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1. Introduction

A Riemannian manifold is hyperkähler if it has three complex structuresI1, I2, I3

satisfying the quaternionic relationsI1I2 = −I2I1 = I3 and if the Riemannian met-
ric is Kähler for each ofI1, I2, I3. The basic example of a hyperkähler manifold
is the quaternionic spaceH . The hyperkähler quotient method of Hitchin, Karlhede,
Lindström, and Roček is known as a technique for constructing such manifolds [6,
§3.(D)]. Bielawski and Dancer studied a hyperkähler quotient of a quaternionic space
by a subtorus of a real torus, which they call a toric hyperkähler manifold [1]. Let

be a subtorus of . We have a right diagonal action of onH with the hy-
perkähler moment mapµ : H → k∗ ⊗ R3. If ν ∈ k∗ ⊗ R3 is a regular value
of µ and if acts freely onµ −1(ν), then we have a toric hyperkähler manifold

(ν) = µ −1(ν)/ . There exists a canonically induced action of =/ on the
4 -dimensional manifold (ν), which preserves its hyperkähler structure.

In this paper we study complex structures of a toric hyperkähler manifold. Konno
recently studied the variation of its complex structures [9].

We start out in Section 2 with a review of the definition of our manifold. If =
( 1 2 3) is a unit vector inR3, then I :=

∑3
=1 I is its complex structure. Thus

we obtain a family of complex structures parametrized by the2-sphere. In Section 3
we determine precisely which of these structures have compact complex submanifolds
(Theorem 3.3). We can find such structures as follows: letι : k → R be the inclu-
sion map and{ 1 . . . } the standard basis ofR . We assume that{ι∗ | ∈ }
forms a basis ofk∗, where ⊂ {1 . . . }. If ν =

∑
∈ ι∗ ⊗ , where ∈ R3

for each ∈ , then CP1 is embedded in ( (ν) I /‖ ‖) for each ∈ (Proposi-
tion 3.4). Bielawski and Dancer discussed when our manifoldis an affine variety [1,
Theorem 5.1]. By their result, we find that the manifold has the structure of an affine
variety with respect to each of the other complex structures. In Section 4 we give
two examples; one is the case dim = 1 (Example 4.1) and the other is the case
dim = 1 (Example 4.2). We apply results in Section 3 to the manifolds in these ex-
amples. In the final section we discuss whether complex structures of the family are
equivalent to each other. We assume that there exist exactlytwo complex structures
that have compact complex submanifolds. Then it follows that the other complex struc-
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tures are all equivalent (Theorem 5.2 (1)). Its proof runs parallel to the proof given
in [5, Proposition 9.1 (i)]: we use a circle action on the twistor space of the mani-
fold that preserves the complex structure. It is still open whether in the general case,
a similar result holds.

2. Toric hyperkähler manifolds

In this section we review the definition of a toric hyperkähler manifold. Let
{1 i j k} be the standard basis ofH. Let 0 be the standard metric onH . The
Riemannian manifold (H 0) is a hyperkähler manifold with complex sructuresI, J,
K given by left multiplication byi, j, k. We identify

√
−1 ∈ C with i ∈ H and iden-

tify ξ ∈ H with ( ) ∈ C ⊕ C by ξ = + j. Under this identification the complex
structures can be written as

I( ) = (
√
−1

√
−1 )

J( ) = (− ¯ ¯)

K( ) = (−
√
−1 ¯

√
−1 ¯)

where = ( 1 . . . ), = ( 1 . . . ) ∈ C . The real torus

= {α = (α1 . . . α ) ∈ C | |α | = 1 for each 1≤ ≤ }

acts onH by right diagonal multiplication. The action can be writtenas

( ) · α = ( α α−1)

This action preserves the hyperkähler structure.
The hyperkähler moment map for this action is defined by

µ = (µ 1 µ 2 µ 3) : H → R ⊗R3

whereµ 1, µ 2, µ 3 are the Kähler moment maps corrsponding to the complex
structuresI, J, K , respectively. The three moment mapsµ 1, µ 2, µ 3 can be
written as

µ 1( ) =
1
2

∑

=1

(
| |2 − | |2

)

(
µ 2 +

√
−1µ 3

)
( ) = −

√
−1
∑

=1

( )

where{ 1 . . . } is the standard basis ofR .
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Let be a subtorus of whose Lie algebrak ⊂ R is generated by rational
vectors. Then we have the torus = / . We obtain an exact sequence:

0−→ k
ι−→ R π−→ R −→ 0

and by duality an exact sequence:

0−→ R π∗

−→ R ι∗−→ k∗ −→ 0

where ι is the inclusion map andπ is the projection. The hyperkähler moment map
for the action of is defined by

µ = (µ 1 µ 2 µ 3) : H → k∗ ⊗R3

where

µ = ι∗ ◦ µ for each 1≤ ≤ 3

The following definition is due to Bielawski and Dancer [1,§3].

DEFINITION 2.1. Suppose thatν ∈ k∗ ⊗ R3 is a regular value of the hyperkähler
moment mapµ and that acts freely onµ −1(ν). Then the hyperkähler quotient

(ν) = µ −1(ν)/

is a smooth hyperkähler manifold of dimension 4 . We call (ν) a toric hyperk̈ahler
manifold.

