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Abbreviations 

ADME, absorption, distribution, metabolism, and excretion; 

AUC-ROC, area under the curve of the true-positive rate or recall; 

CatBoost, categorical boosting;  

CLint, hepatic intrinsic clearance in liver microsome;  

DNN, deep neural network;  

DT, decision tree;  

Extra Trees, extremely randomized trees;  

Fa, fraction absorbed;  

fu,p, fraction unbound in plasma;

GB, gradient boosting;  

ISO, International Standard Organization; 

KNN, k-nearest neighbors;  

LBDD, Ligand-based drug design; 

LDA, linear discriminant analysis;  

LightGBM, light gradient boosting machine;  

LR, logistic regression;  

nCV, Nested cross-validation; 
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RF, random forest;  

PC1, Principal component 1; 

SCCS, Scientific Committee on Consumer Safety: 

SHAP, Shapley Additive exPlanations; 

SMILES, simplified molecular-input line-entry system; 

SiO2-NPs, Amorphous silica nanoparticles;  

SVM, support vector machine;  

URAT1, urate transporter 1; 

XGBoost, extreme gradient boosting; 

3D, Three-dimensional; 

3MRs, 3-membered rings; 
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Introduction 

In drug discovery, conventional toxicological and biological methods, including both in vivo and in 

vitro approaches, are commonly used to evaluate the toxicity and activity of emerging nanoparticles 

or chemicals. However, relying solely on these techniques is considered less humane, efficient, and 

economical. Consequently, there is a growing demand for more timely risk assessment, cost-effective 

evaluation, and methods that minimize reliance on animal testing in both the pharmaceutical industry 

and health regulatory policies. In this context, in silico toxicity and activity predictions offer an 

alternative approach, providing cost-effective and efficient methods to rapidly assess whether specific 

nanoparticles or chemical compounds have the potential to pose adverse effects on human health or 

exhibit therapeutic utility. In particular, nanoparticles, those with a diameter of 100 nm or less, utilized 

in fields such as medicine and cosmetics, must undergo rigorous safety evaluations before they can be 

used for clinical translation. It has been noted that nanoparticles have the potential to penetrate cells 

and tissues through inhalation or skin contact. However, their complex behavior in biological 

environment has made it difficult to predict their potential toxicity.  

This study explores the applications of machine learning and literature data mining in drug discovery. 

Machine learning, a subset of artificial intelligence, empowers computers to autonomously learn from 
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data to make predictions. Literature data mining involves extracting implicit valuable information 

from a comprehensive dataset gathered from diverse individual studies, with a focus on addressing 

specific research questions where quantitative analysis of independently conducted experiments is 

predominant. Chapter 1 focuses on predicting cellular toxicity of amorphous silica nanoparticles, 

while Chapter 2 delves into predicting the activity of small molecules targeting urate transporter 1. 
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Main Paper 

Chapter 1: Evidence-Based Prediction of Cellular Toxicity for Amorphous Silica 

Nanoparticles 

Background 

Decades of extensive research in nanotoxicology have yielded a wealth of data, prompting a shift 

towards literature data mining or meta-analysis to unveil hidden relationships within individual 

studies.1–8 Unlike traditional approaches, which analyze nanoparticle toxicity using limited datasets 

based on specific attributes like particle size and concentration,9–11 or omics-based biomarkers,12 or 

predict other outcomes,13,14 literature data mining integrates information from a global pool of 

evidence, enhancing generalizability across diverse experimental settings. This approach to 

developing data-driven models is particularly valuable for environmental and health-risk analyses.1 

 Previous literature data mining efforts have explored cellular toxicity for various nanoparticles 

such as cadmium-containing quantum dots,1,2 carbon nanotubes,3 graphene,4 micro and nanoplastics,5 

nanoparticles,6 phytosynthesized silvers,7 and zinc oxides.8 These studies formulated models based on 

experimental settings and physicochemical properties, employing cross-validation or split-sample 

internal validation. However, potential errors or biases in the collected literature data can compromise 
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the reliability of these validations. Therefore, external validation, involving independently derived 

datasets, is crucial for ensuring the applicability of predictive models.15–17   

When nanoparticles come into contact with proteins, such as those in serum, they form a layer of 

biomolecules called the corona on their surface. Thus, nanoparticle interactions with biological 

systems involve nanoparticle-corona complexes rather than pristine nanoparticles.18 However, existing 

literature data mining reports1–8 lack external validation or an assessment of the toxicological effects 

of preformed coronas in biological environments, limiting their real-world applicability. A cost-

effective and rapid method is needed to develop a reliable prediction model for nanotoxicity.  

Amorphous silica nanoparticles (SiO2-NPs), extensively used in various industries,19–22 including 

rubber, paints, cosmetics, biomedicine, and food additives, are regarded as a safety issue by the 

Scientific Committee on Consumer Safety (SCCS)23 despite their large-scale production.24–26 Hence, 

ensuring their safety is of utmost importance. In vitro cytotoxicity testing is an effective assessment 

of SiO2-NP safety,27,28 with smaller nanoparticles tend to induce greater toxicities.29 Attributes like 

concentration, duration of exposure, surface chemistry, and synthetic pedigrees have the potential to 

influence the toxicity of SiO2-NPs.24–26 Despite numerous in vitro toxicological investigations, the key 

attributes contributing to the toxicity of SiO2-NPs on a global scale still lack clarity.24  

This study addresses the key attributes contributing to SiO2-NP toxicity by proposing an evidence-
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based prediction method. Leveraging literature-mined SiO2-NP cellular toxicity data, the method 

utilizes literature data mining, machine learning, and Shapley Additive exPlanations (SHAP) values30 

within a framework of nested cross-validation (nCV)31 and internal and external validations. The 

resulting interpretable prediction model demonstrates satisfactory predictions and explanations for 

independent external toxicity data, proving the method's validity and reliability. 

Methods 

Figure 1.1 depicts the conceptual framework for an evidence-based approach to predict the toxicity of 

engineered nanoparticles, employing SiO2-NPs as the experimental model and cytotoxicity as the 

measure of toxicity. The input attributes, encompassing SiO2-NP physicochemical properties, 

experimental conditions, and cell types, along with binary output responses indicating cytotoxic or 

noncytotoxic outcomes, were initially gathered manually from the literature and organized in a tabular 

format. To establish a streamlined and cost-effective screening model for biocompatibility risk 

assessment, the cytotoxic responses were standardized using the International Standard Organization's 

(ISO) definition of cytotoxicity (ISO 10993-5), specifically classifying cytotoxicity (a positive label) 

as a reduction of more than 30% in cell viability.27,28 All attributes were employed in the initial training 

of predictive model, utilizing various machine-learning algorithms to generate output responses based 
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on input attributes. Subsequent utilization of SHAP values facilitated the identification of key 

attributes influencing SiO2-NP toxicity. To validate the model's robustness and applicability, three 

essential validation steps were undertaken: nested cross-validation (nCV), internal validation, and 

external validation. In contrast to potentially optimistic estimates from non-nested cross-validation, 

nCV mitigates data leakage by incorporating an inner-loop CV within an outer CV. This dual CV 

structure is employed for both model selection, involving hyperparameter tuning through grid search 

in the inner loop, and model evaluation in the outer loop.31 

 

Figure 1.1. Framework of an evidence-based prediction method. In vitro cellular toxicity data were 

collected from published literature and standardized. Nested cross-validation, internal validation, and 

external validation were used to prove generalizability. Reprinted with permission from [ACS Nano 

2023, 17, 11, 9987–9999]. Copyright [2023] American Chemical Society. 
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Literature data mining 

Two comprehensive reviews on the toxicity of SiO2-NPs served as the basis for the literature data 

evaluation in this study. These reviews, conducted by Napierska et al.26 and Murugadoss et al.,25 

covered studies published up to 2010 and 2016, respectively. The selection of literature adhered to the 

PICOS framework32 of evidence-based medicine, ensuring consistency and reliability across the 

chosen studies. The criteria for inclusion were: (1) a population involving human or mammalian cells; 

(2) the intervention and comparison focusing on amorphous non-mesoporous SiO2-NPs vs. a negative 

control, with specified concentration, exposure time, and primary size ≤1000 nm; (3) the outcome 

centered on cytotoxicity (percentage of cell viability); and (4) the study design being an in vitro 

toxicological study. Exclusion criteria encompassed non-mammalian or co-cultured cells, crystalline 

or mesoporous SiO2-NPs, abstract articles, and other non-relevant studies. Sixty-one studies meeting 

the inclusion criteria were identified from the two reviews, and their reference lists were reviewed for 

additional relevant literature, yielding 54 more eligible studies. In total, 115 studies were incorporated. 

Systematic extraction of SiO2-NP attributes and cell-viability data resulted in a main dataset 

comprising 4124 samples and 36 attributes. Mean cell viability values, obtained from text or graphs 

using WebPlotDigitizer,33 were converted to binary labels: "1" (<70% cell viability, cytotoxic) and "0" 

(≥70% cell viability, noncytotoxic). The administered concentration of SiO2 (in μg/mL for cell 
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exposure) was utilized as the concentration attribute. Surface area (m2/g) was calculated unless 

explicitly reported, with the formula: surface area = 6 ⁄ dr, where d is primary size in mm and r is 

density in g/cc. Due to missing data, categorical attributes with ranges were used for hydrodynamic 

size, zeta potential, and polydispersity index (PDI) attributes. Dummy features (binary vectors) were 

created for categorical attributes, with one dummy feature was omitted to avoid a dummy-variable 

trap (Supporting Information Tables S1). An attribute refers to a quantity that describes an instance in 

the dataset. Attributes have different types of domains, categorical (qualitative) and continuous 

(quantitative). Continuous attributes form a subset of real numbers (i.e., rational and irrational 

numbers), where there exists a discernible distinction among possible values. A feature is a specific 

value of an attribute, for example Assay_viability is an attribute; “Assay_viability_MTT” is a feature 

of the Assay_viability attribute. Feature scaling was applied using z-score normalization for linear and 

nonlinear-kernel classifiers and Min-Max normalization for deep neural network (DNN) classifier. 

Machine learning 

Thirteen established machine-learning algorithms were utilized (1) linear discriminant analysis 

(LDA), (2) logistic regression (LR), (3) ridge, (4) DNN, (5) k-nearest neighbors (KNN), (6) support 

vector machine (SVM), (7) decision tree (DT), (8) categorical boosting (CatBoost), (9) extremely 

randomized trees (extra trees), (10) gradient boosting (GB), (11) light gradient boosting machine 
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(LightGBM), (12) random forest (RF), and (13) extreme gradient boosting (XGBoost), categorized as 

linear (1-3), nonlinear (4), nonlinear kernels (5-6), and nonlinear tree-based classifiers (7-13). The 

scikit-learn (v1.0.2), tensorflow (v2.10.0), CatBoost (v1.0.4), LightGBM (v3.3.2), and XGBoost 

(v1.5.1) packages in Python 3.10 were employed for implementation.  

