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Abbreviations

ADME, absorption, distribution, metabolism, and excretion;

AUC-ROC, area under the curve of the true-positive rate or recall;

CatBoost, categorical boosting;

CLix, hepatic intrinsic clearance in liver microsome;

DNN, deep neural network;

DT, decision tree;

Extra Trees, extremely randomized trees;

F., fraction absorbed;

fup, fraction unbound in plasma;

GB, gradient boosting;

ISO, International Standard Organization;

KNN, k-nearest neighbors;

LBDD, Ligand-based drug design;

LDA, linear discriminant analysis;

LightGBM, light gradient boosting machine;

LR, logistic regression;

nCV, Nested cross-validation;



REF, random forest;

PC1, Principal component 1;

SCCS, Scientific Committee on Consumer Safety:

SHAP, Shapley Additive exPlanations;

SMILES, simplified molecular-input line-entry system;

Si0,-NPs, Amorphous silica nanoparticles;

SVM, support vector machine;

URAT1, urate transporter 1;

XGBoost, extreme gradient boosting;

3D, Three-dimensional;

3MRs, 3-membered rings;



Introduction

In drug discovery, conventional toxicological and biological methods, including both in vivo and in

vitro approaches, are commonly used to evaluate the toxicity and activity of emerging nanoparticles

or chemicals. However, relying solely on these techniques is considered less humane, efficient, and

economical. Consequently, there is a growing demand for more timely risk assessment, cost-effective

evaluation, and methods that minimize reliance on animal testing in both the pharmaceutical industry

and health regulatory policies. In this context, in silico toxicity and activity predictions offer an

alternative approach, providing cost-effective and efficient methods to rapidly assess whether specific

nanoparticles or chemical compounds have the potential to pose adverse effects on human health or

exhibit therapeutic utility. In particular, nanoparticles, those with a diameter of 100 nm or less, utilized

in fields such as medicine and cosmetics, must undergo rigorous safety evaluations before they can be

used for clinical translation. It has been noted that nanoparticles have the potential to penetrate cells

and tissues through inhalation or skin contact. However, their complex behavior in biological

environment has made it difficult to predict their potential toxicity.

This study explores the applications of machine learning and literature data mining in drug discovery.

Machine learning, a subset of artificial intelligence, empowers computers to autonomously learn from



data to make predictions. Literature data mining involves extracting implicit valuable information

from a comprehensive dataset gathered from diverse individual studies, with a focus on addressing

specific research questions where quantitative analysis of independently conducted experiments is

predominant. Chapter 1 focuses on predicting cellular toxicity of amorphous silica nanoparticles,

while Chapter 2 delves into predicting the activity of small molecules targeting urate transporter 1.



Main Paper

Chapter 1: Evidence-Based Prediction of Cellular Toxicity for Amorphous Silica

Nanoparticles

Background

Decades of extensive research in nanotoxicology have yielded a wealth of data, prompting a shift

towards literature data mining or meta-analysis to unveil hidden relationships within individual

studies.'™ Unlike traditional approaches, which analyze nanoparticle toxicity using limited datasets

based on specific attributes like particle size and concentration,”!! or omics-based biomarkers,'? or

predict other outcomes,'*!* literature data mining integrates information from a global pool of

evidence, enhancing generalizability across diverse experimental settings. This approach to

developing data-driven models is particularly valuable for environmental and health-risk analyses.!

Previous literature data mining efforts have explored cellular toxicity for various nanoparticles

such as cadmium-containing quantum dots,'? carbon nanotubes,’ graphene,* micro and nanoplastics,’

nanoparticles,® phytosynthesized silvers,” and zinc oxides.® These studies formulated models based on

experimental settings and physicochemical properties, employing cross-validation or split-sample

internal validation. However, potential errors or biases in the collected literature data can compromise
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the reliability of these validations. Therefore, external validation, involving independently derived
datasets, is crucial for ensuring the applicability of predictive models.'"7

When nanoparticles come into contact with proteins, such as those in serum, they form a layer of
biomolecules called the corona on their surface. Thus, nanoparticle interactions with biological
systems involve nanoparticle-corona complexes rather than pristine nanoparticles.'® However, existing
literature data mining reports'® lack external validation or an assessment of the toxicological effects
of preformed coronas in biological environments, limiting their real-world applicability. A cost-
effective and rapid method is needed to develop a reliable prediction model for nanotoxicity.

19-22

Amorphous silica nanoparticles (SiO,-NPs), extensively used in various industries, including

rubber, paints, cosmetics, biomedicine, and food additives, are regarded as a safety issue by the
Scientific Committee on Consumer Safety (SCCS)? despite their large-scale production.?**® Hence,
ensuring their safety is of utmost importance. /n vitro cytotoxicity testing is an effective assessment
of Si0,-NP safety,””*® with smaller nanoparticles tend to induce greater toxicities.?’ Attributes like
concentration, duration of exposure, surface chemistry, and synthetic pedigrees have the potential to
influence the toxicity of SiO,-NPs.?*2® Despite numerous in vitro toxicological investigations, the key

attributes contributing to the toxicity of SiO»-NPs on a global scale still lack clarity.?*

This study addresses the key attributes contributing to SiO»-NP toxicity by proposing an evidence-
6



based prediction method. Leveraging literature-mined SiO»-NP cellular toxicity data, the method

utilizes literature data mining, machine learning, and Shapley Additive exPlanations (SHAP) values

within a framework of nested cross-validation (nCV)*!' and internal and external validations. The

resulting interpretable prediction model demonstrates satisfactory predictions and explanations for

independent external toxicity data, proving the method's validity and reliability.

Methods

Figure 1.1 depicts the conceptual framework for an evidence-based approach to predict the toxicity of

engineered nanoparticles, employing SiO,-NPs as the experimental model and cytotoxicity as the

measure of toxicity. The input attributes, encompassing SiO,-NP physicochemical properties,

experimental conditions, and cell types, along with binary output responses indicating cytotoxic or

noncytotoxic outcomes, were initially gathered manually from the literature and organized in a tabular

format. To establish a streamlined and cost-effective screening model for biocompatibility risk

assessment, the cytotoxic responses were standardized using the International Standard Organization's

(ISO) definition of cytotoxicity (ISO 10993-5), specifically classifying cytotoxicity (a positive label)

as a reduction of more than 30% in cell viability.?”-*® All attributes were employed in the initial training

of predictive model, utilizing various machine-learning algorithms to generate output responses based
7



on input attributes. Subsequent utilization of SHAP values facilitated the identification of key

attributes influencing SiO>-NP toxicity. To validate the model's robustness and applicability, three

essential validation steps were undertaken: nested cross-validation (nCV), internal validation, and

external validation. In contrast to potentially optimistic estimates from non-nested cross-validation,

nCV mitigates data leakage by incorporating an inner-loop CV within an outer CV. This dual CV

structure is employed for both model selection, involving hyperparameter tuning through grid search

in the inner loop, and model evaluation in the outer loop.’!

- sica  @_@ silica Unbound Respanse
Si0,-NP | manoparticles <~. \ nanoparticles  Protéin Exposure
physicochemical " 24
properties b : \ "‘ -
+ s, "ae - \‘ LN . —
Experimental i Predilution . Toxicity
settings s %
H e . -
.............................................. \T Si0NP N
Cell types . Protein Z':,Z':'" Protein corona Serum
Literature Data Mining Below 70% Attributes
9 >100 Publications celf Vlablllty 4 Continuous
Ra00 W | Independent  pata Extraction (ISO 10993-5) _ Feature +
g | sl | ] and Standardization { Engineering {35 Categorlcal
E oo | : b N VT NONCYIOIOXIC! e - B
[ o h.. sl |. I||Im Ji. |IO|I é“i e Dummy features
Publlcatlon |d - ~
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generallzablllty Internal Validation Interpretable prediction )

Figure 1.1. Framework of an evidence-based prediction method. I vitro cellular toxicity data were
collected from published literature and standardized. Nested cross-validation, internal validation, and
external validation were used to prove generalizability. Reprinted with permission from [4CS Nano

2023, 17, 11, 9987-9999]. Copyright [2023] American Chemical Society.




Literature data mining

Two comprehensive reviews on the toxicity of SiO2-NPs served as the basis for the literature data

1.26 I ’25

evaluation in this study. These reviews, conducted by Napierska et al.”® and Murugadoss et a
covered studies published up to 2010 and 2016, respectively. The selection of literature adhered to the
PICOS framework®? of evidence-based medicine, ensuring consistency and reliability across the
chosen studies. The criteria for inclusion were: (1) a population involving human or mammalian cells;
(2) the intervention and comparison focusing on amorphous non-mesoporous SiO»-NPs vs. a negative
control, with specified concentration, exposure time, and primary size <1000 nm; (3) the outcome
centered on cytotoxicity (percentage of cell viability); and (4) the study design being an in vitro
toxicological study. Exclusion criteria encompassed non-mammalian or co-cultured cells, crystalline
or mesoporous SiO»-NPs, abstract articles, and other non-relevant studies. Sixty-one studies meeting
the inclusion criteria were identified from the two reviews, and their reference lists were reviewed for
additional relevant literature, yielding 54 more eligible studies. In total, 115 studies were incorporated.

Systematic extraction of SiO2-NP attributes and cell-viability data resulted in a main dataset
comprising 4124 samples and 36 attributes. Mean cell viability values, obtained from text or graphs

using WebPlotDigitizer,** were converted to binary labels: "1" (<70% cell viability, cytotoxic) and "0"

(>70% cell viability, noncytotoxic). The administered concentration of SiO; (in pg/mL for cell
9



exposure) was utilized as the concentration attribute. Surface area (m?g) was calculated unless

explicitly reported, with the formula: surface area = 6 / dr, where d is primary size in mm and r is

density in g/cc. Due to missing data, categorical attributes with ranges were used for hydrodynamic

size, zeta potential, and polydispersity index (PDI) attributes. Dummy features (binary vectors) were

created for categorical attributes, with one dummy feature was omitted to avoid a dummy-variable

trap (Supporting Information Tables S1). An attribute refers to a quantity that describes an instance in

the dataset. Attributes have different types of domains, categorical (qualitative) and continuous

(quantitative). Continuous attributes form a subset of real numbers (i.e., rational and irrational

numbers), where there exists a discernible distinction among possible values. A feature is a specific

value of an attribute, for example Assay viability is an attribute; “Assay viability MTT” is a feature

of the Assay viability attribute. Feature scaling was applied using z-score normalization for linear and

nonlinear-kernel classifiers and Min-Max normalization for deep neural network (DNN) classifier.

Machine learning

Thirteen established machine-learning algorithms were utilized (1) linear discriminant analysis

(LDA), (2) logistic regression (LR), (3) ridge, (4) DNN, (5) k-nearest neighbors (KNN), (6) support

vector machine (SVM), (7) decision tree (DT), (8) categorical boosting (CatBoost), (9) extremely

randomized trees (extra trees), (10) gradient boosting (GB), (11) light gradient boosting machine
10



(LightGBM), (12) random forest (RF), and (13) extreme gradient boosting (XGBoost), categorized as
linear (1-3), nonlinear (4), nonlinear kernels (5-6), and nonlinear tree-based classifiers (7-13). The
scikit-learn (v1.0.2), tensorflow (v2.10.0), CatBoost (v1.0.4), LightGBM (v3.3.2), and XGBoost
(v1.5.1) packages in Python 3.10 were employed for implementation.

