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Abstract 

This study focuses on the usage of IC card data of the metropolitan public transportation (MPT) system to 

forecast short-term ridership demand based on the ridership’s behaviour. The MPT network is a complex 

structure, serving as the paths for city-wide travel and logistics of a city. MPT network stretches across the 

city like a net or web. Modifications to the MPT is regarded as very long-term projects due to limitations 

subjected upon the existing infrastructures. Such limitations include installations covering large area within 

highly populated areas, allocating traffics of people and vehicles without inflicting damages to 

transportation capability and nearby infrastructures, and lastly, the capital needed for running modification 

projects. For these reasons, maximization of utility of existing networks is the most important aspect of the 

MPT network study. 

The utility of the transportation network, when generalized, is explain by three simple 

components: demand (ridership), supply (capacity), and network constraints (schedule, network 

connectivity, etc). The combination of these three components forms a spatial-temporal problem with 

transport restrictions and limitations. Commonly the demand component is derived from the IC card data, 

also known as Origin-destination matrix (ODM). The task of estimating the ODM is, however, difficult 

since it is a human induced event that is sequential in a network defined with both spatial and temporal 

variables. Transportation planners rely on expertise on their specific MPT network to make inference on 

the network’s unique characteristics to design utility maximization methods. Understanding the available 

data is thus crucial for accurately estimating the ODM in different conditions. To achieve forecasting 

accuracy within the acceptable margin of error, forecasting model must be tailored to the data.  

 In this thesis, IC card data from subway network of Bangkok city is processed and analyzed. The 

result of the analysis indicates that the typical characteristics of ODM during the study period misaligned 

with the assumptions used in ODM estimation literature. Proportionality and normality are found after 

heavy processing of the data. Historical average (HA) is the baseline model which is obtained using 

statistical mean after partitioning data into multiple separated sets according to their temporal states.  

Additionally, multiple distributions were found within the assumed stochastic process. To obtain a 

satisfactory forecast, we redefined the gravity model into multivariate model such that the relationships 

between variables are traceable and well-defined. We found that partitioning data into multiple clusters and 

applying different models with Parallel model architecture (PMA) improves the forecast significantly. 

Lastly, we subject the forecasting problem with real-time data availability restrictions by defining multiple 

forecasting cases. The analysis and forecasting resulted in satisfactory error level of 26.14%, significantly 

lower than existing forecasting methods. Comparison to other methodologies is done qualitatively since the 

suitability of their models are inapplicable to the proposed methodology. 
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Chapter 1: Introduction 

The MPT system refers to the public transportation system located inside an area of a 

significantly densely populated zone. MPT system operates following a decided path 

with or without schedule of the vehicles as to answer the transportation needs of the 

population travelling within their designated areas. City-wide infrastructure planning is 

conducted under constraints of existing infrastructures. The main objective of the MPT 

system is to provide a cost-effective travelling option to the population and alleviate the 

congestion within a populated area. City-wide transportation network consists of 

multiple transportation system including personal vehicles, taxis, buses, trains, and 

pedestrians. Compared to less populated areas, the MPT is more accessible within the 

urban area and the accessibility creates a complex relationship between the ridership 

and the travelling options. Socioeconomic level of a specific area also plays a 

significant role in travelling behaviour and thus, in a macroscopic scale, resulted in 

highly complex social problems. 

 On a microscopic scale, each system within a certain transportation network 

can be defined. Whether a specific MPT system can or cannot be defined separately 

from the network depends on the characteristics of that specific system. For example, 

personal vehicles, taxis and buses, all share street to traverse. Street transportation can 

thus be defined into segments only when the observed data and the objective of the 

study matches the segment definition. For example, when schedule delay is not 

considered, a bus system can be well defined, while if the schedule delay is included 

due to the objective of the study, inclusion of other vehicles sharing the paths is 

unavoidable. For rail transportation, due to the separation of the travelling paths from 

street transportation, can be considered as a separated system on its own since its 

relation to the other systems is negligible. 

 The transportation problem consists of a combination of three simple 

components: demand, supply, and constraints from the characteristics of a considered 

system. The demand of the transportation problem is defined as the ridership needs for 

using a set of paths to move between a pair of origin and destination. The supply is 

defined as the capacity of a specific system to accept the ridership. What differentiate a 

transportation system within a network is the last component, the constraints. The 

constraints are the system-specific characteristics/limitations imposed by the design. 

The constraints can be many things like cost of travelling, needs of vehicles and driving 

permits, travelling time, accessibility of the system, etc. 
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 The utility maximization is defined as the adjustment of supply in accordance 

with the transportation constraints to fit to the ridership demand and optimize a specific 

objective function. The demand used in the transportation problem is mined from the 

historical data. The demand’s volatility is usually undermined due to the difficulty in 

modelling a realistic human-induced needs. While a stable flow of demand is well-

represented using historical data, the complex transportation network within a densely 

populated area is highly affected with a significant deviation of the demand since the 

balance of the demand-supply is easily broken. The form of imbalance can be the 

congestion increasing the standby ridership that needs recovery for the congestion to not 

cause operation delay. An overflow of demand within segments of a specific travelling 

path is a common occurrence in metropolitan areas. 

 The adjustment of supply is therefore, a common mean to solve the 

transportation problem. However, understanding the demand of the transportation 

network/system is necessarily to proactively deal with the possible imbalance of 

transportation demand-supply relationship. As the deviation of demand is abrupt and 

complex. There is a need of forecast of demand within a realistic scope. 

1.1 Rail-transportation 

Rail-transportation is a type of public transportation system (PTS) that is highly cost-

effective due to its huge capacity of handling passengers and its relatively short 

travelling time from using rails as their specific travelling path. Even amongst the many 

PTSs, rail transportation proves its usefulness within the history of mankind in logistics. 

However, the cost of operation of rail transportation is high and constant.  

In metropolitan areas, rails transportation systems are added to city’s 

infrastructure. Due to limitations from existing infrastructures, it is common for the rail 

transportation systems to be set above or below ground level. In addition, stations, relay 

stations, and location for storing/repair trains are needed to provide stops for 

passengers, move the trains in case of emergencies, and when conducting maintenance 

on the vehicles. Thus, to provide wide coverage to the transportation without interfering 

with the existing infrastructures, rigorous planning is required and due to the large 

capital needed for the project, the lifetime of rail transportation system is long. Trains 

are the largest and the highest maintenance known land transportation vehicles. 

 The PTS system of interests in this thesis is the subway system, an 

underground rail transportation network within an urban area. While considering the 

cost-effective mode of transportation, the weakness of the rail-transportation is its 

reliance on rail. The entry-exit points of a rail transportation are, when compared to 
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other PTS, spatially wide. So, commonly it is a transportation mode choice for ridership 

that needs to travel a long distance and uses it as in-between transportation path, or 

when the destination is located near the station. So, considering the connectivity of a 

rail network with a limited area coverage, ridership may opt for alternative 

transportation mode instead. 

 This rigidity (reliance on rail) is why the rail transportation is distinctly 

different from other mode of PTS. Thus, it can be expected that the demand of the rail 

transportation network may have its own unique characteristics. Nevertheless, we are 

considering the context of passenger’s transportation and not the freight transportation 

due to higher expected volatility and its limitation to the scheduling of the passenger rail 

transportation.  

. Commonly, the rail transportation scheduling is decided with a parameter called 

“maximum headway”. Maximum headway is the organizational parameter in spacing the 

vehicles along the rail. There are multiple objectives from the perspective of ridership to 

decide the maximum headway (i.e., comfort level, passenger density per area, or 

peak/non-peak period). A common strategy for optimizing the utility of the rail 

transportation is to locate an imbalance of ridership’s origin-destination. The general 

imbalance on the context of rail transportation is the bi-directional imbalance. Focusing 

the utility of the vehicles on a specific segment along the full path lowers the number of 

required fleet size and consequentially minimize the operation cost and improve demand-

supply balance. Thus, it is crucial to be able to sufficiently forecast the future demand of 

the rail transportation. 

1.2 Origin-destination prediction 

Historical data that represents rail transportation demand is the ODM. An ODM is 

defined to be the ridership matrix within a certain defined temporal time window. Under 

normal situation, a statistical average ODM is sufficient to represent the demand due to 

the scheduling of the rail system. The capacity of the normal operation of a rail 

transportation system is loosely defined within a similar time window. The deviation 

under normal operation, in many cases, can be handled with the next train arrival and 

thus, is a good enough estimate for planning a general operation of a rail transportation. 

 Asides from the general planning, we can categorize the rail transportation  

problems into simple short-term and long-term problems. Long-term problems, in 

similar nature to the general planning requires single demand representative of ODM. 

The prediction of the ODM for long-term problems involve statistical, distributive, or 

static model that give a rigid estimation. These estimations are deterministic in nature. 
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 For the short-term context, available data is used to make a forecast within a 

harsh limitation of time and is usually not within the range of the historical data. These 

limitations make short-term predictions difficult because the understanding of ODM 

characteristics, relationships between temporal and spatial factors, and many unknown 

variables must be taken into account before the prediction problem can be defined. 

Additionally, a criterion of the acceptable margin of error under the context of 

prediction is generally unique to the system of interest.  

1.3 Problem statement 

In this thesis, the target of the prediction is the ODM in the earliest predictable interval 

using historical information and trip generation as the inputs. The time interval is 

defined as 60 min in this study, same time frame as the system of interest’s time interval 

of estimated capacity. The ODM M and trip generation N are extracted from IC card 

data and are defined in Eqs. (1) to (3). The aggregation of the IC card data is entry-

based. The framework of the forecasting problem is explained in detailed in Chapter 4. 

 𝑀ௗ,௧ ∈ 𝑅௡×௡ =

⎣
⎢
⎢
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⎤

 (3) 

where 𝑚௜௝
ௗ,௧ is the OD pair from station i to station j in time interval t on day d. ∑ 𝑚௜௝

ௗ,௧
௝  

is the sum of OD pairs that enter station i in time interval t on day d. 𝑛௜
ௗ,௧ is the trip 
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generation from entering station i in time interval t on day d. Note that in our problem 

definition, we do not assume that 𝑛௜
ௗ,௧ = ∑ 𝑚௜௝

ௗ,௧
௝ = ∑ 𝑚௜௝

ௗ,௧
௜  [1], or more specifically, we 

do not establish trip generation/trip attraction due to data availability delay from 

unobservable ODM due to the incompleteness of the trip of the entry-based aggregation. 

The station IDs are replaced with numbers according to their location on the track in order, 

from inbound to outbound. 