The main dataset, containing 4124 samples, underwent shuffling and was split into training (80%) 

and internal test (20%) sets via random stratified sampling. Predictive models with binary 

classification were initially developed using 80% of the main dataset with all attributes, employing 

the 13 machine-learning algorithms. Ten-fold nCV was applied, and the models with a removed 

dummy feature were fine-tuned using GridSearchCV to obtain optimal hyperparameters (Supporting 

Information Tables S2–S3). Internal validation was conducted with the remaining 20% of the main 

dataset, independent of model building, and SHAP values were used to identify key attributes. Final 

predictive models were constructed using the entire main dataset and the identified key attributes 

The evaluation metrics were based on accuracy (1 − !"	$	!%
!"	$	&"$	!%$&%

), AUC-ROC (area under the 

curve of the true-positive rate or recall [ !"
!"	$	&%

] vs. false-positive rate [ &"
&"$	!%

]), recall, and precision 

& !"
!"	$	&"

', where TP, TN, FP, and FN represent true positive, true negative, false positive, and false 

negative, respectively. 
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External validation 

The final predictive models were employed to predict the independent datasets (905 samples) 

gathered from external studies published between 2017 and 202234–58 and in-house experiments. For 

instance, Gong et al. (2017)34 investigated HaCaT cells exposed to 15-nm SiO2-NPs (nine samples), 

while Liu et al. (2017)35 studied A549 cells exposed to 15-nm SiO2-NPs over 24 h (eight samples). 

Additionally, Nishijima et al. (2017)36 examined the impact of 10–1000-nm SiO2-NPs on THP-1 cells 

over 6–24 h (105 samples), and Premshekharan et al. (2017)37 exposed THP-1 cells to 50-nm SiO2-

NPs for 22 h (four samples). Other studies (877 samples)38–58 explored diverse SiO2-NP sizes and 

exposure times on various cell lines, such as K17, HDF, LN229, N9, bEnd.3, HT-22, HEK293, 

hippocampal, HepG2, A549, SW480, HUVEC, GC-2spd, HeLa, BEAS-2B, Caco-2, H9c2, SH-SY5Y, 

NRK, BV2, L-02, and R28, among others.  

Independent in-house experiments were conducted with 10-, 30-, 50-, 70-, 100-, 300-, and 1000-nm 

SiO2-NPs (136 samples) sourced from Micromod Partikeltechnologie. The zeta potentials and 

hydrodynamic sizes of the SiO2-NPs were measured using a Zetasizer Nano-ZS (Malvern Instruments 

Ltd.). The zeta potentials of the 10-, 50-, and 100-nm SiO2-NPs were –15.6, –17.3, and –22.3 mV, 

respectively; their hydrodynamic sizes in water were 18.3, 48.4, and 99.8 nm, respectively. The zeta 

potentials and hydrodynamic sizes of 30-, 70-, 300-, and 1000-nm SiO2-NPs were previously 
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reported.59,60 Exposure cell experiments were performed on A549, SH-SY5Y, TM4, BeWo, and RAW 

264.7 cell lines, as detailed in Supporting Information Table S4. This comprehensive approach aimed 

to validate the robustness of the final predictive models across a spectrum of SiO2-NP characteristics 

and experimental conditions. 

Shapley Additive exPlanations (SHAP) 

Attribute importance was established through global feature importance, as defined by the SHAP 

values:30,61 

𝜙' =
(
|&|!
∑ |𝑆|! (|𝐹| − |𝑆| − 1)! [𝑓+∪{'}1𝑥+∪{'}3 − 𝑓+(𝑥+)]+⊆&∖{'} , where 𝐹, 𝑆, 𝑥+, 𝑓+∪{'},  and 

𝑓+	represent the set of all features, a subset of 𝐹, the values of the input features in the set S, a trained 

model with that feature present, and a trained model with that feature withheld, respectively. The 

SHAP value 𝜙'  of the feature 𝑖 was obtained by averaging the marginal contributions of all the 

permutations of a feature set. A greater mean absolute SHAP value signified a more influential feature 

in prediction. In this study, features displaying positive SHAP values directed the model output toward 

cytotoxicity, while those with negative values had the opposite effect, providing a rationale for 

decision-making in the predictive process. 
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Results 

Literature data curation 

We gathered cell viability data for 4124 samples, encompassing 32 categorical and 4 continuous 

attributes that characterize SiO2-NP cellular toxicity. The data were sourced from 115 articles spanning 

the years 2004 to 2016, as depicted in Figure 1.2. Utilizing the ISO-10993-5 definition, 35% of the 

samples exhibited cytotoxic effects, while 65% were noncytotoxic. The attributes collected are 

detailed in Table 1.1, and their distribution is illustrated in Supporting Information Figure S1. Notably, 

our dataset, comprising 4124 samples and 36 attributes, surpassed the datasets of cadmium-containing 

quantum dots (3,028 samples, 24 attributes)1,2 and nanoparticles (2,986 samples, 15 attributes)6 by 

36% and 38%, respectively. Moreover, our dataset exhibited a 50% and 140% greater diversity in 

attributes compared to the datasets of cadmium-containing quantum dots and nanoparticles, 

respectively.     
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Figure 1.2. Data preparation: 80% of the main dataset containing all the attributes was trained and 

cross-validated using 10-fold nCV to develop the predictive model. The remaining 20% was used to 

internally validate the predictive model and identify the key attributes. Finally, 100% of the main 

dataset was used to build the final predictive model employing the identified key attributes to predict 

the independent dataset. Reprinted with permission from [ACS Nano 2023, 17, 11, 9987–9999]. 

Copyright [2023] American Chemical Society. 

Table 1.1. Attributes of silica nanoparticles  

No. Attributes Definition 

SiO2-NP Physicochemical Properties 

1 Primary_size The average size of SiO2 in the dry state measured by transmission electron microscopy 

(TEM), scanning electron microscope (SEM), or particle sizer. 

2. Primary_size_verification The primary size of SiO2 verified by the individual study, verified elsewhere (cited in 

previous publication), or not verified (directly used from manufacturer’s specifications). 

3. Surface_area The total area of SiO2 surface measured by Brunauer–Emmett–Teller (BET) method or 

calculated by 6 𝑑𝑟$ 	, where d is primary size in mm, r is density in g/cc. 

4. Hydrodynamic_size_water The average hydrodynamic size of SiO2 measured by dynamic light scattering in water. 

5. Hydrodynamic_size_culture The average hydrodynamic size of SiO2 measured by dynamic light scattering in culture 

medium. 
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Table 1.1. Continued 

6. Hydrodynamic_size_serum The average hydrodynamic size of SiO2 measured by dynamic light scattering in medium 

containing serum. 

7. Zeta_potential_water The electrical potential of SiO2 at the slipping plane or interface between SiO2 surface and 

its water. 

8. Zeta_potential_PBS/HBSS The electrical potential of SiO2 at the slipping plane or interface between SiO2 surface and 

its phosphate buffered saline (PBS) or Hank’s balanced salt solution (HBSS). 

9. Zeta_potential_culture The electrical potential of SiO2 at the slipping plane or interface between SiO2 surface and 

its culture medium. 

10. Zeta_potential_serum The electrical potential of SiO2 at the slipping plane or interface between SiO2 surface and 

its medium containing serum. 

11. PDI_water Polydispersity index (PDI), a measure of broadness of SiO2 weight distribution in water. 

12. PDI_culture Polydispersity index (PDI), a measure of broadness of SiO2 weight distribution in culture 

medium. 

13. Surface_modification The SiO2 surface modifier, e.g., chitosan, carboxyl, and amine. 

14. Surface_charge_water The electrical charge of SiO2 present at an interface in water. 

15. Surface_charge_culture The electrical charge of SiO2 present at an interface in culture medium. 

16. SiO2-NP_synthesis The SiO2 synthetic pedigrees produced at high (e.g., pyrolytic) or low (colloidal) 

temperature. 

17. SiO2-NP_source The source of SiO2 obtained from in-house or commercial. 

18. SiO2-NP_shape The shape of SiO2, either sphere or rod. 

19. SiO2-NP_label The label of SiO2 including fluorescein-5-isothiocyanate (FITC), rhodamine, and iodine-

125. 

Experimental Settings 

20. Concentration  A measured quantity of SiO2 in μg/mL for exposure to cells. 

21. Exposure_time The exposure duration of SiO2 to cells.  

22. SiO2-NP_medium_serum The SiO2 medium containing different serum concentrations (e.g., serum-free, 10% fetal 

bovine serum [FBS], and bovine serum albumin [BSA]) for dilution or storage (prior 

exposure to cells). 

23. Assay_viability  An assay for measuring the cell viability, such as 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyl-2H-tetrazolium bromide or MTT. 

24. Viability_indicator Cell viability indicator, e.g., tetrazolium, lactate dehydrogenase (LDH), and adenosine 

triphosphate (ATP). 
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Table 1.1. Continued 

25. Viability_mechanism  Cell viability testing methods including structural cell damage, cell growth, and cellular 

metabolism. 

26. Interference_testing The interference of SiO2 with cell viability assay systems, either performed or not 

performed by the individual study. 

27. Positive_control The use of positive control inducer, either included or not included by the individual study. 

28. Positive_control_inducer A replicate containing all components of a test system and treated with a chemical/particle 

known to induce a positive response. 

29. Exposure_medium The culture medium used during SiO2 exposure to cells. 

Cell Types 

30. Cell_organ Refers to organ or tissue from which cells originated. 

31. Cell_id Identifies a specific cell, e.g., A549, RAW 264.7, and HeLa. 

32. Cell_morphology Refers to morphology of cells, mostly based on american type culture collection (ATCC), 

e.g., epithelial, endothelial, and fibroblast. 

33. Cell_culture The culture of cells, either primary cells (isolated from parental tissue) or cell lines 

(originated from primary cells). 

34. Cell_source The source of cells including human, mouse, rat, pig, and hamster. 

35. Cell_age The age of cells including embryonic and nonembryonic. 

36. Cell_disease The disease stage of cells, either carcinoma or non-carcinoma. 

Footnotes: Reprinted with permission from [ACS Nano 2023, 17, 11, 9987–9999]. Copyright [2023] 

American Chemical Society. 

  Nested cross-validation (nCV) and internal validation 

We conducted nCV on 80% of the main dataset to obtain an initial unbiased assessment of predictive 

model accuracy, as depicted in Figure 1.2. Our analysis revealed that tree-based classifiers 

demonstrated a strong fit to the data, outperforming linear, DNN, and nonlinear kernel classifiers. 

Among these, CatBoost emerged as the top algorithm, achieving the highest nCV accuracy of 

91.0±1.5%, as detailed in Table 1.2.  



