/ h(t,Ys_, Zs)ds —/ dM: Z,, (2.7)

1t,7] 1t,7]
where £ is an Gr-measurable square-integrable random variable, h :  x [0, 7] x R x
RY > (w,t,y,2) = h(w,t,y,2) € R is G-predictable in (w,t) and Borel measurable

in (y,z). The following result on the existence and a uniqueness of the solution
(Y, Z) € S*(G,R) x L*(G, (M), RY) of (227) has been established.

Theorem 2.2.1 ([I5]). Assume that,

EUqh@Q®%t<m,
10,77
and that for some constant L > 0,
|h(t,y. 2) = hit,y . 2 < L(ly =y + |2 = Z[%,_),  dt® dP-a.s. (2.8)

forally,y € R and 2,2 € RN, Then, it admits a unique solution (Y, Z) € S*(G,R) x
L3(G, (M), RY). We remark that it is unique up to indistinguishability for Y and up
to ~ equivalence for Z.

the usual Lipschitz continuity as |h(t,y,2) — h(t,y',2)* < L(ly — ¢'|* + ||z — 2'[]?),
dt ®P-a.s. Note that, however, the converse does not hold; there does not exist C' > 0
such that ||z|| < Clz|le, for all z. Taking z; = (1,1,...,1) € RY it is easy to see
lz1]l2, =0 < N = |||,

Next, we consider the Markov BSDE driven by a CTMC of the form

y;:X;;G+/

16,7}

h(XS_,s,Ys_,Zs)ds—/ dM: Z, (2.9)

16,71
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where G € RY and h : {e;,...,en} x [0,T] x R x RY — R is a Borel measurable
function. Associated with (29), setting ¢ € [0, 7] as the starting time for the BSDE,
we consider

X4 = e+ / QuXy“dut+ M, — My, s >t,
Jt,]
X?ei =e;, s<Ht,
Y:’ei _ (X;,el)*G +/ h(XZ’ii,U Yt,ei fo")du _/ dM*Zt,ei s E [O’T]
s,T]

}S7T] - u u
(2.10)
Then, we give the following nonlinear Feynman-Kac type result. Recall that, similar
statements can be found in |21, P.

Theorem 2.2.2. Assume that there exists a constant L > 0 such that
(e t,y, z) — hies t, o, 2P < L (ly — ' P + 12 = 2II2), (2.11)

forany y,y €R, 2,2 € RN, t € [0,T] andi=1,...,N, and fOTh(ei,u,O,O)Qdu <
0. Define H : [0,T] x RY — RY such that

erH(t,z) = h(e;,t,eiz,2)  forte[0,T],zeRY i=1,...,N.
1. For a solution U; of the system of ODFEs

du,
d—tt + QtUt + H(t7 Ut) = O, UT = G7 (212)
(Ybei, zbe) = (Xb9)U,, Us) € S*(G,R) x L*(G, (M),RN) uniquely solves

2. Conversely, for a unique solution (Y1, Zb) € S*(G,R) x L*(G, (M),RY) of
(ZI0), a continuous function V; = (Y'!, ... Y"N)* satisfies V' ~pp Z5% for
i=1,...,N andt € [0,T], and solves (Z12).

Proof. See Section Bl O
Remark 2.2.2. If we assume the continuity of t — h(e;, t,y, z) for alli,y, z addition-

ally, a uniqueness of (Z12) immediately holds from the well-known Picard-Lindelof
theorem (e.g. Theorem 110C, P.23 in [12]).
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Corollary 2.2.1. Under the square integrability t — h(e;,t,y,z) in [0,T] and the
uniform Lipschitz continuity (ZZ10), a unique solution (Y, Z) of (BZ9) is also a unique
solution of

Y, =X:G+ | X' H(s, Z,)ds — / AM?*Z,. (2.13)

1t,7) 1t,7)

Moreover, the relation
Y, = XUy, up to indistinguishability and Z ~p U
holds, where U is a solution of (Z12).

2.2.2 BSDEs Driven by a Brownian Motion

Let W = (W})i>0 be a d-dimensional standard Brownian motion. Let F = (F;);>¢ be
the completion of the filtration generated by W. We consider the following Markov
BSDE driven by Brownian motion.

t t
Xy = xo + / p(s, Xs)ds + / o(s, Xs)dWs,
0 0

. . (2.14)
Vi = g(Xp) + / F(s, X, Vi, Z,)ds — / 2w,
t t

where g2 [0,7] x RY — R o : [0,7] x RY — R4 f:0,7T] x R x R x R? — R,
g : R? — R are Borel measurable, and referred to as the drift coefficient, the diffusion
coefficient, the driver and the terminal condition, respectively. Assuming that, there
exists L > 0 and p € N such that

|u(t, @) — p(t, )| + lo(t,x) — o(t,2")|| < Lllz — 2/,
|t 2y, 2) — f(t2,y,2)] < Lly — ¢ + |12 = 2|)),
[t )| + llo(t, )| < L+ [lz]?),
|ft 2y, 2)| + |g(2)] < L1+ [|l=]7),

(2.15)

for all t € [0,T], z,2/,2,2 € R? and y,y € R, (ZI4) has a unique solution

(X011 V)een), (Zo)ierory) € S*(F,RY) x S*(F,R) x L2((W), F,R?). A is some-

times referred to as the state process, and it is solvable independently of (Y, Z).
The nonlinear Feynman-Kac formula describes the relation between (214) and

Owu(t, ) + Lou(t, ) + f(t, v, u(t,z), 0" (x)Voult,z)) =0, (t,z)€[0,T] x RY,
uw(T,z) = g(x), = €RL
(2.16)
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Here,
Gy 0 LX) “u
Lou(t,z) =Y p (t,x)am(t,x)ﬁZ(m) Nt 2) 5——(t,7) (2.17)
i=1 v ij=1 L

is the infinitesimal generator of the Markov process X,

du u :
V.u(t,x) = <8x1 (t,x),. B (t,x)) € R?

is the gradient vector, u(t,z) is the i-th component of u(t,z), and (c0*)®)(t, x)
is the (7, j)-th component of o(t,z)c*(t,z). The precise statement is as follows.

Theorem 2.2.3 (The nonlinear Feynman-Kac formula (e.g. pp.487-489 in [19])).
Suppose that i, o, f and g are defined as above. For (t,x) € [0, T|xR4, let (Xte, Yhe Zhe)
be a unique solution of the Markov BSDE

Xht = a:—i—/ u(T, Xf’x)d7+/ o(r, X"YdW,  for s>t

t t
X" =2 eR? for s<t,
T T
v =gy + [ g a3t s - [ (zyaw, jor sefoT]

(2.18)
Then,

1. for every classical solution u € CV2([0,T] x R%:R) of (2I8), such that, for
some K >0,

u(t, @) + [Vou(t, o) < K1+ [l2))  for (t,2) €[0,T] xR?  (2.19)
a unique solution of BSDE (ZIR) is represented as
Vo' = (s, X"), ZY = o*(XP)\Vu(s, X0")  for s>t (2.20)

(The inequality (219) is sufficient for showing (Y5, Z4%) is of the class S*(F, R) x
L*((W),F,R%).)

2. Suppose further that f and g are Lipschitz continuous and uniformly continuous
with respect to x, uniformly in t. Then, u(t,x) = yf’x 15 a viscosity solution

of (Z18).
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3. Additionally, if for each R > 0 there ezists a continuous function mg : [0,00) —
[0, 00) such that mg(0) = 0, and

[f(t 2,y 2) = [t 2y, 2)] < mg((le —2[(1+ [2])

holds fory € Rz, 2', 2 € R? such that max{||z|, ||2'l|, |||} < R, then a unique-
ness of u also holds.

Remark 2.2.3. Viscosity solution is a weak solution of PDEs, which allows us to
regard a continuous function, not smooth enough, as a solution. It coincides with the
classical solution if the coefficients of PDFEs satisfy some reqularity conditions. For
the details, see [19, 75, 60, 23] and references therein.

2.3 Multi-Stage Euler-Maruyama Methods

In this section, we introduce several (multi-stage) Euler-Maruyama methods for solv-
ing BSDEs driven by CTMCs. Hereafter, we always assume that (X;).cp,r is time-
homogeneous, namely, the transition rate matrix ); equals some constant matrix )
for all . The transition expectation is then represented as the action of a matrix
exponential on the present state X;. This can be seen from

N P(X, = e1|X;)
E[X,| X)) =) eP(X, = e|X,) = : — X, (2.21)
i=1 P(X, = en|X})

forall t <s<T.
Euler-Maruyama methods are constructed in the following two steps:

1. Slice the time interval [0, 7] into a temporal grid {0 =ty <t; < --- <ty =T}
and derive a stochastic difference equation on the grid.

2. Take conditional expectations and suitably approximate the (Riemann) integral
part that appeared.

Let (Y, Z) = (X*Z,Z) be a unique solution of a BSDE driven by a CTMC (213).
Discretize [0, 7] on a uniform grid ¢,, = mAt for m = 0,1,..., M, where At =
T/M. We immediately see that (V;,,)M_, satisfies the following stochastic difference
equation

X: H(s,Zs)ds —/ dM; Zs, (2.22)

}tm,tm+1]

}/;m = }/;m-&-l +/

]tmytm+1]
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form =0,1,..., M—1. Taking the conditional expectations E[- - - | X; | in both-hand
sides of (2722), we observe that

m

tm+1
Y, EX, 1 Xt Ztin +/ E[X| Xy, |"H (s, Zs)ds. (2.23)
tm
We can consider the following Euler-Maruyama-type approximations from (2=23):

(The Lawson-Euler Method). The simplest would be
Y., =~ E[Xy, X 2+ AEX, X H (G, Ziyy)- (2.24)
From (EZ201), (2224) is reduced to
Y, & XP (e, + Ate*OH (tyy1, Zy, L)) - (2.25)

As a consequence, we have the following 1-stage Euler-Maruyama scheme.

M = @q,
Mo AQ( M M (2.26)
ZM = eBR(ZM 4 AtH(tmir, Zpt ), m=0,1...,M —1,

tm+1

which is known as the Lawson-Euler method [47] for solving system of ODEs (EZ12).
Note that we take Y, := X7 ZM form =0,1..., M.

(The Ngrsett-Euler Method). We can consider another (1-stage) Euler-Maruyama
approximation as

tm+1
nsz[XtMJXtm]*Ztmm( / E[Xsrxtmrds) Htwir Z0,,)).  (2.27)
tm

From (22211) as before, (2221) is reduced

1
}/;m ~ Xt*m (eAtQZtWH_l + At (/ 6(1_0)Ath9> H(tm+17 Ztm+1>> ) (228)
0
and we have
th‘fl =G,
1
ZtJZ = €AtQZt]g+l + At (/ 6(19)Ath9> H<tm+17 Zt],\f_H)? m = 07 I... ) M —1.
0

(2.29)
It is known as the Ngrsett-Euler method [22] for solving system of ODEs (213).
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(The ETD2RK Method). We can consider 2-stage Euler-Maruyama methods,
as well as 1-stage ones. For example, a 2-stage Ngrsett-Euler-Maruyama method is

described as

tm41
Vi, ~ E[Xoy 1| X ] Zo o + / E[X,| X, ]’
tm

H(ty, Zi,) — H(tm+1, Z4,, 4
(H<tm+1>Ztm+1)+ ( : ) At( S )(thrl _8)) o

tm+41
~ E[Xy | X0 Zos + ( / E[Xs\Xtm}*ds) H(twss, Z,.)
tm

tm+41 Htm, m _Htm ’Z 1
+ ( / <tm+1—s>E[Xs|Xtm]*ds) s o) = H 1, Zoer)
tm

where (,, is defined by

tm41
Cm = E[Xtm+1’Xtm]*Ztm+1 + (/ E[XS’Xtm]*dS> H(tm+1> Ztm+1>'
tm

From (2221), it results in

=G,

1 1
ZM = B2+ A ( / eI =02R 40 — / e(l_G)AtQQdG) H(tmi, Z2 )
0 0

1
+ At (/ e(l_Q)AtQQdQ) H(tms1, ¢

0
1
+ At (/ e<1">Ath9> H(tmer, ZM ), m=0,1...,M—1,
0
(2.30)
which is known as the second-order exponential time differencing Runge-Kutta (ETD2RK)
method [22] for solving system of ODEs (212).

M . _AQoM
¢y =6 Ztm+1

\
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(General s-Stage Exponential Integrators). Furthermore, we consider general
s-stage Euler-Maruyama methods taking the form of

ZM = xo(AtQ)ZM |+ ALY bi(ALQ)G s,

i=1

Gmi = H(tmy1 — AL M), for i=1,...,s, (2.31)

C% = )(Z-(AISQ)Z,JT‘Z/[+1 + AtZaij(AtQ)an, for i=1,...,s,
j=1

for m =0,...,M — 1. Here, Zt]‘i approximates Z; , G; is the i-th internal stage,
s € N is the number of stages, c; are real numbers, and x;, a;; and b; are functions
constructed from “¢-functions” defined by

1 6)l71
wQ) :/0 Y

For example, the three methods mentioned above are obtained from the settings:

d) for 1€N, and ¢y(Q)=e“.

e Lawson-Euler: s =1, xo(2) =¢€*, x1(2) =1, a11(2) =0, by(2) = €* and ¢; = 0.

e Norsett-Euler: s = 1, xo(2) = €%, x1(2) = 1, a11(2) = 0, bi(2) = ¢1(2) and
Ccl = 0.

e ETD2RK: s =2, xo(2) = €, x1(2) = 1, x2(2) = €%, a11(2) = a12(2) = ag(z) =
0, as1(2) = ¢1(2), b1(2) = ¢1(2) — Pa(2), ba(2) = ¢a(2), ¢4 = 0 and ¢y = 1.

Note that the multi-stage Euler-Maruyama method (E231) is the same as exponential
integrators (exponential Runge-Kutta methods) for solving systems of ODEs (EZ12).
For details on exponential integrators, we refer to [41], a comprehensive survey. We
remark on the following:

Remark 2.3.1. [t is known that using exponential integrators for numerical calcu-
lations of “stiff 7 systems of ODEs work well. Here, a differential equation is called
stiff if explicit methods become numerically unstable unless the step size is taken to
be extremely small. It seems to be difficult to formulate a precise mathematical def-
wnition of stiffness, but such an equation includes some terms that can lead to rapid
variation in the solution. As for the historical development of the notion of stiff-
ness, we refer to [31, 07]. As described in [37, 68, 69, 70, 13, 12/, it is known that
the method-of-lines approach for solving parabolic PDEs (that is, the discretization
of the spatial variable) often results in large stiff systems of ODEs, and exponential
integrators are considered to be effective for these systems as seen in [38, 39, 54/, for
example.
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Remark 2.3.2. x;, a;j, b; and ¢; in (E530) are prescribed parameters to be set so
that we can obtain various schemes that have (stiff / nonstiff) orders of convergence.

Remark 2.3.3. Exponential integrators exploits matriz functions ¢;. However, eval-
uating them numerically is not straightforward and has been studied in numerical
literature. A standard approach that is widely used is a combination of Padé approz-
imations and scaling-and-squaring methods. Although it enables efficient evaluation,
note that it is only applicable to ¢; of moderate dimension. For solving ODE systems
whose dimension s large, it is advantageous to apply Krylov subspace methods; in-
stead of evaluating ¢; itself, its action on a state vector is approrimated with a vector
on a Krylov subspace whose dimension 1s small.

2.4 Application to BSDEs Driven by Brownian Mo-
tion

In this section, we are interested in computing Markov BSDEs driven by Brownian
motion (ZI4) with an appropriate spatial discretization. From a probabilistic point
of view, it can be seen as approximating a BSDE driven by a Brownian motion with
a BSDE driven by a CTMC. From a differential equation point of view, on the other
hand, it can be seen as the method of lines, approximating a second-order parabolic
PDE with a system of ODEs. As mentioned in remark P23, the method of lines
discretization of parabolic PDEs leads to stiff systems of ODE, and our multi-stage
Euler-Maruyama methods efficiently work for them. One can represent this situation
as Figure 211

Brownian BSDE I EEEE—— CTMC BSDE Euler_]\,{aruyarna(*)
Spatial discretization \

Exponential
Integrator

ODE system %ar;ation

-of-constants

Nonlinear

Feynman-Kac Cohen-Szpruch[2I)]

Parabolic PDE
Method of lines
Figure 2.1: A diagram representing the relation between key ingredients for the
argument up to here on this chapter. It is based on the diagram given in [21]|. The
arrow denoted as (*) has been newly drawn by the arguments in section PZ3.

We present a construction of Markov BSDEs driven by CTMCs from spatial
discretization of Markov BSDEs driven by Brownian motion. Through the method
of lines discretization to the associated second-order parabolic PDEs, systems of
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ODEs are obtained. We see that the systems of ODEs are equivalent to Markov
BSDEs driven by CTMCs. Hereafter, we focus on (214) such that (X})icjo.r] is
time homogeneous, namely, u(t,z) and o(t,z) do not depend on t. Then, we can
simply write pu(t,z) = p(z) and o(t,z) = o(z), and the subscript of the infinitesimal
generator can also be omitted: £, = L.

2.4.1 The Case of 1-dimensional State Space

First, we shall discuss the case of d = 1 for simplicity. Let a strictly increasing
sequence IT = {x; zN:O—NO of length N = 2Ny + 1 be the set of nodes on R and
define dx; = x;41 — x; for —Ny < © < Np. For any function v : R — R, let
o = (v(t, 2N, ), v(t, 2 Ngt1), - - 0(E, TN,))* € RY be the evaluation of v over II.

Then, derivatives evaluated at nodes of II are replaced by

ov 0%v
%(I—No) %(m—l\fo)
. =~ Dlun, =~ DQUH.
Ov 0*v
%(ml\fo)) %(QJNO))

Here, N x N-matrices D; and D, are defined by

( —51’i . .
y J =1 17
5!Ei_1((5l’i_1 + 51‘1)
5!@' — 5l‘i_1 . .
S — j = ’L, .
e*Die. = (51}1(51‘1_ for — N, <Z<.]V7
i (5.1'1711 . —I— 1 ’ " (232)
=1
ox;(dxi1 + dx;)’ ’
\O otherwise,
€*_NOD1€i = €7VOD1€1' = O, for — NO S 1 S No,
( 2 i
(SZEi_l((SJZi_l + 51‘1)7 J=0 ’
-2 .
-, = 7/7 .
¢ Dy, = 4 dz07;, g for — Ny <i< N,
p —_— (2.33)
=1
0w (0w + 0x;)’ J ’
L0 otherwise,

e’ nyDae; = ey, Dae; =0, for  — Ny <i <N,
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that result from the central difference scheme, and we denote e; as the (i +Ny+1)-th
unit vector in RY whose (i + Ny + 1)-th element is 1. We then solve, in place of PDE
(Z18), a system of N ODEs in what follows:

dt

Here, G = (g(x_ng), -+, 9(xn,))* € RN, F 1[0, 7] x RY — RY is defined by

+ QUM+ F(t, UM =0 for te0,T), UF=@G. (2.34)

f(t? L—Nos G*_NOZ, O-(x—No)e*—NoDlz)
F(t,z) = : ; (2.35)
f(ta L No> 6*N()Zv O-(INO>€7VOD12)
and

Q = diag(u") D, +  diag((*)") Dy

approximates the infinitesimal generator £ of X. Using (E232) and (EZ33), each
element of () is

( 0%(z;) — dwsp(w;) i1
51’1‘—1(51‘1‘—1 + 5$Z)’ ST
0z — dwia)pu(xs) —o*(@) .
e;Qe; = 0x;0T;i_1 I for — Ny <i < Ny,
5l‘i(5l’z‘_1 + 5ZL’2) ’ J = T
0 otherwise,

\

ey Qe = €5, Qe; =0, for  — Ny <i< N

In Section I8, we give a convergence result of (2234) to (2I8) in a case which a
unique classical solution of (PZZI8) exists.

Theorem 2.4.1 (Convergence). Consider the case of d =1 and take a spatial grid
[I(NV:A7) — {z’Aa:}fiLNo for some Az > 0. Suppose that Assumption ZE1, ZE2 in
Section 28, and (EI8) admits a unique solution u. (For example, (EI8) is uniquely
solvable in the case of Lemma ZZ81.) Denote UNAY as o unique solution of (2232)
in the case of INA%) - For any compact set K C R, it holds

. ) . N,A
lim lim  sup |u(t,iAz) — 6fUt( x)’ =0,
Az—0 N—oco —No<i<Ng

i€ZiAzeK

where e; is the (i + Ny + 1)-th unit vector in RY whose (i + Ny + 1)-th element is 1.
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Thus, for obtaining the system of ODE which approximate the PDE with a small
error in given bounded K, we should take a sufficiently small £ > 0 and expand the
spatial grid for sufficiently large N that depends on k.

2.4.2 The Case of d-dimensional State Space

Using the Kronecker product “®”, the argument in the case of d = 1 can be carried

out in multidimensional cases, that is, for any d € N. For p=1,...,d, let a strictly
(p)
increasing sequence I1(P) = ($§p))]»vo NP of length N® = 2Nép )+ 1 be the set of
=g

nodes on the p-th axis in R?, and let D§p ) and Dép ) are the corresponding N® x N®)
difference matrices defined by (2232) and (233), constructed on I1®). Consider the
grid on R? by

_ 2 d) _ _ (D (2 @y ., _
N=1YeI?g...0I% = (z = (23, 25, sxy))ni=1,...,N),
where N = szl N® is the total size of II, and multi-indices (iy, s, ...,1q) are
ordered lexicographically. For v : R — R, first and second derivatives along the

p-th axis are approximated by

v ) 0*v L~
Ox () (:) = ez‘Dgp)UH and W(wz) ~ e Dép)vn’

where matrix 5,(3’) fork=1,2and p=1,...,d is given by

DP =TIy, ® & Iyo-n ® DP ® Inpin ® -+ ® In.

In multidimensional cases, we additionally need to specify the approximation of cross
derivatives since £ possibly contains them. In this work, we approximate the cross
derivative along the p-th and ¢-th axes as

0%

* (P,q), 11
9P r@ Dy

i1 )

(x;) ~ e
where

D?’""’) =1y ® - @ Iye-1y ® Dﬁ”) ® Iy @ -+
® Iy ® D @ Ininy ® -+ ® Iy,
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for p < ¢. In this situation, () is defined by

d d-1 d
Q= Z diag«u(ﬁ))n)ﬁgp) 4 Z Z diag(((ga*)(p,q))H)b’gp,q)
p=1

p=1 g=p+1

d
1 ~
+35 > diag(((o0*)®?)") DY (2.37)
p=1

Defining F : [0, 7] x RN — RY by

f(t, 1, eiz,0"(@1)(€; DYz, . e; D" 2)")
F(t,z) = :

f(t. oy enz o (@n)(en Dz, ... ey Di¥2))
and G = (g(z1),...,9(xn))*, the system of ODEs results in the same form as (2234):

dUtH 11 I\ _ I _
—E QU+ F( UM =0, UF =G. (2.38)

2.4.3 Probabilistic Interpretation

Recall that @ in (238) or (2Z37) is constructed from the spatial discretization of the
infinitesimal generator £. In the probabilistic manner, it is natural to interpret ) as
the Q-matrix of a time-homogeneous CTMC. Since () might no longer be a Q-matrix,
it is required to see the “validity” conditions of () to be the Q-matrix. In the case
of d = 1, one can easily give the following sufficiency condition. It guarantees the
validity of a CTMC constructed by () provided the spatial difference is sufficiently
fine.

