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Sparse optimization with uncertainty has been widely applied in operations re-
search and industrial engineering. For instance, in control systems, sparsity effectively
minimizes the control efforts by deactivating control actuators through holding a long-
period of zero-valued control inputs – a paradigm known as sparse optimal control. In
practical applications, dynamical systems often encounter diverse uncertainties, such
as noise, disturbances, parameter mismatches, or missing data, which significantly af-
fect their stability and reliability. These uncertainties pose challenges in modeling sys-
tems, where solutions become highly sensitive to uncertain variables. Therefore, pur-
suing a robust, stable, and optimal solution for uncertain models is a critical issue for
optimization theory and its control applications.

This dissertation aims to address these challenges. Firstly, by implementing the
dynamic linear compensator for system modeling, an explicit sparse feedback con-
troller can be inferred from its open-loop optimal solution to closed-loop realization,
which also provides the initialization robustness guarantees for control systems. Sec-
ondly, a chance-constrained sparse optimization problem is proposed by modeling the
stochastic dynamics, where the uncertain parameters are assumed to be random vari-
ables. By means of convex relaxation and data-driven sampling technique, the sparse
random convex program and risk-aware sparse optimal (predictive) control problems
are presented. This framework not only delivers a randomized sparse solution but also
ensures robustness with a high level of confidence in probabilistic guarantees. Thirdly,
a data-driven framework for a discrete linear time invariant system is employed in con-
junction with sparse feedback control synthesis. Instead of a priori knowledge of true
system model, the black-box control systems can be purely exploiting experimental in-
put/state/output data samples. Fourthly, a methodology for linear quadratic sparse
optimal control is devised to tackle a continuous-time master-slave tracking issue, em-
ploying a framework grounded in the non-smooth maximum principle. Finally, nu-
merical benchmarks illustrates the effectiveness of the proposed theoretical results and
its control technologies.
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Chapter 1

Introduction

1.1 Background

A philosophical principle of parsimony, is commonly referred to as Ockham’s razor. This
principle advocating the preference for the simplest explanation of the problem’s struc-
ture should take over more complicated ones, which means that the solution is sparse.
Put differently, “simplest is the best.” Within the realm of machine learning and statis-
tics modeling [19], it manifests in the practice of variable or feature selection, princi-
ple component analysis [151], commonly applied in two situations. Firstly, it aims to
render the model or prediction more interpretable or computationally efficient. For in-
stance, even in cases where the underlying problem is not sparse, one looks for the best
optimal sparse approximation, like regression problem by Lasso regularization [127].
Secondly, the sparsity is embedded when prior knowledge requires sparse modeling. In
connection to the regressions of machine learning, the sparse regularization can effi-
ciently enhance more zero coefficients to prevent the overfitting learning [112, 139]. In
bio-informatics, sparsity-inducing plays an important role in finding meaningful frag-
ments in gens [124]. Also, when sparsity is in charge of investment management that
selects a relatively small number of invested asserts in portfolio optimization [29]. An-
other important field that can benefit from sparsity is signal processing and its exten-
sion compressed sensing [41, 55]. The fundamental concept behind compressive sensing
is the recognition that most real-world signals, such as image, audio, or video data
can be well approximated by sparse vectors within some suitable basis. Leveraging
this sparse representation can dramatically diminish the signal acquisition cost. Often-
times, the accurate signal can be reconstructed in a computationally feasible way, by
means of sparse optimization methods.

As we all know, energy-saving is critical for system performance guarantees in op-
timal control problems, which is closely related to minimum energy control [7, Chap. 8]
by performing ℓ2 norm (resp., L2 norm in continuous-time) of control energy transition
to prevent engine overheating and to reduce transmission cost. Another alternative
strategy is minimum fuel control [7, Chap. 6], that is, the total consumption of fuel is
minimized with the ℓ1 norm (resp., L1 norm in continuous-time) of the control signals.
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A famous real-world application showcasing fuel minimization is in spacecraft guid-
ance, such as rocket flight and landing control from the earth to the moon. This practice
aims to reduce the total expenditure of fuel as soon as possible, yielding cost savings.

Sparse optimal control is a new paradigm for control effort minimization [102,
105], and thus it can be viewed as a “green control” that achieves energy or fuel conser-
vation as well as (CO or CO2) emission reduction (cf., in power systems, smart grids,
transportation systems, electric or hybrid vehicles, etc), which is vital to pave the road
to Net-Zero objectives, utilizing automation technology as a part of the solution. In
general, the sparse optimal control objective is to find a sparest control sequences that
drives the system state from an initial state to a prescribed terminal state. Here, the
sparsity is characterized as the ℓ0 norm on discrete-time control vector (or L0 norm over
continuous-time control signals) by means of minimizing the ℓ0/L0 norm objective. In
essence, sparsity is characterized by the ℓ0 norm, which quantifies the number of non-
zero components (or, equivalently, the Lebesgue measure in R with the L0 norm). This
metric serves as a guiding principle in sparse optimization techniques. Sparse opti-
mization problems have been a subject of study since the emergence of compressed
sensing [55, 130] in signal processing. Over the last decade, the concept of “sparsity”
has significantly evolved and gained prominence across various cutting-edge research
domains, including machine learning, statistics, data science, and control engineering
[19, 105, 127, 151]. Sparse optimization has the following remarkable benefits. First,
adopting a precise ℓ0/L0 (or relaxed ℓ1/L1) norm regularizes the optimization prob-
lem and thereby mitigates the optimizer’s dimensions characteristic for modern pro-
gramming. Second, sparse convex models are often tractable even though the exact
sparse model with the non-convex nature (which is generically non-continuous) are
hard. Miscellaneous methods are employed to address sparse optimization, such as
convex optimization, gradient projection method, difference-of-convex functions (DC)
approach [64], mixed-integer programming (MIP) [26], submodular optimization [53],
and majorization-minimization (MM) [94], among others.

This thesis focuses on sparse optimization and its applications in controlling dy-
namical systems, encompassing aspects such as modeling, robustness, and stability.

1.2 Related literature

In control community, sparsity-promoting strategy has thrived in various directions
to distributed control [59, 73, 97], tracking control [149], and predictive control [3, 52,
104, 77]. Indeed, there are two distinct scenarios for sparse control: “control structured
sparsity” versus “control input sparsity”, each serving different purposes. When the
sparsity is imposed on the control structure (i.e., generating structured sparsity) whose
controller depends on feedback policy [8, 85, 113, 114], then the sparse control is recast
into a distributed control, which attempts to reduce the number of communication links
or network flows [73] in cyber–physical systems, and thereby achieving resource-aware



1.2. Related literature 3

allocation and consensus or synchronization. Another appealing alternative is to pe-
nalize sparsity on control signals (i.e., implementing input sparsity) that maximizes the
time duration over which the control value is exactly zero, the resulting control paradigm
is referred to as “maximum hands-off control”, or “L0/ℓ0 optimal control” [102, 104,
105]. Spuriously, for a continuous-time system, the work [105] has revealed that L1

optimal control with “bang-off-bang” property (i.e., taking {±1, 0}) is equivalent to L0

optimal control, while such a wonderful result falters in the discrete-time case, as en-
suring equivalence between ℓ0 and ℓ1 optimal control problems require the “restricted
isometry property” (RIP) [39, 104].

The primary focus of this dissertation revolves around generating a sparse optimal
control signal for a class of discrete-time systems. Specifically, the control objective in-
volves exploring the minimization problem related to the number of nonzero components
within finite-dimensional control vectors, inspired by concepts in compressed sensing
[40, 55, 130]. As a matter of fact, the optimal control design of (sparse) control input is of
great significance for dynamical systems and directly affects the dynamic process of the
systems. Many practical systems of interest are dependent on a feedback mechanism
to achieve closed-loop stability. However, closed-loop realization is more challenging
to constrained optimal control problem because determining the feedback gain (matrix) is a
non-trivial task [23]. Indeed, in closed-loop sparse control design, almost all existing
results have been focused on discussing “structured sparsity” [59, 73, 97] by optimiz-
ing linear quadratic state feedback cost [8, 85, 113] rather than pursuing our expected
sparse control inputs (i.e., ℓ0 optimal control) [42, 104]. Furthermore, most successful
stories on sparse control adopting convex relaxed ℓ1 cost of discrete (resp., L1 cost of
continuous)-time systems have been extensively treated in open-loop solutions [10, 104,
105, 116]. It is noteworthy that, in the literature mentioned above, on one hand, sparse
feedback control exhibits closed-loop stability and structured sparsity but lacks input
sparsity. On the other hand, open-loop sparse optimal control enjoys input sparsity but
lacks closed-loop stability.

Although “real-time control” bridges the gap between the open-loop and closed-
loop solutions, schemes such as self-triggered sparse control [105] and sparse predictive
control [104] can, and often do, emerge feedback solutions. Obviously, these iterative
feedback algorithms perform online optimization, leading to the computationally bur-
den, especially when the decision variable is high dimension. In [6, 134], a system level
synthesis (SLS) scheme shifts the controller synthesis task from the design of a con-
troller to the design of the entire closed-loop system, and highlight the benefits of this
approach in terms of scalability and transparency. Neither exploring sparsity on the
structure of feedback gain matrix or exploiting real-time control, we intend to immedi-
ately promotes sparsity on the control inputs with a closed-loop response. Inspired by
seminal works [21, 23], a “relatively optimal control” technique paves the way towards
the open-loop solution to the closed-loop solution by means of linear implementation.
Therefore, the challenge lies in designing an optimal sparse feedback control that en-
compasses both input sparsity and closed-loop stability, highlighting its significance is
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one of the interests of this dissertation.

Similar optimal tracking control problem has been arisen in a variety of indus-
trial applications including automatic river navigation [132], super-tankers [48], UAVs
(unmanned aerial vehicle) [30], tokamaks [107], and motion systems [95]. On the one
hand, optimal tracking can be viewed as reference and command governors [63], which
are add-on control strategies for reference supervision and constraint enforcement in
closed-loop feedback control systems. Here, the reference governor plays the role of
pre-filter that, based on the current value of the desired reference command and of the
(measured or estimated) state, generates a modified reference command whenever the
reference command without modifications may lead to constraints violations [61]. Note
that the idea of pre-stabilizing a (closed-loop) system and then using gain scheduling
or cancellation and convergence of the desired reference governor or trajectory has sub-
sequently become popular also in the servo control [83].

On the other hand, optimal tracking aims at minimizing the tracking error between
the plant state (or output) and a desired reference trajectory with state and control con-
straints, which has been appeared in consensus or synchronization control of master-
slave tracking system, multi-agent system, and large scale network systems [31]. In
particular, the linear quadratic (LQ) tracker has been extensively researched, where the
plant is linear and the cost function is a quadratic function [84, Chap 4]. This LQ for-
mulation adds the L2 norm of the control input to the cost function as a regularization
term. The LQ tracking control problem has been investigated for infinite-horizon con-
trol with a constant state target [135], receding horizon control [108], time-invariant
control consisting of a static feedback and a static pre-filter [17], and discrete-time
stochastic control against lossy channels [86]. In this regard, this dissertation focuses
on the above mentioned two categories of tracking problems, addressing the design
of sparse optimal tracking control techniques, called as minimum attention (tracking)
control [28, 103, 146] and LQ sparse optimal tracking control [149], respectively.

Moreover, the presence of uncertainty in system modeling has remained a pivotal
concern in control theory. For example, the uncertainty can be characterized as “addi-
tive” disturbances or “model parametric” instances of the plant [150]. The earliest at-
tempts to address uncertainty is worst-case setting, and the uncertain instances may be
extremely malicious, and thereby the idea is to hedge against the worst-case scenario,
even if it may be unlikely to occur. Previous studies [76, 149] have presented sparse
optimal control methods emphasizing robustness, including extensions to sparse pre-
dictive control [3, 52, 104]. However, the imposition of worst-case constraints demands
satisfaction under all uncertainties, potentially leading to excessively conservative and
pessimistic solutions. Lots of momentums for sparse optimal control problems are sub-
ject to deterministic constraints, such as hard state and input constraints, as far as the au-
thor knows. In this regard, this dissertation relaxes these “hard constraints” as the “soft
constraints” by introducing a probabilistic or stochastic modeling. Consequently, the de-
rived solution guarantees probabilistic robustness when the constraint is satisfied for the
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“most” of the realizations of the uncertainty. The problem is then mathematically de-
fined as chance-constrained optimization problems [45] with sparse decision-making, re-
ferring to as chance-constrained sparse programs and giving rise to risk-aware sparse optimal
control [77, 144], compared to the existing literature [71, 76, 105, 149]. While the solu-
tions are often computational intractable even if the problem setups are well-defined.
Fortunately, considering the fact that a convex relaxation method is commonly utilized
in order to mitigate the computational burden in sparse modeling [55, 102], as well as
a data-driven random sampling technique (a.k.a., scenario approach [37], sample av-
erage approximation (SAA) [91], randomized algorithms [126]) is popularly accepted
in handling stochastic modeling [14, 122]. Therefore, the risk-aware sparse (predic-
tive) optimal control problems can be addressed in (online) sparse random convex pro-
grams, and this dissertation provides a probabilistic robustness guarantees for a class
of sparse optimal control problems.

In real-world control systems, the modeling of underlying linear time invariant
(LTI) system is always high dimensionality and complexity, leading to priori knowl-
edge of the “actual” system model is often unknown or partial available. Instead of
controlling an identified system model, a data-driven paradigm has attracted much at-
tention on “model-free” systems by purely relying on input-state/output data [58, 96,
137]. The essential procedure of data-driven method is how to encourage data “ac-
tive”, namely, learning system behavior and controller from informative data. Roughly
speaking, all trajectories of system behavior can be recast through a finite samples of
its offline input-output data stored in Hankel matrices. Under assumption of persis-
tently exciting (PE) input sequence [96], a celebrated Willems’ fundamental lemma was
established [131, 137] using behavioral system theory [136]. From this, the space of all
LTI system trajectories can be directly produced from a single experiment or simula-
tion of input/state/output data trajectory samples, which captures the whole behavior
of the controlled system, resulting in a “data-based” system representation [15, 16, 96,
131]. Moreover, additional methods such as data-driven minimum energy control [9],
data-driven relative optimal control [22], data-drievn system level synthesis [140] and
data-driven model predictive control [16, 50] have undergone extensive development.
In [32, 113], the model-based results induce a desired sparse control input by taking a
row-sparsity (i.e., an ℓ1,∞ matrix norm [115, 128]) on the static state feedback gain, which
implies a structured sparsity on channels. Building upon the valuable insights from
prior works, this thesis aims to develop a data-driven sparse feedback controller by
employing the input/state/output sampled data trajectories, all without priori knowl-
edge of model information [142].

This dissertation focuses on the modeling, robustness, and stability of sparse optimal
control for dynamical systems, the following concerns and comparisons are proposed:

• Open-loop versus Closed-loop models

– Stability of sparse feedback systems (Chapter 2)

• Deterministic versus Stochastic models
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– Probabilistic robustness guarantees (Chapters 3 & 4)

• Model-based versus Model-free frameworks

– Data-driven sparse feedback control synthesis (Chapter 5)

• Discrete-time versus Continuous-time models

– LQ Sparse Optimal Control (Chapter 6)

Each proposed concern and comparison has its respective chapter, which involves the
methodology and a comprehensive analysis of its properties, including system model-
ing, robustness evaluation and stability analysis. Numerical simulations are also pro-
vided for demonstrating the effectiveness of the proposed theoretical results.

1.3 Contribution overview

The main contribution of this dissertation is to demonstrate that the optimal sparse
feedback controller can directly be inferred efficiently from its open-loop optimal solu-
tion to closed-loop realization. It further shows that an equivalence for the open-loop
sparse control and the closed-loop sparse control under a specified basis. Furthermore,
we present a sparse random convex program for dealing with a chance-constrained
sparse optimization problem that attains a feasible solution with a high probability or
confidence level, which also ensured that such a randomized sparse solution is compu-
tationally tractable. We also make the trade-off between the sparse cost performance
and the violated constraints for the sparse random convex optimization with relaxation.
As a by-product, our results are applied to robust control applications that includes
risk-aware sparse optimal control and predictive control for the discrete-time uncer-
tain dynamical systems. We also follow the trend of the hot research topics and ex-
ploit the state-of-the-art data-driven control technique to construct a direct data-driven
sparse feedback control for a model-free linear time invariant system, where the sparse
feedback control is purely data-enable through input/state/output data samples. The
synthesized data-driven controller enjoys the input sparsity by implementing a row-
sparsity structured feedback gain matrix. Without loss of generality, we finally develop
a linear quadratic (LQ) sparse optimal control for a continuous-time system, and estab-
lish the theoretical guarantees for the proposed control based on non-smooth maximum
principle [49]. In addition, the robustness of the LQ sprase optimal control in the pres-
ence of perturbations in the initial states and the state-space matrices are explored. The
more concrete overview of this dissertation is described as follows.

Chapter 2 concerns on optimal sparse feedback control synthesis from its open-
loop solution to closed-loop realization, where the feedback matrices of sparse optimal
control can be derived by means of a dynamic linear compensator [145, 147]. In other
words, a constrained sparse optimization is firstly performed and then the feedback
realization is achieved, thereby the sparse feedback controller can be derived from its
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open-loop optimal solutions. One of its benefits is its reliance solely on offline optimiza-
tion, which is more efficient than establishing real-time control with iterative processes
to create the closed-loop response, such as predictive control [52, 104], self-triggered
control [104], and dynamic programming [83]. Thus,the proposed sparse feedback
controller can often offer a significant computational saving and control effort mini-
mization. Also, such a sparse feedback control is analytical and explicit, which also
provides the stability, optimality, and sparsity for the closed-loop augmented system,
and displays that the designed sparse feedback control is essentially a deadbeat control.
The relationship among the sparse feedback control and the open-loop sparse optimal
is discussed. Also, as will be shown in this chapter, the synthesized sparse feedback
control is equivalent to open-loop sparse optimal control under a specified basis. In ad-
dition, the similar principle is useful to design a minimum attention feedback control
by using a dynamic tracking compenstor, which is useful to tracking control problem.

Chapter 3 and Chapter 4 discuss the sparse decision making with stochastic uncer-
tainty and the applications of the risk-aware sparse optimal (predictive) control prob-
lems to the uncertain control systems. Chapter 3 presents a novel chance-constrained
sparse optimization problem that aims to perform sparse decision-making when the
constraints are in terms of chance or probabilistic model [148]. For the metric of the
probabilistic problem setup, a small fraction of constraint violations is allowed gov-
erned by a given risk level. This uncertainty quantification is closely related to robust
optimization [14], chance-constrained program [45], and stochastic programming [122].
Here, it should be emphasized that although the proposed chance-constrained sparse
optimization problem is well-defined, the solution is computationally infeasible since
the “nonconvex” structure and multiple-integral calculation. By virtue of convex re-
laxation and data-driven sampling techniques [37, 126], the intractable optimization
problem can be converted into the finite sparse random convex program that the ob-
tained sparse randomized solution is feasible to original chance-constrained sparse op-
timization with a priori and high confidence probabilistic robustness guarantees. In
addition, a trade-off between the sparse cost performance and the risk level is studied,
giving rise to a relaxed sparse optimization problem [143]. The objective function is
thus penalized by not only the sparse cost but also the violated regrets, and a posteriori
probabilistic guarantee is ensured, and the related work is similar to the sparse support
vector machine [60]. Here, it should be emphasized that the results of sparse random
convex program can be successfully applied to the robust control applications, referred
to as risk-aware sparse optimal control.

Chapter 4 investigates a risk-aware sparse predictive control problem for a discrete-
time uncertain system subject to external stochastic noise and model parametric un-
certainty [144], which is related to stochastic model predictive control [33, 90, 98] and
sparse predictive control problems [77, 104]. This problem focuses on the control mech-
anism of how system state can drive from an initial state near to a prescribed terminal
set through a minimum control effort of the predictive control sequences. In model
predictive control, the principle of a receding horizon control strategy is analogous to



8 Chapter 1. Introduction

playing chess game, that is, only the first control action of all predicted control inputs
is applied to the dynamical systems, which requires the control system to repeatedly
solve an open-loop optimal control problem over a prediction horizon. Thus, the risk-
aware sparse predictive control becomes a real-time control problem by performing an
online sparse random convex optimization problem. As shown in Chapter 3, the result can
also provides the probabilistic robustness guarantees for the spare predictive control.

Chapter 5 explores the data-driven sparse feedback control for a model-free discrete-
time linear time-invariant (LTI) system, where the true dynamics of the system is un-
known and the control inputs of the feedback response is sparse. More concretely, the
control objective tends to learn sparse feedback controllers directly from the input/state/output
data trajectories, in contrast to the common approaches where a priori knowledge of
the actual system model is given or identified to synthesize a “model-based” sparse
(feedback) controller, discussed in Chapter 2 – 4, and the literature therein. Assuming
that the input signals for a single or multiple experiments [131] either hold persistently
exciting (PE) condition [54, 96, 137] or go beyond one using data informativity [129],
then LTI system can be successfully reconstructed by the input/state/output data sam-
ples, resulting in a data assisted LTI systems representation. Similar to Chapter 2, here
Chapter 5 also intends to pursue a sparse feedback controller with input sparsity and
closed-loop stability. However, there are some distinctions here: Firstly, the considered
dynamical system operates under a black-box setup, meaning it lacks a known model
but is accessible through input/state/output data based on a PE condition [54]. Sec-
ondly, the input sparsity is achieved by employing a row-sparsity structured feedback
gain matrix [113, 114], accomplished through penalizing an ℓ1,∞ norm on itself [128].
Therefore, the derived controller naturally is data-driven sparse feedback controller.

Chapter 6 proposes a linear quadratic (LQ) sparse optimal control, also named as
LQ hands-off control, for the continuous-time master-slave systems that combines the LQ
cost with a cardinality penalty to promote the sparse input in quadratic performance
as well as reach trajectory tracking [149]. The articles [71, 105] have obtained the nec-
essary conditions of sparse control problems, and they were devoted to produce the
sparse solutions via convex surrogate, that is, L1 optimal solutions. Observe that the
exact L0 measure leads to non-convex and discontinuous optimal problem, this disser-
tation tackles this obstacle directly without any approximation in theoretical analysis,
as mentioned in [46, 79]. From this, it is possible to derive the precise L0 optimality
conditions for LQ hands-off control based on the non-smooth maximum principle [49]. As
a result, the proposed LQ hands-off control may not be continuous due to the sparsity
pattern, while the standard LQ control is continuous and smooth in general. In order
to compute numerical solutions efficiently, the time-discretization method and L1 re-
laxation is employed, and the proposed LQ sparse optimal problem can be reduced to
a finite-dimensional convex problem. In addition, the robustness of the LQ hands-off
control in the presence of perturbations in the initial states and the state-space matrices
are explored. Simulation results are shown to illustrate the effectiveness of the pro-
posed control method, and the robustness of the LQ hands-off control.
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This thesis ends with Chapter 7 offering concluding remarks. The contributions
and their limitations are outlined, and possible future developments are then provided.

More specifically, the interconnection between each chapter of this dissertation is
depicted in the following diagram.

Sparse
Optimization

&
Control

Applications
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Sampling
Open-Loop

Sparse
Predictive

Control
Chap. 4

Sparse
Optimal
Control
Chap. 3

Model-Free
Sparse

Feedback
Control
Chap. 5

Sparse
Feedback
Control
Chap. 2

LQ Sparse
Optimal
Control
Chap. 6

1.4 Mathematical preliminaries

Throughout this dissertation, we introduce the following mathematical preliminaries
for sparse signal in discrete-time and continuous-time, respectively.

