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Introduction

In [2], van der Walt has defined s-prime ideals in noncommutative rings and
obtained analogous results of McCoy [1] for s-prime ideals. In the present
paper, we shall give a generalized concept of prime ideals, called f-prime ideals,
by using some family of ideals, and obtain analogous results in [2]. If our
family of ideals is, in particular, the set of principal ideals of the ring, the f-prime
ideals coincide with the prime ideals and conversely. In addition, if we take
multiplicatively closed systems as kernels, the f-prime ideals coincide with the
s-prime ideals.

1. f-prime ideals and the f-radical of an ideal

Let R be an arbitrary (associative) ring. Throughout this paper, the term
“ideals” will always mean “‘two-sided ideals in R”.

For each element a of R, we shall associate an ideal f(a) which is uniquely
determined by a and satisfies the following conditions:

(I) a=f(a), and

(II) x< fla)+A4 = f(x)< f(a)+ A4 for any ideal A4.

The principal ideal (a) generated by a is an example of the f(a), and this
is the case of [2]. Moreover there are other interesting examples of the f(a). For
example, let O be any subset of R. If we define, for each element a of R, f(a)=
(a, Q), the ideal generated by a and Q, then it is easy to see that f(a) satisfies the
above conditions. If, in particular, Q is the empty set, then the f(a) coincides
with the principal ideal (a).

REMARK. As is easily seen, the following four conditions are equivalent:

(i) For any element a of R, f(a)=(a),

(i)  f(0)=0,
(iif) For any ideal 4, x4 = f(x)C A4,
(iv) For any element a of R, x=(a) = f(x) S (a).

DrerFiniTION 1.1. A subset S of R is called an f-system if S contains an
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m-system S*, called the kernal of S, such that f(s)N S*=+¢ for every element s
of S. ¢ is also defined to be an f-system.

We note that every s-m-system in the sense of [2] is an f-system and also
every m-system is an f-system with kernel itself. In the sequel we shall denote
by S(S*) the f-system S with kernel S*, whenever it be convenient. We also
note that if S(S*) is an f-system, then S=¢ if and only if S*=¢.

DEFINITION 1.2, An ideal P is said to be f-prime if its complement C(P)
in R is an f-system.

R is evidently an f-prime ideal. Obviously an s-prime ideal in the sense
of [2] is a prime ideal in the sense of [1], and it follows from Lemma 1.4 below
that if we assume f(a)=(a) for every element a in R, then prime ideals are nothing

but f-prime ideals. But it can be shown that this is not always true with a suitable
choice of f(a).

ExampLE 1.3. Consider the ring Z of integers. Let P be the ideal (p*) and
let S* be the m-system {q, ¢*, ¢°,---}, where p and q are different prime numbers.
If we put f(a)=(a, q) for each element a in Z, then the complement C(P) of P in
Z is an f-system with kernel S*. Hence P is an f-prime ideal, but not a prime
ideal. 'This also shows that an f-prime ideal need not be an s-prime ideal, in
general.

Lemma 1.4. For any f-prime ideal P,
fla)f(a,)+ f(a,) S P = a;E P for some 1.

Proof. It is evident from the definition of f-systems.

Lemma 1.5. Let S(S*) be an f-system in R, and let A be an ideal in R
which does not meet S. Then A is contained in a maximal ideal P (in the class of
all ideals, each of ) which does not meet S. The ideal P is necessarily an f-prime ideal.

Proof. If S is empty, the assertion is trivial, and so suppose that S is not
empty. The existence of P follows from Zorn’s lemma. We now show that
C(P) is an f-system with kernel S*-+P. For any element a of C(P), the maximal
property of P implies that f(a)+ P contains an element s of .S, and thus we can
choose an element s* in f(s) N .S*.  Since f(s) is contained in f(a)+ P, we can write
s*=a'+p where @’ in f(a) and p in P. Then a'=s*—p is contained in f(a)N
(S*+P), which completes the proof of the lemma.