Proposition 2.4.1 (Validity). @ defined by (2238) is the transition rate matriz of a
continuous-time Markov chain if

o*(x;)
0< max {dz;} < min . (2.39)
~No<i<No-1 ~NoSisio ;)]
HAT;

Additionally, if the above inequality is strict, e;_;Qe; and e;_Qe; are positive for all
i=—No+1,...,Nyg— 1.

Proof. See Section 2Z72. m
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Note that validity conditions in multi-dimensional settings would be more compli-
cated; the existence of terms that involve cross derivatives occasionally violates the
definition of Q-matrices. Our approach presented in Section P23, that substantially
solves systems of ODEs using exponential integrators, works without any issues at
least numerically, regardless of the validity. However, in certain situations when we
need to simulate the CTMC, we should instead employ several discretization schemes
that avoid the invalidity issues |10, b2].

Assuming the validity of @), let X be a finite-state Markov chain with @ as its
Q-matrix. We now consider the Markov BSDE arising from (2=34) as

Y, = XiG+ | X' F(s, Z)ds —/ AM; Z,. (2.40)
1¢,T 1t,7]

Thus, we can regard (240) as spatially discretized counterpart of (214, and applying
exponential integrators to (2334) is equivalent to the (multi-stage) Euler-Maruyama
methods of (ZZ20).

We give a result on a uniqueness of (240) under standard conditions. Theoretical
justification of this probabilistic interpretation is completed with it.

Proposition 2.4.2. Suppose that fOT f(t,z,0,0)2dt < oo for any v € R, and that
for some L > 0,

|f(t7$7y72) - f(t7$7y/>zl)‘2 < L(‘y - y/’2 + HZ - Z/HQ)

forallt € [0,T], z € R, y, 9/ € R, and 2,2 € RL. Suppose further that Q is valid,
efD%p)l =0, and that

e;Qei:O:>e;l~)§p)ei:O for p=1,....d, (2.41)

fori,j =1,...,N. Then, (240), which is derived from the Markov chain approzi-
mation of (EI8), has a unique solution.

Proof. See Section ZZ3. m

Remark 2.4.1. As a related study on CTMC approximation of SDEs, we refer to
[23, 24, 49, 146, Z4].

Remark 2.4.2. In [Z1], the authors presented a CTMC version of least-squares
Monte Carlo methods. Although this type of method is also a natural counterpart
of numerical solutions of Markov BSDFEs based on the Fuler-Maruyama temporal
discretization, we note that it is not suitable to solve C'TMC-driven Markov BSDEs
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arising from spatial discretization of Brownian motion-driven Markov BSDFEs. A
magjor bottleneck is that the resulting QQ-matriz may contain quite larger absolute
values. To illustrate it, suppose that u(x) = px, o(xr) = ox, and dr; = Az > 0.
Plugging them into (E238), we obtain

o%i? — i

2 ?

2 %% + i

eeriq = 5

e; Qe =
If i is nearby N and N is large, these elements take large values, which implies the
resulting Markov chain jumps too rapidly. It interferes with us simulating C'TMCs
nawvely using Gillespie’s exact simulation or the 1st-order approximation of the tran-
sition probability matriz; the former suffers from a tremendously large number of
Jumps, and the latter method requires the temporal step small enough for each row of
the resulting matrix to represent probabilities.

2.5 Numerical Results

In this section, we demonstrate the efficiency and stability of the numerical approach
presented in Section P4, using several examples. We apply spatial discretization to
the BSDEs driven by Brownian motions, obtain BSDEs driven by CTMCs (i.e. a sys-
tem of ODEs), and calculate numerical solutions using multi-stage Euler-Maruyama
methods (i.e. exponential integrators.) Before moving on to specific results, we
explain the details on settings in what follows:

Spatial Discretization We approximate the unbounded spatial domain of the
problem at hand with a bounded one. Because all of the BSDEs we solve in this
section have (0,00)? as spatial domains of them, we approximate as

(0,00)% & [0,221] x - -+ x [0,224] (2.42)
for some x1,...,x4 > 0, or sometimes as
(0,00)4 & [Ayy, 201 — Ay,] X -+ X [Ay,, 274 — Ay (2.43)
for small A,,,...,A;, > 0. The latter is applied to the problems that should be
evaluated only at points on the first quadrant. Here, (z1,...,24) is a point at which
we want to evaluate the numerical solution.
Throughout the section, IV (Z1ef;, Teenters Tright, Neo) = (:Ci)iv;foO means the

standard one-dimensional uniform grid such that z_n,, = Zier, Lo = Teenter and
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TN, , = Tright- We occasionally omit its arguments and simply write Hgmf. In addition
to the uniform grid, a non-uniform grid is also employed for spatial discretization.
We use a version of the (one-dimensional) Tavella-Randall-type grids [63] in what
follows:

center ~ e k
Zeenter + g1 sinh (arcsinh ($ ¢ 11 ft) . ) , k=—=Ngo,...,—1,0,
_ g1 Nx,o
Tk = Tright — & k
Teenter + o Sinh (arc sinh ( rght  “cenfer ) , k=1,2,..., Ny,
g2 Nx,U
(2.44)

where N, := 2N, o+ 1 is the grid size, Zief, and z,ign are the leftmost and rightmost
points of the domain, Zeenter € (ZTieft, Tright) 1S the central point of the grid, and ¢;
and gy are parameters for the left- and right-side of the grid, respectively. Note that
T_N,o = Tleft, L0 = Teenter ANd TN, , = Tuigns. Intuitively, setting g1, g2 < Tright — Tlefs
leads to the grid that is highly concentrated around Ziepter- It is commonly used
in numerical computation for pricing options to mitigate the effect of the non-
linearity of the payoff function [9, b3, 63|. Similarly to the uniform grid, denote
ITTR (@1, Teenters Tright, N0, 91, g2) as the Tavella-Randall grid (244) whose parame-
ters are (xlefty Tcenters Lright s Nz,Oa g1, 92)

Figure 2.2: g; = g, = 50.0

Figure 2.3: g =g = 5.0

Figure 2.4: gy = go = 0.5

Figure 2.5: Examples of Tavella-Randall grids with Zie, = 0, Zcenter = 100, Tyigne =
200, N%O =100 and g, = g5 € {50, 5,05}

Temporal Discretization We employ solvers implemented in DifferentialEqua-
tions.jl [62], listed below:

e LawsonEuler : A single-stage method of classical/stiff order 1/1, referred to as
the Lawson-Euler method [27)].
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e NorsettEuler : A single-stage method of classical /stiff order 1/1, referred to
as the Norsett-Euler method or ETD1RK method [22].

e ETDRK2 : A 2-stage method of classical /stiff order 2/2 [22].
e ETDRK3 : A 3-stage method of classical/stiff order 3/3 [22].
e ETDRK4 : A 4-stage method of classical /stiff order 4/2 [22].

e HochOst4: A 5-stage method of classical/stiff order 4 /4, developed by Hochbruck
and Ostermann [39].

Taking temporal grid size N; € N, we calculate solutions on the grid IIM{(N;) =
(iAt)Y, using these exponential integrators. Here, At = T'/N, is the step size. Note
that a large-scale system of ODEs is obtained from the spatial discretization in each
experiment. In this case, employing Krylov subspace methods in evaluating matrix
exponentials and related ¢ functions is more effective, as described in Remark 2Z373.
In all the experiments, we use the Arnoldi iteration with a size-m Krylov subspace,
which is readily available on all the solvers above. For simplicity, we always take
m = 100.

A Least-Squares Monte Carlo Method: A Reference BSDEs (driven by
Brownian motion) that appeared in this section include those whose analytical solu-
tions are unknown. In experiments of those BSDEs, as a reference, we shall report
numerical solutions using the least squares Monte Carlo (LSMC) method [60, 32, 3]
using Laguerre polynomials as

poly,;*(x) = Zp:ﬂ(p>x’“ p=0,1,2,.... (2.45)
p k ) [t Rt

k!
k=0

Note that for the multi-dimensional case, the basis function corresponds to the Carte-
sian product of (E43). Since LSMC methods include randomness, we independently
calculate solutions for 50 times, and report the mean values, the standard deviations,
and the total runtimes.

Implementation All of our experiments were performed on a 3.70 GHz, 64-GB
RAM Linux workstation. Our code was written entirely in Julia 5] and all the plots
were produced using Plot.j1 [I3]. The full code for the experiments is available at
https:/ /github.com/kanekoakihiro/ EMCTMCBSDE.


https://github.com/kanekoakihiro/EMCTMCBSDE

26 | Multi-Stage Euler-Maruyama Methods for BSDEs Driven by CTMCs

2.5.1 European Call Option under the Black-Scholes Model

First, we consider a linear BSDE arising from pricing a European call option under
the Black-Scholes model:

t t
S, =59+ / 1Ssds + / oS, dW,
0 0 (2.46)

T T
Y, = (Sr— K)F — / Wyt — / 24,
t t

Here, K is the strike price of the European call option, 7" is the maturity, r is the
interest rate, and &; is the spot price of the underlying risky asset with initial price
So, appreciation p and volatility . Then, terminal condition Yy = (Sp — K)t =
max{Sr — K, 0} is the payoff of the European call opton, and the solution ), = ! St
means the price of the option at time ¢ € [0,7] and spot price S;. For details on
the derivation of (EZ48), see Section 4.5.1. (p.91) in [75]. Using the cumulative
distribution function of the standard Gaussian distribution W(x), the solution can

be evaluated as

{yt =8, -V(dy) — Kexp(—r(T —t)) - ¥(dy), (2.47)

Zt == St . qj(dl)O',

where d; and ds are constants as follows

1n(%)+<r+%2>(T—t) 1n(%)+(r—%>(T—t)
= T G = '

We choose the parameters of (E48) as follows:

T K r 7 o
1 100 0.03 0.03 0.2

Despite a pretty simple case, its spatial discretization leads to a stiff system of
ODEs. To this end, we discretize (2248) on the Tavella-Randall grid III® with
(Tleft, Teenter, Tright, Na0, 91, 92) = (0,100,200, 1000, 50, 50) and calculate solutions of
the resulting system of ODEs using DP5, an implementation of the Dormand-Prince
explicit solver in Julia, for different time steps N;. Consequently, we observed that
it requires approximately 58005 steps along the temporal direction to achieve the
“stable” solution; otherwise, terribly large and rapid oscillations occur in some parts
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of the numerical solution. Fig. P8 shows the surface plots of the numerical so-
lutions of (t,z) — YP* for 57990, 57995, 58000, and 58005 temporal steps, re-
spectively. For visibility, the surfaces displayed are the 30 x 30 arrays uniformly
sampled from numerical solutions whose values heve been clipped in the [0, 250]
range. Absolute errors of Y;* at (¢,2) = (0,100), maximum absolute errors of V"
in (t,z) € TIY™E x ([80,120] N III®) and runtime in seconds are reported in Table
271. These results epitomize how stiff systems arise from the spatial discretization of
parabolic PDEs and prevent explicit solvers from calculating solutions efficiently.

N;=57990 N, =57995 N, =58000 N, = 58005
Sup Error | 3.304e+31 1.727e+18  1.218e+5 1.326e—2
Abs Error | 1.989e+12 1.324e+3 4.612e—4 4.612e—4

Runtime [s] 600.51 629.94 665.08 668.86

Table 2.1: Results on numerical solutions of (Z48) using DP5 for different N;. Here,
we spatially discretize (248) on II'® and solve the resulting system of ODEs. Here,
the parameters of H;FR are Tiery = 0, Teenter = 100, Tyjgne = 200, N, = 1000,
and ¢; = go = 50. For each N, the numerical solution is evaluated on the grid
PRE(N;) x IR The maximum absolute errors in IIP™F x ([80,120] N IIIR) are
reported on the row of “Sup Error”, the absolute errors at (¢,2) = (0,100) are on the
row of “Abs Error”, and the runtimes in seconds are at the bottom line.

Let us solve the system of ODEs constructed from above using exponential in-
tegrators. Table 222 reports the results of HochOst4, a 4-stage exponential integra-
tor of order 4, for different temporal steps N;. It successfully calculates solutions
without suffering from huge errors as appearing in DP5, and provides accurate solu-
tions with fewer temporal steps; for example, the solution calculated using HochOst4
with N; > 200 has achieved the same level of accuracy as the one using DP5 with
N; = 58005.

Ny=10 N,=20 N;,=50 N, =100 N;=200 N;=500 N;=1000
Sup Error | 5.102e—1 1.374e—1 1.384e—2 1.326e—2 1.326e—2 1.326e—2 1.326e—2
Abs Error | 2.611e—1 2.638¢—2 1.092¢—3 4.693¢—4 4.612¢—4 4.612¢—4 4.612¢—4
Runtime]s] 1.56 2.33 5.43 12.21 19.73 49.26 96.63

Table 2.2: Results on numerical solutions of (ZZ5) using HochOst4 in the same
situation in Table Pl
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(¢) N; = 58000. (d) N; = 58005.

Figure 2.6: Plots of numerical solutions of (2Z5) using DP5 for different N;. The
spatial grid is HER whose parameters are T = 0, Teenter = 100, Tyigne = 200,

Nzo = 1000, and g; = go = 50. For visibility, data plotted are 50 x 50 arrays
uniformly sampled and clipped into range [0, 250].
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2.5.2 European Call Option with Higher Interest Rate for
Borrowing

Next, consider a nonlinear version of (Z48):

t t
S, = sp +/ 1Ssds +/ oS, dWs,
0 0
T Z, Z, r
Vo= (S K) = [ 0= 2y - RO )+ Bzas - [ zaw,
t t

0 0 (2.48)

which comes from considering a more practical case that the borrowing interest
rate R is higher than the lending interest rate r. Here, (z)* = max{z,0} and
()~ = min{x,0} for x € R. For details on the derivation of (248), Section 4.5.1.
(p.91) in [75]. We choose the parameters of (Z48) as follows:

T ! c R r K
1.0 0.03 0.2 0.3 0.01 100

We discretize 248 on the Tavella-Randall grid IT'® with 2y = 0, Zeenter = 100,
Tright = 200, N o = 1000, and ¢g; = ¢g» = 50, which is the same as before. Unlike the
previous experiment, however, we cannot evaluate numerical errors, since we do not
know the analytical solution of (ZZ8). We only focus on numerical solutions of ), =
Vi® at (t,s) = (0,100). Table 223 reports numerical solutions using different exponen-
tial integrators and the runtimes in second. For each scheme, when N, increases, the
numerical solution seems to converge approximately yg 100~ 26.3305. We observe
that multi-stage methods (ETD2RK, ETD3RK, ETD4RK, and HochOst4) converge
faster than single-stage methods (Lawson-Euler and Ngrsett-Euler). As a reference,
we calculate the solution yg 190 ysing the LSMC method with Laguerre polynomials
(223) up to p-th order for different parameters. Here, the number of Monte Carlo
simulations is M = 2?2 and the pair (Ny, p) of the number of temporal steps N; and
the maximal order p are taken from {(6,6),(7,7),(8,8),(9,9)}. The LSMC solution
of yg 100 55 evaluated 50 times independently, and we compute the sample mean, the
unbiased standard deviation and the total runtime. The results of the numerical
solution of the LSMC method are reported in Table 4.
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N,=10 N,=20 N,=50 N,=100 N, =200
Lawson-Euler 00 25.0377 26.3522 26.3545 26.3437  26.3372
[27] Runtime [s] | 5.26 0.61 1.52 2.81 5.40
Norsett-Euler 0,50 26.0777 26.4527 26.3881  26.3597  26.3452
[22] Runtime [s] | 1.25 0.53 1.30 2.51 5.23
ETD2RK o 25.8658 26.3182 26.3310  26.3307  26.3306
[22] Runtime [s] | 1.51 1.27 2.89 5.85 10.78
ETD3RK 0 26.1212 26.3137 26.3302  26.3305  26.3305
[22] Runtime [s] | 1.78 1.71 3.81 8.02 16.68
ETD4RK b 26.0947 26.3136  26.3302  26.3305  26.3305
22 Runtime [s] | 3.10 2.72 6.47 14.35 27.32
HochOst4 Vo™ 26.1080 26.3136 26.3302  26.3305  26.3305
[39] Runtime [s] | 2.28 2.79 6.84 14.27 29.64

Table 2.3: Numerical solutions Yp"'* and its runtime in seconds using different
exponential integrators. Here, we spatially discretize (248) on IIT® and solve the
resulting system of ODEs. Here, the parameters of II'® are x1.5 = 0, Zeenter = 100,
Tright = 200, N$70 = 1000, and g1 = gs = 50.

M (Ntvp) - (656) (Nt7p> - (75 7) (Ntvp) - (87 8) (Ntvp) - (97 9)
mean 26.1462 26.2239 26.3001 26.3404
4194304 std 0.0457 0.0386 0.0611 0.0580
Runtime [s] 1436.79 1706.81 2021.94 2340.43

Table 2.4: Results on numerical solutions ygﬂoo of (248) using the LSMC methods
with Laguerre polynomials up to p-th order for NV; time steps. Here, M = 4194304 is
the number of samples for the Monte-Carlo approximation. We run the LSMC algo-
rithm 50 times independently and collect each yg 19 “The row of “mean” and “std”
reports their sample means and sample (unbiased) standard deviations, respectively.
The bottom of the table reports the total CPU times required for the 50 experments.

2.5.3 European Options under Stochastic Local Volatility Mod-
els

In this section, we consider BSDEs arising from the valuation of European options in
stochastic local volatility (SLV) models, a class of Markov BSDEs with 2-dimensional
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state processes. A general form of stochastic volatility models is given in [24] as

t t
St:SO+/ w(Ss,vs)ds+/ m(vg)[(S,)dW WY,
0 0

! t (2.49)
v = g +/ p(vs)ds + / o (vs)dWP,
0 0

1 0
h W W@y, = ith —1,1). Let L = he 1
where (WW WE)N, = pt with p € (—1,1). Let (p \/1_7/)2) be the lower

triangular matrix constructed from the Cholesky decomposition C = LL* of C =
(1)
(; f) Since W = L™} (%Q)) is a 2-dimensional standard Brownian motion, we

can reformulate (229) as

t t
Xy = X +/ p(Xs)ds +/ o(Xs)dW, for te0,T],
0 0

where

e () o (). o= ()

Similarly to the arguments in Section 4.5.1. (p.91) in [75], we formulate Markov
BSDESs describing the price of European options. Consider the self-financing portfolio

1
A, = (ﬁ%) consisting of A} assets of S; and A? assets of v; and bonds with

borrowing rate R and lending rate r. Let V; be the wealth dynamics of A;. The
self-financing condition reads

dV, = [r(Vy — AT X)) — R(V, — AL X,) 7 |dt + AjdX,.

Consider that A; hedges the European option with payoff ¢(Sr). Denoting V; =V
and Z; = Ajo(&;), we obtain

T T
Ve =9(Sr) - / f(s, X5, Vs, Z5)ds — / Z:dW, (2.50)
t t
where the driver is
F(t2,y,2) = 1y — 2"o(2) " 0)" — Ry — o (0)"0)” + 2o (@) pa).

Then, ) ¥ is the price of the European option.
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Before moving on to the specific results, we note what follows: (1) Unlike the
cases considered in the previous two experiments, we need to discretize the two-
dimensional process X; = (S;, v;). To this end, we construct the Kronecker product
of two grids as described in Section ZZ471. Specifically, S; is discretized on the Tavella-
Randall grid II'® and v; is on the uniform grid Y™ (2) BSDE (250) contains
the evaluation of o (z)™!, and we should set each grid carefully; if T'(z), m(z) or
o(z) take zero at x = 0, grid (223) should be chosen rather than grid (223). (3)
We calculate numerical solutions using the LSMC method for reference. Since the
Euler-Maruyama discretization paths can take negative values, coefficient functions
defined only on (0,00) (e.g. the square root) may fail to evaluate. To avoid it, the
absolute value is taken under such coefficient functions.

2.5.3.1 European Put Opton under the Heston-SABR Model with Higher
Interest Rate for Borrowing

The Heston-SABR SLV model [71] takes the following form.
¢ t

S =S +/ b-S.ds + / VUsSPaw
0 0

t t
vy = vp + / n(0 — vs)ds + / /v, dW 2
0 0

We apply (E523T) to (249), and consider BSDE (200) with g(s) = (K — s)* a
payoff function of a European put option. We choose the parameters of (ZZ5231) as
follows:

(2.51)

T 5 7 0 ! P b K R r
1.0 0.7 4.0 0.035 0.15 —-0.75 0.01 100 0.07 0.01

. . . . . . 0,(so,
In this experiment, we are interested in numerical solutions of My = ), (s0,v0)

at (sp,v9) = (100,0.4). As noted before, since the driver of (EZ50) contains the
evaluation of inverses of \/v_tStﬂ and a,/vs, we need to design the spatial grid to
contain only points in the first quadrant. To this end, we set the spatial grid
onto [Aq,2s0 — Aq] X [Ag,2v9 — Ay, where A; = so/Nél), Ay = UO/N[§2). We
take (N, N{¥) = (100,15), and the resulting spatial grid II™® @ TIV™f contains
(2x100+1) x (2x 15+ 1) = 6231 points in the reculangular domain [100/100, 200 —
100/100] x [0.4/15,0.8 —0.4/15](~ [1, 199] x [0.0267,0.7733].) For g, and go, we take
g1 =92 =1

Numerical solutions using exponential integrators are reported in Table PZ4. As
N, increases, the solutions seem to converge approximately yg’(100’0'4) ~ 5.6394. As
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before, faster convergence of multi-stage methods than 1-stage methods has been
confirmed. Numerical solutions using the LSMC method is given in Table 2.