The main dataset, containing 4124 samples, underwent shuffling and was split into training (80%)
and internal test (20%) sets via random stratified sampling. Predictive models with binary
classification were initially developed using 80% of the main dataset with all attributes, employing
the 13 machine-learning algorithms. Ten-fold nCV was applied, and the models with a removed
dummy feature were fine-tuned using GridSearchCV to obtain optimal hyperparameters (Supporting
Information Tables S2—S3). Internal validation was conducted with the remaining 20% of the main
dataset, independent of model building, and SHAP values were used to identify key attributes. Final

predictive models were constructed using the entire main dataset and the identified key attributes

TP+ TN

The evaluation metrics were based on accuracy (1 — —————
TP + FP+ TN+FN

), AUC-ROC (area under the

. P . FP .
curve of the true-positive rate or recall [—=——] vs. false-positive rate [————]), recall, and precision
TP + FN FP+TN

TP .. . ..
(TP " FP), where TP, TN, FP, and FN represent true positive, true negative, false positive, and false

negative, respectively.
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External validation

The final predictive models were employed to predict the independent datasets (905 samples)

gathered from external studies published between 2017 and 2022*%% and in-house experiments. For

instance, Gong et al. (2017)** investigated HaCaT cells exposed to 15-nm SiO,-NPs (nine samples),

while Liu et al. (2017)* studied A549 cells exposed to 15-nm SiO,-NPs over 24 h (eight samples).

Additionally, Nishijima et al. (2017)*® examined the impact of 10—-1000-nm SiO,-NPs on THP-1 cells

over 6-24 h (105 samples), and Premshekharan et al. (2017)*” exposed THP-1 cells to 50-nm SiO,-

NPs for 22 h (four samples). Other studies (877 samples)**® explored diverse SiO»-NP sizes and

exposure times on various cell lines, such as K17, HDF, LN229, N9, bEnd.3, HT-22, HEK293,

hippocampal, HepG2, A549, SW480, HUVEC, GC-2spd, HeLLa, BEAS-2B, Caco-2, H9¢2, SH-SY5Y,

NRK, BV2, L-02, and R28, among others.

Independent in-house experiments were conducted with 10-, 30-, 50-, 70-, 100-, 300-, and 1000-nm

SiO»-NPs (136 samples) sourced from Micromod Partikeltechnologie. The zeta potentials and

hydrodynamic sizes of the SiO,-NPs were measured using a Zetasizer Nano-ZS (Malvern Instruments

Ltd.). The zeta potentials of the 10-, 50-, and 100-nm SiO,-NPs were —15.6, —17.3, and —22.3 mV,

respectively; their hydrodynamic sizes in water were 18.3, 48.4, and 99.8 nm, respectively. The zeta

potentials and hydrodynamic sizes of 30-, 70-, 300-, and 1000-nm SiO>-NPs were previously
12



reported.>*®® Exposure cell experiments were performed on A549, SH-SY5Y, TM4, BeWo, and RAW
264.7 cell lines, as detailed in Supporting Information Table S4. This comprehensive approach aimed
to validate the robustness of the final predictive models across a spectrum of SiO»-NP characteristics
and experimental conditions.

Shapley Additive exPlanations (SHAP)

Attribute importance was established through global feature importance, as defined by the SHAP

values:3%¢!

i = |T1|!ngF\{i}|5|! (F| = IS| = D! [fsu (tsugy) — fs(xs)] . where  F,S,xs, fouy,  and
fs represent the set of all features, a subset of F, the values of the input features in the set S, a trained
model with that feature present, and a trained model with that feature withheld, respectively. The
SHAP value ¢; of the feature i was obtained by averaging the marginal contributions of all the
permutations of a feature set. A greater mean absolute SHAP value signified a more influential feature
in prediction. In this study, features displaying positive SHAP values directed the model output toward
cytotoxicity, while those with negative values had the opposite effect, providing a rationale for

decision-making in the predictive process.

13



Results

Literature data curation

We gathered cell viability data for 4124 samples, encompassing 32 categorical and 4 continuous

attributes that characterize SiO-NP cellular toxicity. The data were sourced from 115 articles spanning

the years 2004 to 2016, as depicted in Figure 1.2. Utilizing the ISO-10993-5 definition, 35% of the

samples exhibited cytotoxic effects, while 65% were noncytotoxic. The attributes collected are

detailed in Table 1.1, and their distribution is illustrated in Supporting Information Figure S1. Notably,

our dataset, comprising 4124 samples and 36 attributes, surpassed the datasets of cadmium-containing

quantum dots (3,028 samples, 24 attributes)!? and nanoparticles (2,986 samples, 15 attributes)® by

36% and 38%, respectively. Moreover, our dataset exhibited a 50% and 140% greater diversity in

attributes compared to the datasets of cadmium-containing quantum dots and nanoparticles,

respectively.

14
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Figure 1.2. Data preparation: 80% of the main dataset containing all the attributes was trained and

cross-validated using 10-fold nCV to develop the predictive model. The remaining 20% was used to

internally validate the predictive model and identify the key attributes. Finally, 100% of the main

dataset was used to build the final predictive model employing the identified key attributes to predict
the independent dataset. Reprinted with permission from [ACS Nano 2023, 17, 11, 9987-9999].

Copyright [2023] American Chemical Society.

Table 1.1. Attributes of silica nanoparticles

No.

Attributes

Definition

Si0,-NP Physicochemical Properties

1

Primary_size

Primary_size verification

Surface_area

Hydrodynamic_size water

Hydrodynamic_size culture

The average size of SiO; in the dry state measured by transmission electron microscopy
(TEM), scanning electron microscope (SEM), or particle sizer.

The primary size of SiO; verified by the individual study, verified elsewhere (cited in
previous publication), or not verified (directly used from manufacturer’s specifications).

The total area of SiO: surface measured by Brunauer—Emmett-Teller (BET) method or
calculated by 6/ dr where d is primary size in mm, r is density in g/cc.

The average hydrodynamic size of SiO2 measured by dynamic light scattering in water.

The average hydrodynamic size of SiO2 measured by dynamic light scattering in culture

medium.

15



Table 1.1. Continued

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Hydrodynamic_size serum

Zeta_potential water

Zeta_potential PBS/HBSS

Zeta_potential culture

Zeta_potential serum

PDI_water

PDI_culture

Surface_modification
Surface_charge water
Surface_charge culture

Si0-NP_synthesis

Si0.-NP_source
SiO.-NP_shape

Si0,-NP_label

The average hydrodynamic size of SiO2 measured by dynamic light scattering in medium
containing serum.

The electrical potential of SiO2 at the slipping plane or interface between SiO2 surface and
its water.

The electrical potential of SiO2 at the slipping plane or interface between SiO2 surface and
its phosphate buffered saline (PBS) or Hank’s balanced salt solution (HBSS).

The electrical potential of SiO2 at the slipping plane or interface between SiO2 surface and
its culture medium.

The electrical potential of SiO2 at the slipping plane or interface between SiO2 surface and
its medium containing serum.

Polydispersity index (PDI), a measure of broadness of SiO2 weight distribution in water.

Polydispersity index (PDI), a measure of broadness of SiO2 weight distribution in culture
medium.

The SiO: surface modifier, e.g., chitosan, carboxyl, and amine.

The electrical charge of SiOa present at an interface in water.

The electrical charge of SiOa present at an interface in culture medium.

The SiO: synthetic pedigrees produced at high (e.g., pyrolytic) or low (colloidal)
temperature.

The source of SiO: obtained from in-house or commercial.

The shape of SiO», either sphere or rod.

The label of SiOz including fluorescein-5-isothiocyanate (FITC), rhodamine, and iodine-

125.

Experimental Settings

20.

21.

22.

23.

24.

Concentration

Exposure_time

Si02-NP_medium_serum

Assay viability

Viability indicator

A measured quantity of SiO2in pg/mL for exposure to cells.

The exposure duration of SiO: to cells.

The SiO. medium containing different serum concentrations (e.g., serum-free, 10% fetal
bovine serum [FBS], and bovine serum albumin [BSA]) for dilution or storage (prior
exposure to cells).

An assay for measuring the cell viability, such as 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyl-2H-tetrazolium bromide or MTT.

Cell viability indicator, e.g., tetrazolium, lactate dehydrogenase (LDH), and adenosine

triphosphate (ATP).

16



Table 1.1. Continued

25.  Viability_mechanism Cell viability testing methods including structural cell damage, cell growth, and cellular
metabolism.

26.  Interference_testing The interference of SiO. with cell viability assay systems, either performed or not
performed by the individual study.

27.  Positive_control The use of positive control inducer, either included or not included by the individual study.

28.  Positive control inducer A replicate containing all components of a test system and treated with a chemical/particle
known to induce a positive response.

29.  Exposure_medium The culture medium used during SiO2 exposure to cells.

Cell Types

30.  Cell organ Refers to organ or tissue from which cells originated.

31. Cell id Identifies a specific cell, e.g., A549, RAW 264.7, and HeLa.

32.  Cell_morphology Refers to morphology of cells, mostly based on american type culture collection (ATCC),
e.g., epithelial, endothelial, and fibroblast.

33.  Cell_culture The culture of cells, either primary cells (isolated from parental tissue) or cell lines
(originated from primary cells).

34.  Cell_source The source of cells including human, mouse, rat, pig, and hamster.

35.  Cell _age The age of cells including embryonic and nonembryonic.

36.  Cell_disease The disease stage of cells, either carcinoma or non-carcinoma.

Footnotes: Reprinted with permission from [4CS Nano 2023, 17, 11, 9987-9999]. Copyright [2023]

American Chemical Society.

Nested cross-validation (nCV) and internal validation

We conducted nCV on 80% of the main dataset to obtain an initial unbiased assessment of predictive

model accuracy, as depicted in Figure 1.2. Our analysis revealed that tree-based classifiers

demonstrated a strong fit to the data, outperforming linear, DNN, and nonlinear kernel classifiers.

Among these, CatBoost emerged as the top algorithm, achieving the highest nCV accuracy of

91.0£1.5%, as detailed in Table 1.2.

17



Primary evaluation metrics of the internal test set are accuracy and AUC-ROC (Table 1.2). Tree-

based classifiers demonstrated satisfactory accuracies ranging from 85.6% to 90.4% and excellent

AUC-ROCs between 94.1% and 96.3% (except for DT, with 86.0%). Linear, DNN, and nonlinear

kernel classifiers exhibited accuracies of 75.2% to 84.6% and AUC-ROCs of 82% to 89.8%. CatBoost

consistently outperformed other algorithms, achieving an accuracy of 90.4%, an AUC-ROC of 96.3%,

recall of 85.6%, and precision of 87.1%.

