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Summary

The drive toward a low-carbon society and the urgent need to address energy issues
have gained increasing prominence in recent years, as evidenced by the United Nations
Sustainable Development Goals. This global shift underscores the critical necessity of
transitioning to sustainable energy systems, particularly in the face of challenges such as
climate change and energy scarcity. The adoption of renewable energy sources, notably
solar and wind power, is playing a pivotal role in paving the way for this sustainable
future. Data from the last few decades shows a consistent and impressive growth in
the worldwide capacity of renewable energy installations. Despite their environmen-
tal benefits, renewable energy sources present significant challenges for the capacity
and stability of electricity grids. Their output is inherently inconsistent and subject to
fluctuations due to environmental factors like weather and wind speed, and lacks the
controllability characteristic of traditional power stations. Such variability in renewable
energy production can lead to substantial issues in grid stability, including frequency
fluctuations, grid line overloads, and imbalances between supply and demand. To com-
pensate for the unpredictability of renewable energy outputs, there is a growing need
for measures such as adjusting generation levels and utilizing energy storage systems.
These interventions are essential to ensure a reliable and efficient integration of renew-
able energy into the power system.

Addressing these challenges, grid-interactive efficient buildings (GEBs) have
emerged as a key solution. Defining by the U.S. Department of Energy, GEBs are
energy-efficient buildings that use smart technologies and on-site distributed energy re-
sources (DERs) to provide demand flexibility. The international energy agency (IEA)
also has a similar definition. They co-optimize for energy cost, grid services, and occu-
pant needs and preferences in a continuous and integrated manner. GEBs are becoming
pivotal in enhancing the affordability and reliability of power systems in the U.S., sig-
nificantly contributing to the reduction of greenhouse gas emissions by reducing overall
energy consumption and enhancing demand flexibility. This is crucial for the seamless
integration of renewable energy sources into the grid. GEBs offer direct benefits to con-
sumers, such as reduced system costs and enhanced demand flexibility, leading to lower
electricity bills and reduced consumption. They also improve the reliability of the sys-
tem and increase the satisfaction of building owners and occupants by providing more
options, resilience, and flexibility in terms of electricity consumption. The multifaceted
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benefits of GEBs highlight their essential role in transforming the energy landscape and
enhancing consumer experiences and sustainability.

This dissertation delves into several key aspects of GEBs, focusing on load shed-
ding, load shifting, and generation. These areas are where significant improvements
can be achieved through information technology links. In this dissertation, research
will be conducted on the generating and consuming sides to improve these strategies.
This dissertation excludes considerations such as battery storage modeling and renew-
able energy production. Furthermore, the participation of GEBs in demand response and
balancing markets, where electrical flexibility is dealed, is integral to the modern energy
ecosystem. By actively participating in these markets, GEBs can capitalize on their abil-
ity to dynamically adjust energy consumption and production in response to real-time
market signals. Thus, GEBs potentially contribute to several important aspects of grid
stability and maximize their economic returns. This dissertation therefore addresses the
following points, aiming to improve their effectiveness and further challenge efficient
market participation.

• How to maximize the potential of renewable generation.
• How to manage DERs such as air conditioning systems for modifying load profile.
• How to effectively get rewards through flexibility market participation.

Within the broader scope of GEBs and DERs management, particularly photovoltaic
(PV) generation, strategic planning is crucial for evaluating GEB performance and es-
timating long-term electrical costs. However, the typical method of selling excess solar
energy via reverse power flow often leads to instability in the power system. In this
context, the role of electric vehicles (EVs) becomes pivotal in effectively utilizing and
reducing solar energy waste by filling the spatiotemporal gap in solar energy. This dis-
sertation proposes a novel EV aggregation framework for the spatiotemporal shifting
of solar energy, reducing the need for reverse power flow. This framework can con-
tribute to reducing solar energy waste by manipulating pricing strategies for charging
and discharging via an EV aggregator. The proposed EV aggregation enables EVs to
spatiotemporal shift energy from building to building. Simulation results demonstrate a
substantial reduction in solar energy waste, up to 68%, using this novel framework.

Significant research in GEBs focuses on GEB load shedding and shifting strategies
through various DERs, particularly HVAC systems. HVAC is crucial due to its high de-
mand within buildings and existing installations, reducing additional costs. This disser-
tation optimizes HVAC operations by allocating electrical power based on occupancy
and outdoor unit capacity, ensuring that the total power consumption complies with
peak demand limitations. Various methods, including model predictive control (MPC)
and reinforcement learning, are explored for HVAC scheduling. While MPC is effec-
tive in long-term planning, its computation time increases with more units, and rein-
forcement learning requires extensive data and struggles with comfort uncertainty. This
dissertation presents a solution that efficiently meets power constraints across multiple
units without violating power limitations or sacrificing thermal comfort. The proposed
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method, balancing electricity costs and thermal comfort through multi-objective opti-
mization, demonstrates that the scheduling of multiple HVAC systems can be achieved
efficiently. By integrating the proposed methodology with appropriate HVAC aggrega-
tion techniques, a comprehensive framework for energy management in buildings can
be provided.

GEBs have evolved from passive power consumers to active participants in the elec-
tricity supply and demand balancing market, playing a key role in efficiently integrating
renewable energy sources like solar and wind power. This integration is crucial for
managing energy variability and preventing grid overloads during peak times. A critical
aspect of GEBs’ effective market participation involves accurately predicting market
transaction prices. This capability is essential for optimizing energy buying or selling
strategies, maximizing revenue, and developing efficient energy supply approaches. In
this context, the dissertation introduces a novel market price forecasting model tailored
for the frequency control ancillary service markets. This model, derived from wholesale
market data and considering varying response times, significantly improves the accuracy
of the prediction. Experimentally, it has been shown to reduce the root mean square er-
ror by 80% compared to existing forecasts from the Australian energy market operator,
indicating its effectiveness in supporting the strategic participation of GEBs in energy
markets.
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Chapter 1

Introduction

1.1 Background

Nowadays, the drive toward establishing a low-carbon society and addressing energy
issues has become increasingly pronounced. As noted in the United Nations Sustainable
Development Goals Report [1], the convergence of global challenges, including climate
change and energy scarcity, underscores the critical need for the transition to sustainable
energy systems.

There has been a noticeable increase in the adoption of renewable energy to pave the
way for a sustainable future [2,3]. This trend is shown in Figure 1.1, where data indicate
a consistent increase in the worldwide capacity of renewable energy installations over
the last several decades [4, 5]. Specifically, from 2006 to 2022, there has been an im-
pressive growth in wind and solar energy capacities, which have increased by 825 GW
and 1046 GW, respectively. These sources of renewable energy are also appealing from
a sustainability point of view, as they generate clean energy with no CO2 emissions and
reduce the dependence on exhaustible fossil fuels.

Despite the environmental benefits of renewable energy, it presents considerable
challenges concerning the capacity and stable operation of electricity grids [6]. The
output of renewable sources is frequently inconsistent and fluctuates based on environ-
mental factors such as wind speed, solar exposure, and cloud cover. Moreover, their
generation cannot be controlled in the same manner as conventional power stations,
such as coal plants, which can be adjusted up or down, or switched on or off, as needed.
These fluctuations in renewable energy production can lead to significant issues with
grid stability, including frequency fluctuations, grid line overloads, and imbalances be-
tween supply and demand [7]. To address these grid stability issues, ancillary services
have become increasingly important. These services provide essential support to the
grid, including frequency regulation, voltage control, and emergency backup, helping
to manage the imbalances and ensure a reliable electricity supply. The grid is thus un-
der strain from the swift incorporation of renewable sources. To manage this variability,
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Figure 1.1: Installed global renewable energy capacity by technology

supply-side utilities must maintain a balance between supply and demand using their
generation systems [8]. This includes preparing for power fluctuations by constructing
new power stations and updating existing ones. Nonetheless, maintaining large-capacity
power plants that are rarely utilized is not cost-effective. Therefore, alongside supply-
side solutions, leveraging demand-side energy resources has become increasingly im-
portant.

Buildings are major energy consumers that impose tremendous strain on the modern
grid. This trend is depicted in Figure 1.2, where data indicate that the global shares of
final energy in buildings are 36% and 37% [9, 10]. There exists a potential for them to
play a pivotal role in balancing the supply and demand of the grid. By integrating smart
systems and energy storage solutions, buildings can respond effectively to fluctuations
in renewable energy supply, thus contributing to grid stability. Such strategies could
alleviate the need for large-capacity power plants, which are not cost-effective. In re-
sponse to these opportunities, the concept of grid-interactive efficient buildings (GEBs)
has been proposed.

The U.S. department of energy (DOE) defines GEBs as an energy-efficient build-
ing that uses smart technologies and on-site distributed energy resources (DERs) to
provide demand flexibility while co-optimizing for energy cost, grid services, and occu-
pant needs and preferences, in a continuous and integrated way [11]. The IEA reported
recommendations and guidelines for the realization of GEBs [12]. This report employs
a definition of GEBs similar to that used by the DOE. By doing so, GEBs have emerged
as pivotal contributors to enhancing the affordability and reliability of the U.S. power
system. Furthermore, GEBs play a crucial role in curbing greenhouse gas emissions by
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reducing overall energy consumption and enhancing demand flexibility, thus facilitating
the seamless integration of renewable energy sources.

Figure 1.3 shows the main components of the GEB. These components include en-
ergy generation systems such as solar panels, energy storage units like batteries, and
smart management systems that control and optimize energy use and DERs within the
building. Importantly, GEBs offer direct benefits to consumers through DER manage-
ment, such as solar panels, batteries, electric vehicles, and smart appliances. GEBs
achieve this by enhancing energy efficiency and demand flexibility within buildings,
which in turn contributes to the grid’s stability and efficiency. Moreover, improvements
in system reliability resulting from demand flexibility represent a substantial benefit to
consumers. Furthermore, GEBs elevate the satisfaction of building owners and occu-
pants by providing increased options, resilience, and flexibility in terms of electricity
consumption. In certain cases, these advancements have led to an overall improvement
in the comfort levels of building occupants. Such multifaceted benefits underscore the
pivotal role of GEBs in not only transforming the energy landscape but also enhancing
the overall consumer experience and sustainability of the built environment.

The challenge lies in the orchestration of these DERs - solar panels, batteries, elec-
tric vehicles, and smart appliances - ensuring that they operate harmoniously to bal-
ance energy supply with fluctuating demand. As outlined in the technical reports from
the U.S. DOE regarding GEBs [11], there are five demand-side management strategies
crucial to improving building energy efficiency and grid interaction: efficiency, load
shedding, load shifting, modulating, and generation. Table 1.1 provides the detailed
definitions and key characteristics for each strategy. The realization of GEBs is based
on the efficient management of DERs and the sophisticated handling of information.
GEBs represent a transformative approach, integrating DERs to not only improve en-
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Table 1.1: Five strategies for demand-side management in GEB [13]

Definition Key Characteristics Load Profiles

Efficiency
Consistent reduction
in power consumption,
regardless of time.

Long-term, continuous
reduction.

Load Shedding

Temporary decrease in
power consumption
during peak usage
periods or in response
to emergency events.

Power consumption need
to be promptly decreased
upon receiving signals
and typically remains
down for around one hour.

Load Shifting

The building modifies
its energy usage
schedule to lower power
demand during peak
hours or to better
utilize renewable
energy sources.

Power consumption need
to be promptly decreased
upon receiving signals
and typically remains
down for two to four hours.

Modulate

The building
automatically adjusts
its power consumption
in response to signals
from the grid operator.

Power consumption need
to be modifiable
at intervals of
one second or less.

Generation

The building generates
electricity for on-site
use or supply to the
grid during peak
demand hours.

Power consumption must
be promptly decreased
upon getting
notifications and typically
lasts for two to four hours.
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ergy costs and comfort within buildings but also actively contribute to grid stability. A
key aspect of effectively managing DERs is the deployment of advanced control sys-
tems that can respond dynamically to grid signals, optimize energy usage, and engage
in real-time energy transactions, both within and beyond the building’s parameters.

The global supply-demand balance is expected to become more complex in the
future, with a shift towards renewable energy sources for power generation. Conse-
quently, it is essential for GEBs to handle DERs with more flexibility. Specifically,
the challenge lies in contributing to the power grid, such as "demand-side management
strategies for GEB" and creating flexibility for supply-demand balance, without com-
promising the building’s primary objectives, such as minimizing electricity costs and
ensuring residents’ comfort. Therefore, this study aims to improve the effectiveness of
GEBs by addressing challenges related to load shedding, load shifting, and generation.
The strategies of efficiency and modulation are outside the scope of this study, as they
are mainly within the research scope of the Mechanical Engineering Research Insti-
tute. Furthermore, the participation of GEBs in demand response markets is essential
for the modern energy ecosystem. By actively participating in these markets, GEBs can
capitalize on their ability to dynamically adjust energy consumption and production in
response to real-time market signals. Thus, GEBs contribute to grid stability and max-
imize economic returns. Therefore, this dissertation also challenges further efficient
market participation through information technology.

To achieve this kind of energy management, this dissertation divides GEB into three
key perspectives to improve its capabilities in each area. These parts are "store," "con-
sume," and "interact." "Store" refers to how electricity generated within a GEB is stored
and when it is used. The most crucial aspect of ’store’ is storage, primarily using resi-
dential batteries and electric vehicles. Next, "consume" refers to when and how much
various appliances are used in GEBs. Figure 1.4 demonstrates the proportion of power
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consumption within a building. In particular, air conditioning and lighting, which make
up a significant part of the system, have the potential for substantial contributions. Fi-
nally, "interact" involves the interaction between GEBs and the grid. Traditionally, the
rewards in GEBs for altering building demand were reductions in total power consump-
tion and peak power, thus lowering electricity costs. However, in recent years, the
ability to trade the potential of demand shape changes as the electrical flexibility in the
market has emerged. Consequently, the interaction between the GEBs and the grid is
rapidly evolving. This dissertation focuses on the following points regarding the above
key points.

• Store: How to maximize the potential of renewable generation.
• Consume: How to manage DERs for GEB’s load modification.
• Interact: How to effectively receive rewards through market participation.

1.2 Related Research

This section introduces research related to GEBs. First, studies on the overall concept of
GEBs and the strategies that are the focus of this research are presented. Next, research
on the creation of electrical flexibility through GEBs is introduced.

1.2.1 Grid-interactive Efficient Buildings

In the burgeoning field of GEBs, studies are pivotal for the evolution and implemen-
tation of these advanced systems. GEBs are advanced structures that actively manage
energy consumption and generation, integrate with the power grid to optimize efficiency,
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reduce costs, and contribute to energy sustainability. Liu et al. [14] underscore the cru-
cial role of GEBs in facilitating the low-carbon transition by maximizing the use of
renewable energy within the building sector. This study highlights the importance of
GEBs in reducing carbon emissions, aligning with global sustainability goals. Ye et
al. [15] provide a foundational framework for the deployment of GEB, highlighting
a structured approach that includes assumptions, modeling, and simulation to address
research questions and achieve efficient problem solving strategies. In addition, the po-
tential of GEBs to function as active elements within a microgrid is exemplified through
case studies using prototype commercial building models developed by the U.S. DOE.
This study [16] illustrates the integration of photovoltaic (PV) generation and energy
efficiency applications, serving as a template for future GEB implementations.