Nt=10 Nt:20 Nt:50

N, =100 N, =200

Lawson-Euler | V0™ | 47985 55605 56015 56211  5.6302
[27] Runtime [s] || 22.79  29.70  66.15  129.13  255.58
Norsett-Euler | Y00 | 419076 55662 5.6234 56326  5.6360
22| Runtime [s] | 14.71 2626  61.46 11611  231.01
ETD2RK O-Gowo) 149348 5.6006  5.6368  5.6393  5.6394
[22] Runtime [s] | 26.15  43.70  112.08  221.11  443.11
ETD3RK Y0 (sowo) 4.9329  5.6014  5.6369  5.6393 5.6394
[22] Runtime [s] | 33.04  66.37  159.77  341.57  724.57
ETD4RK Yolowo) 49521 5.6015 5.6369  5.6393  5.6394
[22] Runtime [s] | 63.90  121.81 29359  566.32  1150.64
HochOst4 Yolowo) 4 9328 56013  5.6369  5.6393  5.6394
[39] Runtime [s] | 60.23  114.64  285.99  551.47  1117.35
0,(100,0.4)

Table 2.5: Numerical solutions ), and its runtime in seconds using dif-
ferent exponential integrators. Here, we spatially discretize (2250) on II'? ®
Y% and solve the resulting system of ODEs. Here, the parameters of
[T are (@iefe, Teenters Tright, Va0, 91, 92) = (1,100,199,100,1,1), and of Y™ are
(xleft,xcenter, Tright Nzyo) ~ (00267, 04, 07733, 15)

M (V,p) = (6,6) (N,p) =(7,7) (N,p)=(838) (N,p)=(99)
mean 5.5956 5.6132 5.6247 5.6249
1048576 std 0.0153 0.0153 0.0179 0.0192
Runtime [s] | 3250.84 4737.51 6788.49 9863.74

Table 2.6: Results on numerical solutions yg’(“’“’("‘*) of (Z50) under the Heston-

SABR model (2251) using the LSMC methods with Laguerre polynomials up to p-th
order for N, time steps. Here, M = 220 = 1048576 is the number of samples for the
Monte-Carlo approximation. We run the LSMC algorithm 50 times independently
and collect each yg (10009 “The row of “mean” and “std” reports their sample means
and sample (unbiased) standard deviations, respectively. The bottom of the table
reports the total CPU times required for the 50 experments.
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2.5.3.2 Calls Combination with Different Interest Rates under the Hyp
Hyp SLV Model

Consider the Hyp Hyp SLV model [43] defined as:

t t
S =8y —I—/ b-S,ds + / oo - F(SS)G(US)CZWS(I),
0 0

t t (2.52)
v = vy — / K- vgds + / oV 2kdW P,
0 0

where

Flz) = [(1=B+ 8% 2+ (B -1)- (Vo + PA—2) - B)| /8,
G(v) =v+ Vo2 + 1.

We apply (252) to (229), and consider BSDE (2350) with
g(s) = (s—95)" —2(s —105)",

which is a payoff function of a combination of two European call options. We choose
the parameters of (Z52) as follows:

T I6] kK 0y a p b K R r
1.0 0.25 0.5 025 03 0.8 0.04 100 0.06 0.006

We discretize &, in the same way of Section EZ5-31 except the discretization of S;;
because the payoff function ¢ is non-smooth at s = 95 and s = 105, we should em-
ploy the concatenation of two Tavella-Randall grids ITT® with (Zief, Zeenters Tright) =
(1,95,100) and (Ziefr, Teenters Tright) = (100, 105,199); the other parameters are com-
monly taken as N, o = Nél)/2 =50and gy = ¢go = 1.

Results on numerical solutions using exponential integrators are shown in Table
270. Numerical solutions of yg’(so’”‘)) at (so,v0) = (95,0.4), (100, 0.4), (105,0.4) have
been reported; as V; increases, they seem to converge towards

VOO0 g 4061, YOO 58218, and  YOUOOY & 56304,

Numerical solutions using the LSMC method are presented in Table ?7.
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N;=10 N,=20 N, =50 N, =100 N, =200
Vo0 45580 44829 44368 4.4214  4.4137

Lawson-Euler | y0(%) || 60971 59595 58768  5.8492  5.8355
2] YO0 59113 57756 5.6938  5.6665 56529
Runtimels| | 1532  24.69  57.58  113.83  231.95

Vo0 45561 44787 44343 44200  4.4130

Norsett-Euler | y010040 1 59936 59035 58531 58371  5.8293
221 YRUsOD 57891 5707 56652 5.6520  5.6456
Runtimels|] | 13.52  22.99 5294  108.18  198.73

VoD I 44217 44115 44074 44065  4.4063

ETD2RK | p0U%0Y || 58444 58294 58236 58224  5.8220
2] YO0 | 56631 56473 5.6412 56400  5.6396
Runtimels| | 22.80  41.33  99.87  206.08  419.02

VoD 1 44082 44068 44063 44062 4.4061

ETD3RK | ppt®0Y || 58248 58227 58220 58218  5.8218
2] YO0 56494 56403 56396 5.6395 56304
Runtime[s| | 36.45 64.68 157.76  327.25 631.46

VoD 1 44080 4.4068  4.4063 44062 4.4061

ETD4RK | ypU®%Y || 58243 58226 58220 58218  5.8218
2] YO0 56491 56403 56396 5.6395 56304
Runtimels| | 59.71  113.26  257.03  499.43  1060.09

YoUOD I 44080 4.4068  4.4063 44062 4.4061

HochOstd | yoUo04 || 58944 58226 58220 58218  5.8218
[59] YO0 56491 56403 56396  5.6395  5.6304
Runtimels|] | 59.85  113.38  275.02  544.55  1043.06

Table 2.7: Numerical solutions Y**") at (so,vo) = (95,0.4), (100, 0.4), (105,0.4) of
(2532) and its runtime in seconds using different exponential integrators. Here, we
spatially discretize (2250) on [ITR@IIY™E and solve the resulting system of ODEs. We
employ concatenation of two Tavella-Randall grids H}R With (Zieft, Tcenters Tright) =
(1,95,100) and (Ziefr, Tcenters Tright) = (100, 105,199) in the S;-direction. In both

grids, we take N, o =50 and g; = ¢go = 1.
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M (S0, vo) (N,p) =(6,6) (N,p)=(7,7) (N,p)=(8,8) (N,p)=1(9,9)
(95 04) mean 4.4666 4.4503 4.4448 4.4369
- std 0.0138 0.0140 0.0145 0.0178
mean 5.7952 5.7807 5.7851 5.7824
1048576 | (100,0.4) | =y 0.0200 0.0207 0.0196 0.0253
(105, 0.4) | Mo 5.6619 5.6384 5.6293 5.6384
R 0.0250 0.0299 0.0350 0.0331
Avg Runtime [5] 3614.21 5123.17 7363.07 8808.37

Table 2.8: Results on numerical solutions y{}‘wo’o"” of (Z220) under the HypHyp

SLV model (E52) at (sg,v9) = (95,0.4), (100,0.4), (105, 0.4) using the LSMC meth-
ods with Laguerre polynomials up to p-th order for N; time steps. Here, M =
220 = 1048576 is the number of samples for the Monte-Carlo approximation. For
each (sg,vg), we run the LSMC algorithm 50 times independently and collect each
yg (50:00) " The row of “mean” and “std” reports their sample means and sample (unbi-
ased) standard deviations, respectively. The bottom of the table reports the average
of the total CPU times for the three cases.

2.6 Conclusion

A Markov BSDE driven by a CTMC associates with a system of ODEs. With ar-
guments based on this observation, we proposed the multi-stage Euler-Maruyama
methods for the BSDE, directly related to exponential integrators for solving the
system of ODEs. Together with a suitable spatial discretization, these methods can
be applied to solve BSDEs driven by Brownian motion. The efficiency of our nu-
merical methods has been confirmed through numerical experiments using derivative
pricing problems in mathematical finance.

2.7 Proofs

2.7.1 Proof of Theorem

Proof. For a solution U; to (Z12), the Itd formula immediately implies (Y}, Z;) =
(X, U, Uy) solves (29).
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Let t; and ty be fixed. Without loss of generality, assume that t5 > t;.
I Y S BV Y (XY - X

=E [/ R(X L, Yoo 20 dy — / dMZbe
]tl,tg] ]t17t2}
+ ( QZXZI—’Q - Mt2 + Mt1> ‘/;52:|
lt1,t2]

) { / [R(XE o, YIos | Zhee) 4 (Xil_’ei)*QuVQQ]du]
Jt1,t2]

Hence,

t1,e; to,e;
Y, =Y,

< OVt — tl\// B[R0, Yy, Z30) 4 (X2 ) Qu Vi, [P du
It1,t2]

Using the uniform boundedness of ),, the Lipschitz continuity of h, evaluate the
integrand as

[AXLE Y25 Z9) + (X,5) QuViy
< O(|Y ) + ||Z,Zl7ei||§(t1,ei + [h(XE% 4, 0,0)]2 + sup €XQ:Vul?).

0<s,u<T
i=1,...,N

Recall that @) is assumed to be uniform bounded and that

N

IE/ |R(X L% 4, 0,0)2du = / |h(ej,u,0,0)PP(X[14 = ;| X[ = ¢;)du
Jt1,t2] Jt1,t2]

j=1

<C sup / |h(e;,u,0,0)*du.
' N J]o,T]

Jj=1,..,

Hence,

0<u<T

v - vee < v (B | s e [zl
10,7 "

+ sup / \h(e;,u,0,0)2du + 1] du) ,
N J]o,1]

from which the continuity of ¢ — Y;"* directly follows, as well as of V;. Using

(AXES)V, = A(XED)V,) = AV = AV = AMZ5 = (AXE) 28,
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we obtain [, ,(dX;%)*(Z — V,) = 0. Notice that

/ AM(Zy" = Vo) = — / (XY Qu(ZE — V,)du = 0,
10,¢] 10,¢]

since any predictable finite variation martingales starting at 0 takes zero constantly
(e.g. Corollary 8.2.14, p.204 in [I9].) Hence

2

IE/ 1Z5% = Vil|% e, du = E / AM:(Zb — V)| =0,
jo.7] w- jo.7]

which means Z%¢ ~y; V,,. Together with the Lipschitz continuity,

h(X %, (XY Vi, Z8) = h(X0% u, (X9 Vi, Vi), du® dP-as.
Plugging it into the conditional expectation representation of Y;"*, we obtain for
t €0,7T],

eV =Y = e (T, 1)G + e;‘/ ®(u, t)H(u, Vy)du,

1,7}

which results in the variation-of-constants of (Z-12) in what follows:

T
Vi =®(T,t)G +/ (s, t)H (s, Vy)ds.
¢

2.7.2 Proof of Proposition 241

Proof. We show e;Qe; > 0 for i # j and ), ejQe; = 0 for all j = 1,...,N. Tt is
trivial for 7 = 1 and N since ej@ = eyQ = 0. Let j = 2,..., N — 1 be fixed. The
condition ZZ  e;Qe; = 0 clearly holds since

o%(x;) — owsu(zy) o) + Owi_yu(z;)
dx;i—1(0xi—1 + dz;) dxi(dxi—y + dz;)
_ 2
_ (0w — b)) p(zi) — o°(t, @) Qe

0x;02_1

e;Qei1 + €;Qei =

We remain to prove the nonnegativity of off-diagonal elements of ). Denote pu(x;) =
p(zi)™ — p(x;)~, where

p(x)" = max {u(z),0} (= 0) and p(z)” = —min{u(z),0} (= 0).
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We obtain
0% (x;) — dwap(wi) _ plwi)” N 0?(s;) = (0i_yp(wi)™ 4 0wspu(ws)h) (2.53)
5$i—1(5xi—1 + 51'1) 51’1‘—1 (5[Ei_1((55(7i_1 + (51‘1) ’

and

o?(x;) + 0z () _ (i)t i 0% (x;) — (0w ;)™ + dwipu(a;) ™) (2.54)
dz;(0x;—1 + dx;) ox; dx;(dxi—y + dz;) ' '

The first terms on the right-hand side of (Z53) and (254) are clearly nonnnegative.
Under the condition (2239), we obtain

o*(w;) > (Juax {0a}-p(ed)l = | max {8a;}(u (2:) + i (@)

> i p (i) + dwipt (24),

so that the second terms in (253) and (2254) are nonnegative. Moreover, if (2239) is
strict, (Z53) and (Z54) are positive. O

2.7.3 Proof of Proposition

In this subsection, Iy is the N x N identity matrix, d;; is the Kronecker’s delta,
1= (1,1,...,1)* € RY and

U, e, = diag(Mie;) — M7 diag(e;) — diag(e;) M;. (2.55)

for N x N matrix M;. We sometimes omit subscripts when they can be unambigu-
ously determined from the context.

Step 1. Let h(e;,t,y,z) = f(t,xi,ejz,a*(:ci)(ejﬁgl)z, . ,e;‘ﬁgd)z)*) for t € 0,71,
i=1,...,N,y € Rand z € RY. The Lipschitz continuity for f implies

|h(ei7 ta y> Z) - h(eia t? yla Z/)‘2
< Ly — )P + lo* (@) (e DMV (2 — '), ..., et DI (2 — 2))*|?).

To obtain the desired result, it is sufficient to show

lo*(z) (e DV (2 = 2, ..., et D\P (2 = 2)*|)P < Ol = || (2.56)
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for some constant C' > 0 for any ¢ = 1,..., N. As the left-hand side of (ZZ58) can be
represented as a quadratic form of symmetric matrix

d
My = Z (ao'*)(p’q) (:Ci)<ﬁ§Q))*€¢6jﬁ§p), (2'57)

p,q=1
(E208) is equivalent to the positive semi-definiteness of M, ¢ == Cg., — M. Before
showing this, we require several lemmas in Step 2.
Step 2. In this step, for any N x N matrix M;, we denote Ml(N_l) as the (N —

1) x (N — 1) matrix obtained by removing the last row and column vector of M;.

Lemma 2.7.1. Let My, My be N x N real symmetric matrices satisfying M,1 = 0
and M1 = 0. If Ml(N_l) 1s positive definite, cMy — My is positive semi-definite for
sufficiently large ¢ > 0.

Proof. Let Ay > 0 be the minimum eigenvalue of MI(N_D, and Ay be the maximum
eigenvalue of M™Y. ch(N_l) - M2(N_1) is positive definite for ¢ > (A2/A1) V 0.
Indeed, for any non-zero vector z, we see that

z*(ch(N_l) — MQ(N_l))z > c/\1||z||2 — )\2||z||2 > 0.

Since any real symmetric matrix M, satisfying M1 = 0 has the following block
matrix representation

o MY Ny
0 _B*MéN—l) l*MéN_n]l 5

the quadratic form of M can be written as

\ \ MY NI (2 (N
2" Moz = (2%, y) ( IL*.(/)W(N_D I[*]\/[O(J\r—n]l (y) = (z —yl) Mé 1)(93 —yl),
- 0 0
(2.58)

for z = (2*,y)* € RY. Applying My = cM; — M, to (Z58), the quadratic form takes
a positive value for z = (2*,y) except x — yl = 0, and takes zero if x — yl = 0.
Hence the positive semi-definiteness of cM; — My is obtained. O

Lemma 2.7.2. Fori,5 =1,..., N and any matrix My,

Vntye,€5 = (] Mej)(ej — e;) — 0 Me;. (2.59)



2.7 Proofs | 41

Proof. We can see it directly as:

. * * * *
Yy ee; = diag(Mie;)e; — Mieele; — ee; Mye;
* * * * %
=€ Mlej c € — 5ijM1 €; — eiMlej € = (67; Mlej)(ej — €i) — (Sile €.

]

Lemma 2.7.3. Leti=1,...,N be fized, and M, be a matriz satisfying e; Mie; > 0
forallj € {1,...,N}\{i} and e M1 = 0 (Note that e Mye; = — Zjv 1 € Maej.)

Then, ¢§\J4\i_¢;) 1s positive definite.

Proof. Since (E59), ef Me; for j # i is strictly positive under the assumption of this
lemma. Thus 1[)](\];1_62 = diag(efyMie,...,eNMien—_1) is positive definite obviously.
Let z € RV1\ {0} and i < N be fixed.

N-1N—
x le’ez Z Z ik — Oi)e; Mye; — o€l Mlek]ekxe x (2.60)

7j=1 k=1
= [(5“ — 5) -Mlei — 5”62 Mlei]e;‘:ce;‘:v

* * *
+ E 80 — 0i;)e; Myej; — 5Z-jeiM1€i]el-xejx

j?éi
N-1
+ Z[(dlk - 5k’i>e;‘kM1€i - (51'16:M16k]ez:ce;‘x (261)
k=1
k£
N—1N-1
+ Z Z ik — Ori)e; Mye; — d;€r Mlek]eka:e x
=1 k=1
J#i ki
N-1 N-1
= —e; Mie;(efx)* — 2 Z e; Myejex | ejx + Z e; Mye;j(ex)’. (2.62)
Jj=1 Jj=1
JF#i J#i

Note that —efMje; > 0. The discriminant of (252) as a quadratic polynomial of e}z
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can be evaluated in what follows:

N-1
Z VerMe;(y/ e Mejeix)| + ejMe; Z ef]\/[lej(e;g;)2
=1
J#z jjsﬁi
N-1
< Z e; Me; Z e; Myej(e;x) 2 4 efMe; Z e; Myej(e; r)? (2.63)
1
]751 k?’él ;;ﬁz
N-1
= Z e; Me; Z e; Mye;j(ez)?,
i=1 k=1
k#i

where we have applied the Cauchy-Schwarz inequality to obtain the first inequality.
The assumptions on M; leads to Zjvz_ll e; Mye; = —ei Miey < 0, and the discriminant
(263) is negative for any x. Hence (P562) is always positive which amounts to the
positive definiteness of w%j) n

Step 3. Suppose that e]() contains no elements that equal 0. Then (@ satisfies
the assumptions of Lemma 2273, and the positive definiteness of ¢Q ) is obtained.
Y., 1 = 0 is clear, and M1 = 0 follows from assumption ZZ41. Applylng M, =
Yge 1 and My = My into Lemma P71, the positive semi-definiteness of M; ¢ is
obtained for sufficiently large C' > 0.

Step 4. In the case of €] () possibly containing element 0, the following arguments
are required for obtaining the desired result. To this end, We additionally introduce
some notations: Denote e; y as the i-th unit vector in RY whose i-th element is 1.
Note that we sometimes omit subscripts /N and simply write e; when they can be
unambiguously determined from the context. For N-dimensional vector v, denote
Z(v) = {n1,...,nx} C {1,..., N} as the collection of indices of the elements that
are non-zero. Similarly, for a N x N real symmetric matrix M, denote Z(M;) =
{n1,...,nxg} C {1,..., N} as the collection of indices of non-zero row /column vectors
in M;. In both cases, n; is sorted in ascending order, and K means the total number.
For a N x N matrix M; and a collection of indices J = {nq,...,ng} C {1,..., N},
denote My as a K x K matrix obtained by removing the rows and column vectors
that do not belong to J. Equivalently, it can be defined by

MY =17 NM I y, (2.64)
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where I 7 is a N x K matrix as

]J,N = (em,N e enK,N) .
Note that 17 n17% y = Ik. First, we confirm the follwing two lemmas.

Lemma 2.7.4. Let J = {ny,...,ng} C {1,...,N} be a collection of indices. For
any N x N matrixz My,

erxM{ ek = e yMeyn for kil=1,... K.
Proof. Tt immediately follows from (2764):

* J * *
ek’KMl el’K - ek’KIj,NMl_[j’Nel’K

*

e
ni,N
* . *
= €L K : M, (em,N e enK,N) eLx = €, nMién, N,

*
enK,N

fork=1,..., K. O]

Lemma 2.7.5. Let J = {n1,...,nx} C {1,...,N} be a collection of indices and
M, a N x N matriz satisfying M1 = 0. If Z(M,) C J, then M1 = 0 holds.

Proof. Note that Mje; y = 0 for ¢ ¢ J since Z(M;) C J. Hence,

K
€Z’KM{I[ = Ze",;KMljel,K = ZeszMlei’N + 0
=1 ieJ
N
= Z@Zk’NM16i7N + Ze;klk,NMlei,N = Ze':,k,NMleﬁj\f = e;‘;k,NMl]l = O,
ieJ N =1
fork=1,..., K. O]

Now, we proceed to show the positive semi-definiteness of M; . If efQ = 0, it
is trivial since M, equals the zero matrix. Hereafter, we suppose that e} # 0.
Clearly, M; ¢ is positive semi-definite if MzI éMi’C) is positive semi-definite. We confirm
the relationship between Z(M; ), Z(e;Q), Z(¢q.,) as well as Z(M,).

)

Lemma 2.7.6. Let N € N be fized. (e;y is abbreviated to e; in this lemma and its
proof.)
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1. ForallC>0,1,j=1,...,N,
Ygee; =0 <= e;Qe; = 0= Mye; =0, (2.65)
e;Qe; =0 = M,;ce; = 0. (2.66)
2. For sufficiently large C' > 0,
M;ce; =0 = g.,e; =0, (2.67)
fori,7=1,...,N.
Therefore T(M; ) = Z(efQ) = Z(Yg.e;) D L(Mp) holds for sufficiently large C' > 0.

Proof. 1. For i # j, ¥g..€e; = (efQe;)(e; — e;) implies that efQe; = 0 if and only
if Yge,e; = 0. Fori = 3,0 = g6 = —Q%¢; < e;Qe; = 0. Hence
Vgee; =0 <= e/Qe; = 0 is obtained for any 7, j.

Next, assume that e;Qe; = 0. (Z21) leads to efﬁgp)ej =0forallp=1,....d,
which ylelds Mo@j = 0.

Finally, (250) can be seen using (Z53).

2. Take
62M0€j

C > sup{ ”
ex¥Q.ei;

where sup ) = —oco. Assuming that eji).,e; # 0 for some k € {1,..., N},

ck=1,...,N and esz,eiej#O}\/O,

* * *
ekMLcej = Cekayeiej - €kM0€j > 0.

It contradicts that e; M, ce; = 0.
n

Denote Z = {ny,...,nx} = L(Mjc) = T(Vq., y) = Z(Q*e; n), and denote K as
its total number. Observe that

Mo = Oy, » — My (2.68)
As we suppose ;@ # 0, efQe; < 0 and hence i belongs to Z. Take i € {1,..., K}
that satisfies ¢ = n,. For any k,1=1,... K,
€ 1V e, kK = €y NVQuep€niN = €y N1E5 NQEn N (€ny N — €pN) = Op i Q €y ]
= €Z,KQZ€k,K€ZK(6k,K - €q,K) - 5e,k€ZK(QI)*€k,K
= e gles kQenr(eri — egi) — 0er(QF) er k] = € (Vo e, cCh K,

where we used Lemma 2274, As a result, we obtain wéyew = Y1, - Notice what
follows:
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® gz, , and M{Z are symmetric.

e Since Z(vq.e, y ), Z(Mo) C Z, Lemma 2773 implies ¢, 1 =0 (i.e. Yoz, 1)
and M1 = 0.

e Since QF = QM9 exQ%e; > 0 for k € {1,...,K}\ {¢} and €;Q*1 = 0.

A%Dply)ing M, = @Q* to Lemma P73, we obtain the positive definiteness of
K-1

Vaz e e

Thus we can apply M1 =Ygz, , and My = MZ to Lemma 271, and we obtain the

positive semi-definiteness of M.