The most recent available real-time OD matrix is decided by the greatest integer function 

in Eq. (4): 

 𝑡ᇱ = ቔ𝑡 −
௤

௩
ቕ (4) 

where time interval 𝑡ᇱ  is of the most recent available real-time OD matrix when 

forecasting the OD matrix at time interval 𝑡, 𝑞 is the maximum trip duration time, and 

𝑣 is the range of the time interval. Eq. (4) is defined to realistically design forecasting 

cases. In addition, we also denote the time interval gap 𝑡 − 𝑡ᇱ as follows: 

 𝜃 = 𝑡 − 𝑡ᇱ (5) 

𝜃 dictates the earliest available forecast target from the start of the operation and is vital 

to the formulation of the chained forecasting case. Limitations are placed on the earliest 

forecastable time interval. However, forecasts which use previous days’ ODMs of the 

same time interval 𝑀ௗ,௧ = 𝑓൫{𝑀ௗି௫,௧}௫, {𝑁ௗ,௧ି௬}௬൯  with 𝑥 = 1,2,3, … ; 𝑦 = 1,2,3, … 

[1], and 𝑁ௗ are derived directly from 𝑀ௗ,௧ (Eqs. (1) to (3)), which can cause an overlap 

of inputs. Thus, with the interval gap from Eq. (5) in addition to the condition of 𝑦 < 𝑥, 

the forecast can be expressed as 

 𝑀ௗ,௧ = 𝑓൫{𝑀ௗ,௧ି௫}௫, {𝑁ௗ,௧ି௬}௬൯, 𝑥 = 𝜃, 𝜃 + 1, 𝜃 + 2, … ; 𝑦 = 1,2,3, … ; 𝑦 < 𝑥

 (6) 

where 𝑀ௗ,௧ is the ODM in time interval t on day d. While prior studies generally used 

the ODM in the last several time intervals as model inputs for short-term forecasting [2], 

we propose a trip generation-OD matrix input for realistic forecasting.   
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Chapter 2: Literature Review 

2.1 Origin-destination matrix 

Three generalized components of any transportation networks are demand, supply, and 

network’s constraints. For subway networks, the demand of the subway is the ridership 

represents with ODM, commonly serves as the input for trip planning and other 

transportation problems [3], The supply is the capacity within a given time of the network 

interlinked with the network constraints, and the network constraints are the timetable, 

network connectivity given certain strategic scheduling. 

In this thesis, “OD matrix” is used to refer to a demand matrix at a certain time 

interval. Short-term OD pair prediction has three characteristics: 1) data availability: real-

time OD pairs are unavailable during the operation (delayed data availability); 2) data 

dimensionality: the dimension of the OD data is much higher than the cardinality of 

transportation networks; and 3) data sparsity: OD data are spatiotemporally sparse [1]. 

Although boarding and alighting demands at metro stations have received much attention 

in various studies, the short-term demand of OD pairs of a rail network is still relatively 

underrepresented in research [4].  

Additionally, anomalous scenarios study uses representative static ODM with 

the addition of abnormal data to make inference to the deviation from the standard 

operation, the representative static ODM can be derived using HA or statistical 

distributive estimation [5], [6]. Nevertheless, given the short life of the trained model, 

such representative static ODM will outlive its usefulness due to the gradual/sudden shift 

of the demand. In a fortunate situation, such shift will be minimal relatively to the 

volatility of the demand and will still be a good enough representation until the static 

ODM is updated. However, at the start of 2020, a significant change in ridership was 

observed [7], [8], and has continued to persist for more than three years.  

Completely observed ODM are readily obtainable in a rail network with two-

way automated fare collection (AFC) or a trip-chaining system [9], [10]. The aggregation 

of trips made by users is either entry-time-based or arriving-time-based. For a one-way 

AFC, the recorded time is the time of either entry into or exit from the network. The 

starting-time-based method provides observations of destination choice demand. Demand 

is also commonly simulated with a multinomial distribution or multivariate normal 

distribution although the volatility is commonly underestimated [11]–[13].  
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2.2 Usage of origin-destination matrix 

In this section, we reviewed the usage of ODM in the transportation research to identify 

common necessities that is desirable in ODM as per their usage. Congestion measurement 

and management are not included in the review due to the multiple types of congestion 

dependent on the definition given to it in accordance with a given network. Additionally, 

congestion management is beyond the scope of this thesis. The usage of ODM in 

transportation research can be classified into three general categories.  

The first category is the ODM forecast. In this category, the common point is the 

usage of representative static ODM. The representative is used to model the relationship 

between certain variables to the deviation, thus resulting in an adjusted ODM. Changes 

in trip frequency, routes, location, and capacity were used with piecewise linear 

approximation to obtain adjusted ODM of freight train delivery [14]. Trip boarding and 

alighting were used with a recursive bi-proportional model to add constraints to the 

adjusted ODM of bus network [15]. ANN with randomized seed matrix are used with 

network capacity, physical location, and timetable headway to estimate the rail’s ridership 

[16]. Licensed plate matching and sampling ratio were used with Bayesian estimation for 

making inference of the route usage [17] .  

The second category is the demand-supply matching. In this category, the cost 

of operation is directly minimized to the level of demand using geographical data. There 

are many types of objective functions for the demand-supply matching problem, but in 

general, the objective is considered from either the perspective of consumers or suppliers. 

Zone boundaries were assigned for the express route to minimize the service frequency 

during peak transit period [18]. GPS and call details record (telephone data) were 

monitored and directly used to infer the real-time demand of transit’s ridership to estimate 

demand and sequentially assign appropriate amount of supply with the objective of 

minimizing carbon emissions and operation cost [19].  

 The last category is the scheduling problem [20]–[24]. The primal objective of 

the scheduling is to decide the optimal fleet size given an imbalance of the demand. The 

representative ODM (generally during the peak period) is used to infer the imbalance of 

the flows (inbound and outbound) of the ridership. The bidirectional travel routes with 

stations nodes are considered with multiple strategic objectives such as express, dead 

heading, and short turning. The feasible pairs of nodes are considered such to eliminate 

the imbalance of the bidirectional ridership flows that results in smaller fleet size. The 

scheduling problem is specifically for public transportation with timetable. 
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2.3 Origin-destination prediction 

In this section, an introduction to the ODM prediction models is given. The models 

included in this section is the basis model used to formulate the forecasting model used 

in this thesis. The more advanced models are introduced in Chapter 4 for performance 

comparison. The basic model used for ODM prediction is called the gravity model. There 

are multiple variations with different usage for each of its variation, but in general, the 

gravity model is modelled after the attraction force between objects which takes the form 

like the physics attraction force due to gravitation between two objects [1]. The masses 

in the gravitational force equation are replaced with ridership’s factors called trip 

generation and trip attraction. Trip generation and trip attraction can be defined as either 

the number of entry and exit [1] or represented by other appropriate factor such as 

population density [25]. The distance decay is used similarly as the gravitation force 

equation and although multiple nodes (objects) are considered, each pair is specifically 

considered as having exclusive relationship hence, impedance from other nodes are not 

considered. In addition, the constant of the equation is the only parameter that needs 

estimation but in general, every pair of nodes uses the same constant. A similar version 

to the traditional gravity model is the gravity trade model. The gravity trade model 

assumes proportionality property between representative factors of trip generation and 

trip attraction to model the movement of goods [25]. The gravity trade model also 

considered each pair as exclusive. 

 As for the non-exclusive gravity variations, proportionality is calculated as to 

define the relationship between all pairs simultaneously. The simplest form of the 

variations is the frictionless gravity model [26]. The frictionless gravity model uses all 

nodes and assume the distribution of the trip generation (as number) is proportional, using 

the weight calculate with the ratio between the representative factor of trip attraction of a 

specific node to the summation, without the distance decay. Similarly, multinomial 

logistic regression model and multinomial logit model work in the same manner but the 

weights are calculated using exponential forms of estimated utility scores representing 

the trip attraction of each nodes [10], [27]–[35]. 

 The frictionless gravity model, multinomial logistic regression model and 

multinomial logit model, however, fall short on the balancing of the rows and columns of 

the ODM since the proportions are considered from the trip attraction one-sidedly. Thus, 

a doubly constrained gravity model were introduced with the biproportional constraints 

using cost decay function to balance the property of both trip generation and trip attraction 

[3], [36]. 
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 The gravity models are static and mainly used for well-defined movements such 

as goods and long-distance migration. As the need of a more volatile ODM estimation is 

needed, multivariate distributions or conditional probabilistic models were used to model 

the demand [37], [38]. However, such proportions assumption were reported as 

unsatisfied and suggested that the parameters for the gravity models may be less than 

satisfactory for modelling the behavior of certain types of transport since the changes in 

the behavior itself shorten the usefulness of the trained model [39]. Additionally, while 

simulation of the ODM with statistic distributions are acceptable in practice, with the 

gradual changes of transportation behavior over time, there are not enough data to reach 

conclusive model. 

 The additional problem of ODM predictions is the discrete form commonly 

defined into the matrix form ൛𝑇௜௝ൟ. The size of matrix ൛𝑇௜௝ൟ is significantly large and the 

the distribution of the concentration of the demand add an additional step to evaluate the 

prediction. Yao et al. (2021) reported 6.78% of the forecasted pairs in their study resulted 

in more than 200% error for segments with relatively low average magnitude of demand 

for the tested rail network while the tested rail network has relatively dense usage.  

 As for the data size, a K-mean clustering for data classification was proposed to 

substitute the temporal classification which provide greater number of observations per 

class by Kirby et al. (1997). And the data filtration is then done with classification. The 

suitability of the generalization of this method, is however, unclear in literature as of now.  

 While there are many factors and design of the ODM prediction, the suitability 

of the model needs to be evaluated and the understanding of the data generated from the 

network of interest is needed. The usage of the prediction is also a factor to consider when 

designing the prediction model as the requirements changes depending on the objectives.  

In Fig. 1 the level of consideration of demand variability is shown. The 

variability of the demand increases with the level of consideration of temporal-spatial 

factor. For example: considering the design of entry-exit a specific station, an estimation 

of boarding and alighting is needed; for basic timetable/headway decision, a static ODM 

is sufficient for decision making; while for congestion relief or rescheduling, a dynamic 

ODM prediction is needed to minimize the network operation recovery rate. In this thesis, 

we focus on the usefulness of the real-time forecasting of the ODM, so the spatial level 

is the OD pair level considered on a dynamic estimation. 
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Figure 1: Level of consideration of demand variability. 
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Chapter 3: Data 

The data used in this thesis is provided by Mass Rapid Transit Authority of Thailand 

(MRTA). MRTA is the largest subway network in the capital, Bangkok as shown in Fig 2. 

The format of the data is the aggregated ODM with entry-based record with the time 

frame of one hour between record year of 2019 to 2020. The network is divided into two 

main lines P002 and P502 with different inbound and outbound. The network has multiple 

transfer points which are connected within the subway network and including transfers 

outside to the other rail networks. Up to date, MRTA is the only organization in Thailand 

involved in developing underground rail network. The summary of the datasets is shown 

in Table 1. Special note on dataset P502: 1) The dataset P502 record is from the start of 

its operation unlike dataset P002 which has been established for much longer; 2) The 

number of records of P502 is smaller than P002 by 1.2 million; Lastly, 3) P502 is used in 

analysis in Chapter 4 and excluded from forecasting in Chapter 5 due to the fundamental 

instabilities in ridership behavior and operational instability. 