 

18 

 

 

 

 

   Primary evaluation metrics of the internal test set are accuracy and AUC-ROC (Table 1.2). Tree-

based classifiers demonstrated satisfactory accuracies ranging from 85.6% to 90.4% and excellent 

AUC-ROCs between 94.1% and 96.3% (except for DT, with 86.0%). Linear, DNN, and nonlinear 

kernel classifiers exhibited accuracies of 75.2% to 84.6% and AUC-ROCs of 82% to 89.8%. CatBoost 

consistently outperformed other algorithms, achieving an accuracy of 90.4%, an AUC-ROC of 96.3%, 

recall of 85.6%, and precision of 87.1%. 

Table 1.2. Prediction-error comparisons: Internal validation (All 36 attributes and 824 samples) 

Machine Learning nCV10-fold Accuracy AUC-ROC Recall Precision 

Linear      

 LDA 74.5±2.5% 75.2% 82.6% 56.2% 68.0% 

 LR 82.3±1.9% 83.4% 89.8% 73.3% 78.4% 

 Ridge 75.4±2.3% 75.3% 82% 52.7% 70.0% 

Nonlinear      

 DNN 75.2±1.7% 75.7% 82.7% 61.8% 67.1% 

Kernel      

 KNN 85.3±1.8% 84.6% 82.5% 75.3% 80.0% 

 SVM  84.3±1.8% 83.0% 87% 70.5% 79.2% 

Tree-based      

 DT 87.3±1.8% 85.6% 86.0% 81.5% 78.5% 

 Extra Trees 86.9±1.8% 85.6% 94.1% 76.7% 81.5% 

 RF 88.1±1.9% 87.4% 94.5% 79.5% 84.1% 

 CatBoost 91.0±1.5% 90.4% 96.3% 85.6% 87.1% 

 GB 90.3±2.0% 89.1% 95.3% 83.6% 85.3% 

 LightGBM 90.0±1.6% 90.1% 95.8% 84.9% 86.7% 

 XGBoost 90.2±1.7% 89.9% 95.8% 84.9% 86.4% 

Footnotes: LDA, linear discriminant analysis; LR, logistic regression; DNN, deep neural network; 
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KNN, k-nearest neighbors; SVM, support vector machine; DT, decision tree; Extra Trees, extremely 

randomized trees; RF, random forest; CatBoost, categorical boosting; GB, gradient boosting; 

LightGBM, light gradient boosting machine; XGBoost, extreme gradient boosting. Reprinted with 

permission from [ACS Nano 2023, 17, 11, 9987–9999]. Copyright [2023] American Chemical Society. 

We utilized attribute importance for feature selection via SHAP values with CatBoost. Based on the 

attribute importance (Figure 1.3A), we identified the top 13 attributes that resulted to optimal 

predictive accuracy (Figure 1.3B), arranging them in order of importance: concentration, SiO2-

NP_medium_serum, cell_morphology, cell_organ, primary_size, cell_id, exposure_time, 

surface_modification, hydrodynamic_size_water, cell_source, assay_viability, surface_area, and 

viability_indicator (refer to Table 1.1 and Supporting Information Figure S1). 
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Figure 1.3. Attribute importance for silica nanoparticles, based on CatBoost. (A) Global 

interpretability for the average absolute SHAP value magnitudes. (B) Predictive accuracy of internal 

validation with incrementally increasing attributes. (C) Local interpretability, with each dot 

corresponding to a sample of silica nanoparticle cellular toxicity obtained from 100% of the main 

dataset. (D) The prediction probability of CatBoost to output a noncytotoxic class at a given condition 

of concentration attribute alone, using 100% of the main dataset. Reprinted with permission from [ACS 

Nano 2023, 17, 11, 9987–9999]. Copyright [2023] American Chemical Society. 

Subsequently, we reconstructed the predictive models using 80% of the main dataset and the 

identified key attributes and assessed their performance using the internal test set (Table 1.3). Instead 

of employing all attributes (as shown in Table 1.2), comparable performance was achieved using solely 
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the 13 key attributes, with CatBoost exhibiting the best performance (accuracy: 90.7%, AUC-ROC: 

95.9%, recall: 85.6%, precision: 87.7%, and nCV: 90.3±1.9%). Other tree-based classifiers, including 

RF, GB, LightGBM, and XGBoost, also demonstrated high scores (accuracy >88%, AUC-ROC >94%, 

recall >81%, precision >85%, and nCV >88%). 

Table 1.3. Prediction-error comparisons: Internal validation (13 key attributes and 824 samples) 

Machine Learning nCV10-fold Accuracy AUC-ROC Recall Precision 

Linear      

 LDA 74.1±2.2% 73.9% 80.4% 48.6% 68.6% 

 LR 74.7±2.1% 73.3% 80.2% 45.5% 68.6% 

 Ridge 74.4±2.1% 73.9% 80% 46.9% 69.5% 

Nonlinear      

 DNN 74.2±2.9% 76.3% 83.7% 67.3% 66.4% 

Kernel      

 KNN 85.1±1.9% 85.2% 82.8% 74.7% 82.0% 

 SVM  85.2±1.9% 85.2% 89% 73.3% 82.9% 

Tree-based      

 DT 86.3±1.5% 87.3% 86.2% 81.2% 82.6% 

 Extra Trees 86.5±2.0% 86.1% 94.1% 77.1% 82.4% 

 RF 88.1±2.0% 88.8% 94.9% 81.2% 86.5% 

 CatBoost 90.3±1.9% 90.7% 95.9% 85.6% 87.7% 

 GB 89.4±2.0% 89.0% 95.1% 83.2% 85.3% 

 LightGBM 88.5±1.6% 89.1% 95.1% 82.9% 85.8% 

 XGBoost 89.4±1.5% 89.7% 95.4% 83.9% 86.6% 

Footnotes: LDA, linear discriminant analysis; LR, logistic regression; DNN, deep neural network; 

KNN, k-nearest neighbors; SVM, support vector machine; DT, decision tree; Extra Trees, extremely 

randomized trees; RF, random forest; CatBoost, categorical boosting; GB, gradient boosting; 

LightGBM, light gradient boosting machine; XGBoost, extreme gradient boosting. Reprinted with 

permission from [ACS Nano 2023, 17, 11, 9987–9999]. Copyright [2023] American Chemical Society. 
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Finally, we constructed the final predictive models using the 13 key attributes from 100% of the 

main dataset (4124 samples) and obtained a robust nCV accuracy (Table 1.4). Next, we examined how 

the SHAP values were distributed for the 13 key attributes across the various samples. In accordance 

with the SHAP local explanation summary (Figure 1.3C), a larger SiO2-NP primary size, the presence 

of 10% fetal bovine serum (FBS) in the SiO2-NP medium (prior exposure to cells), surface-modified 

SiO2-NPs, and cells with epithelial morphologies were associated with reduced cytotoxic effects. In 

contrast, a higher concentration of SiO2-NPs, an extended exposure time and surface area, a 

hydrodynamic size less than 26 nm in water, the absence of serum in the SiO2-NP medium, and the 

presence of mouse cells, macrophage cells, blood cells, and a tetrazolium viability indicator with an 

MTT assay (Supporting Information Figure S2) were linked to increased cytotoxicity. MTT assay is 

highlighted as it exhibits the highest ranking in terms of the Assay_viability attribute, as indicated in 

Supporting Information Figure S2, offering a detailed overview of the local explanation not replicated 

by other viability assays. While concentration emerged as a leading attribute determining SiO2-NP 

toxicity, SiO2-NPs with concentrations >5 μg/mL alone did not ensure accurate prediction, as depicted 

in Figure 1.3D. Remarkably, 97.7% of SiO2-NPs with concentrations ≤5 μg/mL were linked to 

noncytotoxicity. Clear thresholds were not observed for other continuous attributes (see Supporting 

Information Figure S3). Furthermore, a singular decision tree with an nCV accuracy of 73.4±1.9% 
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was identified (refer to Supporting Information Figure S4) for simplified guidance on SiO2-NP toxicity. 

Nevertheless, for optimal predictive efficacy, we advise utilizing all 13 key attributes when employing 

our model via Google Colab (https://github.com/martinj-phs/nanosilica). 

External validation 

We created an independent dataset comprising 905 samples, distinct from the main dataset, adding 

complexity, value, and real-world relevance to the task of predicting and explaining SiO2-NP toxicity. 

External validation results (Table 1.4) revealed that CatBoost exhibited satisfactory generality and 

yielded the highest performance (accuracy: 88.1%, AUC-ROC: 92.0%, recall: 72.4%, and precision: 

78.0%), followed by GB, RF, and XGBoost (accuracies >84% and AUC-ROCs >88%). Notably, RF 

displayed the lowest recall (48.4%) among tree-ensemble classifiers, making it unsuitable for 

identifying all positive samples, unlike boosting algorithms (CatBoost, GB, XGBoost, and 

LightGBM) with recall rates exceeding 61%. Linear, DNN, nonlinear kernel, and DT classifiers 

struggled to fit the independent dataset, achieving accuracies between 64.4% and 75.9%. SVM solely 

predicted the majority noncytotoxic class, exhibiting the poorest AUC-ROC (46%) and recall (3.1%), 

indicating frequent misclassification and failure to identify positive samples. 

To assess the impact of serum in predicting SiO2-NP toxicity, we reconstructed predictive models 

using 12 key attributes, excluding the SiO2-NP_medium_serum attribute. Overall, the results indicated 
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significantly reduced performance (CatBoost: accuracy, 80.7%; AUC-ROC, 84.4%; recall, 53.3%; 

precision, 63.2%; and nCV, 88.7±1.3%), emphasizing the critical role of nanoparticle-corona 

formation in biologically diverse environments containing varying serum concentrations for highly 

accurate predictions (Supporting Information Table S5). Additionally, Supporting Information Figure 

S5 demonstrated lower model performance when all 36 attributes were used, underscoring the 

importance of attribute selection to prevent overfitting in a truly independent test set. 