Table 1.2. Prediction-error comparisons: Internal validation (All 36 attributes and 824 samples)

Machine Learning nCVio-fold Accuracy AUC-ROC Recall Precision
Linear

LDA 74.5+2.5% 75.2% 82.6% 56.2% 68.0%
LR 82.3+1.9% 83.4% 89.8% 73.3% 78.4%
Ridge 75.4+2.3% 75.3% 82% 52.7% 70.0%
Nonlinear

DNN 75.2+1.7% 75.7% 82.7% 61.8% 67.1%
Kernel

KNN 85.3+1.8% 84.6% 82.5% 75.3% 80.0%
SVM 84.3+1.8% 83.0% 87% 70.5% 79.2%
Tree-based

DT 87.3+1.8% 85.6% 86.0% 81.5% 78.5%
Extra Trees 86.9+1.8% 85.6% 94.1% 76.7% 81.5%
RF 88.1+1.9% 87.4% 94.5% 79.5% 84.1%
CatBoost 91.0+1.5% 90.4% 96.3% 85.6% 87.1%
GB 90.3+2.0% 89.1% 95.3% 83.6% 85.3%
LightGBM 90.0+1.6% 90.1% 95.8% 84.9% 86.7%
XGBoost 90.2+1.7% 89.9% 95.8% 84.9% 86.4%

Footnotes: LDA, linear discriminant analysis; LR, logistic regression; DNN, deep neural network;
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KNN, k-nearest neighbors; SVM, support vector machine; DT, decision tree; Extra Trees, extremely
randomized trees; RF, random forest; CatBoost, categorical boosting; GB, gradient boosting;
LightGBM, light gradient boosting machine; XGBoost, extreme gradient boosting. Reprinted with
permission from [ACS Nano 2023, 17, 11, 9987-9999]. Copyright [2023] American Chemical Society.

We utilized attribute importance for feature selection via SHAP values with CatBoost. Based on the

attribute importance (Figure 1.3A), we identified the top 13 attributes that resulted to optimal

predictive accuracy (Figure 1.3B), arranging them in order of importance: concentration, SiO:-

NP_medium_serum, cell morphology, cell organ, primary size, cell id, exposure_time,

surface_modification, hydrodynamic_size_water, cell source, assay viability, surface area, and

viability_indicator (refer to Table 1.1 and Supporting Information Figure S1).
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Figure 1.3. Attribute importance for silica nanoparticles, based on CatBoost. (A) Global
interpretability for the average absolute SHAP value magnitudes. (B) Predictive accuracy of internal
validation with incrementally increasing attributes. (C) Local interpretability, with each dot
corresponding to a sample of silica nanoparticle cellular toxicity obtained from 100% of the main
dataset. (D) The prediction probability of CatBoost to output a noncytotoxic class at a given condition
of concentration attribute alone, using 100% of the main dataset. Reprinted with permission from [ACS

Nano 2023, 17, 11, 9987-9999]. Copyright [2023] American Chemical Society.

Subsequently, we reconstructed the predictive models using 80% of the main dataset and the

identified key attributes and assessed their performance using the internal test set (Table 1.3). Instead

of employing all attributes (as shown in Table 1.2), comparable performance was achieved using solely
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the 13 key attributes, with CatBoost exhibiting the best performance (accuracy: 90.7%, AUC-ROC:

95.9%, recall: 85.6%, precision: 87.7%, and nCV: 90.3+£1.9%). Other tree-based classifiers, including

RF, GB, LightGBM, and XGBoost, also demonstrated high scores (accuracy >88%, AUC-ROC >94%,

recall >81%, precision >85%, and nCV >88%).

Table 1.3. Prediction-error comparisons: Internal validation (13 key attributes and 824 samples)

Machine Learning nCVio-fold Accuracy AUC-ROC Recall Precision
Linear

LDA 74.1+2.2% 73.9% 80.4% 48.6% 68.6%
LR 74.7+2.1% 73.3% 80.2% 45.5% 68.6%
Ridge 74.4+2.1% 73.9% 80% 46.9% 69.5%
Nonlinear

DNN 74.2+2.9% 76.3% 83.7% 67.3% 66.4%
Kernel

KNN 85.1+1.9% 85.2% 82.8% 74.7% 82.0%
SVM 85.2+1.9% 85.2% 89% 73.3% 82.9%
Tree-based

DT 86.3+1.5% 87.3% 86.2% 81.2% 82.6%
Extra Trees 86.5+2.0% 86.1% 94.1% 77.1% 82.4%
RF 88.1+2.0% 88.8% 94.9% 81.2% 86.5%
CatBoost 90.3+1.9% 90.7% 95.9% 85.6% 87.7%
GB 89.4+2.0% 89.0% 95.1% 83.2% 85.3%
LightGBM 88.5+1.6% 89.1% 95.1% 82.9% 85.8%
XGBoost 89.4+1.5% 89.7% 95.4% 83.9% 86.6%

Footnotes: LDA, linear discriminant analysis; LR, logistic regression; DNN, deep neural network;

KNN, k-nearest neighbors; SVM, support vector machine; DT, decision tree; Extra Trees, extremely

randomized trees; RF, random forest; CatBoost, categorical boosting; GB, gradient boosting;

LightGBM, light gradient boosting machine; XGBoost, extreme gradient boosting. Reprinted with

permission from [ACS Nano 2023, 17, 11, 9987-9999]. Copyright [2023] American Chemical Society.
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Finally, we constructed the final predictive models using the 13 key attributes from 100% of the

main dataset (4124 samples) and obtained a robust nCV accuracy (Table 1.4). Next, we examined how

the SHAP values were distributed for the 13 key attributes across the various samples. In accordance

with the SHAP local explanation summary (Figure 1.3C), a larger SiO,-NP primary size, the presence

of 10% fetal bovine serum (FBS) in the SiO2-NP medium (prior exposure to cells), surface-modified

Si02-NPs, and cells with epithelial morphologies were associated with reduced cytotoxic effects. In

contrast, a higher concentration of SiO,-NPs, an extended exposure time and surface area, a

hydrodynamic size less than 26 nm in water, the absence of serum in the SiO>-NP medium, and the

presence of mouse cells, macrophage cells, blood cells, and a tetrazolium viability indicator with an

MTT assay (Supporting Information Figure S2) were linked to increased cytotoxicity. MTT assay is

highlighted as it exhibits the highest ranking in terms of the Assay viability attribute, as indicated in

Supporting Information Figure S2, offering a detailed overview of the local explanation not replicated

by other viability assays. While concentration emerged as a leading attribute determining SiO2-NP

toxicity, Si02-NPs with concentrations >5 pg/mL alone did not ensure accurate prediction, as depicted

in Figure 1.3D. Remarkably, 97.7% of SiO2-NPs with concentrations <5 pg/mL were linked to

noncytotoxicity. Clear thresholds were not observed for other continuous attributes (see Supporting

Information Figure S3). Furthermore, a singular decision tree with an nCV accuracy of 73.4+1.9%
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was identified (refer to Supporting Information Figure S4) for simplified guidance on SiO>-NP toxicity.

Nevertheless, for optimal predictive efficacy, we advise utilizing all 13 key attributes when employing

our model via Google Colab (https://github.com/martinj-phs/nanosilica).

External validation

We created an independent dataset comprising 905 samples, distinct from the main dataset, adding

complexity, value, and real-world relevance to the task of predicting and explaining SiO2-NP toxicity.

External validation results (Table 1.4) revealed that CatBoost exhibited satisfactory generality and

yielded the highest performance (accuracy: 88.1%, AUC-ROC: 92.0%, recall: 72.4%, and precision:

78.0%), followed by GB, RF, and XGBoost (accuracies >84% and AUC-ROCs >88%). Notably, RF

displayed the lowest recall (48.4%) among tree-ensemble classifiers, making it unsuitable for

identifying all positive samples, unlike boosting algorithms (CatBoost, GB, XGBoost, and

LightGBM) with recall rates exceeding 61%. Linear, DNN, nonlinear kernel, and DT classifiers

struggled to fit the independent dataset, achieving accuracies between 64.4% and 75.9%. SVM solely

predicted the majority noncytotoxic class, exhibiting the poorest AUC-ROC (46%) and recall (3.1%),

indicating frequent misclassification and failure to identify positive samples.

To assess the impact of serum in predicting SiO»-NP toxicity, we reconstructed predictive models

using 12 key attributes, excluding the SiO>-NP_medium_serum attribute. Overall, the results indicated
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significantly reduced performance (CatBoost: accuracy, 80.7%; AUC-ROC, 84.4%; recall, 53.3%;

precision, 63.2%; and nCV, 88.7+£1.3%), emphasizing the critical role of nanoparticle-corona

formation in biologically diverse environments containing varying serum concentrations for highly

accurate predictions (Supporting Information Table S5). Additionally, Supporting Information Figure

S5 demonstrated lower model performance when all 36 attributes were used, underscoring the

importance of attribute selection to prevent overfitting in a truly independent test set.

Table 1.4. Prediction-error comparisons: External validation (13 key attributes and 905 samples)

Machine Learning nCVio-fold Accuracy AUC-ROC Recall Precision
Linear

LDA 73.6+2.4% 65.2% 70.2% 64.4% 38.2%
LR 74.4+2.5% 64.4% 64.1% 57.8% 36.4%
Ridge 74.3+1.8% 65.3% 70% 63.6% 38.1%
Nonlinear

DNN 75.3+2.1% 65.5% 68.1% 52.4% 36.3%
Kernel

KNN 86.5+1.4% 74.0% 71.7% 67.1% 48.4%
SVM 86.3+2.1% 75.9% 46% 3.1% 100.0%
Tree-based

DT 87.7£1.6% 67.4% 59.7% 44.0% 36.9%
Extra Trees 87.5+1.8% 82.3% 88.4% 57.8% 66.7%
RF 88.7+1.6% 85.1% 91.4% 48.4% 85.2%
CatBoost 90.5+1.6% 88.1% 92.0% 72.4% 78.0%
GB 89.8+1.4% 87.8% 90.2% 66.2% 81.4%
LightGBM 89.3+1.3% 82.0% 88.1% 67.6% 62.8%
XGBoost 89.6+1.4% 84.5% 88.4% 61.3% 72.3%

Footnotes: LDA, linear discriminant analysis; LR, logistic regression; DNN, deep neural network;
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KNN, k-nearest neighbors; SVM, support vector machine; DT, decision tree; Extra Trees, extremely
randomized trees; RF, random forest; CatBoost, categorical boosting; GB, gradient boosting;
LightGBM, light gradient boosting machine; XGBoost, extreme gradient boosting. Reprinted with
permission from [ACS Nano 2023, 17, 11, 9987-9999]. Copyright [2023] American Chemical Society.