2.8 Convergence Results

In this section, we establish a convergence result for the numerical solution discussed
in Section 4 to the true solution of BSDE (2714). For simplicity, we only consider a
situation with (i) one-dimensional space variable, (ii) the corresponding PDE being
uniquely solvable in the classical sense, as well as (iii) a spatial discretization using
central difference with constant step size i.e. dx; = Ax > 0.

Throughout the section, the following notations are introduced;

~

F0,TIxRxRxRxR> (tzzp,r)
o2(z) (2.69)

= () - p+ 5 -r+ f(t,x,z,0(z) - p) € R
U™ s a unique solutions of (2234) for N and k. (2.70)

Denote (E-18) as

{E)tu(t,x) + f(t,z,ult,2), Opult, ), ueu(t,z)) = 0, (t,2) €[0,T] xR, (2.71)

u(T,z) =g(x), xeR

The present analysis in this section is mainly based on the textbook written by
Walter et al.|[l72]. Suppose that the following conditions are satisfied.

Assumption 2.8.1 ([72], pp.287 and 302). 1. u(z),o(x) and f(t,z,y, z) are twice
continuously differentiable in all variables. f and its first- and second-order

derivatives are bounded and uniformly continuous in (t,z,y,z) € [0,T] xRx B
for any bounded set B C R?.
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2. For some constant C' > 0 and a continuous function \ : [0,00) — (0,00)
satisfying

> d
Sli_}rgo A(s) =00 and /0 - )\S(S) = 00, (2.72)

it holds
ft,z,y,0)V(=f(t,z,—y,0)) < C+y-Ay), forany (t,z,y) € [0,T]xRx[0,00).

3. a*(z) >0 for any x € R.

4. For any M > 0, there exists Cy > 0 and Ao : [0,00) — (0,00) satisfying the
following conditions:

o )\ is continuous and satisfies (2202).
e For (t,z) € [0,T] xR, |y| < M and z > 0,
210, f(t,z,y,0(x)z) < |z|Ao(2) + Co.
5. g € C3(R).
We obtain the following lemmas. For details, see [[72], Chapter IV, Section 36.
Lemma 2.8.1 ([72], p.292). Cauchy problem (EZ00) with u(x),o(x), f(t,z,y,z) and

g(x) satisfying Assumption 281 is uniquely solvable if g is three times continuously
differentiable and g, 0,9, 0reg and Oyp.g are bounded and Lipschitz continuous.

Lemma 2.8.2 ([12], p.301). If (2Z00) satisfying Assumption 2281 (not necessarily
the case in Lemma Z8) admits a unique solution u, then for every Ax > 0, the
infinite system of ODEFEs,

d *U 00,Ax) - . (00,Ax) (00,Ax) (00,Az)
— = f(t,ilAz,e;U; 7 ef D1U 7 e DUy ), (t,1)

t €10, 7)xZ,
w7 7(00,Ax) .
€; UT = g(ZAI),

(2.73)
which is derived from the spatz'al discretization described in Section 4 with step size
Az, admits a unique solution U2 . [0, T] 3 t — U2 = (exUL) e, € 1.
Here, [*° is the Banach space consisting of all real sequences x = (x;);ez with finite
supremum norm ||z|| s = sup,cz ||, and

—1 A 1 A
6 1 2A + QA z+1 t )
*DQU( A ) — U( A + U( 7A ) _|_ Ut( 7A )’

Agzl Axgezt A i
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for i € Z. Furthermore, UA%) converges to u in the following sense; for any
compact set K C R,

lim  sup  |u(t,iAx) — ert(oo’M)] = 0.
k=0¢c(0,7)inzez
iAzeK

Note that Walter et al. [72] do not consider results on the convergence of “trun-
cated” finite systems of ODEs (2234) to (2273). Fortunately, it can be carried out
by the standard diagonalization argument using the Arzela-Ascoli theorem. To this
end, suppose the following Lipschitz condition additionally.

Assumption 2.8.2. There exists L > 0 such that

|f(t 2y, 2) — f(tz,y,2)| < L(ly — o[ + |2 = 2])
for any (t,x) € [0,T] x Ry, v/, 2z, 2" € R.

It leads to the Lipschitz continuity of F' defined by (B=3T), and (E=34) admits a

unique solution UNA%) Then, we define ghAn = (exU NM))ZGZ €l* for NeN
as
ey UWNA) - if =N+ 1,N+2,...,
N,Ax)

T — L eryan) 4 = NN+ 1,...,N— 1N,
e yUNAZ) - if = -N—-1,-N-2,....

Lemma 2.8.3. Suppose that Assumption 281 and 282 hold, and that Cauchy
problem (2Z1) admits a unique solution u. Then, for any Az > 0,

N,Ax)

lim sup |exUa) — e;‘UE lo = 0.

N—=00 4e[0,T),~ N<i<N

Here, U™ € 1°° is a unique solution of (2ZZ3).

Proof. Let Az > 0 be fixed.

Uniform Boundedness of (UEN’M) )1 Note that
sup le; U (N,Az) ] < |lg(@)|loo, sup | f(t,2,0,0)] < C, (2.74)
(t,x)€[0,T] xR

which follow from 5 and 2 in Assumption 22X, respectively. For N € Nand ¢ = £ N,
2 in Assumption 22X and the Lipschitz continuity 2282 lead to

|f(t,z'Ax,ert(N’Am),a(iAx) DU, (NAz) ))| - |f(t,iAx,ert(N’Az),0)| < C’+L!e;‘Ut(N’A’”)
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These estimates imply

T
U7 < C 4 |g(2) || + L/ e UMNAD)|ds for i = +N. (2.75)

t

Applying the Gronwall inequality to (2273), we obtain
e UV (e U0 < T [C o flg(@) o] = e, (2.76)

for any N € N and ¢ € [0,7]. For N > i > —N, notice that using (2Z74) and the
Lipschitz continuity,

|f(t,iAx, €] Ut ,o(iAx)e} DlUtNAm )
* (N,Az) (N,Az)
ex U | + |es U ’
<O+ L %U(N’Ax) Oo’ i+1Y1¢ €;_1
SC+L|legUs 7 + o] AL
Illoo * x " z « =
< (©vLv LIl gm0 e U9 e oo,
2Ax
and
* N,Ax * N,Ax
oy U027 e 00
2k
02(iA) 2/ef U] 4 e U] 4 2l U
2 22
+1
<9 HMHoo ||0H2 Z le *U(NA:U
- 2Ax 4Ax2 Pl
Let ("=CV LV Lﬂzﬂwv ¢"=2 <¢ v A‘JZE); and ¢y = C" + C”. Since
T i+1
UM < lgla)lo+ OT e [ 3 e, U8401ds
t =i
j+1
< llg@)loe + C'T + ¢, / ap 3 (e U
tLI<N S

T
< “g(x)Hoo +O'T + 2coc1T + 3C2/ sup |€ U (N,Az) ’dS
t <N
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for N > i > —N, we obtain
sup ;UM < 32T [||g(2) ||oo + C'T + 20061 T) = 5.

te[0,T],]i|<N
(N,Ax) N,A
Therefore, sup,cp 1 HU ||oo = sup |e§<Ut( ’ $)| < Ves =gy
lil<N
(N,Az)

Uniform Boundedness of (Y—)_, It follows from

dt
de: U A

- <C+ LIeUN™| < C + Ley

for i = £N, and

de* t(N,Aac)

7 < C" + 2¢9¢1 + 3¢y sup |efUNAD | < O 4 2c9¢1 + 3ea¢4

li|<N

dt

for N >i>—N. (4
20201 + 3CQC4).

)%_; has an uniform upper bound ¢5 :== (C' + Ley) V (C' +

Equicontinuity of (U, NM))%:l It follows from the mean value theorem and the
(N,A:c)
uniform boundedness of (¢ — )%= Precisely, for any t,¢' € [0,T], =N <i < N,
and N € N,
N N dUs(N,Am) ;
UM e, — US| < sup e [t —t'| < eslt — ¢,
s€[0,T7] ds

which immediately leads to the equicontinuity.

(N,Az)

)]Ovozl. Let s,t € [0,7] be fixed. Since (2% )Xo, s

U(
(¢ 0t

Equicontinuity of T
uniformly bounded, using the mean value theorem,

|f(s,iAx, US(N’A””)ei,a(iAx)e’-*DlU(N’A””)) — f(s,iAx, €] A (iAm)eIDlUt(N’Ax)ﬂ
i+1

Jj=i—1
= 3Lcs <1\/ %x) |s —t| = cols — ¢t

N /

(2.77)
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and

(s, iz, e UM g (iAx)e; DU D) — f(t,ila, etUNS o(idx)er D UNAY))

< sup [0,f(t,idz, ;UMDY o (idz)e; DU - |s — |
t'€[0,T]

< sup ’atf(t/,.%’,y,Z)‘ "S_tl <C7’3_t’.
(t' 2,y,2)€[0,T]xR3

(2.78)

Using (2277), (2278) and the triangle inequality,

de:UNAD gery AT
dt dt
<|f(s,iAz, et UNAD g(iAx)e DyUNADY — f(t iAx, €:Ut(N’Aw), U(Z'Ax)e;'kD1Ut(N’Am))‘
+ C// |:|€2<+1US(N,A$)| + |62<U8(N,AIE)| _|_ ’e;fflUs(N’Ax)H

<[C" 4o+ 7] - |s — ],

dUt(N,Az)
dt

from which ( )%_; enjoys the equicontinuity.

Convergence. Let (N,)22, be an arbitrary subsequence of N. Applying the Arzela-
Ascoli theorem ([56], P.290) guarantees the existence of convergent subsequences

dUt(Nn(j)vAm) dUt(Nn(oo)’Aw)

(Nn ] ,A:E) (Nn oo 7AI)
Uy 0 . Let U; " and 0

and be the limit functions

of ¢ in the sense as

lim sup [|U" 03 a8 g

IR0 ¢el0,1)
) dUt(Nn(oo)vAx) dUt(Nn(j)zAx)
lim sup — =0.
790 10,7 dt dt .
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Using the triangle inequality,

de:Ut(Nn(oo)»sz) de:Ut(Nn(j)’Ax)
dt dt
* (Nn(oo)fAz)
de;U, - ,
= | = f(tida, U e DU e Dy )
2> —Cg sup ||Ut(Nn(OO)) - Ut(Nn(j))Hoo
tﬂOT]
dexU ™
o |dU — F(t, it ;U e DU e DU ey

Considering j — oo yields

*
de; U,

for t € [0,7) and ¢ € Z, which implies that Ut(N"(“’)’Ax) solves (Z73). Using a
uniqueness result in Lemma ZZ81, we obtain U(®A%) = [J(Vn(w)A2) - Ag (N )32 is
arbitrary, we obtain the desired result. Il

Theorem 2.8.1. Suppose that Assumption 2281, ZZ82 and (EZ1) admits a unique
solution w. For any compact set K C R, it holds

: NA
lim lim  sup |u(t,iAz) — US| = 0.
Az—0 N—oo —No<i<Ng
€L, iAreK

Proof. The argument follows from Lemma 2282, X3 and the triangle inequality;

sup |u(t,ildx) — efUNA | < sup Ju(t,iAz) — ex US| 4 |00 — oA

i€Z 1EL
iAzeK iAxeK
Az)
— sup |u(t,iAx) — €] 1/ ot l, N — oc.
1€EZL
iAzeK

—0, Ax—0.






Chapter 3

Multi-Stage Euler-Maruyama
Methods for Backward Stochastic
Differential Equations Driven by
Continuous-Time Markov Chains
with Bounded Stopping Terminal
Times

3.1 Introduction

3.1.1 Overview

In the previous chapter, we studied numerical methods for solving Markov BSDEs
driven by time-homogeneous CTMC (X;):c[o,r) in what follows:

Xi=x0+ [ Q" Xs_ds+ M,
10.4]

Y,=Xi¢+ | H(X,_,r, Y, Z)dr — / AM?Z,.
15,7 1t,T]

(3.1)

We focused on that the solution satisfies ¥; = X;V; up to indistinguishability and
Z ~ V for a deterministic process V; that solves an associated system of ODEs and
constructed multi-stage Euler-Maruyama methods for solving (Bd) in Section 2.3;

93
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interestingly, we observed that the methods are equivalent to exponential integrators
for solving the systems of ODEs associated with (B). Noticing that exponential
integrators are known as solvers that mitigate numerical instabilities referred to as
the “stiffness”, Section 2.4 proposed to use these methods to solve (BIl) that comes
from a spatial discretization of Markov BSDEs driven by Brownian motions; such
(CTMC-)BSDE:s typically associate with stiff systems of ODEs.

In this chapter, we extend these results into a stopping terminal time counterpart
of (E), that is,

Xi =xo + Qi Xs—ds + My,
10,¢]

YS - X;“/\TCT/\T + /
]s,T]

(3.2)
Ly H(X, -7, Yoo, Z,)dr —/ dM; Z,.
Jt.T]
Here, 7 is a stopping time defined by 7 := inf{¢t > 0 : X; ¢ =} for some subset = C Z,
and (; is deterministic. As seen later, similarly to the case of the terminal times
being deterministic, the solution of (B2) can be expressed using the solution V; of
an associated system of ODEs as Y; = X/, Vi, and Z; ~y Vi1<-y, and the multi-
stage Euler-Maruyama methods results in the calculation of V; using exponential
integrators. In the same way of Section 2.4, we also can utilize the methods to solve
stiff BSDEs driven by CTMCs arising from the spatial discretization of BSDEs driven
by Brownian motion with bounded stopping terminal times.

3.1.2 Motivation : BSDEs with Bounded Stopping Terminal
Times

All of the BSDEs we treated in Chapter 2 have deterministic terminal time, denoted
as T > 0, whereas we can also consider counterparts of BSDEs with non-deterministic
terminal times. Among them, BSDEs with bounded stopping terminal times can be
solved as BSDEs with deterministic terminal times. In Brownian case, for example,
they are written as follows:

T T
Y, =¢ -|-/ Lis<r1 f(5, Vs, Z5)ds — / Z:dWs, tel0,T], (3.3)
t t

where 7 is a {F} }icjo,r-stopping time, {F;}icpo,r is the completion of the filtration
generated by Brownian motion (W):cjo.r), § is Frar-measurable and all other con-
ditions remain the same as the determinisitc case. As the solution of (BZ3) satisfies
Vi = Vinr and Z; = Zyly<,y, it can be regarded as BSDEs whose terminal time is a
bounded stopping time 7" A 7(= min{T, 7}).
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Let us now motivate (B33) with an example in mathematical finance. Consider a
European knock-out option, a barrier option. It is paid if the underlying asset price
S = (St(l), . ,St(d)) has stayed in a prescribed open domain G. Once S; hits 0G,
the option becomes worthless and the rebate described by a function ¢y(t, x) is paid.
We can represent the payoff of the option as random variable ¢(T' A 7, Srp,) where

) po(t, s), (t,s) € [0,T] x 0G,
At 8) = {(s — K)t, (t,5) € {T} x G,

and 7 = inf{t > 0: S; € G}. We are now interested in evaluating the fair price of
the option at time 0 under different interest rates for borrowing and lending. That
is accomplished by considering its hedge portfolio. Suppose that S; satisfies

t t
S = s +/ w(Ss)ds +/ o (Ss)dWs,
0 0

for some sy > 0, i : RY — RY, and ¢ : RY — R% being invertible, and consider
a portfolio A; = (Agl), . ,Agd))* consisting Agi) assets of St(i) and bonds with bor-
rowing rate R and lending rate r. Let V; be the wealth process of A;. The hedge
portfolio satisfies Vi = ¢(T A 7,S7-) and the self-financing condition that reads

AV, = gy [rVi — AIS)T — R(V, — ALS,) 7 Jdt + 1<y ALdS;.

Here, (z)" = max{z,0} and (z)” = max{—=z,0} for x € R. As a result, writing
YV, =V, and 2, = Ajo(S;)1{s<-}, we obtain the (Markov) BSDE in what follows:

T

T
Vi = (T A7, Srpr) — / Lisary f(5: S0, Vs, Z2)ds — / Zaw,  (34)
t

t
where

ft,z,y,2) =r(y -z o(x)"'2)" = Rly — 2"o(2)"'2)” + 2o (2) " u().
The solution ) is then the fair price of the option at time 0.

3.1.3 Organization

This chapter is organized as follows: The end of this section is devoted to notations.
In Section B2, we introduce BSDEs with terminal times being stopping times driven
by CTMCs / Brownian motion. Section B33 is devoted to constructing multi-stage
Euler-Maruyama methods for solving BSDEs with stopping terminal times (B1). We
present an application of these methods to BSDEs driven by Brownian motion in
Section 24, and its efficiency is confirmed by numerical results in Section P3; we
there focus on pricing European barrier options under nonlinear wealth dynamics.
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3.1.4 Notations

Throughout this chapter, the same notations as Chapter 2 are used.

3.2 Preliminary Results

3.2.1 BSDEs Driven by CTMCs with Bounded Stopping Ter-
minal Times

Let X = (X{):ejo,r] be a continuous-time, finite-state Markov chain with state space
Z = {e1,...,en}, for some N € N. Suppose that X is defined on the filtered
probability space (€2, 7, P, G) where G := (G)ic[o,r] is the completion of the filtration
generated by X. Denote @)y as the Q-matrix of X. Then, X has the following semi-
martingale representation

X, =x0+ Qi Xs_ds+ M.
10,¢]
Here, zg € {e1,...,ex} and M, is an R¥-valued G-martingale.
Generally, the BSDE driven by CTMC X with deterministic terminal time 7" > 0
is written as

Yt_§+/ h(s,Ys_,Zs)ds—/ AM:Z,, (3.5)
18,7 1t,7]

where £ is an Gr-measurable square-integrable random variable, h : Q x [0, 7] x R x
RY > (w,t,y,2) = h(w,t,y,2) € R is G-predictable in (w,t) and Borel measurable
in (y,z). Recall that the following result on the existence and a uniqueness of the

solution (Y, Z) € S*(G,R) x L*(G, (M), RY) of (&H).
Theorem 3.2.1 ([I3]). Assume that,

E l/ h(t,0,0)*dt
10.7]

and that for some constant L > 0,

< 00,

h(t,y,2) — bty ) < Ly =y + 12 = %, ), dt®dP-a.s.

forally,y’ € R and z,2" € RN. Then, it admits a unique solution (Y, Z) € S*(G,R)x
L*(G, (M), RY). We remark that it is unique up to indistinguishability for Y and up
to ~y equivalence for Z.
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The main target of this chapter is the following.
Y, =¢ -|—/ Lis<ryh(s,Ys—, Zs)ds — / dM; Z, (3.6)
T 16,7

where T' > 0 is a determinisitic time horizon, 7 is a G-stopping time, £ is a Gpa,-
measurable square-integrable random variable and 1g,<;} is an indicator function.
Note that, taking f as above, Theorem B2 directly implies the existence and
uniqueness of the solution of (BH). Moreover, the following proposition holds.

Proposition 3.2.1. The solution (Y,Z) of (BB) satisfies Y; = Yin. fort € [0,T]
and Z ~ N Zl]O,T/\T]-

Proof. Since Yyp, = & — «f]T/\TT] dM;Z,, we obtain Yr,, = E[Yra,|Grar] = € Note
that for any t € [0, T7,

Y;ﬁ/\Tl{t/\T<t} = YTl{t/\T<t} = YT/\Tl{t/\T<t} = §1{tAr<t}7

and

Yilgnr<ty = E[Yilgar<n |Gl

= E |:(£ + / 1{SST}h‘(87 Ygf, Zs>d8 - / dM:ZS) 1{t/\7-<t}
1¢,T 16,17

=E |:Y;£/\7'1{t/\7'<t} - / dM;Zsl{t/\T<t} gt‘|
16,7}

gt:| 1{t/\r<t} = Y;/\Tl{t/\7'<t}‘

g

= }/;/\T]‘{t/\7'<t} - E |:/ dM:ZS
1¢.T]

Y, = Y,,, follows from
Y = Yinr = (Y = Yinr ) Lpnreny + (Ve = Y) Lpnr—ty = (Y2 — Yiar ) lpar<sy = 0

Squaring Y7, leads to
2
62 = ng/\v = 52 — 28 dMs*Zs +

|TAT,T)

/ dM 7,
1TAT,T)

Taking conditional expectation E[-|Gr,|, we obtain E [ ‘ jiT ner) WM Zs

2
gT/\T:| = 0.

Considering the predictable quadratic variation of f]T AT T] dM; Z,,

0—E [ / \Z|%,ds g} _E [ / AT
1T AT, T 10,77

which implies Z1jpar 77 ~ar 0. O

2
X, ds

gT/\T:| )
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In this chapter, we mainly focus on the Markov case. Let = C Z and 7 = inf{s >
0: X, ¢ =} with the usual convention that inf() = oco. Let ¢ : [0,7] — RY and
h:{ey,...,en} x[0,7] x R x RY — R be Borel measurable functions. Then, we
consider the following Markov BSDE.

1{7‘§T}h<X’F*7 T, Y;ﬂf> Zr)dr - / dM:ZT

16,7}

Y, = X’;/\TCT/\T + /

Jt.T]
Associated with it, setting t € [0, T| as the starting time for the BSDE, we consider
X =ei+ | QiXJSdu+ M, — M, s>t
1t,s]
Xbei=¢;, s<t,
VO = (X Crnn + [ eem X Ziar— [ gz
o o s, ]s,T]

(3.7)
for s € [0, T]. Then, we give the following nonlinear Feynman-Kac type result.
Theorem 3.2.2. Assume that there exists a constant L > 0 such that

(e t,y, z) — hies t, o, 2) [P < L (ly — ' P + 12 = 2II2), (3.8)

foranyy,y €R, 2,2 e RN, t € [0,T] and i € =, and EfOTh(XZ’fi,u,O,O)Qdu < 0
fori € E. Define H : [0,T] x RN — RY such that

efH(t,z) = h(ej,t,efz,2) for t€[0,T], zeRY icEZ.

1. For a solution U; of the system of ODFEs

dU,
e; (d_tt + QU + H(t, Ut)) =0, (t,e:) €[0,T) x &,

e;Uy = el(y, (t,1) € {T} x{e1,...,en})U([0,T] x =),

(3.9)

(Y;t’eia dei) = ((Xzf;t,ei>*U8/\Tt,ei7USl{SSTt,x}) S S2<G?R) X LQ(Ga <M>7]RN) is
the unique solution to the BSDE (B71).

2. Conversely, for a unique solution (Y1¢, Zb¢) € S*(G,R) x L*(G, (M), RY) of
(B70), a continuous function V; = (Y;"°',... | Y,)N)* satisfies Vilfs<ny ~m
Zbei fori=1,...,N and t € [0,T], and solves (B).