Table 1.4. Prediction-error comparisons: External validation (13 key attributes and 905 samples) 

Machine Learning nCV10-fold Accuracy AUC-ROC Recall Precision 

Linear      

 LDA 73.6±2.4% 65.2% 70.2% 64.4% 38.2% 

 LR 74.4±2.5% 64.4% 64.1% 57.8% 36.4% 

 Ridge 74.3±1.8% 65.3% 70% 63.6% 38.1% 

Nonlinear      

 DNN 75.3±2.1% 65.5% 68.1% 52.4% 36.3% 

Kernel      

 KNN 86.5±1.4% 74.0% 71.7% 67.1% 48.4% 

 SVM  86.3±2.1% 75.9% 46% 3.1% 100.0% 

Tree-based      

 DT 87.7±1.6% 67.4% 59.7% 44.0% 36.9% 

 Extra Trees 87.5±1.8% 82.3% 88.4% 57.8% 66.7% 

 RF 88.7±1.6% 85.1% 91.4% 48.4% 85.2% 

 CatBoost 90.5±1.6% 88.1% 92.0% 72.4% 78.0% 

 GB 89.8±1.4% 87.8% 90.2% 66.2% 81.4% 

 LightGBM 89.3±1.3% 82.0% 88.1% 67.6% 62.8% 

 XGBoost 89.6±1.4% 84.5% 88.4% 61.3% 72.3% 

Footnotes: LDA, linear discriminant analysis; LR, logistic regression; DNN, deep neural network; 
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KNN, k-nearest neighbors; SVM, support vector machine; DT, decision tree; Extra Trees, extremely 

randomized trees; RF, random forest; CatBoost, categorical boosting; GB, gradient boosting; 

LightGBM, light gradient boosting machine; XGBoost, extreme gradient boosting. Reprinted with 

permission from [ACS Nano 2023, 17, 11, 9987–9999]. Copyright [2023] American Chemical Society. 

Complex Relationships of SiO2-NP Attributes with Cellular Toxicity 

CatBoost was chosen to represent the prediction outcomes for external validation. We employed 

hierarchical clustering to group the independent datasets based on their similarity in explanation 

(SHAP values), visualizing heterogeneity (Figure 1.4A). Prediction errors for 905 samples (55 sets of 

experiments) are presented in Supporting Information Figures S6-S7, with two representative sets 

detailed in Figures 4B and 4C. Decision plots for correctly classified and misclassified samples can 

be found in Supporting Information Figure S8. To ensure real-world applicability, we employed SHAP 

values to quantitatively elucidate the CatBoost process generating the output cellular toxicity response 

from input key attributes. Figures 1.4D–G and Supporting Information Rationality depict the rational 

decision-making and complex attribute relationships governing potential SiO2-NP hazards and their 

impact on cellular machinery. 
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Figure 1.4. Prediction errors generated by the CatBoost model upon external validation. (A) SHAP 

heatmap plot. Samples with similar SHAP-value-based explanations were grouped together via 

hierarchical clustering. Increasing and decreasing cytotoxicity by attribute value are indicated in red 

and blue, respectively. The force plot at the top corresponds to the ratios of attribute values with a 

negative magnitude (blue) to those with a positive magnitude (red); f(x) = 0 corresponds to the 

predicted cytotoxicity. Samples predicted to be cytotoxic and noncytotoxic are shown in the red and 

green regions, respectively. (B and C) Prediction errors of each sample from two of the 55 sets of 

experiments. Red and green markers indicate cytotoxicity and noncytotoxicity, respectively. Correctly 
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classified samples have either a green or red marker, whereas misclassified samples have markers that 

are a combination of both colors. (D and E) Two examples of correctly classified samples. The positive 

values of f(x) = 2.812 and f(x) = 1.44 correspond to the cytotoxic class and were generated from the 

sum of the base value (–1.764) and the additive contributions of each attribute value (3.21 + 1.47 + 

…. – 0.27 in f(x) = 2.812 and 1.33 – 0.71 + …. + 0.14 in f(x) = 1.44). They explain which attribute 

value corresponded to the predicted cytotoxicity values of 2.812 and 1.44 from the base value; for 

example, in f(x) = 2.812, concentration: 500 μg/mL increased the base value by 3.21, whereas SiO2-

NP_medium_serum: 10%_FBS decreased it by 0.81. The base value was the average cytotoxicity 

value of the entire main dataset. (F and G) Two examples of misclassified samples. The positive and 

negative values of f(x) = 0.251 and f(x) = –1.838 correspond to the cytotoxic and noncytotoxic class, 

respectively. Reprinted with permission from [ACS Nano 2023, 17, 11, 9987–9999]. Copyright [2023] 

American Chemical Society. 

Discussion 

Differentiating between cytotoxic and noncytotoxic nanoparticles is crucial for nanosafety. The 

CatBoost model, derived from a comprehensive literature data mining effort covering 115 publications, 

unveiled key SiO2-NP attributes essential for predicting toxicity. These attributes, including 

concentration, SiO2-NP_medium_serum, cell_morphology, cell_organ, primary_size, cell_id, 

exposure_time, surface_modification, hydrodynamic_size_water, cell_source, assay_viability, 

surface_area, and viability_indicator, formed the basis of an evidence-based prediction model for 

SiO2-NP toxicity. The dataset, comprising 36 diverse attributes and 4124 samples, along with an 

independent dataset of 905 samples, constituted the largest and most comprehensive set to date. 

While previous literature data mining efforts1–8 failed to recognize the rapid formation of protein 
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coronas around nanoparticles in biological fluids,62 our study emphasized the importance of 

considering the biological medium attribute, particularly the SiO2-NP_medium_serum attribute, for 

accurate nanotoxicity predictions. The absence of this attribute led to a significant drop in predictive 

performance. Our findings challenge existing nanotoxicity models and underscore the necessity of 

accounting for preformed coronas in biological environments for successful predictive modeling. 

Cellular uptake of SiO2-NPs triggers underlying mechanisms related to concentration, time, size, 

surface, cell, and serum attributes.43,63–67 A higher concentration of SiO2-NPs results in a proportional 

increase in the amount adsorbed by cells and higher internalization efficiency.65 SiO2-NP 

concentrations below 5 μg/mL are linked to noncytotoxicity, possibly due to the negligible uptake by 

cells at these low levels.65 At these levels, SiO2-NP may not interact extensively with the cellular 

components, and their impact on cell viability is minimal, highlighting the importance of concentration 

levels in determining the potential harm of SiO2-NPs. Extended exposure time enhances the efficiency 

of SiO2-NP internalization into cells.64 The surface area plays a crucial role, as increasing the size of 

SiO2-NPs up to 50 nm reduces the total surface area, thereby preventing internalization. Moreover, 

SiO2-NPs with a hydrodynamic size less than 26 nm in water demonstrate better internalization 

efficiency.43 The absence of serum in the SiO2-NP medium strengthens the adhesion of SiO2-NPs to 

cell membranes, increasing internalization.63–66 The presence of various cells, particularly 
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nonphagocytic cells, exhibits lower efficiency in endocytosis compared to phagocytic 

monocytes/macrophages, possibly due to their larger size, leading to exclusion from developing 

pinocytic vesicles.67 The choice of a viability indicator introduces the possibility of SiO2-NPs 

interacting with the assay, contributing to the overall understanding of SiO2-NP toxicity. 

The role of the serum attribute in predicting SiO2-NP toxicity is evident; preformed coronas in the 

presence of serum has the potential to alleviate SiO2-NP toxicity. Corona formation alters cell receptor 

recognition of SiO2-NPs and, by reducing SiO2-NP surface energy, hinders efficient interaction of 

surface silanols [≡Si–OH and =Si(OH)2] with biomembranes, thereby lowering SiO2-NP uptake 

efficiency.64–66 However, the absence of serum can lead to more cytotoxic effects, as surface silanols 

of SiO2-NPs can directly engage with and disturb cellular membranes through hydrogen bonding and 

electrostatic interactions. The scientific reason behind the reduction in surface energy of nanoparticles 

when surrounded by a biomolecular corona lies in the interactions between the nanoparticles and 

biomolecules. The biomolecular corona formed around nanoparticles reduces surface energy by 

providing steric stabilization, shielding from direct exposure, facilitating biological recognition, and 

passivating the surface.18 Notably, a specific surface-silanol pattern known as "nearly free silanol" 

facilitates membranolysis by interacting with phosphatidylcholine, supporting the idea that surface 

modification can reduce SiO2-NP toxicity, irrespective of silica crystallinity.68 



 

30 

 

 

 

 

Evidence indicates that nanoparticles produced at high temperatures (pyrolytic) might be more 

toxic.24 Nanoparticles treated at high temperatures exhibit strained 3-membered rings (3MRs) on their 

surface. The strained nature of 3MRs makes them prone to homolytic cleavage, generating hydroxyl 

radicals upon water adsorption. This structural feature enhances hydrolysis compared to unstrained 

siloxane bonds, resulting in the formation of nonhydrogen-bonded hydroxyl groups when exposed to 

water vapor.69 However, the SiO2-NP_synthesis attribute did not emerge as a key attribute. This may 

be attributed to the fact that only a single study directly compared pyrolytic and colloidal SiO2-NPs 

with varying synthetic pedigrees under identical conditions.70 This underscores the necessity for more 

in-depth investigations into the impact of synthetic pedigrees on SiO2-NP toxicity, taking into account 

variations in size, surface, cell, assay, and biological media. 

External validation is essential for implementing highly accurate generalizations in real-world 

scenarios.15–17 The CatBoost model consistently exhibited satisfactory performance for both internal 

validation (accuracy: 90.7%, AUC-ROC: 95.9%, recall: 85.6%, and precision: 87.7%; nCV: 

90.3±1.9%) and external validation (accuracy: 88.1%, AUC-ROC: 92.0%, recall: 72.4%, and 

precision: 78.0%; nCV: 90.5±1.6%). Thus, CatBoost emerged as a more promising algorithm for 

nanotoxicity generalizability compared to the previously used RF or DT.1,3–8 The unexpected poor 

performance of DT and kernel classifiers in external validation despite favorable internal validation 



 

31 

 

 

 

 

results underscores the pivotal role of thorough external validation. 

CatBoost's outperformance over RF can be attributed to its sequential learning strategy, where 

multiple trees are trained one stage at a time, correcting errors from previous fits. This sequential 

approach allows CatBoost to effectively capture complex patterns in the data, enhancing its ability to 

correct errors and improving overall predictive accuracy. In contrast, RF constructs trees independently, 

potentially missing intricate relationships in the data. The diversity among trees in RF may yield 

conservative decision boundaries, prioritizing overall accuracy, but potentially resulting in lower recall. 

CatBoost's built-in support for categorical features eliminates the need for manual encoding, offering 

a notable advantage in nanoparticle datasets with categorical variables. Additionally, CatBoost 

incorporates regularization techniques to prevent overfitting, enabling robust generalization to unseen 

data. CatBoost also handles missing data naturally, a valuable feature in real-world datasets where 

missing values are common. In summary, the sequential learning process, categorical features handling, 

regularization, and handling in missing data in CatBoost provide advantages over RF. 

Despite the comprehensive nature of our study, some limitations should be acknowledged. The 

current predictive model does not provide quantitative values for the extent of SiO2-NP surface energy 

reduction associated with changes in concentration, serum, exposure time, and size, nor does it 

quantify the resulting impact on toxicity. This aspect presents a potential avenue for future research, 
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and efforts can be directed toward developing models that quantitatively assess the relationship 

between these variables and the reduction in surface energy, along with its implications for toxicity 

outcomes. The choice of attributes, such as using administered concentration instead of cellular dose 

or number of particles, reflects data availability constraints. Future research may benefit from 

incorporating these parameters if obtainable. Additionally, a more exhaustive characterization of SiO2-

NP physicochemical properties is warranted. Furthermore, the development of tools capable of 

automatically extracting nanoparticle data in a high-throughput manner would be extremely 

advantageous in the future. 