We denote by ( ;I1 I2 I3) the hyperkähler structure and we denote byω the
Kähler form corresponding toI for each 1≤ ≤ 3. There exists a canonically in-
duced action of on (ν), which preserves the hyperkähler structure.

Konno discussed when the hyperkähler quotient (ν) is a smooth manifold. Let
be a non-negative integer. We set

= { ⊂ {1 . . . } | # = dim span{ι∗ | ∈ } = }

For each ∈ dim −1, we define a hyperplaneH in k∗ by H = span{ι∗ | ∈ }
He obtained the following propositions [8, Proposition 2.1, Proposition 2.2]:

Proposition 2.2. Let ν = (ν1 ν2 ν3) ∈ k∗⊗R3. Then the following conditions are
equivalent:
(1) ν is a regular value of the hyperkähler moment mapµ .
(2) For each ∈ dim −1, we haveν1 /∈ H , ν2 /∈ H , or ν3 /∈ H .
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Proposition 2.3. Let ν ∈ k∗ ⊗ R3 is a regular value of the hyperkähler moment
mapµ . Then the following conditions are equivalent:
(1) The action of onµ −1(ν) is free.
(2) {π( ) | ∈ } is a Z-basis ofπ(Z ) for each ⊂ {1 . . . } such that{π( ) |
∈ } is a basis ofR .

We remark that the following cases are not essential for our discussion.

REMARKS. (1) Suppose thatπ( 0) = 0 for some 0, 1≤ 0 ≤ . Then we have

k = k′ ⊕ span{ 0} wherek′ = k ∩ span{ | 1≤ ≤ 6= 0}

Let ′ be the Lie group corresponding tok′. Let  : k′ → k be the inclusion map.
We set ν′ = (∗ ⊗ 1R3)(ν). The hyperkähler quotient (ν) of H by is just the
hyperkähler quotient ′(ν′) of H −1 by ′, whereH −1 = {( ) ∈ H | 0 = 0 =
0}.
(2) Suppose thatι∗ 0 = 0 for some 0, 1≤ 0 ≤ . Then we havek ⊂ span{ | 1 ≤
≤ 6= 0}. The hyperkähler quotient (ν) of H by is just the product of the

hyperkähler quotient ′(ν) of H −1 by andH.

3. Main results

In this section we prove our main results. Let (ν) be a toric hyperkähler mani-
fold. If = ( 1 2 3) is a unit vector inR3, then we have

(
3∑

=1

I

)2

= −1

Thus we obtain a family of complex structures parametrized by the 2-sphere. We de-
note by I the complex structure

∑3
=1 I . We determine precisely which of these

structures have compact complex submanifolds.
Bielawski and Dancer proved the following proposition [1, Theorem 5.1]:

Proposition 3.1. We setν = (ν1 ν2 ν3). We assume that for each∈ dim −1,
we have eitherν2 /∈ H or ν3 /∈ H . Then ( (ν) I1) is biholomorphic to the affine
variety SpecC[ ]

C
, where is defined by the equation

−
√
−1
∑

=1

( )ι∗ = ν2 +
√
−1ν3

and C is the complexification of .

Let = ( ) be an element in (3). For each 1≤ ≤ 3, we denote by the
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th row of . We set

ν =




3∑

=1

1 ν

3∑

=1

2 ν

3∑

=1

3 ν


 for eachν = (ν1 ν2 ν3) ∈ k∗ ⊗ R3

If ν ∈ k∗⊗R3 is a regular value ofµ , then so is ν. We prove the following theorem
needed later:

Theorem 3.2. There exists a map : (ν)→ ( ν) that satisfies the following
conditions:
(1) is an isometry.
(2) is a biholomorphic map of( (ν) I ) onto ( ( ν) I ) for each1≤ ≤ 3.

Proof. We set

J = 1I + 2 J + 3K and j = 1i + 2 j + 3k for each 1≤ ≤ 3

We consider the hyperkähler structure (0; J1 J2 J3) on H . We identify
√
−1 ∈

C with j1 ∈ H. Under this identification we define the action (a.2) of onH by
right diagonal multiplication. Letφ : H → R ⊗ R3 be the hyperkähler moment
map for the action (a.2). We assume thatφ (0) = 0. We define ˜µ : H → R ⊗R3

by

µ̃ (ξ) = µ (ξ) for eachξ ∈ H

The map ˜µ is the hyperkähler moment map for the -action (a.1) defined in the
preceding section. We set

λ =





j2 if 11 = −1

11 + 1− 31 j2 + 21 j3√
2( 11 + 1)

if 11 6= −1

We defineψ : H → H by right multiplication byλ. Let ψ⊕ = ψ⊕ · · · ⊕ψ ( times).
It is easy to verify the following:

CLAIM . (i) ( + i)λ = λ( + j1) for each , ∈ R.
(ii) ψ⊕ is orthogonal.
(iii) ψ⊕ is a biholomorphic map of (H J ) onto itself for each 1≤ ≤ 3.

Sinceφ ◦ψ⊕ is also the hyperkähler moment map for the action (a.1) by this claim,
we have

φ ◦ ψ⊕ (ξ) = µ̃ (ξ) for eachξ ∈ H
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Thusψ⊕ induces a map : (ν)→ ( ν) satisfying conditions (1) and (2).