Recent research about GEBs marks a shift towards dynamic energy management. Li
et al. [13] focus on energy flexibility in residential buildings, highlighting its role in op-
timizing flexible loads and contributing to a reliable power grid. They explore electrical
flexibility’s applications across various scales and its essential performance metrics and
control strategies. Steen’s review [17] emphasizes demand-side management strategies
such as load shedding, shifting, and modulation, which are crucial for balancing energy
demand and supply, particularly during peak periods. These strategies, which integrate
advanced technologies and smart controls, are vital to improving energy efficiency and
grid stability. The following parts introduce each of these demand strategies in GEBs.

Load Shedding

Load shedding is the ability of a building to reduce electricity use during a short period,
which typically occurs during times of peak demand or emergencies and on short notice.
The GEB load shedding strategy is important because it helps reduce the highest energy
use, ease the load on the power grid, and make energy use more efficient and stable.

Consume: One of the most significant DER devices for load shedding within GEBs
is HVAC systems. The International Energy Agency has identified HVAC loads in build-
ings as having the greatest potential to provide grid services due to their substantial
portion of the electric load and the flexibility of operation afforded by passive thermal
storage of the mass of the building [10]. This trend is depicted in Figure 1.4, where data
indicate that space heating and cooling power consumption accounts for about 40% of
the building’s power consumption [9, 10]. This is because HVAC systems can easily
be turned off and the environmental changes caused by turning them off are gradual.
Some studies provide a framework that includes load shedding as a core component of
demand response capabilities [14, 18]. However, these studies lack consideration for
the comfort of residents. Therefore, a more sensitive approach that takes into account
comfort is necessary.

Store: On-site generation, particularly PV systems, and energy storage are essential
in load shedding operations. Integration of these DERs enables buildings to shed loads
by relying on their generated power during peak times, as shown in a detailed analy-
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sis by the Department of Energy, which uses prototype commercial building models to
demonstrate this capability [16]. This method is discussed in more detail in the litera-
ture [19], with a focus on creating analytical frameworks that see buildings as flexible
grid resources and include load shedding as a function of time-sensitive efficiency.

Load Shifting

Load shifting is the ability to change the time of electricity use, which is by decreasing
demand during one period while increasing demand during another. The GEB load
shifting strategy is essential to balance energy demand and supply by moving energy
use from peak times to off-peak periods, thus enhancing grid stability and optimizing
energy costs.

Consume: HVAC systems represent a substantial portion of the energy load in
buildings and offer significant potential for the GEB load shifting strategy. Especially,
pre-cooling and pre-heating are considered effective for load shifting. Using the ther-
mal inertia of buildings is a cost-effective way to reduce peak load without sacrificing
comfort [20]. Turner et al. [21] investigated mechanical pre-cooling in low thermal
mass homes to shift peak electricity loads using the simulation tool across various cli-
mates. Their approach balanced energy efficiency and occupant comfort by optimizing
pre-cooling strategies and thermostat settings. Reinforcement learning methods [22–24]
have been studied for the control of HVACs at the building level. In these studies, re-
inforcement learning has been used to achieve load shifting and comfort assurance in
multiple HVAC systems. The implementation of smart grid technologies and the In-
ternet of Things plays a crucial role in improving load shifting capabilities in GEBs.
Finn et al. [25] discovered that household dishwashers, when subjected to a control al-
gorithm aimed at minimizing cost and carbon emissions, exhibited peak load shifting at
time between 28% and 70%. Farzamkia et al. [26] reported that the maximum load of
the refrigerator can be shifted by about 11% by pre-cooling strategies and by over 40%
with optimized algorithms. Glavan et al. [27] have shown that pre-cooling can result in
a peak load shift of 18% for commercial refrigeration in supermarkets.

Generation

Generation is the ability to produce electricity for consumption on-site or to dispatch
electricity to the grid in response to a signal from the grid operator. The GEB genera-
tion strategy is crucial to effectively integrate large-scale renewable energy and manage
power flow, thereby ensuring grid stability and efficient energy use. In this genera-
tion strategy, it is assumed that power can be generated on demand for either personal
or distribution purposes. However, in reality, power generation from sources like PV
cannot be managed this way; hence, the use of batteries and similar technologies is a
prerequisite.
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Store: Electricity battery storage is a significantly flexible resource. It provides the
ability to increase charging during periods of high generation and increase discharge
during periods of high demand. The battery-to-demand control method is an essential
technical solution for effective energy management, especially when combined with re-
newable energy generation on site. Several studies have investigated the utilization of
battery storage to enhance the self-consumption rate of solar PV systems [28–32] and
wind turbines [33]. Salpakari et al. [32] have achieved situations where over 50% of
energy consumption was met by renewable generation on site, leading to negligible op-
erational expenses. The energy storage capacity of EVs can be utilized to absorb excess
energy during off-peak times and release it during peak times, aiding in load shedding
and overall grid stability. This concept is explored in various smart grid frameworks,
emphasizing the role of EVs and energy trading in modernizing the grid infrastruc-
ture [34, 35]. Thus, many previous studies on the GEB’s generation strategy have fo-
cused on how to use up generated power in buildings. In order to utilize generated
power, there is another way such as selling electricity to the grid as reverse power flow.
Unahalekhaka et al. [36] explored the optimal sizing and positioning of a battery energy
storage system (BESS) to minimize reverse power flow in PV system power plants.
Their study concluded that installing BESS directly at the PV power plant was the most
effective strategy for reducing generated energy loss, power fluctuations, and enhancing
electricity production. Fokui et al. [37] proposed an intelligent control system for EV
charging during peak solar production periods to mitigate reverse power flow by excess
power. However, large-capacity batteries entail high costs, and discussions regarding
whether their contributions justify these costs have not been conducted.

1.2.2 Flexibility Manegement of GEBs

Conventional GEBs are based on contributing to the electricity grid through load shift-
ing and load balancing. In recent years, these shifts in demand can be created as electri-
cal flexibility to improve the supply-demand balance and can be bought and sold with
the market. As with system-level applications, operational phase applications at the
building level involve evaluations of energy flexibility potential, comparisons of control
strategies, and assessments of energy management strategies. Depending on whether
optimization is integrated into the process, these applications can be heuristic or opti-
mal in nature.

Interact: Regarding the heuristic method, Ramos et al. [38] conducted experiments
to assess several operational techniques for HVAC systems, including modifications to
set-point temperatures, preconditioning durations, and the duration of night ventilation.
They simulated costs in each method under fixed, critical peak pricing, real-time pricing,
and time-of-use pricing models. Pinamonti et al. [39] introduced a rule-based control
approach to adjust air-source heat pumps according to the availability of PV energy. The
goal is to increase the amount of PV energy consumed on-site and decrease dependence
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on the electrical grid. Regarding the optimization method, Good et al. [40] proposed
a two-stage stochastic programming model that enables heating energy flexibility by
utilizing thermal energy storage. The program determined the most efficient temper-
ature schedules to save energy expenses while maintaining thermal comfort. Bandera
et al. [41] investigated the possibility of increasing on-site PV self-consumption by ex-
ploiting the thermal mass storage of the building. The researchers utilized a genetic
algorithm (GA) to optimize the schedule for the room temperature setpoint. The goal
was to maximize the consumption of solar energy while maintaining thermal comfort.
Conversely, when establishing coordination capacity for GEB, it is crucial to assess
the potential rewards achievable through this flexibility. Hence, a critical challenge for
the future lies in distinguishing buildings based on their ability to secure coordination
rewards compared to others. Some research [42, 43] dissected the problem of aggre-
gator in the management of DER and pre-bid concerns. These research conducted on
bidding challenges focused on optimizing pre-bidding methods by utilizing forecasted
prices obtained from market price signals. However, discrepancies between predicted
prices and actual transaction prices have led to losses for aggregators and consumers,
emphasizing the need for more accurate methods.

1.3 Research Questions and Approaches
This section describes the remaining research questions to maximize the potential of
GEB energy management for smart energy systems. Figure 1.5 shows the scope of this
dissertation, where we consider both the consumption level, the generation level, and the
market level. GEBs need a system that can contribute more to the power grid without
compromising on the building’s objectives (electrical cost and comfort) to meet future
changes in the power supply and demand environment. This dissertation addresses three
questions regarding three key points of GEBs.

Question 1: How can GEBs be used to effectively utilize surplus PV generation
from the viewpoint of storage?

In the context of the GEB generation strategy, planning for the operation of DERs, par-
ticularly PV generation, is imperative. This planning serves as a critical tool to evaluate
the performance of GEBs and estimate long-term electrical costs. Renewable energy
production, especially PV generation, exhibits substantial fluctuations with seasonal
variations due to changes in temperature and solar radiation. This variability introduces
the risk of generating surplus power that cannot be controlled and must be managed. As
discussed in Section 1.2, research on these issues, mainly in relation to battery linkages,
is underway because the battery can temporally shift the generated power. Therefore,
methods that only consider the use of power within the building can lead to situations
where generated electricity is wasted, depending on the capacity of the generation sys-
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tem. Another solution is to sell surplus power back to the grid, providing an opportunity
to utilize wasted renewable energy elsewhere and fill spatial gaps within the energy
framework. However, large-scale reverse power flow often compromises grid stability,
highlighting the need for effective solar energy use without such reverse power flow.
Recent studies have explored planned reverse power flow to minimize its impact on the
grid. However, within the context of GEBs, as the integration of large-scale renew-
able energy progresses, there is a growing need for new generation strategies beyond
traditional reverse power flow and battery utilization.

Using EV charging and discharging is a potential way to utilize surplus PV genera-
tion. EVs are gaining popularity due to their low carbon footprint, and the widespread
installation of charging stations further supports their adoption. Typically equipped with
high-capacity batteries for extended ranges, these batteries are often not fully utilized
in daily operations. This underutilization presents an opportunity to bridge the tempo-
ral and spatial gap between energy supply and demand. Numerous studies explore the
integration of solar energy and EVs, focusing on load shedding and profit maximiza-
tion. However, there is a gap in research that focuses on minimizing solar energy waste.
Therefore, a method is needed that not only enhances efficiency through temporal power
shifting via EVs but also spatially and temporally shifts surplus power, leveraging the
mobility of EVs. This approach maximizes the utilization of PV power generation with-
out relying on reverse power flow, thereby minimizing waste. The proposed approach
contributes at least partly to the generation strategy.

Question 2: How can GEBs effectively schedule DER operations considering peak
power and building comfort from the viewpoint of consumption?

In GEBs, the realization of load shedding and shifting is increasingly being sought
through DERs, especially HVAC systems. HVAC is crucial due to its high demand
within buildings and existing installations, reducing additional costs. Various studies
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have been conducted on the realization of load shedding and shifting through HVAC
systems, as introduced in Section 1.2. The main methods used for this are model pre-
dictive control (MPC) and reinforcement learning for HVAC scheduling. However, each
method has advantages and disadvantages. MPC uses indoor environmental forecasts
for long-term scheduling, its computation time increases with more units. On the other
hand, reinforcement learning faces challenges like the need for extensive data and un-
certainty about comfort. Therefore, there is a demand for methods that realize load
shedding and shifting in GEBs while controlling the increase in computation time and
guaranteeing comfort.

This dissertation investigates HVAC management in GEBs for effective load shed-
ding and shifting, focusing on user comfort and cost minimization under power grid
constraints using the MPC method. The proposed methodology divides HVAC opera-
tions optimization into two parts: power resource allocation to each HVAC system and
operational scheduling. First, power allocation determines each HVAC’s upper power
limitation based on HVAC ability and user. Next, the operational scheduling problem
is formulated as a multi-objective optimization, balancing electricity costs and ther-
mal comfort, and incorporating the power limits from the initial allocation. The pro-
posed method offers a solution to meet power constraints in multiple units. Traditional
approaches to optimizing multiple HVAC units as a single problem led to increased
computation time. Therefore, this research is a key aspect of the energy management
framework for GEBs.

Question 3: How can GEBs predict the transaction price of electrical flexibility for
efficient interaction with the market?

The evolving role of GEBs in the electricity supply and demand balancing market has
shifted from basic power consumers to a more dynamic participation, enhancing adapt-
ability in energy systems. GEBs are now instrumental in the efficient integration of
renewable energy sources, such as solar and wind power, into the grid, optimizing their
use without waste. This integration is crucial, especially when managing variable en-
ergy sources and mitigating grid overloads during peak demand.

Moreover, for GEBs participating in the supply and demand balancing market, ac-
curately predicting market transaction prices is essential. These predictions are key to
formulating effective strategies, allowing GEBs to buy or sell energy optimally, maxi-
mizing revenue, and establishing efficient energy supply approaches. Accurate market
forecasts also give GEBs a competitive advantage, enabling them to offer more efficient
and competitive energy services. Therefore, focusing on strategies for precise mar-
ket price predictions is vital for GEBs to effectively and strategically participate in the
supply and demand balancing market. This forecasting is a significant step towards a
sustainable energy system.
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1.4 Organization
The rest of this dissertation is organized as follows. Chapter 2 presents a framework
that causes charging and charging of EVs, as energy trading, through an EV aggregator
intentionally changing price. This framework aims to reduce solar energy waste through
energy trading. The results of the experiment demonstrate that the proposed framework
effectively reduced solar energy waste by 68%.

Chapter 3 presents a method for scheduling multiple HVAC systems. The proposed
technique allocates electrical power to each HVAC system based on its occupancy and
outdoor unit. Subsequently, the scheduling of each HVAC system is designed to ensure
that the overall power consumption remains below the power limits imposed by peak
demand. The results of the experiment demonstrate that the proposed approach suc-
cessfully generates a schedule that conforms to the power limitation at all times without
compromising thermal comfort.

In Chapter 4, a market price forecasting model is introduced for the frequency con-
trol ancillary services (FCAS) market. The model examines forecasting models derived
from a wholesale market and considers markets with different response times as in-
put data, including the target market operated by the australian energy market operator
(AEMO). The proposed forecasting model achieves an RMSE of 7.8$/MWh on the en-
ergy price in the 6-Second-Raise market of AEMO, as observed by the experiments. The
proposed forecasting model significantly decreases the root mean square error (RMSE)
by 80% compared to the forecast price released by AEMO.

Chapter 5 serves as the concluding section of this dissertation, providing a summary
of the main points discussed and suggesting potential areas for further research.