In vitro findings presented in this study may not directly extrapolate to in vivo outcomes, 

emphasizing the challenge of establishing in vitro-in vivo correlation. To enhance the predictive power 

of models, future studies should consider using specific types of nanoparticles and avoid making 

exaggerated claims about nanotoxicity predictions without adequate external validation.  

The evidence-based method offers a promising framework for nanotoxicological research, 

incorporating global evidence to develop reliable predictive models. A frequently employed ratio to 

evaluate the models in real world-practice is 80:20, signifying that 80% of the data is allocated for 

training (4124-sample of main dataset), while the remaining 20% (905-sample of independent dataset) 

is designated for testing. The SiO2-NP case study illustrates the applicability of the method, providing 
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insights into key attributes influencing SiO2-NP toxicity. The CatBoost71 model, employed as an 

effective tool for nanotoxicity prediction, demonstrates quantitative interpretability in generating 

cytotoxicity responses from key attributes. External validation proves crucial for ensuring the model's 

generalizability. We anticipate that our integrated approach, uniting literature data mining, machine 

learning, and SHAP values, can serve as a versatile platform in examining various engineered 

nanoparticles for predicting and explaining diverse biological outcomes. This study has the potential 

to advance the development of safe nanoparticles for biomaterials and provides reliable guidance for 

predictions in nanoinformatics. 
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Supporting Information 

Final model code, Nanosilica dataset, Supporting information (Tables S1-S5; Fig. S1-S8), and 

Supporting information rationality to this chapter 1 can be found online at http://dx.doi.org/ 

10.1021/acsnano.2c11968. Reprinted with permission from [ACS Nano 2023, 17, 11, 9987–9999]. 

Copyright [2023] American Chemical Society. 
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Figure S1. Silica nanoparticles with 32 categorical (heatmap visualization) and 4 continuous 

(distribution plot visualization) attributes. The distribution of attributes can be read as follows, for 
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example in SiO2-NP_synthesis attribute, silica nanoparticles were synthesized at low temperatures 

(e.g., sol-gel) for 65% of 4124 samples and at high temperatures (e.g., flame pyrolysis) for 11% of 

samples, while the remaining 24% did not report the synthesis method. The median of primary size, 

exposure time, concentration, and surface area were 25 nm, 24 hour, 75 μg/mL, and 109 m2/g, 

respectively. Abbreviations were provided in the dataset (Nanosilica Dataset File). 
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Figure S2. Complete Local Interpretability by CatBoost Model (Main Dataset: 4124 samples). For 
categorical attributes, red indicates the presence of attribute value, whereas blue indicates the absence 
of attribute value. For example, red of Cell_id_NIH/3T3 means that the presence of NIH/3T3 cells 
drives the output of the model towards cytotoxicity, whereas blue drives the output towards 
noncytotoxicity. 
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Figure S3. Prediction Probability of Noncytotoxity by CatBoost Model (Main Dataset: 4124 samples). 

The prediction probability of CatBoost to output noncytotoxic class at a given condition of one 

attribute only: (A,B) Primary size, (C) Surface area, and (D) Exposure time.  
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Figure S4. Decision Tree (Main Dataset: 4124 samples). (A) The nested cross-validation (10-fold) accuracy of decision tree vs. the depth of decision tree 

(max_depth). (B) A single decision tree with max_depth of 4 (nested cross-validation accuracy: 73.4±1.9%; accuracy of 64.6% [ 1223
(324$1223

] will be obtained 

by a model that always generates a noncytotoxic class). Notably, 86.1% ( (513
1(5$(513

) of silica nanoparticles with concentrations ≤43.5 μg/mL was associated 

with noncytotoxicity. 
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Figure S5. Predictive Accuracy of External Validation with Incrementally Added Attributes. An 

accuracy of 75.1% ( 264
264$117

) will be attained by a model that always generates a noncytotoxic class 

in this independent dataset (905 samples). 
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Figure S6. Prediction Errors of CatBoost Model for Eight Sets of In-house Experiments (136 Samples). 

Green and red markers indicate noncytotoxicity and cytotoxicity, respectively. Correctly classified 

samples have either a green or red marker, whereas misclassified samples have markers that are a 

combination of both colors. 
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Figure S7. Prediction Errors of CatBoost Model for 47 Sets of Experiments (769 Samples). Green and 

red markers indicate noncytotoxicity and cytotoxicity, respectively. Correctly classified samples have 

either a green or red marker, whereas misclassified samples have markers that are a combination of 

both colors. 
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Figure S8. Decision Plots of Independent Dataset by CatBoost Model (905 samples). (A) Decision 

plot of predicted SiO2-NP toxicity. Solid and dashed lines indicate correctly classified and 

misclassified samples, respectively. Separate decision plots of (B) correctly classified and (C) 

misclassified samples. 
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Table S1. List of Removed Dummy Features 

No Attributes Removed Dummy Features  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

'Primary_size_verification', 

'Hydrodynamic_size_water_nm’, 

'Hydrodynamic_size_culture_nm’, 

'Hydrodynamic_size_serum_nm, 

'PDI_water, 

'PDI_culture, 

'Exposure_medium', 

'Positive_control’, 

'Positive_control_inducer', 

'Interference_testing ', 

'SiO$_{2}$NP_medium_serum', 

'Zeta_potential_water_mV', 

'Zeta_potential_PBS/HBSS_mV', 

'Zeta_potential_culture_mV ', 

'Zeta_potential_serum_mV, 

'Surface_charge_water, 

'Surface_charge_culture, 

'Surface_modification, 

'SiO$_{2}$NP_label, 

'SiO$_{2}$NP_source, 

'SiO$_{2}$NP_synthesis, 

'SiO$_{2}$NP_shape, 

'Cell_source, 

'Cell_age, 

'Cell_id', 

'Cell_disease, 

'Cell_culture, 

'Cell_organ, 

'Cell_morphology, 

'Assay_viability, 

'Viability_mechanism, 

'Viability_indicator' 

'Primary_size_verification_not_verified', 

'Hydrodynamic_size_water_nm_not_determined', 

'Hydrodynamic_size_culture_nm_not_determined', 

'Hydrodynamic_size_serum_nm_not_determined', 

'PDI_water_not_determined', 

'PDI_culture_not_determined', 

'Exposure_medium_M199', 

'Positive_control_not_included', 

'Positive_control_inducer_not_available', 

'Interference_testing_not_performed', 

' SiO$_{2}$NP_medium_serum_15%_FBS', 

'Zeta_potential_water_mV_not_determined', 

'Zeta_potential_PBS/HBSS_mV_not_determined', 

'Zeta_potential_culture_mV_not_determined', 

'Zeta_potential_serum_mV_not_determined', 

'Surface_charge_water_positive', 

'Surface_charge_culture_not_determined', 

'Surface_modification_CHO', 

'SiO$_{2}$NP_label_none', 

'SiO$_{2}$NP_source_in_house', 

'SiO$_{2}$NP_synthesis_not_available', 

'SiO$_{2}$NP_shape_rod', 

'Cell_source_hamster', 

'Cell_age_embryonic', 

'Cell_id_MPMC/3t3', 

'Cell_disease_carcinoma', 

'Cell_culture_primary', 

'Cell_organ_heart', 

'Cell_morphology_microglia', 

'Assay_viability_Sytox_Red', 

'Viability_mechanism_Cell_growth', 

'Viability_indicator_live_cell' 
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Table S2. Hyperparameter Settings for 12 Machine Learning Algorithms for Internal Validation (80% 

Main Dataset) 

Machine Learning Hyperparameters (tested range) Optimal Hyperparameters 

Linear   36 Attributes 13 Key Attributes 

 LDA solver ∈ [‘svd’, ‘lsqr’, ‘eigen’] 
 

solver = ‘lsqr’ solver = ‘lsqr’ 

 LR C ∈ [10-5, 10-4, 10-3, ..., 104, 105] 
 

C = 105 C = 10-2 

 Ridge alpha ∈ [10-5, 10-4, 10-3, ..., 104, 105] alpha = 102 alpha = 102 

Nonlinear 
 

 
 

Kernel 
 

 
 

 KNN n_neighbors ∈ [1, 3, 5, ..., 97, 99] 
 

n_neighbors = 1 n_neighbors = 1 

 SVM  C ∈ [1.0, 102, 103, ..., 109, 1010],  

gamma ∈ [1.0, 10-1, 10-2, ..., 10-9, 10-10] 

C = 108, gamma = 1 C = 108, gamma = 1 

Tree-based 

 DT criterion ∈ [‘gini’,’entropy’], splitter ∈ ['best', 

'random'], max_depth ∈ [20, 25, …, 40, 45, 50], 

min_samples_split ∈ [2, 3, 4] 
 

criterion = entropy, splitter 

= random, max_depth = 35, 

min_samples_split = 2 

criterion = gini, splitter = 

random, max_depth = 25, 

min_samples_split = 2 

 Extra Trees n_estimators ∈ [100, 200, 300, …, 1400, 1500] n_estimators = 800 n_estimators = 300 

 RF n_estimators ∈ [100, 200, 300, …, 1400, 1500] n_estimators = 300 n_estimators = 500 

 CatBoost learning_rate ∈ [0.03, 0.04, 0.05, …, 0.09, 0.1], 

max_depth ∈ [3, 4, 5, …, 9, 10] 

learning_rate = 0.07 

max_depth = 9 

learning_rate = 0.08 

max_depth = 7 

 GB learning_rate ∈ [0.03, 0.04, 0.05, …, 0.09, 0.1], 

max_depth ∈ [3, 4, 5, …, 9, 10] 

learning_rate = 0.09, 

max_depth = 7 

learning_rate = 0.1, 

max_depth = 9 

 LightGBM learning_rate ∈ [0.03, 0.04, 0.05, …, 0.09, 0.1], 

max_depth ∈ [3, 4, 5, …, 9, 10] 

learning_rate = 0.09, 

max_depth = 10 

learning_rate = 0.1, 

max_depth = 8 

 XGBoost learning_rate ∈ [0.03, 0.04, 0.05, …, 0.09, 0.1], 

max_depth ∈ [3, 4, 5, …, 9, 10] 

learning_rate = 0.09, 

max_depth = 10 

learning_rate = 0.1, 

max_depth = 9 

Footnotes: 10-fold nested cross validation with a fixed random state of 2022 was used in grid-search 

for inner evaluations (other hyperparameters were set to default values, feature scaling was applied 

for the linear and kernel classifiers). LDA, linear discriminant analysis; LR, logistic regression; DNN, 

deep neural network; KNN, k-nearest neighbors; SVM, support vector machine; DT, decision tree; 