Let be an element in dim . We write

ν =
∑

∈
ι∗ ⊗ where ∈ R3 for each ∈

Then we set

=

{±
‖ ‖

∣∣∣∣ ∈
}

Note that from Proposition 2.2, we have 6= 0 for each ∈ . We set

Cν = { ∈ 2 | ( (ν) I ) has a compact complex submanifold}

where we regard 2 as the unit sphere inR3. The main theorem in this section is the
following:

Theorem 3.3. Let (ν) be a toric hyperk̈ahler manifold withdimR (ν) > 0.
Then we have

Cν =
⋃

∈ dim

Proof. By Remark (1) at the end of Section 2, we may assume thatπ( ) 6= 0
for each 1≤ ≤ .

We assume that{ + 1 + 2 . . . } ∈ dim . Then {π( 1) . . . π( )} is a ba-
sis of R . Let { 1 . . . } be the dual basis corresponding to{π( 1) . . . π( )}. We
write

ν =
∑

= +1

ι∗ ⊗

where ∈ R3 for each + 1≤ ≤ Let be an element in (3) whose first
row equals +1/‖ +1‖. We set = (λ1 λ2 λ3 ) for each + 1≤ ≤ . We
may assume thatλ1 +1 > 0. Note thatλ2 +1 = λ3 +1 = 0. By Theorem 3.2 we find
that ( (ν) I +1/‖ +1‖) is biholomorphic to ( ( ν) I1).

We prove that ( ( ν) I1) has a compact complex submanifold. We set

=
∑

= +1

λ for each 1≤ ≤ 3

We have ν = (ι∗ 1 ι∗ 2 ι∗ 3) Let ρ : µ −1( ν) → ( ν) be the projection. We
set [ ] = ρ( ) for each ( )∈ µ −1( ν). The hyperkähler moment map for
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the action of on ( ν) is defined by

µ = (µ 1 µ 2 µ 3) : ( ν)→ R ⊗ R3

whereµ is the Kähler moment map corrsponding to the complex structure I for
each 1≤ ≤ 3. For each 1≤ ≤ 3, µ can be written as

〈µ ([ ]) π( )〉 = 〈µ ( ) 〉 − 〈 〉

for each ∈ R and for each ( )∈ µ −1( ν). We write

π( ) =
∑

=1

α π( ) for each 1≤ ≤

where α ∈ Z by Proposition 2.3 and [8, Lemma 2.2]. By assumption we have
(α1 . . . α ) 6= 0 for each + 1≤ ≤ . There exists , 1≤ ≤ , such that
α +1 6= 0. We may assume thatα +1 < 0. We set

= min

{
−λ1

α

∣∣∣∣ + 1≤ ≤ α λ1 < 0 λ2 +
√
−1λ3 = 0

}

We define the closed segment inR by = { | 0 ≤ ≤ }. We prove that
µ −1( 0 0) is a compact complex submanifold of ( (ν) I1).

(a) We prove thatµ −1( 0 0) is compact. Let [ ] ∈ µ −1( 0 0). Then
we have the following:

0≤ 〈µ 1([ ]) π( )〉 =
1
2

(
| |2 − | |2

)
≤(a.i)

0 = 〈µ 1([ ]) π( )〉 =
1
2

(
| |2− | |2

)
for each 1≤ ≤ 6=(a.ii)

0 = 〈(µ 2 +
√
−1µ 3)([ ]) π( )〉 = −

√
−1 for each 1≤ ≤(a.iii)

We have from (a.i) and (a.ii),

〈µ 1([ ]) π( )〉 =
∑

=1

α 〈µ 1([ ]) π( )〉

=
1
2

(
| |2− | |2

)
α for each 1≤ ≤

Thus we have

1
2

(
| |2− | |2

)
α + λ1 =〈µ 1([ ]) π( )〉 + 〈 1 〉(a.iv)

=
1
2

(
| |2 − | |2

)
for each + 1≤ ≤
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Hence we have from (a.i) and (a.iii),

(3.1) = 0 and | |2 ≤ 2

Furthermore we have from (a.ii) and (a.iii),

(3.2) = = 0 for each 1≤ ≤ 6=

Since ( ) ∈ µ −1( ν), we have

(3.3) −
√
−1 = λ2 +

√
−1λ3 for each + 1≤ ≤

It follows from (3.1), (3.2), (3.3), and (a.iv) that (µ ◦ρ)−1( 0 0) is compact. Hence
µ −1( 0 0) is compact.

(b) We prove thatµ −1( 0 0) is a complex submanifold of ( (ν) I1). From
the proof of (a), we obtain the following: let [ ]∈ µ −1( 0 0). Let be an
element in{ +1 . . . } such thatλ2 +

√
−1λ3 = 0. Then from (3.3) we have =

0. If α ≤ 0 andλ1 < 0, then from (a.iv) and (3.1) we have

1
2

(
| |2− | |2

)
=

1
2
| |2α + λ1 < 0

Hence = 0. Ifα > 0 andλ1 < 0, then from (3.1), (a.i), and (a.iv) we have

1
2

(
| |2 − | |2

)
= α

(
1
2
| |2 +

λ1

α

)
≤ α

(
1
2
| |2 −

)
≤ 0

Hence = 0. Thus we have

= 0 for each + 1≤ ≤ such thatλ1 < 0 andλ2 +
√
−1λ3 = 0

Similarly, we have

= 0 for each + 1≤ ≤ such thatλ1 > 0 andλ2 +
√
−1λ3 = 0

We denote by the set of all points ofC ×C that satisfy the following conditions:
(b.i) = 0 and = = 0 for each 1≤ ≤ , 6= .
(b.ii) −

√
−1 = λ2 +

√
−1λ3 for each + 1≤ ≤ such thatλ2 +

√
−1λ3 6= 0.