DrriNITION 1.6. The f-radical r(A4) of an ideal A will be defined to be
the set of all elements a of R with the property that every f-system which contains
a contains an element of A4.

Theorem 1.7. The f-radical of an ideal A is the intersection of all the f-
prime ideals containing A.
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Proof. We show that if P is an f-prime ideal containing A4, then 7(4) is
contained in P. For suppose that r(4) is not contained in P. Then there
exists an element x in 7(4) not in P. Since C(P) is an f-system, C(P)N A==¢.
But this contradicts the fact that 4 is contained in P. Hence r(A4) is contained
in the intersection of all f~prime ideals which contain A.

Conversely, let a be an element of R, but not in 7(4). Then there exists
an f-system S(S*) which contains a but does not meet 4. There exists,
by Lemma 1.5, an f-prime ideal P which contains 4 and does not meet .S. Hence,
P does not contain @ and a can not be in the intersection of all f-prime ideals
containing A. 'This completes the proof.

Corollary 1.8. The f-radical of an ideal is an ideal.

Now, let S(S*) be an f-system in R and let 4 be an ideal which does not
meet S. It follows from Zorn’s lemma that there exists a maximal m-system
S¥ which contains S* and does not meet A. Let us consider the set
S,={xER| flx)N S%+¢p} N C(A). Then S, is an f-system with kernel S¥ and
does not meet 4. According to Lemma 1.5, there exists an f-prime ideal P which
contains 4 and does not meet S,. As is seen in the proof of Lemma 1.5, C(P)
is an f-system with kernel S¥- P, and the maximal property of S¥ implies that
S¥+P=S¥. Hence we have C(P)=S, by the definition of S,.

In view of this we make the following definition:

DEerFINITION 1.9. An f-prime ideal P is said to be a minimal f-prime ideal
belonging to an ideal A if P contains A and there exists a kernel S* for the f-system
C(P) such that S* is a maximal m-system which does not meet A.

It follows from the above consideration that any f-prime ideal P containing
A contains a minimal f-prime ideal belonging to 4. From Theorem 1.7, we can
conclude the following:

Theorem 1.10. The f-radical of an ideal A coincides with the intersection
of all minimal f-prime ideals belonging to A.

2. Elements f-related to an ideal

We now make the following definition:

Definition 2.1. An element a of R is said to be (left-)f-related to an ideal 4
if, for every element a’ in f(a), there exists an element ¢ not in 4 such that a’c
isin A. An ideal B is said to be (left-)f-related to A if every element of B is
f-related to 4. Elements and ideals not f-related to 4 is called (left-)f-unrelated
to A.

Elements and ideals right-f-related to 4 can be similarly defined, but the
right hand definitions and theorems will be omitted.
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Proposition 2.2. Let A be anideal. Then the set S consisting of all elements
of R which are f-unrelated to A is an f-system.

Proof. For every element a in S, we can choose an element a* in f(a) such
that, for every element ¢ not in 4, a*c is not in 4. The set S* which consists
of all such elements a* is multiplicatively closed and hence S is an f-system with
kernel S*.

It is natural to consider that every element of R is f-related to R. Further-
more we shall now assume, in this section, the following condition:

() Each ideal A is f-related to itself.

It may be remarked that () can be stated in the following convenient form:
(a') 0 is f-related to each ideal A.

For suppose that 0 is f-related to 4. Let a be any element in 4. Then
a is in A+f(0) and hence f(a) is contained in A+f(0). For any element a’ in
f(a), there exist a” in 4 and 4" in f(0) such that a’=a"+b". Since 0 is f-related
to A, we can choose an element ¢ not in A such that 4”c is in A. Therefore,
a’c=a"c+b"c is in A and this means that A4 is f-related to itself.

Clearly, () is fulfilled in case f(a)=(a) for every element ¢ in R. And, it
can be proved that, whenever R has no right zero-divisors, R satisfies («) if and
only if f(a)=(a) for every element a in R. But, in case of general rings, this
need not be true as is seen from the following example.