For a vector x ∈ Rn, supp(x) denotes the support set of x, that is, the set of non-
zero elements of x = [x1, . . . , xn]⊤ ∈ Rn:

supp(x) ≜ {i ∈ {1, . . . , n} : xi ̸= 0}.

Definition 1.1 (ℓ0 norm) An ℓ0 “quasi-norm”1 of the vector x ∈ Rn is defined by its support

∥x∥0 = #{supp(x)} = #{i : xi ̸= 0, i = 1, · · · , n},

1Noticed that here the exact ℓ0 “pseudo-norm” is not properly (or mathematically) a norm, since it lacks
the absolute homogeneity, namely, ∥u∥0 = ∥αu∥0 ̸= |α|∥u∥0 for |α| ̸= 1; Similarity, the class of ℓp norm with
0 < p < 1 is also a pseudo norm, a graphical illustration for sparsity is shown in Figure 1.3. For the sake of
simplicity, we adopt quotation mark on quasi-norm.
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where the symbol # returns the number of elements if the argument set.

Definition 1.2 (Sparsity) A sparse vector is a vector having a relatively small number of
nonzero elements.

Example 1.1 (Sparse Solution) Find sparsest solution that minimizes

min
x

∥x∥0 s.t. x ∈ X ⊆ Rn. (1.1)

For instance, a visual representation of a sparse vector x ∈ R33 is given as follows

Figure 1.1: Sketch of sparse vector ∥x∥0 = 3 with x ∈ R33, where only three entries are
active (i.e., non-zero) elements marked as “red-o” and the others are all zero elements
marked as “black-o”, respectively.

Definition 1.3 (ℓp norm) The ℓp norm with p ≥ 1 of a vector x ∈ Rn is defined by

∥x∥p ≜

(
n

∑
i=1

|xi|p
) 1

p

, (1.2)

and the ℓ∞ norm is defined by

∥x∥∞ ≜ max
i=1,...,n

|xi|. (1.3)

Figure 1.2: ℓp norms for a vector x ∈ R2 under p = {0, 1, 2, ∞}, where different norms
are highlighted as different colors: ℓ0 “norm” (red), ℓp norm with 0 < p < 1 (green), ℓ1
norm (blue), ℓ2 norm (black), and ℓ∞ norm (yellow), respectively.
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Figure 1.3: Exactness versus Approximation versus Relaxation for sparsity of a vector
x ∈ Rn: exact ℓ0 “norm” (left), approximated ℓp “norm” with 0 < p < 1 (middle),
relaxed ℓ1 norm (right), respectively.

Definition 1.4 (Support) Let f : [0, t f ] → R be a measurable function with t f > 0, the
support of a function f over the interval [0, t f ] is defined by

supp( f ) ≜
{

t ∈ [0, t f ] : f (t) ̸= 0
}

. (1.4)

Utilizing the support of function f , we can define the L0 norm of f as follows.

∥ f ∥0 = µm(supp( f )), (1.5)

where µm(S) is the Lebesgue measure of a subset S ⊂ [0, t f ].

Besides, for a continuous-time control signal f (t), t ∈ [0, t f ], the sparse control
signal governed by a L0 norm in (1.5) can be rewritten as follows

∥ f ∥0 =
∫ t f

0
ϕ0( f (t))dt (1.6)

where ϕ0(·) is the kernel function, described by

ϕ0( f ) ≜

1, if f ̸= 0,

0, if f = 0.
(1.7)
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Chapter 2

Sparse Feedback Control by
Dynamic Linear Compensator

This chapter explores the discrete time sparse feedback control for a linear time invari-
ant (LTI) system, where the proposed optimal feedback controller enjoys input sparsity
by using a dynamic linear compensator, namely, the components of feedback control
signal having the smallest possible nonzero values. The resulting augmented dynam-
ics ensures closed-loop stability, which infers sparse feedback controller from open-
loop solution to closed-loop realization. In particular, the implemented sparse optimal
feedback (closed-loop) control solution is equivalent to the original (open-loop) sparse
optimal control solution under a specified basis. Moreover, an extension result with
respect to a feedforward tracking control problem based on tracking dynamic compen-
sator will also be discussed in this chapter. Finally, numerical examples demonstrate
the effectiveness of proposed control approaches.

2.1 Review of open-loop sparse optimal control

Consider a discrete-time LTI system described by

x(t + 1) = Ax(t) + Bu(t), x(0) = x0,

y(t) = Cx(t) + Du(t),
(2.1)

where u(t) ∈ Rm is the control input with m ≤ n, x(t) ∈ Rn is the state with an initial
value x0, y(t) ∈ Rp is the output, and A, B, C, and D are real constant matrices of
appropriate sizes. Throughout this chapter, we assume that the pair (A, B) is reachable.

In this chapter, we focus on sparse optimal control problem, and the control ob-
jective is to seek a control sequence {u(0), u(1), · · · , u(N − 1)} such that it drives the
resultant state x(t) from an initial state x(0) = x0 to the origin in a finite N steps (i.e.,
x(N) = 0) with minimum or sparse control effort. Such control paradigm also known
as “maximum hands-off control” that maximizes the time duration over which the control
value is exactly zero [10, 104, 105].
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Based on concept of sparsity (see Definition 1.1 in Chapter 1), we now formally
describe the following sparse optimal control problem.

Problem 2.1 (Open-Loop Sparse Optimal Control) Given a discrete-time LTI dynamics
(2.1), an open-loop sparse optimal control aims to minimize

min
u

c(u) = ∥u∥0

s.t. x(t + 1) = Ax(t) + Bu(t),

x(0) = x0, x(N) = 0,

x(t) ∈ X, u(t) ∈ U, ∀t = 0, 1, · · · , N − 1

(2.2)

where the cost function is related to precise sparse control input, i.e., ℓ0 “quasi-norm” mini-
mization of control vector (see Definition 1.1) that counts the number of nonzero elements of
the control vector u ∈ RmN . Here the first constraint represents the system behavior, and the
second constraints stand for a fixed initial state and terminal state, respectively, and the last
constraints are the magnitude of path (or state-input) constraints of the system.

Remark 2.1 (Exact Sparsity) As indicated in [55], an exact sparsity is achieved by pe-
nalizing an ℓ0 “quasi-norm” on decision variables. However, computing the ℓ0 norm
precisely is challenging due to its “non-convex” and “non-smooth” nature, often result-
ing in an NP-hard problem [106]. Therefore, most literature on non-convex sparse opti-
mization have been devoted to inexact polynomial-time or greedy algorithms, which
are not guaranteed to find optimal solutions: such as orthogonal matching pursuit
(OMP) [109], iterative hard thresholding (IHT) [24], and hard thresholding pursuit
(HTP) [57]. Such ℓ0 minimization is related to subset selection [69], for example, given
a vector u ∈ Rnu , the cardinality ∥u∥0 ≤ s exhibits the “s-sparse” condition for s ≪ nu,
leading to the worst case is, (nu

s ) possible combinations, especially when the dimension
of decision variable nu is high, like 100 million and even 100 billion.

Remark 2.2 (Sparse Optimization via MIP) Seeking the optimal solution to Problem
2.1 equivalents to solving a constrained sparse optimization problem, the “exact” sparse
solution for minimizing ∥u∥0 quasi-norm can be converted to the mixed-integer pro-
gramming (MIP) using modern solvers (e.g., Gubori and CPLEX) and employing so-
phisticated search strategies such as the branch-and-bound (BnB) exploration [26].

To reduce the computational complexity from exponential to polynomial time, one
suggests replacing the ℓ0 norm with the ℓ1 norm, ∥x∥1 = ∑n

i=1 |xi|, as ℓ1 norm is a tight
convex relaxation of ℓ0 norm, which still generates the relative sparse solution. For
more details with respect to sparse knowledge, we refer to Appendix A.

In this chapter, we shift the principle from compressed sensing to sparse optimal
control problem, which is to seek an “open-loop” ℓ1 optimal control action u∗ for a
discrete time LTI control system (2.27). Going back to Problem 2.2, we replace the
exact sparse cost ∥u∥0 by a convex relaxation ℓ1 norm (i.e., ∥u∥1), the following sparse
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optimization is central and can be described by [10, 104]

u∗ = arg min
u∈U

∥u∥1 = arg min
u∈U

N−1

∑
t=0

∥u(t)∥1, (2.3)

where ∥u∥1 indicates the ℓ1 norm of input vector u

u ≜
[
u⊤(0) u⊤(1) · · · u⊤(N − 1)

]⊤ ∈ RmN ,

that sums the absolute values of its elements.

For program (2.3), a feasible control set is defined as

U ≜
{

u ∈ RmN : ΦNu = −AN x0
}

, ΦN =
[
AN−1B| · · · |AB|B

]
∈ Rn×mN , (2.4)

where ΦN is an N-step reachability matrix satisfying full row rank, i.e., rank(ΦN) =

n. Occasionally, the state and input constraints are necessarily taken into account, for
instance, a mixed input-state constraint can be concluded as an output constraint y(t) ∈
Y , where Y is a convex and closed set. Besides, the horizon N should be sufficiently
long so that the admissible set of u is non-empty, which implies the existences of sparse
control solution u∗.

We sometimes call ℓ1 optimal control problem (2.3) as minimum fuel control problem.
In particular, the restricted isometry property (RIP) [39] reveals an equivalence between
ℓ0 optimal control (2.2) and ℓ1 optimal control (2.3) for discrete-time LTI systems [104].
Obviously, the convex “open-loop” ℓ1 optimal solution u∗ can be calculated by some
optimization methods, such as, linear program [1, 116] or convex optimization, etc.

However, for discrete-time systems, sparse optimal control would be deprived of
some wonderful results, such as it lacks bang-off-bang property (in continuous-time
systems) [104, 105], and it is also hard to offer the explicit open-loop solution. To in-
tuitively recognize non-feedback control, let us first reduce the Problem 2.1 to a well-
known ℓ2 optimal control (a.k.a., minimum energy control) problem [7], see a preview
Example 2.1, which provides an explicit, open-loop, analytic solution.

Example 2.1 (Minimum Energy Control) Given a finite control horizon N ∈ N≥0 and
a desired finial state x(N) = x f (does not need to be zero), the minimum energy control
asks for finding the control sequence {u(t)}N−1

t=0 such that it steers the system state x(t)
in (2.1) from x0 to x f in N steps, which becomes to solve the following problem

min
u

c(u) =
N−1

∑
t=0

∥u(t)∥2

s.t. x(t + 1) = Ax(t) + Bu(t), ∀t = 0, 1, . . . , N − 1,

x(0) = x0, x(N) = x f .

(2.5)
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As established in a classic result [74], the energy minimization problem in Example
2.1 is feasible if and only if (x f − AN x0) ∈ Im(WN), where

WN =
N−1

∑
t−0

AtBB⊤(A⊤)t

is the N steps controllability Gramian and Im(WN) means the image of the matrix WN .
Furthermore, the solution to Problem 2.5 is

u∗(t) = B⊤(A⊤)N−t−1W†
N(x f − AN x0), (2.6)

where W†
N the is the generalized inverse or Moore-Penrose pseudo-inverse of WN [12].

From the vector form perspective, the minimum-energy control problem is to find
the solution to the following equation

x f = AN x0 +
[

B AB . . . AN−1B
]

︸ ︷︷ ︸
CN


u(N − 1)
u(N − 2)

...
u(0)


︸ ︷︷ ︸

uN

,

where x f is reachable, CN denotes the N-steps controllability matrix and uN ∈ RmN

is the control vector over finite-horizon [0, N − 1]. Thus, the minimum-energy control
input to arrive at x f is derived as

u∗
N = C†

N(x f − AN x0). (2.7)

Example 2.1 is a quadratic convex program, and its extension is linear quadratic
regulator (LQR) control, i.e., taking c(x, u) = x⊤Qx + u⊤Ru with Q ≻ 0 and R ≻
0. In general, no matter for ℓ1 optimal control in Problem 2.1 or more common ℓ2

optimal control in Example 2.1, the resulting literature are almost related to open-loop
solution [10] rather than the feedback solution, since determining the feedback solution
for optimal control under some constraints is a not a simple task.

2.2 Closed-loop solution via dynamic programming

In discrete-time system, a standard smooth feedback maps κ : Rn → Rm is defined as
u = κ(x), and can be applied to the plant (2.1), then the closed-loop system becomes

x(t + 1) = fcl(x(t), κ(x(t))), (2.8)
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with a smooth fcl(x, u) = Ax + Bu such that

J(x) : min
u(0),··· ,u(N−1)

N−1

∑
t=0

c(x(t), u(t))=
N−1

∑
t=0

c(x(t), κ(x(t))),

for any initial state x0 for which J(x0) is well-posed, here J(x) is called value function or
optimal cost function that satisfies Bellman’s dynamic programming (DP) equation

J(x) = min
u

[
J( fcl(x, u)) + c(x, u)

]
, (2.9)

which implies the optimal feedback control

κ∗(x) = arg min
u

[
J( fcl(x, u)) + c(x, u)

]
. (2.10)

Hence, we have

J∗(x) = J( fcl(x, κ∗(x))) + c(x, κ∗(x)),

and the closed-loop system response (2.8) has the origin (i.e. fcl(0, 0) = 0) as a stable
equilibrium with Lyapunov function J(x). This gives a first-order necessary condition for
a minimum of the optimal feedback control

0 =
∂J
∂x

( fcl(x, κ∗(x)))
∂ fcl
∂u

(x, κ∗(x)) +
∂c
∂u

(x, κ∗(x)). (2.11)

Unfortunately, the DP method [83, Chapter 5] fails to dervie the explicit and closed-form
solution from condition (2.11), and thus one way is to compute numerical solution via
patch domain construction [2].

To tackle this difficulty, a seminal work by [23], they build on a relatively optimal
control from open-loop solution to closed-loop solution.

2.3 Sparse feedback control problem

Before proceeding with the “feedback realization”, a compensator K which we demand
to design is a dynamic and linear state feedback controller, depending on the evolution

K :
z(t + 1) = Fz(t) + Gx(t), z(0) = 0,

u(t) = Hz(t) + Kx(t),
(2.12)

where z(t) is the compensator’s state and F, G, H, and K are real matrices of compatible
sizes. Note that we set the initial state z(0) of the compensator as zero (i.e., z(0) = 0).

The advantages of the dynamic compensator K introduced in (2.12) are threefold.
First, it brings the linear and dynamic fashions to the sparse feedback control realiza-
tion, which allows for computationally tractable compensator gain matrices. Second,
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it promotes input/temporal sparsity [10, 104, 105], rather than structured or spatial spar-
sity for the controller [8, 59, 73, 113, 85, 97]. Lastly, it ensures internal stability for the
synthesized closed-loop behavior.

Remark 2.3 (Initialization Robustness) Notice that the requirement z(0) = 0 is not
overly restrictive in our context. In fact, in the following section, we further impose
z(N) = 0, along with x(N) = 0, as part of the sparse control implementation. This
means that we consider the closed-loop system through “deadbeat control”. In this
case, once the stable closed-loop reaches the zero state within a finite time, the condition
z(0) = 0 is automatically fulfilled whenever we have another x(0) ̸= 0 due to a new
disturbance.

In what follows, we focus on optimal sparse feedback control synthesis from open-
loop solution to closed-loop realization. A natural question is whether the obtained optimal
input-state trajectories alone implies “optimal feedback” about sparse control (2.12).

Our answer is yes, but with regards to a more general initial condition (i.e., a set
of initial guesses, see (2.13)) rather than a single initial condition stated in Problem 2.1,
which is based on the technique called relatively optimal control [23]. Thereby, determin-
ing the explicit matrices of F, G, H, K for dynamic compensator (2.12) is of primary
interest in designing sparse feedback controller.

Firstly, we introduce a general initial scenario for discrete LTI system (2.1), as follows

x0 ∈ X0
.
= {e1, e2, . . . , en} , (2.13)

which is used to generate all n possible input-state trajectories, here ei can be viewed as
the canonical basis vector of Rn, for example, e1 = [1 0 · · · 0]⊤ ∈ Rn. Therefore, the
constrained sparse feedback control problem is formally stated follows.

Problem 2.2 (Sparse Feedback Control) Find F, G, H, and K of controller (2.12) such that

(i) the designed dynamic compensator (2.12) stabilizes the discrete LTI plant (2.1) and

(ii) for any x0 ∈ X0 with zero initialization z(0) = 0, the controller (2.12) generates an input
sequence {u(t)}N−1

t=0 , which minimizes ∑N−1
t=0 ∥u(t)∥1 subject to the terminal constraints

x(N) = 0 and z(N) = 0 for a positive integer N, as well as the mixed state and input
(or output) constraints

y(t) ∈ Y , Y = {y ∈ Rp : −s ≤ y(t) ≤ s}, (2.14)

where s ∈ Rp is a given positive vector.

Remark 2.4 The input sparsity can be easily performed by minimizing the convex ℓ1

norm instead of the non-convex ℓ0 norm, as seen in the previous section. Moreover,
although we select only a subset of the initial states of the plant, i.e., x0 ∈ X0, which is
sufficient for our purposes. In fact, suppose that the given constrained sparse control
problem is solved. Since the resultant closed-loop system composed of (2.1) and (2.12)
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is linear, it means that for any x0 ∈ Rn with z(0) = 0, the controller (2.12) generates
a linear combination of the input sequences corresponding to x0 = e1, x0 = e2, . . .,
x0 = en, thereby achieving sparsity and satisfying x(N) = 0 and z(N) = 0.

2.4 Closed-loop stability for augmented system

As mentioned in the celebrated works [21, 23], the linear implementation can be built
from the relatively optimal control strategy. For a compact closed-loop system rep-
resentation, we accordingly introduce a stable matrix P, which is an N-Jordan block
associated with 0 eigenvalue, defined by

P =



0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


≜

[
0 0

IN−1 0

]
∈ RN×N . (2.15)

Obviously, P is a nilpotent matrix with property PN = 0

This oracle suggests us to investigate an augmented closed-loop system composed
of the discrete dynamics (2.1) and the dynamic compensator (2.12) of the form

ψ(t + 1) = (A+ BK)ψ(t), ψ(0) = ψ0,

y(t) = (C +DK)ψ(t),
(2.16)

where the corresponding state and the gain matrices are given by

ψ(t) =

[
x(t)
z(t)

]
, ψ0 =

[
x0

0

]

A =

[
A 0
0 0

]
, B =

[
B 0
0 I

]
, K =

[
K H
G F

]
,

C =
[
C 0

]
, D =

[
D 0

]
.

Based on the previous problem setup, the sparse optimal control with a general
initial condition (i.e., x0 ∈ X0), we thus need to solve n sparse optimal control problems
simultaneously, which can be recast as the constrained sparse matrix optimization.

Problem 2.3 (Constrained Sparse Matrix Optimization) Find the matrices X ∈ Rn×nN

and U ∈ Rm×nN such that the obtained U is sparse, which amounts to solve a constrained
convex matrix optimization

min
X,U

∥U∥1 = ∑
i

∑
j
|Uij|

s.t. AX + BU = X(P ⊗ In),
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In = X(e1 ⊗ In),

abs(CX + DU) ≤ s(1n ⊗ 1N)
⊤,

where e1 = [1 0 · · · 0]⊤ ∈ RN , the symbol ⊗ is the kronecker product, and abs(·) returns the
absolute value of each element in a matrix.

Problem 2.3 reduces to a convex optimization, and hence the solution is compu-
tationally tractable by means of the off-the-shelf packages, such as CVX [67] or YALMIP
[88]. Once the open-loop optimal solution (X, U) of Problem 2.3 is attained, we then
proceed the second step that tackles the following sparse feedback realization problem.

Problem 2.4 (Feedback Realization) Based on the solution (X, U) of Problem 2.3, the feed-
back realization needs to solve a linear matrix equation[

K H
G F

] [
X
Z

]
=

[
U
V

]
(2.17)

with respect to (K, H, G, F) and determine the compensator’s gain matrices, where

Z =
[
0n(N−1)×n In(N−1)

]
, V = Z(P ⊗ In). (2.18)

The approach to sparse feedback control design makes use of the above discussed
sparse optimization (Problem 2.3) and feedback realization (Problem 2.4), where the
dynamic compensator ensures the internally stability of the closed-loop augmented
system (2.16). The result is summarized in the following theorem and corollary.

Theorem 2.1 (Sparse Feedback Control Realization) Suppose that Problem 2.3 has the
minimizer (X, U). Then the equation (2.17) has the unique solution (K, H, G, F) and the re-
sulting compensator (2.12) with z(0) = 0 generates the input sequence u(t) = U(et+1 ⊗ x0),
t = 0, 1, . . . , N − 1, for x0 ∈ X0, which drives the plant state x(t) from the initial state
x(0) = x0 to the terminal state x(N) = 0 under the output constraint (2.14). Furthermore,
the closed-loop system (2.16) is internally stable.

Proof 2.1 We first describe the matrices X and U1

X =
[

X0 X1 · · · XN−1

]
, U =

[
U0 U1 · · · UN−1

]
,

where Xt ∈ Rn×n, Ut ∈ Rm×n, and t = 0, 1, . . . , N − 1. Notice that checking the second
constraint of Problem 2.3 gives rise to the result X0 = In. With this fact, it admits that
the matrix Ψ is non-singular. In other words, the matrix determinant claims that

det(Ψ) ̸= 0, Ψ =

[
X
Z

]
=

[
In X1 · · · XN−1

0n(N−1)×n In(N−1)

]
. (2.19)

1For x0 ∈ X0, the state trajectory is X =
[
x1(0) x2(0) . . . xn(0) x1(1) x1(2) . . . xn(N − 1)

]
and the input

trajectory is U =
[
u1(0) u2(0) . . . un(0) u1(1) u1(2) . . . un(N − 1)

]
.
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Since the matrix Ψ is invertible, it follows that the equation (2.17) has the unique solu-
tion (K, H, G, F) associated with the dynamic compensator (2.12). Meanwhile, the first
constraint of Problem 2.3 with (2.17) and (2.18) asserts that

(A+ BK)Ψ =

[
A 0
0 0

] [
X
Z

]
+

[
B 0
0 I

] [
U
V

]

=

[
AX + BU

V

]

=

[
X
Z

]
(P ⊗ In)

= Ψ(P ⊗ In).

This implies that the closed-loop augmented matrix A+ BK = Ψ(P ⊗ In)Ψ−1, so that
it is similar to a nilpotent matrix (P ⊗ In). Hence, the closed-loop system (2.16) is inter-
nally stable and the zero terminal state x(N) = 0 is achieved for any initial state ψ(0)
of the system.

Moreover, we see that the sequences

x(t) = X(et+1 ⊗ x0) = Xtx0,

u(t) = U(et+1 ⊗ x0) = Utx0,

z(t) = Z(et+1 ⊗ x0) = Ztx0

are indeed generated by the system (2.1) with x(0) = x0 and the controller (2.12) with
z(0) = 0. As a matter of fact, apparently x(0) = X(e1 ⊗ x0) = X0x0 = x0 and z(0) =
Z(e1 ⊗ x0) = 0. Furthermore, based on the fact that (P ⊗ In)(et+1 ⊗ x0) = et+2 ⊗ x0,
we have the system behavior

Ax(t) + Bu(t) = (AX + BU)(et+1 ⊗ x0)

= X(P ⊗ In)(et+1 ⊗ x0)

= X(et+2 ⊗ x0)

= x(t + 1), (2.20)

and the dynamic control evolution

Fz(t) + Gx(t) = (FZ + GX)(et+1 ⊗ x0)

= Z(P ⊗ In)(et+1 ⊗ x0)

= Z(et+2 ⊗ x0)

= z(t + 1), (2.21)
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which further gives rise to the control action

Hz(t) + Kx(t) = (HZ + KX)(et+1 ⊗ x0)

= U(et+1 ⊗ x0)

= u(t). (2.22)

We next consider the third constraint (i.e., output constraint) of Problem 2.3, whose
validity can be inspected by assessing the two-side inequalities

−abs(CX + DU) ≤ CX + DU ≤ abs(CX + DU)

hold true. Therefore, for a given positive vector s ∈ Rp and x0 ∈ X0, we have

(CX + DU)(et+1 ⊗ x0) ≤ abs(CX + DU)(et+1 ⊗ x0)

≤ s(1n ⊗ 1N)
⊤(et+1 ⊗ x0) = s. (2.23)

Notice that Cx(t) + Du(t) = (CX + DU)(et+1 ⊗ x0) = y(t), then the output constraint
of the form {−s ≤ y(t) ≤ s} in (2.14) is verified.