(b.iii) = 0 for each + 1≤ ≤ such thatλ1 < 0 andλ2 +
√
−1λ3 = 0.

(b.iv) = 0 for each + 1≤ ≤ such thatλ1 > 0 andλ2 +
√
−1λ3 = 0.

By an argument similar to that in (a), we have

(3.4) (µ ◦ ρ)−1( 0 0) = ∩ µ 1
−1(ι∗ 1)

Obviously is a complex submanifold of (H I) and so its induced metric is Kähler.
The action of on preserves the Kähler structure. It is clearthat its moment map
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is the restriction ofµ 1 to . Since from (3.4) we have

µ −1( 0 0) = { ∩ µ 1
−1(ι∗ 1)}/

we find thatµ −1( 0 0) is a complex submanifold of ( (ν) I1).
Next we prove that ∈ Cν implies ∈ for some ∈ dim . Let be an

element in (3) whose first row equals . Since ( (ν) I1) has a compact complex
submanifold by assumption, there exists∈ dim satisfying the following condition:
if

ν =
∑

∈
ι∗ ⊗ where ∈ R3 for each ∈

then there exists 0 ∈ such that the second and the third component of 0 are
equal to zero. Therefore we have∈ span{ 0}.

Proposition 3.4. The submanifoldµ −1( 0 0) is biholomorphic toCP1.

Proof. It is sufficient to show thatµ −1( 0 0) is homeomorphic toCP1. Let
1 be the one-dimensional subtorus of whose Lie algebras is spanned byπ( ).

Let ı : s → R be the inclusion map. There exists a canonically induced action of 1

on µ −1( 0 0). The moment mapφ for this action is the restriction ofı∗ ◦µ 1 to
µ −1( 0 0).

Let ∈ (0 ). First we show that 1 acts freely onφ−1(ı∗( )). Let [ ] ∈
φ−1(ı∗( )). By (a.i), we have 6= 0 By (b.ii), we have 6= 0 for each + 1≤
≤ such thatλ2 +

√
−1λ3 6= 0. We assume that there exists0, +1≤ 0 ≤ , such

that λ2 0 +
√
−1λ3 0 = 0 and 0 = 0 = 0. Sinceα 0 6= 0, we have| |2/2 =−λ1 0/α 0

by (a.iv). Since 0< | |2/2 < by assumption, this is a contradiction. Hence1 acts
freely on φ−1(ı∗( )).

Next we show thatφ−1(ı∗(0)) and φ−1(ı∗( )) are one-point sets. Let [ ],
[ ′ ′] ∈ φ−1(ı∗( )). By (a.i), we have

(3.5) | | = | ′|

By (a.iv) and (3.5), we have

| |2 − | |2 = | ′|2 − | ′|2 and = ′ ′

for each + 1≤ ≤ . Thus for each + 1≤ ≤ , there existsα ∈ 1 such that

= ′α and = ′α −1

There exists 0, + 1≤ 0 ≤ , such that

α 0λ1 0 < 0 λ2 0 +
√
−1λ3 0 = 0 and =−λ1 0

α 0
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Since =| |2/2 = | ′|2/2, we have 0 = 0 = 0
′ = 0

′ = 0 by (a.iv). Thus [ ] =
[ ′ ′]. Similarly, it follows that φ−1(ı∗(0)) is a one-point set. Thusφ is a Morse
function with exactly two critical points. We have thus shown that µ −1( 0 0) is
homeomorphic toCP1.

We obtain the following three corollaries to Theorem 3.3.

Corollary 3.5. Let (ν) be a toric hyperk̈ahler manifold withdimR (ν) > 0 If
is a point of 2 \ Cν, then ( (ν) I ) is biholomorphic to an affine variety.

Proof. Let be an element in (3) whose first row equals . Since ( (ν) I )
is biholomorphic to ( ( ν) I1) by Theorem 3.2, ( ( ν) I1) has not a compact com-
plex submanifold. By Theorem 3.3,ν satisfies the condition of Proposition 3.1. Thus
( ( ν) I1) is biholomorphic to an affine variety.

Corollary 3.6 is the converse of Proposition 3.1. Konno alsoproves this corollary
in a different way [9, Corollary 6.12].

Corollary 3.6. Let (ν) be a toric hyperk̈ahler manifold withdimR (ν) > 0.
Let ( (ν) I1) be biholomorphic to an affine variety. Then for each∈ dim −1, we
have eitherν2 6∈ H or ν3 6∈ H .

Proof. We assume that there exists∈ dim −1 such thatν2, ν3 ∈ H . Let 0

be an element in{1 . . . } such that ∪ { 0} ∈ dim . If

ν =
∑

∈ ∪{ 0}
ι∗ ⊗ where ∈ R3 for each ∈ ∪ { 0}

then the second and the third component of0 are equal to zero. From Theorem 3.3,
( (ν) I1) has a compact complex submanifold. Thus ( (ν) I1) is not biholomorphic
to an affine variety.