3.2 Preliminary Results | 59

Corollary 3.2.1. Under the square integrability t — h(e;,t,y,z) in [0,T] and the
uniform Lipschitz continuity (BR), a unique solution (Y4, Z4¢) of (BZ0) is also a
unique solution of

(XL O 22 g = [ aMzZie (310)

te; __ *
Ys f = XTArt,eiCT/\n,ei +/
1t,17

]s,T]
Moreover, the relation

Vi = (X5, V' Uiar,, up to indistinguishability and Z0% o Ulfi<n .}

SATt,ei

holds, where U is a solution of (B9).

3.2.2 BSDEs Driven by Brownian motion with Bounded Stop-
ping Terminal Times

Let us introduce the Brownian case of BSDEs with bounded stopping terminal times.
Let T' > 0 be a (fixed, deterministic) time horizon, W = (W;):c[o,r] be a d-dimensional
standard Brownian motion, and F = (F;);>¢ be the completion of the filtration
generated by W. Recall that a result on the uniqueness and existence of BSDE

T T
yt=£+/ f(s,ys,Zs)ds—/ Zdw,, te[0,T], (3.11)
t t

is given in what follows:

Theorem 3.2.3. BSDE (BI) admits a unique solution (Y, Z) € S*(F,R)xL?((W), F,R?)
under the following conditions:

o ¢ is R-valued Fp-measurable random variable and satisfies E[€?] < oo.

o f:Ox[0,T] xR xR — R is a F-measurable function that satisfies (i) there
exists K > 0 such that for all y,y' € R and z, 2 € R,

If(w,toy,2) = flw t, o, )P < K(ly —y')P + [l = 2|]°)  dP @ dt-a.s.,
and (i) E[ [, | £(,0,0)|%dt] < oc.

Next, we consider the following BSDE.

T T
yt:§+/ 1{S§T}f(s,ys,Zs)ds—/ Z W, te[0, 7). (3.12)
t t



60 | Euler-Maruyama Methods for BSDEs with Stopping Time Horizons

Here, 7 is a F-stopping time, § is Fpa--measurable, and 1y,<;} is an indicator func-
tion. If we take f satisfying the conditions above and ¢ such that E[¢2], we can apply
Theorem B3 and see that BSDE (B12) admits a unique solution. Moreover, we
note that the following proposition.

Proposition 3.2.2 (Proposition 2.6 in [568]). A solution (Y, Z) of (BI2) satisfies
Vi = Vipr fort €10, T) and Z =0 dt @ P(dw)-a.e. in |T A7, T].

Next, we introduce a “Markov” counterpart of (B12). To this end, let G C R? is
a connected open set whose boundary is of class C*!, and define a stopping time

T=inf{s >0: X, ¢ G}.

Then, we can formulate Markov BSDEs in what follows:

t t
Xy = a0+ / (s, Xs)ds + / o(s, Xs)dWs,
0 0 r (3.13)

T
yt/\’r - X(T AT, XT/\T) + / 1{8<7‘}f(87 XS7 ySa ZS)dS - / (ZS)*dWS
¢ ¢
where 11 : [0,7] x R - R% o : [0,T] x R — R4 f:[0,7T] x RY x R x R? — R,
X : [0,T] x R — R are Borel measurable. Assuming that, there exists L > 0 and
p € N such that

lp(t, ) = pult, ) + Nlo (¢, 2) — o(t,2")]| < Lilw — 2],
[t 2,y 2) = 62,y 2) < Lly =o' + (12 = 2],
it )+ o (t, =) < LA+ [l=]*),

[f(t 2y, 2)] + [x(t, o) < L+ [l]P),

(3.14)

for all t € [0,T], z,2,2,2 € R? and y,y € R, (BEI3) has a unique solution
(XD)tewr1: (Vo)) (Ze)ieppr) € S*(F,R?Y) x S*(F,R) x L*((W),F,R?). It is worth
noting that Markov BSDE (BT3) is related to a Cauchy-Dirichlet problem of second
order parabolic partial differential equations in what follows:

9u(t,x) + Loult,x) + f(t,z,u(t,z), 0" (2)Vu(t,z)) =0, (t,z) €[0,T] x G,
w(T,z) =k(z), x€G,
(t,x) = x(t,x), (t,z)€[0,T]x 0G.
(3.15)
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Here, k(z) == x(T, ) for v € G,

d d 9

) ou 1 N o0-u
Lol x) = 3 p0 ) 5 (t,0) + 5 (00" (k) (k) (3.16)
7 ? J

i=1 ij=1

is the infinitesimal generator of the Markov process X,

ou ou

va(t, iE) = <8_:C1<t7 .T), ey 8—:[;6!(75, x)) S Rd

is the gradient vector, (¢, z) is the i-th component of u(t,z), and (cc*)®)(t, )
is the (7, j)-th component of o(t,z)c*(t,z). The precise statement is as follows.

Theorem 3.2.4 (The nonlinear Feynman-Kac formula (pp. 421-422 in [60].)). De-
note 1, = inf{s > ¢ : X* ¢ G} for (t,z) € [0,T] x G. Suppose that p,0, f, x, K, G
are defined as above, and also that G is bounded, x € C([0,T] x 0G), and

A={(t,z) € [0,T] x G : P(r,, > t) = 0} (3.17)

is a closed set. For (t,x) € [0,T] x G, let (X“* Y4 Z4%) be a unique solution of
the Markov BSDE

r s 3

X0 =ux +/ p(r, X7 dr +/ o(r, X")dW,  for s>t
t t

X =g eRY for s<t,

T
ﬁ’fm = X(T A 7z, X’}’/gfn@) + / ]‘{7’<Tt,z}f(r7 X:’xv ;7:07 Zﬁ’x)dr (3.18)

T
—/ (ZE")YdW,  for s €0,T).

\

Then,

1. for every classical solution u € CY%([0,T] x G;R)NC([0,T] x G;R) of (B13),
the unique solution of BSDE (BOR) is represented as

Vo' = u(s A Ty, Xj’fn’x), Z0" = o (X" \Vuls, X0 sany  for s>t

(3.19)

(The above inequality is required for (Y1, Zb®) to be of the class S*(F,R) x
L*((W),F,R).)
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2. Suppose further that f and g are uniformly continuous with respect to x. Then,
v:[0,T] x G = R defined by v(t,x) = YI'" is a viscosity solution of (BIF).

3. Additionally, if for each R > 0 there ezists a continuous function mg : [0, 00) —
[0,00) such that mg(0) =0, and

(2, 2) = f(t 2y, 2)] < me(le — 2|1+ [|2]))

holds for x,2' € G,y € R,z € R? such that max{||z||, |2’||, ||z||} < R, then the
uniqueness of v also holds.

3.3 Multi-Stage Euler-Maruyama Methods

We are interested in multi-stage Euler-Maruyama methods for (B10). In the deter-
ministic terminal time case, the solution (Y% Zh¢) satisfies Y% = (X5%)*V, and
Zb ~pp Vi for Vi = (Y2, YPN)*) and the Euler-Maruyama methods result
in exponential integrators for solving ODE system (B) which V; satisfies. In the
stopping terminal time case, on the other hand, the solution (Y% Z%%) satisfies
Yhe = (Xﬁ}\e%’ei)*Vs/\Tt,ei and Z"% ~p V1o ras. Here, V, = (YY) solves
ODE system (B9). As seen later, the Euler-Maruyama methods in this case are
accomplished by using exponential integrators for solving (B19).

For M € N, consider a uniform time partition ¢,, = mAt (m = 0,1,..., M
of interval [0,7], where At = T/M is the step size. For later use, denote Iz =
diag(1=z(e1),...,1=(en)) and Izc = Iy — I=. Let (Y"¢ Z%¢) be the solution of (BI0)
and V; = (", ...,V;"*¥). Suppose that V; uniquely solves ODE (B9). Y,
satisfies the following backward stochastic difference equation.

VO Vit [ X HG 2 e s [ azie
Jtm tm1]

L+ 1 ATt e,
]tmvtm-‘rl}

Plugging (Y™, Z{™) = (Xyfort ) Vins eos Viltt<rin o))

th,ei — E[th,ei

tm 75m+1

— E[(Xtm,ei >*V;‘/m+1/\7'tm,ei Xtm,ei]

tm+1/\7'tm,ei tm

X dr

tm+1
Ximei] 4 / ElLjen, . 3 (X0 Hr, Zim)
tm

2‘/m-ﬁ—l
[ Bl (X HO Vi) X
tm
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Since

]‘{TSTtm,ei} ’ (X;m’Ei)*H(rv ‘/;”]‘{Tgftm,ei})
= Lpery - (XI5 H(r, V) = X

TNTty,

L= H( V),

we obtain

tm+l
}/;,zn’ei — E[(Xtm,ffi )*‘/thﬁl/\Ttm’ei |Xtm76i]+/ E[Xtm ,€5 |Xtt::7ei]*]ECH(r, V;)dT
tm

tm+1/\TtTnaei tm 'I’/\Ttm
(3.20)
for e; € =¢; otherwise Yt’:;”e = e;¢;, . We approximate
tm,ei * tm,ei ~ tm,ei tm,ei *

E[(Xtm+1ATtm,ei) ‘/;m+1/\7tm,ei|Xtm ] ~ E[Xthrl/\sz,ei Xtm ] ‘/thrl (321)
Note that the following lemma is useful to proceed:
Lemma 3.3.1. For0 <t <s<T,

P(Xﬁf;t = ;| X} =e;) = ejexp((s — 1)[zQ)e; for e; € Z. (3.22)
Proof. See Section B2 O]

Plugging (822) and (B=Z1) into (B=20),

tm+1
Vit st [op(MEQVi + [ ol — ) EQUEH (V| (3:2)
tm

for e; € Z. Hence

tm,€i tm,€eq
Vim E Y, " e + 5 Y, " ey

1EE 1€E5C

Im+t1
~ Iz {exp(AﬂgQ)Vth + / exp((r — t,,)1=Q)IzH (r, Vr)dr] + I=cC,, .
tm
(3.24)
The variation-of-constants formula for a system of ODEs is appeared in the first

term of (B224). Motivated by this observation, we discretize (B=24) using exponential
integrators.
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(The Ngrsett-Euler Method). For example, applying the Ngrsett-Euler method
to (B224) in what follows:

1
‘/tm ~ [E GAtIEQV;fm_H + At (/ 6(1—9)At[EQd0) IEH(tm+17‘/:‘,m+1) + IECCtm'
0

Then, we obtain the following scheme.

VM = CtM7

tyv

‘/;f‘f = IE‘Z% + IEcCtm’

1
VM = ARy M Ay (/ 6<1_6)Aﬁ£@d9) I=H (ty1, thﬂ)’

tm tm+1
0

(3.25)

for m = 0,1...,M — 1. Note that YZ% is calculated by using the Ngrsett-Euler
method for one step.

(General s-Stage Exponential Integrators). We can choose different expo-
nential integrators to calculate U, . Specifically, the general s-stage exponential
integrators in what follows can be applicable:

Vil = Xo(MUZQIV,L, + ALY S bi(AUZQ) Gl
i=1

Gmi - [EH(thrl - CiAta 711‘14)7 fOl" L= 17 s 5 (326)

O = X AIZQ)VM, + ALY a;(AtIzQ)Gy, for i=1,....s,
j=1
form =0,...,M — 1. Here, GG,,; is the i-th internal stage, s € N is the number
of stages, ¢; are real numbers, and x;, a;; and b; are functions constructed from
“¢-functions” defined by
Hl_l

1
¢Z(Q):/O 6(1—6)de9 for [€N, and ¢0(Q)=€Q.

As a result, the following scheme is constructed.

M .__
‘/t]\/f T Ct]\g
Vx‘n/j = ]EV% + I=<C;, (3.27)

‘N/tf = (calculated using (B=28))

form =0,1..., M —1. If necessary, one can construct V; , and Z,, using V; follow-
ing the way in what follows: (i) Simulate (X;)teo,r] and obtain 7o x, and (X3, ).

(i) YM = X; VM and ZM = Vi, 1q,, <y )-

tm " tm /\TO,XO
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3.4 An Application to BSDEs Driven by Brownian
Motion

This section is devoted to constructing BSDEs with stopping terminal times driven
by CTMCs from suitable spatial discretizations of those who are driven by Brownian
motion, and we propose to use the multi-stage Euler-Maruyama methods to solve
the obtained BSDEs driven by CTMCs. The arguments are carried out similarly
to Section 4 in the previous work with slight modifications. As described there,
this approach is motivated by the following observations: (i) Approximating Markov
BSDEs driven by Brownian motion with BSDEs driven by CTMCs can be interpreted
as the method of lines that approximates second-order parabolic PDEs with systems
of ODEs, and vice versa. (ii) Systems of ODEs arising from the method of lines
typically result in “stiff” systems that cause numerical instabilities. (iii) Exponential
integrators can solve stiff systems successfully. In this section, we briefly explain the
contruction. For details, see the previous work.

Hereafter, we focus on Markov BSDEs (813) such that (X};);c077 is time homo-
geneous, namely, u(t, z) and o(t,z) do not depend on t. Then, we can simply write
p(t,x) = p(x) and o(t,z) = o(x), and the subscript of the infinitesimal generator
can also be omitted: £; = L.

3.4.1 Method of Lines Spatial Discretization

For p = 1,...,d, let a strictly increasing sequence I1?) = {x,(lp )}N @ of length N®

n=1
be the set of nodes on the p-th axis in R% and define 6z = 2 — 2" for i =

1,...,N® — 1. Using the Kronecker product “®”, we construct the grid on R? by
N=TYg...e0% = (2, = (xgl),...,xgd)) ci=1,...,N)

where N = szl N®_ Note that multi-indices (iy,...,i4) are then ordered lexico-
graphically. For any function v : R? — R, let o™ = (v(t, z1),v(t, 22), ..., v(t, zn))* €
RY be the evaluation of v over II. Then, derivatives evaluated at nodes of II are
replaced by

Ov 9%v v
5 (21 EROEROLEY (z1)

—~

ax(p))Z

: ~ D%"’)uﬂ, : ~ ﬁgp’q)uﬂ, : ~ 15§p)un.
ov 0% 0%v

Oz @) (2n) OHx®) () (zn) (0z ()2 (zn)
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Here, N x N-matrices D; and D, are Kronecker products:

ﬁ](fp) = ]N(l) R & IN(p—l) X D](gp) ® IN(P-H) Q- IN(‘i)7 k= 1,2
Egp’q) =Iyo® - @ Inyep-1 ® Dﬁp) @ Ity & -
® Ine-1 ® Dﬁ") ® In@+y @ - @ Iyw, p#q,

where Iy is N®) x N identity matrix, and D§p ) and Dép ) are N®) x N®) matrices
arising from central difference methods:

( 5P
O oy =L
oz 0z, + dx.”)
sz — 6z,
7 1— , ) — /I;’
eDWe; = 5 05, ®) J for 1<i<N®,
(i S i i—1
) (3.28)
— , =1+ 1,
5:10@(17)(5@(3)1 + 5:1:(p))
L0 otherwise,
erDWPe; = ey DPe; =0, for 1<i<N®,
( 2 i1
, J=1—1,
(53:2(3)1%63:@1 + 5951@))
() <>_ ® J=1
eiDYe; = { daPox”) for 1<i<N®,
2 o (329)
®) 5.0 oy J=itL
oz (6" + ox”)
0 otherwise,

eTDgp)ei = e”j\,@)D;p)ei =0, for 1<i<N®,

where e, is the i-th standard basis vector in R¥®. We then solve, in place of PDE
(B1H), a system of N ODEs in what follows:

(dur . i
= TQUIHFUY) ) =0, (te) €[0,T) x E,

;UM =ex¢t, (t,i) € ({T} x {e1,...,ex}) U ([0,T] x E°),
(3.30)

Here, = and =¢ are
==ING and =°:=I1INJG,
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er¢i' = x(t,z;) for (t,2;) € [0, T)x Z¢, €}¢}} = ((x1), ..., £(xy))*, F [0, T] xRN —
R¥ is defined by
f(t, w1, €5z, 0(00) (D)2, . ei D" 2))
F(t,z) = : , (3.31)
f(tan, ez o(ay) (exDz, ... ey Di¥2)")

and

d d—1 d d
~ ~ 1 ~
Q= _diag((n®)") DY+ D diag((o0")P) DI+~ diag((o0) )" DY
p=1

p=1 g=p+1 p=1

approximates the infinitesimal generator £ of X'. The following proposition presents
us a probabilistic point of view of ODE (B=30). Note that its proof is the same as of
Proposition 22472

Proposition 3.4.1. Suppose that fOT f(t,2,0,0)%dt < oo for any x € RY, and that
for some L > 0,

[f(t o,y 2) = f(ta,y, 2)P < Ly =y P+ [l2 = Z11%)
for allt € [0,T], x € R, y,yf € R, and 2,2 € RL. Suppose further that Q is a
Q-matriz, e;‘Dgp)l =0, and that
e:Qei=0= e:D{"e; =0 for p=1,....,d, (3.32)
fori,j=1,...,N. Then, for any (t,e;) € [0,T] X Z,

Yst,e,- _ (Xéliiﬁ ) )*CT/\‘rt o+ / Lper) (Xﬁfz)*F(/r, Zivei)ds — / dM;Z;}ei
;€5 1Cq ]S,T] ]S,T}

which is derived from the Markov chain approzimation of (B13), has a unique solu-
tion.

3.5 Numerical Results

In this section, we demonstrate the efficiency and stability of the numerical approach
presented in Section 24, using BSDEs arising from pricing European barrier options.
We apply spatial discretization to the BSDEs driven by Brownian motions, obtain
BSDEs driven by CTMCs (i.e. a system of ODEs), and calculate numerical solutions
Y;"* using multi-stage Euler-Maruyama methods (i.e. exponential integrators for the
associated ststems of ODEs.) First, we explain the details on settings in what follows:
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Spatial Discretization We approximate the domain at hand with a Kronecker
product of one dimensional grids II™M ... TI'¥ as described in Section 2. Through-
out the section, TTV™ (215, Teenter, Zright, N, Ni) = (@)1 means the standard
one-dimensional uniform grid such that 1 = Zie, Tn41 = Teenter a0d Ty 4,41 =
Tright- We occasionally omit its arguments and simply write IIV™. In addition to the
uniform grid, a non-uniform grid is also employed for spatial discretization. We use

a version of the (one-dimensional) Tavella-Randall-type grids [63] in what follows:

r
Lcenter — Lle k— N, —1
Teenter T g1 sinh <arc sinh ( ¢ ! ft) . ! ) ;

(51 Nl
_ 1< k < Nl + 17
e ; : Lright — Lcenter k—N —1 (333)
Zeenter + g2 sinh | arc sinh . :
g2 N,

N+1<k<N +N,+1,

\

where N;+ N, +1 is the grid size, Ziey and 41 are the leftmost and rightmost points
of the domain, Zcenter € (Zieft, Zright) 1S the central point of the grid, and ¢; and g, are
parameters for the left- and right-side of the grid, respectively. Note that 1 = 2,
TN;+1 = Tcenter and TN +N-+1 = ZLright- IntuitiVGIY7 Setting g1 K Tcenter — Lleft and
92 K Tright — Teenter lad to the grid that is highly concentrated around @cepter. It is
commonly used in numerical computation for pricing options to mitigate the effect
of the nonlinearity of the payoff function [9, 53, B3|. Similarly to the uniform grid,
denote TII™ (2o, Teenter, Tright, Ni, Ni, g1, g2) as the Tavella-Randall grid (B233) whose
parameters are (xlefta ZLcenter; Lright Nla N’f‘7 g1, 92)

Temporal Discretization We employ solvers implemented in DifferentialEqua-
tions.jl [62], listed below:

e LawsonEuler : A single-stage method of classical/stiff order 1/1, referred to as
the Lawson-Euler method [47)].

e NorsettEuler : A single-stage method of classical/stiff order 1/1, referred to
as the Ngrsett-Euler method or ETD1IRK method [22].

e ETDRK2 : A 2-stage method of classical/stiff order 2/2 [22].
e ETDRK3 : A 3-stage method of classical/stiff order 3/3 [22].

e ETDRK4 : A 4-stage method of classical/stiff order 4/2 [22].
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e HochOst4 : A 5-stage method of classical /stiff order 4 /4, developed by Hochbruck
and Ostermann [39].

Taking temporal grid size N; € N, we calculate solutions on the grid TIV™(N;) =
(iAt)Y, using these exponential integrators. Here, At = T//N, is the step size. Note
that a large-scale system of ODEs is obtained from the spatial discretization in each
experiment. In this case, employing Krylov subspace methods in evaluating matrix
exponentials and related ¢ functions is more effective, as described in Remark P2Z373.
In all the experiments, we use the Arnoldi iteration with a size-m Krylov subspace,
which is readily available on all the solvers above. For simplicity, we always take
m = 100.

Implementation All of our experiments were performed on a 3.70 GHz, 64-GB
RAM Linux workstation. Our code was written entirely in Julia [5] and all the plots
were produced using Plot.j1 [I3|. The full code for the experiments is available at
https://github.com/kanekoakihiro/ EMCTMCBSDE.

3.5.1 Down-and-Out Call Option under the Black-Scholes Model

First, we consider the linear BSDE arising from pricing an European up-and-out call
option under the Black-Scholes model

t t
S, = sp +/ uSsds + / oS,dWy, (3.34)
0 0

where S; represents the spot price of the asset with initial price sy, appreciation
w1 and volatility . Suppose that the option has rebate 10 uniformly. Denote the
strike price as K, the barrier as B(< sp) and the maturity as 7. Considering the
self-financing portfolio to hedge the option as described in Section B, we obtain

T T
yt = ¢(T A\ T, ST/\T) — / 1{S<T}Tytdt — / thWt, (335)
t t

Here,
, t.x) €[0,T] x [0, B],
i) e Tx05
(r— K)*, (t2) € {T} x (B,o0)
is the payoff of the option, 7 = 755, = inf{t > 0: S; & (B,00)}, and the solution

tAT,Star

Vi = YV, means the price of the option at time ¢ € [0,7]. We choose the


https://github.com/kanekoakihiro/EMCTMCBSDE
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parameters of (B233) as follows:

T K B r L o
1 100 110 0.03 0.03 0.2

For the spatial grid, we choose IIT® with (T, Teenters Trignt) = (0, K, B), N; = N, =
500), g1 = 80.0, and g, = ZHeht—Teener g

Tcenter —Lleft

In this section, we calculate the maximum absolute errors of Y/ in (t,s) €
TP % ([80,120] x ITIR), the absolute error of Y/** at (t,s) = (0,100) and runtimes
in seconds.

Since an analytic formula of Y}* using the cumurative distribution function of
the standard Gaussian distribution ¥(z) (e.g. p.152 in [36]) is known, we regard it
as the true solution. In table Bl the maximum absolute errors in (¢,s) € TP x
([80, 120] NITIR), the absolute errors at (¢, s) = (0,100) and its runtimes in seconds.

