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要旨

バイオメカニクス分野における歩行運動解析の研究は，17世紀後半から始

まったとされ，運動学や運動力学，身体重心特性など，様々な観点で進められ

ている．解析技術の応用例としては，正常歩行と病的歩行の判別，医学的介入

やリハビリテーション実施前後での患者の歩行状態の評価，下肢可動性回復の

ためのロボット機器の制御，アスリートの歩行動作のコーチング，日常生活中

の動作認識・分類などがあり，医学やリハビリテーションに向けた応用が期待

されている．

マーカベースや Inertial Measurement Unit（IMU）センサのモーションキャ

プチャに代表されるような装着式の計測・解析技術に比べ，画像センサを用い

たマーカレスのモーションキャプチャ技術は，臨床現場での患者の身体的負担

の軽減や，計測に要する準備時間の省力化などの観点から，実運用に適してい

ると考えられている．さらに近年は距離センサが市場に安価に流通しているこ

ともあり，歩行中の全身運動を簡便に 3D計測・解析できることから，同様の

センサを用いた歩行解析の研究が活発に進められている．同分野では，距離画

像から人の骨格キーポイントを推定する学習済みのモデルを用いた，スケルト

ンベースの解析技術の研究が主流である．ただしこのような推定モデルは大量
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の健常者の姿勢データを用いてモデルの学習を行っているため，脳卒中後片麻

痺患者のように，非対称で，かつ重症度に応じてバリエーションに富んだ病的

歩行を呈する場合の歩行解析では推定精度の低さが指摘されている．他方，距

離画像を直接的に解析し，歩行特徴を抽出する解析技術の研究も進められてい

る．しかし，このような技術をベースとした歩行周期の位相分割技術や足部の

位置・姿勢の推定技術がなく，また歩行解析を通して患者の身体機能を評価す

るシステムが提案されていない．本論文では，上記二点の課題を解決するため

の，距離画像を直接的に解析することにより，脳卒中後片麻痺患者の歩行特徴

を抽出する歩行解析技術を提案し，同患者を評価する上で重要となる身体バラ

ンス評価スコアを歩行特徴から推定するシステムを開発した．

第一の研究では，距離画像を直接的に解析することで，脳卒中後片麻痺患者

の左右非対称な歩行周期を複数の位相に分割し，従来のスケルトンベースの歩

行解析技術よりも高精度に歩行特徴を抽出する技術を提案した．具体的には，

足を一定速度で振り出せず，左右非対称な歩行などの病的な歩行に対応できる

ように，動的計画法を用いた相互制約付き区分線形近似による足部の位置系列

から歩行位相を分割する手法を提案した．また，立脚相の床面上につま先の

エッジを累積させることでフットプリントを検出する手法を提案し，従来手法

よりも明瞭にフットプリントを検出することを確認した．最後に，4つの空間

的／時間的な歩行パラメータ（単脚支持時間，両脚支持時間，つま先の角度，

ステップ長）について従来技術との精度比較をするために，10名の健常者の

歩行と片麻痺患者を模擬した歩行の 2種類の歩行パタンを用いて，検証実験を

行った．その結果，提案手法は健常者歩行では従来のスケルトンベース手法と
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同等，また疑似片麻痺歩行では従来手法よりも空間/時間的歩行パラメータを

高精度に推定できることを確認した．

第二の研究では，上記の提案手法をベースとして，脳卒中後片麻痺患者の身

体バランス評価尺度である Berg Balance Scale (BBS)スコアを推定するシス

テムを開発した．またこのシステムの実用性を評価するため，スコアの推定精

度と解析処理速度の検証を実施した．BBS は，指定する運動課題を患者に実

施させ，その様子を臨床現場の専門家が観察し，合計 56点満点で採点する評

価尺度である．BBSは評価に 20分もの時間がかかる点と評価者の主観が影響

する点が課題である．本研究では，属人性を排した効率的なバランス能力評

価実現のために，対象者の歩行計測のみで簡便かつ自動的に BBSを推定する

システムを開発した．まず 1台の RGBDセンサを用いて対象者の歩行を撮影

し，見守り者がいる場合は，対象者と介助者の領域を分離した．次にステップ

長，つま先向き，立脚時間，歩行速度など計 23種類の特徴量を抽出した．最

後に Lasso 回帰モデルを用いて BBS を推定した．実験では 94 件の脳卒中後

片麻痺患者に対して専門家が評価した BBSスコアを真値とし，歩行動画を用

いて提案手法で推定した BBSスコアとの誤差を評価した．BBSスコアの推定

誤差は，平均絶対誤差 4.97 ± 4.31点で，従来手法より誤差が小さく，臨床的

に許容可能な誤差範囲内であることを確認した．処理時間は見守り無しパタン

で 47 ± 52 s，見守り有りパタンで 62 ± 32 s であり，従来の評価時間を短縮

し，提案手法の有用性を示した．

本研究では，距離画像の直接的な解析手法を用いた片麻痺様歩行の解析技術

を提案し，それをベースとして実際の脳卒中後片麻痺患者のバランス機能推定
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システムを開発した．また見守り歩行レベル相当の患者の内，専門家間で評価

結果がバラツキやすい得点層に対して，提案手法が有効な精度を有しているこ

とを明らかすることで，客観的な評価の実現に貢献した．一方で想定よりも

BBSスコアが低い患者データが収集されたことにより，従来報告されている

特徴量のみでは，低得点層のスコアを十分な精度で推定ができなかった．低得

点層患者の画像データに基づき，体幹の姿勢・運動，上肢関節の角度・可動域，

歩き始めの身体重心移動に関する特徴が見られたことから，これらの特徴を含

めたより包括的な手法の可能性について将来展望にて論じた．
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第 1章

はじめに

1.1 本研究の背景

バイオメカニクス分野における歩行解析の研究は 17世紀後半から始まった

と報告されている [2]．この分野の基礎研究の主目的は，歩行の機能性・不規

則性・分類の調査である [3]．研究技術の主な応用例としては下記が挙げられ，

医学やリハビリテーションにおける応用価値が高いと考えられる．

• 正常歩行と病的歩行の判別 [4–9]

• 医学的介入やリハビリテーション前後での患者の歩行状態の評価 [10–12]

• 下肢可動性回復のためのロボット機器の制御 [13, 14]

• アスリートの歩行動作のコーチング [15, 16]

• 日常生活中の動作認識・分類 [17–20]

人間の歩容の変化は，時空間的歩行パラメータ，キネマティクス特徴，キネ

ティクス特徴，身体重心移動の特徴など，様々な生体力学的変数に影響を与え
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図 1.1 空間的歩行パラメータ．

るとされており，これらの特徴はバイオメカニクス研究において解析される代

表的な歩行特徴である [21]．時空間的歩行パラメータは，ステップ長やストラ

イド長，歩隔，つま先の向きなどの空間的パラメータ（図 1.1）と，立脚時間，

両脚支持時間，遊脚時間などの時間的パラメータ（図 1.2）に分けられる．キネ

マティクス特徴とは，骨同士で構成される関節の位置/速度/加速度，関節の角

度/角速度/角加速度などで表現される変数である．キネティクス特徴とは，関

節を動かす筋肉が発揮する筋力の強さを表す関節モーメント（図 1.3）や，筋

収縮時の筋の長さ変化様式である遠心性/求心性収縮の程度を表す関節パワー

などがある（図 1.4）．

上記の各特徴を解析するために，様々な解析技術が利用されている．まず，

歩行時に全身運動を解析可能な技術と，足部のみの運動解析が可能な技術に

分けられる．足部の解析する技術としては，床反力計 [23–27]やマット型圧力

センサ [28–30]などが従来からよく用いられている．一方で近年はセンサの小

型・軽量化が進み，インソール型の IMUセンサ [31–33]や足圧センサ [34,35]



第 1章 はじめに 3

図 1.2 時間的歩行パラメータ．Center of Mass (CoM): 身体重心, Center of Pressure

(CoP):足圧中心, Double Stance Phase (DSP):両脚支持期，Single Stance Phase (SSP):

単脚支持期
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図 1.3 関節モーメントの模式図 (山本の総説 [22] より引用)．F は外力，a はモーメント

アーム，fは筋肉の収縮力，bは関節中心から筋収縮方向への垂線である．

図 1.4 関節パワーの模式図 (山本の総説 [22] より引用)．関節モーメントと角速度が同方

向に働くか否かで，筋収縮様式の違いと収縮力の強さの推定に役立てられる．

を利用した研究が行われている．このような足部に限定した解析技術では，歩

行パラメータや足部の位置・姿勢，足圧中心などのデータを解析することが可

能である．

全身の運動解析に適している技術として，マーカベースの 3D モーション
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キャプチャ技術（以下，3D-MoCap） [36–39]が挙げられ，バイオメカニクス

分野ではゴールドスタンダードとされている．他にも身体各部に加速度セン

サ [40,41]，ジャイロセンサ [42,43]，IMUセンサ [44–47]などを装着する方法

や，マーカベースのビジョンセンサ手法 [48, 49]，あるいはマーカレスでのビ

ジョンセンサ手法 [50–53]も提案されている．これらの技術では，歩行の時空

間的パラメータをはじめとし，全身の関節位置・角度，身体重心などのデータ

を解析することが可能である．

一方で歩行解析では，足部運動だけでなく身体重心移動などの全身運動の特

徴を解析することが重要である [54]．特に脳卒中患者の片麻痺歩行などの病的

歩行では，全身運動としての解析が重要とされており [55]，足部のみの運動解

析ではなく，全身運動として歩行解析を行うことが必要である．

歩行中の全身運動が解析可能な技術には，マーカやセンサを身体に貼付する

装着式の手法と，身体に何も装着しない非装着式の手法がある．装着式の技術

としては，前述のマーカベースモーションキャプチャや加速度センサ・ジャイ

ロセンサ・IMUセンサベースの手法が挙げられる．これらの手法は，装着物

が多く，計測準備に時間を要すること，対象者の身体運動を阻害すること，装

着物の固定位置の再現性が保てないことなど，制約が多く臨床現場への応用向

きの技術ではない．一方，非装着式の技術としては，RGBセンサや距離セン

サなどのビジョンセンサで取得した RGB画像 [50, 51] や距離画像 [52, 53] を

入力として身体の位置や姿勢を推定する手法が挙げられる．これらのビジョン

ベースのマーカレス解析手法は，デバイス 1台で実現可能で，準備時間が短く，

対象者の身体運動を阻害しないことから，臨床現場での応用に適している．
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さらに人間の身体は多くの関節で構成され，運動が平面には収まらないた

め，より正確に 3Dでの身体位置・姿勢の解析が可能な技術が必要である [56]．

RGB画像を用いた 3D姿勢推定技術の場合，奥行きの情報が欠如しているた

め，3D姿勢推定の不確実性が高い．一方で距離画像を用いた手法では，奥行き

情報を直接取得するため，RGB画像を用いた手法よりも 3D推定精度が高い．

以上のことから，安価なデバイス 1台で実現可能，かつ装着物なしで簡便に

全身の 3D運動計測が可能な，距離画像を用いた歩行解析手法は，臨床現場で

の歩行評価に最も適している．このような技術として，近年は学習済みの 3D

身体関節キーポイント（以下，スケルトン）推定モデルを用いた手法が主流と

なっている．またこの手法の欠点を補う手法として距離画像を直接解析する手

法が提案されている．以降では，それぞれの手法について説明する．

1.2 スケルトンベースの歩行解析手法

近年，Kinectセンサ（Microsoft社）をはじめとして，Realsense（Intel社），

Xtion（ASUS社）などの安価な距離センサ，いわゆるコンシューマ向け距離

センサが流通している．Kinectは 2023年までにKinect v1, v2, Azure Kinect

が発売されてきたが，Kinect v1から Azure Kinectに至るまで，3Dスケルト

ンを自動検出する機能が搭載されている．さらに専用の開発ソフトウェアを用

いて計測や解析のプログラムを簡便に実装することが可能なため，多くの歩行

解析研究に使用されている [57–60]．

キネマティクス特徴の推定精度を検証した研究として，健常成人 20名のト

レッドミル上歩行を Kinectと 3D-MoCapで計測し，股関節と膝関節のピーク
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屈曲・伸展角度とストライド時間の計測結果を比較した研究がある [58]．この

研究では Kinectが膝関節の屈曲角度を 3D-MoCapよりも小さく評価し，伸展

角度を大きく評価していた．また 3D-MoCap に対する Kinect の股関節角度

の計測誤差が大きく，臨床評価には不十分な精度であると報告している．また

同様に 10 名の健常者を対象として，トレッドミルに対する Kinect の設置角

度の違いによる矢状面および前額面の下肢関節角度の推定精度が検証されてい

る [61]．この研究では，Kinectが 3D-MoCapに対して，正面位置で最も優れ

た推定精度を示した．一方で股関節，膝関節，足関節すべての関節において，

3D-MoCap に対して有意差のある関節角度の推定誤差し，臨床応用には精度

が不十分である．

また Kinectを用いた時空間的歩行パラメータ推定の精度検証が，健常者や

脳卒中後片麻痺患者を対象として行われている．まず健常者を対象とした研究

では，時間的パラメータの推定精度が低さや，センサから身体が離れた位置に

ある場合の空間的パラメータの推定精度の低下が指摘されている．例えば，21

名の平地歩行中の歩行パラメータについて 3D-MoCapと比較した研究 [57]で

は，空間的パラメータや平均歩行速度の妥当性が高かったとする一方で，踵接

地とつま先離地のタイミング推定精度に依存する時間的パラメータの妥当性が

低かったことが示されている．また健常者 5名の平地歩行中の足関節キーポイ

ント系列，膝関節キーポイント系列，および距離画像の人物シルエットから求

めた身体重心位置系列，それぞれから歩行周期を求め，時空間的歩行パラメー

タを推定した研究 [60]では，足関節および膝関節キーポイントを利用した場合

に歩行周期の検出精度が低いことが報告されている．さらに健常者 12名を対



第 1章 はじめに 8

象として平地でのステップ動作解析を実施した研究 [59] では，Kinect を 2m

以上離れた場合に，ステップ長の推定誤差が有意に大きくなることが報告され

ている．

また脳卒中後片麻痺患者を対象とした研究 [62] では，脳卒中後片麻痺患者

11 名を対象として，Kinect と 3D-MoCap システムを用いて直線歩行路にお

ける歩行パラメータを推定し，両システム間で良好な一致度，相関を示したと

報告している．一方で健常者 45名と脳卒中後片麻痺患者 38名を対象として，

平地歩行中の時空間歩行パラメータの推定精度を比較した研究では，脳卒中後

片麻痺患者群における，短時間の歩行パラメータ（例：両脚支持時間）やつま

先離れの検出が必要な歩行パラメータ（例：遊脚時間）の推定精度が低いこと

が報告されている [63]．

以上より，スケルトンベースの歩行解析手法は，足部の位置を利用したつま

先離地などの検出や，それを利用した時空間的パラメータの推定精度が低いこ

とがわかる．また健常者と比較して脳卒中患者での推定精度の低さも指摘され

ており，臨床応用に十分な精度を有していないと考えられる．

1.3 距離画像ベースの歩行解析手法

次に距離画像そのものを解析する距離画像ベースの歩行解析研究について説

明する．前述した 3Dスケルトンベース技術の欠点を補完するために，距離画像

データから姿勢推定および運動解析を行う手法が提案されている [52, 64–74]．

まずこれらの手法は，学習ベース手法 [52,64–66]と，非学習ベース手法 [67–74]