Corollary 3.7. Let (ν) be a toric hyperk̈ahler manifold with4 >dimR (ν) >
0. Then the cardinality ofCν is even and we have

1≤ #Cν
2
≤ #{H | ∈ dim −1}

Proof. By Theorem 3.3 we find that #Cν is finite and more than zero. If (ν)
has a compact complex submanifold for some complex structure, then (ν) also has
one for its conjugate. Hence #Cν is even.

We prove that #Cν/2 is less than or equal to #{H | ∈ dim −1}. Let , ∈
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dim . We assume that there exist0 ∈ and 0 ∈ such that

span{ι∗ | ∈ \ { 0}} = span{ι∗ | ∈ \ { 0}}

If

ν =
∑

∈
ι∗ ⊗ =

∑

∈
ι∗ ⊗ where ∈ R3 for each ∈ and ∈

then we have 0 ∈ span{ 0}. Thus we have

#Cν
2
≤ #{H | ∈ dim −1}

4. Examples

In this section we give examples of toric hyperkähler manifolds; one is the case
dim = 1 and the other is the case dim = 1.

In order to obtain a toric hyperkähler manifold, it is sufficient to define a linear
map π : R → R .

EXAMPLE 4.1. We consider the case dim = 1. Letπ : R +1 → R be a linear
map such that:
(1) {π( ) | = 1 . . . } forms a basis ofR .
(2) π( +1) = −π( 1)− · · · − π( ).
Then the Lie algebrak is spanned by 1 + · · · + +1. We haveι∗ 1 = · · · = ι∗ +1 The
moment maps are

µ 1( ) =
1
2

+1∑

=1

(
| |2 − | |2

)
ι∗ +1

(
µ 2 +

√
−1µ 3

)
( ) = −

√
−1

+1∑

=1

( )ι∗ +1

Let ν be a nonzero element ink∗ ⊗ R3. From Proposition 2.2,ν is a regular value of
the hyperkähler moment mapµ . Moreover, from Proposition 2.3, the action of on
µ −1(ν) is free. We writeν = ι∗ +1 ⊗ , where 6= 0 ∈ R3. Then we have from
Theorem 3.3,

Cν =

{

‖ ‖ −‖ ‖

}

Note that ( (ν) I /‖ ‖) is biholomorphic to ( (ν) I− /‖ ‖). Let be an element in
(3) whose first row equals /‖ ‖. From Theorem 3.2, ( (ν) I /‖ ‖) is biholomor-

phic to ( ( ν) I1). Thus from [1, Theorem 7.1], ( (ν) I /‖ ‖) is biholomorphic to
∗CP with its natural complex structure.
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REMARK. There exist many linear maps ofR +1 onto R , but we need only con-
sider π : R +1 → R satisfying conditions (1) and (2). Indeed, letπ′ be a linear map
of R +1 onto R such that:
(i) π′ satisfies condition (2) of Proposition 2.3.
(ii) ( ι′)∗ 6= 0 for each 1≤ ≤ + 1, whereι′ : kerπ′ → R +1 is the inclusion map
(recall the remarks at the end of Section 2).
By the conditions above, there exists a mapε : {1 . . . + 1} → {1 −1} such that

ε( + 1) =−1 and π′( +1) =
∑

=1

ε( ) π′( )

Let ′ be the Lie group corresponding to kerπ′. We setν′ = (ι′)∗ +1⊗ . We denote
by ′(ν′) the hyperkähler quotient ofH +1 by ′. We define : (ν)→ ′(ν′) by

([ ]) = [ ]

where

( ) =

{
( ) for each 1≤ ≤ + 1 such thatǫ( ) = −1
(− ) for each 1≤ ≤ + 1 such thatǫ( ) = 1

Note that the map is well-defined. Under this map′(ν′) is isomorphic as a hy-
perkähler manifold to (ν).

EXAMPLE 4.2. We consider the case dim = 1. Letπ : R → R be a linear map
such that:
(1) π( ) is nonzero.
(2) π( 1) = · · · = π( −1) = −π( ).
By an argument similar to that in the remark above, we need only considerπ : R →
R satisfying conditions (1) and (2). The Lie algebrak is spanned by 1+ . . . −1+

. We haveι∗ =
∑ −1

=1 ι∗ . The moment maps are

µ 1( ) =
1
2

−1∑

=1

(
| |2 − | |2 + | |2− | |2

)
ι∗

(
µ 2 +

√
−1µ 3

)
( ) = −

√
−1

−1∑

=1

( + )ι∗

Let ν ∈ k∗ ⊗ R3. We write

ν =
−1∑

=1

ι∗ ⊗ where ∈ R3 for each 1≤ ≤ − 1

We assume that
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(i) 6= 0 for each 1≤ ≤ − 1.
(ii) 6= for each 1≤ 6= ≤ − 1.
Then, from Proposition 2.2,ν is a regular value of the hyperkähler moment mapµ .
Moreover, from Proposition 2.3, the action of onµ −1(ν) is free. From Theo-
rem 3.3, we have

Cν =

{
±‖ ‖

∣∣∣∣ 1≤ ≤ − 1

}
∪
{ −
‖ − ‖

∣∣∣∣ 1≤ 6= ≤ − 1

}

We express (ν) as an affine algebraic set inC3. First we define the mapτ of
2 into Ĉ = C ∪ {∞} for each 1≤ ≤ − 1 as follows:

CASE (a). and −1 are linearly independent.
For each ∈ 2, we choose points ′, ′′ ∈ R3 such that ( ′ ′′) ∈ (3).