Ny=10 N, =20 N, =50 Ny=100 N, =200 N,=500 N,=1000

Lawson-Euler Sup Error || 1.341e4+6 3.956e+0 2.270e+0  8.980e—1  8.416e—2 1.114e—2 1.090e—3

(7] Abs Error | 6.216e+2 3.282e+0 1.559e+0 5.539F — 01 6.131le—4 2.30le—4 1.055e—4
Runtime]s| 0.12 0.16 0.35 0.61 1.41 3.13 6.28

Norsett-Euler Sup Error || 4.586e4+0 3.735e+0 2.203e+0  7.149e—1  8.368¢—2 1.072¢—2 1.089¢—3

7] Abs Error || 4.364e+0 3.386e+0 1.766e+0  4.999e—1  4.593e—3 5.830e—5 3.110e—5
Runtime]s| 0.09 0.15 0.31 0.57 1.64 3.07 6.66

ETD2RK Sup Error || 4.586e4+0 3.735e+0 2.203e+0  7.15le—1  8.368¢—2 1.072e—2 1.091e—3

2] Abs Error || 4.364e+0 3.387e4+0 1.766e+0  5.000e—1  4.707e—3 1.039e—4 8.314e—6
Runtimels] 0.21 0.36 0.58 1.44 2.42 5.86 11.86

ETD3RK Sup Error || 4.586e4+0 3.735e+0 2.203e+0  7.15le—1  8.368¢—2 1.072e—2 1.092e—3

2] ’ Abs Error || 4.364e+0 3.387e4+0 1.766e+0  5.000e—1  4.706e—3 1.039e—4 8.309e—6
Runtimels| 0.24 0.37 1.01 2.16 4.18 10.15 20.10

ETDARK Sup Error || 4.586e4+0 3.735e+0 2.203e+0  7.15le—1  8.368¢—2 1.072e—2 1.092e—3

7] ) Abs Error || 4.364e+0 3.387e+0 1.767e+0 5.00le—1 4.707e—3 1.039e—4 8.309e—6
Runtimels] 0.40 0.62 1.55 3.22 6.92 16.72 30.22

HochOst4 Sup Error | 4.586e+0 3.735e+0 2.203e+0 7.151le—1 8.368e—2 1.072e—2 1.092e—3

(59 Abs Error || 4.364e+0 3.387¢+0 1.766e+0 5.000e—1 4.708e—3 1.039¢e—4 8.309e—6
Runtimels] 0.41 0.67 1.87 3.27 6.35 15.30 30.23

Table 3.1: Results on numerical solutions of (BZ3H) using exponential integrators.
Here, we spatially discretize it on IT'® and solve the resulting system of ODEs. Here,
the parameters of IIL® are Ziet, = 0, Teenter = K = 100, Zyigny = B = 110, N, o = 500,
and g; = 80, g = % g1 = 8. For each Ny, the numerical solution is evaluated on
the grid TIV™{(N,) x II'R. Maximum absolute errors in IIV™F x ([80,120] N IITR) are
reported on the row of “Sup Error”, absolute errors at (¢,s9) = (0,100) are on the

row of “Abs Error”, and runtimes in seconds are at the bottom line.
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3.5.2 Barrier Options under Stochastic Local Volatility Mod-
els

Hereafter, we will consider barrier options under stochastic local volatility (SLV)
models. In general, SLV models are written as

t t
St—SO+/ w(Ss,vs)ds+/ m(vg)[(S,)dW WY,
0 0

t ¢ (3.36)
vy = Vg +/ p(vs)ds + / o (vs)dW 2,
0 0

1
where (WM W), = pt with p € (—1,1). Let L = <p 10—p2) be the lower
triangular matrix constructed from the Cholesky decomposition C = LL* of C =

1)
(; /1)) Since W = L~} (%(2)) is a 2-dimensional standard Brownian motion, we

can reformulate (B=38) as
t t
Xy = Xo+/ u(XS)ds—i—/ o(X5)dW, for te[0,T],
0 0
where

e (9) o (). e (D )

Under such S;, we consider European barrier options whose payoff is written as
&(T A 7,8rxr), where ¢ is a function and 7 is the first hitting time of the barrier.
Then, the price of the option at (¢, S;,v;) = (0, So,vg) is the solution of BSDE

T T
yt - ¢(T A T, ST/\TJ UT/\T) - / 1{7’§T}f('ra S’r; Up, ym Zr)dr - / Z:dWT, (337)
t t

where

flt,s,v,y,2) =r(y — 2L 'o(z) '2)" — R(y — 2*L o (2) '2)".

3.5.2.1 Up-and-Out Put Options under the Mean-Reverting SABR Model

Consider the mean-reverting SABR model |24 definied as
t t
S, = 50+/ K(C—Ss)ds—f—/ Vs Saw W
0 0

t t (3.38)
Vg = Vo + / n(0 — vs)ds + / /U dW 2,
0 0
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where (WM, W®), = pt with p € (—1,1), under which consider an up-and-out put
option. The payoff is then written using

¢(t S U) — {0’ (t,S,U) S [O,T] X [B,OO) X [0,00),
» 55 (K —s)*, (t,s,v) € {T} x[0,B) x [0, 00),

where B(> sg) is the barrier, K is the strike price and 7' is the maturity. The
corresponding BSDE is written in the form of (8237). The parameters of (B338) we
have chosen are as follows:

T B Kk C p v 6 o B K R r
1.0 08 03 07 —-09 05 1.0 04 120 100 0.55 0.05

For the spatial grid TV @ ), we choose IV := TI*® with (2, Teenter, Tright) =
(1.0, K, B), Ny = N, = 100, g1 = 5.0, and go = 5" g, and 1?2 = O™ with
(Ziefts Teenter, Tright V1, V) = (0.0267,0.4,0.7733, 15, 15).

The result is presented in Table BZ3. As NV, increases, the solutions seem to
converge approximately yg’(100’0'4) ~ 7.2360. Note that numerical instabilities are
appeared for NV; = 10. They are provoked by non-smoothness of f and the boundary

condition and different from the stiffness exponential integrators are targetting.

3.5.2.2 Down-and-In Call Option under the 4/2 SABR Model
The following SDE is referred to as the 4/2 SABR model, proposed in Grasselli [33].

t t
S =8+ / KSsds + / (ay/vs + b/ \/v5)SPaW D
0 0

t t (3.39)
vy = Vg + / n(0 — vs)ds + / oz\/v_def),
0 0

where (WU W®), = pt with p € (—1,1). We consider a down-and-in call option
under (B239), a knock-in option. Recall that, at time ¢ = T, knock-in options are
paid if its underlying asset breaches the predetermined barrier before T'; otherwise, a
rebate is paid. Denote K as the strike price, and suppose that there is no rebate. In
this case, it is represented as a random variable ¢(T' A 7, Sta-, vra-) With a function
defined as

Vi (t,s,0) € [0,T) x [0, B] x [0, 00),

o(t, s,v) = {O, (t,s,v) € {T} x (B,00) x [0, 00),
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N,=10 N,=20 N,=50 N,=100 N, =200
Lawson-Euler | Y50 0.0097  1.7581 7.1640  7.2172  7.2277
[27] Runtimels| 16.38 28.53  66.04  127.67  253.40
Norsett-Euler | Y00 6.2364  7.0207 7.2311  7.2335  7.2347
[22] Runtime]s] 20.09 27.50  63.96 126.26  241.96
ETD2RK | Yo 7.0322 127319 7.2372  7.2364  7.2361
[22] Runtimels| 26.18 4737 112.88 22522  437.73
ETD3RK | Y20 || 3149722  7.5636 7.2360  7.2360  7.2360
[22] Runtime]s] 36.10 66.59  160.46  342.93  676.57
ETD4RK (o) 135880123 7.2483  7.2358  7.2360  7.2360
[22] Runtimels| 61.61 10454 25292 524.85  1039.47
HochOstd | Y™™ | 74942639 68035 7.2357  7.2360  7.2360
[39] Runtime]s] 55.99 105.88  260.48  518.88  1023.81

Table 3.2: Results on numerical solutions Yo'"*%% of Markov BSDE (B337) with
(B338) and its runtime in seconds using different exponential integrators. We
spatially discretize the BSDE on II'™® ® ITV™f and solve the resulting systems

of ODEs. Here, the parameters of III® are (Tiefi, Teenter, Trights Ni, Niy g1, g2) =
(1.0, K, B, 100,100, 5.0, Zek—2eenter gy “and of TIV™F are (Ziefy, Teenters Tright, Ni, Ny) =

7 Tcenter —Tleft

(0.0267,0.4,0.7733, 15, 15).

where yf (s)
price (S, vp) =

is the price of the European (vanilla) call option at time ¢ and spot
(s,v) satisfying the BSDE (with deterministic terminal time T')

0t (s,0) _ (S;,(s,v) _K)+

t

T T

+ / f(s, Sblsv) Phlsw)  Zhsv))gg / ZLE0aw,. (3.40)
t t

Now, we are interested in V) (sov0) o (B231) for (sg,v9) = (100,0.4). We choose the

parameters of (B=39) as follows:

T [ K P v 0 « a b B K R r
1.0 08 0.7 025 09 0.02 0004 0.8 0.05 90 100 0.15 0.09

Since the Y is also unknown, we first solve (B20), and then using the numerical

solution of yt (52 for 5 = = B, We calculate yt (%) Ty obtain yt o(s:) , we discretize
(B0) on spatial grid IOV ® [I?® where

L4 ﬁ(l) = HER with (xlefta ZLcenters Lright Nl> NT; g1, 92) = (17 B7 23_17 1007 1007 507 50)’
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o TI® = TIV™" with (1ef, Zeenters Trights Nix V) = (0.0267, 0.4, 0.7733, 15, 15).
The spatial grid I ® I1® on which (8237) is discretized is chosen as follows:
L4 H(l) = HIR Wlth (xleftaxcenteraxright) - (B7K7 2K)7 Nl - NT = 1007 g2 = 507

and gl — _Tcenter —Tleft 92 — 17

Zright —Zcenter
o TI®) = TIVM" with (1ef, Zeenters Trignts Nis V) = (0.0267, 0.4, 0.7733, 15, 15).

The result is presented in Table B3. As NV, increases, the solutions seem to converge
. 0,(100,0.4)
approximately ) ~ 4.074.

N;=10 N;=20 N, =50 N, =100 N,=200 N,=500

Lawson-Euler | Y™™ [ 1.0155 27035 3.3656  3.6428  3.8525  3.9881
(2] Runtime[s] | 16.27 2650 6219 11591 24225  563.67
Norsett-Euler | Y000 | 26224 34995 39315  4.0236  4.0540  4.0701
[22] Runtimel[s| | 14.32  28.78  58.18 109.45  211.17  522.18
ETD2RK | 00" | 28137 35803 39688  4.0422  4.0633  4.0738
[22 Runtime[s] || 23.40  42.02 10536  221.58 41625  1012.08
ETD3RK | Y™™ | 29080 3.6321 3.9803  4.0462  4.0647  4.0742
[22] Runtime[s| | 31.56  59.38  146.88  295.14  639.15  1698.71
ETD4RK | Yo" | 28982  3.6268 3.9804  4.0464  4.0647  4.0742
[22] Runtime[s| | 52.00  103.71  269.59 52856  990.81  2447.03
HochOst4 | YY) [ 29356 3.6359 3.9811  4.0464  4.0647  4.0742
[39] Runtime[s] | 52.65  101.06  250.44 49544  980.85  2473.19

Table 3.3: Results on numerical solutions yg’(100’0'4) of Markov BSDE (B337) with
(B338) and its runtime in seconds using different exponential integrators. We
spatially discretize the BSDE on II'™® @ ITV™f and solve the resulting systems
of ODEs. Here, the parameters of III® are (Tiefi, Teenter, Trights Ni, Niy g1, g2) =
(1.0, K, B,100, 100, 5.0, Zett—=eeier g ) and of TIV™F are (@iefy, Teenter, Tright, Ni, Ny) =

7 Tcenter —Tleft

(0.0267,0.4,0.7733, 15, 15).

3.6 Conclusion

BSDEs with terminal times being bounded stopping times are an extension of BSDEs
and have a great interest in applications. In this chapter, we constructed multi-
stage Euler-Maruyama methods for solving Markov BSDEs driven by CTMCs with
terminal times being bounded stopping times. We conducted it by extending our
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previous work in which these methods for solving Markov BSDEs driven by CTMCs
with terminal times being deterministic were constructed. The resulting method
partially employs exponential integrators to solve the associated systems of ODEs,
which can treat “stiff” BSDEs effectively. As a numerical method for solving BSDEs
driven by Brownian motions with terminal times being bounded stopping times, we
proposed to discretize them spatially and solve the resulting “stiff” BSDEs driven by
CTMCs using the presented methods. To illustrate the effectiveness, we presented
numerical experiments that treat (Brownian-)BSDEs arising from pricing problems
of barrier options.

3.7 Proofs

3.7.1 Proof of Theorem

Proof. For a solution U; to (8B1) , the Ito formula immediately implies (Y}, Z;) =
(X{nUinrs Uelp<sy) solves (B2D).
Let t; and t, be fixed. Without loss of generality, assume that t5 > ;.

t1,e; t2,e; __ t1,e; t1,e; t1,e4\% *
}/;1 - }/;2 - E[}/;fl - }/;52 + (th ) ‘/;2 - ei ‘/tQ]

—E [/ Lugr, oy R u, Y00 Z9 ) du — / dM:Zbe
Jt1,t2]

Jt1,t2]
+ ( QZth—’el - Mt2 + Mt1> ‘/;2:|
It1,¢2]
B | [ [, X0 Y 2009 + (XU Qu
It1,t2]

Hence,

Yo — v <

¢ hoh \// EHl{USTtLei}h(XZ&Q? u, Yzfi76i7 Zfihei) + (thll—&)*quiz ‘Z]du
Jt1,t2]

Using the uniform boundedness of @),, the Lipschitz continuity of h, evaluate the
integrand as

[Lgusrn, o X u, Y00, Z009) + (X5 Qu Vi, 2
< (Y + ||Z£17€i||§(tl;ei + |1{u§Ttlyei}h(X£1;ei,u,O, 0)]>+ sup |6;Q8Vu|2)'

0<s,u<T
i=1,...,N
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Since
]E/ T guer . h(XE 0, 0,0)Pdu
Jt1,t2] '
N
B Z/ |h(ej,u, O, 0)|21{u§7't1,ei}]P)(Xu = ej|Xt1 = el)du
j=1 Yt1t2]
_ Z/ (e, 1,0, 0)PP(X, = e5] X, = e3)du < Csup/ (e, ,0,0)Pdu,
ejGE ]tlth] EjEE ]07T]
we obtain
ye v < ovi = (B | s e [zl
0<u<T 10,7] w

+sup/ |h(ei, 1, 0,0)2du + 1
10,7

ej €=

which implies the continuity of ¢ — Y;"*. Notice that

du) ,
(AXIL7Ei>*Vu1{USTt,ei} = A<<X7t¢78i)*vu)1{u§7t,ei}
= AYuwaj&i : ]‘{USTt,ei} = AYut’ei : ]‘{USTt,ei}’
Together it with AY,** 1,5,y = AY! % 11,57,y = 0, we obtain

(AKX Viluny = AV = AMZ = (AXL) 225
Hence [, ,(dX5%)"(Z5% — Viluzr,.)y = 0, which implies

/ dqu(Zf;el N Vul{uﬁn’ei)} - XZ’EZ‘QU<ZZ€Z' - vul{uﬁTt,ei)}du - 07
[0,¢] [0,¢]

since any predictable finite variation martingales starting at 0 takes zero constantly
(e.g. Corollary 8.2.14 p.204 in [19].) Hence

2

/ AM; (2 = Vilpusn, p)| =0,
0,7 '

]E/ 1255 — Vul{umeei)}Hit,ei du =E
10,7 s

which means Z%¢ ~ Vul{ugﬁyei)} Together with the Lipschitz continuity,
h(Xitii ) Uy (Xiﬁi)*vul{USn,ci}v Zztjei)

= h(Xtvei u, (Xi’fi)*vul{ugn,ei}, VU]'{USTt,ei}>7 du ® dP-a.s.

u—

(3.41)
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Plugging it into the conditional expectation representation of Y;"*, we obtain for
te[0,77,

6:‘/;5 = }/;t’ei = e;‘CD(T, t)G + 6:/ (D(U, t)H(U, ‘/;)du”
1.7

which results in the cariation-of-constants of (B) in what follows:

T
V, = ®(T,t)G +/ ®(s,t)H (s, Vs)ds.
t

3.7.2 Proof of Lemma B33

Without loss of generality, we assume that ¢t = 0 and s = T. For M; € N, let
ot = T /M, and Té\g —inf{l-0t: 1 =0,..., M, X5 ¢ Z}. From the dominated
convergence theorem,

P(X7h,,, =6l Xo™ = e) = lim P(X)%,, = e X =¢;).

T/\To’ei My —o0 A 0,e;

For r € [0,T], let PM be the N x N matrix defined by efPMie; = P(X*%, =

T/\TO,ei
;| Xy = ¢;) for i, = 1,...,N. Clearly, ePMe; = §;; for ¢; ¢ = and r € [0,7].
Here, d;; is the Kronecker’s delta. For e; € =, we obtain

N
« pMy 0.e; _ Oe; __ O __ Oe; __
eiPple; = :]P)XTATOMl = | X5 = en) P(X5" = ex] X" = &)
k=1 :

€4

N
0,e; _ 0, __ 0,; __ O,eq __
= ZP(X(Te_(St)/\TéVIl = )| Xo = ep)P(X5" = e X" =€)
k=1 ©
= €; Pst Prlsie
In other words, the two cases mean Izc P = Iz and IzPM = [z®5PM ;,, respec-
tively. Combining them,

P = Iee+ 125 Py, = (Tze+12®s) Py, = (Tze+12@5 )M Py = (Ize+120s) M
Since @5 = Iy + 0t - Q + o(At),
lim (Iz®s + I=)" = lim (I=(Iy + 6tQ + (1)) + I=e) T/
—

M1—00

(In + 0t - (I=Q) + 0(6t))T/° = exp(T1=Q).

lim
6t—0






Chapter 4

A Sparse Grid-Based Multilevel
Spatial Discretization for BSDEs
Driven by Brownian Motions

4.1 Introduction

In Chapters B and B, we developed multi-stage Euler-Maruyama methods for BSDEs
driven by CTMCs whose terminal times are deterministic or bounded stopping times,
respectively. We saw that these methods are equivalent to exponential integrators
for solving the associated ODEs. This observation led us to applying them to BSDEs
driven by CTMCs arising from the spatial discretization of BSDEs driven by Brow-
nian motion. In multi-dimensional settings, however, spatial discretization typically
results in CTMCs with a large state space. That brings us to a numerical limitation
known as the curse of dimensionality, and computation in more than 4-dimensional
cases is challenging.

This chapter aims to develop a CTMC approximation method of solving high-
dimensional BSDEs, which overcomes the curse of dimensionality. Specifically, we
present a multilevel spatial discretization on a sparse grid for solving Markov BSDEs
driven by Brownian motion, in which we construct a sequence of BSDEs driven by
CTMCs on grids with different resolutions and suitably superimpose their solutions.
With the help of the idea of sparse grid methods [, 34, it reduces the computational
cost and efficiently mitigates the curse of dimensionality.

The organization of this chapter is as follows: The next section presents pre-
liminaries, in which we recall BSDEs with deterministic terminal times (or bounded
stopping terminal times) driven by CTMCs (or Brownian motion). In Section B=3, the

79
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presented method, the sparse grid-based multilevel spatial discretization is presented.
Finally, several numerical experiments are devoted to confirming its efficiency.

4.1.1 Notations

Throughout this chapter, the same notations as Chapters 2 and B are used.

4.2 Preliminaries

4.2.1 Spatial Discretization of BSDEs

Let us briefly recall the spatial discretization of BSDEs driven by Brownian motion.

Let W = (W}):>0 be a d-dimensional standard Brownian motion. Let F = (F):>0
be the completion of the filtration generated by W. For t € [0,T] and z € R¢, we
consider the Markov BSDE driven by Brownian motion starting at time ¢ and state
x in what follows:

XM =g +/ w(r, X% dr —|—/ o(r, X"")dW, for s>t
t t
X =2 eR? for s<t,

T T
Vi =g+ [ pr Xy - [ zeyaw, for s e 1)

(4.1)
or its bounded stopping terminal time version in what follows:
Xt = x+/ w(r, Xf’gﬁ)dr%—/ o(r, X"")dW, for s>t
t t
Xst’m:xeRd for s<t,
T
e = X(T AT, Xk, )+ / Lpar o3 S (r, X057, V0% Z5%)dr (4.2)
T
— / (ZE")*dW, for s € [0,T).

\

Here, G C R? is a connected open set whose boundary is of class Ct and 7, =
inf{s > ¢t : X»* ¢ G}. The nonlinear Feynman-Kac formula states connections
between these BSDEs and second-order semilinear parabolic PDEs. Let L£; be the
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infinitesimal generator of the Markov process X, that is,

d d
; ou 1 (i 0?u
Lou(t,x) =) M(Z)(tw)ax.(t,iﬂwri > (00 )(’j)(t,x)m(t,x)- (4.3)
% ? J

i=1 i,j=1

The PDE associated with (E1) is

%(t,x) + Lou(t,x) + f(t,z,u(t,x), 0" (2)Veu(t,z)) =0, (t,z) € [0,T] x RY,

u(T,z) = g(x), x¢€R4,

(4.4)
and with (£22) is

g—qz(t,x) + Lou(t,z) + f(t,x,u(t,x), 0" (2)Vu(t,x)) =0, (t,x) €[0,T] x G,

u(T,r) = k(z), =€,

u(t,z) = x(t,z), (t,x)€[0,T] x 0G.

(4.5)
Suppose that PDE (84) (or PDE (£23)) admits a unique classical solution u. Under
some appropriate conditions, we obtain Y}* = u(t,z) in both cases. (For the precise
statements, see Section 2.2.2 and Section 3.2.2.)

Markov BSDEs driven by CTMCs that approximate (E=1) or (A=2) can be derived
from spatial discretizations of PDE (B4) or (E3H). For each axis of the spatial do-
mains of the PDEs, we define a one-dimensional grid on which spatial derivatives
appeared in the PDE are approximated. With the Kronecker product, the approxi-
mated system of ODEs

dU
d—tt + QU+ F(t,U,) =0, Ur=GaG, (4.6)

or

dt
e;UlN = excl, (t,1) € {T} x{e1,...,en})U([0,T] x E°),
(4.7)
are obtained. We can interpret them from the probabilistic viewpoint. Assuming the
validity of @, let X be a finite-state Markov chain with @) as its Q-matrix. Consider
the Markov BSDEs driven by CTMC X associated with (E86) in what follows:

* dUtH II 11 -
€ + QUt + H<t7 Ut ) = 07 <t7 ei) € [OvT) X =2,

Y, =X:G+ | X' F(s,Z)ds— / AM?* Z,, (4.8)

18,7 18,7
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or ones associated with (EZ7) in what follows:
}/:Stei = (X%f\in e.)*CT/\Tt e; +/ 1{T<T}(Xﬁfi>*F(7” Z;E’ei)ds - / dM:Z:E’ez.' (49)
o o ]sT] ]s,T]

A relatively mild condition ensures each BSDEs admits a unique solution (see Propo-
sition Z472). For more details on the spatial discretization, see Section 24 and B.