に分けることが可能である．前者は大量の学習データの収集が必要であり，疾
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患やその重症度に応じて歩容の特徴が異なる病的歩行を対象とする場合には現

実的ではない．後者は，学習データが不要であり，病的歩行の解析に適した手

法であると考えられる．

さらに非学習ベース手法は，モデルベース手法 [70–72, 75–77] とモデルフ

リー手法 [67–69, 73, 74, 78–81]に大別することが可能である．モデルベース手

法は，身体の分節構造を楕円・円柱などの幾何学図形で表現する手法であり，

幾何学図形の連結モデルを用いて関節位置や角度などの運動学的パラメータを

表現することが可能である．一方で 3D点群データに対して立体図形を当ては

める膨大な計算コストや，モデルの当てはめ誤差が発生するため，短時間での

処理を要求される臨床現場への応用には不向きである．モデルフリー手法は，

身体表面の特徴（形状，テクスチャ，エッジなど）を解析する手法であり，例

えば，サイズ正規化シルエット系列 [78]，Gait energy image [79]，周波数領域

特徴 [80]，局所バイナリパタン [81]などを扱う手法がある．この手法では，立

脚/遊脚時間，ステップ長，歩隔，つま先角度，歩行速度などの歩行パラメー

タを明示的に表現することはできないが，モデル当てはめ誤差が生じず，計算

負荷が小さいという点で，現場への応用に適している．

Kinect で取得した距離画像を用い，モデルフリー手法で歩行解析を行った

研究として，例えば下記がある．Stoneと Skubicは，健常者の平地歩行の距離

画像から得た人物シルエット系列の相互相関係数を計算し，歩行周期の検出，

時空間的歩行パラメータを推定した [67]．しかし彼らの手法では，1歩行周期

をさらに位相分割することができず，詳細な歩行パラメータの推定は不可能で

ある．またセンサから 4m以上離れた場合に正確な歩行パラメータの推定が難
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しく，十分な歩数を計測できないという点で臨床現場での応用には不向きであ

る．Auvinetらは，距離画像を用いて歩行解析を行う上で特有の，歩行中に地

面と足部の距離が近づくことで踵接地やつま先離地の検出が困難になる問題の

解決手法を提案している [82]．彼らは両膝関節間距離の変化を用いることで，

健常者のトレッドミル上歩行において 3D-MoCapよりも小さい誤差で踵接地

を検出できることを報告している．

また上記以外にも，歩行の対称性を評価する指標の研究が行われている．

Auvinetらはトレッドミル上歩行中の距離画像系列を平均化し，歩行の非対称

性を評価する新しい指標（Longitudinal Asymmetry Index：ILong）を提案し

ている [83]．彼らの手法では，従来指標の Constant Relative Phase [84]と比

較して，良好な性能を示したと報告している．また Nguyen らも同様に，ト

レッドミル上歩行中の距離画像から上半身と下半身それぞれの左右対称性を評

価する手法を提案している [74]．しかしこれらの手法はいずれも健常者を対象

としており，かつ対象者とセンサとの距離が一定であることを前提とした解析

手法である．そのためトレッドミルのような大型設備を保有しない環境下での

歩行評価には適さない．

以上のように，距離画像を直接解析することで歩行周期検出や歩行パラメー

タを推定する技術が提案されている．一方でスケルトンベース手法の課題であ

る足部位置・姿勢を精度不足を解決する手法は提案されていない．また歩行周

期の位相分割やそれに基づく詳細な歩行パラメータの推定に取り組んだ研究は

なく，臨床現場で患者の歩行評価に必要な精度および粒度での歩行解析技術は

実現されていない．
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1.4 本研究の位置づけ

病的歩行の解析には，歩行中の全身運動の特徴を 3Dで計測・解析すること

が重要であり，それには 1台のデバイスで実現可能な距離画像センサが適して

いることを述べた．

距離センサを用いた歩行解析手法として，スケルトンベースの解析手法と距

離画像ベースの解析手法を説明した．しかし従来の歩行解析技術では，十分な

精度・粒度で足部位置・姿勢を推定したり歩行周期を位相分割する技術が提案

されていない．

また歩行分析に基づく脳卒中後片麻痺患者の身体バランス機能の推測は，臨

床現場でリハビリテーションの介入方針や患者の機能回復の予後予測を行うた

めに非常に重要である [85, 86]．一方で従来研究では，歩行中のキネマティク

ス特徴やその他の歩行パラメータを解析する技術の提案が中心であり，身体バ

ランス機能を自動的に評価するシステムは提案されていない．

そこで本研究で取り組む課題を下記の通りに整理する．

• 距離画像ベースの高精度な足部位置・姿勢推定および歩行位相分割技術

の開発

• 距離画像ベースの歩行解析を通して脳卒中後片麻痺患者の身体バランス

機能を自動評価するシステムの開発

本章以降，第 2章「相互制約付き動的計画法を用いた区分線形近似による歩

行位相分割とフットプリント検出」では，正常歩行と疑似片麻痺歩行中の距離
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画像を直接的に解析することで，歩行位相分割と足部の位置・姿勢推定を行う

技術を提案する．また提案手法を用いて歩行パラメータを算出し，従来のスケ

ルトンベース手法よりも高精度な歩行解析が可能であることを示す．

さらに第 3章「RGBDセンサを用いた歩容解析に基づく脳卒中後患者のバ

ランス能力評価システム」では，回復期リハビリテーション病院にて収集した

実際の脳卒中後片麻痺患者の歩行データを用いて，歩行解析および身体バラン

ス機能推定モデルの開発を行う．また歩行計測から解析までを自動的に行うシ

ステムを開発し，解析処理速度と身体バランス機能の推定精度から臨床現場で

の実用性を評価した結果を報告する．

第 4章では本研究全体に関する考察，第 5章では結論を述べる．
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第 2章

相互制約付き動的計画法を用いた
区分線形近似による歩行位相分割と
フットプリント検出

第一の研究では，RGBD画像系列を用いた非装着式の歩行計測手法を提案

し，医療/健康アプリケーションでよく使用される 4つの歩行パラメータ，単脚

支持時間（Single Support Duration; SSD），ステップ長（Step Length; SL），

つま先角度（Tone Angle; TA）を推定する [8]．このため図 2.1に示すように，

画像系列を歩行位相（立脚相と遊脚相など）に分割して SSD と DSD を計算

し，さらに地面平面上のフットプリントを抽出して TAと SLを計算する．

歩行位相の分割では，まず距離画像解析を用いて左右の足部の位置系列を

抽出する．足部は立脚相では位置が静止し，遊脚相では位置が移動するため，

立脚相と遊脚相の分割を位置系列の区分的線形近似の問題として扱うことと

した．
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歩行周期中の状態遷移の定義では，左右で順番に立脚期や遊脚期が発生し，

両足の遊脚期が同時に発生しないことが定められている [87]．例えば左足のつ

ま先が地面が離れた後に，右足の踵が地面に着くことを指す．従来手法のよう

に歩行中の左右の足部位置系列を別々に解析し，それぞれで左つま先の離地や

右踵の接地を検出する場合，左右の位相の時間的な前後関係は保証されない．

例えば，左のつま先離地が右の踵接地よりも早く検出された場合，両脚が地面

を離れ，走行状態にあることになる．

本研究では，病的歩行を呈する患者が BBS推定のための歩行テストを行う

場面を想定する．また，一般的な歩行者や競歩を行うアスリートなど，歩行中

に走行状態へ遷移する可能性がある者は対象としない．そのため，対象者が常

に歩行状態にあることを前提とし，歩行位相遷移の定義と整合が取れるような

状態遷移の推定が可能な位相分割手法を開発する必要がある．第一の研究で

は，左右足部の位置系列を同時に解析し，相互制約を加えた区分線形近似を行

うことで，上記のような歩行周期の前提を保証する手法を提案する．

フットプリント抽出に関しては，歩行者の移動軌跡を抽出するために，歩行

者の足部の特徴点を画像平面上に累積することでフットプリントを抽出する特

徴点累積手法 [88] をベースに提案手法を構築している．しかし，上記手法で

は立脚相だけでなく遊脚相でも特徴点が累積するため，フットプリントが不鮮

明になる．そのため歩行者検出の目安にはなるが，TAや SLの正確な推定に

は適用が難しいと考えられる．そこで，この手法を拡張し，前述した歩行分割

法によって検出される立脚相のみの特徴量を累積することで，より明瞭なフッ

トプリントを得ることが可能な手法を提案する．本技術の貢献は主に以下の 2
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点に集約される：

歩行位相分割のための相互制約付き区分線形近似

区分線形近似は広く研究されており，曲線 [89,90]，波形 [91]，多角形 [1]に

対して動的計画法（Dynamic programming; DP）を用いた多くのアプローチ

が提案されている．これらは単一の図形や曲線など（例えば，単一の閉曲線の

点系列）を対象にしているが，我々は左右両足の位置系列を 2つの点列として

扱い，位相を分割することを目標とする．具体的には，左右の足部の位置系列

に対して DPに基づく区分的線形近似の枠組みを設計し，無効な状態や遷移を

禁止する．

つま先のエッジ点の累積を利用したフットプリント抽出

Bouchrikaらの手法 [88]では歩行位相に関係なく特徴点を累積しているが，

提案手法では立脚相にのみつま先エッジ点を累積することで，遊脚相での不要

なエッジを排除したより鮮明なフットプリント抽出に寄与している．また，元

の手法では画像平面上に特徴量を累積していたが，距離画像解析により地面平

面上に蓄積することで，実空間における TAと SLを得ることが可能である．

2.1 関連研究

2.1.1 歩行位相分割

歩行周期は研究目的に応じて様々な位相数へと分割される．例えば，立脚期

と遊脚期で構成される 2相モデル [92, 93]，前後半の立脚期と遊脚期で構成さ

れる 3相モデル [94]などがある.ここで前半の立脚期は踵接地から立脚中期ま



第 2章 相互制約付き動的計画法を用いた区分線形近似による歩行位相分割とフットプリント検出16

で，後半の立脚期は立脚中期からつま先離地までである．さらに分割数を増や

した 6 相モデル [95] は，踵接地，荷重応答期，立脚中期，立脚後期，遊脚前

期，遊脚期で構成される．立脚相と遊脚相の 2相が歩行の最も基本的な位相を

捉えているため，この研究ではビジョンセンサで観察することが可能な 2相モ

デルを用いる．

機械学習ベースアプローチ

機械学習ベースのアプローチは典型的に，位相の真値ラベル付きのデータ

セットを用いて，歩行位相分割モデルの学習を行う．Liu と Sarkar [96] は，

population hidden Markov model を使い，歩容認証のための歩行位相分割技

術を提案している．彼らは歩行周期を時間の長さに関わらず一律に 20相に分

割したため，立脚時間などの歩行パラメータを計算するために必要な立脚相

や遊脚相などの物理的な歩行位相に対応していなかった．Tangら [97]は，フ

レーム差分から生成される連続シルエット差分マップを用いて，つま先離地を

検出する深層学習ベースの手法を提案している．しかし，単脚立脚時間や遊脚

時間，両脚支持時間などの歩行パラメータを算出するためには，立脚期の開始

基準となる踵接地の検出だけでは不十分であり，遊脚期の開始基準となるつま

先離地の検出も必要となる．

さらに，十分な量の学習データが必要であることも，機械学習ベースのアプ

ローチの欠点であり，医療／健康分野に適用する場合には問題となる．例え

ば，特定の疾患の患者を集め，病院や介護施設にデータ収集システムを設置す

る場合など，医療分野への応用では，対象となる疾患ごとに学習データを収集
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するのは手間がかかるためである．また，健常者を対象とした汎用的な事前学

習済みモデルを構築することは可能だが，健常者と患者の歩行には大きな違い

があるため，病的歩行に対してはうまく機能しない可能性がある．

ルールベースアプローチ

ルールベースのアプローチでは，機械学習ベースのアプローチでは必要な学

習データなしに，事前に定義されたルールを使用して歩行位相を分割する．

Auvinetら [82]は，歩行中の矢状面上の左右膝関節間距離の変化から，その

距離の極大値を探索することで，RGBDセンサを用いて踵接地を検出するア

ルゴリズムを提案している．一方でつま先離地は検出できないため，遊脚期や

両脚支持期の位相推定が困難である．

Latorreら [63]は，Microsoft Kinect SDK を用いて抽出した足関節と仙骨

関節の前後距離から，踵接地とつま先離地を検出する方法を提案した．具体的

には，足関節が仙骨の最も前方あるいは後方に位置するときに，踵接地とつま

先離地を検出する．しかし，この方法は左右足部の情報を独立して処理するた

め，前述した歩行位相遷移の原則を保証するものではない．そのため前述した

歩行周期中の状態遷移における左右足部の関係性を保証できず，誤った状態や

遷移を推定する可能性がある．

片麻痺患者の歩行を対象とした場合，歩行途中で停止したり，麻痺側の足が

地面に引っ掛かり振り出しに時間がかかることなどが想定される．従来のルー

ルベース手法では，麻痺側肢を振り出そうとして失敗した場合に，健側肢が接

地している状態にもかかわらず，麻痺側肢の遊脚と立脚の状態遷移が発生する
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ことが考えられる．また機械学習手法では，スムーズに状態遷移がなされる健