14 CHAPTER 1. INTRODUCTION



Chapter 2

Spatiotemporal Energy Shifting via EV
Aggregator

Solar energy is a widely adopted energy source these days, playing a vital role in achiev-
ing a sustainable society. Within the broader scope of grid-interactive efficient buildings
(GEBs) and distributed energy resources (DERs) management, particularly photovoltaic
(PV) generation, strategic planning is crucial to evaluate GEB performance and estimate
long-term electrical costs. While GEBs typically export surplus solar energy as reverse
power flow, this extensive reverse flow can often lead to instability in the power grid.
For effective utilization of renewable energy and reduction of solar energy waste, elec-
tric vehicles (EVs) play a crucial role in bridging the spatiotemporal gap in solar energy
distribution. This chapter presents a new EV aggregation framework designed to facil-
itate the spatiotemporal redistribution of solar energy without reverse power flow. The
proposed framework causes charging and charging of EVs, as energy trading, through
an EV aggregator intentionally changing price. This framework aims to reduce so-
lar energy waste through energy trading. Simulation results indicate that the proposed
framework successfully reduced solar energy waste by 68%.

2.1 Introduction
The use of solar energy is increasingly recognized as key to achieving a sustainable
society and is being adopted widely these days. The international renewable energy
agency reports that there has been impressive growth in solar energy capacities, which
have increased by 1046 GW from 2006 to 2022 [4]. In GEBs, PV generation stands as
a key DER. Effective utilization of solar energy often encounters issues due to temporal
and spatial mismatches between energy demand and supply. Solar panels, for example,
only generate power during the day, which causes a temporal gap as this energy is not
readily available at night. Additionally, the spatial gap presents a challenge, as renew-
able energy sources are frequently distributed across various locations. Batteries play a
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crucial role in bridging the temporal gap in the utilization of solar energy, often installed
alongside PV panels in homes. They enable the use of renewable energy even at night,
effectively addressing the temporal gap. Regarding the grid-interactive efficient build-
ings (GEB) generation strategy, planning the operation of distributed energy resources
(DERs), especially PV generation, is essential. This planning is key for evaluating GEB
performance and estimating long-term electrical costs. When solar power cannot be
used or stored at home, the excess is often sold back to the grid, utilizing otherwise
wasted energy elsewhere and addressing the spatial gap. However, extensive reverse
power flow can lead to grid instability, highlighting the need for alternative methods to
use solar energy without reverse flow.

With the rise in popularity of EVs due to their low carbon emissions, charging sta-
tions are now widely accessible. These EVs typically feature large batteries for extended
range, but in daily use, these batteries often remain underutilized. This implies that the
EV battery has the potential to overcome temporal and spatial gaps in energy demand
and supply. Numerous studies have been conducted on the connection between solar
energy and EVs [44–55]. Cui et al. introduced an optimization framework for schedul-
ing EV batteries to assist in peak load shaving [48]. This approach allows EVs to both
charge and discharge on-site. Although this research focuses primarily on peak shaving
and profit maximization, it notably lacks a focus on minimizing solar energy waste.

This chapter introduces a new EV aggregation framework designed to minimize so-
lar energy waste. The framework, drawing inspiration from Cui’s model, allows EVs
to both charge and discharge on-site, purchasing excess energy from households with
abundant energy. This approach effectively reduces solar energy waste without neces-
sitating a reverse power flow. A unique pricing strategy underpins this system, setting
different prices for energy-rich and energy-poor households to facilitate the redistribu-
tion of excess energy.

The contributions in this chapter are summarized as follows.

• This research introduces a new framework for managing EV aggregation, aimed
at minimizing the waste of solar energy. This framework has led to a significant
reduction in solar energy waste, achieving a decrease of up to 68%, and, at the
same time, the purchased energy from the grid was also reduced by 13%.

• This research explores the impact of battery sizes in households and EVs on the
effectiveness of the proposed EV aggregator.

The structure of the remaining chapter is outlined as follows: Section 2.2 delves into
relevant literature and studies. Section 2.3 describes the system model, while Section 2.4
details the proposed methodology. Section 2.5 presents the experimental results, and the
chapter concludes with Section 2.6, summarizing the findings and implications.
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Table 2.1: Summary of research on EV aggregators

Ref. Year Object Approach
[44] 2010 Peak shaving Charge/discharge scheduling
[45] 2010 Peak shaving Charge scheduling
[46] 2015 Maximizing profits Dynamic pricing
[47] 2017 Maximizing profits Dynamic pricing
[48] 2017 Peak shaving Charge/discharge scheduling
[49] 2018 Load reduction Dynamic pricing
[50] 2018 Peak shaving Charge/discharge scheduling
[51] 2018 Peak shaving Charge scheduling
[52] 2018 Peak shaving Dynamic pricing
[53] 2020 Maximizing profits Dynamic pricing
[54] 2020 Maximizing profits & Peak shaving Dynamic pricing
[55] 2021 Maximizing profits Dynamic pricing

2.2 Related Research

2.2.1 Researches on EV Aggregators

The rising popularity of EVs has significantly increased their charging demand, posing
a risk to grid stability. EV aggregation emerges as a potential solution to this issue. Ta-
ble 2.1 provides an overview of research in EV aggregation. Initially focusing on peak
demand shaving since its first study in 2010, the field has evolved to include profit max-
imization, with studies exploring various models like EV, grid, price, and traffic. Cur-
rent EV aggregation strategies primarily use dynamic pricing, enabling indirect control
of EV charging and discharging behaviors after initially dominating scheduling-based
methods.

Some research has proposed the EV aggregation method for the peak shav-
ing [44, 45, 48, 50–52]. Sadeghianpourhamami et al. [50] analyzed the usage patterns
of the charging stations of EVs, and this knowledge optimizes the charging / discharge
schedule. This research investigated the potential to mitigate peak electricity demand
by managing EV charging schedules, leveraging the insights gathered from these data.
Chen et al. [51] developed and tested models for EV charging schedule patterns in vari-
ous scenarios of energy consumption. This research analyzed the effects of EV charging
behavior on global load characteristics and demonstrated that appropriate charging pat-
terns can reduce peak electricity demand.

Several studies propose the pricing mechanism fpr the EV aggregator to maximize
the profitability of electricity transactions [46, 47, 53–55]. Moghaddam et al. [54] in-
troduced a pricing control technique that uses reinforcement learning. This research
achieved the objectives of reducing peak electricity demand and maximizing profits for
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EV aggregators. However, this research did not include considerations for reducing so-
lar energy waste. The objective of this chapter is to transfer excess solar energy between
households using an EV aggregator to charge and discharge EVs. To the best of author’s
knowledge, this research is the first to address the reduction of solar energy waste by
EV aggregation.

2.2.2 Researches on Energy Management
In this part, research related to energy management at the consumer level is introduced,
which is necessary as a prerequisite for aggregation. Energy management methods on
the consumer side, including households and business buildings, etc., have been inves-
tigated to optimize the utilization of solar energy. In [56–59], the main objective of
these researches includes reducing the total demand and cutting the peak demand by
scheduling the household battery and smart appliances. Watari et al. [57] introduced
an energy management approach that considers battery management. This research
successfully implemented effective battery management techniques and minimized the
electricity bill. The research, cited in [57], provides complementary research because
this chapter focuses on EV and EV aggregator. In this chapter, the household model is
supposed to include both the household appliances and the EV, and an EV aggregation
framework is proposed to connect the EV aggregator with the EVs that are associated
with these household models. The household model operates under the assumption that
energy management is optimized to provide maximum benefit, and the behavior of EVs
is determined based on this model.

2.3 System Model
This section presents the system model for the proposed EV aggregation framework. It
envisions a scenario where traditional charging stations are replaced by an EV aggre-
gator that can charge and discharge EVs. Figure 2.1 illustrates this system model of
the proposed framework. The model includes I household models, each with an EV,
and one EV aggregator model. The chapter aims to reduce solar energy waste through
spatiotemporal shifting via EVs, facilitated by interactions between the household and
EV aggregator models.

2.3.1 Household Model
As depicted in Figure 2.1, each household is equipped with a PV panel, electric load,
battery, power router, and an EV. Residents utilize their EVs for commuting between
their homes and the EV aggregator. When an EV is connected to the house, the EV
functions as an additional fixed battery. The power router, receiving pricing informa-
tion from the EV aggregator, enables the EV to engage in energy transactions through
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Figure 2.1: System model: household model and EV aggregator model

discharging or charging at the EV aggregator. The power router determines battery
scheduling to minimize electricity bills and maximize profit. For example, during peak
hours when the grid has excess generation in the daytime, it is not recommended to sell
electricity generated by the household as reverse power flow due to its detrimental effect
on the grid. During off-peak hours, households can send their surplus solar energy to the
grid as reverse power flow. If the batteries are fully charged and there is PV power that
cannot be consumed, the surplus solar energy is wasted or can be sold back to the grid
as reverse power flow. The power router transmits the EV battery schedule (the sched-
ule for charging or discharging the EV in the EV aggregator) and the energy budget to
the EV aggregator at regular intervals. In addition, the power router obtains the current
price data from the EV aggregator and carries out the iterative scheduling process using
the updated information. The household model and the EV aggregator model perform
these interactions in an iterative manner.

2.3.2 EV Aggregator Model

The EV aggregator is expected to function as both a large parking facility and a charg-
ing station. Figure 2.2 shows the physical structure of the EV aggregator. A physical
structure is assumed to consist of a parking lot with a large battery connected to it. The
EV aggregator is equipped with both charging and discharging capabilities, along with
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a substantial fixed battery. In this system, batteries and charging/discharging facilities
are interconnected at the grid connection point. The setup includes a sufficient number
of these facilities, ensuring that EVs can connect for charging or discharging upon ar-
rival. In proposed EV aggregator, multiple EVs can charge and discharge electricity at
the same time. Additionally, the EV aggregator includes a price agent responsible for
setting energy trade prices with the EVs. The EV aggregator pre-receives the battery
schedule and energy budget from households. The fixed battery of the EV aggrega-
tor handles all energy requests for EV charging/discharging. When the EV aggregator
cannot meet the charging demand of EVs due to insufficient battery capacity, it compen-
sates by purchasing energy from the grid. Alternatively, if the EV’s discharged energy
cannot be stored in the EV aggregator’s battery because it is fully charged, the surplus
energy is then sold to the grid.

Electricity trading assumes that the EV aggregator sets a higher price for selling
electricity than the price at which it buys from EVs. Based on this assumption, energy-
rich households are incentivized to sell their surplus energy to the EV aggregator instead
of wasting it within households. On the other hand, energy-poor households are incen-
tivized to purchase electricity from EV aggregators, as the selling prices offered by
aggregator are lower than those of the grid. Through such electricity trading, the EV
aggregator can make a profit. However, the primary objective of EV aggregators is not
profit maximization but rather the extent to which wasted energy can be shifted. Hence,
the EV aggregator sets prices based on its objectives. The EV aggregator classifies EVs
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Figure 2.3: Overview of the spatiotemporal energy shifting method

into two categories based on their energy budget. This classification aims to collect
surplus energy from the energy-rich and redistribute it to the energy-poor. The energy
budget information is sent from each household. Research on forecasting the next day’s
demand [60, 61] and generation [62, 63] at each household has advanced sufficiently,
and it is assumed that these data are available. If households have wasted energy, they
are classified into the energy-rich group (Group A). If households do not have wasted
energy, they are classified into the energy-poor group (Group B). The pricing agent of
the EV aggregator establishes distinct prices for each group, then communicates the
respective prices to the household model. The pricing agent adjusts these prices based
on the remaining battery capacity of the EV aggregtor and the energy budget of each
household. The updated prices are transmitted to households through the internet.

2.4 Problem Formulation

This section introduces a method for the spatiotemporal shifting of solar energy waste.
The aim is to reduce solar energy waste by redistributing it between households and
the EV aggregator, using EVs as a carrier. The focus of this chapter is on the interac-
tion between the household and the EV aggregator, which is crucial for the effective
implementation of this method. Figure 2.3 shows an overview of the proposed method.
The method proposed in the research is structured into two phases. Phase I involves
scheduling the household battery to minimize electricity bills. Phase II encompasses
battery scheduling and updating prices at the EV aggregator. These phases are exe-
cuted iteratively to induce a spatiotemporal shift in wasted energy. The study adopts an
online algorithmic approach, allowing households to adjust their behaviors flexibly at
each control interval. This flexibility is based on their current energy situation and the
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pricing from the EV aggregator. As a result, the EV aggregator’s prices and household
behaviors are fine-tuned through iterative calculations, eventually reaching a natural
convergence.

In Phase I, each household plans their battery usage and the amount of energy they
purchase, with the objective of minimizing their electricity bill. The inputs for this phase
include the selling and buying prices at the EV aggregator, as well as forecasted data
on PV generation and electricity demand. Every household transmits their EV battery
schedule and energy budget to the EV aggregator.

In Phase II, the EV aggregator collects all household information. This information
outlines the requests for charging and discharging the EVs and the energy budget for
each household. In response to the information received, the EV aggregator arranges
its own battery usage, energy purchases from the grid, and the management of excess
energy. Following this, the EV aggregator revises the selling and buying prices. The EV
aggregator sets two distinct prices for groups categorized as energy-rich and energy-
poor, based on their future energy budgets. It then communicates the relevant price
to each household according to their classification. Following the introduction of the
updated prices, the EV battery schedules are then adjusted to align with these updated
prices. The next subsections describe the details of each phase.

2.4.1 Phase I: Household Battery Scheduling for Electricity Bill
Minimization

Figure 2.4 shows an overview of Phase I. In Phase I, households schedule their battery
usage to minimize their electricity bills. Each household’s problem is expressed us-
ing mixed integer programming (MIP), with the planning period. The planning period
is defined as 0 ≤ u < U , u is a time step, and U is the overall period. The problem
formulation is derived from prior research [64].

Let BhIN
u ,BhOUT

u ,BvIN
u ,BvOUT

u ,Su,Bu,Qu,Yu,Zu be the amount of energy used to
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charge or discharge the battery of the household, the amount of energy used to charge
or discharge the EV battery connected to the household, the amount of energy selling
or buying in the EV aggregator, the reverse power flow energy, the amount of wasted
energy and the amount of energy purchased at time u, respectively. These variables are
the decision variables.

Denote BSh as the size of the household battery, and SOCh and SOCh as the upper
and lower limits of the state of charge (SOC) level, respectively. The remaining energy
of the household battery Xhu should meet the following formulation at every time u.

SOCh ≤ Xhu

BSh ≤ SOCh 0 ≤ u <U (2.1)

Additionally, the remaining energy Xhu can be updated by the following equation.

Xhu+1 = Xhu +BhIN
u −BhOUT

u 0 ≤ u <U −1 (2.2)

The remaining energy in the EV’s battery Xvu is represented in the same way. De-
note BSv as the size of the EV battery, and SOCv and SOCv as the upper and lower limits
of the SOC level, respectively. The remaining energy Xvu should meet the following
formula at every time u.