Extra Trees, extremely randomized trees; RF, random forest; CatBoost, categorical boosting; GB, 

gradient boosting; LightGBM, light gradient boosting machine; XGBoost, extreme gradient boosting. 
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Table S3. Hyperparameter Settings for 12 Machine Learning Algorithms for External Validation 

(100% Main Dataset) 

Machine Learning Hyperparameters (tested range) Optimal Hyperparameters 

Linear 
  

13 Key Attributes 
12 Key Attributes  

(dropped serum) 

 LDA solver ∈ [‘svd’, ‘lsqr’, ‘eigen’] 
 

solver = ‘lsqr’ solver = ‘lsqr’ 

 LR C ∈ [10-5, 10-4, 10-3, ..., 104, 105] 
 

C = 104 C = 105 

 Ridge alpha ∈ [10-5, 10-4, 10-3, ..., 104, 105] alpha = 100 alpha = 0.1 

Nonlinear 
 

 
 

Kernel 
 

 
 

 KNN n_neighbors ∈ [1, 3, 5, ..., 97, 99] 
 

n_neighbors = 1 n_neighbors = 1 

 SVM  C ∈ [1.0, 102, 103, ..., 109, 1010],  

gamma ∈ [1.0, 10-1, 10-2, ..., 10-9, 10-10] 

C = 108, gamma = 0.1 C = 107, gamma = 1 

Tree-based 

 DT criterion ∈ [‘gini’,’entropy’], splitter ∈ ['best', 

'random'], max_depth ∈ [20, 25, …, 40, 45, 50], 

min_samples_split ∈ [2, 3, 4] 
 

criterion = gini, splitter = 

random, max_depth = 30, 

min_samples_split = 2 

criterion = entropy, splitter 

= random, max_depth = 50, 

min_samples_split = 3 

 Extra Trees n_estimators ∈ [100, 200, 300, …, 1400, 1500] n_estimators = 200 n_estimators = 700 

 RF n_estimators ∈ [100, 200, 300, …, 1400, 1500] n_estimators = 1500 n_estimators = 900 

 CatBoost learning_rate ∈ [0.03, 0.04, 0.05, …, 0.09, 0.1], 

max_depth ∈ [3, 4, 5, …, 9, 10] 

learning_rate = 0.05 

max_depth = 7 

learning_rate = 0.04 

max_depth = 7 

 GB learning_rate ∈ [0.03, 0.04, 0.05, …, 0.09, 0.1], 

max_depth ∈ [3, 4, 5, …, 9, 10] 

learning_rate = 0.09, 

max_depth = 8 

learning_rate = 0.08 

max_depth = 8 

 LightGBM learning_rate ∈ [0.03, 0.04, 0.05, …, 0.09, 0.1], 

max_depth ∈ [3, 4, 5, …, 9, 10] 

learning_rate = 0.09, 

max_depth = 9 

learning_rate = 0.1 

max_depth = 10 

 XGBoost learning_rate ∈ [0.03, 0.04, 0.05, …, 0.09, 0.1], 

max_depth ∈ [3, 4, 5, …, 9, 10] 

learning_rate = 0.09, 

max_depth = 10 

learning_rate = 0.1 

max_depth = 9 

Footnotes: 10-fold nested cross validation with a fixed random state of 2022 was used in grid-search 

for inner evaluations (other hyperparameters were set to default values, feature scaling was applied 

for the linear and kernel classifiers). LDA, linear discriminant analysis; LR, logistic regression; DNN, 

deep neural network; KNN, k-nearest neighbors; SVM, support vector machine; DT, decision tree; 

Extra Trees, extremely randomized trees; RF, random forest; CatBoost, categorical boosting; GB, 

gradient boosting; LightGBM, light gradient boosting machine; XGBoost, extreme gradient boosting. 
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Table S4. Cell Viability Assay 

A549 cell lines 
Our in-house experiments used SiO2-NPs with primary sizes of 10, 50, and 100 nm on human lung 
epithelial A549 cells for 24, 48, 72, and 96 h, with a total of 87 samples. A549 cells were obtained 
from American Type Culture Collection (ATCC; Manassas, VA, USA) and cultured in Dulbecco’s 
modified Eagle’s medium (DMEM, high glucose [4.5 g/L]) supplemented with 10% inactivated 
fetal bovine serum (FBS) and a 1% antibiotic cocktail at 37 °C in 5% CO2. A549 cells were seeded 
in 96-well plates (10,000 cells/100 µL) and incubated overnight in culture media. Next, they were 
exposed to SiO2-NPs for 24–96 h. Various concentrations of SiO2-NPs (5–500 µg/mL) were 
prepared via dilution with 10% FBS-DMEM. Cell viability was evaluated using the WST-8 assay. 
SH-SY5Y cell lines 
Our in-house experiments also examined the effects of SiO2-NPs with primary sizes of 10, 50, 70, 
100, 300, and 1000 nm on the human-derived neuroblastoma cell line SH-SY5Y (29 samples). SH-
SY5Y cells were acquired from ATCC and cultured in DMEM/Ham’s F-12 supplemented with 10% 
inactivated FBS and a 1% antibiotic cocktail at 37 °C in 5% CO2. SH-SY5Y cells were seeded in 
96-well plates (20,000 cells/100 µL) and incubated overnight in culture media. They were then 
exposed to SiO2-NPs for 72 h. SiO2-NPs were diluted to various concentrations (3.125–100 µg/mL) 
in culture media containing serum. Again, WST-8 assay was used to examined cell viability. 
TM4 cell lines 
In in-house experiments, we employed SiO2-NPs with primary sizes of 30 nm on mouse testis 
epithelial TM4 cells (eight samples). TM4 cells were obtained from ATCC and cultured in DMEM 
supplemented with 10% inactivated FBS and a 1% antibiotic cocktail at 37 °C in 5% CO2. TM4 
cells were seeded in 96-well plates (10,000 cells/50 µL) and incubated overnight in culture media 
before exposure to SiO2-NPs for 24 h. SiO2-NPs were prepared in various concentrations (0.0128–
100 µg/mL) via dilution with culture media containing serum. Cell viability was also examined 
using the WST-8 assay. 
BeWo cell lines 
Our in-house experiments subjected human choriocarcinoma cell line BeWo (six samples) to SiO2-
NPs with primary sizes of 10 nm. BeWo cells were acquired from the Japanese Collection of 
Research Bioresources Cell Bank (JCRB9111; Osaka, Japan) and cultured in Ham’s F-12 medium 
supplemented with 10% inactivated FBS and a 1% antibiotic cocktail at 37 °C in 5% CO2. BeWo 
cells were seeded in 96-well plates (1,000 cells/200 µL) and incubated overnight in culture media. 
Then, they were exposed to SiO2-NPs for 48 h. Various concentrations of SiO2-NPs (3.125–400 
µg/mL) were prepared via dilution with culture media containing serum. Cell viability was 
measured with the colorimetric dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide 
(MTT, Tokyo Chemical Industry, Tokyo, Japan) in accordance with the manufacturer’s instructions.  
RAW 264.7 cell lines 
In these in-house experiments, we used SiO2-NPs with primary sizes of 70, 300, and 1000 nm on 
mouse macrophage RAW 264.7 cells (six samples). RAW 264.7 cells were obtained from ATCC 
and cultured in DMEM supplemented with 10% inactivated FBS and a 1% antibiotic cocktail at 
37 °C in 5% CO2. RAW 264.7 cells (1,500 cells) were seeded and then incubated overnight in 
culture media before being exposed to SiO2-NPs for 120 h. SiO2-NPs were diluted to 10 and 30 
µg/mL in culture media containing serum. Cell viability was again evaluated using the WST-8 assay. 
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Table S5. Prediction-Error Comparisons: External Validation (12 Key Attributes and 905 Samples) 

Machine Learning nCV10-fold Accuracy AUC-ROC Recall Precision 

Linear      

 LDA 71.6±1.6% 56.9% 62.4% 50.2% 28.9% 

 LR 73.1±1.9% 55.5% 62.1% 55.6% 29.2% 

 Ridge 72.9±1.7% 58.1% 65% 60.4% 31.9% 

Nonlinear      

 DNN 73.3±2.2% 63.9% 63.5% 52.8% 35.1% 

Kernel      

 KNN 84.1±1.0% 68.1% 64.8% 58.2% 40.2% 

 SVM  84.7±1.9% 76.1% 50% 4.0% 100.0% 

Tree-based      

 DT 84.7±0.8% 72.6% 63.0% 46.7% 45.1% 

 Extra Trees 85.3±1.2% 79.4% 81.0% 44.0% 62.3% 

 RF 86.5±1.3% 79.6% 83.3% 43.1% 63.0% 

 CatBoost 88.7±1.3% 80.7% 84.4% 53.3% 63.2% 

 GB 88.1±1.6% 81.3% 86.1% 62.2% 62.5% 

 LightGBM 87.2±1.6% 78.7% 83.0% 56.4% 57.2% 

 XGBoost 87.1±1.3% 79.9% 84.1% 54.7% 60.6% 

Footnotes: The predictive models with 12 key attributes were built by dropping the SiO2-
NP_medium_serum attribute. LDA, linear discriminant analysis; LR, logistic regression; DNN, deep 
neural network; KNN, k-nearest neighbors; SVM, support vector machine; DT, decision tree; Extra 
Trees, extremely randomized trees; RF, random forest; CatBoost, categorical boosting; GB, gradient 
boosting; LightGBM, light gradient boosting machine; XGBoost, extreme gradient boosting. 
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Chapter 2: Computational drug design guided by machine learning for urate 

transporter 1 (URAT1) 

Background 

In renal tubules, urate transporter 1 (URAT1) facilitates the reabsorption of over 90% of uric acid 

through an ion-exchange mechanism. Given its significant role, URAT1 emerges as a promising target 

for the development of innovative anti-hyperuricemic drugs. Currently, five major uricosuric drugs—

probenecid, sulfinpyrazone, benzbromarone, lesinurad, and dotinurad—have entered the market, and 

verinurad, a lesinurad analogue, is undergoing phase II clinical studies. However, the clinical use of 

existing URAT1 inhibitors is constrained by severe adverse effects, notably liver and kidney toxicity, 

necessitating the development of safer and more potent URAT1 inhibitors.72–74 

Computer-aided drug design can boost drug development efficiency and involves two primary 

methods: structure-based drug design and ligand-based drug design (LBDD). In the absence of a high-

resolution three-dimensional (3D) structure of URAT1, LBDD emerges as a promising approach for 

drug discovery, relying solely on small molecule information. A crucial consideration for LBDD is the 

utilization of available data resources to identify new and innovative leads. While many researchers 

commonly employ ChEMBL75 as a key resource for activity data, it is important to note that ChEMBL 
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curates a limited dataset specific to a target protein rather than drawing from global evidence. 