 

Figure 2: Subway map of Mass Rapid Transit Authority in Bangkok, Thailand. 
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Table 1: Datasets summary. 

Description P002 P502 

Date January 1, 2019 to December 29, 2020 December 3, 2019 to December 29,2020 

Week number 105 57 

Data record 2.9 million 1.7 million 

Station number 34 35 

Matrix dimension 34×34 35×35 

Time interval 60 min 60 min 

Matrix number in a 24 24 

Type of records Automated (entry-first) 

Same entry-exit Allowed 

Transfer station  Yes 

Special note None Data record from the start of operation 

 The summary of the data statistics is shown in Table 2. P002 consists of blue line 

system and P502 consists mainly of purple line with additional overlaps with blue line 

stations. The ODM processing is, however, separated into 2 datasets based on entry-exit 

and is the official ODM released by MRTA. Since, the aggregated data consists of many 

records daily, the only statistics on significant time frames are shown, e.g., peak demand, 

and daily demand. Special note on the statistics: The statistics are lower than the actual 

due to the records within quarantine period. W3 and W4 specify the operational condition 

of non-peak and peak’s capacity in relation to headway, a scheduling parameter deciding 

the hourly capacity of ridership. The range of the maximum capacity is decided with the 

comfort level, namely the density of ridership within the train. The correlations between 

significant time frames are shown in Table 3. The correlation between one/two-hour time 

frame to daily ridership of P502 are lower than expected indicating the inconsistency of 

ridership behavior and thus excluded from forecasting since it shows a lack of relation of 

peak and non-peak which is against the requirements of the design of forecasting study 

in this thesis. 
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Table 2: Data statistics. 

2019-2020 P002 P502 

1-h (M-Peak) 2-h (M-Peak) Daily 1-h (M-Peak) 2-h (M-Peak) Daily 

St
at

is
ti

cs
 

Mean 9073.04 16755.67 69121.38 3039.00 6073.72 28891.65 

Standard error 349.14 640.97 2101.41 172.27 354.71 1720.29 

Median 10369 19375 77059 2910 5801 25558 

Standard deviation 3577.57 6567.97 21533.01 1300.60 2677.99 12987.92 

Kurtosis -0.14 -0.10 -0.27 -0.43 -0.55 -0.39 

Skewness -1.07 -1.08 -0.99 0.22 0.17 0.79 

Range 13353 24052 82848 5241 10642 50796 

Minimum 707 1238 12146 439 779 6829 

Maximum 14060 25290 94994 5680 11421 57625 

Max Cap (W3) 9200-12880 9200-12880 

Max Cap (W4) 11860-16604 11860-16604 

Basic Info Number of stations 34 35 

Special note (*)   Operation started December 2019 

Table 3: Correlation of demand between time slices. 

Time slices Dataset 

X Y P002 P002* P502 

1-h 2 h 0.995 0.997 0.992 

1-h Daily 0.953 0.955 0.768 

2-h Daily 0.953 0.957 0.760 
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Chapter 4: Analysis of transportation data 

The premise of this Chapter is, to check through data analysis on some general 

assumptions in forecasting problem on lower dimensions, and thus, decide on feasible 

approaches to the ODM level forecasting problem. The data used in this thesis is, in 

essence, known to be highly volatile. Thus, data analysis is essential in the design of the 

forecasting problem. Wide range of variables affects the predictability of ODM. In the 

real-time prediction, multiple steps are required to work with the understanding of data 

and thus designing the model and make logical comparison and analysis of the results to 

add to the literature. In this section, Historical average (HA) and statistical multinomial 

maximum likelihood are used to evaluate the volatility of the data. In addition to the two 

approaches, we include univariate and multivariate aspects of the analysis as the spatial 

level increases, the number of predictions and estimates increases. Proportionality is 

investigated as it is one of the most common properties in ODM design. The total demand 

and boarding analysis are used in designing the forecasting problem of ODM level in 

Chapter 5. Distributive forecasting model is tested on ODM level for clarification of the 

dataset. 

4.1 Univariate analysis 

For the univariate case, total demand’s distribution is investigated. Normality is a 

common assumption in prediction problem. Chi-square frequency test is suitable for 

discrete data. To illustrate, we select two peak time frames of total demand of ODM 

from peak periods from dataset P002 and P502 including its daily total The data 

statistics for total demand is shown in Table 4. Due to the mixture of high-low density 

data, the discrete range of the total demand is significantly wide, and its standard 

deviation likewise vary. 

To test the proportionality, we transform the data into fraction of demand 

between the time frame and daily, the result is shown in Table 5. The proportional data 

by time now show similar level of standard deviation. Overlapping qualities are desired 

between datasets. Cross-referencing amongst dataset adds validation to the assumptions 

that will be used in the forecasting process. 
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Table 4: Total demand data statistics. 

Dataset Mean SD Range 

P002-1 7115.7 2827.8 9715 

P002-2 8296.4 3411.3 12231 

P002 60775.4 22109.1 78397 

P502-1 3018.4 1335.1 5401 

P502-2 3028.9 1270.41 5241 

P502 27170.7 12124.3 49629 

 

Table 5: Proportional data statistics. 

Dataset Mean SD Range 

P002-1p 0.115 0.0214 0.123 

P002-2p 0.134 0.0242 0.148 

P502-1p 0.111 0.0242 0.145 

P502-2p 0.112 0.0216 0.132 

 Table 6 shows the normality test of total demand. The statistics shows that the 

proportional data shows a significant level of normality. In addition, Fig. 2 shows the 

boxplot of total demand before and after transformed. The boxplots indicate two 

different data behavior of P002 and P502. While, for P002,the temporal proportion 

transform shows a normal distribution while for P502, the temporal proportion doesn’t 

improve its normality. In this, case, we can safely disregard HA for a viable method of 

comparison for dataset P002 for total demand estimation. 
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Table 6: Normality test (total demand). 

Dataset statistics p-value 

P002-1 37049.547 0.000 

P002-2 47584.580 0.000 

P002-3 319478.076 0.000 

P502-1 17792.546 0.000 

P502-2 6087.848 0.000 

P502-3 45004.196 0.000 

P002-1p 0.012 1.000 

P002-2p 0.018 1.000 

P502-1p 0.082 1.000 

P502-2p 0.060 1.000 
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Figure 3: Total demand boxplots. 

4.2 Multivariate analysis 

For the multivariate case, boarding’s multivariate normality is investigated. HZ 

statistics is applied for the trip generation. Poisson distribution is assumed for the 

multivariate analysis for the individual boarding points. Poisson distribution is identical 

to Multinomial of different sample size or total network demand 𝑛: 

𝑃(𝑂ത|𝑛)~𝑀𝑢𝑙𝑡𝑖𝑁𝑜𝑚(𝑛, 𝜋) 

where, 𝑂 is the trip generation matrix, and 𝜋 is the proportionality parameter matrix. 

If the proportionality condition is satisfied, the transformation of the data into sampling 

proportion distribution reduce the variance by a degree of 𝑂௜
ିଵ where 𝑂௜ is the trip 
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generation factor of origin 𝑖. And the relation to the normality of the transformed data 

can be normally approximated as: 

𝑂௜

𝑛
~𝑁𝑜𝑟𝑚𝑎𝑙൫𝜋௜, 𝜃𝜎ை೔

൯; 0 < 𝜃 ≪ 1 

where, 𝜃𝜎ை೔
≈ 𝑂௜

ିଵ/ଶ is the standard deviation. The Mahalanobis distance was 

selected to illustrate the degenerate case of the assumed multinomial distribution. 

Nearest pseudo-covariance matrix is calculated when the covariance matrix is singular. 

The normality of the sample size in the univariate level and the multivariate normality 

of the trip generation were analyzed with test statistics in addition to boxplots to 

visualize the changes on the normality level. 

 Table, 7 shows the HZ statistics and only proportional data of P002-1 resulted 

in a significant Gaussian behavior. An example of boxplot of randomly selected origin 

point is shown in Fig. 4. 

Table 7: Multivariate normality test (trip generation). 

Dataset HZstatistic p-value 

P002-1 47.990 0 

P002-2 47.990 0 

P002-3 47.990 0 

P502-1 192 0 

P502-2 180 0 

P502-3 192 0 

002-1p 1.000 0.110 

002-2p 47.992 0 

002-3p 47.992 0 

502-1p 192 0 

502-2p 192 0 

502-3p 92 0 
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Figure 4: Trip generation boxplot (randomly selected origin point). 

 From the univariate and multivariate analysis, we can safely conclude that for 

MRTA datasets, normality should not be included into the assumptions for the ODM 

prediction since the increase in dimension from total demand, boarding, to ODM level 

will likely result in insignificant Gaussian behavior. 
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4.3 Distributive estimation 

After, the analysis of the data, in this section, we will investigate the distributive 

estimation of the trip generation and ODM. Here, we will use traditional indicators for 

measuring transportation demand error. 

4.3.1 Trip generation distributive prediction 

In this section, we assume a multinomial distribution with the relation between total 

demand and trip generation. The varying size of total demand 𝑛 is assumed to be 

random with constant parameter 𝜋 estimated from Maximum likelihood estimator 

(MLE). And the estimate of 𝜋௜ is 

𝜋ො௜ ==
𝑂௜ା

𝑛ା
 

Where, (+) is the summation sign, hence, 𝑂௜ା is the summation of 𝑂௜ by its 

observations and likewise 𝑛. The estimate of the trip generation is 

𝑂௜ = 𝑛𝜋௜ . 

Total Demand Deviation (TDD) and Mean Squared Error (MSE) were selected as the 

error measure of variability. 

𝑇𝐷𝐷(ω, ωෝ) =
ห∑ ω௜

ே
௜ୀଵ − ∑ ωෝ ௜

ே
௜ୀଵ ห

∑ ω௜
ே
௜ୀଵ

 

𝑀𝑆𝐸(ω, ωෝ) =
1

𝑁
෍(ω௜ − ω௜)

ଶ 

Here, ω and ωෝ  are respectively the real and forecasted values, and N is the length of 

data. The measure of TDD is used to measure a known network deviation in comparison 

to the past measure of TDD or to compare between TDD of different networks. TDD 

and MSE are shown in Fig.5 and Fig.6 accordingly. 

 The TDD of the dataset P002-1 and P502-1 are of a similar value with P002-1 

having the minimum TDD out of all datasets. However, for another selected time frame 

of P002-2 and P502-2, the TDD increases substantially with P502-2 increases from 

P501-1 significantly. 
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Figure 5: Total demand deviation. 

 MSE however, follow the trend of the selected observation, which indicates 

that although from different time frames, the daily effects suggests that since the two 

networks are under the same area, they are under the same influence. 

 

Figure 6: Mean squared error. 

 The total demand by tested observation is shown in Fig. 7. The trend of the of 

the measurement of error follows the magnitude of the total demand. When the 

comparison is made, it shows that P502 is more volatile than P002 since the magnitude 

of total demand of P502 is on average, lower than P002.  
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Figure 7: Total demand by observation. 