SOCv ≤ Xvu

BSv ≤ SOCv 0 ≤ u <U (2.3)

The method of updating the remaining energy of the EV varies depending on the situ-
ation of the EV. The state of EVs is denoted by the variable dsu. dsu can take values
of zero, one, and two, representing being connected to a household, disconnected, and
connected to an EV aggregator, respectively. The remaining energy of the EV, denoted
as Xvu, can be updated using the following equation.

Xvu+1 =


Xvu +BvIN

u −BvOUT
u if dsu = 0

Xvu −H if dsu = 1
Xvu −Su +Bu if dsu = 2

0 ≤ u <U −1 (2.4)

It should be noted that the energy used for driving at each time step can be simplified
and represented by a constant value, denoted as H. Charging and discharging of the
EV’s battery are permitted only when dsu = 0, and when the EV is connected to the
household. This implies that BvIN

u and BvOUT
u are zero when dsu is equal to one or two,

indicating that the EV is not linked to the household. Similarly, if dsu = 2 and the EV is
linked to the EV aggregator, it is permitted to buy and sell energy in the EV aggregator.
Therefore, if dsu is equal to zero or one and the EV is not linked to the EV aggregator,
both Su and Bu remain zero.
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Denote Gu as the PV generation and Du as the electricity demand at time u. The
power flow inside the household needs to conform to the following constraint.

Zu +Gu +BhOUT
u +BvOUT

u

− (Qu +Yu +Du +BhIN
u +BvIN

u ) = 0 0 ≤ u <U (2.5)

The constraint equations related to surplus solar energy are defined as follows.

Qu = 0 if on-peak (2.6)
Yu = 0 otherwise (2.7)

During periods when the electricity system produces more power than needed during
the daytime, households are not allowed to send surplus power to the grid as reverse
power flow to maintain grid stability. Hence, surplus solar energy is disposed of as
wasted energy. Reverse power flow can occur during off-peak hours, eliminating wasted
energy.

The objective of this problem is to minimize the electricity bill. The objective func-
tion can be expressed as follows, using price information: Ru, Psu, and Pbu. Ru, Psu,
and Pbu denote the grid electricity price, the selling prices at the EV aggregator at time
u, and the buying prices at the EV aggregator at time u, respectively.

minimize :
U−1

∑
u=0

{Ru ·Zu − (Psu ·Su −Pbu ·Bu)} (2.8)

The objective function does not account for the reverse power flow. Typically, Japanese
electric power companies (such as Kansai Electric Power Company, Inc.) only permit
the reverse power flow for energy generated by PV systems. Hence, the objective func-
tion of this model excludes reverse power flow to avoid the occurrence of reverse power
flow from batteries. This model assumes the implementation of time-of-use (TOU) pric-
ing. TOU pricing provides two distinct pricing structures: peak pricing and off-peak
pricing. The definition of Ru is as follows.

Ru =

{
Rhigh if peak-time
Rlow otherwise

(2.9)

Rhigh and Rlow represent the peak price and off-peak price, respectively.
As previously stated, the household model transmits the schedule of EV batteries

and energy budget, denoted Su, Bu, Gu, and Du, to the EV aggregator at set time inter-
vals.
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2.4.2 Phase II: Battery Scheduling and Price Update at EV Aggre-
gator

Figure 2.5 provides an overview of Phase II. In Phase II, the EV aggregator collects all
information from the households, indicating the charge / discharge request and the en-
ergy budget. Responding to household requests, the EV aggregator optimizes its battery
schedule and updates the prices for selling and buying energy based on the remain-
ing battery energy. The EV aggregator differentiates between two groups: Group A
(energy-rich) and Group B (energy-poor), classified according to their energy budget.
Each group is offered a specific price, which is then communicated to households. This
leads to an update of the EV battery schedule in each household. This research aims to
indirectly supply the energy-poor with energy waste from the energy-rich through these
iterations of EVs and EV aggregator.

Battery Scheduling

The battery scheduling of the EV aggregator is formulated in this section using MIP. The
EV aggregator determines its own battery schedule from all given EV battery schedules
in order to minimize the total energy purchased and the amount of reverse power flow.
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The EV aggregator determines its own battery plan based on all EV battery schedules
to minimize the total energy purchased and the amount of reverse power flow. The
planning period is 0 ≤ u <U . The EV aggregator obtained the EV battery schedule and
the energy budget from EV i, where the range of i is defined as 0 ≤ i < I. The variables
Su, Bu, Gu, and Du associated with EV i are redenoted as Si,u, Bi,u, Gi,u, and Di,u in this
section, respectively.

Denote Vu as the amount of purchased energy from the grid, and Wu as the amount
of reverse power flow to the grid by the EV aggregator at time u. Vu and Wu are decision
variables.

Define BSst as the battery size of the EV aggregator, SOCst as the upper bound of
the SOC level, and SOCst as the lower bound of the SOC level. The remaining energy
of the EV aggregator’s battery, denoted Xsu, must adhere to the following equation for
every time u.

SOCst ≤ Xsu

BSst ≤ SOCst 0 ≤ u <U (2.10)

The remaining energy change of the EV aggregator’s battery Xsu can be defined
using the following equation.

Xsu+1 = Xsu +Vu −Wu +
I−1

∑
i=0

(Si,u −Bi,u)

0 ≤ u <U −1 (2.11)

The objective function of EV aggregator is defined as follows.

minimize :
U−1

∑
u=0

Vu +
U−1

∑
u=0

Wu (2.12)

In order to address this issue, the EV aggregator determines its own battery schedule
based on given all the battery schedules of the EVs.

Price Update

In order to minimize wasted energy by shifting energy from the energy-rich to the
energy-poor using EVs and EV aggregator, the EV aggregator categorizes incoming
EVs into two categories based on their energy budget: Group A – energy-rich group
and Group B – energy-poor group. The EV aggregator differentiates between group
A and group B based on the daily household’s generation and demand balance at each
control period. Households that produce a greater amount of energy are categorized as
Group A. In contrast, households with a higher demand are categorized as Group B.
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Define EVA as the set of EVs in Group A and EVB as the set of EVs in Group B. EVA
and EVB are defined as follows.

EVA =

{
i ∈ I

∣∣∣∣∣U−1

∑
u=0

Di,u ≤
U−1

∑
u=0

Gi,u

}
(2.13)

EVB =

{
i ∈ I

∣∣∣∣∣U−1

∑
u=0

Di,u >
U−1

∑
u=0

Gi,u

}
(2.14)

The EV aggregator sets two prices for EVA and EVB, and this section explains the
method of updating these prices.

During on-peak hours, households in this research dispose of surplus solar energy
as wasted energy. To prevent the wastage of solar energy in households, EV aggregators
purchase energy from households through EVs. Denote PbA

u as the buying price offered
to households in Group A, and PbB

u as the buying price offered to households in Group
B. PbA

u and PbB
u are as follows.

PbA
u = PB 0 ≤ u <U (2.15)

PbB
u = PB 0 ≤ u <U (2.16)

where PB means the constant price to buy the wasted energy.
As stated in Section 2.4.1, this research utilizes time-of-use (TOU) pricing, which

includes two types of prices: Rlow and Rhigh. An EV aggregator aims to spatiotemporally
redistribute solar energy waste, with a primary focus on shifting such energy to the
energy-poor. Furthermore, the EV aggregator sets the price of selling electricity higher
than the price of buying EVs to avoid losing money. Thus, the EV aggregator sets the
constant buying price PB and three constant selling prices PSlow, PSmiddle, and PShigh
to keep the following relation.

PB ≤ PSlow < Rlow ≤ PSmiddle < Rhigh ≤ PShigh

(2.17)

PSlow, PSmiddle and PShigh are selected for for EVA and EVB.
Let PsA

u , PsB
u be the selling prices to the households in Group A and Group B, re-

spectively. PsA
u and PsB

u are selected as follows.

PsA
u = PShigh 0 ≤ u <U (2.18)

PsB
u =


PShigh if Xsu

BSst < SOCst
LB

PSmiddle if SOCst
LB ≤ Xsu

BSst < SOCst
UB

PSlow otherwise
0 ≤ u <U, (2.19)



28
CHAPTER 2. SPATIOTEMPORAL ENERGY SHIFTING VIA EV

AGGREGATOR

where SOCst
LB and SOCst

UB represent the lower border and upper border of the SOC level.
The pricing policy aims to primarily transfer the accumulated solar energy waste to
households in EVB. Consequently, households in EVA is always charged the highest
selling price PShigh. The EV aggregator collects surplus energy from Group A and
shifts it to Group B.

2.5 Experiments
This section details simulation experiments that validate the effectiveness of the pro-
posed framework. The experimental setup is initially described, followed by case stud-
ies conducted under various scenarios. In Section 2.5.1, the effectiveness of the pro-
posed framework in reducing solar energy waste is demonstrated. The discussion in
Section 2.5.2 focuses on the trade-off between the size of the battery and the impact of
the EV aggregator.

The experiment includes a total of 100 households, denoted by the variable I in
the framework. The planning period for the optimization issue is 24 hours, divided
into intervals of 30 minutes each, denoted by U = 48. The simulation period lasts
90 days, and the suggested approach is executed once every 30 minutes throughout
the simulation duration. The optimization issue is defined and solved using the IBM
ILOG CPLEX Optimization Studio v.12.7 mathematical programming solver [65]. The
remaining parameter configurations are shown in Table 2.2. The designated on-peak
hours, during which reverse power flow is not allowed, were established to be 7 am
to 11 pm, aligning with the peak-time period of the time-of-use (TOU) price. The
TOU price of the grid differentiates between daytime and nighttime prices; hence, this
setting is followed in the analysis. The parameters BSh and BSv are individually selected
from Table 2.2. The initial SOC of the household battery, the EV battery, and the EV
aggregator battery is set to 0.5. EVs are utilized randomly between the hours of 9:00
and 22:00, with an average duration of 5 hours. This time duration covers both driving
and parking. The power demand and power generation data used as household profiles

EV Aggregator Grid

Group A

Group B

Figure 2.6: Overview of energy shifting
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Table 2.2: Parameter setting

Parameter Value Unit
BSh 5,10,15 kWh
SOCh 1.0 -
SOCh 0.1 -
BSv 40,60,80,100 kWh
SOCv 1.0 -
SOCv 0.1 -
on-peak 7 : 00−23 : 00 -
peak-time 7 : 00−23 : 00 -
Rhigh 21.27 JPY/kWh
Rlow 10.51 JPY/kWh
BSst 1000 kWh
SOCst 1.0 -
SOCst 0.1 -
PB 5 JPY/kWh
PSlow 8 JPY/kWh
PSmiddle 16 JPY/kWh
PShigh 21.27 JPY/kWh
SOCst

LB 0.5 -
SOCst

UB 0.75 -

are measured in New South Wales, Australia [66].
The experiment aims to verify the effectiveness of the proposed method for the uti-

lization of wasted energy. To assess this, a comparative simulation is conducted: one
scenario implements the proposed method with an EV aggregator, and the other uses
only charging stations without an EV aggregator.

2.5.1 Effectiveness in Reducing Wasted Energy

This section assesses the efficacy of the proposed framework in reducing the waste of
solar energy. Nine scenarios are considered, each with varying frequency of EV utiliza-
tion and number of Group A and Group B. These scenarios are presented in Table 2.3.
These scenarios imply that an EV is utilized twice or four times each week, or every
weekday and randomly on weekends. As an illustration, Scenario 5 shows that every
household uses an EV aggregator on a frequency of four occasions per week, with 50
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Table 2.3: Scenarios

EV utilization frequency Number of households in
Twice Four times Every weekday Group A / Group B
a week a week +Random weekends

Scenario 1 × 30 / 70
Scenario 2 × 30 / 70
Scenario 3 × 30 / 70
Scenario 4 × 50 / 50
Scenario 5 × 50 / 50
Scenario 6 × 50 / 50
Scenario 7 × 70 / 30
Scenario 8 × 70 / 30
Scenario 9 × 70 / 30

Table 2.4: Summary of output

Output Description
E1 Amount of energy shifted from Group A to EV aggregator
E2 Amount of energy shifted from EV aggregator to Group B
E3 Amount of energy shifted from EV aggregator to grid
E4 Amount of energy shifted from grid to EV aggregator

out of 100 households belonging to Group A. The differentiation between Group A and
Group B in the experimental scenarios is determined by the overall balance of electricity
demand and generation for 90 days, as indicated by Equations (2.13) and (2.14). BSh

and BSv are set to 10 kWh and 40 kWh, respectively.
First, some metrics are introduced to evaluate the performance of the proposed

framework. Figure 2.6 illustrates the transfer of energy between the EV aggregator,
households, and the power grid, while Table 2.4 offers a comprehensive description of
the output. The percentage reduction in wasted energy αwasted and the percentage reduc-
tion in purchased energy αpurchase are given by Equations (2.20) and (2.21). Yi and Y ′

i
denote the sum of wasted energy by the household i in scenarios with and without an EV
aggregator, respectively. Zi and Z′

i denote the sum of purchased energy only from the
grid by the household i, in scenarios with and without an EV aggregator, respectively.
Consequently, Zi excludes the energy purchased from the EV aggregator.

αwasted =
∑

I−1
i=0 Y ′

i −∑
I−1
i=0 Yi

∑
I−1
i=0 Y ′

i
·100 (2.20)

αpurchase =
∑

I−1
i=0 Z′

i −∑
I−1
i=0 Zi

∑
I−1
i=0 Z′

i
·100 (2.21)
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Table 2.5: Power trading result and profit of EV aggregator

E1 (kWh) E2 (kWh) E3 (kWh) E4 (kWh) EV aggregator’s
profit (JPY)

Scenario 1 5,651 5,664 0 0 64,449
Scenario 2 4,568 4,715 0 0 71,908
Scenario 3 2,328 2,419 0 0 40,165
Scenario 4 10,018 10,036 0 0 80,278
Scenario 5 8,486 8,682 0 0 124,861
Scenario 6 4,821 4,942 0 0 81,017
Scenario 7 15,622 15,582 0 0 69,311
Scenario 8 14,303 14,445 0 0 169,590
Scenario 9 8,778 8,894 0 0 143,843

Table 2.6: Purchased energy and wasted energy of households

Purchased energy (kWh) Wasted energy (kWh) αpurchase αwasted
with EVA without EVA with EVA without EVA (%) (%)

Scenario 1 103,349 108,130 3,060 7,398 4 59
Scenario 2 121,458 125,185 1,943 5,191 3 63
Scenario 3 141,520 143,394 2,214 3,881 1 43
Scenario 4 85,072 93,566 5,719 13,558 9 58
Scenario 5 101,739 108,923 3,203 9,654 7 67
Scenario 6 121,748 125,857 3,540 7,224 3 51
Scenario 7 61,137 74,603 9,940 22,575 18 56
Scenario 8 75,400 87,655 5,080 16,438 14 69
Scenario 9 95,038 102,754 5,210 12,259 8 57
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Figure 2.7: Wasted energy for each combination of battery size in Scenario 4

The experimental results for each scenario are shown in Table 2.5 and 2.6. The re-
sults shown in Table 2.5 show that households participate in electricity trading within
the EV aggregator and that the EV aggregator consistently generates profit in all scenar-
ios. The result of E1 indicates that energy is shifted from Group A to EV aggregators.
The result of E2 shows that the energy is shifted from EV aggregators to Group B. In all
scenarios, the value of E1 is nearly identical to the value of E2. Regarding the pricing
of the EV aggregator, after the EV aggregator collects electricity from Group A, the EV
aggregator offers Group B a price that is lower than the price of the grid. As a result,
Group B buys almost all of the energy that Group A sells to the EV aggregator. In addi-
tion, the EV aggregator refrained from selling the energy acquired from Group A to the
grid. This is due to the EV aggregator’s aim to minimize its energy buying and selling
with the grid, as defined in its objectives. Therefore, E1 and E2 are almost the same
amounts. The analysis of results for E3 and E4 in Table 2.5 indicates that the EV aggre-
gator did not sell power to the grid or buy energy from it. Table 2.5 reveals that the EV
aggregator makes profits in all scenarios, despite the objective function of the proposed
method that does not specifically aim to maximize profits. These findings indicate that
the shift of energy through the EV aggregator was effectively achieved without the need
to buy or sell energy from or to the grid.