In this study, we present an LBDD pipeline aimed at identifying promising potential lead 

compounds for URAT1 by uniting literature data mining and machine learning. Due to its training on 

the physicochemical properties and fingerprints of compounds, the proposed LBDD pipeline has the 

potential to proficiently pinpoint unique compound skeletons with similar traits. The pipeline initiates 

with the extraction of URAT1 inhibitors data from a comprehensive dataset sourced from global 

evidence (aggregate of scientific and patent publications). Subsequently, a prediction model is 

constructed to distinguish between high and low active inhibitors, employing key descriptors and a 

counteractivity explanation. The model is then utilized to generate innovative potential lead 

compounds from a massive ZINC database, incorporating the model's probability, principal 

component, Tanimoto coefficient, and predicted absorption, distribution, metabolism, and excretion 

(ADME) parameters by DruMAP76.  

Methods 

Literature data mining 

Three comprehensive patent reviews on the activity of URAT1 inhibitors served as the basis for the 

literature data evaluation in this study. These reviews, conducted by Pan et al.,72 Dong et al. ,73 and 
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Shi et al.74 covered patent literature published up to 2015, 2019, and 2023 respectively. The PubMed 

database was also systematically searched for scientific publications using the following search 

strategy: (uric acid transporter 1 [tiab] OR uric acid transporter [tiab] OR urate transporter 1 [tiab] OR 

urate transporter [tiab] OR URAT1 [tiab] OR hURAT1 [tiab] OR urate reabsorption [tiab] OR potent 

uric acid [tiab] OR antihyperuricemic [tiab] OR antihyperuricemia [tiab]) AND (discovery [tiab] OR 

design [tiab] OR synthesis [tiab] OR structure–activity relationship [tiab] OR structure–activity 

relationships [tiab]OR SAR [tiab] OR derivatives [tiab] OR derivative [tiab] OR ligand [tiab] OR 

analog [tiab] OR analogs [tiab] analogue [tiab] OR analogues [tiab] OR ligands [tiab] OR compounds 

[tiab] OR compound [tiab] OR scaffolds [tiab] OR scaffold [tiab] OR novel [tiab]). The selection of 

literature adhered to the PICOS framework32 of evidence-based medicine, ensuring consistency and 

reliability across the chosen studies. The criteria for inclusion were: (1) a population involving 

URAT1; (2) the intervention and comparison focusing on test compounds vs. a positive control; (3) 

the outcome centered on IC50 (half-maximal inhibitory concentration) as the activity metric; and (4) 

the study design being an in vitro structure-activity relationship study. Exclusion criteria encompassed 

non-isolated compounds (e.g., extracts), abstract articles, and other non-relevant studies. In total, 25 

scientific77–101 and 75 patent72–74 publications meeting the inclusion criteria were incorporated. 

Systematic extraction of structural information with SMILES (simplified molecular-input line-entry 
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system) and IC50 resulted in a dataset comprising 2717 nonduplicate compounds. De-duplication of 

compounds was implemented by excluding the minority class and subsequently computing the mean 

of IC50 values. For example, if there are seven IC50 values, where five belong to high activity and two 

to low activity, the mean was calculated using the five IC50 values from the high active class. The high 

active class has IC50 values less than or equal 500 nM, and the low active class has IC50 value greater 

than 500 nM. A threshold of 500 nM was implemented based on IC50 values of major uricosuric 

inhibitors exhibiting low (lesinurad [IC50 = 6.5 µM],84 probenecid [IC50 = 15 µM],84 sulfinpyrazone 

[IC50 = 716 µM]80) and high activity (benzbromarone [IC50 = 280 nM],89 verinurad [IC50 = 170 nM],100 

and dotinurad [IC50 = 360 nM, patent CN112430221B]). The selected threshold aimed to identify 

compounds with IC50 values similar to highly potent clinical trial compounds (benzbromarone, 

verinurad, dotinurad). It also led to a balanced dataset, with the ratio of high and low active URAT1 

inhibitors approaching 1:1. Maintaining a balanced dataset is crucial to prevent machine learning 

model from exhibiting bias towards a specific class. IC50 were converted to binary labels: "1" (≤500 

nM, high active) and "0" (>500 nM, low active). SMILES was standardized using 

ChEMBL_Structure_Pipeline102 package. 

Feature engineering 

Physicochemical descriptors were calculated using Mordred (v1.2.0)103, RDKit, and MOE 
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(Molecular Operating Environment, v2022.02) software. Molecular fingerprints were calculated using 

RDKit to describe MACCS (166 bits) and Morgan fingerprints (2048 bits with radius 2, 2048 bits with 

radius 3, 4096 bits with radius 2, and 4096 bits with radius 3). Molecular fingerprints serve as a 

technique for portraying a molecule through a series of binary bits, indicating either activation (“1”) 

or deactivation (“0”), while still retaining essential information about the molecular composition. 

Physicochemical descriptors and molecular fingerprints were combined, yielding a total of 13,959 

features. 

Initially, feature selection involved eliminating features with Pearson correlation coefficients 

exceeding 0.9, resulting in 8,874 features. The Boruta package, acting as a wrapper for a Random 

Forest classification algorithm, was utilized to identify relevant features with a threshold set at 

99.999999%, resulting in a selection of 186 features. 

Machine learning 

Nine established machine-learning algorithms were utilized (1) linear discriminant analysis (LDA), 

(2) logistic regression (LR), (3) k-nearest neighbors (KNN), (4) decision tree (DT), (5) random forest 

(RF), (6) categorical boosting (CatBoost), (7) gradient boosting (GB), (8) light gradient boosting 

machine (LightGBM), and (9) extreme gradient boosting (XGBoost), categorized as linear (1-2), 

nonlinear kernels (3), and nonlinear tree-based classifiers (4-9). The scikit-learn (v1.0.2), CatBoost 

(v1.0.4), LightGBM (v3.3.2), and XGBoost (v1.5.1) packages in Python 3.10 were employed for 
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implementation.  

The dataset, containing 2717 samples, underwent shuffling and was split into training (80%) and 

test (20%) sets via random stratified sampling. Predictive models with binary classification were 

initially developed using 80% of the dataset, and the 186 selected features were incrementally added 

to those previously selected by the Shapley Additive exPlanation (SHAP)104, employing the CatBoost 

algorithms. Split-sample validation was conducted with the remaining 20% of the dataset, independent 

of model building, and SHAP values were used to identify key features that contributed to optimal 

predictive performance. Predictive models were then reconstructed using 80% of the dataset with the 

identified key features, using the 9 machine-learning algorithms. Final predictive models were 

constructed using the entire dataset and identified key features as a final training set. Ten-fold nested 

cross-validation (nCV)105 was applied, and the models were fine-tuned using GridSearchCV to obtain 

optimal hyperparameters. SHAP values of the identified key features were calculated for principal 

component analysis. Counteractive explanations, implemented through the use of the exmol106 

package, were employed to address the question of “what is the smallest alteration to the compound 

structures that would modify their activity”. Essentially, a counteractive compound closely resembles 

the original compound but results in a different activity.  

The evaluation metrics were based on AUC-ROC (area under the curve of the true-positive rate or 
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recall [ !"
!"	$	&%

] vs. false-positive rate [ &"
&"$	!%

]), recall, and precision & !"
!"	$	&"

', and accuracy (1 −

!"	$	!%
!"	$	&"$	!%$&%

), where TP, TN, FP, and FN represent true positive, true negative, false positive, and 

false negative, respectively. 

Prioritization of potential lead compounds from ZINC database 

ZINC15 database, available at https://zinc15.docking.org/, was obtained, encompassing 4,167,324 

purchasable (in-stock) compounds with lead-like and fragment-like properties. Potential hit 

compounds were identified by considering (1) the optimal prediction probability from the final 

predictive model, (2) principal component 1 (PC1) generated by SHAP vectors of the identified key 

features using the final predictive model, and (3) structural similarity between ZINC compounds and 

the final training dataset. The maximum common substructure-based Tanimoto coefficient107 scores 

on RDKit were employed to compute structural similarity, and a golden ratio of Tanimoto scores less 

than 0.382 was used to select novel potential hit scaffolds. Potential leads were generated by utilizing 

DruMAP to predict ADME of the novel potential hit scaffolds, with hepatic intrinsic clearance in liver 

microsome (CLint), fraction absorbed (Fa), and fraction unbound in plasma (fu,p) as ADME metrics.   
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Results 

Literature data curation 

We gathered URAT1 inhibitors data for 2717 compounds, sourcing from 100 publications spanning 

the years 2007 to 2023. Utilizing the 500 nM cutoff, 42% of the compounds were high active, while 

58% were low active.  

 
Figure 2.1. Feature importance for URAT1 inhibitors, based on CatBoost. (A) Global interpretability 

for the average absolute SHAP value magnitudes. (B) Predictive AUC-ROC of split-sample validation 

with incrementally increasing features. SHAP, Shapley Additive exPlanations. 

Feature Importance 

We utilized feature importance for identifying key feature via SHAP values with CatBoost. Based 

on the feature importance (Figure 2.1A), we identified the top 14 features that resulted to optimal 

predictive AUC-ROC (Figure 2.1B), arranging them in order of importance: mordred_PEOE_VSA11, 
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Morgan_2_2048_bit1957, MOE_PEOE_VSA+3, MOE_GCUT_SMR_1, mordred_PEOE_VSA10, 

mordred_JGI5, MOE_h_pstates, mordred_ATSC6Z, mordred_ATSC8se, mordred_Xc-3dv, 

mordred_JGI1, mordred_ATSC6p, mordred_ATSC3Z, and mordred_PEOE_VSA8. The description of 

each feature is shown in Table 2.1. 

Table 2.1. Description of features 

Descriptor Description 

mordred_PEOE_VSA11 MOE Charge VSA Descriptor 11 ( 0.15 <= x < 0.20). 

Morgan_2_2048_bit1957 

 
MOE_PEOE_VSA+3 Sum of vi where qi is in the range [0.15,0.20), where vi be the van der Waals surface area (Å2) of 

atom i (as calculated by a connection table approximation). 

MOE_GCUT_SMR_1 The GCUT descriptors using atomic contribution to molar refractivity (using the Wildman and 

Crippen SMR method) instead of partial charge. 

mordred_PEOE_VSA10 MOE Charge VSA Descriptor 10 ( 0.10 <= x < 0.15). 

mordred_JGI5 5-ordered mean topological charge. 

