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Chapter 1

Introduction

Richard Stanley’s a�rmative proof of the upper bound conjecture
for spheres, utilizing the theory of Cohen–Macaulay rings, marked a
significant turning point at the crossroads of combinatorics, commuta-
tive algebra, and topology. It was this milestone that gave rise to the
concept of Cohen–Macaulay complexes in the mid-1970s, subsequently
forming the nucleus of a captivating and intricately connected area
known as combinatorial commutative algebra. Notably, this develop-
ment uncovered the pivotal role of commutative algebra in the algebraic
exploration of combinatorics on convex polytopes and simplicial com-
plexes. Stanley pioneered the systematic application of commutative
algebra concepts and techniques to investigate simplicial complexes by
considering the Hilbert function of Stanley–Reisner rings, whose defin-
ing ideals are generated by square-free monomials. Subsequently, the
study of square-free monomial ideals, from both algebraic and com-
binatorial perspectives, became a flourishing area of research within
commutative algebra. For a more detailed understanding, one may
refer to standard textbooks on combinatorics and commutative alge-
bra, including Bruns–Herzog [8], Hibi [19], Miller–Sturmfels [32] and
Stanley [44].

In the mid-1960s, Buchberger introduced the concept of Gröbner
bases in his thesis. His work presented a Gröbner basis criterion and
an algorithm for computing such bases. By the late 1980s, the theory
of Gröbner bases gained popularity and found applications across var-
ious mathematical fields including algebraic geometry, cryptography,
coding theory, and so on. For instance, Gröbner bases o↵er algorith-
mic solutions to problems in polynomial ideal theory, they are integral
in the construction and analysis of error-correcting codes and are also
widely used in computer algebra systems for polynomial manipulation
and solving systems of equations symbolically. Gröbner bases, along
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with initial ideals, introduced new computational methods and paved
the way for theoretical advances in both commutative algebra and com-
binatorics. For fundamental results on Gröbner basis and initial ideals,
advance to Sturmfels [45], which explores the application of Gröbner
basis techniques in the study of convex polytopes. In this thesis, we
will utilize these techniques as a method for demonstrating our results.

Edge rings: An overview

This research is particularly centered on edge rings. The edge rings
are a special class of a�ne semigroup rings and their connection to
another combinatorial object, finite graphs, motivated our exploration
of edge rings. For a comprehensive introduction to the edge rings and
toric ideals of graphs, one may advance to [18, Section 5] and [49,
Section 10]. Throughout the dissertation, we assume all graphs to be
finite, connected, and have no loops and multiple edges. Given a finite
graph G, its associated edge ring is represented as k[G], where k is any
field. Many researchers have conducted intensive studies on the edge
rings and toric ideals of graphs. This research, in particular, centers on
characterizing some intriguing algebraic properties of edge rings such as
Cohen–Macaulayness, Gorensteinness, almost Gorensteinness, and so
on, in terms of the corresponding graph. All the fundamental notions
of combinatorial commutative algebra and results on edge rings that
we will be dealing within this study have been introduced in the first
part of this thesis.

On h-vectors of edge rings

The h-vectors of homogeneous rings are one of the most important
invariants that often reflect ring-theoretic properties. The Gorenstein-
ness of homogeneous normal Cohen–Macaulay domains are character-
ized by the symmetry of their h-vectors (see, [43]). Moreover, there
are many other results claiming that the h-vectors of homogeneous
(or semi-standard graded) normal Cohen–Macaulay rings (or domains)
have some connection with their ring-theoretic properties (see, e.g.,
[7, 21, 25, 52], and so on). On the other hand, there are a few exam-
ples of edge rings of graphs whose h-vectors are explicitly computed.

As far as we know, the h-vectors (or their counterparts) of the edge
rings of the following graphs have been computed:

• Let Km,n denote the complete bipartite graph with m+n vertices.
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Then
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• The Hilbert functions of the edge rings of complete multipartite
graphs were computed in [35, Theorem 2.6].

• The Hilbert series of the edge rings of bipartite graphs are de-
scribed using their interior polynomials (see, [27]).

(For further clarification on the notations used above, see Section 2.1.)
Regarding the results on Km,n and Km, see [48], or [49, Section 10].

It is important to note that if the edge rings of the graphs are
normal, then the Hilbert functions (resp. h-vectors) of the edge rings
agree with the “Ehrhart polynomials (resp. h

⇤-vectors) of the edge
polytopes arising from the graphs”. The primary goal of the second
part of this thesis is to explicitly compute the h-vector for some specific
classes of graphs, thereby o↵ering more examples to enrich the index
of edge rings with explicitly known h-vectors.

On the characterization of algebraic properties of edge rings

For an a�ne semigroup S ⇢ Nd, let k[S] be the a�ne semigroup
ring of S. The a�ne semigroups and their associated a�ne semigroup
rings have been well-studied by many researchers in several contexts.
While studying for a characterization of the Cohen–Macaulay a�ne
semigroup ring, Goto and Watanabe [16] have defined an extension
S
0 of S and claimed that the condition, S 0 = S is the necessary and

su�cient condition for k[S] to be Cohen–Macaulay. Trung and Hoa
[47] presented a counterexample and also demonstrated that S 0 = S is
insu�cient to establish the Cohen–Macaulayness of k[S]. They have
also provided an additional topological condition on the convex ratio-
nal polyhedral cone spanned by S in Qd and characterized the Cohen–
Macaulayness of k[S]. Schäfer and Schenzel [38, Theorem 6.3] claimed
that the condition S

0 = S corresponds to the Serre’s condition (S2).
Moreover, Katthän [28] unveils a substantial link between the struc-
tural aspects of holes within the a�ne semigroup S and ring-theoretic
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properties, including depth, Serre’s condition (R1) and (S2). For an in-
troduction to Serre’s condition (R1) and (S2), readers may refer to [8,
Section 2] or [30]. Note that the edge rings are a�ne semigroup rings
arising from finite graphs. We will explore this further in subsequent
sections of the thesis.

The benefit of characterizing algebraic properties using graphs lies
in its ability to provide new perspectives, enhance understanding, and
facilitate the development of e�cient algorithms for solving problems
in diverse mathematical areas. The Cohen–Macaulayness of the edge
ring k[G] in terms of the corresponding graph G has been the subject of
extensive research. Given that the edge ring k[G] is an a�ne semigroup
ring, it is known from [26, Theorem 1] that, if k[G] is normal then k[G]
is Cohen–Macaulay. Ohsugi and Hibi [34] have characterized the nor-
mality of an edge ring in terms of its graph. At about the same time,
Simis–Vasconcelos–Villarreal independently came to the same conclu-
sion and reported it in [41]. Recall from [8, Theorem 2.2.22] that the
edge ring k[G] is normal if and only if k[G] satisfies Serre’s conditions
(R1) and (S2). In [20, Theorem 2.1], Hibi and Katthän have charac-
terized the edge rings satisfying (R1)-condition. Note that Serre’s con-
dition (S2) is a necessary condition for k[G] to be Cohen–Macaulay.
Based on these insights, Higashitani and Kimura [22] have provided
the necessary condition for an edge ring to satisfy (S2)-condition.

Through the third part of this study, we anticipate achieving a
characterization of edge rings satisfying (S2)-condition. Furthermore,
it would be highly intriguing to investigate the existence of an edge ring
that satisfies Serre’s condition (S2) but is not Cohen–Macaulay. While
such examples are known for a�ne semigroup rings (demonstrated by
Trung and Hoa [47]), it remains an open question whether such an
example can be found as an edge ring. Based on our expectations, it
is conjectured that no such example exists in the case of edge rings.
This aspect presents an exciting challenge, and resolving it could shed
light on the relationship between Serre’s condition (S2) and Cohen–
Macaulayness for edge rings.

The notion of almost Gorenstein homogeneous rings was introduced
by Goto–Takahashi–Taniguchi in [15], as a new class of graded rings
between Cohen–Macaulay rings and Gorenstein rings. After this work,
almost Gorenstein homogeneous rings have been studied further, e.g.,
in [21, 23, 31]. On almost Gorensteinness of edge rings, known exam-
ples of almost Gorenstein non-Gorenstein edge rings are presumably
rare. However, almost Gorenstein edge rings arising from complete
multipartite graphs were completely characterized in [23]. According
to [23, Examples 1.5-1.7], we know that K2,m, K1,1,m, K1,m,m with
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m � 3 and K1,1,m,m with m � 2 give almost Gorenstein but not Goren-
stein edge rings, where Ka1,...,ar denotes the complete r-partite graph.
A connected non-bipartite graph Gn with n copies of 3-cycles sharing
a single vertex is introduced in Chapter 4. By Theorem 4.1.1, we note
that the family of graphs Gn, where n � 3, is a new family of graphs
whose edge rings are almost Gorenstein but not Gorenstein.

Thesis objectives on edge rings

While the historical background provides valuable context, our main
objective is to extend the current understanding and provide new in-
sights into this area. As previously discussed, this research work has
two distinct objectives regarding edge rings. Firstly, to focus on com-
puting the h-vectors of some interesting family of graphs, to make a
greater contribution to the index of edge rings whose h-vectors are
explicitly known. Secondly, to investigate non-normal edge rings sat-
isfying (S2)-condition with an expectation to yield new insights into
the characterization of (S2)-condition for edge rings and to provide
supporting evidence to the conjecture that there is no di↵erence be-
tween satisfying Serre’s condition (S2) and Cohen–Macaulayness for
edge rings.

Exploring graph theory: Beyond edge rings

The edge ring associated with a graph on d vertices and d edges,
with a single odd cycle is identified as a polynomial ring in d variables
over a field k. It is well-known that a polynomial ring over a field is
Cohen–Macaulay and the h-polynomial has to be 1. Therefore, instead
of considering such unicyclic graphs in the context of edge rings, we
will take a strict graph-theoretical approach in the fourth part of this
research.