ExampLE 2.3.  Consider a simple module M such that m,m,=0 for any two
elements m, and m, in M. Let K be a field and let R be the direct sum of M and
K as modules. Then R can be made into a commutative ring by defining as

(ml+k1)(m2+k2) = klkz ’

where m,, m, in M and k,, k, in K. As is easily seen, the ideals in R are R,
M, K and (0). If we define f(a)=(a, M) for every element a in R, then R satisfies
(a), but f(a) does not coincide with (a), since f(0)=M =(0).

Proposition 2.4. Let A be anideal. Then the f-radical r(A) of A is f-related
to A.

Proof. Let S be as in Proposition 2.2. If (4) contains an element f-
unrelated to A4, then, by the definition of the radical, we have SN A=¢, a con-
tradiction.

It follows from this proof, in terms of relatedness, that the assumption
() can be also restated as follows: for any ideal A4, the f-radical of 4 is f-related to
A.

Let A4 be an ideal and let S be the f-system consisting of all elements f-
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unrelated to 4. Then .S does not meet the ideal (0), and hence, by Lemma 1.5,
there exists a maximal ideal (in the class of all ideals, each of) which does not
meet S, or equivalently, a maximal ideal (each of) which is f-related to 4. Each
such maximal ideal is necessarily an f-prime ideal. In view of this, we put the
following:

DEerFINITION 2.5. A maximal ideal in the class of all ideals, each of which
is f-related to an ideal A, is called a maximal f-prime ideal belonging to A.

Proposition 2.6. Let A be an ideal. Then A is contained in every maximal
[f-prime ideal belonging to A.

Proof. Let P be any maximal f-prime ideal belonging to 4. Then it is
sufficient to show that 4+ P is f-related to A. Let a+p be any element in A4 P,
where @ in 4 and p in P. Since a+p is in A+f(p), f(a+p) is contained in
A+f(p), and hence each element a’ in f(a-p) can be written as a’=a"+p", where
a" in A and p” in f(p). We can choose an element ¢ not in A such that p”c is
in 4. Then a’c=a"c+p"c is contained in A4, which completes the proof.

Since any f-prime ideal containing 4 contains a minimal f-prime ideal
belonging to A4, it follows from Proposition 2.6 that every maximal f-prime ideal
belonging to A necessarily contains a minimal f-prime ideal belonging to 4.
The converse is also true in case of [1], but we can provide an example to show
that this need not be true in our case.

ExampPLE 2.7. Let us consider the ideal A=(xy) in the ring K[x, y] of poly-
nomials in two non-commutative indeterminates x and y over a field K. If we
define f(a)=/(a) for every element a in K[x, y], then the assumption (&) is satisfied
and A is f-related to itself. Hence we can consider the maximal f-prime ideal
belonging to 4. As is easily seen, the ideal (y) is a minimal f-prime ideal be-
longing to A4, but it is f-unrelated to 4. Thus, (y) is not contained by any
maximal f-prime ideal belonging to 4.

Proposition 2.8. Let A be an ideal. Then every element or ideal which is
f-related to A is contained in a maximal f-prime ideal belonging to A.

Proof. Obviously, an element a is f-related to 4 if and only if f(a) is f-related
to A. So we shall prove the only case of an ideal which is f-related to A. Let
B be such an ideal, and let S be the f-system consisting of all elements of R
which are f-unrelated to 4. Then B does not meet .S and hence, by Lemma 1.5,
B is contained in a maximal f-prime ideal P belonging to A.

It follows from this proposition that the ideals of R which are f-related to 4
are spread over the maximal f-prime ideals belonging to 4.

DEeFINITION 2.9. Let A be an ideal and let b be an element in R. The (left-)
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f-quotient A:b of A by b will be defined to be the set of all elements x of R such
that f(b)f(x) is contained in A. Moreover, for any ideal B, the (left-)f-quotient
of A by B will be defined as N 4cp (A: b), and denoted by 4: B.