According to the above arguments, we claim that the sequences (2.20), (2.21), (2.22),
and (2.23) indeed satisfy the input-state trajectories of LTI dynamics (2.1) under output
constraint (2.14), which proves the theorem for realizing sparse feedback control. ■

Remark 2.5 (Offline vs. Online) Realizing sparse feedback control in Theorem 2.1 is
based on “offline computation”, and hence the computational complexity is low. Com-
pared with sparse predictive control [3, 72, 104], a real-time feedback control is em-
ployed to ensure closed-loop dynamics and “online optimization” is repeatedly per-
formed as a feedback controller to calculate sparse iterative solutions. Beyond all
doubt, predictive feedback control naturally leads to computational burden when the
sizes of controlled system is high (e.g., the curse of dimensionality), even for using a
fast alternating direction method of multipliers (ADMM) algorithm [52, 104].

A direct corollary can be derived from proposed Theorem 2.1, which establishes
the “equivalence” connection between the open-loop sparse optimal control solution
and the closed-loop sparse optimal control solution.

Corollary 2.1 (Equivalence) Suppose that Problem 2.3 has the minimizer (X, U). Let u∗
K be

optimal sparse feedback control (i.e., closed-loop ℓ1 optimal control) solution using a dynamic
linear compensator K (2.12), and u∗ be open-loop ℓ1 optimal control solution u∗ of program
(2.3) with output constraint (2.14), respectively. Then, for x0 ∈ X0, it holds that

u∗ = u∗
K = Hz + Kx∗. (2.24)

In addition, we claim that if the synthesized sparse feedback control is available,
then it is essentially a deadbeat control.
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Corollary 2.2 (Deadbeat Control) Suppose that Problems 2.3 and 2.4 have solved, then the
implemented sparse feedback controller u∗

K = Hz + Kx∗ (i.e., closed-loop ℓ1 optimal control) of
discrete LTI plant (2.1) is essentially an N-step “deadbeat controller”.

Remark 2.6 Regarding the deadbeat control, since the designed compensator K brings
the system state x(t) to the origin exactly in N steps (satisfying x(N) = 0), which places
all of the eigenvalues of the augmented closed-loop system matrix A+BK at the origin
in the complex plane.

2.5 Extension: Tracking problem

In this section, we extend the result of sparse feedback control to tracking control prob-
lem [83, Chapter 8], also known as reference governor [61, 63]. In other words, reference
and command governors are add-on control schemes which enforce state and control
constraints on pre-stabilized systems by modifying, whenever necessary, the reference
input to the closed-loop systems.

We start by giving a step-type reference signal r(t) ∈ Rp as

r(t) =

{
r−, t < 0

r+, t ≥ 0,
(2.25)

where r− ∈ Rp and r+ ∈ Rp are constant vectors as reference governors. The purpose
of tracking problem is to design a dynamic tracking compensator such that the perfor-
mance output tracks a reference input with zero steady-state error by using additional
feedforward gains. For this reason, we define the tracking error by e(t) = y(t)− r(t),
where y(t) is a performance output signal stated in LTI plant (2.1). Meanwhile, we
make the following assumption before giving an effective tracking controller.

Assumption 2.1 For a tracking problem, assume that the performance output signal y(t) ∈
Rp and the control signal u(t) ∈ Rm in LTI dynamics (2.1) be of the same size (i.e., p = m)
and take the matrix D = 0m.

It is known that the performance output y(t) ∈ Rm can track any reference signal
r(t) ∈ Rm of (2.25) in the steady-state sense if and only if

rank

[
I − A B

C 0

]
= n + m. (2.26)

As already reported in Section 2.4, an analogous dynamic tracking compensator Kr

can be applied to the discrete LTI plant (2.1) by adding a prescribed reference input
r(t) ∈ Rm to the control actuator (2.12).
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Figure 2.1: Feedforward tracking control system: r(t) is reference signal; y(t) is the per-
formance output which must track a specified reference input r(t); “Comp” represents
a dynamic tracking compensator (2.27) applied to a discrete LTI plant (2.1).

To this end, a dynamic tracking compensator Kr for the plant can be designed as

Kr :
zr(t + 1) = Fzr(t) + Gx(t) + Lr(t), zr(0) = 0,

u(t) = Hzr(t) + Kx(t) + Mr(t),
(2.27)

where L and M represent the feedforward gain matrices with suitable sizes, and r(t) ∈
Rm is a specific reference input (2.25). Notice that here the initial value zr(0) of tracking
compensator Kr is also set to zero (i.e., zr(0) = 0). Figure 2.1 shows the closed-loop
augmented system composed of the plant (2.1) and the tracking compensator (2.27).

For a preferable reference input tracking, we employ the difference or variation of
the control inputs ∑N−1

t=0 ∥u(t + 1)− u(t)∥1 as the performance index, referred to as min-
imum attention control (MaC) [28, 80, 103]. We slightly relax the constraints in the
previous sections by removing the state and input constraints (2.14).

As a result, we formulate the following tracking MaC feedback realization problem that
we intend to to solve here:

Problem 2.5 (Tracking MaC) Find F, G, H, and K of tracking controller (2.27) such that

(i) the dynamic tracking compensator (2.27) stabilizes the discrete LTI plant (2.1) and

(ii) for any x0 ∈ X0 with zero initialization zr(0) = 0 and r(t) ≡ 0, the controller (2.27)
generates an input sequence {u(t)}N−1

t=0 , which minimizes ∑N−1
t=0 ∥u(t + 1) − u(t)∥1

subject to x(N) = 0 and z(N) = 0 for a positive N.

Then, determine L and M of compenstor (2.27) such that the steady state gain of the closed-loop
system from r(t) to y(t) is the identity and that from r(t) to zr(t) is zero.

Remark 2.7 When we have a solution to the above problem, we see that y(t) tracks
r(t) without steady state error owing to the selected steady state gain. We also observe
that u(t) achieves MaC for any x0 ∈ Rn due to linearity of the system. Moreover,
since z(N) = 0 is achieved in the steady state for any r+, the condition z(0) = 0 is
automatically satisfied whenever we have another r+ as a new reference signal.

The closed-loop behavior can be described in an augmented description

ψr(t + 1) = (A+ BK)ψr(t) +Mrr(t), ψr(0) = ψr0,

y(t) = Cψr(t),
(2.28)
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where

ψr(t) =

[
x(t)
zr(t)

]
, Mr =

[
BM

L

]
,

and the other matrices A, B, K, and C have been defined for (2.16).

According to the problem setup above, we consider the following MaC problem.

Problem 2.6 (Minimum Attention Control) Find the matrices X ∈ Rn×nN , U ∈ Rm×nN

such that the obtained U achieves a minimum attention, which is equivalent to solve a matrix
optimization problem

min
X,U

∥U(P ⊗ In)− U∥1

s.t. AX + BU = X(P ⊗ In)

In = X(e1 ⊗ In).

where the control cost penalizes the ℓ1 norm for the control variations.

Looking for the solution (X, U) of Problem 2.6 is always accessible because, the
above problem is a convex program. Then, with (K, H, G, F) of (2.17) and (2.18), the re-
sultant closed-loop system (2.28) always assures internal stability, that is, the condition
A+ BK = Ψ(P ⊗ In)Ψ−1 holds, as discussed in Section 2.4.

We next deal with tracking problem. Due to the fact that the closed-loop aug-
mented system (2.28) is internally stable with matrices (K, H, G, F), it admits a unique
steady-state ψ∞ for a desired reference input r+ = limt→∞ r(t).

More precisely, we have the following matrix equation[
ψ∞

y∞

]
=

[
A+ BK Mr

C 0

] [
ψ∞

r+

]
, for ψ∞ =

[
x∞

z∞

]
. (2.29)

If y∞ = Cx∞ = r+ for any reference r+, the output y(t) tracks reference r(t) with no
steady-state tracking error. If z∞ = 0 for any r+, we can have z(0) = 0 whenever the
reference signal changes again after a steady-state is achieved.

In what follows, we are going to achieve tracking error elimination with z∞ = 0 by
assigning feedforward tracking gains M and L, bringing about the following lemma.

Lemma 2.2 (Steady-State Tracking) Supposed that Assumption 2.1 and rank condition (2.26)
of steady-state tracking hold. If Problem 2.6 has the miniminer (X, U), then the priori gain ma-
trices (K, H, G, F) with respect to compensator Kr (2.27) can be uniquely determined through
feedback realization (2.17) and (2.18). More precisely, if the following conditions

(i) det (I − (A + BK)) ̸= 0,

(ii) det (I − F) ̸= 0,
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hold true, then the feedforward tracking gain matrices (M, L) in compensator Kr (2.27) can be
easily derived with the forms

M =
(
C
(

I − (A + BK)
)−1B

)−1, (2.30)

L = −G
(

I − (A + BK)
)−1BM. (2.31)

Based on the obtained matrices (K, H, G, F, M, L), for all initial state x0 ∈ Rn and any ref-
erence r+ ∈ Rm, there exist the unique steady-state values (x∞, z∞) such that y∞ = r+ and
z∞ = 0 are achieved in the steady-state.

Proof 2.2 Since the gain matrices (K, H, G, F) can previously be calculated by (2.17)
and (2.18), the augmented closed-loop system (2.28) is internally stable, as reported in
Theorem 2.1. We here reformulate the augmented system (2.29) as[

x∞

z∞

]
=

[
A + BK BH

G F

] [
x∞

z∞

]
+

[
BM

L

]
r+. (2.32)

Suppose that the zero steady-state z∞ = 0, we then have

x∞ = (A + BK)x∞ + BMr+.

This implies that, if the matrix I − (A + BK) is invertible,

x∞ = (I − (A + BK))−1BMr+.

Therefore, we see the result y∞ = Cx∞ = r+ if M is selected as (2.30).

On the other hand, the steady-state of the tracking compensator z∞ (2.32) satisfies

z∞ = Gx∞ + Fz∞ + Lr+.

Consequently, we derive

z∞ = (I − F)−1(Gx∞ + Lr+)

= (I − F)−1(G(I − (A + BK))−1BM + L
)
r+

when the matrix (I − F) is invertible. Thus, we see that z∞ = 0 if the feedforward gain
matrix L meets (2.31). Therefore, the feedforward gains (2.30) and (2.31) make error
cancellation for achieving tracking MaC. ■

Remark 2.8 (Illustrative conditions) Checking determinant conditions (i) and (ii) in
Lemma 2.2 can be equivalently formulated with optimal solution X to Problem 2.6. In
fact, we have

I − (A + BK) = In − X1,
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I − F = In(N−1) −
[

−X1 · · · −XN−2 −XN−1

In(N−2) 0n(N−2)×n

]
,

with A+ BK = Ψ(P ⊗ In)Ψ−1 and (2.19).

Theorem 2.3 Under Assumption 2.1 and Lemma 2.2, the output y(t) tracks reference r(t)
with no steady-state error via dynamic tracking compensator (2.27), where the tracking control
input realizes minimum attention.

Proof 2.3 The proof can be easily derived from Lemma 2.2. ■

2.6 Numerical benchmarks

In this section, we perform several numerical benchmarks to illustrate the effectiveness
of the synthesized sparse feedback controller, which successfully gives a closed-loop
solution with sparsity and optimality. Without loss of generality, we verify the differ-
ent system models, such as single input single output (SISO) and multiple inputs and
multiple outputs (MIMO) plants, respectively, based on the dynamic state feedback
control. Also, a dynamic tracking compensator is applied to the tracking problem.

2.6.1 Single input

At first, we consider a single-input control system modeled as a linearized cart-pole
system, and the parameters benchmark are similar to [23, Section VI], in which the
mass of the cart is 0.29 [kg], mass of the pole is 0.1 [kg], length of the pole is 1 [m],
gravity acceleration is 9.81 [m/s2], and friction is neglected.

We then execute time-discretization of the continuous system using zero-order
hold (ZoH) with sampling ∆t = 0.3 [s], then the system matrices of form (2.1) are as

A =


1 0.3 0.1377 0.0143
0 1 0.8256 0.1377
0 0 0.4628 0.2441
0 0 −3.2198 0.4628

 , B =


0.1514
0.9850
−0.1404
−0.8416

 .

Meanwhile, the output matrices with respect to state-input constraints (2.14) are set to

C =

[
0 0 1 0
0 0 0 0

]
, D =

[
0
1

]
,

then we have y⊤(t) =
[
x3(t) u(t)

]
, which means that the enforced constrained state is

only third component of the state x3(t) and the imposed constrained input is u(t). By
selecting the suitable variable s, it gives state-input constraints |x3(t)| ≤ 1, |u(t)| ≤ 1.

Next, we simulate the discrete-time controlled system, the target is to drive the
cart state from a non-zero initial state x⊤0 = [0.9453, 0.7465, 0.7506, 0.4026] to the zero
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terminal state x(N) = 0 in a finite N = 40 steps (i.e., taking Tfinal = (5 ∗ N ∗ ∆t)/4 =

15 [s] in a state-space representation). In order to realize the sparse feedback controller,
we need to solve Problems 2.3 and 2.4 to seek the closed-loop ℓ1 optimal solution. By
computing, the total CPU time in PC is 0.38 [s] in MATLAB using CVX [67], and the
found optimal value ∥U∗∥1 = 6.4204.

-0.8

-0.5

0

0.5

0.8
Sparsity

0 5 10 15
Tfinal

Sparse Feedback Control

Figure 2.2: Single input case: optimal sparse feedback control inputs u∗(t).

Figure 2.2 illustrates the optimal sparse feedback control inputs, and it reflects the
input sparsity on sparse feedback control, in which the control sequence is with less ac-
tive components, and the optimal control meets constraint |u(t)| ≤ 1. In addition, Fig-
ure 2.3 plots the optimal state trajectories, where the pole angle x3 fluctuates between
the bounds −1 and 1, satisfying the prescribed state constraint |x3(t)| ≤ 1. Meanwhile,
the trajectories of four different states start from an initial state x0 and eventually con-
verge to zero state as time tends to a fixed steps under the dynamic compensator (2.12),
this implies that the closed-loop stabilization is achieved.

2.6.2 Multiple inputs numerical benchmark

As a second numerical simulation, we show the result that the synthesized dynamic
controller (2.12) is useful for sparse feedback control of multi-input control system.
We here consider a discretized version of third-order system with two control inputs.
Using a ZoH sampling time of ∆t = 0.1 [s], the discrete system matrices are given by

A =

1.1133 0.0177 −0.1478
0.0177 1.4517 0.2514
0.0418 0.2758 0.9208

 , B =

0.0031 0.5218
0.0121 0.1486
0.0957 0.1202

 ,

and output matrices is chosen as C = 0 and D = I, which means that only the restric-
tion on the control inputs |ui(t)| ≤ 10 by taking si = 10, ∀i = 1, 2. We now randomly
generate initial data x0 ∈ [−1, 1]3 and each input channel of time length is N = 4, then
the related final time in state-space is as Tfinal = 0.5 [s].
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Figure 2.3: Single input case: optimal state trajectories x∗(t), where the black dot line
represents the constraint on the pole angle |x3| ≤ 1.
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Figure 2.4: The pattern of dynamic linear Compensator K.

After the state-input matrices X and U were calculated, see in (A.1), we obtained
the optimal value ∥U∗∥1 = 24.1544. Due to the fact that the augmented matrix Ψ is
invertible (2.19), then the controller K with real matrices (K, H, G, F) is computationally
efficient. Figure 2.4 reveals the pattern of the compensator K, in which the color-bar
reports the level of real values of the correlation elements in matrix K. Theorem 2.1
implies that we require the knowledge of the matrices K and H, see (A.2) to synthesize
the sparse feedback control, as follows

u∗
K =

[
1.8798 0.0000 −0.0000 2.8111 0.0000 0.0000
−2.7970 0.0000 −0.0000 1.7122 −0.0000 0.0000

]
.
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Figure 2.5: Multiple control inputs case: optimal sparse feedback control inputs u∗
K(t)

(top) and the corresponding optimal state trajectories x∗(t) (bottom).

As shown in Figure 2.5, the optimal feedback control signals contain two compo-
nents, where both control inputs are along the input constraints |uK,i(t)| ≤ 10, ∀i = 1, 2.
Clearly, the inferred feedback control sequences are sparse as desired. From this figure,
it appears that the optimal state trajectories converge to zeros with minimum/sparse
control effort.

2.6.3 Tracking problem

Finally, we show a numerical example to illustrate the effectiveness of our extended
dynamic tracking compensator (2.27) for tracking problem, in Section 2.5. By taking a
continuous second-order harmonic oscillator as

ẋ(t) =

[
0 1
1 0

]
x(t) +

[
−2
1

]
u(t), x(0) =

[
0.5
−0.5

]
,

y(t) =
[
0 1

]
x(t),
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Figure 2.6: Tracking Minimum Attention Control (i.e., the difference of control input)
(top) and the tracking trajectories of performance y with respect to a step reference r
(bottom).

we then discretize the plant under a ZoH sampling and set the time period ∆t = 0.2 [s]
for time horizon N = 5. For the sake of simplicity, a step reference signal (2.25) is
modeled as r+ = 1 for all t ≥ 0. In this case, the default value of steady-state of
reference is r+ = r0 = 1.

Solving Problem 2.6, the optimal solution (X, U) is determined as follows

X =

[
1.0000 0 −0.8758 −2.1177 −2.5880 −4.0772 −1.2121 −1.9096

0 1.0000 1.0001 1.9972 1.6427 2.5880 0.6924 1.0908

]
,

U =
[
4.9553 6.0613 4.9553 6.0613 −2.8673 −4.5173 −2.8673 −4.5173

]
.
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We then make use of the feedback realization technique to derive the feedback matrices
(K, H, G, F), where the relevant numerical results are given as

K =
[
4.9553 6.0613

]
,

H =
[
3.2331 4.4499 0.0000 0.0000 −1.0576 −1.6662

]
G =

[
1 0 0 0 0 0
0 1 0 0 0 0

]⊤
,

F =



0.8758 2.1177 2.5880 4.0772 1.2121 1.9096
−1.0001 −1.9972 −1.6427 −2.5880 −0.6924 −1.0908
1.0000 0 0 0 0 0

0 1.0000 0 0 0 0
0 0 1.0000 0 0 0
0 0 0 1.0000 0 0


.

(2.33)

The problem at hand is to achieve tracking, we found that the determinants det(I −
(A + BK)) = det(I − X1) = 0.2475 ̸= 0 and det(I − F) = 2.4902 ̸= 0, fitting two
conditions in Lemma 2.2, and the related feedforward gains can be selected as

M = −3.0837, L =
[
0.5 −1 0 0 0 0

]⊤
.

Based on the above analysis, the implemented dynamic tracking compensator

u∗
Kr

=
[
−3.6367 −3.6367 4.4087 4.4087 0.5000 0.5000

]
can be easily applied to the discrete LTI plant so as to achieve tracking. Figure 2.6 de-
picts the evolution of minimum attention tracking control (top) and the corresponding
tracking trajectories. It can be see that the performance output signal y(t) gradually
tracks a step reference signal r(t) = 1 under the specified time steps.

2.7 Summary

In this chapter, we have proposed a sparse feedback controller from open-loop solution
to closed-loop realization. By means of implementing a dynamic linear compensator,
the stability, optimality, and sparsity of the closed-loop ℓ1 optimal control are ensured.
Besides, we extended the result to a tracking problem to achieve the minimum attention
control. Finally, the simulations illustrated the effectiveness of the proposed sparse
feedback control.
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Chapter 3

Probabilistic Robustness
Guarantees for Sparse Optimal
Control

In this chapter, we are interested in sparse optimization with uncertainty that opti-
mizes the sparse decision-making subject to uncertain constraints. In order to alleviate
the conservative solution for worst-case robust counterpart, a chance constrained rep-
resentation for uncertainty is modeled that a small violation of the robust feasibility is
allowed governing by a user-defined risk level. We thus propose a well-defined chance
constrained sparse optimization problem framework, which can not only measure the
sparse cost performance but also evaluate the risk of constraints violation. To make
problem computationally tractable, a data-driven sampling method called scenario ap-
proach is exploited to generate a randomized solution by solving a sparse random con-
vex program. A high confidence probability for the approximated solution is attained
based on a finite sample guarantee. Furthermore, we make a trade-off bridge between
the sparse cost performance and the risk level by relaxing the constraint violations.
Finally, the theoretical results are applied to the sparse robust control design by per-
forming numerical simulations.

3.1 Sparse decision-making with uncertainty

Let us start from a general sparse optimization problem subject to uncertainty, that is,
sparse decision making with uncertainty, which handles the (worst-case) robust sparse
programs of the following form:

min
x∈X

∥x∥0

s.t. x ∈ Xδ, ∀δ ∈ ∆,
(3.1)

where the exact sparse cost function is penalized by ℓ0 “norm” that counts the number
of nonzero elements of the decision variable x ∈ X ⊆ Rn, and to every uncertain
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parameter δ ∈ ∆ ⊆ Rnδ there is associated a robust counterpart set Xδ. Here X and
Xδ are convex and closed sets. Oftentimes, the set ∆ contains infinite cardinality. For
any robust feasibility Xδ, δ ∈ ∆ is regarded as an additional constraint to the nominal
or deterministic sparse program minx∈X ∥x∥0. Therefore, if the solution of program
(3.1) is accessible, then it is safeguarded against all the possible uncertainties from the
nominal sparse decision-making.

In practical applications, enforcing uncertain constraints Xδ for all possible δ ∈ ∆
may be overly conservative and overkill, and violating a small fraction of uncertain
constraints over a small subset ∆c

ϵ of ∆ is allowed and accepted in general, referred to
chance-constrained program [45] or stochastic programming [122]. In other words, we
leverage a probabilistic or stochastic model to relax the worst-case uncertainty based on
the following assumptions for the uncertainty, where ∆ is endowed with a probability
P, and thisP can be given various distributions, depending on the users, see Figure 3.2.

Assumption 3.1 (Probability Space) Assume that δ ∈ ∆ ⊆ Rnδ be a random variable de-
fined on a probability space (∆,F ,P), where ∆ is a metric space with respect to Borel σ-algebra
F and the probability distribution P, which measures the chance of a constraint set Xδ to occur.

We thus weaken worst-case robust sparse program (3.1) based on Assumption 3.1
that a subset ∆ϵ of ∆ admits a small constraints violation, giving rise to the following
chance-constrained sparse optimization problem:

min
x∈X

∥x∥0

s.t. P {δ ∈ ∆ : x ∈ Xδ} ≥ 1 − ϵ,
(3.2)

where δ is random vector whose probability distribution is supported on set δ ∈ ∆, and
ϵ ∈ (0, 1) is a given risk (or accuracy) parameter, also known as violation of probability
or significance level. Obviously, such a chance-constrained problem setup implies that
the reliability x ∈ Xδ occurs with probability at least 1 − ϵ.