常者のデータをもとに学習しているため，立ち止まったり，足を振り出せずに

一定時間経過すると，誤って遊脚や立脚への遷移を推定してしまうリスクが挙

げられる．

2.1.2 フットプリント検出

いくつかのフットプリントの抽出方法が報告されている．一つ目は，専門家

や特別な機材を必要としない手法として足裏にインクをつけ，静的な立位にて

足底の形状測定を行うフットプリント法である [98–100]．この方法は，偏平足

などの足部形状評価やインソール・下肢装具製作のために利用されている．歩

行などの動的な運動に対する方法として，従来はマット型圧センサや床反力計

を用いて評価する [101, 102]．本研究で採用するビジョンベース手法では，足

底の情報は取得できないため，前方から撮影した際に抽出できる足部の輪郭を

フットプリントとして扱うこととした．

ビジョンベースのフットプリント検出のアプローチとして，歩行画像系列の

各画素における特徴点（コーナーやエッジなど）を時間的に累積させる手法が

挙げられる [88, 103, 104]. このアプローチでは，立脚相（すなわち，踵接地か

らつま先離地までの時間）の間，足が同じ場所に留まることで，経時的な足の

特徴点が累積することにより，立脚相における足の位置が強調されることを利

用している．

Bouchrika らの研究 [88] では，一連の踵接地は，経時的に投票されるコー

ナー点によって強調され，歩行者検出の指標として有用であることが実証さ
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れた．Jung ら [103] は，立脚相におけるより正確な足の位置を得るために，

Bouchrikaらの研究をさらに拡張した．頭部上下位置系列の極大値からキーフ

レームを抽出し，各キーフレームでのシルエットを用いて累積画像を生成する

ことで，各ステップでの足の位置をより明瞭に抽出した．これら 2 つの手法

は，画像平面上の特徴点を蓄積するため，世界座標系でのフットプリントの位

置・姿勢を推定することができない．

対照的に，Evansら [104]はキャリブレーションされた複数のカメラを用い

て，床平面（すなわち世界座標系）上のフットプリントを抽出した．彼らは，

床平面上の複数の視点とフレーム（時間）にわたって前景ピクセルを蓄積し，

閾値処理を用いてフットプリントを抽出した．しかし，この方法は，現場で複

数カメラの設置が必要であり，カメラキャリブレーションに時間がかかるた

め，臨床現場では実用的ではない．

2.2 提案手法の概要

本節では，提案手法の概要を図 2.1 と共に述べる．背景画像と入力距離画

像が与えられた場合，距離画像ベースの背景差分法 [105]を用いて人物のシル

エットを抽出し，それを世界座標系に投影して 3次元点群を取得する．

次に，左右の足部の点群を抽出し，その重心（Center of Gravity; CoG）を

計算する．さらに CoGの時間系列を入力とし，提案する区分線形近似アルゴ

リズムを用いて歩行位相分割を行う．その後，RGB画像からエッジを抽出し，

世界座標に投影して 3次元エッジ点群を得る．

次に，3Dエッジ点の垂直位置に基づいて足部エッジ点を選択し，上述の歩
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行相分割により得られた立脚相中のエッジ点の累積を行う．最後に，床面上に

累積されたエッジ画像に足部モデルを当てはめた結果に基づき，SLや SSDな

どの時空間歩行パラメータを算出する．

2.3 前処理

2.3.1 床平面検出

複数のフレームを平均化した背景 RGB画像と距離画像から床平面を抽出す

る．床平面のうち，あらかじめ決められた色のカーペットが敷かれている領

域を，クロマキー技法 (図 2.2)を用いて検出する．床平面領域の距離データを

3D点群に変換し，RANSAC [106, 107]で求めた平面モデルを用いて床平面の

パラメータを取得する．

2.3.2 シルエット抽出

背景画像と入力距離画像から，観測確率に加え距離値を考慮した距離ベース

背景差分 [105]を用いてシルエットを抽出した．入力距離画像と抽出されたシ

ルエットの例を図 2.3 (a), (b)に示す．

2.3.3 世界座標系の設定

歩行方向に対する左右の足の向きと SLを計算するために，世界座標系の Z

軸を歩行方向と一致させ，Y 軸と X 軸をそれぞれ垂直方向 (すなわち床面の

面法線方向)と残りの直交方向 (すなわち左右方向)と定義する．
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(a) (b) (c)

図 2.2 床平面検出：(a)距離画像座標に投影された平均背景 RGB画像，(b)検出された床

平面の領域（赤色で表示），(c)平均背景距離画像．各画像において，黒い画素は，距離を観

測していない領域，または RGB画像と距離画像の間に対応関係がない領域を示す．

このために，身体 CoG系列から歩行方向を推定する．まず，抽出したシル

エットの点群の CoGを計算し（図 2.3 (c)），CoGの時系列に移動平均フィル

タを適用して身体 CoG 系列を得る．そして，身体 CoG の始点と終点を結ぶ

線分を用いて歩行方向を求める．以降の計算はすべてこの世界座標系で行う．

2.3.4 足部位置抽出

歩行位相分割のための入力データとして，人物の 3 次元足部点群から左右

の足部位置系列を抽出する．まず，人物の点群の上端と下端を抽出し，それら

の垂直方向の差として人物の身長を計算する．次に，各フレームの左右の足部

CoG位置を抽出する．
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(a) (b) (c)

図 2.3 シルエット抽出と足の位置抽出：(a)入力距離画像，(b)抽出されたシルエット，(c)

抽出されたシルエットの点群．(c)において，シアンとマゼンタはそれぞれ右足と左足の点

群を表し，各足の球は足部 CoG位置を示す．

点群のうち，下から体高の 10%以内に含まれる点群（図 2.3 (c)）を足部点群

として抽出し，両足の点群の CoGを計算する．左右の足の点群（図 2.3 (c) の

マゼンタとシアンの点）は，両足の CoGの左右位置に基づいて両足の点群を 2

分割して抽出する．各点群の CoGは，右足と左足の位置（ 図 2.3 (c) のマゼン

タと青の球）として定義される．このとき t番目のフレームにおけるCoGの Z

軸成分を zcogf (t)とし，f は左もしくは右足部を表す変数 f ∈ F = {left, right}

である．

しかし，上述した手法では，セルフオクルージョンにより後足が十分に見え

ない場合（例えば，足をが交差するように歩いている場合），足の位置を推定

できないことがある．具体的には，後足が見えない場合，もう一方の見えてい
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る足の点群を左右の足として分割せざるを得ず，後足の位置が見えている前足

の位置の近くに位置してしまう．

Z 軸成分は歩行中に大きく変化するため，誤検出による急激な変化と通常の

歩行動作との区別がつきにくいのに対し，X 軸成分は歩行中でも比較的変化

が少ないため，歩行方向成分 (Z 軸)よりも左右軸成分 (X 軸)で外れ値がより

明瞭に観察される．そこで，左右軸成分 ( 図 2.4 (a) )をもとに外れ値を特定

することで，誤検出を行う．具体的には，元の時系列が平滑化された時系列と

比較し，明らかにもう一方の足の位置に偏っている場合に誤検出が起きている

と判断する．

まず，t番目のフレームにおける足の位置の左右軸 (X 軸)成分を xrmcog
f (t)

と定義し，移動平均フィルタを用いて平滑化したものを hatxrmcog
f (t) と定義す

る (図 2.4 (a))．ここで，T = {1, . . . , T}として定義される時間インデックス

の集合が与えられ，T は時系列の長さであり，正しい推定（すなわち，インラ

イア）の場合は次式で定義される．

T IL
f = {t | t ∈ T , gf

(
xcog
f (t) − x̂cog

f (t)
)
< xthresh}． (2.1)

ここで，xthreshは外れ値検出の閾値，gf は足の位置が反対側に偏っているかど

うかを判定するための左右足 f の符号を返す関数であり，左足の場合は +1，

右足の場合は −1を返す．次に，外れ値集合 T に 3次スプライン補間を適用

して外れ値の Z 軸成分を復元し，t番目のフレームにおける補間された Z 軸

成分を z̃cogf (t)と定義する．t番目のフレームにおける最終的な足の位置は次式
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で得られる．

zf (t) =

 zcogf (t) (t ∈ T IL)

z̃cogf (t) (otherwise)
. (2.2)

2.4 DPを用いた区分線形近似 [1]

我々は，Kolesnikovらによる DPを用いた区分的線形近似 [1]に基づいて，

歩行位相分割法を構築する．彼らの提案手法は，2D多角形曲線の区分線形近

似を目的としているが，提案手法では足部の位置列 zf (t)に適用する．本節で

は，提案手法をより良く理解し，本論文の独自性を明確にするために，我々の

問題設定に対する Kolesnikovらの手法を簡単に説明する．また，簡単のため，

本節では左右足部に関する添え字を省略する．点列の区分線形近似は，以下の

2つの問題のどちらかで定義される：

min-ϵ問題: 近似誤差の合計が最小になるように，与えられた線分数 M の多

角線で近似する問題とmin-#問題: 近似誤差が与えられた最大許容範囲 ∆tol

を超えない最小の線分数で，多角線で近似する問題である．

まず，min-ϵ問題を説明する．時間 t，空間 z(t)の 2次元領域における点列と

して，足部の位置系列を P1:T = {p(1), . . . , p(T )} = {(1, z(1)), . . . , (T, z(T ))}

と再定義する．m番目の線分が tm 番目のフレームで終わるとすると，2次元

点列 Ptm−1+1:tm = {p(tm−1 + 1), . . . , p(tm)} の部分集合は m 番目の線分に属

する．当然，最初の線分は最初のフレームから始まる，つまり t0 = 0 であり，

最後の (M 番目の)線分は T 番目のフレームで終わる，つまり tM = T であ
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(a) 元の足部位置系列と移動平均（MA）位置系列

(b) 3次スプライン補間を適用した足部位置系列

図 2.4 異常値検出と補間処理を実施した例．



第 2章 相互制約付き動的計画法を用いた区分線形近似による歩行位相分割とフットプリント検出27

る．ある線分の線分方程式が下記の式にて与えられる．

ẑ(t; a, b) = at + b. (2.3)

ここで，aと bはそれぞれ線分の傾きと切片であり，最小二乗法によるm番目

の線分の近似誤差は，次式の通りである．

e2(tm−1, tm) = min
a,b

tm∑
t=tm−1+1

(ẑ(t; a, b) − z(t))2. (2.4)

その結果，M 本の線分における累積誤差の最小値 E(M)は次のようになる．

E(M) = min
{tm}

M∑
m=1

e2(tm−1, tm). (2.5)

この最適化課題を解くために，DPアルゴリズム [108]を用いる． ここで，

離散的な 2D状態空間 Ω = {(t,m) | t = 0, . . . , T, m = 0, . . . ,M}を定義し，

各状態 (t,m)は，t番目のフレームまでの 2D点列の区分的線形近似の部分問

題，すなわち，P1:t = {p(1), . . . , p(t)}をm本の線分で表す．ここで DPの枠

組みでは，状態 (T,M)はゴール状態とみなされ，状態 (0, 0)は初期状態であ

ることに注意する．さらに，初期状態 (0, 0)からゴール状態 (T,M)までの経

路は，最終フレームと線分インデックス Q = {(tm,m) | m = 0, . . . ,M}の組

の集合を含むため，M 本の線分による区分線形近似のある経路に対応する（図

2.5）．

残る問題は，式 (2.4)を満たす最適経路をどのように求めるかである．その

ために，状態 (t,m)における累積誤差D(t,m)，すなわち，部分線分の本数m

による部分線分 P1:t の最適区分線形近似によって与えられる最小誤差を定義

する．初期状態での累積誤差を D(0, 0) = 0として初期化した後，各状態に対
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して再帰的に次のように更新する．

ts(t,m) = arg min
t′∈T (t)

{D(t′,m− 1) + e2(t′, t)}, (2.6)

D(t,m) = D(ts(t,m),m− 1) + e2(ts(t,m), t), (2.7)

ここで，ts(t,m)は現在の状態までの累積誤差 D(t,m)を最小にする前の状態

の時間のインデックスである．また T (t)は t番目のフレームに遷移可能な前

の状態の時間のインデックスの集合であり，単純に T (t) = {t′ | t′ < t}と定義

される．更新によりゴール状態 (T,M)に到達した場合には，再帰的に ts(t,m)

でバックトラックして最適経路を求める．例えば，m番目の線分 tm の終了フ

レームの最適解が与えられたとき，前の状態は単純に tm−1 = ts(tm,m)と導出

される．

次に，min-#問題について述べる．この問題は線分ごとの最大誤差許容値

∆tol を考慮するため，式 (2.6) で示す時間インデックスの集合 T を T (t) =

{t′ | t′ < t, e2(t′, t) < ∆tol}という条件を満たすように定義し直す．次に，最

後のフレームの状態 {(T,m) | m = 1, . . .}を走査し，初期状態 (0, 0)から到達

しうる最小値M∗ を求める．実際には，(T,m) = −1 ∀mを初期化し，累積コ

ストが負でない線分の個数集合M = {m | D(T,m) ̸= −1}を設定し，最小値

M∗ = min
m∈M

m を求めることで実現する．ゴール状態 (T,M ∗) が得られれば，

min-ϵ問題の場合と同様に最適経路が得られる．
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(a) 足部位置系列の近似区分線（赤線：近似区分線，赤四角：線分の終点）

(b) 状態空間 Ωでの最適経路（黒四角：線分の端点）

図 2.5 区分線形近似の例．

2.5 DPによる相互制約付き区分線形近似

2.5.1 歩行周期の状態と遷移の定義

本章の冒頭で述べた通り，上記の区分線形近似を左右の足部位置系列それぞ

れ独立に直接適用すると，必ずしも合理的な位相遷移が得られない場合がある

（例えば，左右の足で同時に遊脚相が起こる）．そこで，左右の足の間の合理的

な位相遷移を保証するために，相互に拘束された区分的線形近似に拡張する．
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表 2.1 歩行周期の状態定義