The results in Table 2.6 show the total purchased energy and wasted energy for
households in each scenario with and without the EV aggregator, respectively. Addition-



2.5. EXPERIMENTS 33

Figure 2.8: Wasted energy for each combination of battery size in Scenario 5

Figure 2.9: Wasted energy for each combination of battery size in Scenario 6
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Figure 2.10: Purchased energy for each combination of battery size in Scenario 4

Figure 2.11: Purchased energy for each combination of battery size in Scenario 5
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Figure 2.12: Purchased energy for each combination of battery size in Scenario 6

ally, Table 2.6 shows the reduction rates of purchased energy (αpurchase) and wasted en-
ergy (αwasted) achieved through the proposed method. As shown in Table 2.6, αpurchase
and αwasted are positive. The proposed method consistently reduces both the purchased
energy and wasted energy of households in all scenarios. The primary aim of this chap-
ter is to shift surplus energy; therefore, the effectiveness of the proposed method is best
demonstrated by the reduction in wasted energy αwasted . The reduction in this wasted
energy is at least 43%. On the other hand, αpurchase tends to be low in all scenarios.
However, the proposed method successfully achieves spatial energy shifting, previously
possible only through the grid, by using EV batteries. It has succeeded in reducing
purchased energy without relying on the grid. Therefore, the proposed EV aggregator
successfully reduces purchased energy and wasted energy.

Table 2.6 indicates a difference between the total reduction in purchased energy and
the total reduction in wasted energy. This difference is due to the varying amount of
battery charge at the end of each experiment.In this experiment, no specific conditions
were set for the amount of battery charge at the end of the simulation. This variation
resulted in differences in the total reduction in purchased energy and the total reduction
in wasted energy by the proposed method.

The results from Scenario 8 indicate that the proposed method can achieve a max-
imum reduction of wasted energy by 68%, without reverse power flow. In the same
scenario, the proposed method also enabled a shift of wasted energy to Group B, re-
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sulting in a 13% reduction in the energy they purchased from the grid. Compared to
Scenario 1 and Scenario 7, αpurchase increases, while αwasted remains nearly unchanged
when the number of households in Group A increases. A higher value of αpurchase im-
plies a decrease in the amount of purchased energy from the grid by households. When
comparing Scenarios 1 and 7, it is observed that Scenario 7 has a higher number of
households that are energy-rich. The increasing number of households with higher PV
generation results in an increase in the total amount of wasted energy. Therefore, the
proposed method becomes more effective in shifting a larger amount of energy from
Group A to Group B through the EV aggregator. Consequently, there was a decrease
in the amount of purchased energy in Group B, which led to a reduction in αpurchase.
In Scenario 7, while the total amount of wasted energy is increasing, there is also a
corresponding increase in the energy shift from Group A to the EV aggregator (E1).
Therefore, the percentage reduction of wasted energy remained the same and there is
almost no change in αwasted . The results of all scenarios demonstrate the effectiveness
of the proposed method for shifting solar energy waste. This shifting occurs between
Group A (energy-rich) and Group B (energy-poor) through the EV aggregator and is
achieved without reverse power flow.

2.5.2 Impact of Battery Size on Proposed Method

This section examines the influence of battery size on the proposed technique, taking
into account various sizes of EV batteries and household batteries. The experiment
employs Scenarios 4, 5, and 6 as described in Table 2.3. All combinations of BSh and
BSv for these scenarios are evaluated.

Figures 2.7, 2.8, and 2.9 illustrate the amount of energy wasted in Scenarios 4, 5,
and 6, both with and without the EV aggregator. The x-axis represents the various
combinations of battery sizes. The left y-axis represents the amount of energy that
is wasted, while the right y-axis provides the percentage reduction of wasted energy,
denoted as αwasted . The red line represents the value of αwasted , while the blue and green
bars represent the amount of wasted energy in scenarios without an EV aggregator and
with an EV aggregator, respectively.

In each scenario, the introduction of the EV aggregator consistently reduces wasted
energy. The extent of this reduction varies depending on the battery size combination
and the specific scenario. In Scenario 4, with infrequent EV usage, the EV aggregator
and larger battery size significantly influence the outcome. Conversely, in Scenario 6,
where EVs are used more frequently, the aggregator’s impact is less pronounced due to
less energy waste compared to other scenarios.

Figures 2.10, Figure 2.11, and Figure 2.12 illustrate the amount of energy purchased
in Scenarios 4, 5, and 6, both with and without an EV aggregator, respectively. The x-
axis represents the various combinations of battery sizes. The left y-axis represents the
amount of energy purchased, while the right y-axis indicates the percentage reduction
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of the purchased energy, denoted as αpurchased . The red line represents the value of
αpurchased , while the blue and green bars represent the amount of purchased energy in
scenarios without an EV aggregator and with an EV aggregator, respectively.

Regardless of the scenario, the proposed EV aggregator marginally decreases the
amount of purchased energy. The percentage reduction in purchased energy is observed
to be relatively small because the amount of purchased energy is much larger than that
of wasted energy. The energy savings achieved by the EV aggregator are beneficial,
especially for energy-poor households. This implies that these households may not need
to purchase additional energy because of the aggregator’s efficiency in reducing energy
waste. Therefore, it is evident that the decrease in wasted energy resulting from the EV
aggregator is equivalent to the amount of reducing purchased energy. In Scenario 6,
depicted in Figure 2.12, there is a drop in αpurchase as the size of the EV battery grows,
unlike in Scenarios 4 and 5. In Scenario 6, EVs are frequently used, and the amount
of energy transferred through an EV aggregator is lower due to reduced energy waste
compared to other scenarios. The decline in αpurchase is due to a reduction in shifted
energy.

The experimental results demonstrate that the proposed method is effective in re-
ducing and redistributing wasted solar energy. This effectiveness is consistent across
different battery sizes, highlighting the method’s versatility.

2.6 Summary
This chapter introduces a new EV aggregation framework designed for the spatiotempo-
ral shifting of solar energy, eliminating the need for reverse power flow to the grid. The
framework operates on the interaction between household and EV aggregator models
to shift solar energy waste. Additionally, it incorporates a pricing strategy at the EV
aggregator to facilitate the redistribution of wasted energy. The results of the experi-
ment demonstrate that the proposed method effectively reduces wasted energy through
the EV aggregator in all scenarios. The contribution of the proposed EV aggregator to
the demand-supply balance includes the temporal and spatial shifting of surplus gen-
erated energy, which traditionally had to be discarded or reverse power flow, thereby
contributing to the reduction of purchased energy for buildings. The experimental re-
sults showed a case where a reduction in purchased energy was achieved up to 14%.
Regarding the contribution to GEBs, this chapter proposes a new utilization of energy
by sharing it among buildings without relying on the grid, which was previously only
temporally shifted within a building. Furthermore, by shifting energy through the EV
aggregator, it prevents reverse power flow from buildings to the grid, enabling more
grid-interactive energy management. The experiments demonstrated up to 69% effec-
tive utilization of surplus energy. Future work includes enhancing the system model
by considering price elasticity on the household side during energy trading at the EV
aggregator. It is necessary to take into account more comprehensive EV battery models
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and EV utilization models. In addition, a forecasting model is also considered for the
balancing and scheduling approaches.



Chapter 3

Multiple HVAC Scheduling under
Power Constraints

Significant research in grid-interactive efficient buildings (GEBs) focuses on the im-
plementation of load shedding and shifting through various DERs, particularly heat-
ing, ventilation, and air conditioning (HVAC) systems. HVAC is crucial due to its
high demand within buildings and existing installations, which reduces additional costs.
This chapter discusses a scheduling method for multiple HVAC systems. The proposed
scheduling technique is divided into two parts: power allocation and optimization prob-
lem. The method allocates electrical power to each HVAC system depending on the
number of users and the outside unit, ensuring that the scheduling of each HVAC sys-
tem is such that the overall power consumption remains under the power limit through
load shedding and shifting. The results of the experiment demonstrate that the proposed
method successfully acquires the schedule while adhering to the power constraint at all
times without compromising thermal comfort.

3.1 Introduction
In the demand strategies of GEBs, HVAC systems play a crucial role, particularly in
implementing load shedding and shifting through various DERs. Moreover, HVAC is
crucial due to its high demand within buildings and existing installations, reducing ad-
ditional costs. The HVAC system is a significant energy-consuming device in the resi-
dential sector, responsible for approximately 50% of its energy consumption [67]. This
will clearly explain why HVAC is important to GEB’s load shedding and shifting.

The studies referenced in [68] and [69] introduced mathematical programming tech-
niques for HVAC scheduling. Through experiments conducted in real world settings,
these strategies were found to maintain comfort levels and decrease electricity costs.
Their attention was directed towards a single HVAC system; however, it is important to
note that a building typically includes multiple HVAC systems that require regulation.
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Preliminary experiments [69] revealed a problem in which attempting to simply extend
the approach described in [68] resulted in too much computational complexity. Conse-
quently, as the number of HVAC systems increased, it became impractical to address
the problem in a practical time. Moreover, scheduling strategies that are specifically de-
signed for a single HVAC system are not effective for successfully managing multiple
HVAC systems simultaneously. If applied independently, a single control methodology
could sometimes result in exceeding peak power limits.

The research outlines a method for scheduling multiple HVAC systems under power
restriction by load shedding and shifting strategies. This proposed method involves
a power allocator that assigns power to each HVAC system, taking into account the
number of users and the outdoor unit capacity of each HVAC system. Within their
designated power allocation, each HVAC system then carries out its own optimization
process. Power allocation enables centralized management over the total power con-
sumption of the HVAC system, independent of individual optimization. Additionally,
our HVAC scheduling method is based on previous work [69]. This work takes ther-
mal comfort into account. Therefore, the proposed method can also take comfort into
account for scheduling.

The subsequent section of this chapter is structured as follows. Section 3.2 delves
into the relevant literature and studies. The problem statements and the proposed tech-
nique are described in Sections 3.3 and 3.4. The results of the experiment are presented
in Section 3.5, and this chapter is concluded in Section 3.6.

3.2 Related Research
Several studies have revealed the potential advantages of employing advanced control
algorithms to enhance the energy efficiency of HVAC systems in both residential and
commercial buildings [70–72]. The typical control strategies include proportional in-
tegral derivative (PID) [73, 74], mixed integer linear programming (MILP) [75, 76],
robust optimization [77–79], stochastic programming [80,81], and Lyapunov optimiza-
tion [82, 83]. With the development of machine learning technologies, reinforcement
learning (RL) [22], deep reinforcement learning (DRL) [23, 24], and MPC [84] are
demonstrating their dominance in managing nonlinear systems.

On the other hand, energy management and peak control face several challenges at
the building level, including GEBs. Reinforcement learning methods [22–24] are im-
practical for new or data-limited buildings due to their reliance on vast prior data. Yu
et al. [23] developed a novel multi-agent deep reinforcement learning (MADRL) algo-
rithm for HVAC systems in commercial buildings, significantly reducing energy costs
while maintaining occupant comfort. Their approach dynamically adapts to changing
occupancy and indoor conditions, demonstrating an efficient balance between energy ef-
ficiency and resident comfort. Yet, a practical challenge is the requirement for extensive
HVAC usage data, a characteristic of reinforcement learning, for real-world application.
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Research has also been conducted on building-level HVAC management using MPC
[84, 85]. Serale et al. conducted a comprehensive study on the application of MPC
for enhancing energy efficiency in buildings, particularly focusing on HVAC systems.
Their approach utilized white-box, gray-box, and black-box models for precise predic-
tion and management of building dynamics and energy use. This ensured occupant
comfort through optimal thermal regulation and efficient energy strategies. One of the
biggest problems with MPC for multiple HVAC management is that it is hard to find a
good balance between the complexity of high-fidelity simulation models and practical
computation time constraints. Therefore, an approach to building-level HVAC man-
agement that does not rely on prior data and can establish boundaries quickly within
a short computation period is needed. Furthermore, the use of highly accurate room
temperature change prediction models is necessary to maintain occupant comfort.

3.3 System Model
The system model for multiple HVAC systems is depicted in Figure 3.1. This model in-
cludes HVAC systems, executive servers, and a power allocator. Initially, the HVAC
scheduler gathers environmental data, specifically outdoor and indoor temperatures,
from both the internet and HVAC systems. Subsequently, the gathered data is used
with the HVAC system model and the building thermal dynamic model. At the same
time, the power allocator sends the power constraint to the executive server. The MPC
determines the schedule for multiple HVAC systems at every time interval based on
these data, models, and constraints. Finally, the temperature in each room is modified
based on the schedule determined for each HVAC system. The scheduler optimizes the
HVAC system schedule within the specified power limit to reduce the overall energy
consumption while ensuring thermal comfort as long as possible. The specifics of these
models are outlined in subsequent parts. The scheduling problem is formulated using
mixed-integer linear programming.