We introduce the following definition of risk.

Definition 3.1 (Violation of probability) Given a decision variable x, the probability
of violation (i.e., risk) is defined as

V(x) ≜ P
{

δ ∈ ∆ : x /∈ Xδ

}
. (3.3)

Note that V(x) is the probability with which the constraint is not satisfied by the deci-
sion variable x. We say that x is an ϵ-level probabilistic robustness if the violation proba-
bility holds that V(x) ≤ ϵ.

Chance-constrained sparse optimization is now well-defined, while the program
(3.2) is a non-convex optimization, leading to NP-hard problem [92]. Due to the fact that
both the cost function and chance constraints keep non-convex structure to measure
the sparsity and probability, respectively.
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In light of the above challenges, existing methods for chance-constrained programs
can be solved by convex approximation of non-convex chance constraint utilizing ran-
domized algorithms via sampling method [126]. Thus, the produced solutions are fea-
sible, or at least with a high-confidence guarantee on feasibility, to the original problem.

Assumption 3.2 (Data-driven Sampling) Suppose that the experimenter can observe a fi-
nite samples δ(1), . . . , δ(N) of random variable δ, which is randomly independent and identically
distributed (i.i.d.) generated from constraint sets {Xδ(i)}N

i=1, according to probability PN .

The principle of sampling technique claims that the uncertain constraint set Xδ can
be approximated by a random problem with finitely many constraints {Xδ(i)}N

i=1. More
precisely, the random variable δ is replaced by a finite scenarios {δ(1), . . . , δ(N)}, to let
the uncertain data speak. Such a paradigm is known as data-driven robust optimization,
encompassing methodologies like Monte-Carlo simulations, sample average approxi-
mation [91], and scenario approach [37], etc.

Hence, the chance-constrained sparse optimization (3.2) can be further approxi-
mated as the following sceanrio-based sparse program:

min
x∈X

∥x∥0

s.t. x ∈
N⋂

i=1

Xδ(i) ,
(3.4)

where each element Xδ(i) of the finite sample is so-called scenario, and thus program
(3.4) is named as scenario-based sparse program or data-driven sparse optimization.

As a matter of fact, checking robust feasibility is closely related to uncertainty
quantification, we refer to see Section 3.2 and reference therein for more details.

3.2 Uncertainty quantification

In general, there exist lots of momentums on decision-making under uncertainty [14,
110, 126, 122]. We now itemize some examples for uncertainty quantification of robust-
ness analysis. To concretizately the uncertainty evaluation mentioned in Section 3.1,
that the robust feasibility problem can be further characterized as

find x s.t. h(x, δ) ≤ 0, ∀δ ∈ ∆, (3.5)

where uncertain constraint function h(x, δ) : X × ∆ → R is a scalar-valued1, and it is
convex in the first argument x and bounded in the second argument for δ ∈ ∆. Without
loss of generality, throughout this chapter, we denote the measurable reliability set by

x ∈ Xδ ≜ {δ : h(x, δ) ≤ 0} ,

1If the constraint mapping h(x, δ) : X × ∆ → Rm, then there exist a number of constraints hj(x, δ) ≤ 0,
j = 1, · · · , m, which can be equivalently replaced by one constraint h(x, δ) ≜ max1<j<m hj(x, δ) ≤ 0.
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Figure 3.1: Robust feasibility regions: A nominal boundary (the field of yellow square)
gives the nominal or deterministic solution. When encountering with the uncertainty,
the robust counterpart (the area of light green) involves the infinite constraints (a bunch
of light blue squares), leading to the conservative robust solution. Alternatively, an
inner approximation (the cyan ellipsoid) returns the robust approximate solution.

and its complementary (i.e., violation, see Definition 3.1) is given as

x /∈ Xδ ⇔ x ∈ X c
δ ≜ {δ : h(x, δ) > 0} .

Example 3.1 (Worst Case) A standard uncertainty description in (3.5) is worst-case, for
which the uncertain constraint satisfaction is enforced for all possible realizations δ ∈ ∆

h(x, δ) ≤ 0, ∀δ ∈ ∆. (3.6)

Here the term (3.6) is so-called robust counterpart [14]. Indeed, the constraint (3.6) is semi-
infinite program since it contains infinite number of constraints, namely, the cardinality
card(∆) is uncountable, and hence it is hard to tackle expect for some special structures
for uncertainty set, like interval or box constraints [89], see Figure 3.1.

Alternatively, for a given nonempty, compact set ∆ satisfies a regularity condition2,
then the robust inequality (3.6) can be written as a finite and deterministic form

max
δ∈∆

h(x, δ) ≤ 0. (3.7)

On the other hand, it has been proved that if the uncertain constraint h(x, ·) is
concave for all x ∈ Rn, then the worst-case constraint (3.7) is equivalent to [13]

max
δ∈∆

h(u, δ) = sup
δ∈Rnδ

{
h(x, δ)− σ(ν|∆)

}
= inf

ν∈Rnδ

{
σ⋆(ν|∆)− h⋆(x, ν)

}
2The regularity condition means that ri(∆) ∪ ri(dom(h(x, ·)) ̸= ∅, ∀x ∈ Rn, where ri(∆) is the relative

interior of set ∆.
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Figure 3.2: Probabilistic or chance constrained framework for the uncertainty ∆ over
the probability P, where the red region represents a small violated subset of ∆ with a
prescribed risk level ϵ ∈ (0, 1).

where the first equality holds from the property of the characteristic function

σ(ν|∆) ≜

0, if δ ∈ ∆,

+∞, otherwise,
(3.8)

and the last passage holds according to Fenchel’s duality theorem [118]. Here h⋆(x, ν)

is the partial concave conjugate of h(x, ν) and σ⋆(ν|∆) is the support function of the set ∆
(i.e., the conjugate of characteristic function σ(δ|∆) in (3.8)), defined respectively, as

h⋆(x, ν) = inf
ν∈Rnδ

{
ν⊤δ − h(x, δ)

}
, σ⋆(ν|∆) = sup

ν∈Rnδ

ν⊤δ. (3.9)

However, computing the support function σ⋆ requires the knowledge of structure
setup for uncertainty set ∆. For instance, a common uncertainty set is selected as

∆ =

{
δ ∈ ∆ : δ = δ0 +

nq

∑
i=1

Giqi, q ∈ Q ⊆ Rnq , G ∈ Rnδ×nq

}
, (3.10)

where δ0 ∈ Rnδ is “nominal” vector satisfying regularity, that is, δ0 ∈ ri(dom h(x, ·)),
∀x, and the matrix G ∈ Rnδ×nq is a given column-wise G =

[
G1 . . . Gnq

]
, q is the vector

of primitive uncertainties.

To get rid of the worst-case and stringent constraint, it is attractive to treat the ro-
bust counterpart (3.6) as chance constraint rather than as deterministic constraint. There-
fore we convert the deterministic uncertainty into a probabilistic or chance constrained
(cf., Example 3.2) or stochastic modeling (cf., Example 3.3). Notice that in this chapter,
we do not require any structure assumption for uncertainty set ∆, like the type (3.10).

Example 3.2 (Chance Constraint) A probabilistic relaxation for uncertainty (3.6) can
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be modeled as the random variables δ governed by the probability P (i.e., Assumption
3.1). Formally, one should ascertain the following safety (resp., violation) event

P
{

δ : h(x, δ) ≤ 0
}
≥ 1 − ϵ ⇔ P

{
δ : h(x, δ) > 0

}
≤ ϵ, (3.11)

where ϵ assures that the violation event h(x, δ) > 0 occurring does not exceed a risk
level ϵ ∈ (0, 1). Figure 3.2 illustrates the probabilistic model for uncertainty set ∆.
As shown in [92], chance-constrained program (3.11) is an NP hard problem. Besides,
checking the feasibility of (3.11) is general difficult either analytically or numerically
due to three major reasons:

(i) Firstly, the feasible region together with the probabilistic model is usually non-
convex even under the convexity assumption for uncertain function h(x, ·) other
than some special structure cases, e.g., closed form.

(ii) Secondly, the chance constraint involves the multiple-integral computing.

(iii) Lastly, the underlying knowledge of probability distribution P is typically un-
known, or partially known.

Example 3.3 (Stochastic Constraint) Another perspective of probabilistic description
for uncertainty (3.6) is stochastic modeling, which leads to an average or empirical
uncertainty quantification, i.e.,

EP
[
h(x, δ)

]
=
∫

∆
h(x, δ)P(dδ), (3.12)

where EP[·] denotes the expectation operator with respect to the uncertainty ∆ over
distribution P. As a matter a fact, we define an indicator function associated the set

P{δ : h(x, δ) > 0} = E
[
1{h(x,δ)>0}

]
.

Recently, significant attention has been directed towards a distributionally robust
chance constraint framework for quantifying uncertainty. This concept is introduced
through the following illustrative examples.

Example 3.4 (Distributionally Robust Chance Constraint) A more general case is the
extension of the chance constraints (3.11), called ambiguous or distributionally robust
chance constraints (DRCC) [99] to evaluate the worst-case of the violation event under a
low certificate level ϵ such that

sup
P∈P

P
{

h(x, δ) > 0
}
< ϵ ⇔ inf

P∈P
P
{

h(x, δ) ≤ 0
}
≥ 1 − ϵ, (3.13)

where the probability P is taken over an ambiguity set P , i.e., a family of probability
distributions that can be defined by moment ambiguity set (moment and variance) [47,
152], divergence ambiguity set (entropy) [56], and Wassersetin ambiguity set [20, 100],
etc.
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Figure 3.3: Conditional Value at risk [121].

Example 3.5 (Value at Risk) So far we have shown the chance constraint (3.11) in Ex-
ample 3.2. An analogous statement is that it is able to develop as a value at risk (VaR)
case [122, Chapter 4], yielding “percentile” optimization

VaR1−ϵ(h(x, δ)) = sup
γ∈R

{
γ : P

{
h(x, δ) ≤ γ

}
≥ 1 − ϵ

}
= inf

γ∈R

{
γ : P

{
h(x, δ) > γ

}
≤ ϵ

}
,

(3.14)

where VaR is positively homogenous in u, but is non-convex. Put differently, VaR min-
imizes one performance level γ ∈ R (percentile) that evaluates a “soft” violation event
of term (3.11) defined by {h(x, δ) > γ} (i.e., make a relaxation from “0” to “γ”) with a
probability not larger than the risk level ϵ ∈ (0, 1).

However, the true probability distributionP outlined above is usually inaccessible,
which enlightens us about ambiguity set, leading to the worst case distributionally VaR
[138] is

sup
P∈P

VaRϵ(h(x, δ))

= inf
γ∈R

{
γ : sup

P∈P
P
{

h(x, δ) > γ
}
≤ ϵ

}
.

(3.15)

Suppose that the uncertainty set ∆ is non-empty, convex and compact. For every
ν ∈ Rnδ , if the support function (3.9) and VaR function satisfy

σ⋆(ν|∆) ≥ VaR1−ϵ(ν
⊤δ), ∀ν ∈ Rnδ , (3.16)

then, the set ∆ implies a probabilistic guarantee at a risk level ϵ ∈ (0, 1) for the “true”
probability distribution P.

Example 3.6 (Conditional VaR) Different from the chance constraint description (3.11)
and VaR (3.14) applying probabilistic form, another method is to use stochastic program-
ming modeling [122] (i.e., take expected value of random variables, see Example 3.3),
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resulting in the conditional value at risk (CVaR) is as follows [119]

CVaR1−ϵ(h(x, δ)) = inf
τ∈R

{
τ +

1
ϵ
EP

[(
h(x, δ)− τ

)+]}
= inf

τ∈R

{
τε +E

[
(h(x, δ)− τ)+

]}
,

(3.17)

where (a)+ = max{a, 0}.

It further gives the worst case distributionally CVaR [152] as follows

sup
P∈P

CVaR1−ϵ(h(x, δ))

= sup
P∈P

inf
τ∈R

{
τ +

1
ϵ
EP
[
(h(x, δ)− τ)+

]}

= inf
τ∈R

{
τ + sup

P∈P
EP

[
(h(x, δ)− τ)+

ϵ

]} (3.18)

the last equality holds according to the min-max theory of semi-infinite program [123,
Proposition 2.3].

Remark 3.1 As a consequence of uncertainty analysis, we remark that for any (contin-
uous) random variable Y, the following revelation can be derived from [119], i.e.,

ess. sup(Y) : = CVaR1(Y)

≥ CVaR1−ϵ(Y)
(
= EP[Y|VaR1−ϵ(Y) ≥ Y]

)
= VaR1−ϵ(Y) +

1
ϵ
EP
[
(Y − VaR1−ϵ(Y))+

]
≥ VaR1−ϵ(Y)

(
⇔ P(Y ≤ 0) ≥ 1 − ϵ

)
and hence it is easy to show some inner and outer approximations for chance constraint
form (3.11), and these relationships (cf., Figure 3.3) can be exploited to diverse distri-
butionally robust programs, such as, moment and metric ambiguity sets [99, 138, 152].

3.3 Sparse random convex program

In this section, we reduce the “non-convex” chance-constrained sparse optimization
model (3.2) to a sparse random convex program, which is essentially based on the “convex
relaxation” and “data-driven sampling” methods, respectively.

More precisely, for program (3.2), we replace an exact non-convex ℓ0 norm for
decision variable x by a convex ℓ1 norm, optimizing the following program

min
x∈X

∥x∥1

s.t. P {δ ∈ ∆ : x ∈ Xδ} ≥ 1 − ϵ.
(3.19)

Let x∗ϵ denote the optimal solution to program (3.19) if it is available.
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On the other hand, the uncertain parameter δ is modeled as the random variable
satisfying Assumption 3.2, namely, i.i.d. draws N “scenarios” δ(1), . . . , δ(N) from the
probability P. We propose the following sparse random convex program, formulated as

min
x∈X

∥x∥1

s.t. h(x, δ(i)) ≤ 0, i = 1, . . . , N.
(3.20)

Obviously, program (3.20) is an ℓ1 norm convex relaxation for scenario-based sparse op-
timization problem (3.4). The optimal solution (resp., optimal value) to program (3.20),
denoted by x∗N (resp., J∗N), is a data-driven, randomized, sparse solution based on the N
random observations or scenarios.

Assumption 3.3 (Existence and Uniqueness) For every N and for every multisample
(δ(1), · · · , δ(N)), the optimal solution x∗N of program (3.20) exists and is unique.

Note that we here assume that the optimal solution x∗N to program (3.20) is unique.
Otherwise, if program (3.20) more than one optimal solution exists, we can ensure the
uniqueness of solution x∗N after the implementation of the tie-breaking rule [35, 120].

Assumption 3.4 (Non-accumulation) For every x ∈ X , P{δ : h(x, δ) = 0} = 0.

Furthermore, for k = 1, · · · , N, program (3.20) induces a new program by discard-
ing the k-th constraint, which gives a “removal” sparse random convex program as

min
x∈X

∥x∥1

s.t. h(x, δ(i)) ≤ 0, i = {1, . . . , N} \ k,
(3.21)

where the optimal solution x∗N,k is obtained from program (3.21) associated with an
optimal value J∗k .

Definition 3.2 (Support Constraint) Let J∗N and J∗k be the optimal (objective) value of
sparse random convex program (3.20) and (3.21), respectively. The k-th constraint in
(3.20) is said to be a support constraint if J∗k < J∗N .

It is clearly that when a support constraint k is removed from the sample set N =

{1, · · · , N}, then the optimal solution x∗N,k would be improved as well since J∗k < J∗N .
In other words, a constraint h(x, δ(k)), k = 1, . . . , N of sparse random convex program
(3.21) is a support constraint if its removes improves the solution of program (3.20). For
simplicity, denote the support constraints set of program (3.20) as S , where S ⊂ N . As
mentioned in Levin [82]:

“the number of support scenarios for convex program is at most n, the number of decision
variables x.”

Therefore, no matter what the structure of problem is or how large the sample
complexity N is, the cardinality of support constraints set for (3.20) is less than or equal
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to n, the size of decision variable x [35], that is to say, with probability 1, we have

|S| ≤ dim(x) = n.

In particular, we call program (3.20) is a fully-supported, if s∗N = |S| = n [38]. The
program (3.20) is said to be non-degenerate, if J∗N = J∗S , or equivalently, ∥x∗N ∥1 = ∥x∗S∥1.

Lemma 3.1 (A Priori Probabilistic Guarantee [38]) Under Assumptions 3.1-3.3, given a
risk level ϵ ∈ (0, 1) and the optimal solution x∗N to program (3.20), it holds that

PN{V(x∗N) > ϵ
}
≤

n−1

∑
i=1

(
N
i

)
ϵi(1 − ϵ)N−i. (3.22)

For a given confidence parameter β ∈ (0, 1), we choose the sample complexity N such that

n−1

∑
i=1

(
N
i

)
ϵi(1 − ϵ)N−i ≤ β. (3.23)

Then, the optimal solution x∗N is feasible to program (3.19) with a high probability, that is,

PN{V(x∗N) ≤ ϵ
}
≥ 1 − β, (3.24)

where the probability PN is taken with respect to N observed random samples {δ(i)}N
i=1.

The program (3.20) typically provides a priori probabilistic robustness for the ran-
domized sparse solution x∗N , and the corresponding feasibility of solution x∗N is guar-
anteed before obtaining x∗N . From the relation between the chance-constrained sparse
convex program (3.19) and sparse random convex program (3.20), it is clear that the ap-
proximated solution u∗

N of program (3.20) is also a feasible solution to program (3.19),
with a high confidence 1 − β.

Notice that the left-hand-side term in (3.23) tends to zero as the N increases. The
implies that, for a large number scenarios N, the likelihood of obtaining an unfriendly
sparse solution x∗N with a violation probability V(x∗N) exceeding a risk threshold ϵ is
relatively low.

From the estimation of randomized sparse solution x∗N perspective, we require an
explicit expression of (3.23) with respect to N. In fact, Lemma 3.1 can provide a finite-
ample guarantee for the obtained solution x∗N . More specifically, for a given risk level
ϵ ∈ (0, 1), confidence level β ∈ (0, 1), and the size of decision variable dim(x) = n,
then the sample complexity N satisfies the following lower bound [38]

N ≥ 2
ϵ

(
ln

1
β
+ n − 1

)
, (3.25)

then the sparse random solution x∗N is ϵ-level probabilistically robust with probability
at least 1 − β.



3.4. Sparse random convex program with relaxation 45

Remark 3.2 (Sample complexity) Naturally, employing various probability inequali-
ties allows us to derive distinct (precise) sample complexities. For a comprehensive
understanding of sample complexity, further insights are available in references [4, 36,
37, 43, 62, 126].

In particular, Calafiore [34] examined the Helly’s dimension case of scenario pro-
gram that for a smallest integer ζ

ess supδ∈∆N |S(δ)| ≤ ζ < ζ̄ (3.26)

holds for any finite N ≥ 1, where S is the support constraint scenarios. Therefore, the
similar theoretical guarantees on sample complexity can be derived easily by replac-
ing n with Helly’s dimension h in (3.25). However, Helly’s dimension is usually hard
to compute, while identifying the upper bounds ζ̄ on Helly’s dimension ζ is much
easier to calculate. Moreover, when uncertain function h(x, δ) enjoys structured de-
pendence on the uncertainty [141], a lower bound for Helly’s dimension ζ can be de-
termined, which that further quantifies the bound for the number of decision variable
n = dim(x), and it is useful to reduce the sample complexity N.

Based on these, we conclude a procedure for a priori feasibility guarantee on gen-
eral scenario/random convex optimization (three steps):

1. Exploring the problem structure of program and obtain the number of support
scenarios |S| = s∗N ;

2. Select the sample complexity N using the parameter pair (ϵ, β, n)

3. Obtain optimal solution x∗N and optimal value J∗N .

3.4 Sparse random convex program with relaxation

An intriguing and profound question arises: How can one effectively balance the sparse
cost performance and the associated violation of constraints in program (3.20) ? Motivated
by the scenario program having a linear objective function [60, Section 4], it suggests us
exploring a flexible paradigm that minimizes the cost as well as the additional “soft”
constraints for program (3.20).

Adapted from program (3.20), this section focuses on risk assessment for sparse
random convex optimization with relaxation, giving rise to a relaxed scenario-based sparse
convex optimization problem, described by

min
x∈X

ξ i , i=1,...,N

∥x∥1 + ρ
N

∑
i=1

ξ i

s.t. h(x, δ(i)) ≤ ξ i, i = 1, . . . , N,

ξ i ≥ 0,

(3.27)
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where ξ i≥ 0 are the “relaxed” slack variables that indicate the maximum constraint
violation over all possible uncertain parameters δ(i), and the allowed violations ξ i’s are
penalized to the original cost function.

This moment program (3.27) has n + N decision variables, including x ∈ Rn and
ξ = [ξ1, . . . , ξN ]⊤ ∈ RN . The interpretation of program 3.27 is that some constraints
f (x, δ(i))) ≤ 0 can be violated for the purpose purpose of improving the cost value,
but constraints violation has itself a cost as expressed by the auxiliary optimization
variables ξ i: if ξ i ≥ 0, then constraint f (x, δ(i)) ≤ 0 is relaxed to f (x, δ(i)) ≤ ξ i and this
generates the regret ξ i, which adds to the original cost∥x∥1.

Meanwhile, the penalty weight ρ is used to achieve the trade-offs between mini-
mizing the sparse cost and the regrets for constraint violations. For instance, ρ → 0
implies the non-regrets; ρ = 1/N indicates the empirical regrets; and ρ → ∞ denotes
the infinite regrets, then program (3.27) recovers to original program (3.20). In general,
ρ must larger than the dual norm of the original Lagrange multiplier for the constraint
maxi h(x, δ(i)).

We now introduce the Lagrange multipliers µi, λi ≥ 0 for i = 1, · · · , N, then the
Lagrange (primal) objective function L for program (3.27) can be formulated as follows

L(x, ξ, µ, λ) = ∥x∥1 + ρ
N

∑
i=1

ξ i +
N

∑
i=1

µi

(
h(x, δi)− ξ i

)
−

N

∑
i=1

λiξ
i, (3.28)

which we attempt to minimize with respect to decision variables x and ξ i ≥ 0. Taking
the respective derivatives to zero, we have

∂L
∂x

= 0 ⇐⇒ ∂∥x∥1 =
N

∑
i=1

µi
∂

∂u
h(x, δ(i))), (3.29)

∂L
∂ξ i = 0 ⇐⇒ µi = ρ − λi, ∀i = 1, · · · , N, (3.30)

where µi, λi, ξ i ≥ 0 are all positive constraints. Notice that the ℓ1 norm is non-smooth
and non-differentiable function, while it is possible to give its subdifferential ∂∥x∥1 as

∂∥x∥1 =
∂

∂xi

n

∑
i=1

|xi| =
{

v | vi = sign(xi), ∀i ∈ {1, · · · , n}, ∥v∥∞ ≤ 1
}

, (3.31)

here sign(v) is a sign function defined as

sign(x) =


−1, if x < 0,

0, if x = 0,

1, if x > 0.
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On the other hand, by substituting (3.29) and (3.30) into (3.28), we obtain the La-
grange Wolfe (dual) objective function L as follows

L(µ) =
N

∑
i=1

µi −
N

∑
i=1

N

∑
i′=1

µiµi′
∂

∂u
h⊤(x, δi)

∂

∂x
h(x, δi) (3.32)

which gives a lower bound on the objective function (3.27) for any feasible solution.