Some general references for graph-theoretic ideas are Bollobás [5]
and Bondy–Murty [6]. The last part of this study focuses on the topic
of graph labeling. The roots of graph labeling can be traced back to the
mid-1960s, with its initial definition by Sadláčk [37], followed by the
formulation by Kotzig and Rosa [29] in 1970. Since then, the field has
witnessed remarkable growth, with over 200 graph labeling techniques
explored in over 3000 research papers. Labeled graphs are becoming an
increasingly useful family of mathematical models from a broad range of
applications. The importance of graph labeling includes its numerous
applications in many areas like circuit design, radar, communication
network address, and so on.
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Various authors introduced labelings that generalized the idea of a
magic square, i.e., a square array of positive integers where the sum of
the numbers in every row, every column, and even the diagonals are
the same. For a finite simple graph G on vertex set V (G) with edge
set E(G), Kotzig and Rosa [29] defined the magic valuation of G as a
labeling of both vertices and edges of G, in which the labels are the
integers from 1 to |V (G)|+ |E(G)|. Here, the sum of labels on an edge
and its two endpoints is constant and we call it the magic constant
of G. In 1996, Ringel and Llado [36] rediscovered this labeling idea
and called it edge-magic. We shall use the phrase edge-magic total, as
developed by Wallis [50] to distinguish this usage from that of other
forms of labelings that utilize the word magic. A graph that has an
edge-magic total labeling is called an edge-magic total graph. In [29],
Kotzig and Rosa have demonstrated that the n-cycles with n � 3, and
the complete bipartite graphs Km,n withm,n � 1, are edge-magic total
graphs. They also established that a complete graph Kn is an edge-
magic total if and only if 1  n  6, and further proved that the disjoint
union of n copies of path graph P2 has an edge-magic total labeling if
and only if n is odd. The bibliography section includes references to
several pieces of pertinent literature, including [3, 14, 33, 36, 42].

Enomoto et al. [10] introduced the name super edge-magic total for
edge-magic total labelings, with the added property that the vertices of
graph G receive the smaller labels, i.e., 1 to |V (G)|. As demonstrated
in [10], a complete graph Kn is super edge-magic total if and only if
n = 1, 2, or 3 and a complete bipartite graph Km,n is super edge-magic
total if and only if m = 1 or n = 1. Moreover, n-cycles are super
edge-magic total if and only if n is odd (see, [10]). Some further results
on the super edge-magic total graph can be found in [12, 13, 14].

Avadayappan–Jeyanthi–Vasuki [2], introduced the concept of the
super edge-magic total strength of a graph G as the minimum magic
constant, where the minimum is taken over all the super edge-magic
total labelings of G. The super edge-magic total strength of an odd
cycle of length n equals 5n+3

2 (see [2, Theorem 3]). Further results
on the super edge-magic total strength of specific graphs are available
in [2, 46]. More comprehensive results on this topic can be found in
Section 8.1. The final part of our study focuses on unicyclic graphs
and provides evidence to conjecture that the super edge-magic total
strength of a certain family of unicyclic graphs withm edges, consisting
of an odd cycle of length n, is equal to 2m+ n+3

2 .
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Outline of the thesis

A brief structure of this dissertation is as follows. The thesis is
divided into four parts. The first three parts consist of two chapters
each and the final part has one chapter.

Part I consists of two chapters, where we revisit some basic prereq-
uisite definitions and results that will be encountered throughout this
thesis. In Chapter 2, we recall fundamental notions on combinatorial
commutative algebra, and in Chapter 3, we prepare materials on the
edge rings and toric ideals of graphs for further investigations.

Part II focuses on the explicit computation of h-vectors for certain
classes of graphs, particularly those with normal edge rings (square-free
initial ideals), by using the technique of initial ideals and the associated
simplicial complex. Chapter 4 explores a family of graphs comprising
n copies of 3-cycles with a unique common vertex and computes their
h-vectors. This analysis sheds light on the algebraic properties of these
structured graphs and introduces a new family of almost Gorenstein
but not Gorenstein edge rings. Chapter 5 delves into the explicit com-
putation of the h-polynomials of a related family of graphs, containing
those studied in Chapter 4. Moreover, in this chapter, we characterize
the almost Gorensteinness of their corresponding edge rings.

Part III is dedicated to the study of certain families of graphs whose
edge rings are non-normal and satisfy (S2)-condition. More precisely,
we examine the graph formed by the union of two complete graphs that
share exactly one common vertex, along with a distinct family of cactus
graphs. In Chapter 6, it is demonstrated that, within a specific range
of the number of vertices and edges, there exists a certain family of
graphs with non-normal edge rings that satisfy Serre’s condition (S2).
In Chapter 7, we embark on an exploration of a special family of cactus
graphs with non-normal edge rings. It’s important to note that the
approach used in this chapter to prove the (S2)-condition di↵ers slightly
from the one employed in Chapter 6. We base our method on insights
from [28] concerning the interplay between the structural attributes of
holes in an a�ne semigroup and the ring-theoretic properties of their
corresponding a�ne semigroup rings.

Part IV has a single chapter and is exclusively dedicated to some
special graph-theoretical approaches. In this segment, our approach
di↵ers from the methods employed in our previous studies. Since this
part is not focusing on our main object – edge rings, we begin Chapter 8
with Section 8.1 that contains a detailed introduction to the relevant
notions and results regarding super edge-magic total labeling of graphs.
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In Chapter 8, we look at a special family of unicyclic graphs that con-
sists of an odd cycle of length n and a certain number of pendant
vertices adjacent to each of the vertices of the n-cycle. We particu-
larly examine three specific graphs belonging to this family of unicyclic
graphs and provide substantial evidence in favor of Conjecture 8.1.8.
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Preliminaries
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Chapter 2

Notions on combinatorial
commutative algebra

Here, we will review some of the key concepts and findings from
combinatorial commutative algebra that we will be using in our inves-
tigation. For any undefined terms and notations in this chapter, one
may refer to standard texts; like Burns–Herzog [8], Matsumura [30],
Stanley [44] and Sturmfels [45].

2.1 Homogeneous rings and Hilbert series

We restrict ourselves to recalling the most important notions and
facts. Let R be a Noetherian local ring and M be a nonzero R-module.
M is said to be Cohen–Macaulay if depthM = dimM. R is said to be
Cohen–Macaulay ring if it is a Cohen–Macaulay module over itself, i.e.,
depthR = dimR. One can advance to [8], for the systematic study of
depth and the Cohen–Macaulay property.

Let R be a Noetherian ring and Spec(R) denotes the set of all prime
ideals of R. Recollect that for an integer n, we say that R satisfies:

• Serre’s condition (Rn) if Rp is a regular local ring, for all p 2
Spec(R) with dimRp  n.

• Serre’s condition (Sn) if depthRp � inf{n, dimRp}, for all p 2
Spec(R).

We easily see from the definition that R is Cohen–Macaulay if and
only if R satisfies (Sn)-condition for every n � 0. Recall that a normal

ring is an integral domain that is integrally closed in its field of fractions
(see [30], for detailed discussions of normality).
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Serre’s normality criterion: A Noetherian ring R is normal if and only
if it satisfies Serre’s conditions (R1) and (S2).

Throughout this doctoral thesis, we only consider homogeneous
rings. For detailed information on homogeneous rings, see [8] or [49].
Let R be a Cohen–Macaulay homogeneous ring of dimension d over a
field k. For a graded R-module M , let us denote µ(M) as the number
of elements in a minimal system of generators of M as an R-module
and e(M) be the multiplicity of M . Generally, e(M) � µ(M). We de-
note the Cohen–Macaulay type of R by r(R) and let !R be a canonical
module of R. It is well known that r(R) = µ(!R).

The Hilbert function, H(M, i), measures the dimension of the i
th

homogeneous piece of the graded module M and the Hilbert series is
the corresponding generating function, HM(t) =

P
i2Z H(M, i)ti. They

are one of the most important numerical invariants of graded modules
and form a bridge between commutative algebra and its combinatorial
applications.

For a homogeneous ring R, the Hilbert function H(R, i) = dimk Ri

and the Hilbert series is:

HR(t) =
X

i�0

dimk Rit
i =

h0 + h1t+ · · ·+ hst
s

(1� t)d
,

where Ri denotes the homogeneous part of R of degree i, dimk denotes
the dimension as a k-vector space, and we assume that hs 6= 0. The
rationality of the Hilbert series is already a powerful result, but some
of its refined properties reflect homological conditions for the rings and
modules under consideration.

We call the polynomial h0+h1t+ · · ·+hst
s appearing in the numer-

ator as the h-polynomial of R, denoted by h(R; t), and the sequence of
the coe�cients (h0, h1, . . . , hs) as the h-vector of R, denoted by h(R).
The index s is called the socle degree of R. Moreover, e(R) =

P
s

i=0 hi.
A Cohen–Macaulay ring R is called Gorenstein if R is isomorphic to

its own canonical module, i.e., R ⇠= !R. It follows from [43, Theorem
4.4] that, if R is a normal Cohen–Macaulay homogeneous domain, then
R is Gorenstein if and only if h(R) is symmetric, i.e., hi = hs�i for
i = 0, 1, . . . , s.

For a graded R-module M , let M(�l) denote the R-module whose
underlying R-module is the same as that of M and whose grading is
given by (M(�l))n = Mn�l for all n 2 Z. Let a = a(R) be the a-
invariant of R. Note that, for a canonical module !R of R, we have
a = �min{i : (!R)i 6= 0}. We say that a Cohen–Macaulay ring R is
almost Gorenstein if there exists an exact sequence

0 �! R
���! !R(�a) �! C �! 0
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of graded R-modules with µ(C) = e(C), where � is an injection of
degree 0 (see, [15, Definition 1.5]). Let us recall the necessary and
su�cient condition for a homogeneous domain to be almost Gorenstein,
as stated in [21].

Proposition 2.1.1 ([21, Corollary 2.7]). Let R be a Cohen–Macaulay

homogeneous domain of dimension d over a field k and let h(R) =
(h0, . . . , hs) be its h-vector. Then R is almost Gorenstein if and only if

the following equality holds:

r(R)� 1 =
s�1X

j=0

((hs + · · ·+ hs�j)� (h0 + · · ·+ hj)) =: ẽ(R).

Note that r(R)�1  ẽ(R) is always satisfied, so almost Gorensteinness

is equivalent to the inequality r(R) � ẽ(R) + 1.

2.2 A�ne semigroup rings

Let us recall some of the basics and useful results on a�ne semigroup

rings. One may refer to [8, Chapter 6] for detailed fundamental studies.
A semigroup is a set with an associative binary operation. A finitely

generated semigroup that is isomorphic to a sub-semigroup of a free
abelian group Zd for some d � 0 is known as an a�ne semigroup. A�ne
semigroups lie in the intersection of algebraic geometry, combinatorics,
commutative algebra, convex discrete geometry and number theory.

Let S ⇢ Zd

�0 be an arbitrary a�ne semigroup and k be any field.
The a�ne semigroup ring, denoted as k[S] is a k-algebra with a basis
consisting of the symbols xs, which corresponds to s 2 S, and the
multiplication on k[S] is defined by xsxs

0
= xs+s

0
. That is, we have

k[S] = k[xs : s 2 S], where for s = (s1, . . . , sd) 2 S, xs := x
s1

1 · · · xsd
d
.