3.3.1 HVAC Model
The HVAC model utilizes a coefficient of performance (COP) model to represent the
thermal gain and loss of the HVAC systems. Here, COP assumes the ratio of the avail-
able heating and cooling capacity to the required energy. In this chapter, the heating
and cooling capacity QHVAC

t [kW] at time step t can be calculated using the following
equation:

QHVAC
t =COP ·PHVAC ·ut , ∀t (3.1)

where PHVAC and ut are the rated power consumption and the load index of HVAC
systems at time step t.
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Figure 3.1: Multiple HVAC system model

3.3.2 Building Thermal Dynamic Model
The building thermal dynamic model considers the overall heat gain and loss, denoted
as Qgain

t , which includes the HVAC heating / cooling capacity QHVAC
t and the transfer

of solar heat Qsolar
t , the heat generated by electronic devices Qapp

t and the occupants
Qpersonas

t , as follows:

Qgain
t = QHVAC

t +Qsolar
t +Qapp

t +Ni ·Qperson
t ∀t (3.2)

Qsolar
t = Ir ·Ai · p, ∀t (3.3)

where Ni, Ai, p, and Ir represent the number of users, the surface area of room i in square
meters, the heat transfer coefficient between neighboring rooms, and the solar radiation
intensity in kilowatts per square meter, respectively.

The thermal equivalent circuit model (TECM) is utilized for simulating the thermo-
dynamics of buildings. The indoor temperature of the building at time t is modeled by
a linear discrete-time differential equation. In the initial condition, when discrete time
is used, the temperature response T in of the TECM to a time step ∆t is the following:

T in
t+1 = (1−∆t/τi) ·T in

t +∆t/τi · (T out
t +1000 ·Rt ·Qgain

t ), ∀i,∀t (3.4)
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whereas T out
t is the outdoor temperature. τi is a building time constant in secounds

which can be defined as follows.

τi = Ri ·Ci ∀i (3.5)

The thermal resistance Ri and building time constant τi are determined based on the
specifications of the building. Thermal capacitance can be determined using the rela-
tionship between Ri and τi as defined in Formulation 3.5.

3.4 Problem Formulation

The proposed method consists of two parts: power allocation and HVAC scheduling,
which are done in power allocator and executive server of Figure 3.1, respectively.
HVAC systems are assumed to provide both heating and cooling functions. The entire
HVAC system is assumed to have limited power availability due to peak demand. As
mentioned above, the scheduling method for a single HVAC system cannot include the
total power shared between all HVAC systems. Consequently, this may lead to exceed-
ing the peak demand. Before scheduling, the power allocator distributes the available
power amoung each HVAC system. The HVAC scheduling process then performs us-
ing the power that has been allocated. The following parts describe the formulation of
power allocation and HVAC scheduling.

3.4.1 Power Allocation Technique

This part presents the power allocation technique employed by the power allocator de-
picted in Figure 3.1. The thermal conditions within a room are influenced by the number
of occupants present. Furthermore, the selection of the outdoor unit’s capacity is based
on the ease of changing the temperature in the room. Thus, the proposed method allo-
cates electricity to each HVAC system based on the ratio between the number of users
and the capacity of the outdoor unit. Define t as the time stamp and i as the HVAC index.
The ratio Kr+c

i,t is determined by considering the number of users and the capacity of the
outdoor unit. To obtain the proposed ratio Kr+c

i,t , two power allocation ratios, namely
Kres

i,t and Kcap
i,t , are initially defined. These ratios are calculated using the number of

users ci,t and the capacity of the outdoor unit vn according to the following formulas.

Kres
i,t =

ci,t

∑
N−1
m=0 cm,t

∀i,∀t (3.6)

Kcap
i,t =

vn

∑
N−1
m=0 vm

∀i,∀t (3.7)
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The allocation ratio Kr+c
i,t is determined by the equation below, which is based on

the allocation ratios Kres
i,t and Kcap

i,t .

Kr+c
i,t =

Kres
i,t ·Kcap

i,t

∑
N−1
m=0 Kres

m,t ·K
cap
m,t

∀i,∀t (3.8)

To allocate power among multiple HVAC systems, a constraint is introduced to limit
the power usage of each system. SUB

t represents the maximum power that can be as-
signed to all HVAC systems at the time t. Ki,t represents the power allocation ratio for
the HVAC system i at time t. The HVAC system i schedules its power usage within its
allocated power limit, as demonstrated by the following equation.

Dmax
i,t = SUB

t ·Ki,t ∀t (3.9)

This allocated resource Dmax
i,t is sent to the executive server for the room i as Dmax

t , as
shown in Figure 3.1.

3.4.2 HVAC Scheduling
The proposed method involves optimizing the HVAC system schedule separately with a
power constraint using the executive server depicted in Figure 3.1. The power consump-
tion of the HVAC system at a given time t, represented as Dt , is determined according
to the thermal dynamic model of the building [86]. To do this, the energy consumption
of the HVAC system Dt in each time interval is calculated as follows:

Dt = PHVAC ·ut ·∆t/3600, ∀t (3.10)

where PHVAC represents the rated power of HVAC and ut represents the operating rate
for the rated power at time t. Then, the term of the electricity cost Jcost is calculated
based on unit price:

Jcost =
M−1

∑
t=0

εt ·Dt , (3.11)

where M represents the total planning period.
Peak power constraints are implemented to restrict the overall energy consumption

of multiple HVAC systems, as follows:

Dt ≤ Dmax
t , ∀t (3.12)

where Dt is the power demand at time t, and Dmax
t is the maximum peak power de-

mand, which is derived from Section 3.4.1. Here, the term thermal comfort Jcom f ort
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is calculated by taking the squared difference between room temperature T in
t and the

comfortable temperature T re f
t as follows:

Jcom f ort =
M−1

∑
t=0

Ot · (T in
t −T re f

t )2, (3.13)

where Ot is a binary variable that takes the value 1 when the room is occupied and 0
when there are no users present in the room. To mitigate the temperature limitation, a
slack variable, denoted as Stct , is introduced as follows:

T lower
t −Stct ≤ T in

t ≤ T upper
t +Stct , ∀t (3.14)

T lower
t = T re f

t −∆T, ∀t (3.15)

T upper
t = T re f

t +∆T, ∀t (3.16)

where ∆T represents an acceptable temperature range. The slack variable, denoted Stct ,
basically assumes zero when the room temperature is in the acceptable range. However,
it becomes positive when the room temperature is beyond the bound. When the mistake
in predicting the room temperature is significant and over the threshold in practical use,
the optimization problem might be adjusted to prevent infeasibility.

Thus, the problem of optimizing schedule for the HVAC system can be expressed as
follows:

minimize ω ·
M−1

∑
t=0

Jcost +(1−ω) ·
M−1

∑
t=0

JCom f ort +Pe ·
M−1

∑
t=0

Stct , (3.17)

where ω(0 < ω < 1) is the weight coefficient for balancing the trade-off between elec-
tric cost and thermal comfort. Pe represents the penalty constant associated with tem-
perature violations. The optimization solution is obtained by considering the load index
ut in each time interval t to reduce the electric cost and enhance thermal comfort. By
setting Pe sufficiently large for both Jcost and Jcom f ort , the proposed approach keeps the
occupant comfortable.

3.5 Experiments
Experiments were conducted to demonstrate the efficacy of the proposed technique. It
is assumed that there are four independent HVAC systems for cooling, each serving a
separate room. Table 3.1 shows the distinct characteristics of each room, such as the
utility time, the number of users, and the outdoor unit capacity of the HVAC systems.
The HVAC systems are scheduled for a duration of 24 hours. During the scheduling
process, a constraint on power consumption is imposed, allowing a maximum of 5 kW
between 8:00 and 12:00. Total power consumption of HVAC systems is specifically
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Table 3.1: Experimental identification of rooms

Room 1 Room 2 Room 3 Room 4

Utility time
9-12,

13-18 7-16 9:30-15
7-11, 13-14,
15:30-17

Number of users 40 20 3 20
Outdoor unit (kW) 22.4 33.5 14.0 22.4
Rated power [kW] 5.4 8.9 3.3 5.4

Ci 14,390,109 18,314,684 7,195,054 14,390,109
Ri 0.00252981 0.0019877121 0.00505963 0.00252981

Table 3.2: Average difference between indoor and comfortable temperature during
power limitation (◦C)

Room 1 Room 2 Room 3 Room 4
# of users only (Kres

i,t ) 0.16 0.38 0.28 0.15
Capacity only (Kcap

i,t ) 0.58 0.11 0.06 0.17
Both (Kr+c

i,t ) 0.18 0.11 0.35 0.17

subject to this restriction, which must not exceed the set limit. In the experiments, ω

is set to 0.1, giving greater importance to comfort in the objective function. As param-
eters for comfort, the comfortable room temperature T re f

t is 20◦C and the allowable
room temperature ∆T error is 2◦C. In addition, the three allocation ratios obtained from
Equations (3.6), (3.7), and (3.8) are used and the results are evaluated.

Table 3.2 shows the mean difference between indoor and comfortable temperature
under power limitation when various allocation ratios are used. Figures 3.2, 3.3, and
3.4 show the experimental results for the case of Kres

i,t and Kcap
i,t and Kr+c

i,t , respectively.
In each figure, (a) and (b) depict the simulation results for the power consumption and
indoor temperature in the four rooms, respectively.

The provided time period, from 0:00 to 19:00, is specifically excerpted to examine
outcomes during the power limitation period. The yellow area denotes the time period
during which available power is limited, specifically from 8:00 to 12:00. The dotted
line indicates the absence of any occupants in the room. On the contrary, the solid line
indicates the room being occupied by the full number of users.

Figure 3.2 demonstrates a significant peak just before the power restriction period.
However, there is unused power immediately after the power restrictions are initiated.
This phenomenon arises from considering only the number of occupants for power al-
location and restricting power usage solely to the designated period. Consequently,
pre-cooling could not be executed during the power restrictions, leading to high-power
operation of HVAC units with suboptimal performance just before the restriction.

Comparing the room temperature error during the power restriction period in Rooms
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(a)

(b)

(c)

Figure 3.2: Simulation result for Kres
i,t : (a) power consumption and (b) indoor tempera-

ture, under (c) given occupancy schedule.

2 and 4 in Table 3.2, where the user count is similar, it’s evident that the room temper-
ature error is higher in Room 2. As shown in Figure 3.2, although Room 2 uses more
energy than Room 4, Room 2 has a greater room temperature error. This discrepancy
is attributed to the power resource allocation, based on user count, failing to accurately
distribute power to each outdoor unit. Room 2 received insufficient cooling power due to
this misallocation. Additionally, it was observed that power remained unused in several
instances during the power restriction period due to the same reason.

Comparing the room temperature errors during the power restriction period in
Rooms 1 and 4 in Table 3.2, both equipped with similar outdoor unit capacities, re-
veals that Room 1 experiences a larger room temperature error. As shown in Figure 3.3,
there is no big difference in the energy consumption of rooms 1 and 4. This discrepancy
stems from the power resource allocation method, which was based on outdoor unit ca-
pacity but failed to consider the specific heat load in each room. Consequently, Room 2
did not receive sufficient cooling power due to this misallocation.

Comparing the room temperature error using the two methods mentioned earlier,
the proposed approach successfully achieved uniform cooling across all rooms without
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(a)

(b)

(c)

Figure 3.3: Simulation result for Kcap
i,t : (a) power consumption and (b) indoor tempera-

ture, under (c) given occupancy schedule.

a significant increase in total energy consumption. As shown in Figure 3.4, this result
was achieved by allocating power based on both the outdoor unit specifications and the
number of occupants in the room, effectively addressing the heat load within each room.
The proposed technique successfully controls the HVAC systems in the rooms without
exceeding the power limit or compromising the comfort of the temperature.
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(a)

(b)

(c)

Figure 3.4: Simulation result for Kr+c
i,t : (a) power consumption and (b) indoor tempera-

ture, under (c) given occupancy schedule.

3.6 Summary

This chapter discusses the scheduling of multiple HVAC systems using an electrical
power allocation technique. The power allocation technique calculates the amount of
electrical power allocated to each HVAC system. The power allocation is done while
considering power limitations, prior to HVAC scheduling. This calculation is based on
factors such as the number of users and the capacity of the HVAC outdoor unit. In this
chapter, power limitations are considered specifically to facilitate load shedding and
shifting. In the simulations, a scenario is considered where the total electrical power
of the HVAC is limited to 21.7% of its maximum value. In the experiment, it was ob-
served that the proposed method successfully schedules for each HVAC system while
keeping power limitation and maintaining thermal comfort. With respect to contribu-
tion to the demand-supply balance, the proposed method allows for the reduction of a
building’s peak power by accounting for power constraints across multiple HVAC sys-
tems. Regarding GEBs, this approach significantly contributes to load shedding/shifting
strategies (Table 1.1) within the GEB framework. This is achieved by integrating the
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proposed method with HVAC aggregation techniques.



Chapter 4

Flexibility Price Forecasting for
Ancillary Service Market

Grid-interactive efficient buildings (GEBs) used to just consume electricity, but now
they play a more active role in the market that balances supply and demand. This makes
energy systems more flexible. In order to make more GEBs’ revenue, accurate market
price forecasts and energy bids for supply and demand balancing markets are called fre-
quency control ancillary service (FCAS) markets. Forecasting FCAS market prices is
complex due to the presence of various response time markets and the interdependence
of markets, where one price has a direct or indirect impact on others. There is a lack
of studies on forecasting electricity prices in FCAS markets. Therefore, it is necessary
to develop a novel forecasting model that takes into account not only the price of the
target market but also the prices of other response time markets. In this chapter, a new
model is presented to forecast market prices in the Frequency Control Ancillary Ser-
vices (FCAS) market. This model is based on forecasting methods from the wholesale
market. This model also considers markets with different response times, including the
forecast target market overseen by the Australian Energy Market Operator (AEMO).
The experimental results show that the developed forecasting model achieved an RMSE
of 7.8$/MWh in the AEMO 6-Second-Raise market. The developed forecasting model
improves accuracy, reducing the RMSE by 80% compared to the forecast prices issued
by the AEMO.

4.1 Introduction
In the quest for societal decarbonization, GEBs have emerged as a promising avenue to
improve the stability of the grid. Participation of GEBs in supply and demand balancing
markets necessitates precise prediction of market transaction prices. These predictions
are crucial for developing strategies that enable optimal bidding of electrical flexibility
by GEBs, thereby maximizing revenue and fostering efficient energy supply methods.
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Nevertheless, to the best of the author’s knowledge, there is a lack of research on elec-
tricity price forecasting in FCAS markets.

AEMO operates as a public company in Australia, managing both the wholesale
and FCAS markets. In these markets, demand-side participation is allowed for power
dealings aimed at frequency control. The FCAS market is segmented by response times
and categories like raise and lower. These segments have a complex interplay, making
electricity price forecasting more challenging. Currently, there is a notable absence of
research focused on forecasting prices within the FCAS market.

The FCAS market is reported to have pricing policies and characteristics simi-
lar to those of the wholesale electricity market [87]. Previous research in spot price
forecasting highlights the crucial role of selecting suitable learning models and imple-
menting effective data pre-processing techniques to enhance the accuracy of predic-
tions [59, 88–92]. Based on these studies, this research introduces a framework for
forecasting prices in the FCAS market.