Before proceeding the relaxed sparse convex program (3.27), let us consider a sim-
ilar one called sample average approximation problem [91]

min
u

∥x∥1

s.t. h(x, δ(i)) ≤ Mξ(i), i = 1, · · · , N,
N

∑
i=1

ξ i ≤ K, ξ i ∈ {0, 1}N

(3.33)

Here M is a positive constant greater than the maximum possible h(x, δ). The binary
variables ξ i allow the violation up to K constraints, and thus program (3.33) becomes a
mixed integer program problem, which requires to solve a big-M problem [122].

Using Assumptions 3.3 and 3.4, the program (3.27) is computationally tractable,
and a general theory for scenario (linear) program with relaxation (but not involves
sparse cost) has been proven in [60, Theroem 4], stated as follows

Lemma 3.2 (Violation [60]) Under Assumptions 3.3 and 3.4, consider sparse random con-
vex program with relaxation problem (3.27), given a confidence β ∈ (0, 1), the violation of
probability V(x∗N) is evaluated as follows

PN{ϵ(s∗N) ≤ V(x∗N) ≤ ϵ(s∗N)} ≥ 1 − β (3.34)

where ϵ(·) = max{0, 1 − t(k)}, ϵ(·) = max{0, 1 − t(k)}, s∗N is the number of samples qi for
which h(x, δ(i)) ≥ 0 at x = x∗N , V(x) = P{δ : f (x, δ) > 0}, and for k = 0, 1, · · · , N − 1 the
pair {t(k), t(k)} is the solution of the polynomial equation in t variable

BN(t; k) =
β

2N

N−1

∑
j=k

Bj(t; k) +
β

6N

4N

∑
j=N+1

Bj(t; k) (3.35)

where Bj(t; k) = ( j
k)t

j−k represents a binomial expansion. For k = N, the upper bound is set
to ϵ(k) = 1 and the lower bound is derived by

1 =
β

6N

4N

∑
j=N+1

Bj(t; N). (3.36)

Lemma 3.2 establishes an interval [ϵ(s∗N), ϵ(s∗N)] for violation V(x∗N) that lies with
a high confidence level 1− β. The value of complexity s∗N can be calculated according to
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the observed data samples δ(1), . . . , δ(N), which is equivalent to the number of violated
constraints plus at most n scenarios (i.e., the number of decision variables).

Fig. 3.4 depicts the curves ϵ(k) and ϵ(k) for risk V(x∗N) with N = 1000, and β =

10−5, 10−7, 10−9, respectively.

Remark 3.3 (Risk Estimation) A common practice to estimate the risk of the sparse
solution x∗NT

based on the observations δ(i), where i ∈ NT = {1, · · · , NT} is the training
samples, and i ∈ NV = {NT + 1, · · · , NT + NV} stands for the validation or out-of-
sample samples, then the violation V(x∗NT

) is estimated form the ratio

#{i, h(x∗NT
, δ(i)) > 0, i = NT + 1, · · · , NT + NV}

NV
.
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0

0.2

0.4

0.6

0.8

1

Figure 3.4: Profile of curves ϵ(k) and ϵ(k) for the violation of probability V(x∗N) with
N = 1000, and β = 10−5, 10−7, 10−9, respectively, where k = 0, 1, · · · , N.

3.5 Sparse robust control applications

Motivated by these seminal works for robust control design [105, 76, 35], in this section,
we consider the sparse robust control design for dealing with the uncertain discrete-
time system (3.37). We here delve into the sparse robust control problems concerning
discrete-time uncertain dynamical systems. All the formulations discussed herein are
built upon the principles outlined in program (3.20) and program (3.27), respectively.

Give a discrete-time uncertain dynamical system, the state process is modeled as

x(t + 1) = A(δ)x(t) + B(δ)u(t), x(0) = x0, (3.37)
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for time series t = 0, 1, · · · , T − 1, where x(t) ∈ Rn is the state variable and u(t) ∈ Rm

is the control input. Meanwhile, the coefficients of matrices A(δ) ∈ Rn×n and B(δ) ∈
Rn×1 are the functions of uncertain parameters δ ∈ ∆ ⊆ Rnδ (also known as, model
parametric uncertainties), in which arbitrary dependence is allowed.

For an uncertain system (3.37), one can considers designing robust control to pro-
vide probabilistic robustness for uncertain parameters δ ∈ ∆. Due to the impact of
uncertainty propagation, it is not possible to drives the system state (3.37) from a given
initial state x0 to the origin exactly. Therefore, the control goal is to find a sparse se-
quence input {u(t)}T−1

t=0 that brings the terminal state xT(u, δ) near the target state x̄
(e.g., taking the origin x̄ = 0) over a finite time horizon T with a small metric γ > 0.

Based on the sequential iterations for plant (3.37), the terminal state xT at final time
T can eventually be expressed by

xT(u, δ) = A(δ)Tx0 +
T−1

∑
t=0

A(δ)T−1−tB(δ)u(t)

= A(δ)Tx0 +
[

A(δ)T−1B(δ) · · · A(δ)B(δ) B(δ)
]

︸ ︷︷ ︸
ΦT(δ)



u(0)
u(1)

...
u(T − 2)
u(T − 1)


︸ ︷︷ ︸

u

(3.38)

where ΦM(δ) ∈ Rn×mT stands for the reachability matrix and u ∈ RmT represent the de-
sired control input vector. Without loss of generality, assume that the pair (A(δ), B(δ))
is robustly reachable, that is, rank(ΦT(δ)) = n for all δ ∈ ∆. This reminds us to pre-
scribe a suitable scalar-valued uncertain function h(u, δ) : U × ∆ → R, defined by

h(u, δ) ≜ ∥xT(u, δ)− x̄∥2 − γ

= ∥A(δ)Tx0 + ΦT(δ)u − x̄∥2 − γ ≤ 0, ∀δ ∈ ∆,
(3.39)

which is used to evaluate the “price of robustness” for the uncertainty.

3.5.1 Risk-aware sparse optimal control

With the help of convex and probabilistic relaxation techniques, we can characterize the
risk-aware sparse optimal control problem as a sparse random convex program (3.20).
More specifically, we employ an ℓ1 norm convex relaxation for on control inputs whose
naturally induces the sparse control signal. Adapted from [35, 104], the centerpiece of
this control problem is called risk-aware sparse optimal control (a.k.a., ℓ1 optimal robust
control), formulated as follows.

Problem 3.1 (Risk-aware sparse optimal control) Consider a reachable uncertain dynam-
ical system (3.37). For given parameters x0, T, ρ, γ, x̄, one aims to seek a sequence {u(t)}T−1

t=0
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with input sparsity such that it drives the state near to the target x̄ ∈ Rn as well as hedges
against the uncertainty {δ(i)}N

i=1. The risk-aware sparse optimal control problem amounts to
solving the following sparse random convex program with control variable u ∈ RmT

min
u∈RmL

∥u∥1

s.t. h(u, δ(i)) ≤ ξ i, i = 1, · · · , N.
(3.40)

where the scalar-valued uncertain constraint h(u, δ) is measured by a distance between the
terminal state xL(u, δ) and the target z̄ with a metric γ ≥ 0, defined in (3.39).

Then we formally state the following result, which is a restatement of the results
of [38] in our Lemma 3.1.

Theorem 3.3 Assume that the pair (A(δ), B(δ)) is robustly reachable and mT > n. Given a
robust level ϵ ∈ (0, 1) and a confidence parameter β ∈ (0, 1), choose the number of scenarios
N > mT such that

mT−1

∑
i=0

(
N
i

)
ϵi(1 − ϵ)N−i ≤ β. (3.41)

Let u∗
N be the feasible and unique solution to the risk-aware sparse optimal control of Problem

3.1. Then it holds that

PN{V(u∗
N) > ϵ} ≤ β, (3.42)

for any given probabilityP over uncertainty ∆. In other words, with probability (N-fold product
probability measure) at least 1 − β, the solution u∗

N is the ϵ-probability robust design.

3.5.2 Risk assessment sparse optimal control with relaxation

In this subsection, we shift the principle from relaxed sparse random convex program
(3.27) to sparse optimal control problem, where the control objective attempts to make
the trade-offs between the sparse performance and violation constraints. It is well
known that optimal control problem with constraints relaxation plays a vital role in
control design, since the decision-makers have to simultaneously take the control per-
formance and feasibility into account in practical applications. We now consider the
following risk assessment sparse optimal control problem.

Problem 3.2 (Risk Assessment Sparse Optimal Control) Given a discrete-time reachable
uncertain LTI system (3.37), and the parameters x0, x̄, T, ρ, γ, the risk-aware sparse optimal
control is to achieve the trade-off between the sparse control inputs and the risk assessment,
which amounts to solving the following relaxed sparse random convex program, minimizing

min
u∈RmL ,ξ i≥0

∥u∥1 + ρ
N

∑
i=1

ξ i

s.t. h(u, δ(i)) ≤ ξ i, i = 1, · · · , N.

(3.43)
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Then we formally state the following result, which is a restatement of the results
of Lemma 3.2 in our context.

Theorem 3.4 (Trade-off sparse control and risk) With ϵ(·) and ϵ(·) in Lemma 3.2, given
a confidence β ∈ (0, 1), the risk assessment for violation V(u∗

N) in risk assessment sparse
optimal control of Problem 3.2 is as follows

PN{ϵ(s∗N) ≤ V(u∗
N) ≤ ϵ(s∗N)} ≥ 1 − β. (3.44)

where s∗N is defined as the number of the violated constraints h(u∗
N , δ(i)) ≥ 0.

Theorem 3.4 offers the lower and upper bounds for risk-aware sparse optimal con-
trol on its violation V(u∗

N), which holds with a high confidence level 1 − β. Besides,
s∗N indicates the violated constraints h(u∗

N , δ(i)) > 0, adding those active constraints
h(u∗

N , δ(i)) = 0.

3.6 Numerical Simulations

In this section, we conduct numerical simulations for the sparse robust control applica-
tions by means of program 3.1 and program 3.2, respectively.

3.6.1 Sparse robust control design

Let us first extend the sparse random convex program (3.20) to risk aware sparse opti-
mal control of Problem 3.1. Consider an uncertain discrete-time plant

x(t + 1) = A(δ)x(t) + B(δ)u(t), x(0) = ξ ̸= 0,

where x(t) ∈ R4 and u(t) ∈ R are the state variable and control input, respectively.
The coefficients A(δ) ∈ R4×4 and B(δ) ∈ R4 are uncertain matrice with uncertain
parameters δ ∈ Q ⊆ R20 of the form

A(δ) = A0 + Aδ, B(δ) = B0 + Bδ,

in which A0 and B0 are nominal matrices as follows

A0 =


0 −1 0 0
1 0 0 0
0 1 0 0
0 0 1 0

 , b0 =


2
0
0
0

 ,

They are perturbed by a uniform distribution, that is, the elements of the per-
turbation matrix Aδ are i.i.d. sampled from a uniform distribution over the interval
[−0.05, 0.05] and the entries of the perturbation matrix Bδ are i.i.d. generated from a
uniform distribution over (0, 0.2).
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The initial state of the plant is x⊤0 = [0.1 0.1 0.1 0.1], and the terminal time T =

20. We then set the desired level of probabilistic robustness to 1 − ϵ = 0.95 (i.e., the
tolerance level ϵ = 0.05), and choose the confidence level β = 10−5. Then using the
simplified condition in (3.25), we need a priori scenarios N ≥ 888. Without loss of
generality, we assign the target as origin (i.e., x̄ = 0). We set a small gap γ = 0.02, and
then choose N = 900 scenarios of the terminal state constraints to Problem 3.1

The goal is to find a sparse control input u such that steer the terminal state xT

(with respect to the various model parametric uncertainties A(δ(i)) and B(δ(i))) near
the origin with a specified gap γ = 0.02 in (3.39). The sparse random convex program
(3.20) can be solved by means of the off-the-shelf packages like CVX or YALMIP in MATLAB.
We here adopted YALMIP [88] to perform the calculation. Then the optimal objective
value (ℓ1 norm of control input) was ∥u∗

900∥1 = 0.0884.
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Figure 3.5: Sparse (ℓ1 norm) optimal control
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.

Fig. 3.5 displays the sparse optimal control input. From this figure, we can see that
the designed ℓ1 norm control is quite sparse. The four state variables generated by the
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Figure 3.7: ℓ2 norm of terminal state values for 900 scenarios testing.

Figure 3.8: Terminal state value testing for 900 scenarios: validation test.

sparse optimal control is illustrated in Fig. 3.6. It is clear that the terminal state of four
states are all close to the origin (the desired target), and they are fluctuated under a
specified gap value γ = 0.02.

For the sparse random convex program (3.20), Theorem 1 asserts that with the
confidence 1 − 10−5, the sparse scenario solution u∗

900 is ϵ-probabilistic robustness. It
means that the violation case ∥xT(u, δ(i))∥2 > γ happens with probability at most ϵ =

0.05, that is, P
{
∥xT(u, δ(i))∥2 > 0.02

}
≤ 5%. In other words, the ℓ2 norm of terminal

state values xT under 900 scenarios in Fig. 3.7 fall into the origin neighborhood with a
radius of γ = 0.02 with probability is at least 95%.

Fig. 3.8 shows the validation test of ℓ2 norm of terminal state values by N = 900
simulations, the violated value counts are 41 (i.e., less than the prescribed risk level
5% × 900 = 45), which implies that the designed sparse control activates with a high
probabilistic robustness.
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Figure 3.9: A fourth order mass-spring system with two control inputs

3.6.2 Sparse cost-risk trade-off
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Figure 3.10: Risk-aware sparse optimal control inputs.

We now present a numerical example to assess the trade-off between sparse cost
and risk for the proposed risk-aware sparse optimal control of Problem 3.43. Given an
uncertain mass-spring system, which can be modeled by a linear system (3.37) using
ZoH sampling Ts = 0.05, with

A(δ) =


0 1 0 0

−(k1+k2)
m1

0 k2
m1

0

0 0 0 1
k2
m1

0 −(k2+k3)
m2

0

 , B =


0 0
1

m1
0

0 0
0 1

m2
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Figure 3.11: Risk-aware sparse optimal control inputs with different penalty weights
ρ = 0.5, 1, 5, respectively.

where m1 = 1, m2 = 2 are the masses, and k1, k2, k3 ∈ R are the flexibility of three
springs, respectively. They can be collected by a vector δ = [k1 k2 k3]

⊤ ∈ Q to
represent the uncertain parameters. Besides, the elements of the uncertain vector δ

are i.i.d. randomly sampled from a uniform distribution over the interval [0.1, 1]. For
this system, we compute the risk-aware sparse optimal control of Problem 3.27 over
time horizon T = 10 with random samples N = 1000, and select the initial condition
as x0 = [1 0 1 0]⊤.

The objective is to seek a risk-aware control input u such that steers the terminal
state xT(u, q) near to the target with a specified gap γ. We thus assign the target as the
origin x̄ = 0 and set a small gap metric γ = 0.5 in (3.39). Note that this example is
a convex optimization under randomized platform, and hence we applied the off-the-
shelf package CVX in MATLAB to Problem 3.27.

Fig. 3.10 displays the risk-aware sparse optimal control with two inputs. It is
clearly that the obtained optimal control signals (resp., above and bottom) are truly
sparse, and the computed optimal value was ∥u∗

N∥1 +
1
5 ∑i ξ i∗ = 247.083. Fig. 3.11 de-

picts the risk-aware sparse optimal control under different penalty weights ρ = 0.5, 1, 5,
respectively. From this figure, we can see that both of two control inputs (the above
and bottom) are sparse when choose the appropriate value ρ, which is used to make
the trade-off between the sparse performance and the violated constraints.

Fig. 3.12 describes the sparse controls with additional scenarios validation i =

1, · · · , 2000, it shows that the control signals enjoy sparsity and posterioi guarantees.



56 Chapter 3. Probabilistic Robustness Guarantees for Sparse Optimal Control

Figure 3.12: Risk-aware sparse optimal control inputs with additional scenarios NV =
2000.

3.7 Summary

In this chapter, we have proposed a sparse robust control design for uncertain linear
discrete-time systems by mean of sparse random convex program. This program pro-
vides a finite-sample guarantee to make the designed sparse optimal control with a
high probabilistic robustness. With the help of relaxation techniques, we have con-
verted the nonconvex ℓ0 cost to convex ℓ1 objective as well as have transformed the
uncertain variable δ ∈ δ into a probabilistic counterpart such that the sparse random
convex program would be computational tractable. Furthermore, a relaxation for the
constraints of sparse random convex program was investigated that makes a trade-off
between the sparse cost and the violated constraints. Finally, we have performed the
numerical examples which demonstrate the effectiveness for the designed risk-aware
sparse optimal control.
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Chapter 4

Model-Based Risk-Aware Sparse
Predictive Control

In this chapter, we present a risk-aware sparse predictive control for linear discrete-
time systems subject to model parametric uncertainty and additive disturbances. We
consider the case of probabilistic constraints on system state and hard constraints on
control actions, which is equivalent to solving a chance-constrained sparse optimiza-
tion problem. We then adopt a data-driven sampling approach to seek a “randomized”
solution by solving a online sparse random convex program that approximates the risk-
aware sparse solution with a high confidence probability. Furthermore, we provide an
explicit finite sample complexity to ensure the probabilistic robustness. Finally, the
numerical example illustrates the effectiveness of the proposed control strategy.

4.1 Problem formulation

4.1.1 System description

Let us consider an uncertain linear discrete-time system

xt+1 = A(δ)xt + B(δ)ut + Ewt, x0 ̸= 0, (4.1)

where xt ∈ X ⊆ Rn is the system state, ut ∈ U ⊆ Rm is the control input, wt ∈ W ⊆
Rnw is the additive disturbance with E ∈ Rn×nw , and δ ∈ ∆ ⊆ Rnδ stands for time
invariant modeling uncertain parameters of A(δ) ∈ Rn×n and B(δ) ∈ Rn×m.

Without loss of generality, throughout this chapter, we make the following mild
assumptions for the studied uncertain dynamics (4.1).

Assumption 4.1 (Stabilizability) Assume that the pair (A(δ), B(δ)) is stabilizable for any
uncertain realizations δ ∈ ∆.

Assumption 4.2 (Stochastic Uncertainty) Assume that the uncertainty sets ∆ and W are
bounded, and the uncertain realizations δ and wt are independent and identically distributed
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(i.i.d.), randomly extracting from the probability distributions Pδ supported on ∆ and Pw sup-
ported on W , respectively.

In what follows, we present a discrete-time prediction system for the uncertain
plant (4.1). Given the state xt observed at sampling time t ∈ N, let j ∈ N be prediction
horizon, then the predicted, future states can be modelled as

xj+1|t = A(δ)xj|t + B(δ)uj|t + Ewj|t, j = 0, 1, . . . , N − 1. (4.2)

Here, we mark the subscript •j|t as predictive instants for j = 0, 1, . . . , N − 1. For exam-
ple, xj|t denotes the j-th step forward prediction of the state at sampling time t that is
initialized at x0|t = xt; and similarly, uj|t and wj|t are the corresponding j-th predictive
control input and external disturbance at sampling time t, respectively.

In this chapter, the uncertain prediction system (4.2) is subject to the soft state con-
straint (a.k.a., probabilistic or chance constraint) and the hard input constraint, that is,

P
{

xj|t ∈ X , j = 0, 1, . . . , N − 1
}
≥ 1 − ϵ, and uj|t ∈ U , (4.3)

or equivalently, P
{

xj|t /∈ X , j = 0, 1, . . . , N − 1
}
≤ ϵ, where ϵ ∈ (0, 1) is a user-defined

risk level or violation of probability, and a joint probability P = Pδ × Pw satisfies As-
sumption 4.2.

To make the problem setup more clearly, we redefine the (predictive) state and
input constraints for the plant (4.1) or (4.2) as the convex (polytopic) sets, described by

x ∈ X ≜ {x : Cx ≤ c},

u ∈ U ≜ {u : Du ≤ d},
(4.4)

where C and D are state and input constraint matrices governed by the regarding vec-
tors c, d with appropriate sizes. Therefore, the soft state and hard input constraints (4.3)
with explicit linear constraints (4.4) are replaced with the joint state chance constraints1

and the deterministic/hard control input constraint of the polytopic set forms

P
{

Cxj+1|t ≤ c, j = 0, 1, . . . , N − 1
}
≥ 1 − ϵ, (4.5a)

Duj|t ≤ d. (4.5b)

For each step j = 0, 1, . . . , N − 1 of the dynamics (4.2), we assemble the trajectories
of the state xj|t, control input uj|t, and disturbance wj|t, respectively, as follows

x̄ ≜
[

x⊤1|t x⊤2|t · · · x⊤N|t
]⊤

∈ RnN , (4.6a)

1Using Boole’s inequality to bound the probability of violation of joint chance constraint P
{

xj|t /∈ X
}
=

P
{

x ∈ ⋃N
j=1{Cxj > c}

}
≤ ∑N

j=1P
{

Cxj > c
}

as N individual chance constraints of forms P
{

Cxj > c
}
≤ ε j,

j = 1, . . . , N, where ε j ∈ [0, ϵ] denotes the risk for the j-th individual chance constraint satisfying ∑N
j=1 ε j ≤ ϵ.
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ū ≜
[
u⊤

0|t u⊤
1|t · · · u⊤

N−1|t
]⊤

∈ RmN , (4.6b)

w̄ ≜
[
w⊤

0|t w⊤
1|t · · · w⊤

N−1|t
]⊤

∈ WN ⊆ Rnw N . (4.6c)

To alleviate the burden and abuse of notations, in the following context, we collect the
random variables δ, w̄ of plant (4.2) as a pair θ ≜ (δ, w̄), where θ is supported on the set
Θ ≜ ∆ ×WN (i.e., θ ∈ Θ) underlying a probability distribution P ≜ Pδ ×PN

w .

Due to the presence of the uncertainties θ ∈ Θ, regulation of the system state to the
origin can not be precisely achieved in general. Conversely, we intend to seek a “risk-
aware” predictive control sequences {u0|t, . . . , uN−1|t} of length N predictions for each
sampling time t such that it can hedge against the stochastic perturbations θ and can
drive the uncertain prediction state (4.2) from the initial state x0|t towards a prescribed
terminal set X f ≜ {x f : C f x f ≤ c f } satisfying x f ∈ X f with a high probability. In other
words, we replace (4.5a) with

P
{

C f xN|t ≤ c f , Cxj+1|t ≤ c, j = 0, 1, . . . , N − 1
}
≥ 1 − ϵ, (4.7)

by adding an additional terminal state constraint. We now need to inspect whether
the condition (4.7) holds or not, where C f is a state constraint matrix governed by the
regarding a vector c f with an appropriate size. The essence of the term (4.7) claims that
the state constraints allow a small risk level to violate itself, i.e.,

P
{

C f xN|t > c f , Cxj+1|t > c, j = 0, 1, . . . , N − 1
}
≤ ϵ, (4.8)

and it is still feasible for most of the uncertain instances.

4.1.2 Sparse predictive control

Similar to [52, 77], the control objective of this chapter aims to implement a sparse
predictive control, we then introduce a sparsity-promoting predictive control cost as

J(ū) =
N−1

∑
j=0

∥uj|t∥1 = ∥ū∥1. (4.9)

Note that this control cost is a convex ℓ1 optimal (predictive) control that maxi-
mizes the time interval over which the predictive signals is exactly zero under a cer-
tain condition [104]. Besides, here the predictive control cost (4.9) is a direct real-time
control iterations rather than the stochastic tubed-based or parametric affine control
schemes [98], since determining a feedback gain of pure sparse optimal (predictive)
control problem is a nontrivial task.