Recall that dim k[S] = dimS.
For an arbitrary a�ne semigroup S ⇢ Zd

�0, let {s1, . . . , st} be the

minimal finite subset of S such that S =
nP

t

i=1 zisi : zi 2 Z�0

o
. Then,

{s1, . . . , st} ⇢ S is called the minimal generating system of S. Note
that for A ⇢ R, we denote

AS =

(
tX

i=1

aisi : ai 2 A

)
.

In this study, we only consider the cases where A is Q�0 or Z or Z�0.
Let ZS be the free abelian group generated by S and Q�0S be the
rational polyhedral cone generated by S.
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An a�ne semigroup S is called normal if it satisfies the following
condition: if mz 2 S for some z 2 ZS and m 2 Z>0, then z 2 S.
Thus we see that S must be normal if k[S] is a normal domain. It is
evident from [8, Thoerem 6.1.4.] that k[S] is normal if and only if S is
a normal a�ne semigroup. Let S = Q�0S \ ZS be the normalization

of S. Analogous to the definition of normality of S, we say that S is
normal if S = S holds. (See, e.g., [8, Section 6.1].)

Furthermore, it is well known as Hochster’s theorem (see [8, Theo-
rem 6.3.5]) that if S is a normal a�ne semigroup, then k[S] is Cohen–
Macaulay.

The set F ⇢ S is said to be a face of S, if the following holds:
s, s

0 2 S, s+ s
0 2 F () s 2 F and s

0 2 F . The dimension of a face
F is defined to be the rank of the free abelian group ZF . Throughout
our study, we consider only positive a�ne semigroups, i.e., the minimal
face of S is {0}.

The set of holes S\S in S was given a geometric description by
Katthän in [28], and it was connected to the ring-theoretical features
of S. While the a�ne semigroups examined in [28] were not necessarily
positive, in this thesis, we translate these findings into the case of
positive a�ne semigroups.

Theorem 2.2.1 ([28, Theorem 3.1]). Let S be an a�ne semigroup.

Then there exists a (not-necessarily disjoint) decomposition

S\S =
l[

i=1

(si + ZFi) \ Q�0S (2.1)

with si 2 S and faces Fi of S. If no si + ZFi can be omitted from the

union, then the decomposition is unique.

The set si+ZFi in (2.1) is called a j-dimensional family of holes of
S, where j = dimFi.

Theorem 2.2.2 ([28, Theorem 5.2]). Let S be an a�ne semigroup of

dimension d. Then k[S] satisfies Serre’s condition (S2) if and only if

every family of holes of S is of dimension d� 1.

Now, let us consider the set {F1, . . . , Fm} to be the set of all facets
of the convex rational polyhedral cone Q�0S. We define

Si := S � S \ Fi

= {x 2 ZS : 9 y 2 S \ Fi such that x+ y 2 S},
and S

0 :=
T

m

i�1 Si. Note that, the condition S
0 = S corresponds to the

Serre’s condition (S2); see [38, Theorem 6.3].
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The primary focus of this study is on edge rings, which are a�ne
semigroup rings associated with finite graphs. We will delve deeper
into this topic in later sections.

2.3 Gröbner basis and initial ideals

Let R = k[x1, . . . , xn] be the polynomial ring in n variables over a
field k with each deg xi = 1. Let M(R) be the set of all monomials of
R. Note that the set M(R) is a k-basis of R and for any polynomial
f 2 R, we write

f =
X

r2M(R)

arr, with ar 2 k.

Then the set of all monomials in M(R) such that ar 6= 0, is called the
support of f and is denoted by supp(f).

Given monomials xu = x
u1

1 x
u2

2 · · · xun
n

and xv = x
v1

1 x
v2

2 · · · xvn
n

in
M(R), we say that xu

divides xv, denoted by xu | xv, if each ui  vi

for 1  i  n. A monomial xu in R is called square-free if the exponent
vector u = (u1, . . . , un) is such that 0  ui  1 for all 1  i  n.

Recall that a total order on a set is a partial order in which any two
elements of the set are comparable. A monomial order on R is a total
order < on M(R) such that

(i) 1 < r for all 1 6= r 2M(R);

(ii) if r, r0 2M(R) and r < r
0, then rs < r

0
s for all s 2M(R).

Specifically, we encounter the following monomial order in this dis-
sertation. Let u = (u1, . . . , un) and v = (v1, . . . , vn) be vectors in Zn

�0.
We define the monomial order <lex on M(R) by arranging xu

<lex xv

if either
P

n

i=1 ui <
P

n

i=1 vi; or
P

n

i=1 ui =
P

n

i=1 vi and the leftmost
nonzero component of u � v is negative. The monomial order <lex

is called the graded lexicographic order on R induced by the ordering
x1 > · · · > xn.

Example 2.3.1. Let us consider the ring R = k[x1, x2, x3] and some
monomials x2

1, x1x2, x1x3, x
2
2, x2x3, x

2
3 in M(R). By the graded lexico-

graphic order on R induced by the ordering x1 > x2 > x3, we have

x
2
3 <lex x2x3 <lex x

2
2 <lex x1x3 <lex x1x2 <lex x

2
1.

Let us fix a monomial order < on R. Consider a polynomial f of R
such that f =

P
r2M(R) arr, with ar 2 k. We define the initial mono-

mial of f with respect to <, denoted by in<(f), as the largest monomial
belonging to supp(f) with respect to <. The leading coe�cient of f is
the coe�cient of in<(f) in f .
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Definition 2.3.2. Let I be a nonzero ideal of R. The initial ideal of I
with respect to <, written as in<(I), is defined as the monomial ideal
of R generated by the initial monomials of nonzero polynomials in I.
Thus, we have in<(I) = hin<(f) : 0 6= f 2 Ii.

Now, we recall the definition of Gröbner basis. Let I be a nonzero
ideal of R = k[x1, . . . , xn] and < be a monomial order on R.

Definition 2.3.3. Let G = {g1, . . . , gr} be a finite set of nonzero poly-
nomials with each gi 2 I. The set G is said to be a Gröbner basis of I
with respect to < if the initial ideal in<(I) of I is:

in<(I) = hin<(g1), . . . , in<(gr)i.

Theorem 2.3.4 ([17, Theorem 2.1.8]). Let I be a nonzero ideal of

R = k[x1, . . . , xn] and G = {g1, . . . , gr} be a Gröbner basis of I with

respect to a monomial order < on R. Then, I = hg1, . . . , gri, i.e., every
Gröbner basis of I is a system of generators of the ideal I.

Let us recall from [18, Theorem 1.19] that, the set of monomials
that do not belong to in<(I) form a k-basis of the residue ring R/I

as a vector space over k. As an immediate consequence of this, for a
graded ideal I ⇢ R, the computation of the Hilbert series of R/I can
be reduced to the case that I is a monomial ideal.

Proposition 2.3.5 ([18, Proposition 2.6]). Let < be a monomial order

on R = k[x1, . . . , xn] and I ⇢ R be a graded ideal. Then

HR/I(t) = HR/ in<(I)(t).

2.3.1 Buchberger’s criterion

We have seen that the Gröbner basis of an ideal is its system of gen-
erators. Buchberger’s criterion is a highlight of the theory of Gröbner
bases since it helps us in determining whether a given system of gener-
ators of an ideal form its Gröbner basis or not. As before, we consider
R = k[x1, . . . , xn] and fix a monomial order < on R. First of all, we
recall the division algorithm.

The division algorithm: Let g1, . . . , gr be nonzero polynomials in R.
Given a nonzero polynomial f in R, there exist polynomials f1, . . . , fr
and f

0 in R with

f =
rX

i=1

figi + f
0 (2.2)

such that the following conditions hold.
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• If f 0 6= 0, then no monomial u 2 supp(f 0) belongs to the monomial
ideal hin<(gi) : 1  i  ri.

• If figi 6= 0, then, then in<(f) � in<(figi).

Let f and g be nonzero polynomials of R and lcm(in<(f), in<(g))
denotes the least common multiple of in<(f) and in<(g). Let cf be the
coe�cient of in<(f) in f and cg be the coe�cient of in<(g) in g. Then
the polynomial

S(f, g) =
lcm(in<(f), in<(g))

in<(f)
f � lcm(in<(f), in<(g))

in<(g)
g

is called the S-polynomial of f and g.
We say that f reduces to 0 with respect to g1, . . . , gr if there exists

a standard expression (2.2) of f with respect to g1, . . . , gr with f
0 =

0. Recall that if in<(f) and in<(g) are relatively prime, then S(f, g)
reduces to 0 with respect to f, g (see, e.g., [18, Lemma 1.27]).

Now, let us state the Buchberger’s criterion. For the detailed proof,
see, e.g., [18, Theorem 1.29].

Theorem 2.3.6 (Buchberger’s criterion). Let I be a nonzero ideal

of the polynomial ring R and G = {g1, . . . , gr} be a system of generators

of I. Then G is a Gröbner basis of I if and only if for all i 6= j, the

S-polynomial S(gi, gj) reduces to 0 with respect to g1, . . . , gr.

2.4 Stanley–Reisner rings

In this section, we recall some basic definitions and properties of
an abstract simplicial complex and its associated Stanley–Reisner ring.
Throughout our study, we will be using the term simplicial complex to
represent an abstract simplicial complex. In this section, we also em-
phasize pure shellable complexes and recollect some well-known results
on them.

Definition 2.4.1. Let [n] = {1, . . . , n} be the vertex set and � be a
subset of the powerset of V . � is said to be a simplicial complex on [n]
if whenever F 2 � and G ⇢ F , then G 2 �.

Any F 2 � is called a face of� and dimF = |F |�1. The dimension

of the simplicial complex is given by

dim� = max{dimF : F 2 �}.

The maximal faces of � under inclusion are called facets of �. A
simplicial complex � is determined by its facets. If all the facets of
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� have the same dimension, then we say that � is pure. Let F be a
subset of [n] with F /2 �, then F is said to be a nonface of �.