4.3.2 Origin-destination distributive prediction 

In this section, we used the multinomial model for the estimation of ODM and maximum 

likelihood estimator for the parameters. Revise to evaluations method for ODM 

estimation were designed for lower demand segments. Two networks from the same area 

and date of observations were analyzed as comparison of the effects of socioeconomic 

factor . 

 For ODM level, unlike, total demand and trip generation, multiple considerations 

for the design are needed. Due to the higher dimensions of the problem, the volatility of 

the target of prediction may not result in satisfactory level of accuracy. Low ridership 

density in each pair of ODM is apparent. Cut-off function or weight design is necessary 

for logical evaluation of the predictability of ODM. GEH statistics is used to evaluate the 

distributive model prediction and a statistical cut-off function is proposed to evaluate 

higher resolution ODM. 

4.3.2.1 Methodology 

The framework is summarized in Fig 8, consisting of Multinomial model for the 

estimation based on statistical distribution, the parameter estimation based on Maximum 

likelihood estimator, and the validation of the model. Given a network of size m, with 

Poisson-distributed demand, the assumptions of volume and variance are as follows. 
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Figure 8: Framework for distributive model prediction. 

Assumption 

The travel demand flow from origin 𝑖 to destination 𝑗 at time 𝑡 of day type 𝑟 𝑑௜௝
௧,௥,,ఊ 

of the OD pairs of follows an independent Poisson distribution with mean parameter a 

linear function of random variable socioeconomic level 𝛾 . The approximation to the 

Multinomial distribution of 𝑑௜௝
௧,௥,,ఊ is shown in Eq. (7). 

𝑑௜௝
௧,ఊ

~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜋௜௝
௧,௥ , 𝜆௜

௧,௥,ఊ
) (7) 

where, 𝑑௝
௧,ఊ

= ൛𝑑ଵ௝
௧,ఊ

, 𝑑ଶ௝
௧,ఊ

, … , 𝑑௠௝
௧,ఊ

ൟ  is the demand matrix, 𝜆௜
௧,௥,ఊ  is the Poisson 

parameters representing observed passenger entries at origin 𝑖 at time 𝑡, day type 𝑟, 

and socioeconomic level 𝛾 . 𝛾  is estimated from another network inside the assumed 

intra-cluster, the correlation between the networks is presented in Section 3.3.1. And 𝜋௜௝
௧,௥ 

is the multinomial parameter estimated from MLE. 𝛾 is assumed homogenous across the 

networks of interests for this study. In the homogenous case, 𝛾  is equivalent to the 
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sampling proportion 𝜌  of the true population originating from a traditional data 

collection strategy of sample surveying, where demand 𝑇௜௝ and sampling demand 𝑡௜௝ 

follow 𝑇௜௝ = 𝑡௜௝ 𝜌⁄  . A similar model was proposed by Spiess (1987), offering a more 

robust solution with Lagrangian optimal solution 𝛼௜
∗ and 𝛽௝

∗ for the dual maximum 

likelihood of doubly constrained in the form of 𝑇௜௝ = 𝑡௜௝ ൫𝜌௜௝ + 𝛼௜
∗ + 𝛽௝

∗൯⁄ . Geva et al. 

(1983) proposed, for a sampling of full proportion, the solution 𝑇௜௝ = 𝑡௜௝ ൫1 − 𝛼௜
∗𝛽௝

∗൯⁄  

and 𝑇௜௝ = 𝑡௜௝ ൫𝛼௜
∗ + 𝛽௝

∗൯⁄  for the binomial and multinomial models, respectively. The 

level of sampling of certain link flows is at the 𝜌-level of representation of the actual 

population value. This study adopts this principle to produce an estimate of the actual full 

sampling and the variability of the demand by substituting 𝜌 with 𝛾, hence, the solution 

to the demand estimation problem changed from ‘assumed proportion’ 𝜌  to ‘level of 

demand’ 𝛾 similarly to gravity model. 

Data filtering and parameter estimation 

The Mahalanobis distance of an observation 𝑥⃑ = (𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … , 𝑥ே)்  from a set of 

observations with mean 𝜇⃑ = (𝜇ଵ, 𝜇ଶ, 𝜇ଷ, … , 𝜇ே)் and covariance matrix Σିଵ is defined 

as 

𝐷ெ(𝑥⃑) = ඥ(𝑥⃑ − 𝜇⃑)்Σିଵ(𝑥⃑ − 𝜇⃑) 

The Moore-Penrose pseudo-covariance matrix is calculated when the covariance matrix 

is singular. The filtering consists of raw data and transformed data using MLE for 

individual data matrix from the dataset using:  

𝜋ො௜௝
௧,௥ =

ௗ೔ೕ
೟,ം

ௗ
೔శ
೟,ം, (8) 

4.3.2.2 Derivation of the maximum likelihood estimator 

Maximum likelihood estimator of multinomial distribution: single observation case (data 

transformation) 

Considering the parameter estimation from a single observation dataset, 

𝑃𝑀𝐹: 𝑓(𝑑௜ଵ, 𝑑௜ଶ, 𝑑௜ଷ, … , 𝑑௜௠) =
𝑘!

𝑑௜ଵ! 𝑑௜ଶ! … 𝑑௜௠!
𝜋௜ଵ

ௗ೔భ𝜋௜ଶ
ௗ೔మ … 𝜋௜௠

ௗ೔೘  

where  

𝑑௜ା = 𝑘 𝑎𝑛𝑑 𝜋௜ା = 1 

Log-likelihood is given by 
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𝐿൫𝜋௜ଵ, 𝜋௜ଶ, … , 𝜋௜௠|𝑑ప
ሬሬሬ⃗ ൯ = 𝑙𝑜𝑔 ൬

𝑘
𝑑௜ଵ𝑑௜ଶ … 𝑑௜௠

൰ + ෍ 𝑑௜௝𝑙𝑜𝑔൫𝜋௜௝൯

௠

௝ୀଵ

 

Maximization of the log-likelihood function with Lagrange function is 

ℒ(𝜋௜ଵ, 𝜋௜ଶ, … , 𝜋௜௠|𝜆) = 𝐿൫𝜋௜ଵ, 𝜋௜ଶ, … , 𝜋௜௠|𝑑ప
ሬሬሬ⃗ ൯ + 𝜆(1 − 𝜋௜ା) 

where 𝜆 is the Lagrange multiplier (not to be confused with the Poisson mean). 

For 𝜆, 

𝜕ℒ

𝜕𝜋௜௝
=

𝑑௜௝

𝜋௜௝
− 𝜆 =

set
0 

𝜆𝜋௜௝ = 𝑑௜௝ 

෍ 𝜆𝜋௜௝

௠

௝ୀଵ

= 𝑑௜ା 

𝜆𝜋௜ା = 𝑘 

From 

𝜕ℒ

𝜕𝜆
= 1 − 𝜋௜ା =

set
0 

𝜋௜ା = 1 

𝜆 = 𝑘 

The maximum likelihood estimator of multinomial parameters of a single observation is 

𝜋ො௜௝ =
𝑑௜௝

𝑘
=

𝑑௜௝

𝑑௜ା
=

𝑑௜௝

𝑂௜
 

Maximum likelihood estimator of multinomial distribution: multiple observations 

(destination choice model) 

We repeat the experiments 𝐵 times with different 𝑘௟ values given the data matrix 

of each Origin 𝑖 𝒟௜ = ൛𝑑௜௝௟ൟ with 𝑙 ∈ {1,2, … , 𝐵} of the destination choice model: 

𝑃𝑀𝐹: 𝑓൫𝒟௜|𝜋ሬ⃑ ௜, 𝑘ሬ⃑ ൯ = ෑ 𝑓൫𝑑௜௟|𝜋ሬ⃑ ௜, 𝑘௟൯

஻

௟ୀଵ

= ෑ ൬
𝑘௟

𝑑௜ଵ௟ … 𝑑௜௠௟
൰

஻

௟ୀଵ

𝜋௜ଵ
ௗ೔భ೗ … 𝜋௜௠

ௗ೔೘೗  

𝑓൫𝒟௜|𝜋ሬ⃑ ௜, 𝑘ሬ⃑ ൯ = ൥ෑ ൬
𝑘௟

𝑑௜ଵ௟ … 𝑑௜௠௟
൰

஻

௟ୀଵ

൩ 𝜋௜ଵ
ௗ೔భశ … 𝜋௜௠

ௗ೔೘  
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where  

𝜋௜ା = 1, 𝑘ା = 𝐾, 𝑑௜ା௟ = 𝑘௟ , 𝑑௜ାା = 𝐾 

Log-likelihood: 

𝐿൫𝜋௜ଵ, 𝜋௜ଶ, … , 𝜋௜௠|𝑑ప௟
ሬሬሬሬ⃗ ൯ = 𝑙𝑜𝑔 ൭ෑ ൬

𝑘௟

𝑑௜ଵ௟ … 𝑑௜௠௟
൰

஻

௟ୀଵ

൱ + ෍ ൭෍ 𝑑௜௝௟

஻

௟ୀଵ

൱ 𝑙𝑜𝑔൫𝜋௜௝൯

௠

௝ୀଵ

 

Maximization of the log-likelihood function with the Lagrange function: 

ℒ(𝜋௜ଵ, 𝜋௜ଶ, … , 𝜋௜௠|𝜆) = 𝐿൫𝜋௜ଵ, 𝜋௜ଶ, … , 𝜋௜௠|𝑑ప௟
ሬሬሬሬ⃗ ൯ + 𝜆(1 − 𝜋௜ା) 

where 𝜆 is the Lagrange multiplier. 