As indicated in [93, 117], a receding horizon strategy is used to execute model predic-
tive control. More precisely, no matter how many steps the controller can predict, only
the first control action u0|t of all predicted inputs (4.6b) is applied to the prediction system
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Figure 4.1: Sparse predictive control based on the receding horizon policy.

(4.2) at each sampling instant t. We thus formulate the predictive control policy as

ut = u0|t =
[

Im 0m×(N−1)m

]
︸ ︷︷ ︸

F


u0|t
u1|t

...
uN−1|t


︸ ︷︷ ︸

ū

(4.10)

where F ∈ Rm×Nm is called a moving horizon scheme matrix that consists of the iden-
tify matrix Im ∈ Rm×m and zero matrix 0m×(N−1)m.

Remark 4.1 (Sparse Predictive Control) When considering the sparsity-promoting on
predictive control (a.k.a., sparse predictive control, see Figure 4.1), the efficient of the
receding horizon policy implies the first control action should be sparse at each sam-
pling time t ∈ N, namely, conducting ∥ut∥1 = ∥u0|t∥1.

4.2 Risk-aware sparse predictive control

This section studies the main results of identifying the risk-aware sparse optimal solu-
tion ū∗ that minimizes an ℓ1 optimal control cost over a finite prediction horizon. This
problem is equivalent to dealing with a chance-constrained sparse optimization prob-
lem. Meanwhile, we follow a data-driven sampling approach to seek a “randomized”
solution ū∗

K that approximates the original chance-constrained or risk-aware sparse so-
lution with a high probability

we now present a novel sparse predictive control that adapts from the model pre-
dictive control with risk-aware sense and sparse manner, which can be formulated as the
following problem.

Problem 4.1 (Risk-aware sparse predictive control) A risk-aware sparse predictive con-
trol for prediction system (4.2) subject to soft state constraints (4.5a) and hard input constraint
(4.5b), is amounts to solving an online chance-constrained sparse optimization problem

min
x̄,ū

∥ū∥1 (4.11a)
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s.t. xj+1|t = A(δ)xj|t + B(δ)uj|t + Ewj|t,

x0|t = xt, j = 0, 1, . . . , N − 1, (4.11b)

P
{

C f xN|t ≤ c f , Cxj+1|t ≤ c, j = 0, 1, . . . , N − 1
}
≥ 1 − ϵ, (4.11c)

Duj|t ≤ d, j = 0, 1, . . . , N − 1, (4.11d)

Although the proposed Problem 4.1 is well-defined, such chance-constrained solu-
tion ū∗

ϵ is extremely difficult to calculate exactly. In particular, the feasible set described
by chance constraints (4.11c) is general difficult to evaluate either analytically or nu-
merically, since it involves the multivariate integrals computing and the relevant set is
non-convex even under the convexity assumption for hard constraint set.

4.3 Data-driven sampling approach

In what follows, we introduce a “data-driven” sampling approach called scenario opti-
mization [37] to deal with the risk-aware sparse predictive control problem, i.e., chance-
constrained sparse program (4.11), which is essentially a randomized algorithms [125]
that generates a finite number of random instances of an uncertain variable θ according
to the probability P, see Assumption 3.2 in Chapter 3.

First, we randomly collect a finite number of “samples” or “realizations” or “sce-
narios” {θ(1), θ(2), . . . , θ(K)} from θ

.
= (δ, w̄) in an i.i.d. fashion according to the proba-

bility distribution P. We now substitute the scenario counterpart into the chance con-
strained sparse optimization (4.11). In this way, we explore the risk-aware sparse pre-
dictive control via data-driven scenario approach as

min
x̄,ū

∥ū∥1 (4.12a)

s.t. x(i)j+1|t = A(δ(i))x(i)j|t + B(δ(i))uj|t + Ew(i)
j|t ,

x(i)0|t = xt, j = 0, 1, . . . , N − 1, i = 1, 2, . . . , K, (4.12b)

C f x(i)N|t ≤ c f , Cx(i)j|t ≤ c, j = 0, 1, . . . , N − 1, i = 1, 2, . . . , K, (4.12c)

Duj|t ≤ d, j = 0, 1, . . . , N − 1, (4.12d)

where the superscript i denotes the random sampling with K scenarios. It is clear that
the data-driven scenario approach gives rise to a “ sparse random convex program”
that can be solved by means of the off-the-shelf packages, like CVX or YALMIP in MAT-
LAB. This data-driven sampling method generates a sparse scenario solution ū∗

K to
problem (4.12), and ū∗

K is a “randomized” solution since it depends on the collected
random samples θ(1), θ(2), . . ., θ(K). Without loss of generality, we here assume that the
random convex program (4.12) admits a unique solution. Besides, the feasible set of
(4.12) is an “inner approximation” of the feasible set of the original chance-constrained
sparse optimization (4.11).
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We next focus on the uncertain quantification.

Lemma 4.1 The uncertain part of the robust feasibility set defined by (4.12b) and (4.12c) is
represented as

h(ū, θ) ≤ 0, (4.13)

with a function h(ū, θ) : RmN × Θ → R which is convex in ū for any fixed θ ∈ Θ.

Proof 4.1 For a given prediction horizon N, substituting the prediction dynamics (4.2)
recursively, we have the evolution of system in a compact form

x̄ = Āδx0|t + B̄δū + Ēδw̄,

where parametric uncertain matrices Āδ, B̄δ and Ēδ are defined as follows, respectively,

Āδ =


A(δ)

A2(δ)
...

AN(δ)

 , B̄δ =


B(δ) 0 · · · 0

A(δ)B(δ) B(δ) · · · 0
...

...
. . .

...
AN−1(δ)B(δ) AN−2(δ)B(δ) · · · B(δ)

 ,

Ēδ =


E 0 · · · 0

A(δ)E E · · · 0
...

...
. . .

...
AN−1(δ)E AN−2(δ)E · · · E

 .

In addition, gathering the constraint matrices C, C f and vectors c, c f stated in (4.12c)

C̄ =



C 0 · · · 0
0 C · · · 0
...

...
. . .

...
0 0 · · · C
0 0 · · · C f


, c̄ =



c
c
...
c
c f


,

we then have

h(ū, θ) ≜ max
(
C̄(Āδx0|t + B̄δū + Ēδw̄)− c̄

)
,

where max(v) for a vector v means that the greatest element of v, which completes the
proof of Lemma 4.1. ■

4.4 A finite-sample guarantee

In general, the obtained data-driven solution ū∗
K does not always successfully approx-

imate the risk-aware solution ū∗ thanks to the randomness of the data sampling. In
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order to hold the probabilistic robustness guarantee with a risk ϵ and a confidence level
β, sufficient data-driven samples must be collected. In what follows, we state the sam-
ple complexity to ensure the data-driven sparse solution ū∗

K is a good approximation
for risk-aware sparse solution ū∗.

Theorem 4.2 (Finite-sample guarantee) Suppose that an uncertain constraint function h(ū, θ)

defined in (4.13) is given. Assume that the uncertain variable θ
.
= (δ, w̄) has the probability

distribution P supported on Θ. Let ΘK .
= {θ(1), θ(2), . . . , θ(K)} be a multi-sample of θ, where

K is selected so that it satisfies

mN−1

∑
i=0

(
K
i

)
ϵi(1 − ϵ)K−i ≤ β (4.14)

for given specified risk ϵ ∈ (0, 1) and confidence β ∈ (0, 1). Suppose that there exists a unique
optimal solution for sparse random convex program (4.12), i.e., solving the program

min
x̄,ū

∥ū∥1

s.t. h(ū, θ(i)) ≤ 0, i = 1, 2, . . . , K

Duj|t ≤ d, j = 0, 1, . . . , N − 1.

(4.15)

Then, with confidence 1 − β, a probabilistic robustness guarantee

PK{V(ū∗
K) ≤ ϵ} ≥ 1 − β

holds true for the optimal input ū∗
K obtained by (4.15).

Corollary 4.1 (Sample Complexity) The satisfaction of term (4.14) implies that a priori and
explicit sample complexity K ≥ K(mN, ϵ, β) holds true, where

K(mN, ϵ, β) ≜
mN − 1 + ln(1/β) +

√
2(mN − 1) ln(1/β)

ϵ
. (4.16)

Proof 4.2 The proof is directly derived from the result [4, Therorem 1]. ■

Then a direct result is summarized as follows.

Proposition 4.3 (Risk-aware sparse predictive control realization) Let ū∗
K be a feasible

optimal control for Problem (4.12) satisfying sample complexity K ≥ K(mN, ϵ, β). If u∗
j|t is

applied to the uncertain system (4.2) with a finite prediction horizon N, then, with probability
1 − β, the risk-aware sparse predictive control (4.11) is achieved for j = 0, 1, . . . , N − 1.

4.5 Numerical examples

In this section, we illustrate the risk-aware sparse predictive control on a benchmark
two-mass-spring system [78] shown in Figure 4.2. The system matrices of discrete dy-
namics (4.1) by Euler’s approximation with ZoH sampling time ts = 0.1 s are of the
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Figure 4.2: Two-mass-spring systems

forms

A(δ) =


1 0 ts 0
0 1 0 ts

− ksts
m1

ksts
m1

1 0
ksts
m2

− ksts
m2

0 1

 , B =


0
0
ts

m1

0

 , E =


0 0
0 0
ts

m1
0

0 ts
m2

 ,

xt =


x1

x2

x3

x4

 , wt =

[
w1

w2

]
.

The model state xt has four dimensions, in which the first two components {x1, x2}
stand for positions of two masses, the rest components {x3, x4} represent velocities.

Assume that the additive disturbance wt is perturbed by a Gaussian distribution
w ∼ N (0, Σw) with zero mean and covariance matrix Σw = diag(0.022, 0.022). The
masses of two spring systems are set as m1 = m2 = 1 kg, and the “elastic constant”
ks is related to parametric uncertainty that follows a uniform probability distribution
ks ∼ Unif([0.5, 2.0]). We take the initial state as

x0 =
[
0.15 0.15 −0.15 −0.1

]⊤
,

and the prediction horizon is N = 6, and the sampling time t = 50. For the data-driven
sampling setup, we choose the risk ϵ = 0.05, confidence level β = 10−6 and by means
of sample complexity (4.16), we take scenarios K = 695. Next, we use these parameters
to prescribe the constraints.

In two-mass-spring system, the standard setting for the mass positions (i.e., the
first two states x1 and x2) are often free. Hence, we only give the sampled-based veloc-
ities constraints |x3| ≤ 0.15, |x4| ≤ 0.15, and hard control inputs |ut| ≤ 1. Meanwhile,
we conduct a simulation for quadratic model predictive control (MPC) based on ℓ2 opti-
mal control (i.e., minū ∥ū∥2) so as to make a comparison with sparse predictive control.
Figure 4.3 displays the control inputs with ℓ2 optimal and ℓ1 optimal controllers, respec-
tively. Clearly, the sparse predictive control promotes more zero inputs than quadratic
MPC, therefore it enjoys sparsity.
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Figure 4.3: Profiles of sparse (ℓ1) predictive control (solid) and quadratic (ℓ2) model
predictive control (dashed).
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Figure 4.4: State trajectories with prediction horizon N = 6 and time step t = 50 s.

Fig. 4.4 illustrates the four different state trajectories under risk-aware sparse pre-
dictive control. Due to the nonzero uncertainties, the state trajectories will tend to the
neighborhood of the origin. In particular, we can see that the velocity x3 tends to the as-
signed upper bound 0.15 as well as the velocity x4 gets close to the pre-specified lower
bound −0.15. This implies that the sparse predictive control offers a good robustness.

4.6 Summary

In this chapter, we presented a risk-aware sparse predictive control, where the state
constraints are formed as probabilistic model. To solve such chance-constrained sparse
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optimization problem, we utilized a data-driven scenario approach to seek a random-
ized solution by solving a sparse random convex program such that it approximates the
original risk-aware sparse solution with a high probability. Meanwhile, we provided a
finite sample guarantee for the obtained data-driven scenario sparse solution. Finally,
the numerical example showed that the usefulness of proposed control approach.
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Chapter 5

Data-Driven Sparse Optimal
Control Synthesis

A data-driven framework for a discrete linear time invariant (LTI) system is employed
in conjunction with sparse feedback control synthesis. Instead of a priori knowledge of
actual system model, this chapter concerns on the black-box control systems by purely
exploiting experimental input/state/output data samples under Willem’s lemma. An
ℓ1,∞ matrix norm on feedback gain is penalized to promote a row-sparse structure that
maximizes the number of zero-valued rows within the feedback matrix itself, resulting
in the generation of sparse control signals.

5.1 Recap of model-based sparse feedback control

Consider a discrete linear time invariant (LTI) system

x(t + 1) = Ax(t) + Bu(t), x(0) = x0, (5.1a)

y(t) = Cx(t), t ∈ N≥0, (5.1b)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the control action, and y(t) ∈ Rp

stands for the output with p ≥ 2. Besides, A ∈ Rn×n and B ∈ Rn×m are system
matrices, and the output matrix C ∈ Rp×n has full row rank. Assume that the pairs
(A, B) is reachable and (A, C) is observable.

5.1.1 Sparse state feedback control design

Let us introduce a static state feedback control K ∈ Rm×n, expressed by

u(t) = Kx(t), (5.2)

for which the control signal u is generated to ensure that a discrete LTI dynamics (5.1)
is stable (i.e., closed-loop stability) and minimizes the control effort (i.e., input sparsity)
[32, 104, 113].
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Definition 5.1 (ℓ1,∞ norm for a Matrix [115, 128]) The ℓ1,∞ matrix norm for a matrix K ∈
Rm×n (aka. a ℓ1 norm of matrix rows) is defined as

∥K∥1,∞ =
m

∑
i=1

max
1≤j≤n

|Ki,j|

which penalizes the sum of maximum absolute values of each row. Obviously, ℓ1,∞ norm pro-
motes row sparsity, i.e., it encourages entire rows of the matrix to have zero-valued elements. It
is a convex relaxation for ∥K∥r0 = ∥K∥0,∞.

Problem 5.1 (Model-Based Sparse Feedback Control) For a discrete LTI plant (5.1a), find-
ing a static state feedback gain K meets (5.2), then the sparse feedback control u with input
sparsity simultaneously satisfies the following two conditions

(c-i) the discrete time closed-loop (or feedback) system

x(t + 1) = Acl x(t), Acl
.
= (A + BK) ∈ Rn×n, (5.3)

is Schur stable if for all eigenvalues have |λi(Acl)| < 1;

(c-ii) and feedback matrix K ∈ Rm×n enjoys “row-sparsity” that penalizes the ℓ1,∞ norm on
the matrix, defined as ∥K∥1,∞ by promoting the number of zero-valued rows.

Remark 5.1 (Motivation) Distinct from prior methods that directly apply sparsity to
the control signal, here an motivation for integrating sparsity into control design is illu-
minated by considering the interplay of Control, Communication, and Computation from
a unified standpoint [113]. Within this framework, reducing the number of states re-
quired for plant control corresponds to a decrease in the number of sensors utilized.
Likewise, the number of controls relates to the quantity of actuators, and minimizing
the number of outputs aligns with reducing the information transmitted through con-
trol channels, we refer to see Example 5.1.

Remark 5.2 (Schur α-Stability) A modified Shur α-stability (i.e., an expected level of
stability α, 0 < α < 1) in (c-i) for the plant (5.3) can be evaluated, which measures the
minimal distance between the magnitude of the eigenvalues λi(Acl) and the unit disk. Let
α = 1 − ρ̄, here ρ̄

.
= max1≤i≤n |λi(Acl)| < 1 denotes the spectral radius of the closed-

loop matrix Acl .

The subsequent linear matrix inequality (LMI) lemma is useful to solve the condi-
tion (c-i) or Remark 5.2 in Problem 5.1.

Lemma 5.1 (An LMI for Schur α-Stability) A discrete-time closed-loop matrix Acl (5.3) con-
sisting of the LTI plant (5.1a) and state feedback (5.2) is Schur α-stabilizable if and only if

∃P ≻ 0, s.t. Acl PA⊤
cl − (1 − α)2P ⪯ 0. (5.4)

Proof 5.1 Suppose that there exists a positive-definite matrix P = P⊤ ≻ 0 such that
the LMI A⊤

cl PAcl − ρ̄2P ≺ 0 holds. Construct a Lyapunov function V(x) = x⊤Px ≻ 0,
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satisfying x ̸= 0 and V(0) = 0. By difference, for all t ∈ N≥0, it gives

V(x(t + 1))− V(x(t))

= x⊤(t + 1)Px(t + 1)− x⊤(t)Px(t)

= x⊤(t)A⊤
cl PAcl x(t)− x⊤(t)Px(t)

= x⊤(t)
(

A⊤
cl PAcl − P

)
x(t) ≺ 0 (5.5)

for all non-zero x(t).

We now slightly revise the matrix form Acl as Acl/(1 − α) by taking a degree of
stability α = 1 − ρ̄ into account, which does not change the stability from a theoretical
point of view. Obviously, the inequality V(x(t + 1)) ≺ V(x(t)) for all t ∈ N≥0 means
that the conditions (5.4) hold true, and hence for any x0 ∈ Rn the system (5.3) is Schur
or asymptotic stable.

On the other hand, the α-stability implies that discrete time closed-loop system
with matrix Acl is Schur α-stabilizable. ■

With relation to Lemma 5.1, introducing new variables Q = P−1, V = KQ and
the recovered the expression Acl = A + BK, the semi-definite program (SDP) of (5.4) is
announced by [

Q Q⊤A⊤ + V⊤B⊤

AQ + BV ρ̄2Q

]
≻ 0, Q ≻ 0. (5.6)

This result derives from Schur complement. The existence of solutions for LMI hinges
on the controllability of pair (A, B), which admits the controller K = VQ−1.

In what follows, we deal with (c-ii) in Problem 5.1 that infers sparse control signals
from its state feedback policy u = Kx. A desired scenario we would like a solution
matrix K with a few non-zero rows (i.e., a few active features). When solution K =

VQ−1 is eager to structural sparsity in rows, then the matrix V naturally exhibits the
identical row sparsity, that is, row-sparsity invariance, see Example 5.1. We thus replace
the ∥K∥1,∞ regularizer by ∥V∥1,∞ penalty [113, 32]. Therefore, the next result which
comes directly from Lemma 5.1 or LMI (5.6), making Problem 5.1 is computationally
tractable in terms of SDP with the lens of CVX or SeDuMi.

Example 5.1 (Row-sparse matrix) Identifying a row-sparsity feedback matrix K ∈ Rm×n is
equivalent to find a matrix V = KQ, which shares a common row-sparse pattern, that is,

∗
0
...
∗
0


︸︷︷︸

u

=



∗ ∗ · · · ∗
0 0 · · · 0
...

...
. . .

...
∗ ∗ · · · ∗
0 0 · · · 0


︸ ︷︷ ︸

K

×



x1

x2
...
·

xn


︸ ︷︷ ︸

x

, K =



∗ ∗ · · · ∗
0 0 · · · 0
...

...
. . .

...
∗ ∗ · · · ∗
0 0 · · · 0


︸ ︷︷ ︸

V

×



∗ ∗ · · · ∗
∗ ∗ · · · ∗
...

...
. . .

...
∗ ∗ · · · ∗
∗ ∗ · · · ∗


.

︸ ︷︷ ︸
Q−1
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Proposition 5.2 (Sparse State Feedback Control [32]) To address Problem 5.1 is equiva-
lent to finding the solutions V, Q to perform constrained row sparse matrix optimization subject
to LMI constraints as follows

min
V,Q

∥V∥1,∞ s.t. LMIs (5.6), (5.7)

where the new matrix variable V = KQ induces zero-valued rows, giving rise to a row sparse
feedback matrix K = VQ−1, which stabilizes the interconnected systems (5.1a) and (5.2) with
a desired level of α-stability for the closed-loop behavior (5.3).

First, we assure the sufficient stabilization (5.6), then performing ℓ1,∞ matrix norm
on V (or K) yields row sparse solutions whose most rows of the matrix should be zeros
(resp., zero or “rest” components in feedback control u). Conversely, the nonzero rows
of the matrix should contain many nonzero entries (resp., nonzero or “active” inputs
over control signal).

Before closing this subsection, we review some definition and remarks withe re-
spect to structured closed-loop implementation.

Definition 5.2 (Sparse Pattern) Finding a feedback matrix K ∈ Rm×n that assigns the closed-
loop eigenvalues (5.3) at some desired locations given by set Λ = {λ1, · · · , λn}, and satisfies
the row-sparsity. Let K ∈ {0, 1}m×n denote a binary mask matrix that specifies the row-
sparsity structure of the feedback matrix K. For row sparse matrix, If Ki,: = 0 (resp., Ki,: = 1),
then computing i-th row is as follow

Ki,: =

0, if Kij = 0,

⋆, if Kij = 1,

where ⋆ denotes a real number. Let Kc = 1m×n − K denote the complementary sparse struc-
ture matrix.

Definition 5.3 (Fixed Modes [75, 133]) The fixed modes of the pair (A, B) regarding (row)
sparsity structure K are those eigenvalues of matrix A that can not be changed by LTI static (or
dynamic) feedback gain K, and are typically denoted as

Γ(A, B, K) =
⋂

K:K◦K=0
Γ(A + BK). (5.8)

Remark 5.3 (Eigenvalues) Let Λ = {λ1, · · · , λn} be the set of desired closed-loop eigen-
values and V = {v1, · · · , vn} be the set of desired closed-loop eigenvectors for (5.3), re-
spectively, with λi ∈ R and vi ∈ Vi ⊆ Rn for all i ∈ {1, · · · , n}. Thus,

(A + BK)vi = λivi, ∀vi ∈ Vi, λi ∈ Λ, (5.9)

where Vi indicates n-dimensional allowable eigenvector subspace. Also, for some K it
derives the spectrum ρ(A + BK) = Λ, and Vi is independent of K [87].
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Remark 5.4 (Pole Placement) Checking |λi(Acl)| < 1 is analogous to pole placement
[75, 44] that is the closed-loop action coincides with a desired eigenvalues from Λ

(A + BK)X = XΞ (5.10)

where Ξ = diag
(
[λ1, · · · , λn]⊤

)
is the diagonal matrix of the desired eigenvalues.

In fact the state of a system can be restricted within a subspace W via a state feed-
back control K if and only if W is a controlled invariant space.

Remark 5.5 (Controlled Invariant Subspace) The subspace W ⊆ Rn is an (A, Im(B))-
controlled invariant, that is, AW ⊆ W + Im(B), then there exists a matrix K (called a
friend of W) such that

(A + BK)W ⊆ W (5.11)

∃X, U AW = WX + BU (5.12)

where W is a basis of subspace W , this is related to geometric control approach [11]

5.1.2 Sparse output feedback control synthesis

Considering the system state (5.1a) may not be measured in real-world scenario. We
extend the sparse state feedback result in Section 5.1.1 to output feedback case. Given a
discrete LTI system (5.1), there exists a static output feedback F ∈ Rm×p such that

u(t) = Fy(t), (5.13)

and the resultant discrete-time feedback response

x(t + 1) = Âcl x(t), Âcl
.
= A + BFC ∈ Rn×n, (5.14)

with a closed-loop matrix Âcl is stable.

As similar to Problem 5.1, the goal is to find a sparse static output feedback controller
(5.13) and ensure the dynamics (5.14) stable. Namely, determining sparse control signal for
some output feedback gain u = Fy can be converted into tackling a row-sparse matrix
optimization ∥F∥1,∞ under LMI stability constraints, the details will be presented in
Proposition 5.3.