Let us consider dim� = d�1 and fi be the number of i-dimensional
faces of �. For any non-empty simplicial complex � on the vertex set
[n], the empty set ; is regarded as a face of �. Thus we have f�1 = 1
and f0 = n. The sequence f(�) = (f0, f1, . . . , fd�1) is called the f -

vector of �.
Let � be a simplicial complex on the vertex set [n]. Let k be a field

and R = k[x1, . . . , xn] be the standard polynomial ring over k. The
monomial ideal I�, generated by square-free monomials xF =

Q
i2F

xi

such that F /2 �, is called the Stanley–Reisner ideal of �. In other
words, I� = hxF : F is minimal nonface in �i. Recall that the primary
decomposition of I� is given by I� =

T
F2�

P
F
, where P

F
=
⌦
xi : i /2 F

↵
.

Definition 2.4.2. Let � be a simplicial complex on [n] and R =
k[x1, . . . , xn] be the standard polynomial ring over the field k. The
quotient ring k[�] = R/I� is called the Stanley–Reisner ring of �.

Recall that the dimension of k[�] is given by dim k[�] = dim�+1.
For a simplicial complex � of dimension d�1, the Hilbert series of the
corresponding Stanley–Reisner ring k[�] is given by

Hk[�](t) =
dX

i=0

fi�1

✓
t

1� t

◆i

=
h0 + h1t+ · · ·+ hdt

d

(1� t)d
,

where hi 2 Z. The (d + 1)-tuple h(�) = (h0, h1 . . . , hd) is called the
h-vector of the simplicial complex �.

2.4.1 Shellable simplicial complexes

Recall that a simplicial complex � is Cohen–Macaulay over any field
k if the associated Stanley–Reisner ring k[�] is a Cohen–Macaulay ring.

Let F1, . . . , Ft be the facets of a pure simplicial complex � of dimen-
sion d� 1. Let hF1, . . . , Fmi be the unique smallest simplicial complex
which contains all Fi, 1  i  m. The ordering of the facets is said to
be a shelling if it satisfies that hFii \ hF1, . . . , Fi�1i is generated by a
non-empty set of maximal proper faces of Fi with dimension d� 2, for
all 2  i  t. We say that a pure simplicial complex is shellable if it has
a shelling. Throughout our further study, we may refer the subcom-
plex hFii \ hF1, . . . , Fi�1i as the intersection subcomplex corresponding
to the i

th shelling step.
Consider a shellable simplicial complex � and let F1, . . . , Ft be a

shelling of �. Let ri be the number of maximal proper faces of Fi in
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hFii \ hF1, . . . , Fi�1i for 2  i  t, and let r1 = 0. Then h(�) =
(h0, . . . , hd), is obtained by hj = |{i : ri = j}|. This is known as the
McMullen characterization of h-vectors of a pure shellable simplicial
complex. For a detailed approach, see [8, Corollary 5.1.14].

From [8, Theorem 5.1.13], we recall that a shellable simplicial com-
plex is Cohen–Macaulay over any field.
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Chapter 3

Edge rings

In this chapter, we will go over pertinent basic definitions, theorems,
and well-known findings that are necessary for a thorough comprehen-
sion of our main study object, the edge rings.

3.1 Convex polytopes

We limit ourselves to recalling the most significant and relevant no-
tions; for an in-depth study of convex polytopes, see [18] or [19]. A
convex polytope of Rn is a convex hull of a nonempty finite set of Rn and

a hyperplane of Rn is defined as H =

⇢
(r1, . . . , rn) 2 Rn :

nP
i=1

airi = c

�
,

where ri, c 2 R. For a given H ⇢ Rn, the closed half-spaces H+ and H�

of Rn are defined as follows: H+ =

⇢
(r1, . . . , rn) 2 Rn :

nP
i=1

airi � c

�

and H� =

⇢
(r1, . . . , rn) 2 Rn :

nP
i=1

airi  c

�
.

Let P ⇢ Rn be a convex polytope. A hyperplane H ⇢ Rn is said
to be a supporting hyperplane if H \ P 6= ;, H \ P 6= P and either
P ⇢ H+ or P ⇢ H�. If H is a supporting hyperplane of P , then a
subset of P , of the form H \ P is said to be a face of P . If {v} is a
face of P , then v 2 P is called a vertex of P . A convex polytope P is
called an integral polytope if each vertex of P belongs to Zn.

3.2 Toric rings and toric ideals

An overview of toric rings and toric ideals will be covered in this
section. Let A = (ai,j) 1in

1jm

be an n⇥m-matrix of integer entries and
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let

aj =

0

@
a1,j
...

an,j

1

A , 1  j  m

be the column vectors of A. Let Zn⇥m denote the set of matrices
A = (ai,j) 1in

1jm

with each ai,j 2 Z.

Let us recollect that, for any field k and the matrix A 2 Zn⇥m with
column vectors aj, we define a k-algebra homomorphism

⇡ : k[x1, . . . , xm] �! k[t1, . . . , tn] with xj 7! taj ,

such that the image of ⇡ denoted by k[A] is called the toric ring of A
and the kernel of ⇡ denoted by IA is called the toric ideal of A.

Let kt be the transpose of vector k and a ·b =
P

n

i=1 aibi represents
the inner product of vectors a = (a1, . . . , an)t and b = (b1, . . . , bn)t.
Recall that a configuration is a matrix A 2 Zn⇥m, with column vectors
aj, such that there exists k 2 Qn with aj · k = 1 for 1  j  m.
The configuration A is called normal if Z�0A = ZA \ Q�0A. In the
language of commutative algebra, a configuration A 2 Zn⇥m is normal
if and only if the toric ring k[A] is normal.

Now, let P ⇢ Rn be an integral polytope with P\Zn = {a1 . . . , am}
and AP 2 Z(n+1)⇥m be the configuration with (aj, 1)t as the column
vector for 1  j  m. If the configuration AP is normal, then we say
that the integral polytope P is normal.

3.3 Finite graphs

Here we will have a look at the essential definitions and results re-
garding finite graphs, which will be utilized through our investigation.
For more concrete details on graphs, one may refer to the standard
texts on graph theory; like Bollobás [5] and Bondy–Murty [6].

All along this thesis, we will only consider finite simple graphs. This
means that we only take into account graphs with a finite number of
vertices and edges, and a maximum of one edge connecting any two
vertices. We also forbid loops, which are edges that connect one vertex
to another.

Let [d] = {1, . . . , d} and G be a finite simple graph on the vertex
set V (G) = [d] with edge set E(G) = {e1, . . . , em}. Recall that given
an edge e = {i, j} 2 E(G), the end vertices i and j are called adjacent

vertices.
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If the vertex set V (G) can be partitioned into two disjoint subsets
such that no two vertices in the same partition are adjacent, then the
graph G is called a bipartite graph.

A simple graph in which an edge joins each pair of distinct vertices
is called a complete graph. A complete graph on n vertices is denoted
by Kn.

Recall that in a graph G, a path between any two vertices is a
sequence of distinct edges that joins the two vertices. The length of
a path is the total number of edges in it. A path from vertex u to v

is the shortest path if there is no other path from u to v with a lower
length. The distance between two vertices is the length of the shortest
path between those two vertices. The distance between a graph’s most
distant vertices is known as its diameter and let us denote it as diamG.

A closed walk of length r in a graph G is a sequence of edges � =
(ei1 , . . . , eir), such that eij = {ij, ij+1}, for j = 1, . . . , r, where ir+1 = i1.
A closed walk of even length is called an even closed walk.

A cycle of a graph G is a closed walk C = (ei1 , . . . , ein) in G (with
n � 3) such that ik 6= il for all 1  k < l  n. A cycle of length n

is called an n-cycle. Recall that, a cycle of odd length is called an odd

cycle and that of even length is called an even cycle. Throughout this
dissertation we denote a cycle by only listing its vertices, that is, we
denote an n-cycle as C = (i1, . . . , in). A chord of a cycle C = (i1, . . . , in)
is an edge of the form e = {ik, il}, where 1  k < l  n, such that
l 6= k + 1 and (k, l) 6= (1, n). An n-cycle is said to be minimal in G if
there exists no chord in it.

A finite simple graph G is said to be connected if there exists a path
between any two distinct vertices of G. A connected subgraph of G
that is not a part of any other larger connected subgraphs is known as
a connected component of G.

Let G be a finite simple graph on vertex set V (G). A non-empty
subset T ⇢ V (G) is called an independent set if {v, w} 62 E(G) for any
v, w 2 T . Now, let us look at some definitions and notations that we
will be using in this study.

• Let us consider W ⇢ V (G), and we define GW as the induced

subgraph of G on vertex set V (GW ) = W with edge set E(GW ) =
{e 2 E(G) : e ⇢ W}.

• For a subset W ⇢ V (G), let G \W be the induced subgraph on
V (G) \W . If W = {w}, then we write G \w instead of G \ {w}.

• For v 2 V (G), let NG(v) = {u 2 V (G) : {u, v} 2 E(G)}, and for
any subset W ⇢ V (G), let NG(W ) =

S
w2W

NG(w).
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• For an independent set T ⇢ V (G), we define a bipartite graph

induced by T as the graph on vertex set T [NG(T ) with edge set�
{v, w} 2 E(G) : v 2 T, w 2 NG(T )

 
.

3.4 Edge polytopes and edge rings

In this section, we review the concepts of edge rings, toric ideals of
graphs, and some basic theorems related to them.

Let G be a graph on the vertex set [d] with edge set E(G) =
{e1, . . . , em}. Given e = {u, v} 2 E(G), let ⇢(e) = eu + ev, where
e1, . . . , ed 2 Rd are the unit vectors of Rd. Let AG = {⇢(e) : e 2 E(G)}.
The convex hull of AG, denoted by PG is called the edge polytope of G.
It is well known from [18, Lemma 5.2], that the set of vertices of PG

coincides with PG \ Zd and PG \ Zd = AG.
We define a polynomial ring R = k[t1, . . . , td] in d variables and

another one K = k[x1, . . . , xm] in m variables, where k is a field. Let
⇡ : K ! R be the ring homomorphism defined by ⇡(xi) = tei for
i = 1, . . . ,m, where te := tutv for any edge e = {u, v} 2 E(G). The
image Im(⇡), which is a subalgebra of R, is called the edge ring of G,
and the kernel Ker(⇡), an ideal of K, is called the toric ideal of G.
We denote the edge ring of G by k[G] and the toric ideal of G by IG.
Clearly, we have the ring isomorphism k[G] ⇠= K/IG.

We can regard k[G] as a semigroup algebra of an a�ne semigroup
Z�0AG. Stated otherwise, the edge ring k[G] is the toric ring of the
edge polytope PG. In particular, the structure of the cone Q�0AG plays
a crucial role in the study of k[G]. Later, we’ll examine it in further
detail. It is known that dimPG = d� 1 if G is not bipartite (see, [34,
Proposition 1.3]) and thus the edge ring k[G] is d-dimensional if G is
not bipartite.