This chapter delves into developing a forecasting model for the FCAS market, build-
ing upon prior research in the wholesale electricity market. The exploration is seg-
mented into three key areas affecting forecast accuracy: learning models, data pre-
processing, and the selection of input data. Each segment’s forecast accuracy was
assessed to determine the most effective design for the FCAS market. The key con-
tributions of this chapter are outlined below.

• The forecasting model for the FCAS market is designed by leveraging approaches
from the wholesale market and incorporating data from FCAS markets with varied
response times.

• The forecasted prices from the designed model are more accurate compared to
those published by the AEMO, as evidenced by a 80% reduction in forecast error,
measured by the RMSE.

4.2 Related Research

The research presented in this chapter is clearly a very novel and, as yet, less active
research domain where few existing papers are available. So, there has been a notable
absence of studies focused on price forecasting within supply and demand balancing
markets. This part initially presents research on DER management, highlighting the
need for market forecasting. Subsequently, it delves into literature that analyzes and
forecasts markets highly relevant to balancing markets.

Numerous studies have delved into the management of DERs within aggregators.
More recently, the focus has expanded not only to managing DERs but also to coordi-
nating their bidding in the market. Naughton et al. [93] assumed that market transaction
prices were known and proposed DER management techniques based on this informa-
tion. Some research [42, 43] dissected aggregator activities into DER management and
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pre-bidding concerns. Studies involving bidding problems optimized pre-bidding strate-
gies using predicted prices derived from market price signals. However, discrepancies
between these signals and actual transaction prices led to losses for aggregators and
consumers. Therefore, there is a crucial need for methods that accurately predict trans-
action prices in the supply-demand balancing market rather than relying solely on price
signals.

Existing research [87, 94, 95] detailing the mechanics of these markets has high-
lighted the characteristic price fluctuations in this domain. Basically, it has been ob-
served that the supply-demand balancing market and the wholesale electricity market
have similar price trends due to contractual agreements based on the balance between
supply and demand. However, the supply-demand balancing market, responsible for
fine-tuning electricity supply and demand after the closure of the wholesale electric-
ity market, experiences significantly more severe price fluctuations, making predictions
challenging. In light of these insights, it is proposed to take advantage of knowledge
from the wholesale electricity market to construct a forecasting model for the electric-
ity supply-demand balancing market. The primary goal is to improve the accuracy of
the forecasts in the electricity supply-demand balancing market. To do this, it is neces-
sary to identify the key components that support accurate forecasting in the wholesale
electricity market and incorporate them into the model’s development.

4.3 System Model
This chapter considers six FCAS markets with different response times operated by
AEMO. The FCAS markets play a crucial role in ensuring the stability of the grid by
maintaining the balance between supply and demand. Their primary objective is to keep
the frequency of the grid within national standards. The FCAS market is divided into
two categories: "raise" and "lower." The raise FCAS is specifically designed to address
frequency drops by increasing either the energy generation or decreasing demand. In
contrast, the Lower FCAS is intended to manage an increase in frequency by reducing
energy generation or increasing demand. Based on response times, the FCAS market
is classified into three types: fast services (6 seconds), slow services (60 seconds), and
delayed services (5 minutes). Thus, FCAS has six markets according to the type of
market and response time. AEMO uses data from two primary sources to forecast prices
in the FCAS market: FCAS market data, which includes FCAS dispatch prices, and
AEMO wholesale market data, which includes demand, generation, and spot prices [96].

The forecasting system proposed in this research is shown in Figure 4.1. As shown
in Figure 4.1, FCAS market prices and the wholesale market data are used as input
data. A detailed description of the input is shown in Table 4.1. The reason for using
the wholesale market is that it is known that incorporating correlated inputs, such as
electricity prices from neighboring countries, can significantly enhance the accuracy of
forecasts [88]. Figure 4.2 shows the price variations over a week in the Raise markets,
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Figure 4.1: Overview of forecasting system

Table 4.1: The data of six FCAS market and wholesale market

FCAS market

Price of 6-Second-Raise (6SR) market
Price of 60-Second-Raise (60SR) market
Price of 5-Minute-Raise (5MR) market
Price of 6-Second-Lower (6SL) market
Price of 60-Second-Lower (60SL) market
Price of 5-Minute-Lower (5ML) market

Wholesale market
Spot price (S-price)
Total demand (Demand)
Total generation (Generation)

highlighting the differences between various response time categories. As shown in Fig-
ure 4.2, raise markets show synchronized price fluctuations. It is significant to note that
the AEMO published the data used in this research, making them practically accessible.

The forecasting framework consists of three primary components: the learning
model, pre-processing methods, and the selection of input data. It is widely acknowl-
edged that the learning model significantly influences the accuracy of the forecasts [89].
In order to improve the accuracy of forecasts, wavelet transforms are utilized as a data
pre-processing method. Iwabuchi et al. show that this technique has been shown to be
effective for forecasting demand in the wholesale market [90]. In the FCAS market,
forecast accuracy can be improved by carefully selecting the input data from the prices
of the six contingency markets, each with its own distinct response time.

This chapter addresses the forecast of the 6-Second-Raise (6SR) market, which had
the highest average price and yearly transaction price among the FCAS market in 2021.
The reason for this is that accurate predictions in such markets enable GEBs to improve
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Figure 4.2: Price profiles in FCAS raise markets

their financial returns. The proposed framework forecasts prices in the FCAS 6-Second-
Raise market with 24 hours ahead. This market is recognized as a market for bidding
flexibility, as evidenced by several researches [42, 43, 93]. It should be noted that the
forecasting framework developed in this research is versatile and can be adapted to other
FCAS markets.

4.4 A Framework of Price Forecasting
This section outlines the specifics of the three main components within the framework:
the learning model, data pre-processing, and input data selection. Each component
of the proposed framework has been previously explored in the wholesale electricity
market. This chapter applies these components to the forecasting framework for FCAS
markets.

4.4.1 Learning Model

This chapter focuses on forecasting the time series of prices within the FCAS market.
In this framework, recurrent neural networks (RNNs), which are effective for analyzing
time series data, along with the sequence-to-sequence (Seq2Seq) architecture, known
for its capabilities in time-series forecasting, are utilized. These methods are chosen for
their proficiency in handling and predicting data trends over time.

RNNs: RNNs have loops in their structure, enabling them to retain information.
This feature is particularly useful for modeling time-series data. RNNs differ from
multilayer perceptrons as they utilize the temporal aspects of input data, making them
more suited for time series forecasting. LSTM networks, which are an improvement on
RNNs, fix the vanishing gradient problem that RNNs often have by adding memory cells
to their hidden layers. These memory cells aid in preserving information over longer
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periods, enhancing the model’s ability to handle time series data effectively. Zhou et
al. used LSTM as a more accurate prediction model than traditional RNNs [91]. Gated
recurrent unit (GRU) is recognized as a more compact and faster alternative to LSTM
the LSTM [92].

Seq2Seq for RNN: Seq2Seq, a neural network architecture, comprises two primary
components: an encoder and a decoder. The encoder processes a series of input data
and converts it into a fixed-length representation known as the context vector. This
context vector is then passed to the decoder, which generates a corresponding output
sequence. Seq2Seq models are particularly useful in long-term forecasting applications,
where they can effectively translate input sequences into meaningful future predictions.
Sridharan et al. [89] utilized an LSTM-based encoder-decoder model to forecast spot
prices in the wholesale market. Their study indicates that the incorporation of LSTM
or GRU cells within the Seq2Seq architecture makes it better at forecasting time series
data. In this chapter, the performance of three different recurrent neural network models
and their combinations with the Seq2Seq model are compared to evaluate their accuracy.

4.4.2 Pre-processing

While normalization is a standard practice in deep learning pre-processing, this research
focuses on leveraging frequency decomposition. Frequency decomposition is recog-
nized for its effectiveness in improving time series data forecasting, offering a strategic
advantage in analyzing and predicting complex patterns.

Wavelet Transformation: Wavelet analysis starts by selecting an appropriate
wavelet, often referred to as the mother wavelet. The analysis then proceeds by ex-
amining translated and dilated versions of this selected wavelet. This process forms
the core of the wavelet analysis methodology. The wavelet transform technique breaks
down the original time series into several subcomponents. This decomposition reduces
the complexity of the data, making it easier to analyze and forecast. Iwabuchi et al. [90]
achieved to improve precision in their price forecast models by switching various mother
wavelets. In identifying the most effective mother wavelets for forecasting FCAS mar-
ket price data, this research draws on insights from previous studies.

4.4.3 Input Data Selection

This chapter assumes six FCAS markets, each with a different time series of price data.
The input length and the features of the input data can be selected.

Input length: In time series forecasting, the input length, which refers to the num-
ber of historical data points used as input for the forecasting model, is a key factor. The
forecast accuracy in this model is significantly influenced by the input length, largely
because the model complexity is dependent on this factor. The time series analysis
of daily prices on the wholesale electricity market indicates a significant correlation
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between prices from the previous day, two days ago, and one week ago [59]. Conse-
quently, this study also explores the impact of using three different input lengths on the
accuracy of the forecast: one day, two days, and seven days from the past.

Markets for learning: Input data selection is a key topic in forecasting time series
data. This focus is due to the fact that including highly relevant time series data can
significantly improve the accuracy of forecasts. Therefore, FCAS market data are used
as input, along with wholesale market data, as depicted in Table 4.1.

4.5 Experiments
In this research, the experiments involve exploring various combinations of factors
within the forecasting framework to identify the most effective model in terms of fore-
cast accuracy. The proposed framework forecasts the electricity price of the 6-Second-
Raise (6SR) market in FCAS. The choice of a learning model is essential for exploring
an effective forecasting framework. Initially, a comparison is made between models
using RNN, LSTM, and GRU, with or without the Seq2Seq architecture, to choose the
optimal model that achieves the highest level of forecast accuracy. Furthermore, the
optimal model undergoes pre-processing using several mother wavelets and is subse-
quently compared. Thus, the forecasting framework is identified, achieving the best ac-
curacy in forecasting. Finally, the effectiveness of the forecasting model is demonstrated
by comparing its forecasting results with AEMO’s pre-dispatch prices as a benchmark.
Pre-dispatch prices are utilized as inputs in research focusing on demand-side optimiza-
tion [42, 93]. In other words, achieving a forecast price accuracy that surpasses the
pre-dispatch price suggests that GEBs could potentially increase their revenue. To the
best of author’s knowledge, this research is the first to design a price forecasting model
for FCAS markets. Hence, due to the lack of existing research specifically on electric-
ity price forecasting in FCAS markets, there is no state-of-the-art work for comparison
other than AEMO pre-dispatch.

4.5.1 Setup
For historical FCAS market prices, this chapter used AEMO’s dispatch prices from 2021
as a reference. The data series was recorded at 30-minute intervals. The forecasting
framework was designed to predict prices 24 hours ahead every 30 minutes, similar to
AEMO’s pre-dispatch process. In these experiments, the forecasting involves a weekly
repetition of time series decomposition and learning. The model’s training, validation,
and testing phases are structured over specific periods: it trains on four weeks of data,
validates on one week, and tests on the next week. For instance, testing takes place from
January 5 to 11 of 2022 after training using price and demand data from December 1-28
of 2021, and validation with data from December 29, 2021, to January 4, 2022. The
process is iterated, with the data being shifted by one week in each iteration, for a total
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Table 4.2: Forecasting performance across different models

Model name MAE RMSE Varscore Max
RNN 6.81 13.2 -16.0 857

LSTM 5.60 12.1 -15.8 836
GRU 6.00 12.3 -16.2 866

RNN-Seq2Seq 3.85 9.56 -0.82 357
LSTM-Seq2Seq 3.67 9.54 -0.14 356
GRU-Seq2Seq 3.68 10.1 -0.89 363

Table 4.3: Forecasting performance across different mother wavelets

Mother wavelet MAE RMSE Varscore Max
w/o Wavelet 3.67 9.54 -0.14 356
Daubechies 4 3.55 8.63 0.02 355
Daubechies 5 4.17 27.3 -8.74 2030
Daubechies 6 5.22 30.4 -11.1 1770

Symlet 5 4.59 21.5 -5.10 880

period of 16 weeks, resulting in a forecast of prices for 16 weeks. Adam is used as an
optimizer.

The evaluation metrics used to assess the forecasting accuracy of the model are
introduced. In the realm of price forecasting, the mean absolute error (MAE) and the
root mean squared error (RMSE) are the main metrics employed to assess the efficacy
of a model. Furthermore, the forecast performance of each model is evaluated using
the variance regression score (Varscore) and the maximum residual error (Max). The
model’s accuracy in forecasting increases as Varscore approaches one and decreases as
it becomes more negative. A lower value of Max suggests more precise forecasting.

4.5.2 Results

A comparison was made between six distinct models: RNN, LSTM, GRU, RNN-
Seq2Seq, LSTM-Seq2Seq, and GRU-Seq2Seq. Initially, this research carried out a com-
parative analysis of forecast accuracy among different models. The six models em-
ployed input with 6SR and 48 steps without utilizing wavelet transformation. Table 4.2
shows the forecast accuracy represented by each evaluation metric. When comparing
regression models alone and those combined with Seq2Seq in Table 4.2, it is evident
that the models integrated with Seq2Seq exhibit higher levels of accuracy. The model
with Seq2Seq showed improved accuracy, attributed to its strength in forecasting long-
term data. In this learning model exploration, LSTM-Seq2Seq was the suitable model to
forecast the price of electricity in the FCAS market.

Subsequently, the forecasting accuracy of models based on LSTM-Seq2Seq was as-
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Table 4.4: Forecasting performance across different input lengths

Input length MAE RMSE Varscore Max
48 steps (1 day) 3.55 8.63 0.02 355
96 steps (2 days) 4.02 9.88 -0.27 353

336 steps (1 week) 5.28 19.3 -3.84 1040

Table 4.5: Forecasting performance across different input markets

Markets MAE RMSE Varscore Max
6SR 3.55 8.63 0.02 355
6SR & 60SR 3.41 7.80 0.12 330
6SR & 5MR 4.34 16.7 -2.65 522
6SR & 6SL 4.67 24.2 -6.69 1320
6SR & 60SL 4.89 24.6 -6.94 1320
6SR & 5ML 4.55 18.1 -3.30 851
6SR & S-price 3.67 11.4 -0.71 919
6SR & Demand 5.25 36.7 -16.7 1620
6SR & Generation 5.71 38.5 -18.5 1680

sessed by comparing their performance using different mother wavelets. In this com-
parison, four types of mother wavelets — Daubechies 4, 5, and 6 and Symlet 5 - were
evaluated. These wavelets were selected based on their demonstrated accuracy in fore-
casting wholesale electricity market prices, as detailed in the previous study referenced
in [90]. The terms "Daubechies" and "Symlet" refer to the primary wavelet functions,
whereas the numerical value associated with each term is known as the vanishing mo-
ment. Table 4.3 shows the forecast accuracy compared with the mother wavelets. Based
on this analysis of mother wavelets, it was determined that the Daubechies 4 wavelet
exhibited the best level of accuracy.