4.2.2 Sparse Grids

Sparse grid methods date back to a study by Smolyak [66], in which he presented
an algorithm for constructing multivariate quadrature and interpolation rules from
a linear combination of tensor products of univariate ones in a specific manner. It
mitigates the curse of dimensionality, which conventional formulas that compute
solutions on the “full grid” cannot overcome. Beyond quadratures and interpola-
tions, the construction of sparse grids has applications to various fields such as data
mining [31] or differential equations. As introduced in Section 4.5 in [IT], different
approaches have been presented to apply the idea of sparse grids to solving partial
differential equations. The most straightforward one among them will be the sparse
grid combination technique. Motivated by the observation that the sparse grid can
be decomposed to a combination of several coarser rectangular grids, this approach
constructs a numerical solution from a linear combination of numerical solutions of
PDEs on those grids. As a result, one can compute solutions by applying the PDE
solver at hand to our PDE on each resolution grid without specific treatments.

4.3 Multilevel Spatial Approximation Using Sparse
Grids

We first need to approximate the spatial domain of (E4) (or (E23)) with a fixed,
bounded, and rectangular domain on which we can define sparse grids. For the
sake of simplicity, we set a hypercube [—1,1]¢ as such a domain; we note that the
argument in this section can be applied to arbitrary bounded rectangular domains
using dilation and translation. and p € {1,...,d}, let x}, = {7, Zp} C [-1,1]
be a prescribed set of nodes parametrized by [ and p; in this section, we specifically
set equidistant nodes

2(0—1
Zﬁ’p:M_L for i=1,....,my,
ml—l
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with m; = 2! + 1. For t € [0,T], consider the piecewise linear interpolation of the

l 1
solution U = U;“l@m@xdd of (&M) (or (B22)) for I = o' @ --- @ x4 defined as

mll mld d
I, , , I
u(ll’m’ld)(taxlw--7376!) = ZZUt(l d)<zfi 17"'7 fg Hazzp

i1=1 ig=1 p=1
for (z1,...,24) € [-1,1]%, where al”’p (x,) are the one-dimensional standard hat func-
tions defined as )

I, m; — 1,
a;’(x) = (1 - [z —Z") VO

for v € [-1,1],i = 1,...,m;, | € Nand p = 1,...,d, and U (21! ,...,zllj’d)
means the component of the vector Ut(ll"“’ld) correspondmg to ( fi ey fj yexi®

S ® Xizd- The sparse grid solution with the level parameter ¢ € N is then constructed
from w1 (¢, 21, ... 2q) by

uSG’q(t,xb...,xd) - Z (_1)q_|ll< d_l ) .ul(@xl?”"xd) (4.10)

— 14
1=(I1,...,l4)EN? q | |
q—d+1<|1)1<q

d—1
for (zy,...,1q) € [=1,1]%, where [I|; =l + -+ +1g for 1 = (I3,...,l3) and (q 1 )

— |11
is the binomial coeflicient.

Numerically, we obtain an algorithm in what follows:
1. Solve systems of ODEs for each 1 such that ¢ —d+ 1 < |1|; <gq.

2. For each multi-index 1 and discrete time %,,, construct the d-dimensional piece-
wise linear interpolant x = u(t,,,x) of {U} (z),z € X! ® --- ® \§'}.

3. Combine interpolants according to (EI0). The obtained function uS%9(¢,x)
can be evaluated at any x € [—1,1]? for each discretized time t,,.

In particular, we propose to use the multi-stage Fuler- Maruyama methods con-
structed in Section P23 and Section BZ3 for obtaining each solution U, (hla) o ODEs,
which is accomplished by employing exponential integrators. In the next section, we
illustrate the efficiency of this approach through several numerical experiments.
The numerical solution ©5%4 achieves much less computational cost with a slight
deterioration in its quality, in comparison to the corresponding full grid formula i.e.
u™ ™ for n = ¢ — d + 1. Specifically, the total number of spatial points that the
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sparse grid formula with parameter ¢ contains is O(29¢?~1). Taking that the full grid
formula at the same level is comprised of O(2%¢) spatial points into account, it turns
out to be a significant reduction in computational complexity [34]. We can also give
an error estimate based on arguments in existing leteratures such as [34, 48, 51 .
Let a > 0 be the order of accuracy of the spatial discretization scheme. Suppose
that we know the exact solutions U} of each systems of ODEs in (A1), the exact
solution u (of the approximated PDE on [—1,1]%) are sufficiently smooth, and an
error expansion

u(t,xy, ..., xq) — ul(t,xl, . 7J,‘d)

d d
:ZZ Z Z c® (t, w1, wa, by By oo By RGBS, - - - B,

1=1 j1=1j2=51+1 Ji=Ji—1+1

exists for some bounded functions C® for i = 1,...,d. Here, h; = 27 for i € N.
Then, according to the existing literatures aforementioned, the error estimate reads

w(t, z1, ... xq) —uSHUt 2y, ... 1) = O(h, *(logy(hy, N (= 02714 ))
as ¢ — oo, which is slightly worse than O(h,?)(= O(27°7)) the estimate in the full
grid case.

4.4 Numerical Results

We present numerical experiments in this section. In Section 41 and E-22, we con-
sider BSDEs driven by Brownian motion arising from pricing European call options
under stochastic local volatility models as treated in Section Z4. First, Section B4
treats two-dimensional BSDEs, in which we compare the sparse grid-based multilevel
spatial discretization developed in this chapter with the “full grid-based” spatial dis-
cretization developed in Chapter B and confirm the efficiency of the former one. In
Section B4, we solve a four dimensional BSDE arising related to Basket options
using the presented method. A BSDE with bounded stopping terminal time is also
treated in Section BEZ=3; under the similar situation in Section B-472, we consider a
BSDE arising from prising European basket barrier options. All the experiments
were conducted in the same environment as in Chapters B and B, and the same
notations are used.
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4.4.1 A Comparison to the “Full Grid” Method

In this section, we consider two ways of spatial discretizations of BSDEs driven by
Brownian motion: (1) the discretization on the Kronecker product of grids (we call
it a “full grid”), the same as considered in all the experiments in Chapters B and B,
and (2) the multilevel discretization on a sparse grid presented in this chapter. We
calculate numerical solutions of discretized systems of ODEs on the two grids using
exponential integrators and compare them.

Problem Setting : European Call Option under the SABR Model Con-
sider pricing a European call option under the stochastic-alpha-beta-rho (SABR)
model. It is a stochastic local volatility (SLV) model being commonly used, and
designed to model price dynamics of a forward contract. Consider the forward price
process F;, = S;e” T for some asset price S; and interest rate r. The SABR model
assumes that F; satisfies the following SLV model

t t
F,=Fy+ / v F2AW v =y + / v, dW®., (4.11)
0 0

To consider pricing of the European call option under the SABR model, we addi-
tionally suppose that the volatility process v, also satisfies v; = v2e""~* for some
underlying asset v?. Taking the hedge portofolio of two risky assets S; and v and a
bond with riskless rate r into account, the corresponding Makov BSDE (B-1) becomes

T T

YV, =(Fr—K)" — / rYsds — / Z, AW, (4.12)
t t
with the state process (EZI).
Fortunately, ), has an approximation formula in what follows:

Vi~ exp(—r(T —1t))[F; - Y(dy) — K - ¥(dy)], (4.13)

where

] In (2) + (w%) (T — ) ) In (&) + (7«_%) (T — 1)
b opB T—1t 7 2T opB T—1t

Y

and op is the approximated implied volatility by Hagan et al. [35] defined as

(1-8)* 2 1 Baw 93,2
v {1 n [ O s A + B ] T t)} )

(FK)0-5)/2 {1 + 552 10 (F/K) + &L  log!(F, /K)} x(2)

op =
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where z and y(z) are

Q 152 F, 1—2pz4+2242—p
= —(FK 1 — =1 .
z Ut(t )2 Og(K), x(2) og( T,

In this section, we regard the solutions calculated using (E—13) as the exact solutions.
We choose the parameters as follows:

T o [ p r K
1.0 04 0.9 0.3 0.056 100

4.4.1.1 Spatial Discretization on a “Full Grid”

First, we discretize (E-12) on the Kronecker product TR @ ITV%! of grids similarly
to the previous experiments. Precisely, S; is discretized on the Tavella-Randall grid
TR with (Ziefs, Teenters Trights Ne0, 91, 92) = (0,100,200, 100, 5, 5), and v, is discretized
on the uniform grid TIV™ with (e, Teenters Tright, Naeo) = (0,0.4,0.8,15). The size
of the resulting grid is 6231. (For definitions of both grids, see Section Z3)

Table BT reports the maximum absolute errors in (¢,s,v) € TIY™E x (80, 120] N
ITITR) % ([0.32,0.48] N IIYME) | the absolute errors at (¢,s,v) = (0,100,0.4), and the
runtime in seconds for different exponential integrators. In this spatial discretization,
when N; increases, the maximum absolute error and the absolute error seem to
converge towards 3.240 x 1072 and 1.730 x 1073, respectively. To further improve
the accuracy of the solutions, increasing the number of points of the spatial grid or
expanding the approximated domain should be required.

4.4.1.2 The Multilevel Discretization on a Sparse Grid

Next, we discretize (EI2) on a sparse grid using the algorithm presented in Sec-
tion B3. While the discretization on “full grids” results in a single BSDE driven
by a CTMC, it approximates BSDE (B12) (driven by Brownian motion) with a se-
quence of BSDEs driven by CTMCs on grids with different resolutions. Recalling
that the algorithm presented in Section B=3, the numerical solution of (EI2) can be
constructed in the following steps: (1) Let ¢ € N be fixed. (2) For each 1 = (I3, [5)
such that ¢ — 1 < |I|; < ¢, discretize S; and vy on IT1%(0, 100,200,271 5 5) and
1Ym0, 0.4, 0.8, 2271) | respectively. Solve the resulting system of ODEs and obtain
piecewise linear interpolants on [0, 200] x [0, 0.8] for each discrete time t,,. (3) Com-
bine them using (A10). In Fig. B0, we specifically show the spatial grids that result
from the multilevel discretization with ¢ = 7.
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N,=10 N, =20 Ny,=50 N;=100 N, =200

Lawson-Euler Sup Error || 4.500e—1 9.640e—2 3.264e—2 3.245e—2 3.242e—2

(7] Abs Error | 1.157e—1 1.538¢—2 2.136e—3 1.853e—3 1.791e—3
Runtimels| 20.21 24.97 58.12 120.34 238.51

Norsett-Euler Sup Error | 4.354e—1 9.113e—2 3.053e—2 3.140e—2 3.190e—2

2] Abs Error || 1.003e—1 8.260e—3 3.903e—4 6.003e—4 1.166e—3
Runtimels| 14.79 24.19 56.82 106.12 212.07

ETDIRK Sup Error | 4.362e—1 9.127e—2 3.253e—2 3.240e—2 3.240e—2

2] Abs Error || 1.117e—1 1.394e—2 1.872e—3 1.730e—3 1.730e—3
Runtime]s| 25.10 44.03 106.28 221.38 418.79

ETD3RK Sup Error | 4.362e—1 9.123e—2 3.253e—2 3.240e—2 3.240e—2

2] Abs Error | 1.119e—1 1.397e—2 1.876e—3 1.731e—3 1.730e—3
Runtime]s| 34.49 69.38 166.38 359.62 670.06

ETDARK Sup Error | 4.364e—1 9.126e—2 3.253e—2 3.240e—2 3.240e—2

2] Abs Error | 1.120e—1 1.397e—2 1.876e—3 1.731e—3 1.730e—3
Runtimels| 57.08 117.35 286.77 550.36 1077.41

HochOstd Sup Error | 4.362e—1 9.123e—2 3.253e—2 3.240e—2 3.240e—2

[39] Abs Error || 1.119e—1 1.397e—2 1.876e—3 1.731e—3 1.730e—3
Runtime]s] 56.55 110.74 270.06 541.89 1046.20

Table 4.1: Results on numerical solutions of (E12). Here, we spatially discretize it
on ITTR @ [TV and solve the resulting system of ODEs. The parameters of II'} are
Tieft = 0, Teenter = 100, Tyigne = 200, Ny o = 1000, and g; = g» = 50. For each IV,
the numerical solution is evaluated on the grid IIPMI(N;) x TITR x IV, Maximum
absolute errors in ITV™ x ([80, 120] NTITR) x (]0.32,0.48] N IIYMi) are reported on the
row of “Sup Error”, absolute errors at (¢, s, vg) = (0, 100, 0.4) are on the row of “Abs
Error”, and runtimes in seconds are at the bottom line.

Table B2 reports the result on the numerical solutions for different ¢ and temporal
steps IV;. Here, we used HochOst4 to solve the resulting systems of ODEs and have
evaluated maximum absolute errors of y,f (52) i) the same grid as in Section BT,
namely, (¢,s,v) € IIPME x ([80,120] N TITR) x ([0.32,0.48] N IIVM). We observe that
the discretization on the sparse grid can provide solutions more efficiently than on
the full grid. Table B=3 presents the total numbers of spatial points the sparse grid
method comsumes in Section B=2 and the numbers of the corresponding full grids.
Although the size of our “full grid” is 6231, the sparse grid approach still outperforms
in terms of runtime even if the total number of spatial points exceeds this (i.e. ¢ > 8).
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q N,=10 N,=20 N,=50 N, =100 N, =200 N,=500
Sup Error || 4.521e—2 4.521e—2 4.521e—2 4.521e—2 4.488e—2 4.468e—2

7 | Abs Error || 6.921e—3 6.92le —3 6.92le—3 6.921e—3 6.921e—3 6.921e—3
Runtime|s| 1.24 2.38 5.57 10.53 20.22 48.33
Sup Error | 3.469e—2 3.465e—2 3.465e—2 3.465e—2 3.423e—2 3.398e—2

8 | Abs Error || 2.454e—3 2.419e—3 2.419e—3 2.419e—3 2.419e—3 2.419e¢—3
Runtime|s| 2.20 4.08 9.34 17.38 33.07 78.77
Sup Error || 3.96le—1 8.479%e—2 3.244e—2 3.230e—2 3.189e¢—2 3.164e—2

9 | Abs Error || 1.193e—1 1.498¢—2 1.474e—3 1.309e—3 1.308e—3 1.308e—3
Runtimels| 3.35 6.18 14.75 28.49 53.03 127.02
Sup Error || 5.537e+0 3.187e4+0 2.353e—1 6.068e—2 3.152e—2 3.100e—2

10 | Abs Error | 4.942e+0 2.854e+0 5.267e—2 6.812e—3 1.35le—3 1.032¢—3
Runtimels| 6.75 12.74 30.60 59.37 126.54 327.56

Table 4.2: Results on numerical solutions based on the multilevel discretization on
sparse grids. The row of “Sup Error” reports the maximum absolute errors on the

same points (¢, s,v) in Table B0 (i.e. TIPME x (TTTRN[80, 120]) x (ITV™N[0.32,0.48]).)

q | 7 8 9 10
SG | 1475 3333 7431 16393
FG | 4225 16641 66049 263169

Table 4.3: SG : Total numbers of spatial points required for calculating the numerical
solution in Section EATA. FG : The size of the corresponding full grid (24-41 4 1)4.

4.4.2 Multi-Asset Option Pricing Using the Multilevel Dis-
cretization on Sparse Grids

This section is devoted to solving high-dimensional BSDEs arising from multi-asset
option pricing under SLV models. Consider d SLV models, that is, for s =1,...,d,

RO / wD(SD, v D)ds + / m® (v (SO) g (S,
0

s Vs s
0

ol = v(()l) + / 1D (v ds + / o @ () dw (oD,
0 0

Here, W9 and W®? are correlated as

<W(Svl)’ W($J)>t — Ci,jt7 <W(Sv7’)’ W(Uvi)>t e pi,jt7 <W(’U7i)’ W(v»i)>t — Ti,jt-
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(a) 3 x 65. (b) 5 x 33. (c) 9 x 17.

e
i
i

X

Nej

(g) 3 x 33. (h) 5 x 17.

(e) 33 x 5. (f) 65 x 3.

(i) 9 x 9. (j) 17 x 5. (k) 33 x 3.

Figure 4.1: The grids arising from the multilevel discretization for ¢ = 7 in the
situation of Section A4 T2, (AT2) has been approximated with a combination of 11
BSDEs driven by CTMCs on these grids (a)-(k).

Cs Csy

Let C = (CZ‘,U c

) be the correlation matrix, where

11 ... Cid P11 -+ P1d i .. T1d
CS: ) CS,'U: 5 Cv:

Cd71 e Cd,d pd,l e pd7d Td71 Ce Td,d
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Using a lower triangular matrix L constructed from the Cholesky decomposition
C = LL* and W defined as

WS

w
11

is 2d-dimensional standard Brownian motion.

Asin Section 2.5 and Section 3.5, Markov BSDEs describing the price of European
options g(S:(Fl), e ,S;d)) can be formulated by consider the hedge portfolio, which
result in

t t
thxmu/ p,(Xs)der/ o (X)W, for te[0,T]
0 0

0 . (4.15)
yt:g(s;”,...,s;d))—/ f(s,Xs,ys,Zs)ds—/ Z*dW,,
t t
where
St(l) w(l)(xl,de) m(l)(a:dH)F(l)(Il)
5@ WD (2, 70) M@ (290 7D (32)
Xo=1|"% 1|, x) = ’ , o(x) =dia L,
! vt(l) ui) M(l)(xdﬂ) (@) s U(l)($d+1)
e A Ch) oD (2q)

the driver is
[tz y,2) =r(y —2*o(z)'a)" = R(y — 2*o(x)"'2)” + 2o () p(z),

and r and R are the lending rate and the borrowing rate, respectively.

4.4.2.1 Basket Option under Two Heston-SABR Models

Consider pricing of the European basket call option whose basket is comprised of
two Heston-SABR models. That is, the coefficient functions in (E14) are

wD(s,0) =0 .5, mD(v) =, TO() = 7,

. o . . (4.16)
() = g D69 —v), oD (v) = /.



4.4 Numerical Results | 91

for i = 1,2. The corresponding BSDE is four-dimensional and results in (??) with g
replaced as

g(f1, f2) = Mfi+Xafo — K)7T,

where A\; and )y are constants. Since a non-differentiability of g is appreared in the
hyperplane {(s™), s, v® @) 2 X151 4+ X\y5?) — K = 0}, we use a linear coordinate
transformation, say

~

‘2{13 8{1; Al A 000
Y _ St2 _ St2 M A 000
Xt = U}Sl) =B Ut(l) s where B 0 o 1 0l (417)
Ut(Q) Ut(ﬂ) 0 0 01
before the spatial discretization, that turns out to be
X, = X, +/ Bu(B'X,)ds +/ Bo (B 'X,)dWj,
0 0 (4.18)

~

T T
V=8V - K)t - / f(s,B7'X,,V,, Z,)ds — / ZFdW,.
t t

The parameters chosen here are:

| T K R roo D g @ g ) p)
10 100 007 0.01 0.5 06 09 0.02 065 0.01

DN | .

0.5 0.07 02 03 03 0.01

The correlation matrices are:
1.0 0.5 0.65 0.3 1.0 0.7
Cs = (0.5 1.0) » Cso= (—0.1 0.05) 6= (0.7 1.o> '
For (31),5? 7 5@)* = B(s(M), 5 v @) we approximate the spatial domain
as (81,52 9 5)) € [51,149] x [—49,49] x [0.01,0.79] x [0.01,0.59], and apply
the multilevel discretization on a sparse grid. We apply a Tavella-Randall grid to

the first dimension and the uniform grids to the others. More precisely, using the
notation Xé forp=1,...,d and | € N in Section B=3, we set as follows:

b Xll = HER with (:Eleftv ZLcenter; Lright Nl; Nr, g1, 92) = (1, K, 149, 2l_17 2l_1, 17 1)

L4 Xlz = Hgnif with (Ilefta Lcenter xrighm Nl7 NT) = <_497 07 497 2l_1> 21_1)'
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L4 Xé, = H[xjnif with (xlefta L center; Lright Nl7 NT) = (0017 047 0797 21_17 2l_1)7
° Xﬁ; = Hgnif with (xlefm Lcenters Lright Nl7 Nr) = <0017 037 0597 2l_17 QZ_I)'

. . 51 5(2) (1) (2
Table B8 reports sparse grid solutions yg* V@) o (sM, 52 M) @) =
(100, 100,0.4,0.3) calculated using HochOst4 and their computational times in sec-
onds, for different ¢ and N;. The numerical solutions seem to converge towards

approximately 7.517.

q N,=10 N, =20 N,=50 N,=100 N, =200
. 0.(100.1000403) 1 7 50016 7.50013  7.50013  7.50013  7.50013
Runtimels| 50.71  57.89  141.68  276.37  552.95
0 YOU00I00L0) 1l 7 51457 751455  7.51455  7.51455  7.51455
Runtimels| 119.65 19574  484.67  931.01  1904.49
10 0.0100.1000403) 1l 7 51592 751656  7.51658  7.51658  7.51658
Runtimels| 838.15  1487.51 3376.85 6542.38 12817.34
0.(100100.0403) 1 7 43057  7.49986  7.51675 7.51713  7.51714
11| -0
Runtime[s] || 5965.28 10932.85 24935.39 48705.96 97810.97

Table 4.4: Results on numerical solutions yg (100,1000.403) ¢ (A720) using a multilevel
spatial discretization.

q 8 9 10 11
SG | 36901 112105 320675 77655
FG | 1185921 17850625 276922881 4362470401

Table 4.5: SG : Total numbers of spatial points of grids comprised of the sparse grid
solutions for different ¢. FG : The size of the corresponding full grid (2¢~4+1 4 1),

4.4.3 Down-and-Out Basket Option under Two Heston-SABR
Models

Finally, we consider a basket barrier option under two Heston-SABR models. Con-
sider the down-and-out call option where the underlying asset is the basket Alst(l) +
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)\gSt(Q). We set

0 te[0,T], Mx+ Xy <B,

tx,y) =1
o(t,z,y) {(A1x+>\2y—K)+a t=T, Mz+Xly>B.

and 7 = inf{t > 0 : )\1815(1) + )\QSt(z) < B}, and the corresponding BSDE is

t t
Xt:Xo—f—/ u()(s)ds—i—/ o(X;)dW, for tel0,T]
0 L . (4.19)
Vi=o(T AT, S S8 ) — / Lrs) f (5, X, Vs, Z)ds — / Z:AW,,
t

t

where p, o and f are same as before. The parameters chosen here are:

7,‘ T K B R r AD - gO @ 9@ GO po)

05 005 1.0 05 095 0.04
21'0 10095 0.0 0.001 05 01 0.08 003 02 0.1

The correlation matrices are:
1.0 0.5 0.65 0.3 1.0 0.7
Cs = (0.5 1.0) o Cso= (—0.1 0.05) G = (0.7 1.o> '
Applying the linear transformation (A7) to (A—19), that turns out to be

t t
Xt:X0+/ Bu(B_le)ds+/ Bo(B™'X,)dW;,,
R 0 ~ . 0 ~ . (4.20)
yt:gb(T/\T,S;lA)T)—/ 1{S<T}f(s,B‘1XS,yS,ZS)ds—/ ZFdW,.
t

t

Here, 5: 0,7] x R — R is

o(t, x) = 0, (t,z) €[0,7] x [0, B],
o {(”C—K)*, (t,z) € {T} x (B, 00).