Next, from [18, Section 5.3], we shall recall how to describe the
generators of the toric ideal of a graph. Let G be a graph. Given an
even closed walk � = (ei1 , . . . , ei2r), we associate a binomial

f� = f
(+)
� � f

(�)
� ,

where

f
(+)
� =

rY

k=1

xi2k�1
and f

(�)
� =

rY

k=1

xi2k
.

We say that an even closed walk � is primitive if there is no even
closed walk �0 of G with f�0 6= f� such that f (+)

�0 divides f (+)
� and f

(�)
�0

divides f (�)
� .
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Lemma 3.4.1 ([18, Lemma 5.10]). The toric ideal IG is generated by

the binomials f� for all primitive even closed walks �.

Lemma 3.4.2 ([18, Lemma 5.11]). An even closed walk � of G is

primitive if it is one the following:

(i) � is an even cycle of G;

(ii) � = (C,C 0), where C and C
0
are odd cycles of G with exactly one

common vertex;

(iii) � = (C,�, C 0
,�0), where C and C

0
are disjoint odd cycles of G

with V (C) \ V (C 0) = ; and � and �0
are both walks of G such

that � connects a vertex u 2 C to a vertex v 2 C
0
and �0

connects

v 2 C
0
to u 2 C. Moreover, no other vertices of V (C) \ V (C 0),

other than u and v, appear in any of the edges in � and �0
.

Let SG := Z�0AG. We have seen that the edge ring k[G] is the a�ne
semigroup ring of SG. We may assume that Q�0AG, the convex rational
polyhedral cone spanned by SG in Qd, is of dimension d and let F(G)
be the set of all facets of Q�0AG. Let us look at the facets of Q�0AG.
For that, we recollect some important definitions and theorems from
[34].

Definition 3.4.3. LetG be a finite connected simple graph with vertex
set V (G). A vertex v 2 V (G) is said to be regular in G if every
connected component of G\v contains at least one odd cycle. A non-
empty set T ⇢ V (G) is said to be fundamental in G if all the conditions
below are satisfied by T :

1. T is an independent set;

2. the bipartite graph induced by T is connected;

3. either T [NG(T ) = V (G), or each of the connected components
of the graph G \ (T [NG(T )) contains an odd cycle.

Facets of Q�0AG are given by the intersection of the half-spaces
defined by the supporting hyperplanes of Q�0AG, and were investigated
by Ohsugi and Hibi [34].

Theorem 3.4.4 (From [34, Theorem 1.7 (a)]). Let G be a finite con-

nected simple graph on the vertex set [d], containing at least one odd

cycle. Then, all the supporting hyperplanes of Q�0AG are as follows:

1. Hv =
�
(x1, . . . , xd) 2 Rd : xv = 0

 
, where v is a regular vertex in

G.
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2. HT =
�
(x1, . . . , xd) 2 Rd :

P
i2T

xi =
P

j2NG(T ) xj

 
, where T is a

fundamental set in G.

Note that, we denote Fv and FT as the facets of Q�0AG correspond-
ing to the hyperplanes Hv and HT respectively.

Let C and C
0 be minimal cycles of G with V (C) \ V (C 0) = ;,

if we have u 2 V (C) and v 2 V (C 0), then e = {u, v} 2 E(G) is
called a bridge between C and C

0. A pair of odd cycles (C,C 0) is
called exceptional if C and C

0 are minimal odd cycles in G such that
V (C) \ V (C 0) = ; and there exists no bridge connecting them.

We say that G satisfies the odd cycle condition if for any pair of odd
cycles (C,C 0) in G, either V (C) \ V (C 0) 6= ; or there exists a bridge
between C and C

0. In other words, the graph G has no exceptional
pairs.

The normality of a�ne semigroup rings were studied in Section 2.2.
The edge ring k[G] being the a�ne semigroup ring of SG, let us recall
the condition for the normality of k[G] from Section 2.2. We have,
SG = Q�0AG \ ZAG. For any facet F 2 F(G), we define

SF := SG�SG\F = {x 2 ZAG : 9 y 2 SG\F such that x+y 2 SG},

and S
0

G
:=
T

F2F(G) SF . As seen in Section 2.2, the edge ring k[G] is
normal if and only if

Z�0AG = Q�0AG \ ZAG (3.1)

holds. That is, k[G] is normal when SG = SG. On the normality of
k[G], the following combinatorial criterion is known.

Theorem 3.4.5 (From [34, Theorem 2.2] and [41, Theorem 1.1]). A

connected graph G satisfies (3.1) if and only if G satisfies the odd cycle

condition.

From all of the above observations, we have:

SG = SG () k[G] is normal () G satisfies odd cycle condition.

With reference to the work of Ohsugi and Hibi [34, Theorem 2.2],
normalization of the edge ring k[G] can be expressed as

SG = SG + Z�0

�
EC + EC0 : (C,C 0) is exceptional in G

 
,

where for any odd cycle C, we define EC :=
P

i2V (C) ei. We observe
that,

2
�
EC + EC0

�
=

 
X

e2E(C)

⇢(e) +
X

e02E(C0)

⇢(e0)

!
2 SG.
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Given that the edge ring k[G] is an a�ne semigroup ring, it is
known from [26, Theorem 1] that, if k[G] is normal then k[G] is Cohen–
Macaulay. Remark that k[G] is a normal Cohen–Macaulay homoge-
neous domain if G satisfies the odd cycle condition.

By [38, Theorem 6.3], SG = S
0

G
corresponds to Serre’s condition

(S2). In general, SG ⇢ S
0

G
⇢ SG. Therefore, in order to prove that

the edge ring k[G] satisfies (S2)-condition, it is enough to show that
for any ↵ 2 SG\SG, we have ↵ /2 S

0

G
. This implies that S 0

G
⇢ SG and

therefore SG = S
0

G
.

In [22], Higashitani and Kimura have provided the necessary con-
dition that a graph G has to hold in order to satisfy (S2)-condition.

Theorem 3.4.6 (From [22, Theorem 4.1]). Let G be a finite simple

connected graph. Suppose that, there exists an exceptional pair (C,C 0)
satisfying the following two conditions:

1. for each regular vertex v 2 V (G)\[V (C) [ V (C 0)] in G, both C

and C
0
belong to the same connected component of the graph G\v;

2. for each fundamental set T 2 G with [V (C) [ V (C 0)] \ [T [
NG(T )] = ;, both C and C

0
belong to the same connected compo-

nent of GV (G)\(T[NG(T )).

Then, EC + EC0 2 S
0

G
. In particular, SG 6= S

0

G
.

Note that Serre’s condition (S2) is a necessary condition for k[G]
to be Cohen–Macaulay. Later in this thesis, we will investigate some
family of graphs with non-normal edge rings that satisfy (S2)-condition.
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Part II

On h-vectors of normal edge
rings
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Chapter 4

The h-vectors of the edge
rings of a special family of
graphs

In this chapter, we compute the h-vector of a special family of
graphs, by using the technique of initial ideals and the associated sim-
plicial complex. The contents of this chapter are entirely contained in
the author’s paper [24] with A. Higashitani.

4.1 Graph Gn and the main theorem

Let n � 2 be an integer. We introduce a connected non-bipartite
graph Gn as shown in Figure 4.1. Namely, Gn consists of n copies of
3-cycles where all the copies share a single vertex in common, say w.
Clearly, Gn satisfies the odd cycle condition (see Section 3.4). There-
fore, we know that the edge ring k[Gn] is a normal Cohen–Macaulay
homogeneous domain.

zn

u(1)nxn

yn

w

u(2)n

u(2)1

u(1)1

x2

u(1)2

y2

u(2)2
z2

y1

z1
x1

Figure 4.1: The graph Gn
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Our main result of this chapter is the following:

Theorem 4.1.1. The h-polynomial of k[Gn] is as follows:

h(k[Gn]; t) =

✓
n

0

◆
+

✓✓
n

1

◆
� 1

◆
t+

✓
n

2

◆
t
2+ · · ·+

✓
n

n

◆
t
n = (1+t)n�t.

Moreover, k[Gn] is almost Gorenstein but not Gorenstein if and only if

n � 3.

On almost Gorensteinness of edge rings, known examples of almost
Gorenstein non-Gorenstein edge rings are presumably rare. Our main
result, Theorem 4.1.1 gives a new family of graphs whose edge rings
are almost Gorenstein but not Gorenstein.

4.2 Fundamental properties of k[Gn]

Let us now concentrate on our graph Gn in more detail. We identify
the edges of Gn with the variables of the polynomial ringK, as depicted
in Figure 4.1. Namely, we consider

K = k[x1, y1, z1, . . . , xn, yn, zn]

and we regard IGn as an ideal of K.
For Gn, we see that, from Lemma 3.4.2, every primitive even closed

walk consists of two 3-cycles with exactly one common vertex, and is
given by

(xi, zi, yi, xj, zj, yj); 1  i < j  n.

Hence, the toric ideal IGn is generated by the binomials:

xiyizj � zixjyj; 1  i < j  n. (4.1)

Let<lex be the graded lexicographic order onK induced by the ordering
of the variables

x1 <lex y1 <lex z1 <lex · · · <lex xn <lex yn <lex zn. (4.2)

Lemma 4.2.1. The binomials in (4.1) form a Gröbner basis of IGn

with respect to the monomial order <lex.

Proof. The result follows from the straightforward application of Buch-
berger’s criterion to the set of generators (4.1) of IGn .

Let f = xiyizj�zixjyj and g = xpypzq�zpxqyq be two generators. If
i 6= p and j 6= q, then the leading terms of f and g are relatively prime
and thus the S-polynomial S(f, g) will reduce to 0 by [18, Lemma 1.27].
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Suppose i = p. Then

S(f, g) =
lcm(in<lex

(f), in<lex
(g))

in<lex
(f)

f � lcm(in<lex
(f), in<lex

(g))

in<lex
(g)

g

= zqf � zjg

= zq(xiyizj � zixjyj)� zj(xiyizq � zixqyq)

= zi(xqyqzj � zqxjyj).

Note that, up to sign, xqyqzj�zqxjyj is a generator of IGn and therefore
S(f, g) will reduce to 0. The j = q case is similar.

Corollary 4.2.2. The initial ideal in<lex

�
IGn

�
of IGn with respect to

the monomial order <lex is generated by the square-free monomials

xiyizj; 1  i < j  n. (4.3)

By this corollary, since the given monomial ideal is square-free, we
can associate a simplicial complex whose Stanley–Reisner ideal coin-
cides with the initial ideal generated by (4.3).