Complex Relationships of SiO,-NP Attributes with Cellular Toxicity

CatBoost was chosen to represent the prediction outcomes for external validation. We employed

hierarchical clustering to group the independent datasets based on their similarity in explanation

(SHAP values), visualizing heterogeneity (Figure 1.4A). Prediction errors for 905 samples (55 sets of

experiments) are presented in Supporting Information Figures S6-S7, with two representative sets

detailed in Figures 4B and 4C. Decision plots for correctly classified and misclassified samples can

be found in Supporting Information Figure S8. To ensure real-world applicability, we employed SHAP

values to quantitatively elucidate the CatBoost process generating the output cellular toxicity response

from input key attributes. Figures 1.4D—G and Supporting Information Rationality depict the rational

decision-making and complex attribute relationships governing potential SiO.-NP hazards and their

impact on cellular machinery.
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Figure 1.4. Prediction errors generated by the CatBoost model upon external validation. (A) SHAP

heatmap plot. Samples with similar SHAP-value-based explanations were grouped together via

hierarchical clustering. Increasing and decreasing cytotoxicity by attribute value are indicated in red

and blue, respectively. The force plot at the top corresponds to the ratios of attribute values with a

negative magnitude (blue) to those with a positive magnitude (red); f(x) = 0 corresponds to the

predicted cytotoxicity. Samples predicted to be cytotoxic and noncytotoxic are shown in the red and

green regions, respectively. (B and C) Prediction errors of each sample from two of the 55 sets of

experiments. Red and green markers indicate cytotoxicity and noncytotoxicity, respectively. Correctly
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classified samples have either a green or red marker, whereas misclassified samples have markers that
are a combination of both colors. (D and E) Two examples of correctly classified samples. The positive
values of f(x) = 2.812 and f(x) = 1.44 correspond to the cytotoxic class and were generated from the
sum of the base value (—1.764) and the additive contributions of each attribute value (3.21 + 1.47 +
... —0.27 in f(x) = 2.812 and 1.33 — 0.71 + .... + 0.14 in f(x) = 1.44). They explain which attribute
value corresponded to the predicted cytotoxicity values of 2.812 and 1.44 from the base value; for
example, in f(x) = 2.812, concentration: 500 ug/mL increased the base value by 3.21, whereas SiO:-
NP_medium_serum: 10% FBS decreased it by 0.81. The base value was the average cytotoxicity
value of the entire main dataset. (F and G) Two examples of misclassified samples. The positive and
negative values of f(x) = 0.251 and f(x) =—1.838 correspond to the cytotoxic and noncytotoxic class,
respectively. Reprinted with permission from [ACS Nano 2023, 17, 11, 9987-9999]. Copyright [2023]

American Chemical Society.

Discussion

Differentiating between cytotoxic and noncytotoxic nanoparticles is crucial for nanosafety. The

CatBoost model, derived from a comprehensive literature data mining effort covering 115 publications,

unveiled key SiO>-NP attributes essential for predicting toxicity. These attributes, including

concentration, SiO>-NP_medium_serum, cell morphology, cell organ, primary size, cell id,

exposure_time, surface_modification, hydrodynamic_size_water, cell source, assay viability,

surface_area, and viability _indicator, formed the basis of an evidence-based prediction model for

Si02-NP toxicity. The dataset, comprising 36 diverse attributes and 4124 samples, along with an

independent dataset of 905 samples, constituted the largest and most comprehensive set to date.

While previous literature data mining efforts'® failed to recognize the rapid formation of protein
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coronas around nanoparticles in biological fluids,** our study emphasized the importance of

considering the biological medium attribute, particularly the SiO,-NP_medium_serum attribute, for

accurate nanotoxicity predictions. The absence of this attribute led to a significant drop in predictive

performance. Our findings challenge existing nanotoxicity models and underscore the necessity of

accounting for preformed coronas in biological environments for successful predictive modeling.

Cellular uptake of SiO>-NPs triggers underlying mechanisms related to concentration, time, size,

surface, cell, and serum attributes.****¢7 A higher concentration of SiO,-NPs results in a proportional

increase in the amount adsorbed by cells and higher internalization efficiency.® SiO,-NP

concentrations below 5 pg/mL are linked to noncytotoxicity, possibly due to the negligible uptake by

cells at these low levels.%5 At these levels, SiO,-NP may not interact extensively with the cellular

components, and their impact on cell viability is minimal, highlighting the importance of concentration

levels in determining the potential harm of SiO,-NPs. Extended exposure time enhances the efficiency

of SiO»-NP internalization into cells.** The surface area plays a crucial role, as increasing the size of

Si02-NPs up to 50 nm reduces the total surface area, thereby preventing internalization. Moreover,

SiO,-NPs with a hydrodynamic size less than 26 nm in water demonstrate better internalization

efficiency.* The absence of serum in the SiO>-NP medium strengthens the adhesion of SiO>-NPs to

cell membranes, increasing internalization.®*®® The presence of various cells, particularly
28



nonphagocytic cells, exhibits lower efficiency in endocytosis compared to phagocytic

monocytes/macrophages, possibly due to their larger size, leading to exclusion from developing

pinocytic vesicles.*” The choice of a viability indicator introduces the possibility of SiO,-NPs

interacting with the assay, contributing to the overall understanding of SiO>-NP toxicity.

The role of the serum attribute in predicting SiO,-NP toxicity is evident; preformed coronas in the

presence of serum has the potential to alleviate SiO,-NP toxicity. Corona formation alters cell receptor

recognition of SiO.-NPs and, by reducing SiO,-NP surface energy, hinders efficient interaction of

surface silanols [=Si—OH and =Si(OH),] with biomembranes, thereby lowering SiO,-NP uptake

efficiency.®*® However, the absence of serum can lead to more cytotoxic effects, as surface silanols

of Si0,-NPs can directly engage with and disturb cellular membranes through hydrogen bonding and

electrostatic interactions. The scientific reason behind the reduction in surface energy of nanoparticles

when surrounded by a biomolecular corona lies in the interactions between the nanoparticles and

biomolecules. The biomolecular corona formed around nanoparticles reduces surface energy by

providing steric stabilization, shielding from direct exposure, facilitating biological recognition, and

passivating the surface.'® Notably, a specific surface-silanol pattern known as "nearly free silanol"

facilitates membranolysis by interacting with phosphatidylcholine, supporting the idea that surface

modification can reduce SiO»-NP toxicity, irrespective of silica crystallinity.®
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Evidence indicates that nanoparticles produced at high temperatures (pyrolytic) might be more

toxic.2* Nanoparticles treated at high temperatures exhibit strained 3-membered rings (3MRs) on their

surface. The strained nature of 3MRs makes them prone to homolytic cleavage, generating hydroxyl

radicals upon water adsorption. This structural feature enhances hydrolysis compared to unstrained

siloxane bonds, resulting in the formation of nonhydrogen-bonded hydroxyl groups when exposed to

water vapor.®” However, the SiO,-NP_synthesis attribute did not emerge as a key attribute. This may

be attributed to the fact that only a single study directly compared pyrolytic and colloidal SiO>-NPs

with varying synthetic pedigrees under identical conditions.” This underscores the necessity for more

in-depth investigations into the impact of synthetic pedigrees on SiO,-NP toxicity, taking into account

variations in size, surface, cell, assay, and biological media.

External validation is essential for implementing highly accurate generalizations in real-world

scenarios.'>”!” The CatBoost model consistently exhibited satisfactory performance for both internal

validation (accuracy: 90.7%, AUC-ROC: 95.9%, recall: 85.6%, and precision: 87.7%; nCV:

90.3+1.9%) and external validation (accuracy: 88.1%, AUC-ROC: 92.0%, recall: 72.4%, and

precision: 78.0%; nCV: 90.5+1.6%). Thus, CatBoost emerged as a more promising algorithm for

nanotoxicity generalizability compared to the previously used RF or DT.!*"® The unexpected poor

performance of DT and kernel classifiers in external validation despite favorable internal validation
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results underscores the pivotal role of thorough external validation.

CatBoost's outperformance over RF can be attributed to its sequential learning strategy, where

multiple trees are trained one stage at a time, correcting errors from previous fits. This sequential

approach allows CatBoost to effectively capture complex patterns in the data, enhancing its ability to

correct errors and improving overall predictive accuracy. In contrast, RF constructs trees independently,

potentially missing intricate relationships in the data. The diversity among trees in RF may yield

conservative decision boundaries, prioritizing overall accuracy, but potentially resulting in lower recall.

CatBoost's built-in support for categorical features eliminates the need for manual encoding, offering

a notable advantage in nanoparticle datasets with categorical variables. Additionally, CatBoost

incorporates regularization techniques to prevent overfitting, enabling robust generalization to unseen

data. CatBoost also handles missing data naturally, a valuable feature in real-world datasets where

missing values are common. In summary, the sequential learning process, categorical features handling,

regularization, and handling in missing data in CatBoost provide advantages over RF.

Despite the comprehensive nature of our study, some limitations should be acknowledged. The

current predictive model does not provide quantitative values for the extent of SiO,-NP surface energy

reduction associated with changes in concentration, serum, exposure time, and size, nor does it

quantify the resulting impact on toxicity. This aspect presents a potential avenue for future research,
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and efforts can be directed toward developing models that quantitatively assess the relationship

between these variables and the reduction in surface energy, along with its implications for toxicity

outcomes. The choice of attributes, such as using administered concentration instead of cellular dose

or number of particles, reflects data availability constraints. Future research may benefit from

incorporating these parameters if obtainable. Additionally, a more exhaustive characterization of SiO»-

NP physicochemical properties is warranted. Furthermore, the development of tools capable of

automatically extracting nanoparticle data in a high-throughput manner would be extremely

advantageous in the future.

In vitro findings presented in this study may not directly extrapolate to in vivo outcomes,

emphasizing the challenge of establishing in vitro-in vivo correlation. To enhance the predictive power

of models, future studies should consider using specific types of nanoparticles and avoid making

exaggerated claims about nanotoxicity predictions without adequate external validation.

The evidence-based method offers a promising framework for nanotoxicological research,

incorporating global evidence to develop reliable predictive models. A frequently employed ratio to

evaluate the models in real world-practice is 80:20, signifying that 80% of the data is allocated for

training (4124-sample of main dataset), while the remaining 20% (905-sample of independent dataset)

is designated for testing. The SiO,-NP case study illustrates the applicability of the method, providing
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insights into key attributes influencing SiO,-NP toxicity. The CatBoost”'

model, employed as an
effective tool for nanotoxicity prediction, demonstrates quantitative interpretability in generating
cytotoxicity responses from key attributes. External validation proves crucial for ensuring the model's
generalizability. We anticipate that our integrated approach, uniting literature data mining, machine
learning, and SHAP values, can serve as a versatile platform in examining various engineered
nanoparticles for predicting and explaining diverse biological outcomes. This study has the potential

to advance the development of safe nanoparticles for biomaterials and provides reliable guidance for

predictions in nanoinformatics.
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Supporting Information

Final model code, Nanosilica dataset, Supporting information (Tables S1-S5; Fig. S1-S8), and

Supporting information rationality to this chapter 1 can be found online at http://dx.doi.org/

10.1021/acsnano.2¢11968. Reprinted with permission from [ACS Nano 2023, 17, 11, 9987-9999].