In view of the stability criteria (5.4) or (5.6), we take the output feedback control
(5.13) by using u = FCx, then there exist P̂ ≻ 0 and F such that output stabilization
condition [27]

(A + BFC)⊤P̂(A + BFC)− ρ̂2P̂ ≺ 0,

holds, in which ρ̂ = maxi |λi(Âcl)| denotes the spectral radius of the matrix Âcl in
(5.14).
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Alternatively, we recommend a new variable Q̂ = P̂−1, then the LMI reformulation
is as follows [

Q̂ Q̂A⊤ + Q̂C⊤F⊤B
AQ̂ + BFCQ̂ ρ̂2Q̂

]
≻ 0, Q̂ ≻ 0. (5.15)

However, computing the above LMI (5.15) is difficult because it involves nonconvex
and bilinear matrix inequality (BMI). A replaced convex one for (5.15) was proposed in
[51], that is, given system model (A, B, C), where C has full row rank. If feasible matrix
solutions Q̂, V̂, R̂ can be solved by LMIs[

−Q̂ Q̂A⊤ + C⊤V̂⊤B⊤

AQ̂ + BV̂C −ρ̂2Q̂

]
≺ 0, R̂C = CQ̂, (5.16)

then a static output feedback control F = V̂R̂−1 stabilizes the discrete LTI systems (5.1).
We then assert the following result.

Proposition 5.3 (Sparse Output Feedback Control) For the discrete LTI systems (5.1), iden-
tifying a stable and sparse static output feedback control u = Fy equals to solving the solutions
V̂, Q̂, R̂ of the following row-sparse matrix optimization

min
V̂,Q̂,R̂

∥V̂∥1,∞ s.t. LMIs (5.16). (5.17)

Specially, if take C = I ∈ Rn×n, then we have FC = K, and the output feedback control
reduces to state feedback control.

5.2 Data-driven meets sparse feedback control

In what follows, we discard the “model-based” frameworks, namely, assume that the
knowledge of “true” system matrices (A, B, C) of LTI dynamics (5.1) is partially or
even completely unknown (aka., “model-free”, “black-box”). A state-of-the-art method
is direct data-driven technique that the controlled LTI behavioral systems (5.1) can be
directly reconstructed through a finite samples of experimental input-state/output data trajec-
tories, stemmed from Willems’ fundamental lemma [54, 96, 137].

For the sake of simplicity, throughout this chapter, let w : Z → Rp be a signal,
and use w[i,j] as shorthand for the signal of w to the interval [i, j], where i, j ∈ Z,

namely, w[i,j] =
[
w⊤(i) w⊤(i + 1) · · · w⊤(j)

]⊤
. Then, we further define a Hankel matrix

of depth L associated with w[i,j] as

Wi,L,j =


w(i) w(i + 1) · · · w(j − L + 1)

w(i + 1) w(i + 2) · · · w(j − L + 2)
...

...
...

w(i + L − 1) w(i + L) · · · w(i + L + j − 2)

 , (5.18)
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where the block rows of Wi,L,j correspond to the windows of length L and satisfy L ≤
j − i + 1, associated with signal w[i,j]. When L = 1, the matrix

Wi,j =
[
w(i) w(i + 1) · · · w(i + j − 1)

]
has only one block row.

Definition 5.4 (Persistently Exciting) A sequence w[0,T−1] is persistently exciting (PE) of
order L if its Hankel matrix W0,L,T−L+1 has full row rank.

5.2.1 Data-driven behavioral system of LTI dynamics

We now harvest a finite input/state/output measurements over time T from actual
system (5.1), recorded by the following matrices

U0,T =
[
ud(0) ud(1) · · · ud(T − 1)

]
∈ Rm×T ,

X0,T =
[

xd(0) xd(1) · · · xd(T − 1)
]
∈ Rn×T ,

Y0,T =
[
yd(0) yd(1) · · · yd(T − 1)

]
∈ Rp×T ,

X̂0,T =
[
χd(0) χd(1) · · · χd(T − 1)

]
∈ Rn̂×T ,

(5.19)

where the subscript d in ud, xd, yd, χd stands for the data samples collected from the
system performing a single experiment in offline. Besides, X1,T = [xd(1) · · · xd(T)]
denotes forward step of matrix X0,T .

Offline experiments (5.19) can be assembled in Hankel matrices (5.18), and the
next rank condition (5.20) claims that if PE input data is sufficiently rich, adopting T ≥
(p + 1)L − 1, then the windows of the signal could span the whole system behavioral
trajectories. We then show a celebrated Willems’ fundamental lemma [137].

Lemma 5.4 (Fundamental Lemma [54]) Given the LTI systems (5.1). If the input signal
ud,[0,T−1] is persistently exciting of order n + L, then

(i) A full row rank condition satisfies

rank

([
U0,L,T−L+1

X0,T−L+1

])
= Lm + n. (5.20)

(ii) Any input-output signal {ū[0,L−1], ȳ[0,L−1]} is L-length feasible trajectories of LTI sys-
tems (5.1) if and only if there exists a g ∈ RT−L+1 such that a linear combination[

ū[0,L−1]

ȳ[0,L−1]

]
=

[
U0,L,T−L+1

Y0,L,T−L+1

]
g. (5.21)

Clearly, Lemma 5.4 establishes a data-based representation for the model-free LTI systems
(5.1). More precisely, if input signals satisfy PE [96], then the space of any input-output



74 Chapter 5. Data-Driven Sparse Optimal Control Synthesis

trajectories of the systems can be spanned by a finite time-shift collection of data sam-
pls, stored in the Hankel matrices through some trials. Note that the condition related
to (5.21) is also effective for any “input-state” trajectories of the system behaviors (5.1a).

A PE input experiment ud,[0,T−1] of order n + L with L = 1 should be sufficient
long, i.e., T ≥ (m + 1)n + m. From (5.20),

rank

([
U0,1,T

X0,T

])
= n + m, (5.22)

where U0,1,T = U0,T , and thus a compact state evolution of a discrete LTI plant (5.1a)
with T-length window is rephrased as

X1,T = AX0,T + BU0,1,T =
[

B A
] [U0,1,T

X0,T

]
. (5.23)

Let us now turn to the central problem of this chapter that how to develop the sparse
feedback control (see Section 5.1) for the discrete LTI systems from model-based to
data-based methodology, i.e., learning the dynamics and controller from data. We aim
to provide the data-driven sparse feedback controllers for “unknown” LTI plant (5.1) by
purely leveraging input-state/output data samples built in Section 5.2.1.

5.2.2 Data-driven sparse state feedback controller

Different from the model-based controller in Section 5.1.1, we here propose a data-
driven sparse state feedback control for black-box LTI dynamics (5.1a). With the help
of Lemma 5.4 and data-enabled behavior (5.23), it is sufficient to establish the closed-
loop data-driven representation of (5.3), stated as follows:

Lemma 5.5 (Closed-Loop Data-Driven Representation [54]) Let Lemma 5.4 holds true.
Then, the discrete LTI system (5.1a) for some state feedback u = Kx (5.2) in closed-loop response
(5.3) is equivalent to the following data-based closed-loop behavior

x(t + 1) = Acl x(t) = X1,TGKx(t), (5.24)

in which Acl
.
= X1,TGK. Based on Rouché-Capelli theorem, there exists a matrix GK ∈ RT×n,

such that it satisfies [
K
In

]
=

[
U0,1,T

X0,T

]
GK, (5.25)

then a data-driven state feedback control can be formulated as

u(t) = U0,1,TGKx(t). (5.26)
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Combing the Proposition 5.2 and Lemma 5.5, we give rise to the following result
of data-driven sparse state feedback controller.

Theorem 5.6 (Data-Driven Sparse State Feedback Control) Let Lemma 5.4 with condi-
tion (5.22) hold. Then, the data-driven sparse state feedback for Problem 5.1 can be obtained via
program (5.7) and Lemma 5.5, and the data-driven description K = U0,1,TV(X0,TV)−1 ensures
that the closed-loop process (5.24) is stable, where V is a row sparse matrix that optimizes

min
V,Q

∥U0,1,TV∥1,∞

s.t.

[
X0,TV X1,TV

V⊤X⊤
1,T ρ̄2X0,TV

]
⪰ 0,

ρ̄ = max
i

|λi(X1,TV(X0,TV)−1)| < 1.

(5.27)

Proof 5.2 By Lemma 5.5, the data-based closed-loop description (5.24) with a linear
static state feedback control u = Kx is Schur α-stable (or Lyapunov stable) if and only
if there exists a matrix variable Q ≻ 0 with Q = P−1 such that

X1,TGKQG⊤
K X⊤

1,T − ρ̄2Q ⪯ 0, (5.28)

in which the matrix GK meets the equality (5.25). Define a new matrix variable V .
=

GKQ, the stability implies that the matrices V and Q ≻ 0 exist and admit the LMIs

X1,TVQ−1V⊤X⊤
1,T − ρ̄2Q ⪯ 0, (5.29a)

X0,TV = Q, (5.29b)

U0,1,TV = KQ, (5.29c)

where the last two inequalities (5.29b), (5.29c) are derived from expression (5.25). Espe-
cially, the stability relies on the existence of a matrix V under constraint (5.29b), which
further yields

X1,TV(X0,TV)−1V⊤X⊤
1,T − ρ̄2X0,TV ⪯ 0, (5.30a)

X0,TV ≻ 0, (5.30b)

U0,1,TV = KX0,TV. (5.30c)

The term (5.30a) is based on the facts (5.29a) and (5.29b), thus data-driven feedback
gain is taken as K = U0,1,TV(X0,TV)−1.

From (5.25), a data-assistant testing for spectral radius of Acl is offered by

ρ = max
i

|λi(X1,TV(X0,TV)−1)| < 1.

More concretely, we have A + BK = X1,TV(X0,TV)−1 and GK = V(X0,TV)−1. Mean-
while, the control cost requires the feedback matrix to impose row-sparsity, i.e., ∥K∥1,∞ =
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∥U0,1,TGK∥1,∞ = ∥U0,1,TVQ−1∥1,∞ ■

5.2.3 Data-driven sparse output feedback controller

Motivated by the synthesis of data-driven output feedback control [54, 70], the MIMO
state-space model (5.1) and (5.13) can be rewritten in an input-output signal with an
ARX form [111]

y(t) + αny(t − 1) + · · ·+ α2y(t − n + 1) + α1y(t − n)

= βnu(t − 1) + · · · β2(t − n + 1) + β1u(t − n), (5.31)

where αi ∈ Raa

χ(t) =
[
u⊤(t − n), u⊤(t − n + 1), · · · , u⊤(t − 1),

y⊤(t − n), y⊤(t − n + 1), · · · , y⊤(t − 1)
]⊤ (5.32)

where the state χ(t) ∈ Rn̂ with n̂ = (m + p)n consists of the input and output vectors

Lemma 5.7 Suppose that the PE condition with L = 1 holds. A data-driven representation
of the discrete time closed-loop system (5.14) consisting of the LTI dynamics (5.1) and output
feedback control u = Fy (5.13) is given by

x(t + 1) = X̂n+1,T+1GFx(t) (5.33a)

y(t) = Yn,TGFx(t), (5.33b)

with a matrix GF ∈ R(T−n+1)×n meeting[
FC
I

]
=

[
Un,T

X̂n,T

]
GF. (5.34)

The proof sketch is similar to that of [54, Th. 2]. In fact, we have In = X̂n,TGF and
Yn,T = CX̂n,T . Hence, we get C = Yn,TGF.

5.3 Numerical benchmark

In this section, we conduct the numerical benchmarks for synthesizing data-driven
sparse feedback control.

We discretize a continuous-time helicopter model (HE) with eighth-order and four
inputs called “HE4” from the COMPLeib benchmark example [81, Chapter 2.1.2].

ẋHE4(t) = Ax(t) + Bu(t)

which is the eighth-order linear model of a two-engine multipurpose helicopter. For this
model, the sampling interval takes δ = 0.2 and employs Ad = eAδ, Bd =

∫ δ
0 eAτdτB.
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Given a degree of stability α = 0.05 (i.e., ρ̄ = 0.95), we solve program (7) to obtain
the following numerical values of the maxima for the rows of the solution matrix V :

0.0286 ×
[

1.9 × 10−5 1.0000 0.6538 8.0 × 10−6
]

.

The first and fourth rows are seen to be smaller in absolute value than the other
two rows. We make them to zero and solve the stabilization problem (5.27), i.e., check
the feasibility of the LMI (5.27) subject to the sparse structure of the matrix variable V.
The sparse controller thus obtained is determined by the row-sparse matrix Kd and the
degree of stability of the related closed-loop system is equal to α = 0.0565; that is, it is
no less than the prespecified value.

Note that a solution of sparsity-free stabilization (5.27) is given by a feasible con-
troller K

Kd =


0 0 0 0 0 0 0 0

−58.9943 3.5782 −0.1078 −6.3773 −0.3368 6.1727 0.2342 0.2592
0.5493 27.9995 1.4598 −0.7429 1.0118 −0.0482 2.2801 0.0545

0 0 0 0 0 0 0 0

 ,

K =


−0.3015 0.1713 0.0191 −0.0616 −0.0335 −0.0263 −0.0281 1.0043
−58.8741 1.8028 −0.1973 −6.3837 −0.2185 6.1438 0.0126 0.3935

0.7322 22.6563 1.1560 −0.6804 1.9832 −0.0416 1.7090 0.1365
3.3135 −56.1465 −1.9597 0.3678 9.6554 −0.1794 −11.0744 0.7465

 ,

whose nonzero elements are of the same order of magnitude as those of the controller
Kd.

5.4 Summary

This chapter introduces data-driven sparse feedback controllers tailored for model-free
LTI systems. In this approach, the static state feedback controller was derived from
input-state data samples, while the state-feedback matrix was penalized based on struc-
tured row-sparsity. Moreover, the method ensured Schur-α stability for the synthesized
data-driven sparse feedback controller. Finally, the numerical benchmarks illustrated
the effectiveness of the proposed control policy.
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Chapter 6

Linear Quadratic Sparse Optimal
Control

In this chapter, we propose a novel linear quadratic (LQ) tracking control problem for
the continuous-time systems with sparsity regularization using L0 norm, we refer to as
LQ hands-off control, also known as LQ sparse optimal control. Sparsity regularization
leads to sparse control, which has a significant length of time over which the control
is exactly zero. Since the L0 cost is non-convex and discontinuous, we introduce L1

relaxation to make the optimization numerically tractable. The numerical solution is
obtained with the aid of time-discretization to derive a discrete-time optimal control
problem with ℓ1 regularization. We also give an upper bound of the terminal state un-
der perturbations in the initial states and the state-space matrices. Numerical examples
illustrate the effectiveness of the proposed control.

6.1 Problem formulation

Let us consider the tracking problem, with a continuous-time master system

żm(t) = Azm(t), t ≥ 0, zm(0) = ξm ∈ Rn (6.1)

and the corresponding slave system

żs(t) = Azs(t) + Bu(t), t ≥ 0, zs(0) = ξs ∈ Rn (6.2)

where zs(t), zm(t) ∈ Rn are the state variables and u(t) ∈ R is a single control input.
We assume the two systems share the same matrix A. In the case where there is a gap,
we will discuss the robustness of the control system in Section 6.4.

The problem of the tracking control is to seek a control u(t) that achieves tracking
for given initial states zs(0) = ξs and zm(0) = ξm. To consider this, we define the
tracking state error by

x(t) ≜ zs(t)− zm(t). (6.3)
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Then, from (6.1) and (6.2), we have the following linear model:

ẋ(t) = Ax(t) + Bu(t). (6.4)

We here consider a finite horizon control problem. Namely, we find a finite-horizon
control {u(t) : 0 ≤ t ≤ t f } with t f > 0 that achieves

x(t f ) = zs(t f )− zm(t f ) = 0, (6.5)

from a given initial state
x(0) = ξ = ξs − ξm. (6.6)

Also, it is practical to assume that u(t) is bounded, that is,

|u(t)| ≤ 1, ∀t ∈ [0, t f ]. (6.7)

A control u(t), t ∈ [0, t f ] is said to be feasible if the control satisfies (6.4), (6.5), (6.6), and
(6.7). We assume there exists at least one admissible control since the feasible region is
non-empty in general.

The LQ (Linear Quadratic) tracking control is the control that minimizes the fol-
lowing LQ cost function among feasible controls:

JLQ(u) =
1
2

∫ t f

0

{
x(t)⊤Qx(t) + Ru(t)2}dt, (6.8)

with positive semi-definite matrix Q ⪰ 0 and positive number R > 0.

To promote the sparsity of the control input, we penalize the L0 norm on the con-
trol signal, we refer to see Definition 1.4 in Chapter 1.

To promote the sparsity of the control input, we recommend to penalize the L0

norm to the cost function as a regularization term:

J0(u) = JLQ(u) + λ∥u∥0, (6.9)

where ∥u∥0 is the L0 norm and λ > 0 is the penalty weight [105]. We refer to this
proposed control policy as LQ hands-off control.

In summary, our control problem is formulated as follows:

Problem 6.1 (LQ Hands-off Control) Assume that t f > 0 and ξ ∈ Rn are given and there
exists at least one feasible control. Find an optimal control that solves the following optimal
control problem:

min
x,u

1
2

∫ t f

0

{
x(t)⊤Qx(t) + Ru(t)2}dt + λ∥u∥0

s.t. ẋ(t) = Ax(t) + Bu(t), t ∈ [0, t f ]
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x(0) = ξ, x(t f ) = 0

|u(t)| ≤ 1, ∀t ∈ [0, t f ]. (6.10)

For the sake of simplicity, we here consider a single-input plant, which also pro-
vides an paradigm for extending to a multiple-input plant. In fact, there are some
works [79, 105] have provided the approaches for multiplexing signals in sparse con-
trol. Meanwhile, sparse control for time-varying system is also an open and challenging
issue for sparsity architecture, and it is possible to tackle this topic, see [5].

6.2 Characterization of LQ hands-off control

Here, we analyze the LQ hands-off control, the optimal solution of Problem 6.1. We
first show necessary conditions for the optimal control. For this, we first define the
Hamiltonian Hη(x, p, u) by

Hη(x, p, u) ≜ p⊤(Ax + Bu)− ηΛ(x, u), (6.11)

where p ∈ Rn, η ∈ {0, 1}, and Λ(x, u) is the running cost for (6.9) defined by

Λ(x, u) ≜
1
2
(x⊤Qx + Ru2) + λϕ0(u). (6.12)

Since Λ(x, u) is not continuous in u, we adopt the non-smooth maximum principle [49].
The following gives necessary conditions for Problem 6.1.

Lemma 6.1 (Necessary condition) Let (x∗, u∗) be a local minimizer for Problem 6.1. Then
there exist an arc {p(t) ∈ Rn : t ∈ [0, t f ]} and a scalar η ∈ {0, 1} satisfying the following
properties:

1. the non-triviality condition:

(η, p(t)) ̸= 0, ∀t ∈ [0, t f ]. (6.13)

2. the adjoint equation:

ṗ(t) = −∂x Hη(x∗(t), p(t), u∗(t))

= −A⊤p(t) + ηQx∗(t), ∀t ∈ [0, t f ],
(6.14)

3. the maximum condition:

u∗(t) ∈ arg max
u∈[−1,1]

Hη(x∗(t), p(t), u)

= arg max
u∈[−1,1]

f0(t, u), ∀t ∈ [0, t f ],

f0(t, u) ≜ p(t)⊤Bu − η(
1
2

Ru2 − λϕ0(u)).

(6.15)
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4. the constancy of the Hamiltonian:

Hη(x∗(t), p(t), u∗(t)) = h, ∀t ∈ [0, t f ], (6.16)

for some constant h ∈ R.

Proof 6.1 This is a direct result from [49, Theorem 22.26]. ■

Remark 6.1 We notice that for fixed p, u, the function x 7→ Hη(x, p, u) is smooth, then
we derive the adjoint state differential equation (6.14). However, if the controlled sys-
tem (6.4) is non-smooth, then one would contain a differential inclusion, referred to as
adjoint inclusion. This is reflected by the generalized gradient ∂C that appears in the
adjoint inclusion rather than the usual (sub)gradient ∂x in adjoint equation (6.14).

0
−θ

θ

θ

−θ

Hθ(w)

w

Figure 6.1: Hard-thresholding function Hθ(w)

Figure 6.1 shows the graph of the hard-thresholding operator. From the necessary
conditions, we obtain an important property of LQ hands-off control.

Theorem 6.2 (LQ hands-off control) The optimal control u∗(t) (if it exists) satisfies

1. If η = 1, then
u∗(t) = sat

(
Hθ(R−1B⊤p(t))

)
, (6.17)

where θ =
√

2λ/R, sat(·) is the saturation function defined by

sat(v) ≜


−1, if v < −1

v, if − 1 ≤ v ≤ 1

1, if v > 1.

(6.18)

and Hθ(·) is the hard-thresholding function defined by

Hθ(w) ≜

0, if − θ < w < θ

w, if w < −θ or θ < w,
(6.19)

and Hθ(w) ∈ {0, w}, if w = ±θ.
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Unlike the (weighted) L1 optimal solution can be obtained for the dead-zone or
proximal operator in [105], here the precise L0 (or cardinality) solution can be deter-
mined analytically for the hard-thresholding operator in [25]. From this theorem, the
LQ hands-off control u∗(t) may not be continuous in t while the mixed L1-L2 (LASSO)
control [105] and the CLOT (Combined L-One and Two) control [101] are continuous.

Remark 6.2 We claim that the abnormal case (i.e., η = 0) does not arise in Problem
6.1. More specifically, the maximum condition (6.15) asserts that, the point u∗(t) max-
imizes the function f0(t, u). If η = 0, then the solution form of adjoint function is
p(t) = e−A⊤t p0 for some p0 ∈ Rn, which also obtain B⊤p(t) = B⊤e−A⊤t p0 ≡ 0. For
then we would have p0 = 0, whence p ≡ 0, violating the non-triviality condition (6.13).
Hence, we only consider the normal case, that is η = 1.

In fact, when η = 0, it induces a piecewise constant control signal that takes ±1
(i.e., bang-bang control). This control is not sparse at all, that is, ∥u∗∥0 = t f . Typically,
the abnormal case happens when the horizon length t f is equal to the minimum time
t∗f to drive the state from the initial state ξ to the origin by a control that satisfies (6.7).

6.3 Numerical computation

In this section, we show a numerically tractable computation method for Problem 6.1.
For this, we apply convex relaxation and time-discretization to convert the optimal
control problem into a finite-dimensional convex optimization problem.

First, we adopt the convex relaxation using the L1 norm to avoid computational
difficulties due to the non-convexity and discontinuity of the L0 norm in the cost func-
tion (6.9). Define L1 norm for a continuous-time control signal u(t) over [0, t f ] by

∥u∥1 ≜
∫ t f

0
|u(t)|dt.

Then, the relaxed L1 cost function with weight λ is given by

J1(u) =
1
2

∫ t f

0

(
x(t)⊤Qx(t) + Ru(t)2)dt + λ

∫ t f

0
|u(t)|dt (6.20)

as a convex relaxation of (6.9). With the help of J1(u) proposed in (6.20), the relaxed LQ
hands-off control problem reduces to the following optimal control problem.