From this definition, we have

(1) AcA"=A":bcA":band A': BCA": B,

(2) BCB"= A:B'2A:B",

3) (A'NA"):b=(A":b)N(A":b) and (A'NA"):B=(4": B)N (4A": B).

We note that 4:b may be empty. However, if it is not, it is an ideal con-
taining 4. To see this, take an arbitrary element x+a in (4:5)+4 A4, where x in
A:band ain A. Then x-+a is contained in f(x)+ A4, and so is f(x+a). Hence
f(B)f(x+a) is contained in 4. That is, (4:5)+A is contained in A:b.

DEerINITION 2.10. Let 4 be an ideal, and let P be any maximal f-prime
ideal belonging to A. The principal f-component Ap of A determined by P will
be defined as follows:

AP={ User(d:s)  (if P+R)

4 (if P=R).

For P+ R, the principal f~-component 4, may be empty in certain cases. In
case f(a)=(a) for every a in R it is not empty, but, as is seen from Example 2.3,
- there exists a ring in which () is satisfied, and f(a) need not be (@), and Ap is
not empty for all 4 and P=+R.

So we shall assume, in the rest of this paper, the following condition:

(B) For any ideal A and ideal B not contained in r(A), we have A: B+ ¢.

For any maximal f-prime ideal P belonging to A4, it follows from Proposition
2.6 that P contains 4, and hence 7(4) is contained in P. If s is not in P, then
s does not contained in 7(4). Hence, from the assumption (3), A:s+¢ and
therefore we have Ap=+d¢.

We now show that Ap is an ideal containing 4. If P=R, the assertion is
trivial. Let P=R and let x, y be any two elements of Ap. Then there exist
s and ¢ in C(P) such that both f(s)f(x) and f(¢)f(y) are contained in A. Take two
elements s* in S*N f(s) and t* in S* N f(¢), where S* is a kernel of C(P). Since
S* is an m-system, s*z2* is in S* (whence is in C(P)) for some z in R. Thus
statte f()N (1), f(s*=t)S f(5)N f(t). Hence f(s*=t)f(x-+3) < (f(5) N fO)F#)
) E SO D) EA.

Now let x=x'+x" be any element in 4p+ A, where x’ in Ap and x” in A.
Then f(s)f(x") is contained in A for some s in C(P). Since x is in f(x")+ 4, f(x)
is contained in f(x")+ A, and hence we have f(s)f(x) < f(s)f(x")+f(s)AS A. Thus
x is in Ap and A is contained in Ap.

For any maximal f-prime ideal P belonging to A, since ACApC P, Ap=R
if and only if A=R. Furthermore, if P is the only maximal f-prime ideal belong-
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ing to A, or equivalently by Proposition 2.8, if its complement C(P) consists of
all elements which are f-unrelated to 4, then we have Ap,=4.

Proposition 2.11. Let A be an ideal, and let P be any maximal f-prime ideal
belonging to A. Then the principal f-component Ap is contained in every ideal
D such that A is contained in D and that any element of C(P) are f-unrelated to D.

Proof. If P=R, the assertion is trivial. Let P==R and let D be any ideal
such that A4 is contained in D and that any element of C(P) are f-unrelated to
D. If x is an arbitrary element of Ap, then there exists an element s in C(P) such
that f(s)f(x)S 4. Since s is f-unrelated to D, we can choose an element s* in
f(s) such that s*c= D implies ceD. s*x is in D and hence x is in D.

We note from Proposition 2.8 that any element of C(P) are f-unrelated to
D if and only if any maximal f-prime ideal belonging to D are contained in P.

Theorem 2.12. Any ideal A is represented as the intersection of all its
principal f-components Ap.

Proof. Since 4 is contained in every principal f-component of A4, it is
also contained in their intersection. 'To prove the converse, let a be an arbitrary
element of the intersection of all principal f-components Ap. For any maximal
f-prime ideal P belonging to A4, f(s)f(a) < A for some s in S=C(P). Consider the
ideal B which consists of all elements b of R such that f(b)f(a)=A. Then B is
not contained in P, and hence according to Proposition 2.8, B can not be f-related
to A. This means that B contains at least one element b which is f-unrelated to
A. Since f(b)f(a) is in A, the f-unrelatedness of b implies that @ is in 4. The
theorem is therefore established.