Copyright [2023] American Chemical Society.
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Figure S1. Silica nanoparticles with 32 categorical (heatmap visualization) and 4 continuous

(distribution plot visualization) attributes. The distribution of attributes can be read as follows, for
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example in SiO,-NP_synthesis attribute, silica nanoparticles were synthesized at low temperatures
(e.g., sol-gel) for 65% of 4124 samples and at high temperatures (e.g., flame pyrolysis) for 11% of
samples, while the remaining 24% did not report the synthesis method. The median of primary size,
exposure time, concentration, and surface area were 25 nm, 24 hour, 75 pg/mL, and 109 m%/g,

respectively. Abbreviations were provided in the dataset (Nanosilica Dataset File).

36



Concentration

Primary_size
SiO,;NP_medium_serum: 10% FBS
Exposure_time
SiO2NP_medium_serum: serum free
Cell_organ: blood
Surface_modification: unmodified
Surface_area

Cell_morphology: macrophage
Hydrodynamic_size_water: <26 nm
Cell_morphology: epithelial
Cell_source: mouse
Hydrodynamic_size_water_nm_26-50
Viability_indicator_tetrazolium
Cell_morphology_fibroblast
Cell_id_NIH/3T3
Assay_viability MTT
Hydrodynamic_size_water_nm_151-200
Assay_viability_LDH
Cell_morphology_monocyte
Viability_indicator_LDH
Cell_id_HepG2
Surface_modification_chitosan
Cell_organ_colon
Cell_organ_kidney
Viability_indicator_resazurin
Si0,NP_medium_serum_20%_FBS
Surface_modification_carboxy!
Cell_id_Human_monocytes
Cell_id_L-02
Hydrodynamic_size_water_nm_201-300
Cell_id_HT-29

Cell_organ_lung

Cell_organ_gastric
Cell_morphology_endothelial
Cell_id_A549

Assay_viability MTS
Cell_source_human

Assay_viability WST-1
Cell_organ_cell_hybrid
Cell_id_MH-S

Assay_viability CCK-8/WST-8
Viability_indicator_live_dead_cell
Viability_indicator_dead_cell
Viability_indicator_luminescence
Cell_organ_ascites

Cell_id_Calu-3
SiO,;NP_medium_serum_0.1%_FBS
Assay_viability_Annexin_V_Propidium_iodide
Hydrodynamic_size_water_nm_101-150
SiO2NP_medium_serum_0.5%_FBS
Hydrodynamic_size_water_nm_51-75
Cell_id_EAHY926
Cell_morphology_keratinocyte
Assay_viability_HitKit_HCS
Cell_morphology_lymphocyte
Hydrodynamic_size_water_nm_76-100
Assay_viability_CytoTox-Glo
Cell_id_HaCaT
Cell_id_Human_macrophages
Cell_id_MKN-28
Assay_viability_CellTiter-Glo
Cell_id_RAW_264.7
Cell_morphology_monocyte_macrophage
Cell_organ_umbilical_cord
SiO,NP_medium_serum_BSA
Cell_id_Hela
SiO,NP_medium_serum_1%_FBS
Si0,NP_medium_serum_2%_FBS
Cell_id_U937

Cell_id_HUVEC
Cell_id_Human_lymphocytes
Cell_id_MeT-5A

Cell_source_pig

Cell_id_hT
Cell_organ_microvascular
SiO,NP_medium_serum_40%_FBS
Surface_modification_alumina
Assay_viability NRU
Cell_id_HEK293

Cell_id_TM3
Viability_indicator_neutral_red_dye
Cell_organ_brain

Cell_id_3T3-L1
Viability_indicator ATP

Local Explanation Summary

4

L

1lislagvrsstrd
T

! II_L_L"_LI
LI L R R B
I

+ IILLL'
T FTT ™™

L1

Ly

Laat
ilfT7

1
T

aad

+

a4
++r

Cell_organ_embryo
Assay_viability_trypan_blue
Surface_modification_L-arginine-R
Cell_organ_liver

Cell_id_H441
Surface_modification_amine
Cell_morphology_neuronal
Cell_organ_bone-marrow
Assay_viability_calcein
Cell_id_wI-38
Hydrodynamic_size_water_nm_301-400
Assay_viability_alamar_blue
Cell_id_Caco_2
Assay_viability_propidium_iodide
Cell_organ_skin
Surface_modification_citrate
Cell_source_rat
Assay_viability_CellTiter-Blue
Cell_id J774

Cell_id_Neuro-2a
Hydrodynamic_size_water_nm_greater_500
Cell id_BALB/3T3

Cell_id_PC12

Cell_organ_cervix
Cell_id_SK-N-SH
Assay_viability_vialight
Viability_indicator_cell_mass
Cell_id_LLC-PK1

Cell_id_TM4
Hydrodynamic_size_water_nm_greater_1000
Hydrodynamic_size_water_nm_401-500
Cell id_ISO-HAS-1
SiO;NP_medium_serum_5%_FBS
Assay_viability_XTT
Cell_id_SH-SY5Y

Cell_id_HK-2
Cell_morphology_myoblast
Cell_id_HEL-30

Cell_organ_testis

Cell_id_H9c2

Cell_id_U373MG

Cell_id_THP-1
Cell_morphology_dendritic
Celi_id_PBMC
Assay_viability_methylene_blue
Cell_id_GC-2spd
Cell_organ_adrenal_gland
Cell_id_DC2.4

Cell_id_HFL-1

Cell_id_GES-1

Cell_id_hMDM

Cell_id_BEAS-2B
Cell_morphology_stem_cell
Cell_id_L5178Y/Tk+/_-3.7.2C
Cell_id_V79

Cell_id_KUP5
Assay_viability_Annexin_V
Cell_id_Mono_Mac_6
Assay_viability_Relative_total_growth
Cell_id_3T3
Assay_viability_Annexin_V_7-AAD
Cell id_BRL
Cell_id_tissue_macrophage
Cell_id_D3

Cell_id_BMDM
Surface_modification_dansylamide
Cell_id_A431

Cell_id_SW480
Assay_viability_sulforhodamine_b
Cell_id_CNE-2Z
Cell_id_CCD-966sk

Cell_id_GT1-7

Cell id_16HBE

Cell_id_H1650
Surface_modification_digestive_enzymes
Cell_id_ws1

Cell_id_HDMEC
Surface_modification_SO3H
Cell_id_HEp-2

Cell_id_MRC-5
Cell_id_primary_microglia
Cell_id_Peritoneal_macrophages
Cell_id_alveolar_macrophage
Assay_viability_crystal_violet

-5 0 5
SHAP value (impact on model output)

Local Explanation Summary

+

High

trr=

Feature value

Low

=5
SHAP value (impact on model output)

Figure S2. Complete Local Interpretability by CatBoost Model (Main Dataset: 4124 samples). For

categorical attributes, red indicates the presence of attribute value, whereas blue indicates the absence
of attribute value. For example, red of Cell id NIH/3T3 means that the presence of NIH/3T3 cells

drives the output of the model towards cytotoxicity, whereas blue drives the output towards

noncytotoxicity.
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Figure S3. Prediction Probability of Noncytotoxity by CatBoost Model (Main Dataset: 4124 samples).
The prediction probability of CatBoost to output noncytotoxic class at a given condition of one

attribute only: (A,B) Primary size, (C) Surface area, and (D) Exposure time.
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Figure S4. Decision Tree (Main Dataset: 4124 samples). (A) The nested cross-validation (10-fold) accuracy of decision tree vs. the depth of decision tree

(max_depth). (B) A single decision tree with max_depth of 4 (nested cross-validation accuracy: 73.4+1.9%; accuracy of 64.6% [ﬁ]
1324

213+1324) of silica nanoparticles with concentrations <43.5 pg/mL was associated

will be obtained

by a model that always generates a noncytotoxic class). Notably, 86.1% (

with noncytotoxicity.
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Figure S6. Prediction Errors of CatBoost Model for Eight Sets of In-house Experiments (136 Samples).
Green and red markers indicate noncytotoxicity and cytotoxicity, respectively. Correctly classified
samples have either a green or red marker, whereas misclassified samples have markers that are a

combination of both colors.
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Figure S7. Prediction Errors of CatBoost Model for 47 Sets of Experiments (769 Samples). Green and
red markers indicate noncytotoxicity and cytotoxicity, respectively. Correctly classified samples have
either a green or red marker, whereas misclassified samples have markers that are a combination of

both colors.
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Figure S8. Decision Plots of Independent Dataset by CatBoost Model (905 samples). (A) Decision
plot of predicted SiO»>-NP toxicity. Solid and dashed lines indicate correctly classified and
misclassified samples, respectively. Separate decision plots of (B) correctly classified and (C)

misclassified samples.
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Table S1. List of Removed Dummy Features

No Attributes Removed Dummy Features

1 'Primary_size verification', '"Primary_size verification_not verified',

2 'Hydrodynamic_size_water nm’, 'Hydrodynamic_size_water nm_not_determined',
3 'Hydrodynamic_size_culture_ nm’, 'Hydrodynamic_size_culture nm_not_determined',
4 'Hydrodynamic_size_serum_nm, 'Hydrodynamic_size_serum_nm_not_determined',
5 'PDI_water, 'PDI_water_not_determined',

6 'PDI_culture, 'PDI_culture_not_determined',

7 'Exposure_medium’, 'Exposure_medium_M199',

8 'Positive_control’, 'Positive_control_not_included',

9 'Positive_control_inducer', 'Positive_control_inducer not_available',

10 'Interference_testing ', 'Interference_testing_not performed',

11 'SiO$_{2}$NP_medium_serum’, 'SiO$_{2}$NP_medium_serum_15%_FBS',

12 'Zeta_potential water mV', 'Zeta_potential water mV_not_determined',

13 'Zeta_potential PBS/HBSS mV', 'Zeta_potential PBS/HBSS mV_not_determined',
14 'Zeta_potential culture mV ', 'Zeta potential culture mV_not determined',

15 'Zeta_potential serum _mV, 'Zeta_potential serum_mV_not_determined',

16 'Surface_charge water, 'Surface_charge water_positive',

17 'Surface_charge_culture, 'Surface_charge culture not_determined',

18 'Surface_modification, 'Surface_modification CHO',

19 'SiO$_{2}$NP_label, 'SiO$_{2}$NP_label none',

20 'SiO$_{2}$NP_source, 'SiO$_{2}$NP_source_in_house',

21 'SiO$_{2}$NP_synthesis, 'SiO$_{2}$NP_synthesis_not_available',

22 'SiO$_{2}$NP_shape, 'SiO$_{2}$NP_shape_rod',

23 'Cell_source, 'Cell_source_hamster',

24 'Cell_age, 'Cell_age_embryonic',

25 'Cell_id', 'Cell_id MPMC/3t3',

26 'Cell_disease, 'Cell_disease_carcinoma',

27 'Cell_culture, 'Cell_culture_primary',

28 'Cell_organ, 'Cell_organ_heart',

29 'Cell_morphology, 'Cell_morphology microglia’,

30 'Assay_viability, 'Assay_viability Sytox_Red',

31 'Viability mechanism, 'Viability_mechanism_Cell growth',

32 'Viability_indicator' 'Viability_indicator_live cell'
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Table S2. Hyperparameter Settings for 12 Machine Learning Algorithms for Internal Validation (80%