We define

τ ( ) =
〈 ′ +

√
−1 ′′ 〉

〈 ′ +
√
−1 ′′ −1〉

Note thatτ ( ) is independant of the choice of′, ′′.

CASE (b). and −1 are linearly dependent.
Then there existsλ ∈ R such that =λ −1. We define

τ ( ) = λ for each ∈ 2

We have:

Proposition 4.3 (cf. [1, Example 5.2]). Let ∈ 2 \ Cν . Then ( (ν) I ) is bi-
holomorphic to the affine variety

=
−1∏

=1

(τ ( )− )

REMARK. We obtain a family of affine varieties parametrized by2 \ Cν . These
varieties are known to be diffeomorphic to the minimal resolution of the simple singu-
larity of type −1. It is still open whether these varieties are biholomorphicto each
other.

Proof. Let ∈ 2 \ Cν. Let be an element in (3) such that ( ′ ′′) ∈
(3), where ′, ′′ ∈ R3. From the proof of Corollary 3.5, ( (ν) I ) is biholomor-

phic to SpecC[ ]
C
, where is defined by the following equations:

−
√
−1 ( + ) = 〈 ′ +

√
−1 ′′ 〉 for each 1≤ ≤ − 1
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The invariant ringC[ ]
C

is generated as aC-algebra by

−1∏

=1

−1∏

=1

(mod ( ))

Thus C[ ]
C

can be written as

C[ ]
/ (

−
−1∏

=1

(
〈
√
−1 ′ − ′′ 〉 −

))

This completes the proof of Proposition 4.3.

We identify Ĉ with 2 by the stereographic projection from the south pole. We
may regardτ as a map of̂C into itself. We obtain an explicit formula forτ for each
1≤ ≤ − 1.

Proposition 4.4. In Case ( ),there exist two linear fractional transformations
and such that

◦ τ ◦ ( ) = +
1

for each ∈ Ĉ

Proof. Let θ , 0 < θ < π, be the angle between and −1. Let =
(0 sinθ cosθ ). There exists ∈ (3) such that

= ‖ ‖ and 3 = −1

‖ −1‖

We denote by the linear fractional transformation corresponding to . Let ∈ C \
{0}. We denote by = (1 2 3) the point of 2 corresponding to . Let ′ and
′′ be points ofR3 such that ( ′ ′′) ∈ (3). By the definition ofτ , we have

τ ◦ ( ) =
〈 ( ′ +

√
−1 ′′) 〉

〈 ( ′ +
√
−1 ′′) −1〉

=
‖ ‖〈 ′ +

√
−1 ′′ 〉

‖ −1‖〈 ′ +
√
−1 ′′

3〉

By direct calculation, we find that the right-hand side is equal to

‖ ‖
‖ −1‖

{
cosθ −

√
−1 sinθ
1− 3

2
( 1−

√
−1 2 3)

}

=
‖ ‖
‖ −1‖

{
cosθ −

√
−1 sinθ

2

(
+

1
)}

We define the linear fractional transformation by

( ) =
2
√
−1

sinθ

(‖ −1‖
‖ ‖ − cosθ

)
for each ∈ Ĉ
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Then we have

◦ τ ◦ ( ) = +
1

for each ∈ Ĉ

5. The equivalency of complex structures

In this section we discuss whether complex structures of thefamily are equivalent
to each other. We mainly consider the case #Cν = 2.

Let (ν) be a toric hyperkähler manifold. We assume thatν is of the form
(ν1 0 0). Then we haveCν = { (±1 0 0)}. We define the two circle actions on (ν)
by

(5.1) [ ] ·
√
−1θ =

[ √
−1θ

]

and

(5.2) [ ] ∗
√
−1θ =

[ √
−1θ
]

where θ ∈ R and we denote by [ ] the element in (ν) defined by ( ) ∈
µ −1(ν). Since ν = (ν1 0 0), these actions are well-defined. These actions preserve
both the metric and the Kähler formω1. We denote by #

1 and #
2 the fundamental

vector fields corresponding to 1∈ R for the actions (5.1) and (5.2), respectively. The
moment maps for the actions (5.1) and (5.2) with respect toω1 are the maps

1([ ]) =
1
2

∑

=1

| |2 and 2([ ]) =
1
2

∑

=1

| |2

respectively.
We can easily show the following proposition, and so we omit its proof.

Proposition 5.1. We have

#ω1 = 0 #ω2 = −ω3 #ω3 = −ω2 for each = 1 2

The main theorem in this section is the following:

Theorem 5.2. Let (ν) be a toric hyperk̈ahler manifold with#Cν = 2. Then
(1) ( (ν) I ) and ( (ν) I ) are biholomorphic for each , ∈ 2 \ Cν .
(2) ( (ν) I ) is a Stein manifold for each ∈ 2 \ Cν .