For 𝜆, 

𝜕ℒ

𝜕𝜋௜௝
=

𝑑௜௝ା

𝜋௜௝
− 𝜆 =

set
0 

𝑑௜௝ା = 𝜆𝜋௜௝ 

𝑑௜ାା = 𝜆𝜋௜ା = 𝐾 

From 

𝜕ℒ

𝜕𝜆
= 1 − 𝜋௜ା =

set
0 

𝜋௜ା = 1 

𝜆 = 𝐾 

The maximum likelihood estimator of multinomial parameters of a repeated-observation 

dataset is 

𝜋ො௜௝ =
𝑑௜௝

𝐾
=

𝑑௜௝

𝑑௜ାା
 

4.3.2.3 Statistical cut-off 

For large samples, the sample proportion is approximately normally distributed, with a 
mean of 𝜇௣௥௢௣೔ೕ

= 𝜋௜௝ = 𝜆௜௝ 𝜆௜ା⁄  and a variance of 

𝜎௣௥௢௣೔ೕ
= ට𝜋௜௝൫1 − 𝜋௜௝൯ 𝜆௜ା⁄ = ൫𝜆௜ାඥ𝜆௜ା൯

ିଵ
ට𝜆௜ା − 𝜆௜௝ට𝜆௜௝ = 𝜃𝜎ఒ೔ೕ

 

It can be inferred that 0 < 𝜃 ≪ 1. Hence, 𝜎௣௥௢௣೔ೕ
≪ 𝜎ఒ೔ೕ

. Hence, for the transformed 

data, the normal approximation and lower bound are 
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𝜋ො௜௝
௧,௥~𝑁𝑜𝑟𝑚𝑎𝑙 ቀ𝜋௜௝

௧,௥ , 𝜃𝜎
ఒ೔

೟,ೝ,ംቁ ; 0 < 𝜃 ≪ 1, 

The observation of Multinomial parameter follows the sampling distribution. A sample is 

large if the interval  

ቂ𝜋௜௝ − 3𝜎௣௥௢௣೔ೕ
, 𝜋௜௝ + 3𝜎௣௥௢௣೔ೕ

ቃ (9) 

lies within the interval [0,1]. For unknown 𝜋௜௝ and a repeated experiment, the given  

𝜋ො௜௝ =
𝑑௜௝

𝑑௜ାା
 

For the demand of a transportation network, it can be inferred that the lower bound of Eq 

(9) can be binding. The estimated of the mean and variance of the sampling distribution 
are, 𝜋௜௝ ≅ 𝜋ො௜௝ and 𝜎௣௥௢௣೔ೕ

≅ 𝜃𝜎ఒ೔ೕ
, hence, 

ቂ𝜋ො௜௝ − 3𝜃𝜎ఒ೔ೕ
, 𝜋ො௜௝ + 3𝜃𝜎ఒ೔ೕ

ቃ 

Based on the trip purpose and its stability, a variance smaller than 𝜎ఒ೔ೕ
 can be expected 

due to randomness being a smaller portion in the Poisson point process. The 

approximation is appropriate when the Poisson parameter 𝜆௜௝  is sufficiently large. 

Solving the lower bound equation in relation to sample size: 

𝜋ො௜௝ − 3𝜃𝜎ఒ೔ೕ
≥ 0 

where 

𝜃𝜎ఒ೔ೕ
=

ඥ𝑂௜ − 𝜆௜௝ඥ𝜆௜௝

𝑂௜ඥ𝑂௜

 

and, 

𝜋ො௜௝ =
𝜆௜௝

𝑂௜
 

The non-linear lower bound is: 

𝜆௜௝ ≥
9𝑂௜

𝑂௜ + 9
 

4.3.2.4 Evaluation 

While the problem of validation based on scale-independent error needs some reference 

for comparison to comprehend the meaning of the value, multiple networks and error 
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were selected for demonstration. The notation 𝑘 for matrix indexing is for evaluating 

individual OD pair with 𝐾 being the total number of matrices, while notation i is for 

evaluating individual ODM with 𝑁 being the total number of OD pairs. 

Matrix evaluation 

Relative root mean square error (RRMSE), root mean square error (RMSE), total demand 

deviation (TDD), mean absolute error (MAE), and root mean weighted fractional error 

(RMWFE) are selected for matrix level evaluation. The errors are calculated for each 

matrix of observation. 

𝑅𝑅𝑀𝑆𝐸(ω, ωෝ) =
1

∑ ω𝑖
𝑁
𝑖=1

ඨ
∑ (ω௜ − ωෝ ௜)

ଶே
௜ୀଵ

𝑁
  

𝑅𝑀𝑆𝐸(ω, ωෝ) = ඨ
1

𝑁
෍(ω𝑖 − ω𝑖)

2 

𝑇𝐷𝐷(ω, ωෝ) =
|∑ ω𝑖

𝑁
𝑖=1 − ∑ ωෝ 𝑖

𝑁
𝑖=1 |

∑ ω𝑖
𝑁
𝑖=1

 

𝑀𝐴𝐸(ω, ωෝ) =
∑ |ω௜ − 𝑦௜|ே

௜ୀଵ

𝑁
 

𝑅𝑀𝑊𝐹𝐸(ω, ωෝ) = ඨ
1

∑ ω௜
ே
௜ୀଵ

෍
(ω௜ − 𝑦௜)

ଶ

ω௜

ே

௜ୀଵ
 

Origin-destination pair evaluation 

The assessment of the OD pairs level contains a scale-independent measure, an error 

measurement distribution, and a scale-dependent measurement, as shown in Eqs. (11)-

(13), MSE, mean percentage error (MPE), and weighted mean average percentage error 

(WMAPE), respectively. 

𝑀𝑆𝐸ை஽ ௣௔௜௥(ω, ωෝ) =
∑ (னೖିனෝ ೖ)మ಼

ೖసభ

௄
 (11) 

𝑀𝑃𝐸ை஽ ௣௔௜௥(ω, ωෝ) =
ଵ

∑ னೖ
಼
ೖసభ

∑ ω௞ − ωෝ ௞
௄
௞ୀଵ  (12) 

𝑊𝑀𝐴𝑃𝐸ை஽ ௣௔௜௥(ω, ωෝ) =
∑ |ன೔ିனෝ ೔|಼

ೖసభ

∑ |னೖ|಼
ೖసభ

 (13) 

Additionally, Geoffrey E. Havers (GEH Statistic) is empirical statistics error for ODM 
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prediction and is compared to Eq. (13).  

𝐺𝐸𝐻ை஽ ௣௔௜௥(ω, ωෝ) = ට
ଶ(னିனෝ )మ

னାனෝ
 (14) 

4.3.2.5 Prediction result 

The test dataset of dataset P502 is half of P002 due to smaller number of data points. The 

selected test dataset of P502 matches by date with the selected test dataset of P002. The 

multinomial is divided the same as the type of record, entry based. Higher numbers of 

sparse components are observed in P502. The plotting of the prediction error for both 

datasets are matched by date. 

Evaluation of Matrix level predictions 

The matrix assessment shown in Fig. 9 consists of the RMMSE, RMSE, TDD, RMSE, 

and RMWFE, in the form of individual matrix evaluation. As indicated, there exists high 

correlation between the error measure of both networks that can be easily seen in the plots 

of RRMSE, TDD, and MAE, all of which are scale-dependent error measures. According 

to the investigation of the abnormally high error, although network P002 and P502 has 

different spatial coverage, the shift in ridership density appeared at the same date. In 

addition to the comparison between datasets, the shift of ridership density is apparent 

across the peak-period and affects the daily total demand significantly. 

The RRMSE and TDD show a relatively low error for the observations when 

excluding observations that are likely outliers (less than 0.3% and 5%, respectively). The 

error measures for network P502 are significantly higher than for network P002. The 

predictability of P502 needs further investigation in the recent data if the behavior of the 

predictability persists (if the predictability is unique for the network P502 or not). but that 

is only if we consider an additional baseline network. Overall, the matrix level evaluation 

of P002 appears to be satisfactory with average RRMSE of 0.0005, RMSE of 1, TDD 

which shows a negligent error except for when the observations with significant ridership 

density shift, MAE of 3-4 for shorter time frames but range between 5-24 for daily 

demand due to higher total ridership count. At the matrix level, it can be inferred that 

network P502 lacks the quality to represents the ridership demand just referring to IC card 

data as input. 
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Figure 9: Matrix forecast error. 

Evaluation of origin-destination pair level predictions 

The summary of the main performance evaluation at OD pair level is shown in Table. 8. 
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The main performance evaluation consists of two methods (raw data feed and normalized 

data feed methods), two classes of evaluation (no cut-off class and filtered class), and two 

relative indicators (WMAPE and GEH). Table 8 shows the performance of OD pair 

evaluations by calculating the percentage of the frequency assign when the error is higher 

than acceptable margin, (30% for WMAPE, and 5 for GEH). 

 The normalized data feed significantly increases the performance of the 

prediction for dataset P002. However, improvements are smaller as the time frame 

increases. For dataset P502, the opposite appears as improvements are shown when the 

time frame increases and for smaller time frame, discrete data feed seems to be better. 

Nevertheless, the percentage of OD pairs within acceptable margin is very low for dataset 

P502. In addition, GEH, while indicating large amounts of acceptable margin similarly 

for dataset P002, overestimate the predictability of dataset P502 and significantly 

overestimate the predictability as the magnitude of the demand within OD pair grows due 

to the increase of time frame. The expected variability of demand is high for network 

P502 but weren’t finely evaluated by GEH statistics. 
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Table 8: Summary of main performance results. 

Network Time Method Class % frequency of WMAPE % frequency of GEH 

    0-30 30+ 0-5 5+ 

P002 1-h Discrete Nonfilter 25.0 75.0 N/A N/A 

Filtered 80.5 19.5 

Transformed Nonfilter 28.2 71.8 80.2 19.8 

Filtered 85.0 15.0 

2-h Discrete Nonfilter 36.1 63.9 N/A N/A 

Filtered 81.2 18.8 

Transformed Nonfilter 38.5 61.5 87.1 12.9 

Filtered 84.3 15.7 

Daily Discrete Nonfilter 73.4 26.6 N/A N/A 

 Filtered 81.5 18.5 

Transformed Nonfilter 74.4 25.6 95.5 4.5 

 Filtered 82.4  17.6 

P502 1-h Discrete Nonfilter 19.7 80.3 N/A N/A 

Filtered 39.8 60.2 

Transformed Nonfilter 15.0 85.0 57.4 42.6 

Filtered 36.9 63.1 

2-h Discrete Nonfilter 18.2 81.8 N/A N/A 

Filtered 41.6 58.5 

Transformed Nonfilter 15.2 84.8 67.1 32.9 

Filtered 40.4 59.6 

Daily Discrete Nonfilter 17.8 82.2 N/A N/A 

Filtered 34.8 65.2 

Transformed Nonfilter 17.9 82.1 75.1 24.9 

Filtered 35.1 64.9 

 Fig. 10 and Fig. 11 show the components of distribution of error by class of 

dataset P002 and P502 respectively. The dense class is the nonfilter case, the low base 
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class is the OD pairs that need to be excluded, and the normal class is the filtered OD. 

MSE, MPE, and WMAPE are shown as boxplot in the figures. 

 The low base class undermine the average MSE of the actual prediction error by 

a large margin, While for MPE and WMAPE of P002, low base class OD pairs 

significantly contribute to the overall error. However, for MPE and WMAPE of P502, the 

opposite is true, and the overestimation of predictability is apparent. 

 

Figure 10: Boxplots of P002 error distribution. 
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Figure 11: Boxplots of P502 error distribution. 

4.4 Summary of analysis 

The datasets tested in this section, P002 and P502 were analyzed on aspects of its 

predictability, the volatility of the record ODM exhibits low proportionality, high number 

of sparse, and deterioration under different spatial and temporal scales. Comparison 

between datasets locating near the capital exhibits similar trend of volatility when 

matching with dates where shift of ridership density was observed. In addition, the size 

of time frame under peak-period significantly affects the daily ridership number. 

Normality can be observed in lower resolution of spatial level from total demand (total 

ridership per time frame) to, with multiple modifications to the design of problem, the 

trip generation with weak multivariate normality. As the spatial scale reaches OD pair, 

the problem of low average density in certain pairs become prominent and the prediction 

lacks legitimacy when solved with HA and distributive multinomial. 