For (E20), we discretize on the (multilevel) grids on (5,5 51 5(2)) € [B, 150] x

[—49,49]x[0.01,0.79]x[0.01, 0.59], where (1), 52 71 52))* = B(s(V), 52 p1) ¢2))*,
For each subgrid, we employ the Tavella-Randall grid to the first dimension and the

uniform grids to the others. More precisely, using the notation ng forp=1,...,d

and [ € N in Section B=3, we set as follows:
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L Xll = HER with (xlefmxcenteraxrigthlaNr‘) = (B7K7 15072l_172l_1)7 g2 = 1.0
and g, = %927

L XIQ = Hgnif with (xlefta Lcenter xrighta Nl7 Nr) - (_497 07 49a 21717 2171)'

o 4 =TIV with (@ief, Teenters Tright, Ny V) = (0.01,0.4,0.79, 2! 2071)

o =TIV with (Ziefe, Teenters Trights Vi, Vi) = (0.01,0.3,0.59, 2!=1 271).

, , , £(sD @) D) 4@y

Under the setting, we calculated the numerical solution ), using our
sparse grid-based multilevel discretization with parameters ¢ = 8,9,10 and 11. The

results are shown in Table B@. Here, we solve each ODE using HochOst4. The
numerical solutions seem to converge towards approximately 2.9554.

q N, = 10 N, = 20 N, =50 N,=100 N, =200
q 0.(100.1000.403) 1} 9 95849 2.95835 2.95872  2.95873  2.95873
Runtime]s] 53.02 74.83 183.73 361.43 721.02
0 0.(100.1000805) 1 9 95625 2.95554 2.95539  2.95539  2.95539
Runtimels| 159.65 251.94 604.26 1188.12  2100.54
10 yg’(100’1_0°’°'4’0'3) 1835.09847 15711.15453  2.95538  2.95539  2.95539
Runtimels| 924.82 1555.15 3605.58  6542.38  12817.34
" 00010004057 11 101 29716 59724.22711 1.9379E+11  2.95543  2.95543
Runtime]s] 5529.99 9828.60 22814.82  49279.10 95128.83

Table 4.6: Results on numerical solutions ))8 (100,1000.405) ¢ (2=20) using a multilevel
spatial discretization.

4.5 Conclusion

Motivated by the idea of sparse grid methods, we proposed a multilevel spatial dis-
cretization of BSDEs driven by Brownian motion. It approximates the BSDE driven
by Brownian motion with a sequence of BSDEs driven by CTMCs on spatial grids
with different resolutions, and the solutions are then superimposed along with the
sparse grid formula. The method significantly reduces the computational cost while
keeping accuracy. As can be seen in the numerical results, it is a promising approach
to handle high-dimensional BSDEs driven by Brownian motion efficiently.



Chapter 5

A Numerical Method for Solving
High-Dimensional Backward
Stochastic Difference Equations
Using Sparse Grids

5.1 Introduction

Backward stochastic difference equations (BSAEs) are discrete-time counterparts
of backward stochastic differential equations (BSDEs). Their applications include
some kinds of stochastic optimal control problems and dynamic risk measures in
mathematical finance. In [I8|, Cohen and Elliott developed a general theory of
BSAESs, where they suggested that BSAEs admit unique solutions in a broader degree
of generality for the probability distributions of their noise processes compared with
BSDEs in continuous time.

In this chapter, we aim to develop a numerical method for a class of BSAEs
with a Markov process in continuous-state space, with a focus specifically on high-
dimensional problems. It is a well-known fact that many numerical solutions of
BSDEs and BSAEs suffer from the so-called “curse of dimensionality”, which hampers
us when computing these solutions in high-dimensional state space. To overcome this
drawback, we must appropriately treat the nestings of high-dimensional conditional
expectations that appear in these solutions.

We propose a numerical solution using sparse grids. Sparse grids construct mul-
tivariate interpolation or quadrature formulae from given univariate ones and utilize
the smoothness of the function for computational efficiency. Specifically, the non-

95
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linear functions between conditional expectations are approximated by sparse grid
interpolants, and we compute these conditional expectations through sparse grid
quadratures. Our method is based on the research of Zhang et al. |[74], who pro-
posed a similar method for continuous-time BSDEs driven by Brownian motion.

5.2 Markov BSAEs

We introduce the class of BSAEs with a Markov process, namely, Markov BSAEs.
Let (92, F,P) be a probability space and let T = {0,1,...,T} be a discrete time
set with 7" € N. Let (&)ier\{0} be an R?-valued independent identically distributed
sequence with E[§;] = 04 and V[&] = 14, where 04 is the d-dimensional zero vector
and I, is the d x d identity matrix. Let F = (F;)er be a filtration generated by
(&)iem\foy, and set Fo = {0,Q}. For p > 1 and K > 1, let LP(R®; F;) denote the
set of RE-valued F;-measurable p-integrable random variables. We define a Markov
process as

XO =g € Rn, Xt = f(t - ]-7Xt—17§t> forteT \ {O},

where f : (T \ {T}) x R* x R? — R" is a function such that f(¢,-,-) is Borel
measurable for each t € T\ {T'}. In addition, we define the difference operator A as
AU, == Uy — U;_, for a process (Uy)L,.

We consider the following Markov BSAE:

Yr = h(X7),

. (5.1)
_A}/t = g(t - 17Xt—17 1/1-5—17 Zt) - Zt gt - A]\4—1‘

for t = T,...,1, where g : (T\ {T}) x R" x R x R — R such that g(¢,-,,")
is Borel measurable for each ¢ € T \ {T'}, h : R* — R is Borel measurable, and
(1)* is vector transposition. Here, a solution of the Markov BSAE is a triplet
(Y, Z,M) = ((Yo)ter, (Zt)tem\{o}, (My)er) that satisfies (B), such that Y is an R-
valued square-integrable adapted process, Z is an R%valued square-integrable pre-
dictable process, and M is an R-valued square-integrable martingale, such that
My = 0 and E[(AM,;)&|Fi—1] = 0 for all . We remark that since our noise pro-
cess (& )iem\qoy does not have the predictable representation property, the BSAEs
need to be formulated with the additional term M.

Assumption 5.2.1. We assume the following conditions.
1. For any (t, Ay, B) € T x L*(R; ) x L*(R%; Fy)
g(t7 Xt7 At; Bt) - L2(R, ft)
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2. For any (t,z,2) € (T\ {T}) x R" x R%, the function
O(t,x,2) :Roy—y—g(tz,y z) eR
is bijective, and for any (t, A, By) € (T\ {T'}) x L*(R; F;) x L*(R%; F),
O (Ast, Xy, By) € L*(R; F).

3. WM Xr) € L*(R; Fr).
Theorem 5.2.1. Under Assumption 1, the BSAE () admits a unique solution.
Proof. The solution can be constructed using the backward induction in time. Clearly,
Y7 = h(X7r) is the solution at time T. For t =T — 1,7 — 2,...,0, we set
Zi1 = El&1 Yo [,
AMiy1 =Y — ElYiu| R = Z6,
Y, = &N Bl Filit, X, Ziga).

The uniqueness and L2-integrability of the solution are clear. O]

We define the following continuous linear operators:
IDt—l,t B> ¢ = E[¢(.f<t - 17 75t>)] € Ba
Q101 B3¢ Elo(f(t —1,-,6))6] € BY,

where B is the space of bounded measurable functions defined on R™. We impose
the following assumption.

Assumption 5.2.2. 1. h and ®'(y;t,-, 2) belong to B for all y, t, and z.

2. For allt and x, ® (¢, x,-) is continuous.

Under Assumption B22, we define the nonlinear operator p;_1, : B — B by

(pr-1.40)(x) = (I)il((Pt—l,tﬁb)(x);t — 1,2, (Qi-1,0)()).
Corollary 5.2.1. The unique solution of BSAE (B1l) can be expressed in the form

of
Vi=V(Xe), Zi=2¢(Xi1), AMy= M(Xi-1, X1, ) (5.2)

Here, Y, :R* - R, Z,: R" = RY, and M, : R" x R" x R = R are given by
V() = (prit1 00 pr-17)h(z),
Zi(z) = Qi1 Di(w), (5.3)
My(z,y,e) = Vi(y) — Ptfl,tyt<x> - Qtfl,tyt(x)*e-

Hence, we can reformulate our problem of solving the BSAE into an evaluation
of the functions Y, Z;, and M,.
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5.3 Computing the Numerical Solution

We are interested in computing solution (B) in the situation where the dimension
n of the state process X and the dimension d of the noise process £ are rather

large (e.g. 3 < n,d < 10). We assume that the random variables &},...,&¢ are
mutually independent and that each & has the probability density g;, where we
write & = (&1,...,€9). Defining the linear functional

I1¢ = d(w)ge(w)dwy - - - dwg,
R4

where ge(w) = H?Zl gi(w;) and w = (wyq,...,wq), Pim1+ and Q¢—1+ can then be
expressed as d-dimensional integrals with the density ge:

(Pro140) () = I(¢po f(t —1,1,-)),
(Qi-140)(x) = I(¢o f(t —1,2,)()).

Approximating I as some quadrature formula f, we obtain the approximations ]3,5_1,15
and Q¢—1 of P, and Q4_14, respectively. Using these, we also define

(Pt 19)(@) = 7 (Puus19)(@); 1w, 7, (Quu18) ().

We now face computational difficulties at two points. First, all the integrations we
compute have dimension d. A straightforward way to obtain d-variate quadrature
formulae is to use the tensor product construction of univariate quadratures, but its
computational cost increases exponentially with d. Second, because of the nestings of
integrations in (B=3), the computational cost of the solution increases exponentially
with T'.

For the first point, we take sparse grid quadrature formulae that can alleviate
these costs by using the smoothness of integrands [42]. For the second point, we
compute the numerical solution at time ¢ as JA/t(@ = ﬁt7t+1jivt+1(x), using a sparse
grid interpolant JNJtH of JAitH. A detailed explanation of sparse grid formulae is given
in Section 4.

5.3.1 Prototype of Our Scheme

Our proposed scheme for finding the numerical solution Y, (z) for 2 € R™ is as follows.

e Initialize Yy = h.
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o Foru=T-1,T-2,...,t+1, given j)vuﬂ at time u+ 1, compute an interpolant
yu of yu = ﬁu,u—&—lyu—&—l-
e Compute )A)t(x) = ﬁt,t+137t+1($).
Here, é\t and M\t can be computed using 32 as
2t(x> = @t—l,tﬁt(@;
M(z,y,e) = Vi(z) — P_1,: V() — Qi1 V() e.

5.3.2 Truncation of State Space

The bounded spatial domain E; C R" of each interpolant )2 needs to be determined.
We design them as follows. If, for example, we would like to compute Yy (0), then we
evaluate the interpolant Y on {f(0,0, m)}fi%, where 71, ...,1y,, are the quadrature
points of 1. Hence, we set E; such that {f ((),O,T]i)}i]\i"?1 lies in Fj. Similarly, for

any t = 0,...,T — 1, since the interpolant )} is constructed with the N;-point set

{)A/t(xz) M, and since we evaluate Vi1 on {f(t, :E;,nl)}fi% for the computation of

Vi(xh) for j = 1,..., Ny, we set Eyy; such that Uﬁﬁf{t,x}m)}fiﬂ is a subset of
Et-}—l‘

5.4 Sparse Grids

5.4.1 Sparse Grid Interpolation

For a univariate smooth function f : [—1, 1] — R, we consider a sequence of interpo-
lation formulae (U*)2,,

U'(f) =) fa)-aj
j=1
Here, m; points xé € R and basis functions a;'. satisfy

T [4(f) = flle =0

where || - ||, denotes the supremum norm. If we define the difference of algorithms
as

UNF)=0, A'=U'(f)-UT'(f) forieN,
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then the sparse grid interpolant for a d-variate smooth function f, defined on [—1, 1]¢,
can be defined as

AV = (A" @@ AT)(f) (5.4)

ieNd

li|<q
for any ¢ > d, |i| =iy + - - - 4+ 74. We also remark that more interpolating points are
used by A%? the larger we take ¢ to be.

5.4.1.1 Sparse Grid Piecewise Linear Interpolation

Throughout this chapter, we adopt the sparse grid piecewise linear interpolation as
our interpolant. This is based on the following piecewise linear basis functions:

al(x) = 1- mgl‘x o :1:3\, |z — 33;’ < m1-2—1’
! 0, otherwise,
fori>1,7=1,...,m;, and ai(x) = 1, where

my =1, m; =2"1+1, fori>1,
and :172 are the Newton-Cotes equidistant points given by

- 2 —1

For our error analysis, we define the function class
Ey={f:[-1,1]" = R |D“f is continuous if a; < r for all i}
with smoothness r, where a = (ay,...,a4) € Ny, |a| = a3 + -+ + ag, and D*f =

olelf
axi‘l-naxjd ’

Clearly,
If —U flloe < c1om,” for f e FF,

where c¢; o depends on the upper bound of the second derivative of f. For d > 1, the
error of the sparse grid piecewise linear interpolation is given as [?]

If — A% flloo < cqaN 2 (log N)*Y (5.5)
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for f € F?, where N is the number of interpolating points and ¢ depends on d and
the upper bound of the second derivative of f.

We remark that the sparse grid interpolant based on polynomial interpolation is
also known, and its error is

If = A% flloo < carN 7" (log N)THDE

for f € I, where ¢4, depends on d, r, and the upper bound of the r-th derivative of
f, which is superior to (65) when the smoothness 7 of f is larger than 2. However, it
requires the evaluation of Lagrange polynomials, which is computationally expensive,
and causes the Runge phenomenon, which prevents us from using the Newton-Cotes
grid. Hence, we use the sparse grid piecewise linear interpolation because of its ease
of implementation and its low computational complexity.

5.4.2 Sparse Grid Quadrature

Analogously, we can construct the sparse grid quadrature from univariate quadrature
formulae. The main difference is that each aj- is a real number instead of a basis
function, and (%), is a sequence of quadratures for the function f : D — R
satisfying

lim (/) ~ 1f] =0,

where [ f is the integral of f on D C R with a weight w:
If = / f(z)w(z)d.
D

5.4.2.1 Sparse Grid Gauss-Hermite Quadrature

The Gauss-Hermite quadrature based on Hermite polynomials computes If over
D = R with w(z) = e™*". According to Theorem 2 in [65] and Theorem 3.9 in [30],
the error of this quadrature, U9, is

[If—Ulf| < cl,rm;T/z

for f € /Fvlr. Here, ¢, depends on r and the upper bound of the r-th derivative of
f, and

= {f:R?— R|D*f is continuous and ||[(D*f)Wyl|« < 00 if a; < r for all i},
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where Wy(z) = Hle V1 +a?exp(—%4%). For d > 1, using the discussion in |2, 57],
we obtain

IIf — A% f] < cq, N7 (log N)GHDE=D

for f € ET, where ¢4, depends on d, r and the upper bound of the r-th derivative

of f.

5.5 Error Analysis

Our numerical solutions are computed as discussed in Section 3.1. Recall that we
use the sparse grid piecewise linear interpolation A%"™ on E; with parameter ¢; at
each time t. We then choose the sparse grid quadrature A%¢ with parameter qq
depending on the noise process of the BSAE at hand.

5.5.1 The Gaussian Case

Assuming (&)L, are Gaussian distributed, we choose the sparse grid Gauss-Hermite
quadrature formula.

Assumption 5.5.1. h, ®!(;-,¢t,-), and f(t,,-) have bounded derivatives up to
order r with respect to all variables.

Theorem 5.5.1. Let (z})Y, be interpolating points of A%" fort € T and let (77k>kN§1
be quadrature points of A%, Under Assumption 3, we obtain

max Vi) — 37t<37f)|

0<t<T,i=1,...,N

T
< Crnd { max [(Nt)—Q(log Nt)3(”—1)] + (NQ)_g(log NQ)(Q+1)(d—1)} Z i
u=1

1<t<T

where L is the Lipschitz coefficient for ®=1(-;+,t,-) and ¢, 4 depends on r,n, and d.
For Z, and M, similarly,

o 2l = el S ennalNo) T (log No) G,
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Table 5.1: Relative errors (RE) and computational times (CT) in seconds for our
experiment.

| | =4 | 4@ =5 |
RE | CT[s] RE CT[s]
¢ =5 1.00| 0.0 1.50 0.2

=61 100| 0.5 3.80 x 107! 2.0
g =71100| 85 9.24 x 1072 | 108.2
¢ =8| 1.00| 123.5 | 2.31 x 1072 | 1538.7
g =91 1.00 | 1341.9 || 5.77 x 1073 | 16678.3

where || - || denotes the Euclidean norm, and

|Mt<x§_17 IE;, 7714:) - Mt(xg_17 .CU;-, T/k)|

T
< Crn,d {lrgtf?% [(Nt)72(10g Nt)S(nil)] + (NQ)ig(lOg NQ)(ngl)(dl)} Z LY

u=1

+ cra(No)™~# (log Ng) 11,

5.6 Numerical Results

Let &1, ..., &r be independent random variables where & ~ N (04, 1;), and let (X;)er
be defined as X; 1 = X; + &1 with Xy = 2o € R% That is, we take a d-dimensional
random walk as our Markov process. For the driver g and the terminal condition h,
we consider

g(x) = g(az), h(z) = h(b"z),

where § and h are functions defined on R, and a and b are d-dimensional real valued
vectors. We test our algorithm on the following form of BSAEs:

YT = ]’L(XT), —A}/t = g(Xt_1> + Z;ft + AMt

The solution Yy(xo) has the closed form

Yo(zo) = g(a™zo) + iE[g(a*xo +Vja*SaZ)] + Elh(a*ze + VTSbZ)],  (5.6)

Jj=1
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where Z ~ N(0,1). We then compare the true solution calculated by (58) and our
numerical solution. We use the sparse grid Gauss-Hermite quadrature .4%¢ with
the parameter gg > d. Also, we set ¢t = ¢ = --- = ¢r for simplicity. We take
d=4,T =5, jlz) = h(z) = 2%, a = b = (1,...,1)*, and 2y = 04 All of our
experiments were performed on a 3.70 GHz, 64-GB RAM Linux workstation. Our
code was written entirely in python, using numpy and scipy. The results are shown in
Table 1. Taking sufficiently large go and ¢ (e.g. (g, q:) = (5,9)) produces a highly
accurate solution. On the other hand, we observe that increasing ¢; does not improve
the performance for qg = 4. That means that our algorithm had already achieved
the best performance under our inaccurate quadrature. Also, when ¢; equals 5,
increasing qq worsens the overall performance because of the accumulation of errors
that come from inaccurate interpolations. These observations suggest that increasing
both parameters simultaneously is required for efficiently obtaining highly accurate
solutions.



Chapter 6

Conclusion

Throughout this thesis, numerical methods for BSDEs with discrete features were
explored.

Chapters @ and B were concerned with multi-stage Euler-Maruyama methods
for solving Markov BSDEs driven by CTMCs; the case where the terminal time is
deterministic was considered in Chapter B, and the case where the terminal time is
a bounded stopping time was considered in Chapter B. A key observation is that
the methods are equivalent to exponential integrators, which are known to work
well for solving stiff systems of ODEs. There, we further proposed to apply the
methods to solving BSDEs driven by Brownian motion. Employing a suitable spatial
discretization for such BSDEs typically leads to “stiff” BSDEs driven by CTMCs, and
we can effectively solve them using the Euler-Maruyama methods.

Chapter B developed the spatial discretization that had been considered in the
previous chapters. Classical schemes of discretizing high-dimensional BSDEs result
in BSDEs driven by CTMCs whose state space is too large to calculate numerically.
Focusing on such computational issues, we proposed a multilevel spatial discretiza-
tion method for BSDEs driven by Brownian motion. Employing the idea of sparse
grids, it approximates the solution with a superposition of the solutions of BSDEs
driven by CTMCs on grids with different resolutions. This construction reduces
computational costs drastically and overcomes the curse-of-dimensionality.

In Chapter B, we employed the sparse grid methods for solving Markov BSAESs,
discrete-time counterparts of BSDEs. The nestings of conditional expectations that
appeared in the solution of BSAEs at each time are approximated with the sparse
grid interpolants, and the conditional expectations are evaluated using the sparse
grid quadratures. The presented method calculates the solutions of high-dimensional
BSAEs with less computational cost while keeping accuracy.
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Future Work

Various directions of further research from this work can be considered.

e In Chapter B, we pointed out that it is not very effective to employ the Monte-
Carlo approach naively. However, in [1], the author presented a Monte-Carlo
approach to evaluate an action of a matrix exponential on a vector and observed
that it achieves higher performance than the Krylov subspace approach for
large scale problems. It might be possible to develop the technique to explore
efficient Monte-Carlo-based methods for solving BSDEs driven by CTMCs.

e We proposed to spatially discretize BSDEs driven by Brownian motion and ap-
ply the multi-stage Euler-Maruyama methods to the obtained BSDEs driven
by CTMCs. For this approach, we can consider various extensions and gen-
eralizations such as (1) employing different discretization schemes (e.g. finite
element methods or finite volume methods) or (2) considering the case where
the driving process of BSDEs is not only a diffusion process (e.g. Lévy pro-
cesses).

e The multilevel spatial discretization method, developed in Chapter B, might
be further extended. For example, the sparse grid technique, on which the
method is based, overcomes the curse of dimensionality to some extent, but
not completely. To treat problems with higher dimensions than ten-dimension,
dimension reduction techniques such as principal component analysis [64] need
to be introduced additionally.

e For Chapter B, the following directions of further research remains: (i) Ex-
tending our results to other cases, for example, where the noise process is not
necessarily independent. (ii) Conducting further numerical experiments for the
equations that appeared in specific problems, such as those involving dynamic
risk measurement and stochastic control problems. (iii) Performing investiga-
tions on some computational aspects, such as tuning parameters and selecting
the underlying quadrature and interpolation rules.
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