Main Dataset)

Machine Learning

Hyperparameters (tested range)

Optimal Hyperparameters

Linear 36 Attributes 13 Key Attributes
LDA solver € [‘svd’, ‘Isqr’, ‘eigen’] solver = ‘Isqr’ solver = ‘Isqr’
LR C€e[107%,10% 107, ..., 10% 10°] c=10° C=10"
Ridge alpha € [107, 10, 107, ..., 10%, 10°] alpha = 10? alpha = 10?
Nonlinear
Kernel
KNN n_neighbors € [1, 3, 5, ..., 97, 99] n_neighbors = 1 n_neighbors = 1
SVM C €[1.0, 10% 10%, ..., 10°, 10", C=10% gamma=1 C=10% gamma=1
gamma € [1.0, 107, 102, ..., 10?, 107']
Tree-based
DT criterion € [‘gini’,’entropy’], splitter € ['best’, criterion = entropy, splitter  criterion = gini, splitter =

'random'], max_depth € [20, 25, ..., 40, 45, 50],

min_samples_split € [2, 3, 4]

=random, max_depth = 35,

min_samples_split =2

random, max_depth =25,

min_samples_split =2

Extra Trees

n_estimators € [100, 200, 300, ..., 1400, 1500]

n_estimators = 800

n_estimators = 300

RF n_estimators € [100, 200, 300, ..., 1400, 1500]  n_estimators = 300 n_estimators = 500

CatBoost learning_rate € [0.03, 0.04, 0.05, ..., 0.09, 0.1], learning rate = 0.07 learning_rate = 0.08
max_depth € [3,4,5,...,9, 10] max_depth=9 max_depth=7

GB learning_rate € [0.03, 0.04, 0.05, ..., 0.09, 0.1], learning rate = 0.09, learning_rate = 0.1,
max_depth € [3,4,5, ..., 9, 10] max_depth=7 max_depth=9

LightGBM learning_rate € [0.03, 0.04, 0.05, ..., 0.09, 0.1], learning rate = 0.09, learning_rate = 0.1,
max_depth € [3,4,5,...,9, 10] max_depth = 10 max_depth =8

XGBoost learning_rate € [0.03, 0.04, 0.05, ..., 0.09, 0.1], learning rate = 0.09, learning_rate = 0.1,

max_depth € [3,4,5,...,9, 10]

max_depth = 10

max_depth =9

Footnotes: 10-fold nested cross validation with a fixed random state of 2022 was used in grid-search

for inner evaluations (other hyperparameters were set to default values, feature scaling was applied

for the linear and kernel classifiers). LDA, linear discriminant analysis; LR, logistic regression; DNN,

deep neural network; KNN, k-nearest neighbors; SVM, support vector machine; DT, decision tree;

Extra Trees, extremely randomized trees; RF, random forest; CatBoost, categorical boosting; GB,

gradient boosting; LightGBM, light gradient boosting machine; XGBoost, extreme gradient boosting.
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Table S3. Hyperparameter Settings for 12 Machine Learning Algorithms for External Validation
(100% Main Dataset)

Machine Learning

Hyperparameters (tested range)

Optimal Hyperparameters

12 Key Attributes
Linear 13 Key Attributes
(dropped serum)
LDA solver € [‘svd’, ‘Isqr’, ‘eigen’] solver = ‘Isqr’ solver = ‘Isqr’
LR C€[107%,10% 107, ..., 10% 10°] c=10* c=10°
Ridge alpha € [107, 10, 107, ..., 10%, 10°] alpha = 100 alpha = 0.1
Nonlinear
Kernel
KNN n_neighbors € [1, 3, 5, ..., 97, 99] n_neighbors = 1 n_neighbors = 1
SVM C €[1.0, 10% 10%, ..., 10%, 10", C =108 gamma = 0.1 C=10", gamma =1
gamma € [1.0, 107, 102, ..., 10?, 107'9]
Tree-based
DT criterion € [‘gini’,’entropy’], splitter € ['best', criterion = gini, splitter = criterion = entropy, splitter

'random'], max_depth € [20, 25, ..., 40, 45, 50],

random, max_depth = 30,

=random, max_depth = 50,

min_samples_split € [2, 3, 4] min_samples_split =2 min_samples_split =3

Extra Trees n_estimators € [100, 200, 300, ..., 1400, 1500]  n_estimators = 200 n_estimators = 700

RF n_estimators € [100, 200, 300, ..., 1400, 1500]  n_estimators = 1500 n_estimators = 900

CatBoost learning_rate € [0.03, 0.04, 0.05, ..., 0.09,0.1], learning rate = 0.05 learning_rate = 0.04

max_depth € [3,4,5, ..., 9, 10] max_depth=7 max_depth=7

GB learning_rate € [0.03, 0.04, 0.05, ..., 0.09, 0.1], learning rate = 0.09, learning_rate = 0.08

max_depth € [3,4,5,...,9, 10] max_depth =8 max_depth =8

LightGBM learning_rate € [0.03, 0.04, 0.05, ..., 0.09, 0.1], learning rate = 0.09, learning_rate = 0.1
max_depth € [3,4,5, ..., 9, 10] max_depth =9 max_depth =10
XGBoost learning_rate € [0.03, 0.04, 0.05, ..., 0.09, 0.1], learning rate = 0.09, learning_rate = 0.1

max_depth € [3,4,5, ..., 9, 10] max_depth =10 max_depth =9

Footnotes: 10-fold nested cross validation with a fixed random state of 2022 was used in grid-search
for inner evaluations (other hyperparameters were set to default values, feature scaling was applied
for the linear and kernel classifiers). LDA, linear discriminant analysis; LR, logistic regression; DNN,
deep neural network; KNN, k-nearest neighbors; SVM, support vector machine; DT, decision tree;
Extra Trees, extremely randomized trees; RF, random forest; CatBoost, categorical boosting; GB,

gradient boosting; LightGBM, light gradient boosting machine; XGBoost, extreme gradient boosting.
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Table S4. Cell Viability Assay

A549 cell lines

Our in-house experiments used SiO>-NPs with primary sizes of 10, 50, and 100 nm on human lung
epithelial A549 cells for 24, 48, 72, and 96 h, with a total of 87 samples. A549 cells were obtained
from American Type Culture Collection (ATCC; Manassas, VA, USA) and cultured in Dulbecco’s
modified Eagle’s medium (DMEM, high glucose [4.5 g/L]) supplemented with 10% inactivated
fetal bovine serum (FBS) and a 1% antibiotic cocktail at 37 °C in 5% CO,. A549 cells were seeded
in 96-well plates (10,000 cells/100 pnL) and incubated overnight in culture media. Next, they were
exposed to SiO»-NPs for 24-96 h. Various concentrations of SiO»-NPs (5-500 pg/mL) were
prepared via dilution with 10% FBS-DMEM. Cell viability was evaluated using the WST-8 assay.

SH-SYS5Y cell lines

Our in-house experiments also examined the effects of SiO,-NPs with primary sizes of 10, 50, 70,
100, 300, and 1000 nm on the human-derived neuroblastoma cell line SH-SY5Y (29 samples). SH-
SYS5Y cells were acquired from ATCC and cultured in DMEM/Ham’s F-12 supplemented with 10%
inactivated FBS and a 1% antibiotic cocktail at 37 °C in 5% CO». SH-SYSY cells were seeded in
96-well plates (20,000 cells/100 pL) and incubated overnight in culture media. They were then
exposed to Si0»-NPs for 72 h. SiO,-NPs were diluted to various concentrations (3.125-100 pg/mL)
in culture media containing serum. Again, WST-8 assay was used to examined cell viability.

TM4 cell lines

In in-house experiments, we employed SiO,-NPs with primary sizes of 30 nm on mouse testis
epithelial TM4 cells (eight samples). TM4 cells were obtained from ATCC and cultured in DMEM
supplemented with 10% inactivated FBS and a 1% antibiotic cocktail at 37 °C in 5% CO,. TM4
cells were seeded in 96-well plates (10,000 cells/50 pL) and incubated overnight in culture media
before exposure to SiO»-NPs for 24 h. SiO,-NPs were prepared in various concentrations (0.0128—
100 pg/mL) via dilution with culture media containing serum. Cell viability was also examined
using the WST-8 assay.

BeWo cell lines

Our in-house experiments subjected human choriocarcinoma cell line BeWo (six samples) to SiO2-
NPs with primary sizes of 10 nm. BeWo cells were acquired from the Japanese Collection of
Research Bioresources Cell Bank (JCRB9111; Osaka, Japan) and cultured in Ham’s F-12 medium
supplemented with 10% inactivated FBS and a 1% antibiotic cocktail at 37 °C in 5% CO,. BeWo
cells were seeded in 96-well plates (1,000 cells/200 pL) and incubated overnight in culture media.
Then, they were exposed to SiO>-NPs for 48 h. Various concentrations of SiO»-NPs (3.125-400
pg/mL) were prepared via dilution with culture media containing serum. Cell viability was
measured with the colorimetric dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
(MTT, Tokyo Chemical Industry, Tokyo, Japan) in accordance with the manufacturer’s instructions.

RAW 264.7 cell lines

In these in-house experiments, we used SiO»-NPs with primary sizes of 70, 300, and 1000 nm on
mouse macrophage RAW 264.7 cells (six samples). RAW 264.7 cells were obtained from ATCC
and cultured in DMEM supplemented with 10% inactivated FBS and a 1% antibiotic cocktail at
37 °C in 5% CO,. RAW 264.7 cells (1,500 cells) were seeded and then incubated overnight in
culture media before being exposed to SiO2-NPs for 120 h. SiO»-NPs were diluted to 10 and 30
ug/mL in culture media containing serum. Cell viability was again evaluated using the WST-8 assay.
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Table S5. Prediction-Error Comparisons: External Validation (12 Key Attributes and 905 Samples)

Machine Learning nCVio-fold Accuracy AUC-ROC Recall Precision
Linear

LDA 71.6+1.6% 56.9% 62.4% 50.2% 28.9%
LR 73.1£1.9% 55.5% 62.1% 55.6% 29.2%
Ridge 72.9+1.7% 58.1% 65% 60.4% 31.9%
Nonlinear

DNN 73.3£2.2% 63.9% 63.5% 52.8% 35.1%
Kernel

KNN 84.1+1.0% 68.1% 64.8% 58.2% 40.2%
SVM 84.7£1.9% 76.1% 50% 4.0% 100.0%
Tree-based

DT 84.7+0.8% 72.6% 63.0% 46.7% 45.1%
Extra Trees 85.3+1.2% 79.4% 81.0% 44.0% 62.3%
RF 86.5+1.3% 79.6% 83.3% 43.1% 63.0%
CatBoost 88.7£1.3% 80.7% 84.4% 53.3% 63.2%
GB 88.1+1.6% 81.3% 86.1% 62.2% 62.5%
LightGBM 87.2+1.6% 78.7% 83.0% 56.4% 57.2%
XGBoost 87.1£1.3% 79.9% 84.1% 54.7% 60.6%

Footnotes: The predictive models with 12 key attributes were built by dropping the SiO:-
NP_medium_serum attribute. LDA, linear discriminant analysis; LR, logistic regression; DNN, deep
neural network; KNN, k-nearest neighbors; SVM, support vector machine; DT, decision tree; Extra
Trees, extremely randomized trees; RF, random forest; CatBoost, categorical boosting; GB, gradient
boosting; LightGBM, light gradient boosting machine; XGBoost, extreme gradient boosting.
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Chapter 2: Computational drug design guided by machine learning for urate

transporter 1 (URAT1)

Background

In renal tubules, urate transporter 1 (URAT1) facilitates the reabsorption of over 90% of uric acid
through an ion-exchange mechanism. Given its significant role, URAT1 emerges as a promising target
for the development of innovative anti-hyperuricemic drugs. Currently, five major uricosuric drugs—
probenecid, sulfinpyrazone, benzbromarone, lesinurad, and dotinurad—have entered the market, and
verinurad, a lesinurad analogue, is undergoing phase II clinical studies. However, the clinical use of
existing URAT1 inhibitors is constrained by severe adverse effects, notably liver and kidney toxicity,
necessitating the development of safer and more potent URAT1 inhibitors.”* "

Computer-aided drug design can boost drug development efficiency and involves two primary
methods: structure-based drug design and ligand-based drug design (LBDD). In the absence of a high-
resolution three-dimensional (3D) structure of URAT1, LBDD emerges as a promising approach for
drug discovery, relying solely on small molecule information. A crucial consideration for LBDD is the

utilization of available data resources to identify new and innovative leads. While many researchers

commonly employ ChEMBL as a key resource for activity data, it is important to note that ChEMBL
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curates a limited dataset specific to a target protein rather than drawing from global evidence.