The impact of input length on accuracy was evaluated using the LSTM-Seq2Seq
model with the Daubechies 4. The input lengths compared were 48 steps (equivalent to
one day), 96 steps (equivalent to two days), and 336 steps (equivalent to seven days).
The forecast accuracy with varying input length is shown in Table 4.4. The results
revealed that forecasting accuracy decreased progressively as the input length increased,
with optimal results observed using a 48-step input length. This finding suggests that
using one day’s worth of data is adequate for predicting prices over the next 24 hours.

Additionally, the accuracy of using learning features from different markets was as-
sessed. It’s uncertain how correlations between the FCAS markets and the wholesale
electricity market may influence forecasting effectiveness. This experiment aims to clar-
ify this particular aspect. The current findings indicate that the explored learning model
is LSTM-Seq2Seq, the mother wavelet is Daubechies 4, and the input length is set to 48
steps. The accuracy was evaluated between some scenarios: one where only the target
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(6SR) is used, and others where the target (6SR) is trained together with one of the data
points from Table 4.1. The results obtained from various markets for learning features
are presented in Table 4.5. The findings indicate that 6SR & 60SR, which correspond
to the same raise market but exhibit varying response times, were considered appropri-
ate input for the forecasting framework owing to their small errors. Figure 4.2 clearly
demonstrates the correlation between 6SR and 60SR. In this experiment, it is empha-
sized that the model design is founded on the LSTM-Seq2Seq architecture utilizing the
Daubechies 4. The input data consisted of 48 sequential steps and included two distinct
markets (6SR and 60SR).

The price forecasts released by AEMO (Pre-dispatch data set) [96] and the explored
forecast model for the 6SR market were compared. Figures 4.3 and 4.4 show averages
and forecast errors of forecasted prices, respectively, and contain actual prices and fore-
casting of the explored model and the pre-dispatch data set. The black line, blue line,
and red line in Figure 4.3, respectively, represent the average daily prices of the actual
prices and pre-dispatch data set and the prediction outcomes of the explored model.
The blue and red lines in Figure 4.4, respectively, represent the daily RMSE of the
pre-dispatch data set and the forecast outcomes of the explored model. The X-axis in
Figures 4.3 and 4.4 represents the dates from January 1 to May 1 in 2022, and the Y-axis
displays the daily average price and the daily RMSE, both measured on a logarithmic
scale, indicating the power price. In general, the forecast accuracy for the entire period
was 39.3 $/MWh for AEMO’s RMSE and 7.8 $/MWh for the explored model, result-
ing in a reduction of 80. 2% in errors. When comparing their respective daily RMSE,
Figure 4.4 shows that the explored model exhibits greater accuracy than AEMO’s pre-
dispatch data set. Figure 4.3 shows that during times of dramatic price increases, the
pre-dispatch data diverged significantly from the actual market prices. In contrast, the
forecast error of the explored model was minimal under these conditions. As a result,
the overall prediction error of the explored model is lower than the overall error of the
pre-dispatch data set.
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4.6 Summary
In this chapter, price forecasting models have been explored for the FCAS market.
The evaluations were carried out on several components of the learning models, pre-
processing, input length, and input markets, drawing from prior research on the whole-
sale market. The best forecasting models were compared with the forecast prices pub-
lished by AEMO, and the results showed that the proposed model performed better
than AEMO’s pre-dispatch prices with a reduction of RMSE by 80%. The contribu-
tion of this research to GEBs lies in enabling more effective profit generation for GEBs
participating in the supply and demand balancing market through more accurate price
forecasting than conventional public data.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion
The increasing presence of variable and uncontrolled renewable energy requires flexible
energy systems to address challenges such as demand-supply mismatches and high ramp
rates. A promising solution is grid-interactive efficient buildings (GEBs), which allow
altering building demand loads based on occupants and the conditions of the power grid.
Within GEBs, distributed energy resources (DERs) on the demand side, such as battery
systems and controllable demand, can be managed and coordinated using energy man-
agement methods. This dissertation focuses on addressing the grid-interactive efficient
building aspect of the problem to improve the supply-demand balance. To harness the
full potential of GEB, this dissertation addresses the three research questions outlined
in Chapter 1.

5.1.1 Answer to Question 1: How can GEBs be used to effectively
utilize surplus PV generation from the viewpoint of storage?

To optimize renewable energy utilization in GEBs, efficient ways to utilize generated
power beyond internal consumption or the reverse flow of the grid are essential. Chap-
ter 2 explores the utilization method of electric vehicles (EVs) in GEBs, presenting a
method to redistribute excess renewable energy among buildings without relying on re-
verse power flow. The approach involves designated charging and charging facilities for
EVs, along with EV aggregators. Each building plans its battery charging/discharging to
minimize power costs, while the EV aggregator sets power trading prices based on indi-
vidual building power sufficiency. This collaborative operation uses surplus power, in-
creasing electricity flexibility through the EV aggregator. Experimental results demon-
strate a significant reduction in wasted energy, achieving up to a 68% decrease in solar
energy waste in the best-case scenario. In the same case, there has been a 14% reduc-
tion in purchased energy from the grid. The contribution of the EV aggregator to the
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demand-supply balance includes the temporal and spatial shifting of surplus generated
power, which traditionally had to be discarded, thereby contributing to the reduction
of purchased power for buildings. If the results of this experiment can be extended to
entire residential and nonresidential buildings, which account for 30% of global final
energy, it could lead to a reduction in energy demand ranging from 0.3 to 5.4% across
the entire grid. IEA states that an 8% reduction in demand is necessary by 2050 to
achieve Net Zero [97]. Although this experiment represents an ideal case, a maximum
reduction of 5.4% is a significant contribution. Regarding the contribution to GEBs,
this research proposes a new utilization of power by sharing it among buildings without
relying on the power grid, which was previously only temporarily shifted within a build-
ing. By spatiotemporal energy shifting through the EV aggregator, it prevents reverse
power flow from buildings to the grid, allowing more grid-conscious energy manage-
ment. Additionally, with further development of this research and the exploration of
new applications for generated power, it is expected that the optimal capacity of gen-
eration equipment that can be installed in GEBs will increase significantly. IRENA
indicates that to reduce CO2 emissions, solar power generation needs to increase from
1053 GW to about 8000 GW by 2050 [98]. In the US, the current solar power capacity
is only about 4 MW [4], but the U.S. department of energy’s national renewable energy
laboratory has noted that the potential solar power capacity installable on buildings can
be extended up to 1000 GW [99]. The growth of EV aggregator technologies discussed
in this chapter may be a key to achieving this potential.

5.1.2 Answer to Question 2: How can GEBs schedule DER opera-
tions considering peak power and building comfort from the
viewpoint of consumption?

To achieve GEBs, it is essential to efficiently manage multiple HVAC systems, consider-
ing power usage constraints. Previous studies explored management using mathematical
models like MPV and, more recently, delved into reinforcement learning approaches.
However, managing numerous HVACs through model predictive control (MPC) often
led to increased computation time, and reinforcement learning faced challenges due to
data scarcity. Chapter 3 presents an MPC-based optimization method for the opera-
tion of multiple HVAC units that avoids computational delays. The proposed technique
allocates available power resources to each unit based on power limits and obtains indi-
vidual operation plans using edge devices owned by the respective HVAC systems. Ex-
perimental results show the effectiveness of this method, ensuring schedules for HVAC
systems without exceeding power limits or compromising thermal comfort. Regarding
contribution to the demand-supply balance, the proposed method allows for the reduc-
tion of a building’s peak power by accounting for power constraints across multiple
HVAC systems. Regarding GEBs, this approach significantly contributes to load shed-
ding and shifting strategies (Table 1.1) within the GEB framework. By combining the
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proposed method with HVAC aggregation techniques, this is possible. Additionally,
as this research advances to accommodate power constraints among HVAC systems in
various usage scenarios and buildings, there is hope for new possibilities. The expec-
tation is that this will enable the creation of flexibility by freely interconnecting HVAC
systems, regardless of their spatial locations. It is suggested that the power consump-
tion of air conditioning systems within buildings accounts for about 13.5% of the global
final energy consumption [9]. When the proposed approach is further developed for
entire buildings, 10% of the HVAC power capacity can be shifted or reduced, which
indicates that 1.35% of the total electricity demand can be treated as flexibility. In
the net zero scenario, by 2030, it is necessary to implement approximately 250 GW
of demand response capacity in buildings, yet currently only about 20 GW has been
achieved [97, 100]. Therefore, the advancement of this research is important for stabi-
lizing the future supply-demand balance.

5.1.3 Answer to Question 3: How can GEBs predict the transaction
price of electrical flexibility for efficient interaction with the
market?

In the realm of GEBs, the focus has traditionally been on energy management for tasks
like load shifting and load balancing. Recently, research has expanded to include cre-
ating electrical flexibility, aiming to balance electricity supply and demand. However,
many studies overlook the financial aspects of market transactions. Notably, there’s a
scarcity of research on forecasting transaction prices in the supply-demand balancing
market, where flexibility is bought and sold. Chapter 4 addresses this gap by construct-
ing a transaction price forecasting model for the electricity supply-demand balancing
market. The model integrates market price forecasting with data from other commodity
categories and wholesale electricity market transactions to enhance GEB’s profitabil-
ity. Evaluation experiments resulted in accurate predictions of the AEMO 6-Sec-Raise
market price, achieving an RMSE of 7.8$/MW, which is an 80% improvement over the
RMSE of AEMO’s provided data. By combining this forecasting model with exist-
ing energy management methodologies, GEB can expect stable remuneration from its
participation in the supply-demand balancing market. In the future, this research will
stabilize the rewards of flexibility for GEBs, and it is expected that the number of GEBs
participating in the market will increase. Consequently, this could lead to an increase in
the total amount of demand-side flexibility.

5.2 Future Work

The works presented in this dissertation will be able to extend in several directions.
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Enhanced EV Aggregator Pricing Algorithm

In Chapter 2, GEBs decision-making was optimized to determine whether to buy or sell
in response to the pricing set by the EV aggregator. However, in reality, consumers
often have their own decision criteria, known as price elasticity, which influences their
willingness to buy or sell based on the price. Therefore, future optimization methods
need to consider price elasticity on the consumer side, and pricing algorithms on the EV
aggregator side should factor in household price elasticity when determining purchase
and sale prices.

Integrating Supply-Demand Balancing Capabilities into EV Aggregators

In Chapter 2, EV aggregators were primarily involved in power transactions between
buildings, buying and selling power to facilitate energy transfer. The assumption was
that these aggregators would purchase electricity from the grid when their batteries were
low and feed excess power back to the grid when recharging was not possible. In other
words, the EV aggregator does not anticipate trading electricity with the market through
battery charge/discharge. However, recent advances have allowed electric vehicle ag-
gregators to participate in the supply-demand balancing market. Consequently, future
EV aggregators should be equipped to engage in the supply-demand balancing market,
enabling them not only to facilitate power transfers but also to generate balancing power
when necessary.

Adapting EV Aggregators to Human and Environmental Complex Factors

In Chapter 2, this chapter used a simple household model. However, when considering
real-world scenarios, it is necessary to factor in constraints originating from human
behavior and environmental conditions. This is crucial because human activities can
significantly impact the use of EVs, the energy budget, and the demand predictions
used in the proposed framework. Consequently, these factors could potentially lead to
errors in classifying households based on the energy budget, as well as in transactions of
electricity between EVs and EV aggregators. Therefore, developing methods that take
into account human and environmental constraints is an important future direction.

Challenges in Introducing EV Aggregators in the Real World

In Chapter 2, the most significant challenge in practical implementation of the proposed
EV aggregator is predicting the "energy budget," a critical factor in price determination.
This chapter proposes a method under the assumption that generation power and house-
hold demand can be predicted. However, environmental factors cause generated power
to fluctuate significantly, and residents’ impulsive behavior has a significant impact on
EV and household demand predictions. These factors add complex constraints to the
proposed method, making its application in the real world challenging. To address these
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issues, more accurate prediction methods and strategies that consider the uncertainty in
the energy budget due to prediction errors are needed. The energy budget is used as an
indicator to understand the energy balance of each household. Therefore, it might be
possible to cluster households based on predictive information and past transaction data
regarding energy balance. The use of this clustering information could potentially solve
the challenges associated with predicting the energy budget.

Scaling up HVACs Management to Building Level

In Chapter 3, multiple HVAC optimizations were performed for only four rooms. How-
ever, to realize GEB, it is essential to consider the number of HVAC units at the building
level. Therefore, in future research, it is imperative to assess the scalability through sim-
ulations at the building level using the proposed methodology. By integrating the pro-
posed methodology with appropriate HVAC aggregation techniques, a comprehensive
framework for energy management in buildings can be provided.

Load Shifting Using the Proposed Methodology Considering GEB’s Base Load As-
sumptions

In Chapter 3, the simulations were conducted under the assumption of power restrictions
imposed on available power for HVACs. However, in GEB, there are other base loads
to consider, not just HVACs. Therefore, the power constraints allocated to HVACs must
be determined based on both the building’s power limits and the base demand. Hence,
future research needs to evaluate the effectiveness of the proposed methodology using
real datasets from operational GEB scenarios.

Application of the Proposed Methodology to Other Markets

In Chapter 4, a specific focus was given to predicting transaction prices in the AEMO
6 Second-Raise market. However, the supply-demand balancing market comprises var-
ious market segments beyond the 6 Sec Raise market. Predictions for these markets
are equally vital information for participation in the supply-demand balancing market.
Therefore, it is necessary to apply the proposed methodology to other market segments
and evaluate the accuracy of price forecasts.

Price Forecasting Method Considering Other Market Participants

In Chapter 4, the current method forecasts prices based on past information from the
supply and demand balancing market and the wholesale electricity market. However,
when considering actual bidding in the market based on these forecasts, it is essen-
tial to take into account information about other market participants. For example, if
price forecasting indicates high transaction prices at certain times, other participants
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will likely also bid during those times. Consequently, the market clearing price may
end up being lower. The actions of other participants can significantly influence market
prices. Therefore, the forecasting method for the transaction prices of flexibility that
takes into account such dynamic information, including the behavior of other partici-
pants, should be investigated in the future.

Coordination Between the Prediction Model and Aggregator’s Bidding Strategy

In Chapter 4, transaction price predictions in the supply-demand balancing market were
conducted, and their effectiveness was evaluated based on the accuracy of these fore-
casts. The objective of this study is to increase the rewards obtained by GEBs and
aggregators. To enhance the aggregator’s rewards, studies have been conducted on the
optimization of the aggregator’s bidding strategies. Hence, it is necessary to assess
the effectiveness of the proposed prediction method through simulations utilizing these
bidding and prediction techniques.
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