 Specifically on dataset P502, the predictability analyzed throughout this chapter 

is unsatisfactory and will be excluded from Chapter 5 henceforth. However, we will apply 

the trend of the predictability of P502 as cross referencing to potentially filter out 
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technical outliers from the observation as the design of the forecasting in Chapter 5 

requires classification and thus, is expected to include outliers into the classification as 

shown in Fig 12.  

 

Figure 12: GEH statistics origin-destination pairs acceptance proportion by observations. 

 For dataset P002 which will be used in the next chapter, our hypothesis is that 

the assumption of homogenous socioeconomic factors, throughout the entire datasets, 

attributes to the increases in prediction error. Thus, the multivariate nature of the demand 

was inferred to be correlated to a single behavior throughout the entire observations. The 

design of the forecasting problem will need to tackle a multi-behavior of ODM. 

 GEH statistics will not be adopted into the forecasting evaluation since the 

empirical indicator was tested to be “naïve” when the magnitude of the demand increases 

but very sensitive to abnormal behavior. 

 This chapter does not include the design of the real-time data feed to the 

prediction and is focused on analysis. A detailed design of data feed will be considered 

and presented in Chapter 5. A utility function with cost decay may prove more effective 

if the predictability is unsatisfactory, however, in this thesis, only IC card data will be 

included since feeding utility value as variables are not possible with real-time case. 
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Chapter 5: Forecasting 

5.1 Introduction 

In this section, we proposed a short-term origin-destination demand forecasting in rail 

transit systems: parallel model architecture and gravity approach. As mentioned in 

Chapter 4, the predictability of the ODM is correlated to its volatility, a pre-analysis of 

predictability of lower resolution suggests that deterministic designs (statistical and 

distributive) are not suitable for the dataset used in this study. Additionally, technical 

outliers were detected, and the spread of ridership density suggest that multiple 

relationship designs may prove useful for approaching the forecasting case. Derivative of 

parallel model architecture is proposed and tested. Comparison is made with existing 

literature and summary of the findings is presented. 

 Extra considerations in this section include real-time forecasting design, short-

term forecasting cases, magnitude of scale, noise, skewness of ODM, multi-pattern ODM, 

and unforeseen ODM. The problem definition, from gravity model, is redesigned with 

vectorized gravity model and applied on concatenation and chained forecasting cases for 

approximated forecasts. 

5.1.1 Motivation 

 The motivation for the study of short-term ODM forecasting are as follows: 

(1) Problems in the formulation of the forecasting due to the delayed availability 

of OD matrices in real-time and its high dimensionality. 

(2) The unpredictable characteristics in OD demand and the challenges these pose 

to the forecasting problem, which have not been adequately addressed in 

existing studies (treated as outliers). 

(3) Sparsity in OD pairs, which heavily reduces the accuracy and requires an 

appropriate response to improve forecasting. 

In view of these issues, we introduce an adjusted parallel model architecture of an origin-

based vector sum projection gravity model (APMA-OVG). In the proposed model, 

aggregated OD data and real-time inflow information are used as inputs for the delayed 

availability problem, and an origin-based formulation of the forecasting problem is 

implemented to reduce dimensionality. APMA solves the problem of multiple OD 

patterns by defining the model matrices uniquely for each input; thus, while behaving 

similarly to k-nearest neighbor (KNN) algorithms, it relies on forming relations between 

input variables and not distance. APMA also works with the clustering of the data by 
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separating the data by magnitude and patterns based on the formulation of OVG, which 

solves the dense and sparse features in the OD matrix. Experiments were conducted with 

the proposed model on two real-world datasets containing multiple patterns in OD 

demand in the Bangkok subway as presented in Chapter 4. Compared to benchmarks 

established in recent years, satisfactory results were obtained, although a direct 

comparison was difficult due to being unable to train the comparison models on datasets 

and in the datasets. The multi-distribution of the demand density in our test datasets are 

more numerous than other datasets and thus, were not treated as outliers in our study.   

5.1.2 Contributions 

The main contributions of this study are summarized as follows: 

(1) Anomalous data are introduced to test the extrapolation ability of the model 

and the performance is compared to several benchmarks. To the best of our 

knowledge, this is the first time that such an experimental case has been 

introduced in short-term OD forecasting outside from anomalous studies. 

(2) Relationships between trip generation and historical OD matrices are 

developed based on the simple-to-understand gravity model by considering 

their dependencies. We proposed a delayed OD matrix input constraint to 

formulate a data availability scenario fitting a real-world case. This constraint 

is also used as the basis for considering forecast scenarios due to its 

mechanism of defining the interval gap between real-time input and the 

earliest possible forecast target. 

(3) APMA is introduced to separate inputs based on magnitude and pattern for the 

formulation of the OVG. In general, temporal indexing suits data with gradual 

changes over time, but in the case of anomalous changes, APMA is introduced 

to avoid “expired” models. 

5.2 Methodology 

This section presents the methodology, algorithms, and key concepts of the proposed 

method. First, the short-term OD forecast is defined and the relationship between trip 

generation and trip attraction is introduced. Next, the formulation of the OVG equations 

from the gravity model is presented following the adoption of APMA from parallel model 

architecture (PMA). The APMA-OVG comprises two forecasting cases of historical and 

real-time data, respectively. 
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5.2.1 Model development  

The forecast framework is shown in Fig. 13. Network constraints are used to calculate the 

delay data availability constraint, in addition to historical data and real-time ODM from 

data collection, the OVG is defined and splitting of the data is processed. Next, the APMA 

process the large input into multiple clusters and the data clusters went into data 

refinement, model preparation, and model matrix defining. The parallel forecasting is 

then conducted, and performance evaluation is given for comparison with existing 

literature. 

 

Figure 13: Framework for APMA-OVG. 

5.2.2 Origin-based vector sum projection gravity model 

The gravity model is a statistical model that uses OD data to predict OD pairs. Non-linear 

relationships between variables can be transformed using available feature space 

transition techniques. The gravity model with the distance decay assumption is presented 

in Eq. (15) [3]: 

 𝑚௣௤
ௗ,௧ =

ఈ

ௗ௜௦೛೜
మ 𝑛௣

ௗ,௧ ∑ 𝑚௜௤
ௗ,௧

௜  (15) 

where 𝛼 is the homogeneous parameter, ∑ 𝑚௜௝
ௗ,௧

௜  is the trip attraction, and the column 

sum of matrix 𝑀ௗ,௧, and 𝑑𝑖𝑠௣௤ is the physical distance between origin p and destination 

q. 
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To formulate a real-time forecast based on the gravity model, we first define a 

pseudo-dimensional space while assuming that the actual locations of each node are 

unknown, as shown in Fig. 14. 

 
Figure 14: A visualization of nodes in physical distance space is shown in (a) pseudo-dimensional space is 

shown in (b). Node A is the origin node and node B is the destination node. The OD pair from node A to 

node B is marked with a solid line. An example of vector projection of node C is shown in (c). 

Since the locations in dimension space are unknown, we substitute Eq. (15) with the 

vector form broken down for each node in relation to Eq. (6). Thus, from Eq. (15), the 

new gravity equation is given by  

 𝑚௣௤
ௗ,௧=∑ ∑

ఈ೔೜
೏,೟షೣ௡೛೜

೏,೟షೣ௠೔೜
೏,೟షೣ

ቀௗ௜௦೔೜
೏,೟షೣቁ

మ௜௫ , 𝑥 = 𝜃, 𝜃 + 1, 𝜃 + 2, … ; 𝑖 = 1,2, … , 𝑛 (16) 

Here, the homogeneous parameter 𝛼  is transformed into non-homogenous parameter 

specific to each OD pair. From Eq. (16), it can be inferred that, by extension, the equation 

can be expressed as a linear equation, as shown in Eq. (17). 

 𝑚௣௤
ௗ,௧=∑ ∑ 𝛽௜௤

ௗ,௧ି௫𝑚௜௤
ௗ,௧ି௫

௜௫ , 𝑥 = 𝜃, 𝜃 + 1, 𝜃 + 2, … ; 𝑖 = 1,2, … , 𝑛 (17) 

with the coefficients  

𝛽௜௤
ௗ,௧ି௫ =

𝛼௜௤
ௗ,௧ି௫𝑛௣௤

ௗ,௧ି௫

ቀ𝑑𝑖𝑠௜௤
ௗ,௧ି௫ቁ

ଶ . 
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Finally, we introduce 𝑛௣௤
ௗ,௧ି௬

, 𝑦 < 𝑥 into Eq. (17) and the completed OVG that satisfies 

Eq. (6) is given by Eq. (18). 

 𝑚௣௤
ௗ,௧ = ∑ ∑ 𝛽௜௤

ௗ,௧ି௫𝑚௜௤
ௗ,௧ି௫

௜௫ + ∑ 𝛽௣
ௗ,௧ି௬

𝑛௣
ௗ,௧ି௬

௬ , 𝑥 = 𝜃, 𝜃 + 1, 𝜃 + 2, … ; 𝑖 =

1,2, … , 𝑛; 𝑦 = 1,2,3, … ; 𝑦 < 𝑥 (18) 

5.2.3 Adjusted parallel model architecture 

PMA is a strategic organization of the models designed to maximize the performance 

within constraints at any instance of time. This strategy was first proposed to improve the 

accuracy of electricity load forecasting [42]. Later, an addition of an annual trend 

weighted forecasting step were applied the PMA strategy to forecast gas consumption 

[43]. PMA is unsuitable for application to relatively complex models due to its restriction 

on data volume. The algorithm can be generally described by the following steps: 

(1) Split the data into sub-datasets according to temporal index. 

(2) Predict each sub-dataset with a prepared model. 

(3) Summarize and rearrange the final inputs. 

The difference between PMA and APMA lies in the data splitting criteria, as shown 

in Fig. 15, PMA uses temporal indexing for the time series (months are most used for 

temporal indexing), which has a major drawback of significantly relying on large-scale 

temporal variables and potentially splitting the data into too many sets. In contrast, APMA 

relies on a combination of information on historical data, real-time data, and delayed 

constraints to perform k-clustering on the assumption that the output is unknown for the 

real-time data since it is a forecast of a future OD matrix. The Monte Carlo method is 

then applied with minimization of the weighted absolute percentage error (WAPE) as the 

objective to maximize predictability. Note that root mean squared error (RMSE), mean 

absolute error (MAE), and R-squared (R2) are bias errors, and thus, not suitable for 

maximizing predictability. RMSE and MAE heavily depend on magnitude of the OD pairs 

and R2 is an indicator for the proportion of explained variance to total variance which 

does not reflect predictability. 



 

 

45 | P a g e  

 

 

Figure 15: Overview of PMA and APMA. 

5.3 Experiment 

For this section, we tested the proposed method with two real-world datasets and 

compared it with benchmark methods. An analysis is also given in this section. 