MOE_h_pstates The entropic count or fractional number of protonation states. 

mordred_ATSC6Z Centered moreau-broto autocorrelation of lag 6 weighted by atomic number. 

mordred_ATSC8se Centered moreau-broto autocorrelation of lag 8 weighted by sanderson EN. 

mordred_Xc-3dv 3-ordered Chi cluster weighted by valence electrons. 

mordred_JGI1 1-ordered mean topological charge. 

mordred_ATSC6p Centered moreau-broto autocorrelation of lag 6 weighted by polarizability. 

mordred_ATSC3Z Centered moreau-broto autocorrelation of lag 3 weighted by atomic number. 

mordred_PEOE_VSA8 MOE Charge VSA Descriptor 8 ( 0.00 <= x < 0.05). 

  Split-sample validation 

A primary evaluation metric of the split-sample validation is AUC-ROC (Table 2.2). Tree-based 

classifiers demonstrated satisfactory AUC-ROCs ranging from 89.0% to 90.3%, with CatBoost 
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exhibiting the best performance (AUC-ROC: 90.3%, precision: 82.1%, recall: 76.3%, and accuracy: 

83.1%). Linear, KNN, and DT exhibited AUC-ROCs of 76.9% to 86.0%. 

Table 2.2. Prediction-error comparisons: Split-sample validation (14 key features and 20% test set) 

Machine Learning AUC-ROC Precision Recall Accuracy 

Linear     

 LDA 78.2% 75.3% 52.2% 72.8% 

 LR 78.3% 69.9% 53.9% 71.0% 

Nonlinear     

Kernel     

 KNN 86.0% 74.9% 73.2% 78.5% 

Tree-based     

 DT 76.9% 70.3% 68.4% 74.6% 

 RF 89.0% 82.4% 71.9% 81.8% 

 CatBoost 90.3% 82.1% 76.3% 83.1% 

 GB 89.0% 79.0% 74.1% 80.9% 

 LightGBM 90.0% 79.9% 75.0% 81.6% 

 XGBoost 89.0% 79.6% 73.7% 81.1% 

Footnotes: LDA, linear discriminant analysis; LR, logistic regression; KNN, k-nearest neighbors; DT, 

decision tree; RF, random forest; CatBoost, categorical boosting; GB, gradient boosting; LightGBM, 

light gradient boosting machine; XGBoost, extreme gradient boosting. 

Final predictive model 

We constructed final predictive models using the 14 key features and entire dataset (2717 

compounds) and obtained robust nCV AUC-ROCs (Table 2.3), with CatBoost exhibiting satisfactory 

performance (AUC-ROC: 89.3±1.3%, precision: 79.8±2.3%, recall: 77.7±3.8%, and accuracy: 

82.4±1.7%).  
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Table 2.3. Prediction-error comparisons: 10-fold nCV (14 key features and entire dataset) 

Machine Learning AUC-ROC Precision Recall Accuracy 

Linear     

 LDA 77.1±2.2% 71.1±3.6% 50.6±2.6% 70.7±1.7% 

 LR 77.2±1.9% 68.7±4.1% 53.7±2.9% 70.3±2.3% 

Nonlinear     

Kernel     

 KNN 86.2±2.6% 73.6±4.1% 76.4±3.9% 78.5±2.7% 

Tree-based     

 DT 78.0±3.3% 70.1±4.6% 68.6±5.1% 74.5±3.1% 

 RF 89.4±2.2% 79.7±4.3% 76.8±3.3% 82.0±2.7% 

 CatBoost 89.3±1.3% 79.8±2.3% 77.7±3.8% 82.4±1.7% 

 GB 88.4±2.0% 77.8±2.9% 74.9±2.8% 80.4±1.3% 

 LightGBM 88.5±2.5% 78.0±5.2% 76.6±4.6% 81.0±2.9% 

 XGBoost 88.6±2.2% 78.3±4.2% 76.6±3.7% 81.2±2.5% 

Footnotes: LDA, linear discriminant analysis; LR, logistic regression; KNN, k-nearest neighbors; DT, 

decision tree; RF, random forest; CatBoost, categorical boosting; GB, gradient boosting; LightGBM, 

light gradient boosting machine; XGBoost, extreme gradient boosting.  

We analyzed the SHAP-value distribution of the 14 key features across the final training set using 

CatBoost. According to the SHAP local explanation summary (Figure 2.2A), a larger value of 

MOE_PEOE_VSA+3, mordred_PEOE_VSA10, mordred_JGI5, MOE_h_pstates, 

mordred_PEOE_VSA11, and mordred_ATSC3Z were associated with reduced activity effects. In 

contrast, a higher value of Morgan_2_2048_bit1957, MOE_GCUT_SMR_1,  mordred_ATSC6Z, 

mordred_ATSC8se, mordred_Xc-3dv, mordred_JGI1, mordred_ATSC6p, and mordred_PEOE_VSA8 

were associated with high activity.  
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A visualization plot was generated to compare the CatBoost model's predicted and observed pIC50 

(negative logarithm of IC50) values, revealing a correlation between the model's probability and 

precision performance (Figure 2.2B). Specifically, a precision of 95.9% can be attained when the 

model's probability output is ≥ 98% (log odds ≥ 3.9). Additionally, an analysis of the SHAP vector of 

14 key features showed a correlation between PC1 (23.3% of explained SHAP vector variance) and 

precision performance (Figure 2.2C), where a precision of 95.2% is associated with PC1 values ≤ –

2.67. 

We then proceeded to provide a quantitative analysis of URAT1 inhibitors, distinguishing between 

those with high and low activity, utilizing 14 key descriptor features with verinurad and lesinurad as 

representative inhibitors (Figure 2.3). We derived counteractive compounds to explore minimal 

alterations to the structures of both verinurad and lesinurad that could impact their respective activity 

levels. In essence, counteractive compounds closely resemble the originals but result in a shift from 

high to low activity in verinurad and vice versa in lesinurad. Through counteractive explanations, our 

analysis indicated that modifying the teal-colored carboxylic acid group or methyl group of verinurad 

could offer insights into the specific substructures responsible for its high activity (Figure 2.3A). 

Additionally, introducing an additional NH or Br group to lesinurad was identified as a potential 

enhancement for its activity (Figure 2.3B). 
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Figure 2.2. Final model, based on CatBoost. (A) Local interpretability, with each dot corresponding to 

a compound of URAT1 inhibitors obtained from entire dataset. (B) Prediction-error of nested cross 

validation using 14 key features from entire dataset. (C) SHAP vector using 14 key features from entire 

dataset. PC1 and PC2 explains 23.3% and 11.2% of SHAP vector variance, respectively. High*, 

compounds exhibiting ≥98% probability of belonging to high active class. (D) Screening of ZINC 

compounds using final CatBoost model. pHigh, ZINC compounds exhibiting ≥98% probability of 

belonging to high active class. nCV, nested cross-validation; PC, principal component; SHAP, Shapley 

Additive exPlanations; URAT1, urate transporter 1. 
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Figure 2.3. Activity explanation using physicochemical properties and molecular structures for (A) 

verinurad and (B) lesinurad, based on CatBoost. The positive and negative values of f(x) = 2.479 and 

f(x) = –2.963 correspond to the high active and low active classes, respectively. Teal color represents 

alterations made to the base molecule, while counteractive depicts the specific modifications that 

render the activity of base molecule against URAT1. URAT1, urate transporter 1 

Prioritization of promising potential lead compounds from ZINC database 

To generate potential leads from ZINC15 database, we implemented various filtering steps (Figure 

2.4). Initially, we removed any duplicated ZINC compounds, yielding 3,457,766 compounds. We 

predicted this list of compounds using final CatBoost model and kept 42,594 compounds exhibiting ≥ 

98% probability (corresponds to 95.9% precision). We then filter these compounds using PC1 and kept 

9,760 compounds exhibiting PC1 values ≤ –2.67 (corresponds to 95.2% precision, Figure 2.2D). Next, 

we identified 7,082 novel potential hit compounds using Tanimoto coefficient. Finally, we obtained 
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22 promising potential lead compounds exhibiting good ADME properties, i.e., stable CLint of less 

than 20 μL/min/mg, high Fa of more than 0.7, and low fu,p of less than 0.05 using DruMAP. 

 

Figure 2.4. Ligand-based drug design (LBDD) pipeline for identifying innovative potential lead 

compounds from ZINC database. CLint, hepatic intrinsic clearance in liver microsome; Fa, fraction 

absorbed; fu,p, fraction unbound in plasma. 

Discussion 

The bespoke LBDD pipeline presents a promising workflow for identifying novel chemical scaffolds 

targeting URAT1 without a high-resolution 3D structure. The pipeline is currently confined to URAT1 

but holds the potential to extend its applicability to other targets. To our knowledge, this study is the 

first LBDD approach incorporating global evidence to develop machine learning models to 

discriminate high from low active URAT1 inhibitors. Other methods like transfer learning could 

provide alternative strategy, by using a large chemical space as the training source. Compared with a 

dataset from ChEMBL (approximately 600 compounds for URAT1 or SLC22A12), we have generated 

the largest dataset, containing 2717 URAT1 inhibitors, to train a successful machine learning model. 

Moreover, our CatBoost model offers insights into the different class activities of URAT1 inhibitors 
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by utilizing only 14 key features (13 physicochemical properties and 1 fingerprint) and counteractively 

generated compounds in the analysis. Other tree-based algorithms were not explored to identify key 

features due to computational constraints, considering CatBoost had already shown satisfactory 

performance. The focus was on the practical utility of the model, and the choice of CatBoost was 

driven by its effectiveness and efficiency for our specific objectives. 

An important part of our analysis involves attaining 95% precision, assessed from two perspectives: 

the model's probability and principal component of SHAP values. By supplementing these with the 

use of Tanimoto coefficient and DruMAP, we have identified 22 promising commercially available 

potential lead compounds with distinct skeletons, showing a similarity below 32.8% when compared 

with the known compounds. All these compounds are predicted to have ideal properties: high solubility 

(>10 μg/mL) at pH 7.4, stable intrinsic clearance (< 20 μL/min/mg), high fraction of a dose absorbed 

(>0.7), high apparent permeability coefficient (>100 nm/s), and low fraction unbound in plasma 

(<0.05). We anticipate that these compounds undergo experimental validation successfully and 

demonstrate potential therapeutic efficacy with favorable pharmacokinetic profiles against 

hyperuricemia.  

Apart from employing machine learning models for screening the ZINC database to acquire novel 

skeletons, scaffold hopping serves as a method to obtain compounds with distinct skeletons, and it is 

not strictly dependent on machine learning techniques. The process of scaffold hopping can be 

executed using chemical intuition.108  

A potential direction for future research involves developing a unified platform that encompasses 

activity, kinetics, and toxicity predictions, aiming to enhance the success rate of drug development. 

While incorporating DruMAP for predicted ADME assessment in the current LBDD pipeline is a 
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positive step, leveraging other publicly available web servers, such as ProTox-II,109 could offer 

supplementary information on the predicted toxicities of small molecules.  
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