上体 右足の位相 左足の位相

s1 遊脚 立脚

s2 立脚 (先行肢) 立脚 (後行肢)

s3 立脚 遊脚

s4 立脚 (後行肢) 立脚 (先行肢)

図 2.6 歩行状態の遷移．

より具体的には，表 2.1 で示すように，歩行周期に対して 4 つの状態 S =

{s1, s2, s3, s4}を定義し，さらに図 2.6に示すように，周期的な状態遷移 H =

{(s1 → s2), (s2 → s3), (s3 → s4), (s4 → s1)} を考える．そして，従来法では左

右の足それぞれ独立に時間と線分数 Ω の 2 次元離散空間を定義していたの

に対して，提案手法では DP の 2 次元離散状態空間を Ωcycle = {(t, s) | t =

0, . . . , T, s ∈ S}と定義する．そして，状態空間 Ω（図 2.7 (b)）で最適経路を

求めるのに対し，従来法は状態空間 Ωcycle（図 2.5 (b)）で最適経路を求める．
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(a) 相互制約付き区分線形近似の結果例

(b) 状態空間における状態遷移 Ωcycle

図 2.7 提案手法による歩行位相分割結果の画像．各図において，シアンは右足，ピンクは

左足を示す．(b)において，Keep（K）は維持遷移，Switch（S）は切り替え遷移を表す．

2.5.2 位相依存の区分線分

従来の区分線形近似では，区分線分に対する制約を考慮していなかったが，

より合理的な近似のために制約を加える．具体的には，足部の位置は遊脚相で

は移動し，立脚相では基本的に静止することであり，この性質を強制するよう
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表 2.2 状態遷移における線分の維持／切り替えの条件

状態遷移 右足 左足

(s1 → s2) Switch Keep

(s2 → s3) Keep Switch

(s3 → s4) Keep Switch

(s4 → s1) Switch Keep

に線分方程式を修正する：

ẑ(t; a, b) =

 b (stance phase)

at + b (swing phase)
. (2.8)

また，各立脚相と遊脚相は一定時間続くべきであり，立脚相が始まってから

短時間（例えば数ミリ秒）で遊脚相が始まることは考えにくいため，各相の最

小経過時間と最大経過時間を ∆tmin と ∆tmax として導入し，後で状態遷移の

範囲を狭めるために使用する．

2.5.3 状態の維持／切り替え

さらに，各足の立脚相は三つの状態（右足は s2, s3, s4，左足は s4, s1, s2）

にわたって続くのに対し，遊脚相は表 2.1で示したように 1つの状態（右足は

s1，左足は s3）だけで表現される．遊脚と立脚の各相を 1本の線分で近似する

のが合理的であるため，表 2.2でまとめたように，立脚相内の状態遷移では 1

本の線分を維持し（これを維持遷移と呼ぶ），立脚相と遊脚相の間の遷移では

新しい線分に切り替える（これを切り替え遷移と呼ぶ）．
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このことを DPの枠組みを使った区分線形近似に反映させるために，前の状

態 (t′, h(s)) から現在の状態 (t, s) に遷移するときの線分当てはめの誤差を特

別に扱う必要がある（ここで h(s)は現在の状態 sから h(s) = (s − 1) mod 4

として定義される前の状態への写像関数である）．例えば，左足が前の状態

(t′, s3)から現在の状態 (t, s4)に遷移したと仮定した場合，t′番目のフレームで

はなく，状態 s2 の開始時 (tp 番目のフレームとする)が起点となるため，tp 番

目のフレームと t番目のフレームの間の線分当てはめ誤差 e2left(t
′, t)だけでは，

立脚相が既に始まっているため意味をなさない．これを考慮すると，更新され

た線分当てはめ誤差 ẽ2left(t, t
′, s4)は，まず，e2left(t

p, t′) を計算し，tp 番目のフ

レームと t′ 番目のフレーム間の線分当てはめ誤差 e2left(t
p, t)を加える．

その結果，最適な前状態の時間インデックス ts(t, s)だけでなく，最適な前

段階の各足の時間インデックス tpf (t, s)も記憶する必要がある．つまり，各足

部の時間インデックス tpf (t, s)は，その遷移が維持遷移であれば，最適な前状

態に従う：

tpf (t, s) =

 tpf (ts(t, s), h(s)) ((h(s)→s) ∈ Hkeep
f )

t (otherwise)
, (2.9)

ここで，Hkeep
f は，足 f の維持遷移の集合で，{tablename2.2 で定義される．

最後に，更新された線分当てはめ誤差 ẽ2f (t′, t, s)を次のように計算可能である．

ẽ2f (t′, t, s) = e2f (tpf (t, s), t) − e2f (tpf (t, s), t′). (2.10)
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2.5.4 再帰的更新

ここで，DPの枠組みを用いて，相互制約付き区分線形近似の再帰的更新を

定義する．具体的には，最適な前状態の時間インデックス ts(t, s)と累積誤差

Df (t, s)を次のように定義する．

ts(t, s) = arg min
t′∈T (t,s)

∑
f

{Df (t′, h(s)) + ẽ2f (t′, t, s)} (2.11)

Df (t, s) = Df (ts(t, s), h(s)) + ẽ2f (ts(t, s), t, s), (2.12)

ここで，T (t, s) = {t′ | tst(t)≤ t′≤ ten(t), ẽ2f (t′, t, s)<∆tol ∀f}は起こりうる前

状態の時間インデックスの集合であり，tst(t)と ten(t)は次式で定義される．

tst(t) = max(t− ∆tmax, 0) (2.13)

ten(t) =

 T − 1 (t = T )

max(t− ∆tmin, 0) (otherwise)
. (2.14)

なお，∆tmin と∆tmax は，上で説明したように，それぞれ各状態の最小経過時

間と最大経過時間を表す．さらに，初期状態での累積誤差は Df (0, s) = 0 ∀s

として初期化されることに注意する．更新が完了したら，最適な終端の状態を

以下の通り決定する．

s∗ = arg min
s

∑
f∈F

Df (T, s)． (2.15)

次に，従来の区分線形近似の場合と同様に，保存されている過去の最適状態

ts(t, s) の時間インデックスに基づいてバックトラックを行い，状態遷移を求

める．
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2.6 フットプリント検出

2.6.1 床平面上でのつま先エッジの抽出

概要で述べたように，フットプリント検出の最初のステップは，床平面

上のつま先エッジ抽出である．そのために，まず入力 RGB 画像からエッジ

検出手法 [109] を用いてエッジ画像を抽出し，画素毎のエッジ尤度を出力す

る（図 2.8 (a)）．次に，RGB 画像のエッジ画素を距離画像座標のエッジ画

素に変換し，各エッジ画素の距離値に基づいて世界座標系に変換したエッジ

画素を投影することで，3D エッジ点群を得る (図 2.8 (b))．その後，床平面

[x̂cog
f (t), 0, zf (t)]T 上の足の位置を中心に t 番目のフレームで 3D つま先 ROI

を XROI
f (t) = {[x, y, z]T | |x − x̂cog

f (t)| < ∆x, |y| < ∆y, |z − zf (t)| < ∆z}と

し，実験的に ∆x = 20 cm，∆y = 3 cm，∆z = 20 cmとした．

次に，画像解像度 1cm2/pixel の床平面画像上で，各足の立脚相の

ROIXROI
f (t) 内の 3D つま先エッジを投票する．ハイパーパラメータ α を

w = 1 − e−αI とし，その範囲を [0, 1]とするソフト閾値を用いて，エッジ強度

I に対する投票重み w を設定する．(i, j)番目の画素でのつま先エッジの投票

値を Ivote(i, j)として取得し，距離減衰を伴うマックスプーリングを使って平

滑化する：

Ĩvote(i, j) = max
(p,q)∈N(i,j)

(Ivote(p, q)e−β
√

(i−p)2+(j−q)2), (2.16)

ここで，N(i,j) は (i, j)周辺の最近傍領域，β は距離減衰を制御するハイパーパ

ラメータである．
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(a) エッジ尤度を示す画像 (b) 3Dエッジ点群

図 2.8 つま先のエッジ抽出．(a) では，ピクセルが明るいほどエッジの尤度が高い．(b)

では，シアンとマゼンタがそれぞれ右と左のつま先のエッジ点を表している．

2.6.2 楕円モデル当てはめによる足部姿勢推定

平滑化した投票画像 Ĩvote に楕円モデルを当てはめることで，フットプリン

トの位置と向きを推定する．ここで，aと bはそれぞれ長軸と短軸の半分の長

さ，(i0, j0)は楕円の中心，θは長軸の傾斜角であり，楕円モデルは 5つのパラ
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メータ θ = {a, b, i0, j0, θ}で定義でき，その方程式は次のようになる．

f(i, j;θ) =

{
(j − j0) cos θ + (i− i0) sin θ

a

}2

+

{
(j − j0) sin θ − (i− i0) cos θ

b

}2

−1=0. (2.17)

次に，パラメータ θ の楕円に属する画素集合M(θ)を導入し，投票の和を最

大化することにより最適パラメータ θ∗ を求める．

θ∗ = arg max
θ

∑
(i,j)∈M(θ)

Ĩvote(i, j). (2.18)

2.7 歩行特徴抽出

本節では，提案手法を用いた 4つの歩行特徴量を紹介し，実験での精度評価

を行う．

単脚立脚時間（Single support duration; SSD） [s]

SSDとは，左右どちらかの足が立脚相にあり，もう一方の足が遊脚相にある

時間のことである．具体的には，左足の状態 s1 と右足の状態 s3 の継続時間で

ある（表 2.1と図 2.6）．

両脚立脚時間（Double support duration; DSD） [s]

DSDとは，両足が立脚相にある時間のことである．具体的には，左右どちら

かの足が前に出ている場合は，それぞれ s4または s2となる（表 2.1と図 2.6）．

つま先角（Toe angle; TA） [deg]

TAは，フットプリントに合うように選択された楕円の向きである．TAは

歩行方向に平行な場合は 0 [deg] となる．また，TAが外方向の場合は正とな
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(a) つま先角 (b) ステップ長

図 2.9 フットプリントから求めた空間的歩行パラメータ

り，その逆の場合は負となる（図 2.9 (a)）．

ステップ長（Step length; SL） [m]

SLは，歩行方向に時間的に隣接する左右の立脚相で当てはめられた楕円モ

デルの前端間の距離差である．（図 2.9 (b)）．

2.8 実験

2.8.1 セットアップ

実験参加者 10人（男性 8人，女性 2人）からデータを収集した．各参加者

には普段通りに歩行路を歩いてもらった．さらに，病的歩行に対する本手法の

有効性を検討するため，右片麻痺患者を模倣し，右足の SSDを短くし，遊脚

期につま先を引きずり，つま先を外側に位置するような歩容を計測した．

検証のために, RGBDカメラ (Microsoft Kinect v2)とレンズ（SPACECOM
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(a) 実験設定（上方視点）

(b) 実験設定（側方視点）

図 2.10 実験設定．

3.5 mm）付き RGBセンサ（PointGrey Flea3 FL3-U3-13E4C）3台を 6mの

直線歩行路上に設置した．RGBDカメラで撮影した 1, 920画素サイズの RGB

画像と 512画素サイズの深度画像は，30fpsで撮影し，提案手法の入力データ

とした．一方，RGBセンサでは 1, 280× 1, 024ピクセルの RGB画像を 60fps

で撮影した．3台の RGBセンサのうち 1台を歩行路の側方に，残りの 2台を

天井に設置した．

側方のカメラの映像から踵接地とつま先離地を手動で検出し，SSDと DSD

の真値を定義した．一方，TAと SLについては，天井に設置されたカメラを
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(a) 元画像 (b) キャリブレーション済みの画像

図 2.11 天井に設置した RGBセンサで撮影した画像．

用いて真値を求めた．そのため，元の撮影画像（図 2.11 (a)）をレンズ歪み補

正とホモグラフィ変換を用いてキャリブレーション画像（図 2.11 (b)）に変換

し，楕円モデルを手動で足部に当てはめて TAと SLの真値を求めた．キャリ

ブレーションのため，50cm間隔で白いマーカーを配置し，ホモグラフィ変換

後の画像解像度を 1cm2/ピクセルに設定した．

推定された歩行特徴量と真値の歩行特徴量との間の平均絶対誤差を，左右

の足それぞれについて評価した．ベンチマークとして，Latorreらが提案した

Kinectで検出した関節キーポイント情報に基づく方法 [63]を採用した．また

Latorreらは TAを推定する方法を提案していないため，TAを除いて同様に

誤差を評価した．提案手法とベンチマーク手法の統計的有意確率の算出には，

対応のあるの t検定を用いた．有意水準は，各特徴において 5%とした．
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表 2.3 歩行特徴の推定誤差
歩行特徴 SSD (s) DSD (s) TA (deg) SL (cm)

属性 手法 右 左 右 左 右 左 右 左

健常者
提案手法 0.04 (0.04) 0.03 (0.02) 0.03 (0.02) 0.04 (0.02) 4.6 (2.1) 5.5 (2.1) 0.03 (0.01) 0.02 (0.01)

Latorreらの手法 [63] 0.04 (0.03) 0.04 (0.03) 0.04 (0.03) 0.04 (0.02) - - 0.02 (0.01) 0.02 (0.02)

疑似

片麻痺

提案手法 0.04 (0.03)† 0.05 (0.03) 0.04 (0.02)† 0.04 (0.03) 5.7 (4.0) 3.3 (2.5) 0.03 (0.01)† 0.03 (0.01)†

Latorreらの手法 [63] 0.10 (0.05) 0.05 (0.06) 0.08 (0.05) 0.06 (0.05) - - 0.07 (0.08) 0.04 (0.03)