4.3 Computation of the h-polynomial of k[Gn]

Let �n be the simplicial complex whose Stanley–Reisner ideal coin-
cides with the initial ideal of the toric ideal IGn with respect to <lex.
Let F(�n) be the set of all facets of �n. By definition, any facet of
our simplicial complex �n can be expressed as the maximal set that
does not contain the triplet {xi, yi, zj}; 1  i < j  n. Since xn, yn

and z1 will be contained in all the facets, without loss of generality,
we write the facets without indicating these elements. Therefore, any
F 2 F(�n) can be expressed as:

F =
[

i2I
1in�1

{xi} [
[

j2J

1jn�1

{yj} [
[

k2K

2kn

{zk},

which is maximal and does not contain the triplet {xi, yi, zj}; 1  i <

j  n. Let us try to get a more concrete representation for the facets
in F(�n). Consider any F 2 F(�n).
Case 1:

Let i 2 I \ J . This implies zi+1, . . . , zn /2 F , since F does not
contain the triplet {xi, yi, zj}; 1  i < j  n.

Case 2:
Let us consider i 2 I. If there exists some k with i < k  n such

that zk 2 F , then we have yi /2 F, that is, i 2 I\J.
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If zk /2 F for all k with i < k  n, then by the maximality of F , we
have yi 2 F and i 2 I \ J .
Case 3:

Let us consider j 2 J . If there exists some k with j < k  n such
that zk 2 F , then we have xj /2 F, that is, j 2 J\I.

If zk /2 F for all k with j < k  n, then by the maximality of the
set F , we have xj 2 F and j 2 I \ J .

According to our observations from the three situations above, any
facet in F(�n) is of the form:

{w1, . . . , wj�1} [ {xj, yj, . . . , xn�1, yn�1} [ {z2, . . . , zj}, (4.4)

where wi 2 {xi, yi} and j = 1, . . . , n.

Remark 4.3.1. We will use the method of McMullen characterization
of h-vectors (see, Section 2.4.1) to compute the h-vector of the shellable
simplicial complex �n.

Let us consider an ordering of the facets F
1
1 , . . . , F

n

tn
of �n. From

the structure of each facet as shown in (4.4), we have tn =
P

n�1
i=0 2i

and |F n

i
| = 2n � 2 for all 1  i  tn. Let us consider each facet as a

(2n�2)-tuple of x1, y1, x2, y2, z2, . . . , xn�1, yn�1, zn�1, zn. Lexicographic
order <L in F(�n) is defined by

(a1, . . . , a2n�2) <L (b1, . . . , b2n�2)

if and only if either ai 6= bi for some i and ai <lex bi with respect to
(4.2). Now, we consider an ordering of the facets F

n

1 , . . . , F
n

tn
of �n

such that they are arranged in lexicographically increasing order of
their corresponding (2n� 2)-tuple.

Let r
n

i
be the number of maximal proper faces of F

n

i
that gen-

erates the i
th intersection subcomplex for 2  i  tn. We define

�n = {rn2 , . . . , rntn} with n � 2 as a multi-set.

Lemma 4.3.2. For each n � 2, we have

�n+1 = {1, �n, 2, �n + 1},

where �n + 1 = {↵ + 1 : ↵ 2 �n}.

By induction on n, and using Lemma 4.3.2, we can obtain the h-
vector of �n. Our goal is to show that

h(�n) =

 ✓
n

0

◆
,

✓
n

1

◆
� 1,

✓
n

2

◆
,

✓
n

3

◆
, . . . ,

✓
n

n

◆!
for any n � 2.

34



For n = 2, since F(�2) = {{x1, y1}, {x1, z2}, {y1, z2}}, we obtain

the h-vector as (1, 1, 1) which is equal to our formula
⇣�

2
0

�
,
�
2
1

�
�1,

�
2
2

�⌘
.

By the hypothesis of induction, assume that our formula holds for

an arbitrary n. Therefore, h(�n) =
⇣�

n

0

�
,
�
n

1

�
� 1,

�
n

2

�
,
�
n

3

�
, . . . ,

�
n

n

�⌘
.

Let h(�n+1) = (hn+1
0 , h

n+1
1 , . . . , h

n+1
n+1). By Lemma 4.3.2, we see the

following:

h
n+1
0 = 1 =

✓
n+ 1

0

◆
,

h
n+1
1 = 1 + h

n

1 = 1 +

✓
n

1

◆
� 1 =

✓
n+ 1

1

◆
� 1,

h
n+1
2 = 1 + h

n

2 + h
n

1 = 1 +

✓
n

2

◆
+

✓
n

1

◆
� 1 =

✓
n+ 1

2

◆
,

h
n+1
i

= h
n

i
+ h

n

i�1 =

✓
n

i

◆
+

✓
n

i� 1

◆
=

✓
n+ 1

i

◆
for 2  i  n.

Hence by induction, the h-vector associated with simplicial complex
�n is

 ✓
n

0

◆
,

✓
n

1

◆
� 1,

✓
n

2

◆
,

✓
n

3

◆
, . . . ,

✓
n

n

◆!
for any n � 2.

Since the Hilbert series of K/I coincides with that of K/ in<lex
(I) in

general (see, Proposition 2.3.5), we conclude the above as the desired
h-vector of k[Gn].

The remaining section is devoted to illustrating that our ordering
of the facets gives a shelling of �n and establishing Lemma 4.3.2.

For each n � 2, we observe that r
n

2 = 1, tn = |F(�n)| =
P

n�1
i=0 2i

and we have tn+1 = 1 + 2tn.
As per our ordering, the facets are ordered in such a manner that

the facets consisting of x1 comes first and after the
�
tn+1
2

�th
stage, the

pattern of facet ordering repeats in the exact same manner as that
of F n

2 , . . . , F
n
tn+1

2

, and consists of same elements except for x1 replaced

with y1. More precisely, we have F
n
tn+1

2
+i

= (F n

i+1 \ {x1}) [ {y1} for

1  i  tn�1
2 . Therefore, the corresponding intersection subcomplex

for each k
th shelling step, tn+3

2  k  tn, will definitely contain the
maximal face

F
n

i+1 \ {x1} for any 1  i  tn � 1

2
.
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Moreover, when we look at the first tn+1
2 facets, we observe that each

of the facets di↵ers from the preceding one by just an element. Thus
with these observations, we claim that F n

1 , . . . , F
n

tn
is a shelling of �n.

Since the ordering pattern repeats after the
�
tn+1
2

�th
facet, for 1 

i  tn�1
2 , we see that rn

i+1 maximal proper faces will always be contained
in the intersection subcomplex for each k

th shelling step, tn+1
2 + i 

k  tn and the intersection subcomplex also contains the maximal face
F

n

i+1 \ {x1}. Therefore, we have

r
n
tn+1

2
+i

= 1 + r
n

i+1 for any 1  i  tn � 1

2
.

Hence, we can express �n as

�n = {1, rn3 , . . . , rntn+1

2

, 2, rn3 + 1, . . . , rntn+1

2

+ 1}.

The set F(�n) consists of (4.4). Namely, each facet F n

k
, 1  k  tn,

can be denoted as:
j�1[

i=1

{wi} [
n�1[

i=j

{xi, yi} [
j[

i=2

{zi}, j = 1, . . . , n.

For each 1  j  n, we have 2j�1 number of facets corresponding to
it. We can show that there exists a one-to-one correspondence between
the facets F n

k
and F

n+1
k+1 for all n � 2 and 2  k  tn. The one-to-one

correspondence is given by

� :
n
F

n

k
: 2  k  tn

o
�!

n
F

n+1
k0 : 3  k

0  tn+1 + 1

2

o

�(F n

k
) = F

n+1
k+1 , 2  k  tn,

j�1[

i=1

{wi}[
n�1[

i=j

{xi, yi}[
j[

i=2

{zi} 7! {x1}[
j�1[

i=1

{wi+1}[
n�1[

i=j

{xi+1, yi+1}[
j+1[

i=2

{zi},

with j = 1, . . . , n.
In order to prove this one-to-one correspondence, we show that any

facet in the set,
n
F

n+1
k0 : 3  k

0  tn+1+1
2

o
will be of the form

{x1} [
j�1[

i=1

{wi+1} [
n�1[

i=j

{xi+1, yi+1} [
j+1[

i=2

{zi},

corresponding to the facet
j�1S
i=1

{wi} [
n�1S
i=j

{xi, yi} [
jS

i=2
{zi} (2  j  n)

in the set
n
F

n

k
: 2  k  tn

o
.
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According to our shelling, any facet of the simplicial complex �n+1

containing the element {x1} belongs to
n
F

n+1
k

: 1  k  tn+1+1
2

o
with

1  j  n+ 1. Therefore, when we consider some F
n+1
k0 2

n
F

n+1
k

: 3 

k  tn+1+1
2

o
, it can be expressed as:

F
n+1
k0 = {x1} [

j
0
�1[

i=2

{wi} [
n[

i=j0

{xi, yi} [
j
0[

i=2

{zi}, 3  j
0  n+ 1.

We can write it as

F
n+1
k0 = {x1} [

j
0
�1[

i=2

{wi} [
n[

i=j0

{xi, yi} [
j
0[

i=2

{zi}

= {x1} [
j
0
�2[

i=1

{wi+1} [
n�1[

i=j0�1

{xi+1, yi+1} [
j
0[

i=2

{zi};

for 3  j
0  n+ 1.

By expressing it in terms of 2  j  n, we have

F
n+1
k0 = {x1} [

j�1[

i=1

{wi+1} [
n�1[

i=j

{xi+1, yi+1} [
j+1[

i=2

{zi} for 2  j  n.

Hence, we have the one-to-one correspondence. This one-to-one
correspondence guarantees that rn+1

i+1 = r
n

i
for 2  i  tn.

We also observe that

tn+1 = 1 + 2tn =) tn =
tn+1 � 1

2
=) tn + 1 =

tn+1 + 1

2
.

From all the above observations, we have

�n+1 = {1, rn+1
3 , . . . , r

n+1
tn+1, 2, r

n+1
3 + 1, . . . , rn+1

tn+1 + 1}
=) �n+1 = {1, rn2 , . . . , rntn , 2, r

n

2 + 1, . . . , rn
tn
+ 1}

=) �n+1 = {1, �n, 2, �n + 1}.