REMARK. By Corollary 3.5, (2) is obvious. In this section we prove itby giving
a strictly plurisubharmonic exhaustion functon.
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Proof. (1) First we consider the case whereν is of the form (ν1 0 0). We de-
fine the circle action on 2 by the standard rotation leaving (±1 0 0) fixed. Then the
circle acts diagonally on (ν) × 2 by the action (5.1) on (ν) and by the action on

2. We denote by˜ the fundamental vector field corresponding 1∈ R for the circle
action on (ν)× 2.

Let I 2 be the standard complex structure on2. The product manifold (ν)× 2

has a natural complex structurẽI defined on the tangent space of (ν) × 2 at
([ ] ) as follows [6, §3.(F)]: we express the tangent space as the direct sum

[ ] (ν)⊕ 2 and define

Ĩ([ ] ) =
(
(I )[ ] (I 2)

)

Since the circle action on (ν) × 2 preserves the complex structureĨ, we find that
( (ν) I ) and ( (ν) I ) are biholomorphic for each , ∈ 2 whose first component
is equal to zero. Hence we must prove that the vector fieldĨ ˜ is complete.

Let ( ): ( 1 2)→ (ν)× 2 be a maximal integral curve of̃I ˜ , where 0∈ ( 1 2).
Let 1 : (ν)× 2→ (ν) and 2 : (ν)× 2→ 2 be the projections. We setϕ( ) =

1◦ ( ) and ( ) = 2◦ ( ) We assume that the first component1( ) of ( ) is strictly
increasing and that1(0) = 0. Assuming that2 < ∞, we derive a contradiction. We
have

ϕ
( ) = (I ( ))ϕ( ) ( #

1)ϕ( ) for each ∈ ( 1 2)

Thus we have
(

ϕ
( ) (I1)ϕ( ) ( #

1)ϕ( )

)
=
(
(I ( ))ϕ( ) ( #

1)ϕ( ) (I1)ϕ( ) ( #
1)ϕ( )

)

= 1( )
(
( #

1)ϕ( ) ( #
1)ϕ( )

)

= 1( )
∥∥( #

1)ϕ( )

∥∥2
for each ∈ ( 1 2)(5.3)

We fix an element0 ∈ (0 2). Since 1( ) is increasing by assumption, we have from
(5.3),

1( 0)
∥∥( #

1)ϕ( )

∥∥2 ≤ 1( )
∥∥( #

1)ϕ( )

∥∥2

=

(
ϕ

( ) (I1)ϕ( ) ( #
1)ϕ( )

)
for each ∈ [ 0 2)(5.4)

Now for each vector field on (ν),

(grad 1 ) = 1( ) = −ω1( #
1 ) = − (I1

#
1 )

and hence

grad 1 = −I1
#
1
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Thus from (5.4),

1( 0)
∥∥( #

1)ϕ( )

∥∥2 ≤
(

ϕ
( ) −(grad 1)ϕ( )

)

= − ( 1 ◦ ϕ)( ) for each ∈ [ 0 2)

We set 0 =
√

1( 0). Since 1( 0) > 0, we have the inequality

0

∥∥( #
1)ϕ( )

∥∥ ≤
∣∣∣∣ ( 1 ◦ ϕ)( )

∣∣∣∣
1/2

for each ∈ [ 0 2)(5.5)

Let 0 and be two points on [0 2), where 0 < . Let a curve ˜ϕ( ) = ( ( ) ( )) in
µ −1(ν) be a horizontal lift ofϕ|[ 0 ], where 0 ≤ ≤ . By definition of the metric
on (ν), we have

∫

0

∥∥∥∥
ϕ

( )

∥∥∥∥ =
∫

0

∣∣∣∣
ϕ̃

( )

∣∣∣∣

≥ |ϕ̃( )− ϕ̃( 0)|(5.6)

We have

|ϕ̃( )− ϕ̃( 0)| =

(
∑

=1

| ( )− ( 0)|2 +
∑

=1

| ( )− ( 0)|2
)1/2

≥
(
∑

=1

| ( )− ( 0)|2
)1/2

≥

∣∣∣∣∣∣

(
∑

=1

| ( )|2
)1/2

−
(
∑

=1

| ( 0)|2
)1/2

∣∣∣∣∣∣

=
√

2
∣∣∣
√

1 ◦ ϕ( )−
√

1 ◦ ϕ( 0)
∣∣∣(5.7)

From (5.6) and (5.7),

∫

0

∥∥∥∥
ϕ

( )

∥∥∥∥ ≥
√

2
∣∣∣
√

1 ◦ ϕ( )−
√

1 ◦ ϕ( 0)
∣∣∣

Thus if 1 ◦ ϕ( 0) 6= 0, then we have

∥∥∥∥∥
ϕ
∣∣∣∣

= 0

∥∥∥∥∥ ≥
√

2

∣∣∣∣∣
√

1 ◦ ϕ
∣∣∣∣

= 0

∣∣∣∣∣(5.8)
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Now

∥∥∥∥
ϕ

( )

∥∥∥∥
2

=

(
ϕ

( )
ϕ

( )

)

=
(
(I ( ))ϕ( ) ( #

1)ϕ( ) (I ( ))ϕ( ) ( #
1)ϕ( )

)

=
∥∥( #

1)ϕ( )

∥∥2
for each ∈ ( 1 2)(5.9)

Thus from (5.5) and (5.8),

√
2

∣∣∣∣∣
√

1 ◦ ϕ
∣∣∣∣

= 0

∣∣∣∣∣ ≤
∥∥( #

1)ϕ( )

∥∥ ≤ 1

0

∣∣∣∣∣ ( 1 ◦ ϕ)

∣∣∣∣
= 0

∣∣∣∣∣

1/2

and hence
∣∣∣∣∣ ( 1 ◦ ϕ)