カッコ内は各特徴の平均絶対誤差と標準偏差を示す．

†: 提案手法の誤差がベンチマーク手法の誤差よりも統計的に有意に小さいことを示す．

2.9 結果

正常歩行と模倣片麻痺歩行それぞれについて，合計 50歩（右 26歩，左 24

歩），161歩（右 81歩，左 80歩）のデータを収集し，分析した．

表 2.3 に歩行特徴量の推定精度をまとめる．また，空間パラメータについ

て，SLの推定誤差は最大 0.03 m，左右差は 0.01 mであり，TAの推定誤差は

右足で 4.6 deg，左足で 5.5 degであった．SSD，DSD，SLについては，提案

手法とベンチマーク手法との間に有意差はなかった．

一方，片麻痺歩行の時間的パラメータに関しては，提案手法の推定誤差は最

大で 0.05 sであり，左右差は 0.01 sであった．また，麻痺側である右側につ

いては，提案手法はベンチマーク手法よりも SSDと DSDが 0.06 sと 0.04 s

小さかった．空間パラメータに関しては，提案手法の SLの推定誤差は最大で

0.03 mであり，提案手法はベンチマーク手法よりも SL誤差を 0.04 m小さく

した．TAの誤差は，右側で 5.7 deg，左側で 3.3 degであった．SSD，DSDと

もに麻痺側の誤差はベンチマーク手法よりも有意に小さかった．SLは非麻痺

側，麻痺側ともにベンチマーク手法よりも有意に誤差が小さかった．
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2.10 考察

まず，健常歩行と模擬片麻痺歩行の推定精度の違いについて考察する．正常

歩行では，SSD，DSD，SLにおいて，提案手法とベンチマーク手法の間に有

意差は見られなかった．しかし，片麻痺模倣歩行では，提案手法はベンチマー

ク手法よりも有意に誤差が小さく，特に片麻痺側の SSD，DSD，SLにおいて

顕著であった．これは，Kinectを用いて得られた姿勢推定系列が，健常歩行に

はよく適合しても，運動麻痺のある下肢の姿勢には適合しなかったためと考え

られる．これに対して，学習データを必要としない提案手法は，実験に用いた

片麻痺歩行を含む様々なタイプの歩行によく適合する可能性がある．

Suiらは [110]，IMUを用いた時間的パラメータの推定法を提案し，マーカ

を用いたモーションキャプチャによる推定法との誤差を報告している．その結

果は，遊脚時間は 12.9 ms，立脚時間は 10.3 msの誤差であった．本手法より

も高い精度が報告されているが，彼らの手法は健常者のみを対象とした学習

ベースの手法であるため，障がい者に対して同様の精度を維持することは難し

いと考えられる．

Zeniら [111]は，マーカーを用いたモーションキャプチャデータを用いて，

トレッドミル歩行時の踵接地のタイミングとつま先離地のタイミングを推定

する方法を提案し，床反力計データを用いた手法との誤差を報告した．参加

者は，健常者 7名と脳卒中発症者を含む患者 11名であった．健常者では，踵

接地とつま先離地のタイミングにおいて，平均誤差は Ground reaction force

（GRF）の検出解像度における 1フレーム (16.7 ms)以内であった．患者では，
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GRFの検出解像度の 2フレーム以内（33.4 ms）であり，推定誤差が増大した．

著者らは遊脚時間や立脚時間を推定していないため，提案手法の結果との比較

は困難であった．しかし，患者であっても推定精度を維持可能な点で，提案手

法の方が優れていると考える．

また，Kinectのような距離センサを用いる場合，足部と床平面の距離差が僅

かであるため，一般的に TAの推定は困難であるが，提案手法は 3Dのつま先

エッジ点を累積する枠組みを取り入れることで，おおよそ 5 degの精度を達成

した．療法士は一般的に 5 degの解像度で関節角度を計測するため，この TA

の推定精度は有用であると考える [112].

2.11 小結

本研究では，1台の RGBDセンサを用いた新しい歩行位相分割法とフット

プリント検出法を提案した．片麻痺を模した歩行特徴の推定を行った場合に，

提案手法では従来手法よりも，麻痺側肢の時間的・空間的パラメータの推定誤

差が，従来手法よりも優位に小さい結果となった．片麻痺歩行を対象とした場

合には，途中で立ち止まったり，足を出そうとしても地面に引っ掛かり前方へ

出すのに時間がかかる，などの現象が見られる．従来のルールベース手法で

は，麻痺側肢を振り出そうとして失敗した場合に，健側肢が接地している状態

にもかかわらず，麻痺側肢の遊脚と立脚の状態遷移を推定してしまう恐れがあ

る．また隠れマルコフモデルなどを用いる機械学習手法では，スムーズに状態

遷移がなされる健常者データをもとに学習しているため，立ち止まったり，足

が前に出せない時間が続くと，誤って遊脚や立脚への遷移を推定してしまう恐
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れがある．提案手法では，歩行中の左右足の接地あるいは離地の状態につい

て，相互的に制約を与えた状態遷移モデルを導入することで，上記の問題を解

決する．麻痺側肢の振り出し時間を要する場合や、数回振り出しの失敗を繰り

返す場合でも，健側肢が接地している間は状態の遷移せず，正しい歩行周期の

位相を推定することが可能である．そのため，提案手法は，片麻痺患者のよう

な病的歩行の時空間的なパラメータを推定するために，有効なアルゴリズムで

あると考えられる．

一方で提案手法にはいくつかの課題が残されている．まずは，歩行位相分割

アルゴリズムについてである．今回，足部の振り出し速度が一定であると仮定

し，1本の線分を用いて振り出し位相を近似した．患者によっては，初期遊脚

相でつま先を引きずったり，一定の速度で麻痺側肢を振り出せない場合があ

る．その場合，図 2.12 の右（麻痺側）足部系列への近似結果のように，なだ

らかに足部が前方移動を始める系列に対して 1本の線分で近似をすることにな

る．このような症例にも対応するように，いくつかの線分で遊脚相を近似する

ようにアルゴリズムを改良する方法が考えられる．しかしスムーズに下肢の振

り出しが可能な症例に対しても複数本の線分で近似を強いることになると，不

自然な線分当てはめにより返って，遊脚相と立脚相の遷移地点の推定誤差が増

大する恐れがある．また，Hatamzadehらは後続研究として足部位置系列を曲

線近似する手法を提案している [113]．彼らは，立脚期を直線，遊脚期を 3次

のベジェ曲線で近似する方法を提案しているが，足部が一定の速度で振り出さ

せない場合を想定していない．仮にベジェ曲線の次数を増やして対応する場合

であっても，曲線を決定する制御点が増えることで，各制御点の探索空間の制
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図 2.12 一定の速度で麻痺側肢を振り出せない症例の区分線形近似結果

約方法が複雑化することや，計算量が増大することが懸念される．提案手法で

は，片麻痺患者に現れる麻痺側足部の振り出し速度に依らず 1本の線分で近似

することで，平均的な位相分割精度を保つことが可能な手法になっていると考

えられる．

次に，フットプリント検出アルゴリズムについては，床に映り込んだ人物の

エッジを検出しないように，カーペットの光沢を抑える必要がある．そのため

今後は床面の素材にロバストなつま先エッジ検出手法の改良が必要である．

また，センサの特性上，センサからの距離によってフットプリントの検出精

度が変化する．また，臨床計測における適切な計測範囲の評価も必要である．
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以上の課題を改善した歩行分析システムを開発し，臨床現場での応用実験を進

めていく．
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第 3章

RGBDセンサを用いた歩容解析に
基づく脳卒中後患者のバランス能力
評価システム

近年の我が国の死因の上位は，悪性新生物，心疾患，肺炎，脳卒中が占めて

いる．脳卒中による死因割合は 7-10% 程度であり，第 1 位の悪性新生物の 4

分の 1程度の割合である [114]．一方で，脳卒中は，介護が必要となる原因疾

患の第 2位であり，その中でも重度介護である要介護 4と 5に陥る原因疾患の

第 1位となっている [115]．このことから，脳卒中は直接的な死因にならない

場合でも，後の生活に支障を来す重大な後遺症を引き起こすことが分かる．

脳卒中後遺症を持つ多くの人々のおよそ 83 ％がバランス機能障害を有

し [85]，様々な日常生活動作能力の低下を伴うことで [86]，転倒リスクが増大

する．実用性の高い歩行能力の獲得は，脳卒中後遺症患者のリハビリテーショ

ンにおいて究極の目標の一つであるため，歩行障害とバランス機能障害の両者
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の改善は重要なアウトカムである．

バランス機能評価には，Berg Balance Scale (BBS) [116] や Dynamic Gait

Index [117]などの評価手段が提案されている．DGIでは，歩行中に速度変更，

頭位変更，方向転換，障害物跨ぎなどの応用的な歩行能力が検査される．脳卒

中患者の身体運動の制御能力の評価に役立つ可能性がある．一方で，信頼性が

確認されているのは，経験豊富な専門家が評価した場合のみである．また経験

豊富な専門家であっても，検査項目によっては検査者間信頼性が不十分である

と報告されている．また準備物が多いことや，難易度の高い運動を実施するた

め転倒リスクが高くなることが，臨床現場で実践する上での課題となってい

る．BBS の検査項目は座位と立位での運動を中心に構成されており，高齢者

や脳卒中患者などのバランス機能障害を持った患者のバランス能力を評価する

ために広く使われている [118–120]．ただし，BBSを評価するためには，リハ

ビリテーションの専門的知識と経験を有する専門家が評価を行うことが必須条

件であることは DGIと変わりない [121,122]．その理由は，専門的な知識に基

づいた動作の観察と，安全な運動課題の遂行を保証するためである．また評価

には約 15 − 20分の時間が必要であり，評価可能な患者数やその実施頻度は大

幅に制限される．そのため，臨床現場においては，システムによる BBSスコ

ア評価の自動化が望まれている．

BBSを自動評価する技術として，装着型の加速度センサを用いた手法と距離

センサを含むカメラを用いた手法が挙げられる．加速度センサを用いた研究と

して，Shahzadらの手法 [123]では，センサを腰背部に装着した状態で，転倒

リスクと関連があるとされる三つの課題（Timed-Up and Go test，Alternate
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Step test，Five Times Sit-to-Stand test）を計測する [124, 125]．さらに加速

度情報から抽出した特徴量を用い，Lasso 回帰モデル [126] による BBS スコ

ア推定を行っている．また Similä らは，健常高齢者や脳卒中患者らの腰背部

に加速度センサを装着し，歩行計測を実施することで BBSスコアを推定する

手法を提案している [127]．彼らは加速度情報から抽出し，k = 3の k Nearest

Neighbor (kNN) 分類を適用し，学習データに最も類似した 3 人の参加者の

BBS スコアの平均値を推定 BBS スコアとして出力している．しかしながら

Shahzadらの手法では，歩行に加えて，より高度なバランス能力を必要とする

複数の運動課題を計測する必要があるため，適用可能な対象患者が限定され

る．また加速度センサを用いた手法の共通の課題として，全般的に装着作業の

手間や装着位置の再現性の問題がある．

一方，カメラを用いた手法では，上記の装着作業の手間や装着位置の再現性

の問題を回避可能である．Masalhaらは，2台の RGBDカメラ (Kinect) を用

いた手法を提案している [128]．彼らは BBSの 14個の課題について，フレー

ムごとに関節点の相対位置，身体部分間の距離，身体関節の角度，地面からの

関節の高さ，関節点の加速度などの特徴量を抽出し，ランダムフォレストによ

る識別器 [129]を用いて BBSスコアを推定する．ただしこの手法では BBSの

全運動課題の計測が必須であるため，評価時間の短縮には繋がらない．また 2

台の RGBDカメラのキャリブレーションが必要なため，準備に時間を割くこ

とが難しい臨床現場での運用には適さない．Johnsonらは，二つの座位運動課

題を 1台の RGBDカメラ (Kinect) で計測することで，比較的短時間で BBS

スコアを推定している [130]．その一方で，座位運動課題は，歩行練習を開始
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している患者にとっては容易すぎることから，リハビリテーションの一環には

含まれないことも多い．そのため，本来のリハビリテーションとしては不要な

座位運動課題の計測を，BBS 推定のために別途行う必要があることから，臨

床現場における効率性の面では望ましくない．

臨床現場における効率性を考えると，運動課題の候補として，歩行が挙げら

れる．前述の通り，バランス能力評価と同様に歩行能力の評価は重要とされて

いることから，片麻痺患者のリハビリテーションの多くに歩行運動課題が含ま

れている．また，脳卒中後片麻痺患者の歩行時の非対称性とバランス能力には

関係があることが知られており，また BBSと歩行特徴に相関関係があること

も報告されている [131, 132]．そのため，歩行運動課題の様子を解析すること

で，BBSスコアを自動推定できる可能性があり，また，それが実現すると，臨

床現場の効率性の面でも望ましい．

そこで本研究では，臨床現場での実運用に資する，RGBDカメラを用いた

歩行計測による BBSの自動評価システムを開発する．本研究の貢献は，以下

の 3点にまとめられる．

歩行映像解析による効率的な BBS評価

歩行映像解析による BBS推定を可能にすることにより，リハビリテーション

を行う上で必要な動作練習・評価を通して，効率的にバランス能力を評価する

ことが可能となる．また，装着型センサを用いた従来手法とは異なり，センサ

装着の手間がないことから，システム利用時の準備時間を削減できる．

介助者付き歩行映像の解析技術による安全な計測

臨床現場では，バランス能力が十分には回復していない転倒リスクの高い片麻
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痺患者に対する歩行評価を行うことがあり，そのような場合には，介助者が患

者の近くで見守る必要がある．提案手法では，介助者と患者が近接している場

合でも，患者領域を分離することで，患者の歩行を解析する．これにより，幅

広い患者層に対して本システムを適用することができる．

臨床現場の利便性を考慮したシステム

バランス能力評価の従来研究は，主として手法の有効性の検証に留まってお

り，臨床現場での運用を考慮したシステムのハード・ソフトウェアの開発は行

われていなかった．我々は，可搬型のハードウェア構成および GUIを備えた

ソフトウェアを実装し，臨床現場で取り扱い易い計測システムを構築した．

3.1 関連研究

本研究では，歩行映像解析によるバランス能力評価を目的としていることか

ら，関連分野として，歩行映像解析による医学的な診断・評価結果の推定に関

する研究を挙げる．

Rocha ら [133] や Ospina ら [134] は，Kinect が検出する骨格情報を用い

て，パーキンソン病患者の歩行特徴の解析を行っている．また Ospina らは，

特徴量を用いて健常者とパーキンソン病患者を分類し，診断を支援する技術

を提案している．一方で上肢の振りの大きさや速度，左右の対称性など，上

肢の運動に関する特徴を中心に抽出しており，我々が目的とするバランス評

価指標の推定に応用することが難しい．また Lu らは，深層学習ベースの手

法を用いて，パーキンソン病患者の症状の進行度の評価に用いられる Unified

Parkinson’s Disease Rating Scaleの歩行に関するサブスコアの推定技術を提
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案している [135]．彼らは，対象者の歩行映像から 3Dの骨格情報系列を検出