4.4 On the almost Gorensteinness of k[Gn]

In this section, we are in the process of obtaining a theoretical proof
to state that k[Gn] is almost Gorenstein for all n � 2. Let us assume
that R is a domain. Then there is an ideal IR which is isomorphic to
a canonical module of R as an R-module.
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Let us consider R = k[Gn]. Note that Gn satisfies the odd cycle
condition, so k[Gn] is normal. By the first part of Theorem 4.1.1, we
can compute ẽ(R) as follows:

n�1X

j=0

⇢✓✓
n

n

◆
+ · · ·+

✓
n

n� j

◆◆
�
✓✓

n

0

◆
+
�✓n

1

◆
� 1
�
+ · · ·+

✓
n

j

◆◆�

=
n�2X

j=1

1 = n� 2.

Hence by Proposition 2.1.1, it is enough to show that r(R) � n�1.
Furthermore, r(R) is equal to the number of elements of a minimal
system of generators of IR, which is the relative interior of Q�0AGn \
ZAGn (see [8, Theorem 6.3.5]). Let C = Q�0AGn ⇢ R2n+1. In what
follows, it su�ces to show that we need at least (n� 1) elements as a
minimal system of generators for the relative interior of the cone C.

Let us denote the vertices of Gn as follows:

V (Gn) = {u(1)
i
, u

(2)
i

: i = 1, . . . , n} [ {w} and we let

xi = {w, u(1)
i
}, yi = {w, u(2)

i
} and zi = {u(1)

i
, u

(2)
i
} for i = 1, . . . , n.

We use the following notation for each entry of R2n+1, that is, R2n+1 is
equal to

{c1,1e1,1 + · · ·+ c1,ne1,n + c2,1e2,1 + · · ·+ c2,ne2,n + c
0e0 : c1,i, c2,i, c

0 2 R},

where e1,i, e2,i, e0 are the unit vectors of R2n+1, each e1,i (resp. e2,i)

corresponds to u
(1)
i

(resp. u(2)
i
) and e0 corresponds to w.

For j = 1, . . . , n� 1, let

↵j :=
nX

i=1

(e1,i + e2,i) + 2je0.

In what follows, we verify that ↵j 2 C� \ Z2n+1, where C� denotes the
relative interior of C, and they should be included in a minimal system
of generators of IR.
The first step: We check that ↵j 2 C�. Here, we see the following:

• Each of u(1)
i
s and u

(2)
i
s is a regular vertex of Gn, while w is not.

• A subset T of V (Gn) is fundamental if and only if T = {w} or

T = {u1, . . . , un}, where ui 2 {u(1)
i
, u

(2)
i
} for each i.
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It follows from Theorem 3.4.4 that, for a graph G, the cone C = Q�0AG

consists of the elements (xv)v2V (G) 2 Qd satisfying all the following
inequalities:

xu � 0 for any regular vertex u;
X

v2NG(T )

xv �
X

u2T

xu for any fundamental set T. (4.5)

Hence, it follows from (4.5) that
P

n

i=1(c1,ie1,i + c2,ie2,i) + c
0e0 2 R2n+1,

belongs to C if and only if the following inequalities are satisfied:

c1,i � 0 and c2,i � 0 for any i = 1, . . . , n,
nX

i=1

(c1,i + c2,i) � c
0
,

X

i2U

ci,1 +
X

i2[n]\U

ci,2 + c
0 �

X

i2[n]\U

ci,1 +
X

i2U

ci,2 for any U ⇢ [n].

(4.6)

It is straightforward to check that ↵j satisfies these inequalities with
strict inequalities for each j. This implies that ↵j 2 C�.
The second step: We prove that ↵j cannot be written as a sum of
an element in C� \ Z2n+1 and an element in C \ Z2n+1 \ {0}.

Suppose that ↵j = ↵
0 + � for some ↵

0 2 C� \ Z2n+1 and � 2 C \
Z2n+1 \ {0}. Let

↵
0 =

nX

i=1

a
0

1,ie1,i+
nX

i=1

a
0

2,ie2,i+a
0e0 and � =

nX

i=1

b1,ie1,i+
nX

i=1

b2,ie2,i+be0.

Then we see that a
0

1,i � 1 and a
0

2,i � 1 for 1  i  n (see (4.6)).
Hence, b1,i  0 and b2,i  0. On the other hand, b1,i � 0 and b2,i � 0
should be also satisfied, so we obtain that � = be0. Since � 6= 0, by the
second inequality of (4.6), we have b < 0, a contradiction to the third
inequality.
The third step: By the first and second steps, we see that ↵1, . . . ,↵n�1

are required for a minimal system of generators of IR. This shows that
r(R) � n� 1, as required.
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Chapter 5

The h-vectors of edge rings
of odd cycle compositions

This chapter focuses on the explicit computation of the h-vectors of
a certain family of graphs that satisfy the odd cycle condition, general-
izing a result of Chapter 4. Furthermore, we obtain a characterization
of the graphs in this family whose edge rings are almost Gorenstein.
This chapter and all of its contents are part of the author’s joint work
[4] with K. Bhaskara and A. Higashitani.

5.1 The graph gr1,...,rm and the main results

The h-polynomials of a certain family of non-bipartite graphs Gn,
consisting of 3-cycles that share a single common vertex (see Figure 5.1)
were determined in Chapter 4. For this family, we have seen that the
edge rings k[Gn] are almost Gorenstein. As a step towards generalizing
this result, in this chapter, we first compute the h-polynomials of a
related family of graphs, containing those studied in Chapter 4.

u

u(1)1

u(1)2

x1,3

x1,2

x1,1

u(2)1

u(2)2

x2,1

x2,2

x2,3

u(1)n

u(2)n

xn,1

xn,2

xn,3

Figure 5.1: The graph Gn := gn,0,...,0
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Let n be a positive integer. We consider a non-bipartite graph
gr1,...,rm , consisting of n odd cycles that share a single common vertex
(see Figure 5.2). To be precise, for an integer m � 1 and each j 2
[m] = {1, . . . ,m}, we define gr1,...,rm to be the graph consisting of rj
cycles of length 2j + 1, such that all n =

P
m

j=1 rj odd cycles share a
single common vertex.

u

. . .

. . .

u(1)
i u(j�1)

i

u(j)
i

u(2ki)
i

xi,1

xi,j

xi,2ki+1

Ci

Cn

C1

Figure 5.2: The graph gr1,...,rm with n =
mP
j=1

rj

Theorem 5.1.1. The h-polynomial of k[gr1,...,rm ] is given by

h(k[gr1,...,rm ]; t) =
mY

j=1

(1 + · · ·+ t
j)rj � t

mY

j=1

(1 + · · ·+ t
j�1)rj . (5.1)

Using Theorem 5.1.1, we are then able to characterize the graphs
gr1,...,rm such that k[gr1,...,rm ] is almost Gorenstein.

Theorem 5.1.2. For the graph gr1,...,rm with n =
P

m

j=1 rj and N =P
m

j=1 jrj, the edge ring k[gr1,...,rm ] is almost Gorenstein if and only if

either

• n = 1, 2; or

• n � 3 and every cycle in gr1,...,rm is a 3-cycle, that is, N = n.

5.2 On the edge ring k[gr1,...,rm]

In this section, we concentrate on our graph gr1,...,rm and study some
of the fundamental properties of its associated edge ring k[gr1,...,rm ].
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Note that from here on, we will write gn := gr1,...,rm and k[gn] :=
k[gr1,...,rm ], where n =

P
m

p=1 rp. For each 1  i  n, let Ci be the i
th

cycle in gn. The length of Ci is 2ki + 1, where ki 2 [m].
Since all the odd cycles in gn share a common vertex, our graph gn

satisfies the odd cycle condition, and therefore, the edge ring k[gn] is a
normal Cohen–Macaulay homogeneous domain.

The vertex set of gn is {u} [ {u(j)
i

: 1  i  n, 1  j  2ki} and we
label the edges of gn as xi,j such that

• for 1  i  n, xi,1 = {u, u(1)
i
} and xi,2ki+1 = {u, u(2ki)

i
}, and

• for 1  i  n and 2  j  2ki, xi,j = {u(j�1)
i

, u
(j)
i
}. (For

illustration, see Figure 5.2.)

Let K be the polynomial ring k[xi,j : 1  i  n, 1  j  2ki + 1]
where ki 2 [m], and we regard Ign as an ideal of K.

By Lemma 3.4.2, every primitive even closed walk of the graph gn
is given by

(xi,1, xi,2, . . . xi,2ki+1, xj,1, xj,2, . . . xj,2kj+1),

where 1  i < j  n, and ki, kj 2 [m]. Therefore, we can observe that
the toric ideal Ign is generated by the binomials:

kiY

s=0

xi,2s+1

kjY

t=1

xj,2t �
kiY

s=1

xi,2s

kjY

t=0

xj,2t+1; 1  i < j  n. (5.2)

Let � be the graded lexicographic order on K induced by the or-
dering of the variables

x1,1 � x1,2 � · · · � x1,2k1+1 � · · · � xn,1 � xn,2 � · · · � xn,2kn+1.

(5.3)

Lemma 5.2.1. The binomials in (5.2) form a Gröbner basis of Ign

with respect to the monomial order �.

Proof. Using the application of Buchberger’s criterion to the set of
generators (5.2) of Ign .

Let

f =
kiY

s=0

xi,2s+1

kjY

t=1

xj,2t �
kiY

s=1

xi,2s

kjY

t=0

xj,2t+1

and

g =

kpY

s=0

xp,2s+1

kqY

t=1

xq,2t �
kpY

s=1

xp,2s

kqY

t=0

xq,2t+1
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be two generators. If i 6= p and j 6= q, then the leading terms of f and
g are relatively prime and the S-polynomial S(f, g) reduces to 0.
Let i = p. Then

S(f, g) =
lcm(in�(f), in�(g))

in�(f)
f � lcm(in�(f), in�(g))

in�(g)
g

= f

kqY

t=1

xq,2t � g

kjY

t=1

xj,2t

=
kiY

s=1

xi,2s

✓ kjY

t=1

xj,2t

kqY

t=0

xq,2t+1 �
kjY

t=0

xj,2t+1

kqY

t=1

xq,2t

◆
.

Up to sign,
kjQ
t=1

xj,2t

kqQ
t=0

xq,2t+1 �
kjQ
t=0

xj,2t+1

kqQ
t=1

xq,2t is a generator of Ign

and thus S(f, g) will reduce to 0. Similarly, we can prove this for the
j = q case.