In this study, we present an LBDD pipeline aimed at identifying promising potential lead

compounds for URAT1 by uniting literature data mining and machine learning. Due to its training on

the physicochemical properties and fingerprints of compounds, the proposed LBDD pipeline has the

potential to proficiently pinpoint unique compound skeletons with similar traits. The pipeline initiates

with the extraction of URAT1 inhibitors data from a comprehensive dataset sourced from global

evidence (aggregate of scientific and patent publications). Subsequently, a prediction model is

constructed to distinguish between high and low active inhibitors, employing key descriptors and a

counteractivity explanation. The model is then utilized to generate innovative potential lead

compounds from a massive ZINC database, incorporating the model's probability, principal

component, Tanimoto coefficient, and predicted absorption, distribution, metabolism, and excretion

(ADME) parameters by DruMAP’®.

Methods

Literature data mining

Three comprehensive patent reviews on the activity of URAT1 inhibitors served as the basis for the

1.772

literature data evaluation in this study. These reviews, conducted by Pan et al.,”* Dong et al. ,”* and
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Shi et al.™ covered patent literature published up to 2015, 2019, and 2023 respectively. The PubMed

database was also systematically searched for scientific publications using the following search

strategy: (uric acid transporter 1 [tiab] OR uric acid transporter [tiab] OR urate transporter 1 [tiab] OR

urate transporter [tiab] OR URAT1 [tiab] OR hURAT1 [tiab] OR urate reabsorption [tiab] OR potent

uric acid [tiab] OR antihyperuricemic [tiab] OR antihyperuricemia [tiab]) AND (discovery [tiab] OR

design [tiab] OR synthesis [tiab] OR structure—activity relationship [tiab] OR structure—activity

relationships [tiab]OR SAR [tiab] OR derivatives [tiab] OR derivative [tiab] OR ligand [tiab] OR

analog [tiab] OR analogs [tiab] analogue [tiab] OR analogues [tiab] OR ligands [tiab] OR compounds

[tiab] OR compound [tiab] OR scaffolds [tiab] OR scaffold [tiab] OR novel [tiab]). The selection of

literature adhered to the PICOS framework®? of evidence-based medicine, ensuring consistency and

reliability across the chosen studies. The criteria for inclusion were: (1) a population involving

URAT1; (2) the intervention and comparison focusing on test compounds vs. a positive control; (3)

the outcome centered on ICso (half-maximal inhibitory concentration) as the activity metric; and (4)

the study design being an in vitro structure-activity relationship study. Exclusion criteria encompassed

non-isolated compounds (e.g., extracts), abstract articles, and other non-relevant studies. In total, 25

scientific’’~1°! and 75 patent’?>* publications meeting the inclusion criteria were incorporated.

Systematic extraction of structural information with SMILES (simplified molecular-input line-entry
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system) and ICso resulted in a dataset comprising 2717 nonduplicate compounds. De-duplication of

compounds was implemented by excluding the minority class and subsequently computing the mean

of ICso values. For example, if there are seven ICso values, where five belong to high activity and two

to low activity, the mean was calculated using the five ICso values from the high active class. The high

active class has ICso values less than or equal 500 nM, and the low active class has 1Csq value greater

than 500 nM. A threshold of 500 nM was implemented based on ICso values of major uricosuric

inhibitors exhibiting low (lesinurad [ICso = 6.5 pM],** probenecid [ICsp = 15 uM],3* sulfinpyrazone

[1Cso =716 uM]%) and high activity (benzbromarone [ICso = 280 nM],* verinurad [ICso = 170 nM],'*

and dotinurad [ICsp = 360 nM, patent CN112430221B]). The selected threshold aimed to identify

compounds with ICso values similar to highly potent clinical trial compounds (benzbromarone,

verinurad, dotinurad). It also led to a balanced dataset, with the ratio of high and low active URAT1

inhibitors approaching 1:1. Maintaining a balanced dataset is crucial to prevent machine learning

model from exhibiting bias towards a specific class. ICso were converted to binary labels: "1" (<500

nM, high active) and "0" (>500 nM, low active). SMILES was standardized using

ChEMBL _Structure Pipeline'® package.

Feature engineering

Physicochemical descriptors were calculated using Mordred (v1.2.0)!’, RDKit, and MOE
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(Molecular Operating Environment, v2022.02) software. Molecular fingerprints were calculated using
RDK:it to describe MACCS (166 bits) and Morgan fingerprints (2048 bits with radius 2, 2048 bits with
radius 3, 4096 bits with radius 2, and 4096 bits with radius 3). Molecular fingerprints serve as a
technique for portraying a molecule through a series of binary bits, indicating either activation (“1”)
or deactivation (“0”), while still retaining essential information about the molecular composition.
Physicochemical descriptors and molecular fingerprints were combined, yielding a total of 13,959

features.

Initially, feature selection involved eliminating features with Pearson correlation coefficients

exceeding 0.9, resulting in 8,874 features. The Boruta package, acting as a wrapper for a Random

Forest classification algorithm, was utilized to identify relevant features with a threshold set at

99.999999%, resulting in a selection of 186 features.

Machine learning

Nine established machine-learning algorithms were utilized (1) linear discriminant analysis (LDA),

(2) logistic regression (LR), (3) k-nearest neighbors (KNN), (4) decision tree (DT), (5) random forest

(RF), (6) categorical boosting (CatBoost), (7) gradient boosting (GB), (8) light gradient boosting

machine (LightGBM), and (9) extreme gradient boosting (XGBoost), categorized as linear (1-2),

nonlinear kernels (3), and nonlinear tree-based classifiers (4-9). The scikit-learn (v1.0.2), CatBoost

(v1.0.4), LightGBM (v3.3.2), and XGBoost (v1.5.1) packages in Python 3.10 were employed for
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implementation.

The dataset, containing 2717 samples, underwent shuffling and was split into training (80%) and

test (20%) sets via random stratified sampling. Predictive models with binary classification were

initially developed using 80% of the dataset, and the 186 selected features were incrementally added

to those previously selected by the Shapley Additive exPlanation (SHAP)!*

, employing the CatBoost
algorithms. Split-sample validation was conducted with the remaining 20% of the dataset, independent
of model building, and SHAP values were used to identify key features that contributed to optimal
predictive performance. Predictive models were then reconstructed using 80% of the dataset with the
identified key features, using the 9 machine-learning algorithms. Final predictive models were
constructed using the entire dataset and identified key features as a final training set. Ten-fold nested

cross-validation (nCV)!%

was applied, and the models were fine-tuned using GridSearchCV to obtain
optimal hyperparameters. SHAP values of the identified key features were calculated for principal
component analysis. Counteractive explanations, implemented through the use of the exmol'®
package, were employed to address the question of “what is the smallest alteration to the compound
structures that would modify their activity”. Essentially, a counteractive compound closely resembles

the original compound but results in a different activity.

The evaluation metrics were based on AUC-ROC (area under the curve of the true-positive rate or
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P+ TN

recall [TPTP 1), recall, and precision ( ), and accuracy (1 —

] vs. false-positive rate [
+FN F

TP + FP

TP+ TN

m), where TP, TN, FP, and FN represent true positive, true negative, false positive, and

false negative, respectively.

Prioritization of potential lead compounds from ZINC database

ZINC15 database, available at https://zinc15.docking.org/, was obtained, encompassing 4,167,324
purchasable (in-stock) compounds with lead-like and fragment-like properties. Potential hit
compounds were identified by considering (1) the optimal prediction probability from the final
predictive model, (2) principal component 1 (PC1) generated by SHAP vectors of the identified key
features using the final predictive model, and (3) structural similarity between ZINC compounds and

the final training dataset. The maximum common substructure-based Tanimoto coefficient'?’

scores
on RDKit were employed to compute structural similarity, and a golden ratio of Tanimoto scores less
than 0.382 was used to select novel potential hit scaffolds. Potential leads were generated by utilizing

DruMAP to predict ADME of the novel potential hit scaffolds, with hepatic intrinsic clearance in liver

microsome (CLiy), fraction absorbed (F,), and fraction unbound in plasma (f, ) as ADME metrics.
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Results

Literature data curation
We gathered URAT inhibitors data for 2717 compounds, sourcing from 100 publications spanning

the years 2007 to 2023. Utilizing the 500 nM cutoff, 42% of the compounds were high active, while

58% were low active.
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Figure 2.1. Feature importance for URAT1 inhibitors, based on CatBoost. (A) Global interpretability
for the average absolute SHAP value magnitudes. (B) Predictive AUC-ROC of split-sample validation

with incrementally increasing features. SHAP, Shapley Additive exPlanations.

Feature Importance
We utilized feature importance for identifying key feature via SHAP values with CatBoost. Based
on the feature importance (Figure 2.1A), we identified the top 14 features that resulted to optimal

predictive AUC-ROC (Figure 2.1B), arranging them in order of importance: mordred PEOE VSAII,
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Morgan 2 2048 bit1957, MOE PEOE VSA+3, MOE GCUT SMR I, mordred PEOE VSAIO,

mordred_JGI5, MOE h pstates, mordred ATSC6Z,  mordred ATSC8se, mordred Xc-3dv,

mordred_JGI1, mordred ATSC6p, mordred ATSC3Z, and mordred PEOE VSAS. The description of

each feature is shown in Table 2.1.

Table 2.1. Description of features

Descriptor Description

mordred PEOE_VSA11 MOE Charge VSA Descriptor 11 ( 0.15 <=x < 0.20).