RemaRk. It is natural to define a (left-)f-primal ideal as follows: an ideal
A is said to be (left-)f-primal, if the set X of the elements, each of which is (left-)
f-related to 4, forms an ideal. If 4 is f~-primal, X is called the (left-)adjoint of
A. Then we can prove that the principal f~-component of 4 determined by the
maximal f-prime ideal P is contained in the intersection of all f-primal ideals 4,
such that (1) A4, contains 4, and (2) the adjoint of 4, is contained in P.

3. f-primary decompositions

In this section, we shall consider f-primary decompositions of ideals on the
analogy of the primary decompositions of ideals in a commutative Noetherian
ring. For this purpose, we assume besides (/3), throughout this section, the
following condition:

(v) If S is an f-system with kernel S*, and if for any ideal A, SN A is not
empty, then so is S*N A.
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Clearly, this assumption is satisfied in case f(a)=(a) for every element a in
R. But, for a suitable choice of f(a), this is not always satisfied as is seen from
the following example:

ExampLe 3.1. As is seen from Example 1.3, for the ideal P=(p*) in
the ring Z of integers, its complement S=C(P) is an f-system with kernel
S*={q, ¢*, ¢’,--*}, where p and ¢ are different prime numbers. Now, let 4 be
the ideal (p), then we have SN A= ¢, though S*N 4A=¢.

Proposition 3.2. Let A and B be any two ideals. Then
(1) Ac<B=r(4)cr(B),

2) r(r(A)=r(A),

3) r(ANB)=r(A)Nr(B).

Proof. (1) and (2) follow from the definition of the radical.

It is clear that r(AN B)Sr(A)Nr(B). Conversely, let x be any element in
r(4A)Nr(B) and let S be any f-system containing x. Then, there exist two
elements @ and b in SN A4 and SN B respectively. By the assumption (vy), we
can choose two elements a* and b* in S*N 4 and S*N B respectively. Since
S* is an m-system, a*zb* is in S* for some element 2 in R. Therefore a*zb*
eS*N (AN B), and hence SN (AN B) is not empty. This means that «x is in
r(AN B), which completes the proof of (3).

DerINITION 3.3.  An ideal Q is called (left-)f-primary, if f(a)f(b) < Q implies
that ac7(Q) or b= Q.

Let us note that, by Lemma 1.4, f-prime ideals are always f-primary ideals.
As is easily seen from Definition 3.3, we have

Proposition 3.4. If Q' and Q" are f-primary ideals such that r(Q")=r(Q"),
then Q=Q'N Q" is also an f-primary ideal such that r(Q)=r(Q")=r(Q").

Another characterization of f-primary ideals can be given by means of
f-quotients.

Proposition 3.5. An ideal Q is f-primary if and only if Q:B=Q for all
ideals B not contained in r(Q).

Proof. Suppose that Q is f-primary and that B is an ideal not contained in
7(Q). We can choose an element b in B but not in 7(Q). By the assumption
(B), O:b is not empty, and for any element a in Q:b, f(b)f(a) is contained in Q.
Since Q is f-primary and b is not in 7(Q), a is in Q. Thus Q:b is contained
in Q. This shows that O=0Q: B, because again by (8) Q:B is an ideal such
that 0 Q:B < Q:b.

Conversely, suppose that f(a)f(b) is contained in Q and that a is not in
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7(Q). Then f(a) is not contained in 7(Q), and hence we have Q:f(a)=0Q. For
an arbitrary element a’ in f(a), f(a")f(b) < f(a)f(b)< O, and thus b is in Q:f(a)=0.
This proves that Q is f-primary.