∣∣∣∣
= 0

∣∣∣∣∣ ≤
2

0
2
( 1 ◦ ϕ)( 0)

Note that the inequality above is also valid for each0 ∈ [ 0 1) with 1 ◦ ϕ( 0) = 0.
Hence

∣∣∣∣ ( 1 ◦ ϕ)( )

∣∣∣∣ ≤
2

0
2
( 1 ◦ ϕ)( ) for each ∈ [ 0 2)(5.10)

Thus we have

1 ◦ ϕ( ) ≤ 1 ◦ ϕ( 0) exp

(
2( − 0)

0
2

)

≤ 1 ◦ ϕ( 0) exp

(
2( 2− 0)

0
2

)
for each ∈ [ 0 2)

Thus from (5.5), (5.9), and (5.10) we have

∥∥∥∥
ϕ

( )

∥∥∥∥ ≤
√

2( 1 ◦ ϕ)( 0)

0
2

exp

(
2 − 0

0
2

)
for each ∈ [ 0 2)(5.11)

We set

=

√
2( 1 ◦ ϕ)( 0)

0
2

exp

(
2 − 0

0
2

)

We fix an element (0 0) ∈ µ −1(ν) such thatϕ( 0) = [ 0 0]. We write 0 =
(α1 . . . α ) and 0 = (β1 . . . β ). Let 0 = 0 and let ϕ̃( 0) = ( 0 0). From (5.6)
and (5.11),

( 2− 0) ≥ ( − 0)
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≥
∫

0

∥∥∥∥
ϕ

( )

∥∥∥∥

=
∫

0

∣∣∣∣
ϕ̃

( )

∣∣∣∣

≥
(
∑

=1

| ( )− α |2 +
∑

=1

| ( )− β |2
)1/2

≥

∣∣∣∣∣∣

(
∑

=1

(
| ( )|2 + | ( )|2

)
)1/2

−
(
∑

=1

(
|α |2 + |β |2

)
)1/2

∣∣∣∣∣∣

=

∣∣∣∣∣∣
|ϕ̃( )| −

(
∑

=1

(
|α |2 + |β |2

)
)1/2

∣∣∣∣∣∣

and hence

( 2− 0) +

(
∑

=1

(
|α |2 + |β |2

)
)1/2

≥ |ϕ̃( )|

Hence{ϕ( ) | ∈ [ 0 2)} is contained in some compact set in (ν). This is a contra-
diction. Hence we have2 =∞. Similarly, we have 1 = −∞.

Next we consider the general case. Since #Cν = 2, by Theorem 3.3 there exists
∈ (3) such that the second and the third component ofν are equal to zero.

Hence the theorem follows from Theorem 3.2.

(2). We may assume thatν is of the form (ν1 0 0). From (1) it is sufficient to con-
sider the complex structureI2. Now for each vector field on (ν), we have

(5.12) (I2 ) = (∂ + ∂̄ )(I2 ) =
√
−1 (∂ − ∂̄ )( ) for each = 1 2

where∂ and ∂̄ are the (1,0) and (0,1) parts of with respect toI2. We have

(I2 ) = − ( #)ω1(I2 )

= − (I1
# I2 )

= − (I3
# )

= −ω3( # )

= − ( #)ω3( ) for each = 1 2

Thus from (5.12),

− ( #)ω3 =
√
−1 (∂ − ∂̄ ) for each = 1 2
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Thus from Proposition 5.1 we have

2
√
−1∂∂̄ = #ω3 = ω2 for each = 1 2

and hence
√
−1∂∂̄( 1 + 2) = ω2

Since 1 + 2 is proper andω2 is a Kähler form, 1 + 2 provides a strictly plurisub-
harmonic exhaustion function for (ν) with respect toI2. Hence ( (ν) I2) is a Stein
manifold.

EXAMPLE 5.3. Let (ν) be a toric hyperkähler manifold in Example 4.1. Since
#Cν = 2, it follows from Theorem 5.2 (1) that ( (ν) I ) and ( (ν) I ) are biholo-
morphic for each , ∈ 2 \ {± / ‖ ‖}.

Problem. Let (ν) be a toric hyperkähler manifold with #Cν > 2. It is still open
whether ( (ν) I ) and ( (ν) I ) are biholomorphic for each , ∈ 2 \ Cν .

We give an example of a toric hyperkähler manifold (ν) with #Cν > 2 such that
( (ν) I ) and ( (ν) I ) are biholomorphic for each , ∈ 2 \ Cν .

EXAMPLE 5.4. Let (ν ) be a hyperkähler quotient ofH by for each 1≤
≤ . Suppose that #Cν = 2 for each 1≤ ≤ . We setν = (ν1 . . . ν ) The

product (ν1) × · · · × (ν ) is the hyperkähler quotient (ν) of H 1 × · · · × H by

1 × · · · × . For each 1≤ ≤ , there exists ∈ 2 such thatCν = { − }.
We assume that and are linearly independent for each 1≤ 6= ≤ . We have
from Theorem 3.3,

Cν = {± | 1≤ ≤ }

By assumption, #Cν is equal to 2 . It follows from Theorem 5.2 (1) that ( (ν ) I )
and ( (ν ) I ) are biholomorphic for each , ∈ 2 \ Cν and for each 1≤ ≤ .
Thus ( (ν) I ) and ( (ν) I ) are biholomorphic for each , ∈ 2 \ Cν .
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