し，それを入力として上記のサブスコアを出力する時間方向の畳み込みニュー

ラルネットワークの学習を行っている．ただし出力がわずか 4段階（normal,

slight, moderate, severe）の歩行重症度となっており，リハビリテーションに

おいて重要な回復度の詳細な変化を評価することはできない．また Liaoらは

正常圧水頭症患者について，左右の対称性や正面から見た両足の距離，足の向

きなどの歩行障害の特徴を画像解析によって抽出し，医師が行う治療効果の有

無を判定する技術を提案している [136]．ただし上記のパーキンソン病患者の

診断支援技術と同様に，回復度の詳細な変化を評価できる技術ではない．

また，歩行による運動課題に加えて，同時に認知課題を行う二重課題（デュ

アルタスク）の様子を観察することで，認知機能障害との関連性を調査した例

が報告されている [9, 137, 138]．さらに，このようなデュアルタスク中の特徴

量から，臨床的な認知機能評価指標であるMini-Mental State Examinationス

コアを推定する技術 [139]や軽度認知症患者を高精度に検出する技術 [140]が

提案されている．彼らの手法では歩行特徴に加え，計算問題の正答率を特徴量

として用いており，バランス能力の推定に直接応用することが難しい．

またヘルスケア関連の指標として，疲労状態 [141,142]や，体組成情報 [143]

の推定技術も報告されている．ただし疲労状態の推定には，日常生活における

歩行計測，あるいは数分間の連続した歩行計測データが必要となる．また体組

成情報の推定に関しては，シルエット抽出のためにグリーンバックなどに背景

を統一しなくてはならない．このようにいずれの場合でも，データ収集や計

測環境の整備に時間を必要とし，本研究の目的である評価時間の短縮に適さ
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ない．

3.2 片麻痺患者のバランス能力評価システム

3.2.1 システム概要

まず，本システムのハードウェア構成と計測環境について説明する．主な

ハードウェアは，計算機，タッチパネルディスプレイと RGBDカメラである

Kinect v2センサで構成され，これらをキャスター付きワゴンに搭載すること

で，簡便に移動できるようにしている．またディスプレイは可動式アームでワ

ゴンに固定されており，ユーザが操作し易い角度に設定可能である（図 3.1）．

計測環境としては，歩行者領域の抽出を容易にするため，直線歩行路にクロマ

キー用カーペットを敷設し，その終点側に本システムを設置する．

次に，利用時の流れ（図 3.2）を計測・結果表示用のアプリケーション画面

（図 3.3）に触れつつ説明する．アプリケーション画面（図 3.3 (a)）で患者情報

を入力し，Kinect で背景映像を撮影した後，対象患者の歩行映像を計測する

と，独歩もしくは見守り歩行の条件に応じて自動で解析処理を行い，BBS ス

コアの推定結果が表示される（図 3.3 (b)）．歩行撮影モードでは，患者の足が

Kinectの正面 2m以内に近づくと，自動的に撮影を終了する．この時，足の位

置検出には，Kinectが自動抽出する骨格の足関節の位置情報を利用する．
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(a) 側面写真： 1○キャスタ付ワゴン， 2○タッ

チディスプレイ．
(b) 正面写真： 3○計算機， 4○Kinect v2 セ

ンサ， 5○可動式ディスプレイアーム．

図 3.1 評価システムの外観

3.2.2 前処理

解析処理の概略を図??に示す．取得した背景距離画像と入力距離画像を用

いて背景差分法によりシルエット抽出を行う [105]．シルエット内の距離情報

から対象者の身体重心位置系列や足部重心位置系列を取得し，それぞれ歩行中

の身体重心移動に関する特徴量，歩行位相分割による時間的歩行特徴量の抽出

を行う．入力 RGB画像からはエッジを検出 [109]し，入力距離画像と併せて

用いることで透視投影変換により 3Dのエッジ点群を取得する．さらにつま先
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図 3.2 本システム利用時の流れ

周囲の点群のみを床平面に投影することで，つま先の輪郭を取得し，つま先の

位置・姿勢を計算してステップ長やつま先角などの特徴量を抽出する．最後に

これらの特徴量を用いて BBSスコアの推定を行う．

シルエット抽出以外の前処理は，Yasukawaらの手法 [144]を踏襲している．

但し，従来手法では，患者による独歩を前提としていたため，介助者が伴う場

合には利用できなかった．臨床現場では，歩行レベルが十分ではない患者を対

象とする場合に，転倒に注意するため介助者による見守り条件下で利用できる
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(a) 計測用GUI画面： 1○データストレージ残量表示， 2○患者 ID入力欄， 3○

麻痺側情報選択ボタン， 4○対象者情報入力決定ボタン， 5○撮影モード選択ボ

タン， 6○録画開始・停止ボタン， 7○撮影画像プレビュー画面， 8○システムス

テータス表示画面， 9○新規患者作成ボタン，10○システム終了ボタン．

(b) 結果表示用 GUI画面： 1○BBSスコア表示， 2○歩行映像表示， 3○フット

プリントと重心軌跡表示， 4○歩行特徴量表示， 5○結果表示画面終了ボタン．

図 3.3 評価システム GUI
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ことが望ましく，そのための患者と介助者（見守り者）のシルエット分離処理

を加えた．

歩行中の転倒リスクを管理できる見守り者の立ち位置として，患者の後方に

位置する場合（後方見守り）と側方に位置する場合（側方見守り）の 2条件を

想定した．この時，見守り者は常に患者の麻痺側に位置し，歩行中は左右の位

置の入れ替わりはないものとした．

入力が 2条件のいずれに当てはまるかを判断するために，人物シルエット領

域の距離データの標準偏差を用いた．後方見守りの場合は，人物の位置関係が

奥行方向に広がるため距離データの標準偏差が大きくなる．一方で側方見守り

の場合は，人物の位置関係が横方向に広がるため距離データの標準偏差が小さ

くなる．したがって提案手法では，人物シルエット領域の距離データの標準偏

差が閾値よりも大きければ後方見守り，小さければ側方見守りと判断し，条件

に応じて以下の処理を適用した．

条件 1: 後方見守りの場合

入力データには，人物シルエット領域内の距離データを用いる．前方の患者の

距離データと後方の見守り者の距離データが各々クラスタを形成することか

ら，距離データのヒストグラム（図 3.5 (b)）に対して，大津の二値化 [145]を

適用し，人物シルエット領域を前後に分離する（図 3.5 (a)）．さらに，前後そ

れぞれの人物シルエットの 2次元画像上の重心位置を計算し，左右の位置関係

を求める．

条件 2: 側方見守りの場合

入力データには，人物シルエットの水平方向の座標値（x座標の値）を利用す
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る．患者と見守り者が左右に並ぶことから，x座標の値が各々クラスタを形成

することから，人物シルエット領域の x座標の値に関するヒストグラムに対し

て，左右領域の分離位置を求める．ただし，片麻痺患者では，下肢の分回し特

徴 [146]がみられることを考慮する必要がある．分回し特徴とは，麻痺側の遊

脚期に，下肢を身体の外側に大きく振り回しながら，前方へ振り出す特徴を指

す．このような場合，上下の領域で，左右の領域を分離する位置が異なること

が考えられる．そのため，シルエット領域を上端と下端の中点で分割し，その

各々について x座標の値に関するヒストグラム（図 3.6 (b)）に対して，大津

の二値化を適用し，各領域を左右に分離する．最後に，左右に分割した上半身

と下半身の領域を，それぞれ結合させることで，左右の人物シルエットを抽出

する（図 3.6 (a)）．

上記の条件 1あるいは 2のいずれかの処理を，画像系列に適用することで求

まる，左右の人物シルエット系列の内，重心位置の平均値が画像中心に近い系

列を，最終的な患者シルエット系列として抽出する．

3.2.3 特徴量抽出

Similä らは腰背部に 1 台の加速度センサを装着して歩行動作を計測してお

り [127]，身体を一つの剛体と捉えた場合の歩行中の加速度情報，すなわち身

体重心の加速度に類似した情報を解析していると考えられる．一方で提案手法

では，身体重心移動の特徴に加えて，従来技術では含まれなかった歩行の時空

間的パラメータや，下肢の運動麻痺の状態が現れやすい足部の特徴量を含め

て，BBSスコアの推定モデルを構築する．この際，BBSを推定するための歩



第 3章 RGBDセンサを用いた歩容解析に基づく脳卒中後患者のバランス能力評価システム60

行特徴量の妥当性を考慮し，従来研究にて BBSとの相関が報告されている歩

行特徴量 [131, 132, 147]，および病院の専門家の意見をもとに有用な特徴量を

採用し，特徴量ベクトルを設計した．9項目全 23個の歩容特徴量を入力とし

て BBSを推定する推定モデルを構築する．

ここで Yasukawa らの手法 [144] を用いて映像データの前処理を行うこと

で，身体重心の位置系列，歩行位相分割（左右の両立脚時間，単脚立脚時間，

遊脚時間）の計算，立脚期中のフットプリントの抽出を行う．これらの情報を

用いて，以下の時空間的歩行特徴量を抽出する．なお，下記に示す特徴量#1

～7は，麻痺側と非麻痺側についてそれぞれ計算する．

特徴量 1: つま先角

片麻痺患者は，健常者と比較して，麻痺側下肢の股関節が外旋し，つま先が

外側を向くことにより，遊脚期前の地面を蹴る力が外側を向いてしまうことが

報告されている [148]．そこで，前処理によって抽出した進行方向軸とフット

(a) 分離されたシルエット画像 (b) 距離の頻度分布の分離結果

図 3.5 シルエット分離結果の例：後方見守り
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プリントエッジに当てはめた楕円モデルの長軸のなす角度をつま先角とした．

特徴量 2: 足部―重心間距離

前述の麻痺側下肢の立脚時間の短縮により，歩行中の左右足部の圧中心の変

位量の大きさに非対称性が生じることが明らかになっている [149]．そこで，

フットプリントの楕円モデルの中心座標を地面に接地している足部位置とし，

床平面に投影した踵接地時の全身の重心位置との距離を計算した．

特徴量 3: 両脚立脚時間

多くの片麻痺患者について，非麻痺側の両脚立脚時間が長くなることが明

らかになっており，遊脚時間の非対称性を引き起こす要因であるとされてい

る [150, 151]．そこで，前処理によって抽出した歩行位相より，両脚立脚時間

を算出する．

特徴量 4: 立脚時間

(a) 分離されたシルエット画像
(b) x座標の頻度分布の分離結果（上段：上半身，下段：下

半身）

図 3.6 シルエット分離結果の例：側方見守り
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片麻痺患者において，BBS スコアと麻痺側の立脚時間の長さの間には，正

の相関があることが報告されている [131, 132]．そこで，単脚立脚時間とその

前後の両脚立脚時間の和を立脚時間とする．

特徴量 5: 遊脚時間

片麻痺患者の多くが，非麻痺側のと比べて麻痺側の遊脚時間が増大すること

が分かっている [152, 153]．すなわち，麻痺側の単脚立脚時間の短縮が生じる

ことを意味する [154]．そこで，前処理による歩行位相より，遊脚時間を算出

する．

特徴量 6: ステップ長

片麻痺患者の BBSスコアの改善とステップ長の拡大には，正の相関関係が

あると報告されている [132]．そこで，時間的に連続する左右のフットプリン

トに対して当てはめた楕円モデルの前端同士の距離をステップ長とする．時間

的に早く踏み出した足よりも前方に次の足を踏み出した場合には，ステップ長

は正の値をとり，逆の場合には負の値をとる．

特徴量 7: 歩隔

片麻痺患者の BBSスコアの改善と歩隔の拡大には，正の相関関係があると

報告されている [147]．そこで，時間的に連続する左右のフットプリントに対

して当てはめた楕円モデルの内側端同士の距離を歩隔とする．左右の足が左右

に交差するような位置関係になる場合，歩隔は負の値をとる．

特徴量 8: 重心揺れの大きさ

[155]では，健常者と比較して，片麻痺患者は立脚中期の重心揺れが大きく

なることが報告されている．そこで，前処理によって抽出した重心位置系列の
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前後・左右・上下方向成分の標準偏差を，重心揺れの大きさとする．

特徴量 9: 重心移動速度

片麻痺患者に関する重心移動速度の低下は多くの研究で報告されてお

り [153, 156]，BBS 得点との相関が高いとされている [131]．本研究では，重

心移動速度系列の前後・左右・上下方向成分の平均値および標準偏差を特徴量

とする．

3.2.4 BBSスコアの推定モデル

提案手法では，BBSスコアの推定に Lasso回帰モデルを用いた．線形回帰

モデルでは，学習後の各特徴量の重みから，BBS のスコアに寄与した特徴を

把握することができ，臨床的にも考察が行いやすい．また線形回帰モデルの一

つの Lasso回帰モデルでは，不要と判断される特長量の係数が 0になる性質が

あり，より汎化性の高い推定モデルを学習することが期待される．

歩行特徴並びに BBSスコアの組からなるデータ数を N，特徴ベクトルの次

元数を P とする．i番目のデータの特徴ベクトルについて，各次元のスケール

を合わせるため，各次元について Z 標準化を適用し，標準化された特徴ベクト

ルを x⃗i = [xi1, . . . , xiP ]T ∈ RP とする．LASSO回帰モデルの特徴ベクトルの

各次元に対する重み係数を並べたベクトルを β⃗ = [β1, . . . , βP ]T ∈ RP とする

と，BBSスコアの推定値 ŷi は，以下のように表される．

ŷi = βTxi (3.1)

また，専門家（医師や理学療法士など）が評価した BBSスコアの真値を yi と
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すると，BBSスコアの推定誤差の最小化と疎性のための正則化のトレードオ

フとして，重み係数ベクトルの推定値 ˆ⃗
β が以下のように算出される．

β̂ = arg min
β⃗

N∑
i=1

∥ŷi − yi∥21 + λ
P∑

j=1

∥βj
T∥1. (3.2)