If an ideal 4 can be written as

A=angzn"'ngn’

where each Q; is an f-primary ideal, this will be called an f-primary decomposition
of A, and each Q; will be called the f-primary component of the decomposition.
A decomposition in which no Q; contains the intersection of the remaining Q;
is called irredundant. Moreover, an irredundant f-primary decomposition, in
which the radicals of the various f-primary components are all different, is
called a normal decomposition. As is easily seen from Proposition 3.4, each
f-primary decomposition can be refined into one which is normal.

Besides the assumptions (3) and (v), we assume, in this section, the following
condition:

(8) For any f-primary ideal Q, we have Q: Q=R.

Evidently, this assumption is satisfied in case f(a)=(a) for every element a
in R. But, for a suitable choice of f(a), this is not all true.

ExampLE 3.6. As is seen from Example 1.3, the ideal (p?) is f-prime and
hence is an f-primary ideal in Z. Suppose that the assumption (3) is satisfied
for this (p*). Then we have f(p*)S(p®) and hence (p*)=f(p*)=(p")+(q), a
contradiction.

- Now we shall prove, under the assumptions (3), (v) and (8), that the
number of f-primary components and the radicals of f-primary components of
a normal decomposition of 4 depend only on 4 and not on the particular normal
decomposition considered. This is a main theorem of this section.

Theorem 3.7. Suppose that an ideal A has an f-primary decomposition,
and let

A= angzn"'nQn: Q{nQéan:n

be two normal decomposions of A. Then n=m, and it is possible to number the
J-primary components in such a way that r(Q;)=r(Q7) for 1 <i<n=m.

Proof. If A coincides with R, the assertion is trivial. We may suppose
therefore that A does not coincide with R, in which case all the f~primary com-
ponents Q,, -+, O,, Of, -+, Oy, are proper ideals. Among the radicals »(Q,), ---,
7(0,), r(01), -+, 7(0y,) take one which is maximal in this set, and we may assume
that it is 7(Q,). We now prove that 7(Q,) occurs among 7(Q7), -, 7(Or). To
prove this it will be enough to show that Q, is contained in 7(Qj) for some j.
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Suppose that O, is not contained in #(Qj}) for 1<j<m. Then we have, by
Proposition 3.5, Q}: 0,=0) for 1< j<m, and consequently

A:0,= (01NN O0R): O
= (01:0)N - N(On:01)
= QNN Q%
=A4.

If n=1, then, by the assumption (3), we have

R=0,:0,=4:0,=4,

a contradiction. On the other hand, if n>>1, then we have again by (5)

A=A4:0,=(0.N-NO,):0,
= (22 Q)N+ N(QW: Q)
=0,NNQ0,,

since (, is not contained in 7(Q;) for 2<7<n. This is a contradiction. Now we
may arrange that Q; and Q} so that »(Q,)=r(Q1).

We shall use an induction on the number # of f-primary components. If
n=1, then A=0,=0iN - N O, and moreover if m>1, then Q, is not con-
tained in 7(Q,") for 2<j<m. Since

R = QI:QI = (Qin)m n(Q‘{an) ’

we have R=0;=03;="---=0)},, by Proposition 3.5, a contradiction. Similarly,
m=1 implies that n=1, and in this case the assertion is trivial.

Let us now assume that n<m. We shall show that n—=m and by a suitable
ordering 7(Q;)=r(Q}) for 1<i<n=m. Assume that these results are valid for
ideals which may be represented by fewer than z f-primary components. Put
0=0,N 01, then by Proposition 3.4, O is an f-primary ideal such that r(Q)
=7(0,)=r(Q7). Also Q;:0=0,; for 2<i<n, and Q,:Q0=R. For the first
relation follows from the fact that Q is not contained in 7(Q,), while the second
follows from R=0,:0,<0,:0. Consequently 4:0=0,N:-NQ,, and an
exactly similar argument shows that 4:0=0Qj5N---N Q.. Hence, we have

and moreover both decompositions are normal. Thus by the induction
hypothesis we have n—1=m—1, that is, n=m. Furthermore, by a suitable
ordering we have »(Q;)=r(Q}) for 2<i<n=m. This completes the proof.
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