5.3.1 Two forecasting cases 

The delayed availability OD data play a significant role in our problem definition. We 

design two forecasting cases to clarify the appropriateness of the OVG formulation. The 

first case, the concatenation case, involves using all OD and boarding data available from 

the start of the operation to make a direct forecast of the ODM period of interest. The 

second case, the chained case, involves modeling the time-step forecasting to estimate 

missing OD matrices within the interval gap 𝜃  ( 𝜃 = 2  in this study). Eq. (18) 

transformed into 𝑚௣௤
ௗ,௧ = ∑ ∑ 𝛽௜௤

ௗ,௧ି௫𝑚௜௤
ௗ,௧ି௫

௜௫ , 𝑥 = 1,2,3, … ; 𝑖 = 1,2, … , 𝑛  in the final 

forecast of the chained case, as shown in Fig 16. 
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Figure 16: Overview of the two forecasting cases. 

The implementation of the models was coded in Spyder 5.4.2 (Python 3.8.5) and 

the amount of training data was half of each entire dataset and based on each forecasting 

case. The hyperparameters and parameters were not updated in the testing period. P502 

dataset is provided in the discussion of the method’s limitations. 

5.3.2 Evaluation methods 

Indicators MAE, RMSE, WAPE, and R2 for matrix evaluation are respectively given in 

Eqs. (19) to (22). 

 MAE(ω, ωෝ) =
ଵ

ே
∑ |ω௜ − ωෝ ௜|

ே
௜ୀଵ  (19) 

 RMSE(ω, ωෝ) = ට
ଵ

ே
∑ (ω௜ − ωෝ ௜)ଶே

௜ୀଵ  (20) 

 WAPE(ω, ωෝ) =
∑ |ன೔ିனෝ ೔|ಿ

೔సభ

∑ |ன೔|ಿ
೔సభ

× 100% (21) 

 Rଶ(ω, ωෝ) = 1 −
∑ (ன೔ିனෝ ೔)మಿ

೔సభ

∑ (ன೔ିனഥ ೔)మಿ
೔సభ

 (22) 

Since MAE, RMSE, and Rଶ are bias indicators, comparison between datasets use mainly 

WAPE. 
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5.3.3 Result and discussion 

The conceptual design of the forecasting study is based on data’s characteristics. 

Comparison in this section is purely on performance of the models. The data 

characteristics in referred literature are unspecified but conjectures can be made with the 

usage of the models. Most of the methods reported in the literature like the temporal 

regularized matrix factorization (TRMF) [44] and ConvLSTM [45] cannot use trip 

generation as extra inputs in their formulation and must assume all historical OD matrices 

are known which is not the case for our design. Regarding the requirements of the models, 

the choice of models for benchmarking is lacking. ConvLSTM has a strict chronological 

order and requires denser data than OD matrices. Since the test dataset is expected to be 

highly sparse, the chronological order is not obvious enough and will poorly represent 

ConvLSTM’s performance. Lastly, the simplicity and complexity of the models are 

problematic. Relatively more complex models use higher data volumes, so when the data 

volume is limited, a simpler model might perform better. However, the simpler models 

do not account for special characteristics, for example, HA is limited by reliance on 

centric behavior. Additionally, the gravity model variations that OVG is based on are 

relatively static models, which are more suitable for exclusive locational motions, like 

immigration/movement of goods between long distances. 

In view of these factors, the comparison will focus on predictive ability. Multiple 

linear regression (MLR) is used to solve the APMA-OVG problem with comparison to 

categories of designed regressors that solve OVG: k-nearest neighbors (KNN), support 

vector regressor (SVR), and light gradient boosting machine (LGBM). KNN solves the 

regression problem by finding the minimum distance between the input and the training 

dataset to infer the regression result, while SVR finds a hyperplane to fit the data points 

instead of a line. As for LGBM, it performs efficiently for small datasets with a tree 

ensemble algorithm. KNN, SVR, and LGBM can all model non-linear relationships. 

5.3.3.1 Application of feature selection algorithms 

Table 9 summarizes the breakdown of the data refinement process of APMA-OVG. 

Various feature selection methods are chosen, namely, PCA for covariance analysis, 

kernel PCA (kPCA) for non-linear feature space transformation, incremental PCA (iPCA) 

for high volume PCA, sparse PCA (sPCA) for locating sparse components and 

reconstructing data, non-negative matrix factorization (NMF) for non-negative data, and 

truncated singular value decomposition (TSVD) for data matrix factorization. Each 

algorithm tests properties of the OD matrices data and evaluates their suitability. The 

results for OVG on the P002 dataset are summarized in Table 9 and visualized in Fig. 17. 
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Table 9: Performance comparison of different feature selection algorithms. 

Feature 

selection 

Concatenation forecasting Chained forecasting 

MAE RMSE WAPE R2 MAE RMSE WAPE R2 

None 22.44 44.66 38.59% 0.7732 25.7 51.99 44.19% 0.7034 

PCA 22.47 44.56 38.65% 0.7743 25.56 51.61 43.95% 0.7056 

kPCA 18.84 36.18 32.40% 0.8327 19.07 36.85 32.79% 0.8238 

iPCA 22.88 45.51 39.35% 0.7624 25.26 51.46 43.44% 0.7063 

sPCA 22.94 45.74 39.46% 0.7628 25.48 51.87 43.81% 0.7041 

NMF 22.78 45.58 39.18% 0.7658 25.55 51.94 43.94% 0.7037 

TSVD 19.41 37.26 33.38% 0.8256 20.84 39.95 35.83% 0.8014 

Our preliminary assumption is that either a feature selection algorithm for 

sparseness or a non-linear feature space will result in higher performance. Since the 

Monte Carlo method is applied to the model setup, the feature selection algorithm is not 

homogeneous but is set to minimize WAPE. 

(1) For the concatenation case, the results show that kPCA and TSVD respectively 

reduce the WAPE error by 16.04% and 13.50%, reduce RMSE by 18.99% and 

16.57%, reduce MAE by 16.04% and 13.50%, and increase R2 by 7.70% and 

6.78%. 

(2) For the chained case, the results show that kPCA and TSVD respectively 

reduce the WAPE error by 25.80% and 18.92%, reduce RMSE by 29.12% and 

23.16%, reduce MAE by 25.80% and 18.91%, and increase R2 by 17.12% and 

13.93%. 

We can conclude that the low covariance in relation to temporal features between 

matrices is the main factor reducing the predictability of P002 in this case. Results for 

P502 were inconclusive due to its predictability reported in Chapter 4, so we excluded 

them from the report. 
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Figure 17: Performance comparison of different feature selection algorithms. 

5.3.3.2 APMA-OVG 

We show four randomly selected OD pairs to illustrate the categorical data ordering of 

APMA in Fig. 18. Each OD pair is separated by the OD flow following the pattern of its 

corresponding cluster. One disadvantage of APMA is the emphasis on categorical order, 

which results in ignoring chronological order. However, for the datasets tested in this 

thesis, APMA can establish an appropriate order to the data by abandoning the 

chronological order. Five clusters are shown, and four randomly selected OD pairs are 

split after the data were processed. 
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Figure 18: OD flow of randomly selected OD pairs from different clusters. 

Next, the PMA, SVR, KNN, KGBM, and APMA algorithms are compared in 

terms of the overall performance, and a silhouette 𝛿 lower bound is made for the APMA 

algorithm. The comparison results are summarized in Table 10 and visualized in Fig. 19. 

Table 10: Comparison of APMA-OVG with different clustering tolerances, PMA, and other models. 

 
Concatenation forecasting Chained forecasting 

Model MAE RMSE WAPE R2 MAE RMSE WAPE R2 

MLR 22.44 44.66 38.59% 0.7732 25.7 51.99 44.19% 0.7034 

PMA 17.74 33.83 30.15% 0.8486 21.35 42.22 36.29% 0.7567 

APMA(0.4< 𝛿 < 0.6) 16.55 32.41 26.9% 0.8676 21.08 42.8 34.26% 0.7718 

APMA (𝛿 ≥ 0.6) 16.25 31.69 26.93% 0.8693 20.46 41.37 33.92% 0.7789 

APMA-OVG  14.57 32.37 24.16% 0.8729 18.49 37.37 30.64% 0.8073 

SVR 21.66 50.82 41.41% 0.6563 23.06 64.55 39.65% 0.5993 

LGBM 16.1 32.18 30.77% 0.7848 12.68 28.46 21.8% 0.8837 

KNN 18.36 38.71 35.09% 0.7481 14.62 31.37 25.14% 0.8564 
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Figure 19: Overall performance comparison .of tested models. 

The Table 10 and Fig. 19 can be summarized as follows: 

(1) The minimization of WAPE resulted in a loose silhouette score that sets the 

lower limit for APMA. The APMA-OVG model selected kPCA for 

minimizing WAPE for both forecasting cases, similarly to APMA. APMA-

OVG in the concatenation case has the lowest WAPE of 24.16%, including 

the lowest MAE and highest R2. When compared to PMA, APMA with a 

minimum 𝛿 > 0.4 , and APMA with a minimum 𝛿 ≥ 0.4 , WAPE is 

respectively lowered by 19.87%, 10.19%, and 10.29%, MAE is respectively 

lowered by 17.87%, 11.96%, and 10.34, and R2 is respectively increased by 

2.86%, 0.61%, and 4.14%. 

(2) However, for the concatenation case of SVR, LGBM, and KNN, although 

their performance is better than that of the base MLR model, compared to the 

PMA variation models, lower performance is observed.  

(3) For the chained forecasting case, based on the formulation of OVG, while 

APMA-OVG has the best performance among similar model types and higher 

performance than SVR, the best model is LGBM, followed by KNN.  

(4) The chained forecasting case is expected to be more difficult to solve due to 

involving predicting delayed OD matrices (by replacing ∑ 𝛽௣
ௗ,௧ି௬

𝑛௣
ௗ,௧ି௬

௬  
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with an estimated 𝑚௜௤
ௗ,௧ ). Table 11 summarizes the chained forecasting 

performance within the interval gap. The estimation of OD matrices within 

the interval gap of APMA-OVG, when compared to LGBM and KNN, has 

significantly worse performance, with higher WAPE for first- and second-time 

steps, respectively, by 18.31% and 25.76% compared to LGBM, and 22.35% 

and 56.11% when compared to KNN. 

(5) KNN and LGBMR share similar traits to APMA-OVG. While KNN search 

for some historical data closest to the input, LGBMR is an ensemble algorithm. 

APMA-OVG categorize data and define strict relationships between variables. 

The difference in performance in the chained case is due to the “rigidity” of 

APMA-OVG since both KNN and LGBMR are black-box regressors. 