Morgan 2 2048 _bit1957

MOE_PEOE_VSA+3 Sum of vi where qi is in the range [0.15,0.20), where v: be the van der Waals surface area (A%) of

atom i (as calculated by a connection table approximation).

MOE_GCUT_SMR 1 The GCUT descriptors using atomic contribution to molar refractivity (using the Wildman and

Crippen SMR method) instead of partial charge.

mordred PEOE_VSA10 MOE Charge VSA Descriptor 10 ( 0.10 <=x <0.15).

mordred_JGIS 5-ordered mean topological charge.

MOE _h_pstates The entropic count or fractional number of protonation states.

mordred ATSC6Z Centered moreau-broto autocorrelation of lag 6 weighted by atomic number.
mordred ATSCS8se Centered moreau-broto autocorrelation of lag 8 weighted by sanderson EN.
mordred_Xc-3dv 3-ordered Chi cluster weighted by valence electrons.

mordred JGI1 1-ordered mean topological charge.

mordred_ ATSC6p Centered moreau-broto autocorrelation of lag 6 weighted by polarizability.
mordred ATSC3Z Centered moreau-broto autocorrelation of lag 3 weighted by atomic number.

mordred PEOE_VSAS8 MOE Charge VSA Descriptor 8 ( 0.00 <=x < 0.05).

Split-sample validation

A primary evaluation metric of the split-sample validation is AUC-ROC (Table 2.2). Tree-based

classifiers demonstrated satisfactory AUC-ROCs ranging from 89.0% to 90.3%, with CatBoost
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exhibiting the best performance (AUC-ROC: 90.3%, precision: 82.1%, recall: 76.3%, and accuracy:

83.1%). Linear, KNN, and DT exhibited AUC-ROCs of 76.9% to 86.0%.

Table 2.2. Prediction-error comparisons: Split-sample validation (14 key features and 20% test set)

Machine Learning AUC-ROC Precision Recall Accuracy
Linear

LDA 78.2% 75.3% 52.2% 72.8%
LR 78.3% 69.9% 53.9% 71.0%
Nonlinear

Kernel

KNN 86.0% 74.9% 73.2% 78.5%
Tree-based

DT 76.9% 70.3% 68.4% 74.6%
RF 89.0% 82.4% 71.9% 81.8%
CatBoost 90.3% 82.1% 76.3% 83.1%
GB 89.0% 79.0% 74.1% 80.9%
LightGBM 90.0% 79.9% 75.0% 81.6%
XGBoost 89.0% 79.6% 73.7% 81.1%

Footnotes: LDA, linear discriminant analysis; LR, logistic regression; KNN, k-nearest neighbors; DT,
decision tree; RF, random forest; CatBoost, categorical boosting; GB, gradient boosting; LightGBM,

light gradient boosting machine; XGBoost, extreme gradient boosting.

Final predictive model

We constructed final predictive models using the 14 key features and entire dataset (2717

compounds) and obtained robust nCV AUC-ROCs (Table 2.3), with CatBoost exhibiting satisfactory

performance (AUC-ROC: 89.3+£1.3%, precision: 79.842.3%, recall: 77.743.8%, and accuracy:

82.4+1.7%).
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Table 2.3. Prediction-error comparisons: 10-fold nCV (14 key features and entire dataset)

Machine Learning AUC-ROC Precision Recall Accuracy
Linear

LDA 77.1+£2.2% 71.143.6% 50.6+2.6% 70.7£1.7%
LR 77.2+1.9% 68.7+4.1% 53.7£2.9% 70.3+2.3%
Nonlinear

Kernel

KNN 86.2+2.6% 73.6+4.1% 76.4+3.9% 78.5+2.7%
Tree-based

DT 78.0+3.3% 70.1+4.6% 68.6+5.1% 74.5+3.1%
RF 89.4+2.2% 79.7+4.3% 76.8+3.3% 82.0+2.7%
CatBoost 89.3+1.3% 79.8+£2.3% 77.7£3.8% 82.4+1.7%
GB 88.4+2.0% 77.8+2.9% 74.9+2.8% 80.4+1.3%
LightGBM 88.5+2.5% 78.0+£5.2% 76.6+4.6% 81.0+2.9%
XGBoost 88.6+2.2% 78.3+4.2% 76.6+3.7% 81.242.5%

Footnotes: LDA, linear discriminant analysis; LR, logistic regression; KNN, k-nearest neighbors; DT,
decision tree; RF, random forest; CatBoost, categorical boosting; GB, gradient boosting; LightGBM,

light gradient boosting machine; XGBoost, extreme gradient boosting.

We analyzed the SHAP-value distribution of the 14 key features across the final training set using

CatBoost. According to the SHAP local explanation summary (Figure 2.2A), a larger value of

MOE PEOE VSA+3, mordred PEOE VSAIO, mordred _JGI5, MOE h_pstates,

mordred PEOE VSAll, and mordred ATSC3Z were associated with reduced activity effects. In

contrast, a higher value of Morgan 2 2048 bit1957, MOE GCUT SMR 1, mordred ATSC6Z,

mordred_ATSCS8se, mordred_Xc-3dv, mordred JGI1, mordred ATSC6p, and mordred PEOE VSAS8

were associated with high activity.
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A visualization plot was generated to compare the CatBoost model's predicted and observed pICso

(negative logarithm of 1Cso) values, revealing a correlation between the model's probability and

precision performance (Figure 2.2B). Specifically, a precision of 95.9% can be attained when the

model's probability output is > 98% (log odds > 3.9). Additionally, an analysis of the SHAP vector of

14 key features showed a correlation between PC1 (23.3% of explained SHAP vector variance) and

precision performance (Figure 2.2C), where a precision of 95.2% is associated with PC1 values < —

2.67.

We then proceeded to provide a quantitative analysis of URAT1 inhibitors, distinguishing between

those with high and low activity, utilizing 14 key descriptor features with verinurad and lesinurad as

representative inhibitors (Figure 2.3). We derived counteractive compounds to explore minimal

alterations to the structures of both verinurad and lesinurad that could impact their respective activity

levels. In essence, counteractive compounds closely resemble the originals but result in a shift from

high to low activity in verinurad and vice versa in lesinurad. Through counteractive explanations, our

analysis indicated that modifying the teal-colored carboxylic acid group or methyl group of verinurad

could offer insights into the specific substructures responsible for its high activity (Figure 2.3A).

Additionally, introducing an additional NH or Br group to lesinurad was identified as a potential

enhancement for its activity (Figure 2.3B).
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Figure 2.2. Final model, based on CatBoost. (A) Local interpretability, with each dot corresponding to
a compound of URAT1 inhibitors obtained from entire dataset. (B) Prediction-error of nested cross
validation using 14 key features from entire dataset. (C) SHAP vector using 14 key features from entire
dataset. PC1 and PC2 explains 23.3% and 11.2% of SHAP vector variance, respectively. High*,
compounds exhibiting >98% probability of belonging to high active class. (D) Screening of ZINC
compounds using final CatBoost model. pHigh, ZINC compounds exhibiting >98% probability of
belonging to high active class. nCV, nested cross-validation; PC, principal component; SHAP, Shapley
Additive exPlanations; URAT1, urate transporter 1.
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Figure 2.3. Activity explanation using physicochemical properties and molecular structures for (A)
verinurad and (B) lesinurad, based on CatBoost. The positive and negative values of f(x) =2.479 and
f(x) =—-2.963 correspond to the high active and low active classes, respectively. Teal color represents
alterations made to the base molecule, while counteractive depicts the specific modifications that

render the activity of base molecule against URAT1. URAT, urate transporter 1

Prioritization of promising potential lead compounds from ZINC database

To generate potential leads from ZINC15 database, we implemented various filtering steps (Figure

2.4). Initially, we removed any duplicated ZINC compounds, yielding 3,457,766 compounds. We

predicted this list of compounds using final CatBoost model and kept 42,594 compounds exhibiting >

98% probability (corresponds to 95.9% precision). We then filter these compounds using PC1 and kept

9,760 compounds exhibiting PC1 values <—2.67 (corresponds to 95.2% precision, Figure 2.2D). Next,

we identified 7,082 novel potential hit compounds using Tanimoto coefficient. Finally, we obtained
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22 promising potential lead compounds exhibiting good ADME properties, i.e., stable CLix of less

than 20 pL/min/mg, high F, of more than 0.7, and low f,, of less than 0.05 using DruMAP.
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Figure 2.4. Ligand-based drug design (LBDD) pipeline for identifying innovative potential lead
compounds from ZINC database. CLix, hepatic intrinsic clearance in liver microsome; F,, fraction

absorbed; f.p, fraction unbound in plasma.

Discussion

The bespoke LBDD pipeline presents a promising workflow for identifying novel chemical scaffolds
targeting URAT1 without a high-resolution 3D structure. The pipeline is currently confined to URAT1
but holds the potential to extend its applicability to other targets. To our knowledge, this study is the
first LBDD approach incorporating global evidence to develop machine learning models to
discriminate high from low active URAT1 inhibitors. Other methods like transfer learning could
provide alternative strategy, by using a large chemical space as the training source. Compared with a
dataset from ChEMBL (approximately 600 compounds for URAT1 or SLC22A12), we have generated
the largest dataset, containing 2717 URAT1 inhibitors, to train a successful machine learning model.

Moreover, our CatBoost model offers insights into the different class activities of URAT1 inhibitors
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by utilizing only 14 key features (13 physicochemical properties and 1 fingerprint) and counteractively
generated compounds in the analysis. Other tree-based algorithms were not explored to identify key
features due to computational constraints, considering CatBoost had already shown satisfactory
performance. The focus was on the practical utility of the model, and the choice of CatBoost was
driven by its effectiveness and efficiency for our specific objectives.

An important part of our analysis involves attaining 95% precision, assessed from two perspectives:
the model's probability and principal component of SHAP values. By supplementing these with the
use of Tanimoto coefficient and DruMAP, we have identified 22 promising commercially available
potential lead compounds with distinct skeletons, showing a similarity below 32.8% when compared
with the known compounds. All these compounds are predicted to have ideal properties: high solubility
(>10 pg/mL) at pH 7.4, stable intrinsic clearance (< 20 pL/min/mg), high fraction of a dose absorbed
(>0.7), high apparent permeability coefficient (>100 nm/s), and low fraction unbound in plasma
(<0.05). We anticipate that these compounds undergo experimental validation successfully and
demonstrate potential therapeutic efficacy with favorable pharmacokinetic profiles against
hyperuricemia.

Apart from employing machine learning models for screening the ZINC database to acquire novel
skeletons, scaffold hopping serves as a method to obtain compounds with distinct skeletons, and it is
not strictly dependent on machine learning techniques. The process of scaffold hopping can be
executed using chemical intuition.'*®

A potential direction for future research involves developing a unified platform that encompasses
activity, kinetics, and toxicity predictions, aiming to enhance the success rate of drug development.
While incorporating DruMAP for predicted ADME assessment in the current LBDD pipeline is a
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positive step, leveraging other publicly available web servers, such as ProTox-I could offer

supplementary information on the predicted toxicities of small molecules.
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