ここで，λは正則化の強さを決定する非負の定数である．λが大きくなるほど

正則化が強まる．すなわち λ = 0の場合，正則化項のない最小二乗法による線

形回帰モデルと一致する．

3.3 実験

3.3.1 データ収集

2018年 6月 1日から 2021年 3月 31日までの期間において，データ収集を

実施した．対象者は，北原リハビリテーション病院へ入院した脳卒中患者の

内，見守りあるいは自立条件下で 10m以上歩行可能な者を対象とした．また

高次脳機能障害や認知症等により，研究内容を十分に理解できない者は除外し

た．尚，本研究は，大阪大学研究倫理委員会（承認番号 29-1，審査受付番号：

L005）及び医療法人社団 KNIの倫理委員会（受付番号 第 37番）の承認を得

て実施し，全ての対象者に対して書面と口頭にて研究内容を説明し，研究参加

への同意を得た．結果として，合計 128件のデータを収集した．

次に患者の属性情報について説明する．収集したデータ 128件の内，属性情

報に欠損のあった 52件分は除外し，76件のデータの統計量を計算した．性別

は男性 38名/女性 30名，麻痺側は右 36名/左 32名，平均年齢は 65.5 ± 14.9

歳で，発症からの日数は 92.9 ± 227.1日であった．また歩行計測時の見守りの
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有無については，無しパタンが 128件中 103件，有りパタンは 25件であった．

128件（102名）中，歩行計測中に立ち止まった，専門家が介助を行った，歩

行路から逸脱したデータは解析対象から除外し，残りの 94件（75名）を解析

に用いた．そのうちデータ複数データを提供した患者は 11名で，その内訳は，

7名が 2件，1名が 3件，2名が 4件，1名が 5件で，それ以外の 64名は全て

1件ずつであった．

対象者には，10mの直線歩行路を終端に設置した Kinectに向かって，快適

な速度で歩くように指示した．この時，下肢装具の装着は認めたが，杖や歩行

器等の歩行補助具の使用は認めなかった．真値となる BBSスコアは，十分に

訓練を受けた経験年数 6年以上の理学療法士が評価し，歩行計測日との間隔は

前後日 −1.6 ± 6.8日であった．収集した BBSスコアの平均値と標準偏差は，

44.78 ± 8.46点であった．BBSスコアの分布と統計情報を図 3.7に箱ひげ図で

示す．

3.3.2 実験設定

まず，全体の N 件のデータに対して，テスト用データ 1件と学習・検証用

データ (N − 1) 件に分割し，学習・検証用データに対して一つ抜き交差検証

（Leave one-sample out; LOSO）を行い，ハイパーパラメータである正則化項

の係数 λ を決定した．具体的には，各検証を通して，推定値と真値の平均二

乗誤差が最小となるときの正則化項の係数 λ の平均値を求めた．次に学習用

データと上記の λを用いて，モデルの回帰係数 β̂を計算し，最後にテストデー

タを用いてモデルの推定値，および推定値と真値との絶対誤差を算出した．同
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図 3.7 BBSスコア分布と統計情報

様にして，残りの (N − 1)件分をテストデータに割り当てて評価することで，

絶対平均誤差を計算し，回帰モデルの精度評価指標として扱った．また同様

にして，同一患者のデータが推定精度に及ぼした影響について検証するため，

同一患者の異なるデータを学習とテストで同時に使用しない検証方法（Leave

one-patient out; LOPO）による評価を実施した．さらに提案手法の低得点層

に対する精度を検証するために，従来手法（Similäら [127]の手法）で用いて

いる 36点以上を高得点層，35点以下を低得点層として，各層における推定誤

差を評価した．

また，臨床現場での実用性の指標として，図 3.2にある解析部及び BBSス

コア推定部で処理に要する時間を，見守り無しパタンと見守り有りパタン，そ

れぞれについて計算した．
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表 3.1 各検証方法における推定誤差

全データ

(N=94)

36点以上のデータ

(N=84)

35点以下のデータ

（N=10）

BBS

スコア
44.78 ± 8.46 46.86 ± 5.87 27.30 ± 6.55

推定誤差

（LOSO）
4.97 ± 4.31 4.19 ± 3.39 11.51 ± 5.78

推定誤差

（LOPO）
5.01 ± 4.41 4.22 ± 3.41 11.66 ± 6.24

LOSO; Leave one-sample out, LOPO; Leave one-patient out

3.4 結果

LOSO および LOPO における，BBS スコア推定の絶対平均誤差はそれぞ

れ，4.97 ± 4.31 点と 5.01 ± 4.41 点となった．また BBS スコアが 36 点以上

および 35点以下のデータの推定誤差はそれぞれ，LOSO で 4.19 ± 3.39点と

11.51 ± 5.78点，LOPOで 4.22 ± 3.41点と 11.66 ± 6.24点であった．各検証

方法の結果を表 3.1に，BBSスコアの推定値と真値の散布図を図 3.8に示す．

解析処理の所要時間は，見守り無しパタン（系列長の平均値と標準偏差は

515 ± 504 frame）では，47 ± 52 sであった．また見守り有りパタン（764 ±

465 frame）では，平均値と標準偏差は 62 ± 32 sであった．
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(a) Leave one-sample out

(b) Leave one-patient out

図 3.8 各実験の BBS スコアの推定値と真値の散布図．黒色の直線は，推定値=真値とな

る理想的な回帰結果を示す．(b) 複数データを持つ患者は，患者別に色を分けて描画して

いる．
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3.5 考察

3.5.1 BBSスコアの推定精度

従来研究として，Similäらは，健常者 19名，高齢者 20名，脳血管疾患や頭

部外傷などの神経系疾患患者 15名の合計 54名を対象として，歩行中の加速度

情報から抽出した特徴量を用いて，転倒リスクレベルの分類と BBSスコアの

推定を行っている [127]．彼らの手法では，リスクレベルの分類器を k nearest

neighbor（kNN）法で学習し，kNN空間における入力データの 3近傍の BBS

スコアの平均値を推定 BBSスコアとして出力しており，脳血管疾患患者デー

タで学習したモデルの推定誤差は，絶対平均誤差が 5.17 ± 3.01点であった．

表 3.1の結果の通り，LOSOと LOPOの実験条件間で大きな差はみられず，

両者とも従来手法より小さな平均誤差を示した．これは，学習データの大半が

患者 1名に対してデータ 1件となっていたため，LOSOと LOPOの差が限定

的となったことが要因の一つとして考えられる．一方で，Similäら [127]が用

いた 36 点以上と 35 点以下のデータで誤差を分けて計算した場合，後者では

10 点以上の誤差を示した．そのため提案手法は，従来手法と同様の得点層に

対してはより高精度な推定が可能である一方で，35点以下の低得点層への適

用は難しいと考えられる．

3.5.2 臨床現場における実用性

臨床現場における提案手法の実用性について，次の 3つの観点で考察を行う．
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• 専門家による BBSスコアのバラツキに対する提案手法の推定誤差の程度

• 患者状態の変化が反映される BBSスコアの最小変化量と提案手法の推定

誤差の程度

• 従来手法と提案手法による評価所要時間

専門家による BBSスコアのバラツキに対する提案手法の推定誤差の程度

はじめに，専門家が評価する BBSスコアのバラツキに対する提案手法の推

定誤差の大きさについて考察する．Bergらは，35名脳卒中患者と彼らを治療

する専門家 32名を動員し，24時間以内に BBSスコアを再評価することで検

査者間の信頼性を調査した [119]．BBSスコア全体について検査者間信頼性を

示す ICCは 0.98と高値を示した．一方で，図 3.9に示した各症例に対して付

けられた点数を見ると，15-45点と評価された層（図中の赤枠内）では専門家

による評価結果のダイナミックレンジが広く，5点以上の差がある症例も半数

近く存在することがわかる．またそれよりも低得点，あるいは高得点の層では

ダイナミックレンジが狭いことが読み取れる．

BBSは各課題 0-4点で全 14項目（最高 56点）で評価するため，15点以上

になると，各項目で 1点以上の得点が必要となる．BBSに含まれる課題の内，

座位保持，閉眼立位保持，開眼立位保持，前方への上肢リーチ，継ぎ足立位保

持，片脚立位は定量的な判断基準が設けられており，機械的な採点が可能であ

ると考えられる．一方で起立動作，着座動作，移乗動作，拾い上げ動作，振り

返り動作，360度方向転換，段差踏み替えの 1点や 2点と採点する際には，「見

守りが必要である」や「少しの補助があれば可能である」などの主観的な採点
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図 3.9 複数評価者による BBS評価結果のバラツキ

Berg らの論文より引用・一部改変 [119]．評価結果のバラツキが大きい得点層を赤枠で表

示した．

．

基準が含まれているため，上記の得点層で採点結果のバラツキが大きくなった

と考えられる．

専門家の評価がバラつき易いとみられる 15-45 点の得点層の内，36 点以上

では提案手法の推定誤差は約 4.2点であり，専門家の評価のバラツキの範囲内

で適用できると考えられる．一方で 36点未満の低得点層や，46点以上の高得

点層では，専門家のバラツキよりも大きくなり，臨床的な有用性が乏しいと考

えられる．
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患者状態の変化が反映される BBSスコアの最小変化量と提案手法の推定誤差の程度

提案手法の推定精度を，評価指標が検出できる最小変化量 (Minimum De-

tectable Change; MDC) [157] との比較で考察する．MDCとは，臨床現場で

のデータを理解するのに重要な指標とされ [157]，各尺度における統計的な

95 ％信頼区間内の検出可能な最小の絶対変化量を表したものが MDC95 とし

て用いられる [158]．脳卒中患者を対象とした BBS スコアの MDC95 につい

て，亜急性期の脳卒中患者では 6.9点，中でも独歩患者では 6.3点，見守り歩

行者で 6.0 点，介助歩行者で 8.1 点と報告されている [159]．今回の研究に参

加した独歩患者および見守り歩行者のMDC95 は 6.3点と 6.0点である．一方

で提案手法の MAEは 4.97 ± 4.31点であることから，いずれの MDC95 より

も 1点以上小さい変化を検出できる．したがって，患者の変化を検出する場合

に必要な，BBS の最小変化量を捉える目的では，提案手法は臨床的な水準を

達成していると考えられる．

従来手法と提案手法による評価所要時間

また解析処理に要する時間について，見守り無し条件が見守り有り条件おけ

る平均値と標準偏差に大きな差は見られなかった．提案手法の処理時間は見守

り無しパタンで 47± 52 s，見守り有りパタンで 62± 32 sであり，通常の BBS

評価で必要とされる 15-20分よりも大幅に短縮することができた．
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3.6 小結

本研究では，1台の RGBDセンサを用いて，リハビリテーションの専門家

以外でも短時間で安全に，かつ客観的に BBSを自動評価することができるシ

ステムを開発した．従来研究では，見守り条件を前提に加えていないこと，脳

卒中患者を対象とした BBSスコアの推定精度の検証が不十分であったことに

加え，BBS の各運動課題の計測に時間を要する，などの問題点が残されてい

た．我々は上記の課題を克服し，脳卒中リハビリテーションの臨床現場で実用

可能なシステムを提案した．

本システムの課題として，収集したサンプル数の偏りが挙げられる．見守り

歩行レベル以上の患者を対象としたため，BBSスコアが 36点以上のデータ件

数が多くなってしまった．今後の課題として，35点以下のデータ数が 10件と

少ないため，データの追加収集や，アルゴリズム改良などによる，低得点層の

推定にも対応できるモデルの開発が挙げられる．また今回は大半が患者 1名に

つき 1件のデータであったため，同一患者の縦断的なデータを収集し，患者依

存性を考慮した推定モデルの開発を行う必要があると考える．他にも，対象と

する患者の条件についても詳細に検討する必要がある．具体的には脳出血や脳

梗塞などの疾患による症状や回復過程の違いや，歩行中に使用する下肢装具の

タイプによる歩行に与える影響の違いなどが挙げられる．
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第 4章

考察

提案手法では，歩行特徴から BBSスコアを推定する従来技術 [127]よりも，

高精度な推定が可能であることを示した．一方で，低得点層での推定誤差の増

大が明らかとなったため，本章では，推定精度向上のための方策について考察

する．まず初めに，データ収集を開始するにあたり事前に想定していた BBS

の低得点層の範囲と，実際に収集したデータの BBSスコアの範囲の違いにつ

いて考察する．続いて，今後の BBS スコアの推定精度を向上させるために，

推定モデルに追加すべき歩行特徴量について検討する．

回復期リハビリテーションで脳卒中患者の回復過程では，歩行動作が自立し

ていない，いわゆる見守りレベルから定量的にバランススコアの推移を評価す

ることが重要である．そのため，本研究では下記の先行研究に基づき，見守り

歩行レベル患者のスコア範囲を想定した．北地らは，回復期リハビリテーショ

ン病棟に入院していた初発の脳卒中後片麻痺患者 41 名の BBS スコアと歩行

動作の自立状況の関連を調査し，屋内歩行自立判断のカットオフ値が 45.5点
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図 4.1 BBSスコア別のデータ件数