Problem 6.2 (Relaxed LQ Hands-off Control) Assume that t f > 0 and ξ ∈ Rn are given
and there exists at least one feasible control. Find a sparse optimal control that solves the fol-
lowing optimal control problem:

minimize
1
2

∫ t f

0

(
x(t)⊤Qx(t) + Ru(t)2)dt + λ∥u∥1

subject to ẋ(t) = Ax(t) + Bu(t), t ∈ [0, t f ]

x(0) = ξ, x(t f ) = 0 (6.21)
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|u(t)| ≤ 1, ∀t ∈ [0, t f ].

Next, we apply time-discretization for Problem 6.2 to reduce the problem into a
finite-dimensional convex optimization problem.

Let m ∈ N be the number of short intervals with which we divide the time interval
[0, t f ] into the following subintervals

[0, t f ] = [0, h) ∪ [h, 2h) ∪ · · · ∪ [(m − 1)h, mh], (6.22)

where h = t f /m is the discretization step. Then, we assume that the control is constant
over each subinterval (i.e. the zero-order hold). Namely, we assume

u(t) = uk
d, t ∈ [kh, (k + 1)h), k = 0, 1, . . . , m − 1, (6.23)

where uk
d ∈ [−1, 1] since the control constraints (6.7). This zero-order hold assumption

is realistic since we often use a digital device to produce control signals. Then the fea-
sible control is parametrized by a finite-dimensional vector ud ≜ [u0

d, u1
d, · · · , um−1

d ]⊤.

From the time discretization, the continuous-time system (6.4) is discretized as

xk+1
d = Adxk

d + Bduk
d, k = 0, 1, . . . , m − 1, (6.24)

where xk
d = x(kh) for k = 0, 1, . . . , m − 1, and

Ad ≜ eAh, Bd ≜
∫ h

0
eAtBdt. (6.25)

The terminal and initial conditions (6.5) and (6.6) are now described as

xm
d = 0, x0

d = ξ. (6.26)

Also, the terminal state x(t f ) is given by

x(t f ) = xm
d = Am

d ξ + Υmud, (6.27)

where
Υm ≜

[
Am−1

d Bd, Am−2
d Bd, . . . , Bd

]
.

Accordingly, the discretized feasible control set is defined as follows discretized as

Um(ξ) ≜
{

ud ∈ Rm : Am
d ξ + Υmud = 0, ∥ud∥ℓ∞ ≤ 1

}
. (6.28)
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Next, we discretize the quadratic term of the cost function J1(u) in (6.20). For this,

ϕ1 ≜
1
2

∫ t f

0

(
x⊤(t)Qx(t) + Ru(t)2)dt

=
1
2

m−1

∑
k=0

∫ (k+1)h

kh

[
x(t)
u(t)

]⊤ [
Q 0
0 R

] [
x(t)
u(t)

]
dt

=
1
2

m−1

∑
k=0

∫ h

0

[
x(kh + τ)

u(kh + τ)

]⊤ [
Q 0
0 R

] [
x(kh + τ)

u(kh + τ)

]
dτ.

(6.29)

From (6.23), we obtain

u(kh + τ) = uk
d, τ ∈ [0, h), (6.30)

and also from the solution of (6.4), we have

x(kh + τ) = eAτxk
d +

(∫ τ

0
eAσBdσ

)
uk

d. (6.31)

By substituting (6.30) and (6.31) into (6.29), we have

ϕ1 =
1
2

m−1

∑
k=0

[
xk

d
uk

d

]⊤ [
Qd Sd

S⊤
d Rd

] [
xk

d
uk

d

]
(6.32)

where [
Qd Sd

S⊤
d Rd

]
≜
∫ h

0
Γ⊤(τ)

[
Q 0
0 R

]
Γ(τ)dτ, (6.33)

and

Γ(τ) ≜

[
eAτ

∫ τ
0 eAσBdσ

0 I

]
.

For the L1 term in (6.20), we have

λ∥u∥1 = λ
m−1

∑
k=0

∫ (k+1)h

kh
|u(t)| dt = λh∥ud∥ℓ1 , (6.34)

where ∥ud∥ℓ1 is the ℓ1 norm of vector ud defined by

∥ud∥ℓ1 ≜
m−1

∑
k=0

|uk
d|. (6.35)

Finally, since the control is assumed to be piecewise constant, the magnitude con-
straint (6.7) on u(t) is equivalently described as

|uk
d| ≤ 1, k = 0, 1, . . . , m − 1. (6.36)
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In summary, from (6.24), (6.26), (6.32), (6.34), and (6.36), we obtain the following
finite-dimensional optimization problem:

min
x,u

1
2

m−1

∑
k=0

[
xk

d
uk

d

]⊤ [
Qd Sd

S⊤
d Rd

] [
xk

d
uk

d

]
+ λ

m−1

∑
k=0

|uk
d|

s.t. xk+1
d = Adxk

d + Bduk
d, k = 0, 1, . . . , m − 1

x0
d = ξ, xm

d = 0

|uk
d| ≤ 1, k = 0, 1, . . . , m − 1

(6.37)

The optimization problem in (6.37) is a convex optimization problem for finite-
dimensional vector ud ∈ Rm, which is efficiently solved by numerical optimization
toolboxes such as CVX or YALMIP with MATLAB [65, 66].

Remark 6.3 By the computational method proposed in this section, we obtain a finite-
horizon control over time interval [0, t f ]. This is a feed-forward control using the initial
state observation (6.6). In practice, it is preferable to implement the tracking control as
a feedback control. To do this, one can adapt the receding horizon (or model predictive)
control scheme [108, 104] or the self-triggered strategy [68, 105].

6.4 Robustness

We here consider the robustness of the control system when the initial state observation
is perturbed, or there exists a gap between the A matrices of the master system (6.1) and
the slave system (6.2).

6.4.1 Uncertainties in the initial states

First, we consider the case that there is uncertainty in the initial state in the master
system (6.1) or the slave system (6.2). We assume that the initial states are perturbed as

zm(0) = zm + δm, zs(0) = zs + δs, (6.38)

where δm and δs are uncertain vectors in Rn. Define

δ ≜ δs − δm. (6.39)

Then, the initial state x(0) in (6.4) is described as

x(0) = ξ + δ. (6.40)

Then we have the following lemma.

Lemma 6.3 Let u∗(t) be the hands-off control that solves Problem 6.2 with initial state x(0) =
ξ. Let x(t; δ) denote the state variable of (6.4) with the optimal control u∗ from the perturbed
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initial state in (6.40). Then we have

∥x(t f ; δ)∥ℓ2 ≤ ∥eAt f ∥∥δ∥ℓ2 , (6.41)

where ∥eAt f ∥ is the maximum singular value of eAt f , and ∥δ∥ℓ2 is the ℓ2 norm of vector δ

defined by ∥δ∥ℓ2 ≜
√

δ⊤δ.

This lemma guarantees that the terminal tracking error x(t f ; δ) is bounded if the per-
turbation δ is bounded.

6.4.2 Gap between the A matrices

Now we consider the case when there is a gap between the A matrices in (6.1) and (6.2).
We denote the gap matrix by ∆, that is, we consider the following state-space equation
instead of (6.4):

ẋ(t; ∆) = (A + ∆)x(t; ∆) + Bu(t). (6.42)

We have the following lemma:

Lemma 6.4 Let u∗(t) be the hands-off control that solves Problem 6.2 for the ideal plant (6.4).
Then we have

∥x(t f ; ∆)∥ℓ2 ≤ α(∆)(∥ξ∥ℓ2 + ∥B∥∥u∗∥1)

≤ α(∆)(∥ξ∥ℓ2 + ∥B∥∥u∗∥0)
(6.43)

where
α(∆) ≜ emin{∥A∥,∥A+∆∥}t f (e∥∆∥t f − 1). (6.44)

Proof 6.2 Since the optimal control u∗ is a feasible control for the nominal system (6.4),
it satisfies

x(t f ) = eAt f ξ +
∫ t f

0
eA(t f −τ)Bu∗(τ)dτ = 0. (6.45)

Then, from (6.42) and (6.45), we have

x(t f ; ∆)= e(A+∆)t f ξ+
∫ t f

0
e(A+∆)(t f −τ)Bu∗(τ)dτ (6.46)

and hence we obtain the terminal state gap

x(t f ; ∆) = x(t f ; ∆)− x(t f )

= D(t f )ξ +
∫ t f

0
D(t f − τ)Bu∗(τ)dτ, (6.47)

where
D(t) ≜ e(A+∆)t − eAt. (6.48)

From [18, Fact11.16.8], we have

∥D(t)∥ ≤ emin{∥A∥,∥A+∆∥}t(e∥∆∥t − 1). (6.49)
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Then, from (6.47) and (6.49), we have

∥x(t f ; ∆)∥ℓ2 ≤ ∥D(t f )∥∥ξ∥ℓ2

+
∫ t f

0
∥D(t f − τ)∥∥B∥|u∗(τ)|dτ

≤ α(∆)(∥ξ∥ℓ2 + ∥B∥∥u∗∥1).

(6.50)

Also, since u∗ is a feasible control, it satisfies |u∗(t)| ≤ 1 for all t ∈ [0, t f ]. It follows that

∥u∗∥1 ≤
∫

supp(u∗)
1dτ = ∥u∗∥0. (6.51)

■

From Lemma 6.4, we can say that a smaller ∥u∥1 (or ∥u∥0) leads to a smaller upper
bound of ∥x(t f ; ∆)∥ℓ2 . This is another merit of hands-off control in view of robustness
against the gap between master and slave systems.
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Figure 6.2: LQ control (dashed) and LQ hands-off control (solid).

6.5 Numerical examples

In this section, we give two numerical examples of the LQ hands-off control.
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6.5.1 Nominal LQ hands-off control

We first consider the LQ hands-off control problem without perturbations, that is, nom-
inal or deterministic case. The continuous dynamics (6.4) can be modeled as a fourth-
order inverted pendulum-cart system with signal inputϵ̈ =

(Mc+mp)g
Mc lp

ϵ − 1
Mc lp

u,

q̈ = −mpg
Mc

ϵ + 1
Mc

u,
(6.52)

where ϵ is the pendulum angle referenced to the vertical axis, q is the cart position
and u is the control force on the cart, i.e., x =

[
θ θ̇ q q̇

]
. The typical parameters of

system are selected as: cart’s mass (Mc = 2.4 kg), pendulum’s mass (mp = 0.23 kg),
pendulum’s length (lp =0.36 m), cart track’s length (Lc =±0.5 m) and the gravity force
(g = 9.81 m/s2). The weights in the cost function (6.9) are chosen as: Q = 5I, R = 1,
and the initial states are x(0)= [−π/120, π/12, 0, 0]⊤. We take the time horizon t f =8 s
and the control constraint |u(t)| ≤ 1. By performing time discretization based on ZoH
sampling with step size h = t f /665, we have a linearized discrete-time model of (6.24)

Ad =


0 1 0 0

29.8615 0 0 0
0 0 0 1

−0.9401 0 0 0

 , Bd =


0

−1.1574
0

0.4167

 .

We then convert the LQ hands-off control to the relaxed L1 optimal control (Problem
6.2), and solve the convex optimization (6.37) with CVX toolbox on MATLAB©[65, 66].

Fig. 6.2 shows the control signals of LQ control (i.e., λ = 0), and LQ hands-off
control with weight λ = 0.3, respectively. We can see that LQ hands-off control is dis-
continuous at some time instants (that is, may not be continuous), but much sparser
than the LQ control. Fig. 6.3 reflects that the tracking error trajectories xi(t), i = 1, 2, 3, 4
eventually convergence to zero under the proposed LQ hands-off control.

Fig. 6.4 shows the control inputs of the LQ hands-off control with different regu-
larization weights λ=0.02, 0.2, 2, and 20. We can see that the sparsity of the LQ control
with L1 cost relying on the regularization weight λ. As the larger the weight λ of the
regularization parameter become, the more the sparsity of LQ control is promoted, re-
sulting in more zero inputs and, in turn, LQ hands-off (or sparse) control.

6.5.2 Perturbed plant

We next analyze the robustness of LQ hands-off control under uncertain factors. Let us
consider a situation that there exists a gap between state matrices A in master-slaver
system (6.1) and (6.2). For convenience, we focus on the related error system (6.42), and
the dynamics is govern by a second-order linearized inverted pendulum system with
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Figure 6.3: Tracking error states xi(t) by LQ hands-off control with λ = 0.05.
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Figure 6.4: LQ hands-off control with different regularization weights.

a small disturbance

A =

[
0 1

mp lpg
Lp

−b
Lp

]
, ∆ =

[
0 0
0 0.1

]
and B =

[
0
1

]
.

The parameters of dynamics are chosen as: mp = 3 kg, lp = 1.5 m, g= 9.81 m/s2, Lp =

mpl2
p/2 kgm2 and b = 0.06. Also, the weights of cost function are selected as: λ = 1,

Q = 3I, R = 1 and the initial conditions x(0) = [0.02, 0.1]⊤. We take the terminal time
t f = 1.2 s and use the discretization step h = t f /500 to execute the time-discretization
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Figure 6.5: LQ hands-off control for the second-order plant
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Figure 6.6: Phase portraits for the inverted pendulum with a gap matrix ∆.

procedure.

Fig. 6.5 shows the obtained LQ hands-off control signal, and it is sufficiently sparse
thanks to the sparsity-promoting regularization. Then, Fig. 6.6 displays the phase
portraits of the perturbed inverted pendulum system for LQ hands-off control with
a bounded gap matrix ∆ (i.e., ∥∆∥ = 0.1).

As shown in Lemma 6.4, the terminal state x(t; ∆) is bounded if ∆ is bounded. The
trajectory shown in Fig. 6.6 well illustrates this property. The gap ∥x(t f )− x(t f ; ∆)∥ℓ2 =

∥x(t f ; ∆)∥ℓ2 in this simulation is 0.0010, while the theoretical upper bound in (6.43) is
1.0273 in this case. This shows that the estimate (6.43) is very conservative.
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6.6 Summary

In this chapter, we have investigated finite-horizon LQ tracking control with sparsity-
promoting regularization on control using the L0 norm. We have shown necessary con-
ditions for L0 optimality. For the computation of optimal control, we have proposed
convex surrogate by using the L1 norm, instead of the non-convex and discontinuous
L0 norm, which leads to finite-dimensional convex optimization after time discretiza-
tion. We have also analyzed the robustness of the LQ hands-off control in the presence
of perturbations in the initial states and the state-space matrices. Finally, simulation
results have been shown to reveal the effectiveness of the proposed method. Future
work includes the feedback control formulation of the LQ hands-off control.
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Chapter 7

Conclusion and Future Research
Directions

7.1 Summary

This dissertation investigated modeling, robustness and stability for sparse optimal
control problems for dynamical systems. The constrained optimization problems find
the control with minimum control efforts for given control objects, generating sparse
optimal control inputs. The problems are defined on uncertain situations character-
ized as diverse robust counterparts, chance-constraints, and data-driven scenario real-
izations, compared to the deterministic (convex) optimization problem in the field of
sparse modeling.

Previous research on sparse optimal control problems has extensively explored
various methodologies, including open-loop dynamical system models, deterministic
models, model-based frameworks, and LQ regulator approaches. Nevertheless, these
investigations into sparse optimal control problems lack critical aspects such as the
stability of closed-loop system models, the probabilistic robustness of stochastic mod-
els, the implementation of data-driven sparse control for model-free or black-box sys-
tem models, and the Pontryagin’s maximum principle of LQ sparse optimal control for
continuous-time system models. As a result, this dissertation sets the stage for further
exploration of modeling, robustness, and stability within the realm of sparse optimal
control for dynamical systems. The detailed are summarized as follows:

Regarding the stability of the closed-loop system model, the optimal sparse feed-
back controller was derived from its original open-loop optimal solution by implement-
ing a dynamic linear compensator. The implemented sparse feedback control can en-
sure initialization robustness, closed-loop stability, input sparsity and optimality guar-
antees, and the feedback solution was described in an explicit closed form. Moreover,
this approach revealed the equivalent relationship between the sparse feedback con-
trol, open-loop optimal control and deadbeat control among the specific basis. Hence,
the result was also useful to minimum attention feedback control in tracking problem.
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From the perspective of probabilistic robustness in stochastic models, the risk-
aware sparse optimal control was presented that achieves a state transition for a discrete-
time uncertain/stochastic linear systems from an initial state near to a target state over a
finite horizon. Taking probabilistic or chance-constrained form into account, the “hard”
state constraints were relaxed as “soft” state constraints. To numerically compute the
sparse solution, the main chance-constrained sparse optimization problem was approx-
imated to the finite sparse random convex program for which convex relaxation data-
driven scenario approach is applicable, and the feasibility of the approximation was
then evaluated. The framework answered the question of how many finite samples
(i.e., sample complexity) were needed to provide a prirori and high-confidence proba-
bilistic robustness guarantees for the proposed risk-aware sparse control. Besides, the
trade-off between the sparse cost performance and violated constraints of risk level was
also discussed, which further offered a posterioi probabilistic robustness guarantee.

Additionally, a risk-aware sparse predictive control policy was developed to fa-
cilitate the generation of sparse predictive control inputs. This approach was achieved
through the resolution of an online sparse random convex program, enabling the imple-
mentation of sparse predictive control. Notably, this sparse predictive control method-
ology accounted for external stochastic noise and model parametric uncertainties within
the context of discrete-time dynamical systems.

Form the viewpoint of model-free problem setup, a data-driven sparse feedback
control for model-free systems was proposed, compared to the previous chapters. The
analysis, rooted in Willems’ fundamental lemma, assumes that the length of input data
samples is sufficiently long to satisfy the persistently exciting condition. Subsequently,
this enables the derivation of a direct data-driven sparse feedback approach, and the
synthesized data-driven sparse feedback control satisfies Schur-α stability. Sparse con-
trol input was attained by imposing a penalty on the structured row sparsity of the
state-feedback matrix. The state feedback can be directly represented as experimental
data samples of input-state trajectories, eliminating the necessity for prior knowledge
of the system model.

In the realm of continuous-time modeling, an exploration of linear quadratic sparse
optimal control has been undertaken for a master-slave tracking system. This differs
from the previous chapters, which primarily focused on sparse optimal control for the
discrete-time models. The non-smooth minimum principle was proposed to guaran-
tee the theoretical results, implying that LQ sparse optimal control might not maintain
continuity. Moreover, this well-defined problem leads to infinite-dimensional control
problems, which can be computationally addressed through time-discretization tech-
niques. Furthermore, LQ sparse optimal control demonstrates robustness in the face of
worst-case uncertainties within the gaps of initial values and state-space matrices.
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7.2 Future works

The proposed sparse optimal control methodologies can be further expanded to en-
compass large-scale network systems, including cyber-physical systems, multi-agent
systems involving robots or vehicles, and power systems. This expansion involves de-
signing a distributed sparse optimal control that not only adheres to structured sparsity
but also accounts for input sparsity. This approach can be seen as a “spatial-temporal”
control design, offering utility in diminishing communication flows and reducing con-
trol cost consumption. As society progresses into the era of Society 6.0, novel targets
like achieving Net-zero emissions, developing smart cities, and embracing the Inter-
net of Things (IoT) are emerging. These real-world applications present opportunities
to model distributed control within networked systems. Here, each city or thing can
be perceived as an agent or subsystem. Exploring distributed sparse optimal control
methodologies within these complex network systems stands as an intriguing avenue
for future research.

Although the sparse optimal control problems for model-based/free dynamical
system with/without state-feedback response have been investigated in this disser-
tation, the extension to sparse output feedback case using relatively optimal control
technique/data-driven method can be another significant works. Obviously, directly
replicating the current results may be challenging due to the influence of generic initial
conditions and the initialization of the dynamic output compensator, which are associ-
ated with the model matching problem.

Last but not least, the presented risk-aware sparse predictive control requires fur-
ther exploration in theoretical aspects, particularly concerning recursive feasibility and
(input-to-state) stability. This evaluation is crucial in assessing the effectiveness of
sparse optimal control under probabilistic or chance-constraints. Although numerical
benchmarks for risk-aware sparse predictive control have been demonstrated in this
dissertation, the theoretical analysis is lacking due to the utilization of a data-driven
scenario approach, which does not always ensure feasibility. Therefore, investigating
and establishing theoretical frameworks for recursive feasibility and stability becomes
essential for a comprehensive understanding of the proposed control method.
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Appendix A

Sparsity

A.1 Null space recovery

Given a reachability matrix ΦN ∈ Rn×mN with mN ≫ n, a desired sparse control input
u ∈ RmN and an initial condition x0 ∈ Rn, which gives rise to a reference information
vector r ≜ −AN x0 ∈ Rn such that

r = −AN x0 = ΦNu.

We now recast the program 2.3 as a decoder (de-reachablility) ∆(ΦNu) that maps from
Rn → RmN , with

∆(ΦNu) = arg min
{u∈RmN :ΦN u=−AN x0}

∥u∥1, (A.1)

The typical paradigm for seeking a sparse control signal u is to Suppose that the desired
control signal u is sparse, then the corresponding decoder requires to perfectly promote
such a sparse inputs. More precisely, for a reachable matrix ΦN ∈ Rn×mN and 0 < k <

mN, we can quantify the ℓ1 error of a decoder ∆(ΦNu) by calculating the smallest
constant C ≥ 0 such that for all u ∈ RmN

∥u − ∆(ΦNu)∥1 ≤ C σk(u), (A.2)

where the ℓ1 error of the best k-term approximation of signal u can be computed as the
ℓ1 norm of the mN − k smallest coefficients of u ∈ RmN , defined by

σk(u) ≜ min
{v∈RmN :∥v∥0=k}

∥z − v∥1

Definition A.1 (Null Space Property) A (reachability) matrix ΦN ∈ Rn×mN satisfies null
space property (in ℓ1 norm) of order k with constant Ck if and only if for all v ∈ RmN

∥v∥1 ≤ Ck∥vS c∥1 (A.3)
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Figure A.1: Null space of ΦN : left, middle, right

holds, where a null space N (ΦN) ≜ {v ∈ RmN : ΦNv = 0} and the index subset S ⊆ T =

{1, 2, · · · , mN} of cardinality card(S) ≤ k, where S c stands for the complement of S in T .

Suppose that we observe r = ΦN without any reference information on u, which
spans a null space N (ΦN) or kernel Ker(ΦN),

From the perspective of geometry, we consider a tangent cone T f (v) over f , that is,
the set of descent directions of f at v, also known as cone of descent, defined as follows

T f (v) = C(v) = {e : f (v + te) ≤ f (v), for some t > 0}.

For example taking f = ∥v∥1, we then have the result that we have

C(v) ∩N (ΦN) = {0}. (A.4)

Definition A.2 (Helly’s Theorem) Let Ω := {Ω1, · · · , ΩN} be a finite collection of convex
subsets of Rd with N ≥ d + 1 (i.e., card(Ω) ≥ N + 1). If the intersection of these sets is
nonempty, then the whole collection Ω haves a non-empty intersection. More formally

N⋂
i=1

Ωi ̸= ∅

A.2 Convex relaxation

Assume that ∥u∥∞ ≤ 1 holds, then the biconjugate function of ℓ0 norm gives the result

∥u∥⋆⋆0 = ∥u∥1.

Indeed, its conjugate function is defined by

∥u∥⋆0(v) := sup
u

{
⟨u, v⟩ − ∥u∥0

}
= max

(
∑i |vi|, 0

)
, (A.5)
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and it is always a convex form even the ∥x∥0 is non-convex. Besides, it derives the
biconjugate case

∥u∥⋆⋆0 (r) := sup
v

{⟨r, v⟩ − ∥u∥⋆0(v)} = ∥r∥1, (A.6)

which concludes that ℓ1 norm is a convex relaxation of ℓ0 norm in some sense due to the
fact that ∥u∥⋆⋆0 ≤ ∥u∥0.
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