Table 11: Performance comparison of delayed OD matrices estimation of APMA-OVG, LGBM, and KNN. 

  first-time step second-time steps 

Model MAE RMSE WAPE R2 MAE RMSE WAPE R2 

APMA-OVG  2.29 27.76 29.34% 0.6562 18.54 37.27 30.74% 0.8197 

LGBM 1.9 16.93 24.8% 0.7637 13.27 28.94 22.82% 0.8761 

KNN 1.84 16.42 23.98% 0.757 11.45 27.44 19.69% 0.8773 

5.3.3.3 Analysis of APMA-OVG 

Four randomly selected OD pairs’ performance is discussed in this section. The 

comparison between actual and forecasting values is shown in Fig. 20. OD_1 has the 

lowest average actual value, and OD_4 has the largest range of actual value. APMA-OVG 

gives importance to OD pairs with higher actual value. The variance of the actual value 

is high for OD_2 to OD_4 when compared to OD_1. For both concatenation and chained 

cases, the forecasting values follow a similar trend due to the same design of the OVG 

model. This trend includes when the prediction is significantly deviating from the actual 

value. However, chained case exhibits higher deviations in most OD pairs due to the 

estimations of missing OD matrices. In addition, for relatively low actual value (OD_1), 

deviation is apparent when compared to concatenation case. The issue of numerous small 

OD flows was discussed in both [1] and [4]. As can be seen in OD_2 through OD_4, the 

fluctuation of OD flow is significant to generalize the model to assign ranking of OD 

pairs to address this issue. 
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Figure 20: Comparison of actual and forecasting flows of randomly selected OD pairs. 

In Fig. 21, the boxplot of forecast deviations shows a normal distributed behavior 

with chained case exhibit larger ranges of deviation on each OD pair. The outliers of the 

boxplots, however, are more balanced with chained case. For, OD_1, as explained above, 

because APMA-OVG gives less importance to OD pairs with small OD flow, distribution 

of deviations deviates from zero and the forecast value is higher than actual value. In 

comparison to OD_1, the normal distributed deviations of OD_2 to OD_4 are more zero 

centric, especially OD_2. The reason being that OD_2 has the lowest fluctuation of OD 

flow while not having small OD flow. The outliers in the boxplot results from the 

extremity within the fluctuation of significantly higher or lower actual OD flow. It is 

worth exploring the addition of external data such as weather data, or local events for 

improving the model to solve the issue of predictability of extreme fluctuation within OD 

pair. Whether the issue of small OD flow will also be addressed is difficult to say but 

within the scope of anomalous data, such fluctuations should be given higher priority. 
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Figure 21: Boxplot of forecast deviation of randomly selected OD pairs (same as Fig. 20). 

5.3.3.4 Comparison with other literature 

The comparison of model performance is shown in Table 12. We compare APMA-OVG 

with the benchmarks established by [1] and [4]. WAPE, dataset, models, and  their 

assumptions are summarized and presented. The analyses of the datasets (Guangzhou, 

Hangzhou, and Beijing) used in comparison are not presented in the literature. While the 

APMA-OVG has the lowest error among all the model, the suitability between model’s 

usage and dataset’s characteristics is missing so we can only conclude that the 

performance is satisfactory.  

 Guangzhou, Hangzhou, and Beijing dataset are dataset of stable operation while 

Bangkok dataset exhibits anomalous demand behavior. Additionally, the size of OD 

matrices and relative density of usage varies. Finally, the models of the benchmarks are 

not applicable to the Bangkok dataset due to 1) The requirements of benchmark models 

are not designed for anomalous data; 2) The complexity of the models are not suitable for 

the size of Bangkok dataset. While there are no range of acceptable performance indicator 

established for the short-term forecast, based on the benchmarks’ performance, the WAPE 

of APMA-OVG suggests that it falls within acceptable range of error. In addition, when 

consider basic model like HA to the other models in literature, the improvement of the 

ODM estimation problem does not significantly differ from static estimation method. 

Henceforth, APMA-OVG can be expected to give good enough accuracy using datasets 

of networks with stable operation. Under stable operation, APMA-OVG may be reduced 

to a derivation of gravity model due to the centric of the data. 
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Table 12: Performance comparison between benchmarks and APMA-OVG. 

Model Dataset WAPE Usage 

HW-DMD 

Guangzhou 29.65% 

small and zero flows 

Hangzhou 31.76% 

TRMF 

Guangzhou 30.61% 

Strict chronological order 

Hangzhou 34.02% 

FNN 

Guangzhou 30.23% 

N/A 

Hangzhou 33.58% 

HA 

Guangzhou 31.21% 

Strict demand behavior order 

Hangzhou 34.28% 

Conv-LSTM 

Guangzhou 30.11% 

Dense OD flow 

Strict chronological order 
Hangzhou 32.92% 

Beijing 26.98% 

2D CNN Beijing 26.94% N/A 

3D CNN Beijing 27.00% N/A 

ConvGRU Beijing 27.10% 
Dense OD flow 

Strict chronological order 

TrajGRU Beijing 29.46% Location variant pattern 

CAS-CNN Beijing 26.10% small and zero flows 

APMA-OVG Bangkok 24.16% Anomalous demand behavior 

5.3.3.5 Forecasting cases 

The tested model with highest performance for the concatenation case and the chained 

case are respectively, APMA-OVG and LGBMR. While the performance of the chained 

case is slightly better than the concatenation case, it is inappropriate to establish which 

forecasting case is superior. The interval gap 𝜃 in problem formulation (in this case is 2) 

can be considered relatively small. For larger 𝜃, the increase in delayed data availability 

to each forecasting case results in the following: 

(1) For the concatenation case, the number of input variable is decreased by 𝑛 −

1 for every increase of 𝜃 by 1 (𝑀ௗ,௧ is replaced with 𝑁ௗ,௧).  

(2) For the chained case, the number of estimations needed to transform Eq. (6) 
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to 𝑀ௗ,௧ = 𝑓({𝑀ௗ,௧ି௫}௫) increases along with 𝜃. 

The earliest known ODM is the most important input for the forecasting problem. 

The correlations between ODMs are an important part and the usage of incomplete ODM 

should be considered in future research. Incomplete ODM is included in Eq. 18 of 

concatenation case. Usefulness in prediction of incomplete ODM is reported but the 

extend of its usefulness was not verified with combinations of earlier ODM inputs yet 

[46].  

5.3.3.6 Limitations 

The APMA-OVG was designed to fit the characteristics of dataset P002. The analysis in 

Chapter 3 shows that the data, when divided annually, has unstable total demand 

(summation of ODM). As shown in Table 12, Historical Average model gives higher 

WAPE compared to other models on dataset Guangzhou and Hangzhou. However, the 

difference in WAPE is less than 5% and 7.5% respectively for Guangzhou and Hangzhou 

datasets. The dataset used in this thesis is severely different from the dataset used in other 

literature and cannot be applied to other models without assumptions. In addition, the 

temporal prediction constraint used in this study is, in other literature, ignored or assumed 

negligible, making the inputs less temporally completed when compared to other studies. 

The problem of predictability is a major problem since suitability between model 

and data is more important than the complexity of the model. To explain this aspect, the 

P502 dataset is explained. P502 was recorded from the start of operation in December 

2019 until the end of 2020. The decision to include this dataset, which exhibits unstable 

ridership characteristics in addition to effects from the 2020 global travel restriction, was 

to show how predictable the proposed model is given different anomalous data.  

Compared to P002, P502 was introduced very late, and has sparse OD pairs that 

comprise more than 50% of the OD matrices on average. P502 also contains significant 

ridership demand’s shifts throughout the dataset with no clear tendency. Table 13 lists the 

best performing models, with the very best model being SVR with 40.36% and 47.27% 

WAPE error for the concatenation and chained forecasting cases, respectively. MAE and 

RMSE for this model are lower, but as stated before, both MAE and RMSE are bias 

indicators that depend on the magnitude of OD flows, with averagely low ridership of 

P502 compared to P002, it is understandable that those bias indicators have lower values. 

R2 values for both forecasting cases are not satisfactory except for the PMA model on the 

chained forecasting case, though not when considering other indicators. APMA-OVG is 

excluded due to unsatisfactory performance. Relatively complex deep learning models 

are expected not to perform well on P502 due to the limited data volume. 
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Although we proposed APMA-OVG, which is appropriate for the type of dataset 

P002 belongs to, namely one that needs categorical more than chronological ordering, 

tests on P502 reveal the gap in predictability of extreme fluctuations. Thus, for short-term 

forecasting, suitability should be determined based on the datasets, especially those in 

which non-standard operation is observed. 

Table 13: Performance comparison of delayed OD matrices estimation on dataset P502. 

  Concatenation forecasting Chained forecasting 

Model MAE RMSE WAPE R2 MAE RMSE WAPE R2 

SVR 7.53 16.97 40.36% 0.6211 8.82 20.06 47.27% 0.56 

KNR 8.39 19.76 44.96% 0.5324 9.44 20.85 50.62% 0.2188 

LGBMR 8.21 18.41 44.03% 0.2947 8.85 20.27 47.46% 0.1871 

PMA 10.8 19.04 56.11% 0.1477 12.39 33.79 52.47% 0.727 
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Chapter 6: Conclusion 

This study proposed forecasting model from the analysis of dataset’s characteristics. 

Statistical and distributive’s predictabilities were considered from multiple level of 

origin-destination perspectives (total demand, boarding, and origin-destination pair). The 

logical design of the proposed model considered the real-time short-term forecasting 

including, dense and sparse segments, constraints for magnitude of the demand and delay 

data availability, estimation of the delayed data availability, and classification of the data 

points.  

 The IC card datasets in this study is relatively unstable and problematic limiting 

options for usable models. After many considerations, APMA-OVG model was designed 

and tested. The proposed model is expected to be helpful when forecasting is needed 

during disruptions from stable operation is expected. The trained model is simple and 

easy to understand. Advanced models may struggle with extrapolating beyond range of 

inputs. In addition, short-term ODM forecasting under anomalous demand behavior may 

prove useful for the significant infrastructural changes to predict the demand until the 

changing of ridership reach saturation. The APMA-OVG model consisting of: APMA 

algorithm, delayed data availability constraint, data refinement, MLR, and OVG 

formulation. OVG is derived from gravity model and is a simple linear model. In our 

experiments, we collected historical datasets that reflect a large difference in relative 

network demand concentration, serving as testing datasets where the distribution under 

temporal variable deviated from standard operation. The conclusions of the present study 

can be summarized as follows: 

(1) Adjusted parallel model architecture is a useful tool for improving accuracy when 

the data’s characteristics call for categorical order instead of temporal order. OVG 

formulation is a simple formulation derived from gravity model that includes data 

availability delays, avoid input overlaps, and consider the effects of all destination 

nodes without homogeneity assumption. 

(2) The generated hybrid model, APMA-OVG, provides satisfying performance 

comparable to some advanced models. While the usage of APMA-OVG is 

different from other advanced models, the performance suggests that suitability 

should be prioritized over complexity of the model. 

This study concludes that effective forecaster for short-term ODM forecasting 

should take suitability to the instances of the forecasting targets as the priority when 

multiple patterns appear in OD demand. This study excludes external variables like 
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weather, seasonal, events, etc., also, questions remain for how to handle extremity of data, 

and how to detect changes that indicates need for switching between chronological and 

categorical order. Mathematical method or empirical method for evaluating these issues 

are needed to improve the model for higher accuracy and more interpretable forecast. The 

generality of the model is expected to give a good enough accuracy even for the case of 

stable range of demand’s magnitude. However, the accuracy of the forecast, in 

comparison to other models, would not necessary be better due to the specific usage of 

the APMA-OVG for the anomalous events.  
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