従来研究で報告されていた見守り歩行レベルの得点層を黒の破線で，従来の報告よりも低得

点で見守り歩行が可能であった得点層を赤の実線で示す．

であることを報告している [160]．この時，自立レベル群の BBSの平均得点が

50.1± 4.1点，見守りレベル群の BBSの平均得点が 36.3± 6.8点であった．ま

た中村らは，回復期リハビリテーション病棟に入院していた脳卒中後片麻痺患

者 35名の BBSスコアと歩行動作の自立状況の関連を調査し，屋内歩行自立判

断のカットオフ値が 47.0点であることを報告している [161]．この時，自立レ

ベル群の BBSの平均得点が 54.2± 2.9点，見守りレベル群の BBSの平均得点

が 38.6 ± 10.9点であった．以上から，BBSスコア 30点から 45点の範囲がお

およその見守りレベルと想定していた．一方で本研究で見守り歩行が可能な患

者のデータの内，BBSスコアが 30点以下のデータは 6件であった（図 4.1）．

そのため，従来研究よりも低いスコアでも見守り歩行が可能な患者のデータが

収集され，想定よりも BBSスコアが低い患者が対象に含まれていた．

BBS スコア 30 点未満の患者の歩容を見ると，大きく三つの特徴が観察さ

れた．
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• 体幹姿勢・運動の特徴

• 上肢姿勢・運動の特徴

• 歩行開始時の姿勢・運動の特徴

本研究で収集データの内，想定通りに見守り歩行可能であった患者の歩容を図

4.2に，想定より低得点で見守り歩行可能であった患者の歩容を図 4.3, 4.4に

示す．以下では，実際の患者の歩容画像を例示し，想定通りの得点層で見守り

歩行可能であった患者（BBSスコア 30～45点）と，想定より低得点でも見守

り歩行が可能であった患者（BBSスコア 30点未満）の違いを示す．さらに，

先行研究で報告されている脳卒中患者の歩容特徴と照らし合わせ，今後のモデ

ルに追加する特徴量を検討する．

4.1 体幹姿勢・運動の特徴

健常者の歩行では，上半身と下半身の体幹は垂直な体軸を中心に協調しなが

らも逆方向に動く．健常者の体幹運動は，矢状面における各踵接地付近の屈曲

ピークによって特徴付けられ，つま先離地時には前額面において最大可動域に

達する [162]．また，体幹の筋肉は，機能的な活動の際に積極的にバランス維

持に貢献するとされている [163]．

脳卒中では一般的に体幹機能に障害が生じ，体幹の協調性の低下や体幹筋力

の制限を伴う．これらの障害は，歩行運動に対して多くの生体力学的な変化を

もたらし，片麻痺歩行において体幹機能が重要な役割を果たしていることは，

すでにいくつかの研究で結論付けられている [151,164]．
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(a) 右片麻痺，BBS=37点，上肢の振りが大きく，体幹がわずかに右傾斜している．

(b) 左片麻痺，BBS=41点，上肢の振りが大きく，体幹が正中位である．

図 4.2 従来基準（BBSスコア 30～45点）での低得点層患者の歩容の例．図中に赤線で体

幹の長軸を便宜的に示し，体幹の傾斜を視覚化している．

Van Criekingeらは，2016年 12月までの研究論文 1099本の内 16本を厳選

し，脳卒中後片麻痺患者の歩行中の体幹姿勢・運動の特徴について見解を述べ

ている [165]．彼らによると脳卒中後片麻痺患者は体幹の側方傾斜・前後傾斜

が大きい歩容を呈するとされている．
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(a) 右片麻痺，BBS=18点，右上肢が屈曲し，上肢の振りが小さい．体幹が右立脚期にて右方向へ回旋している．

(b) 右片麻痺，BBS=23点，右上肢が大きく屈曲し，上肢の振りが見られない．左立脚期に体幹が左傾斜かつ右方

向へ回旋している．

図 4.3 従来基準よりもさらに低得点層（BBSスコア 30点未満）の歩容の例（1）．図中に

赤線で体幹および上肢の長軸を便宜的に示し，体幹の傾斜および上肢の屈曲角度を視覚化し

ている．
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(a) 右片麻痺，BBS=27点，右上肢が屈曲し，上肢の振りが見られない．左立脚期に体幹が右方向へ回旋している．

(b) 左片麻痺，BBS=28点，上肢の振りは大きいが，左立脚期に体幹が大きく右傾斜している．

(c) 右片麻痺，BBS=27点，右下肢をうまく持ち上げられず，振り出しに時間を要している．

図 4.4 従来基準よりもさらに低得点層（BBSスコア 30点未満）の歩容の例（2）．図中に

赤線で体幹および上肢の長軸を便宜的に示し，体幹の傾斜および上肢の屈曲角度を視覚化し

ている．
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図 4.2 中の赤線で示すように，従来基準の低得点者では体幹が比較的直立し

ているのに対し，従来基準を下回った例では麻痺側への傾きが観察される（図

4.3 (b), 4.4 (b)）．また，時系列を通して観察すると，前者では左右に体幹の傾

斜の運動が生じているのに対し，後者では終始麻痺側に体幹が傾斜しているこ

とがわかる．また画像上で，右立脚期よりも左立脚期にて肩幅が狭まったよう

に観察されることから，体幹の前後傾斜や右方向の回旋運動が生じていると推

測される．これは先行研究の報告内容と同様の歩容特徴が現れていると考えら

れる．したがって，当初の想定よりも低得点の患者の BBSスコアを推定にあ

たり，歩行中の体幹の前後・側方傾斜・回旋角度が有用な特徴量になると考え

られる．

体幹の姿勢推定に関しては，スケルトンベース手法の有用性が示されてお

り，既存の技術を用いて特徴量を抽出することが可能であると考えられる．例

えば Clarkらは，Kinect v1とマーカベースの 3D-MoCapシステムを用いて，

リーチ動作や片脚立ち保持などのバランステストを計測した．Kinect で計測

した体幹傾斜角度に優れた妥当性あり，体幹姿勢の計測に有用であると報告し

ている [166]．また，Tamura らは，平地歩行中およびトレッドミル歩行中の

体幹傾斜角度を Kinect v2で計測し，平地での歩行中の体幹の運動学的評価に

有用であることを示している [167]．

4.2 上肢姿勢・運動の特徴

正常歩行中の上肢セグメントの運動を分析した研究では，例えば Frigoらは，

正常歩行における上肢と体幹の動きについて分析し，肩の回旋角度と肩と骨盤
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の間の角度を除いて，分析されたすべての分節運動の角度は歩行中に 5度より

小さいことを報告している [168]．ほかにも，上肢の運動が正常歩行における

バランス維持 [169]や身体重心移動制御 [170]に役立つことが示されている．

脳卒中後片麻痺歩行中の上肢の運動学的解析は少ないが，Carmoらの研究で

は，脳卒中後片麻痺患者の上肢関節運動を 3D Mo-capで調査している [171]．

健常者と比較し，片麻痺患者では，矢状面における肩関節と肘関節の可動域の

減少，および歩行サイクル全体を通して肘関節が屈曲することが特徴であると

報告している．

図 4.2 中の赤線で示すように，従来基準の低得点者では麻痺側の肘関節の屈

曲角度が小さく，上肢全体が前後に振れている様子が観察される．それに対し

て従来基準を下回った例では上肢が屈曲し，上肢全体の振りが小さいことが観

察される（図 4.3, 4.4 (a)）．また，時系列を通して観察すると，前者では上肢

全体が前後に振れているのに対し，後者では終始麻痺側上肢が体幹の前で屈曲

位が保持され，上肢全体の前後の振れが小さいことがわかる．したがって，歩

行中の上肢の前後振りの大きさ，肘の屈曲角度が有用な特徴量になると考えら

れる．

上肢の姿勢推定は，スケルトンベース手法の有用性がすでに示されており，

既存の技術を用いて特徴量を抽出することが可能であると考えられる．例え

ば Huber らは，Kinect v1 と磁気式トラッカー，ゴニオメーターを用いて上

肢の可動域を計測し，前額面での関節角度計測の信頼性が高いことを報告し

ている [172]．また Schlagenhaufらは，数種類の平面運動と立体運動における

Kinect v2と Viconの計測結果を比較し，Kinectが上半身の姿勢・運動を計測
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するのに十分な精度を持っていることを報告している [173]．

4.3 歩行開始時の姿勢・運動の特徴

正常の場合，歩行開始時に足を踏み出すのに先行して姿勢制御反応が働く

とされており，健常者を対象とした研究が多くなされている [174, 175]．歩行

開始前に，足圧中心や身体重心の位置を支持脚側後方へ変位させることで，

遊脚側下肢の抜重をすることで一歩目を踏み出しやすくすると報告されてい

る [176,177]．

脳卒中者について，Hesseiらは，非麻痺肢から踏み出す場合は遊脚時間と歩

幅は短く，踏み出す前の身体重心位置の動きは見られなかったが，身体重心位

置の内側・外側の揺れをより顕著に示したとしている [178]．また麻痺肢から

踏み出す場合は，身体重心位置とその運動パタンは健常者と同等であったと報

告している．さらに大沼らは，麻痺側から踏み出す場合には頭頚部を反対側に

動かすことで身体重心を移動させ，麻痺側下肢を振り出しやすくすると報告し

ている [179]．

今回，歩行開始時の動きを解析対象としておらず，歩行開始地点から離れた

視点で撮影を行ったため，運動の特徴を観察するのに解像度が不十分であっ

た．一方で，従来の低得点層の基準よりも低得点であった患者については，計

測中に連続的な歩行運動が途切れてしまい，スムーズに歩行を再開できない場

面が見られた（図 4.4 (c)）．このような場面では，支持脚側への身体重心移動

と遊脚側の抜重がうまく行えず，体幹を傾斜させることなどで代償的に身体重

心移動を行う様子が見られた．したがって，本研究のような定常歩行状態での
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身体重心の移動範囲や移動量についてだけでなく，歩行開始時についても同様

に解析を行うことで，低得点層の患者の BBSスコア推定に有益な特徴量を抽

出可能と考えられる．
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第 5章

おわりに

本論文では，脳卒中後片麻痺患者の身体機能評価を客観的かつ効率的に行う

ために，非学習ベースの距離画像を用いた歩行特徴抽出技術，およびそれに基

づく BBSスコア推定システムの提案を行った．

第 1章では，バイオメカニクス分野における歩行解析技術の従来研究から，

各計測技術のメリットとデメリットを整理し，リハビリテーション現場への導

入に適した計測技術の要件を整理した．足部のみの解析ではなく全身運動の解

析を必要とし，かつマーカやセンサなどを身体に装着せずに計測が実施可能な

非装着式の計測技術が適していると説明した．そのうえで，安価なデバイス 1

台で実現可能，かつ装着物なしで簡便に全身の 3D運動計測が可能な，距離画

像ベースの解析手法を提案手法で用いることとした．さらに距離画像ベースで

病的歩行解析を行った関連研究分野の調査結果を述べ，既存研究での未解決な

課題を明らかにした．既存研究が，3Dスケルトンをベースとした解析手法と

距離画像を直接解析する手法に分けられ，それぞれのメリットとデメリットを



第 5章 おわりに 85

整理した．さらに本研究において，非学習のモデルフリー手法での歩行解析技

術を用いて，距離画像を用いて歩行周期位相分割および足部の向きを推定する

解析手法を提案し，歩行解析を通して身体機能を評価するシステムを開発する

ことを述べた．

第 2章では，1台の RGBDセンサを用いた新しい歩行位相分割法とフット

プリント検出法を提案した．提案手法は健常者歩行では従来のスケルトンベー

ス手法と同等に，また疑似片麻痺歩行では従来手法よりも空間/時間的歩行パ

ラメータを高精度に推定できることを示した．一方で歩行位相分割アルゴリズ

ムは，遊脚初期でつま先を引きずったり，遊脚速度が一定でない患者に対し

て，複数の線分で遊脚相を近似するようにアルゴリズムを改良する必要がある

ことが分かった．また，フットプリント検出アルゴリズムについては，床面へ

の映り込みの影響を回避するため，床面の素材にロバストな手法へと改良が必

要であることを述べた．

第 3章では，実際の脳卒中患者の歩行動画と BBSデータを収集し，第 2章

で提案した歩行解析アルゴリズムをベースとして，客観的に BBSを自動評価

することが可能なシステムを開発した．提案手法は，従来の BBS評価におい

て主観的な採点基準が影響が大きくなる 36-45点の得点層にて，実用的な推定

誤差を示した．また患者の変化を検出する場合に必要な，BBS の最小変化量

を捉える目的では，提案手法は臨床的な水準を達成した．また従来の BBS評

価と比較して 15分以上，評価時間を短縮したことで，臨床現場での BBS評価

の効率化に貢献することを示した，

第 4章では，提案した BBS推定技術では低得点層で十分な推定精度を示せ
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なかった原因を考察し，推定精度向上に必要な追加の歩行特徴量について検討

した．想定よりも得点が低くても見守りレベルの歩行が可能であった患者の

データから，低得点層患者には体幹の姿勢・運動，上肢関節の角度・可動域，

歩き始めの重心移動に関する特徴が見られたことを述べた．さらに先行研究で

報告されている脳卒中後片麻痺患者の歩行特徴と照らし合わせることで，これ

らの特徴を含めたより包括的な手法の可能性について将来展望として論じた．

本研究では，距離画像の直接的な解析手法を用いた片麻痺様歩行の解析技術

を提案し，それをベースとして実際の脳卒中後片麻痺患者のバランス機能推定

システムを開発した．また見守り歩行レベル相当の患者の内，専門家間で評価

結果がバラツキやすい得点層に対して，提案手法が有効な精度を有しているこ

とを明らかすることで，客観的な評価の実現に貢献した．またこれにより一部

の脳卒中後片麻痺患者に対するバランス機能評価を専門家以外でも実施可能と

なり，本システムを用いたリハビリテーション介入の効率化への活用が期待さ

れる．
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参考文献 98

Luiz Felix Rodacki, and Elisangela Ferretti Manffra. Center of mass in

analysis of dynamic stability during gait following stroke: A systematic

review. Gait Posture, Vol. 72, pp. 154–166, 2019.

[56] Thomas Hellsten, Jonny Karlsson, Muhammed Shamsuzzaman, and

Göran Pulkkis. The potential of computer vision-based marker-less

human motion analysis for rehabilitation. Rehabilitation Process and

Outcome, Vol. 10, p. 11795727211022330, 2021.

[57] Ross A. Clark, Kelly J. Bower, Benjamin F. Mentiplay, Kade Paterson,

and Yong-Hao Pua. Concurrent validity of the microsoft kinect for

assessment of spatiotemporal gait variables. Journal of Biomechanics,

Vol. 46, No. 15, pp. 2722 – 2725, 2013.

[58] Alexandra Pfister, Alexandre M West, Shaw Bronner, and Jack Adam

Noah. Comparative abilities of microsoft kinect and vicon 3d motion

capture for gait analysis. Journal of medical engineering & technology,

Vol. 38, No. 5, pp. 274–280, 2014.

[59] Daphne Geerse, Bert Coolen, Detmar Kolijn, and Melvyn Roerdink.

Validation of foot placement locations from ankle data of a kinect v2

sensor. Sensors, Vol. 17, No. 10, 2017.

[60] Jakub Wagner, Marcin Szymański, Michalina B lażkiewicz, and
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