Corollary 5.2.2. The initial ideal in�(Ign) of Ign with respect to the

monomial order � is generated by the square-free monomials

kiY

s=0

xi,2s+1

kjY

t=1

xj,2t; 1  i < j  n; ki, kj 2 [m]. (5.4)

Since the given monomial ideal is square-free, we can associate a
simplicial complex whose Stanley–Reisner ideal coincides with the ini-
tial ideal generated by (5.4).

5.3 The h-polynomial of k[gr1,...,rm]

In this section, we will explore specific constructions and key findings
necessary to prove Theorem 5.1.1. Upon conclusion, we will utilize
these insights to establish Theorem 5.1.1.

5.3.1 Stanley–Reisner complex �gn

Let �gn be the simplicial complex whose Stanley–Reisner ideal co-
incides with in�(Ign). Let F(�gn) be the set of all facets of �gn .

For the graph gn, let

Oi := {xi,1, xi,3, . . . , xi,2ki+1}; Ei := {xi,2, xi,4, . . . , xi,2ki},

where 1  i  n and corresponding ki 2 [m]. Therefore by definition,
any facet of �gn can be written as a maximal set that does not contain
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the set Oi [ Ej; 1  i < j  n. Note that On [ E1 ⇢ F for all
F 2 F(�gn). Hence, without loss of generality, let us express the
facets without indicating any elements of On [ E1.

Now, let us get a more concrete representation for the facets in
F(�gn). Note that if our graph gn consists of n copies of 3-cycles, then
it is none other than the graph Gn illustrated in Figure 5.1. This family
of graphs has been thoroughly examined in the previous chapter, and
it was proved that any facet in this case is of the form

{z1, . . . , zj�1} [ {xj,1, xj,3, . . . , xn�1,1, xn�1,3} [ {x2,2, . . . , xj,2}, (5.5)

where zi 2 {xi,1, xi,3} and j = 1, . . . , n.
Using similar arguments from Chapter 4 concerning the explicit

form of the facets, we can get a concrete representation for the facets
of �gn . Let F 2 F(�gn). We have Op \F 6= ;, for any 1  p  n, and
the following cases.
Case 1: For all q with 2  q  p, by the definition of facets, we have
Op [ Eq ⇢ F .
Case 2: If there exists some q with p < q  n such that Eq ⇢ F , then
by the definition of facets, Op 6⇢ F . In particular, by maximality, F
contains all but one element of Op.
Case 3: If Eq 6⇢ F for all q with p < q  n, then by the maximality
of F , every element of Eq excluding one will belong to F and we have
Op ⇢ F .

Therefore, any facet F 2 F(�gn) is of the form:

j�1[

i=1

⇣i [
j[

i=2

Ei [
n�1[

i=j

Oi [
n[

i=j+1

!i, (5.6)

where j = 1, . . . , n, such that ⇣i 2
�
Oi

ki

�
, for all ki � 1 (⇣i is a set

containing any ki elements of Oi), and !i 2
�

Ei

ki�1

�
for all ki � 2. By

default, let !i = ; for any ki = 1.

Remark 5.3.1. Let us express the facets in (5.5) using the generalized
expression (5.6). For the particular case of graph gn in Figure 5.1,
ki = 1, Oi = {xi,1, xi,3}, Ei = {xi,2}, and !i = ;, for all 1  i 
n . Therefore,

S
n

i=j+1 !i will not occur in the facet expression. In

addition to this, {z1, . . . , zj�1} where zi 2 Oi, corresponds to
S

j�1
i=1 ⇣i,

{xj,1, xj,3, . . . , xn�1,1, xn�1,3} =
S

n�1
i=j

Oi, and {x2,2, . . . , xj,2} =
S

j

i=2 Ei.
Therefore, for the family of graphs gn with n copies of 3-cycles, any
facet of �gn is of the form:

j�1[

i=1

⇣i [
j[

i=2

Ei [
n�1[

i=j

Oi, where j = 1, . . . , n.
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Example 5.3.2. Let us consider the graph g3 := g1,1,1 in Figure 5.3
with k1 = 3, k2 = 2, k3 = 1. For this graph, the initial ideal in�(Ig3) is

in�(Ig3) = hx1,1x1,3x1,5x1,7x2,2x2,4 , x1,1x1,3x1,5x1,7x3,2 , x2,1x2,3x2,5x3,2i.

x1,1
x1,2

x1,4

x1,3

x1,5

x1,6

x1,7

x2,1

x2,2
x2,3

x2,4

x2,5

x3,1

x3,2

x3,3

Figure 5.3: The graph g1,1,1 with k1 = 3, k2 = 2, k3 = 1

Note that since k3 = 1, !3 = ; in (5.6) for the graph g3. As per (5.6),
the facets of �g3 are as follows:

j = 1 {x1,1, x1,3, x1,5, x1,7}| {z }
O1

[ {x2,1, x2,3, x2,5}| {z }
O2

[
✓
{x2,2, x2,4}

1

◆

| {z }
!2

j = 2

✓
O1

3

◆

| {z }
⇣1

[ {x2,1, x2,3, x2,5}| {z }
O2

[ {x2,2, x2,4}| {z }
E2

j = 3

✓
O1

3

◆

| {z }
⇣1

[
✓
O2

2

◆

| {z }
⇣2

[ {x2,2, x2,4}| {z }
E2

[ {x3,2}| {z }
E3

Remark 5.3.3. The Stanley–Reisner complex �gn is shellable and a
generalized version of the shelling order described in Chapter 4 can
be used to get a shelling. However, since shellability is not used in
the proofs of the main theorems of this chapter, we omit the proof of
shellability.

5.3.2 Construction of the graph gn for the proof

We will now examine a particular way of constructing our graph gn,
which contributes to the proof of Theorem 5.1.1.

Consider a graph g0
n
with n odd cycles C 0

i
such that length of each

C
0

i
is 2k0

i
+ 1, where 1  i  n and k

0

i
2 [m]. We construct the graph
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gn from g0
n
by extending the odd cycle C

0

1 of g0
n
by two edges (x and

y) while leaving the other odd cycles unchanged. For illustration, see
Figure 5.4.

. . .x1,1

x1,2k0
1
+1

C 0
2

C 0
n

C 0
1

. . .x1,1

x1,2k0
1
+1 y

x

C 0
2

C 0
n

C1

 

Figure 5.4: Left: Graph g0n. Right: Graph gn

For the graph g0
n
, we denote O0

i
:= {xi,1, xi,3, . . . , xi,2k0i+1}, and E 0

i
:=

{xi,2, xi,4, . . . , xi,2k0i
} for all 1  i  n, where k

0

i
2 [m].We define ⇣

0

i
and

!
0

i
analogously. Recall that for all 1  i  n, the cycles Ci in gn are of

length 2ki + 1, where ki 2 [m], and by construction we have

• Ci = C
0

i
for all i 6= 1,

• k1 = k
0

1 + 1 and ki = k
0

i
, for all i 6= 1,

• x = x1,2k1+1 and y = x1,2k1 .

Let g00
n
:= g0

n
\C 0

1, the subgraph of g0
n
which contains all the C 0

i
except

C
0

1. Figure 5.5 demonstrates the graph g00
n
. As per the construction,

the cycles in g00
n
are C

00

i
:= C

0

i+1, with k
00

i
2 [m] and k

00

i
= k

0

i+1, for all
1  i  n � 1. Moreover, O00

i
, E 00

i
, ⇣ 00

i
and !

00

i
are the corresponding

notations.

. . .

C 0
2

C 0
n

Figure 5.5: The graph g00n
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5.3.3 Towards the proof of Theorem 5.1.1

Here, we re-examine the simplicial complex�gn in light of our special
construction of the graph gn. Additionally, we explore the feasible
lattice points corresponding to any gn. Using these insights and with
an inductive approach, we prove Theorem 5.1.1.

For a simplicial complex � and any nonempty set X, let � ⇤ X
represent the simplicial complex whose facets are of the form F [ X,
where F 2 F(�). According to our construction of the graph gn, we
have the following lemma.

Lemma 5.3.4. For the graph gn, we have �gn = �g0n ⇤ {x}[�00 ⇤O0

1,

where �00 = �g00n ⇤ E 0

2.

Proof. With ki 2 [m], the facets of �gn are of the form (5.6). By
construction, we have O1 = O0

1 [ {x} and for all 2  i  n, Oi = O0

i
,

Ei = E 0

i
and !i = !

0

i
. Using this fact along with the general form of

facets given in (5.6), we have that any facet F 2 F(�gn) has one of
the following forms:

{x} [
j�1[

i=1

⇣
0

i
[

j[

i=2

E 0

i
[

n�1[

i=j

O0

i
[

n[

i=j+1

!
0

i
, where 1  j  n, or (5.7a)

O0

1 [
j�1[

i=2

⇣
0

i
[

j[

i=2

E 0

i
[

n�1[

i=j

O0

i
[

n[

i=j+1

!
0

i
, where 2  j  n. (5.7b)

Now, let us focus on the graph g00
n
. Using (5.6) for g00

n
, the facets of

�g00n are of the form

j�1[

i=1

⇣
00

i
[

j[

i=2

E 00

i
[

n�2[

i=j

O00

i
[

n�1[

i=j+1

!
00

i
,

where 1  j  n � 1. We know that the cycles in g00
n
are given by

C
00

j
:= C

0

j+1, for all 1  j  n � 1. Thus, we have E 00

j
= E 0

j+1 and
O00

j
= O0

j+1, for all 1  j  n � 1. Therefore, the facets of �g00n are of

the form
S

j

i=2 ⇣
0

i
[
S

j+1
i=3 E 0

i
[
S

n�1
i=j+1 O0

i
[
S

n

i=j+2 !
0

i
, where 1  j  n�1.

Now, let us rewrite this expression such that the facets of �g00n are of
the form

j�1[

i=2

⇣
0

i
[

j[

i=3

E 0

i
[

n�1[

i=j

O0

i
[

n[

i=j+1

!
0

i
, where 2  j  n. (5.8)
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Let �00 be the simplicial complex whose facets are

j�1[

i=2

⇣
0

i
[

j[

i=2

E 0

i
[

n�1[

i=j

O0

i
[

n[

i=j+1

!
0

i
, where 2  j  n. (5.9)

From (5.8) and (5.9), it is evident that any facet of �00 is of the form
F

00 [ E 0

2, where F
00 2 F(�g00n). Therefore, we can express �00 as

�00 = �g00n ⇤ E
0

2. (5.10)

Note that any facet F 0 2 F(�g0n) is of the form

j�1[

i=1

⇣
0

i
[

j[

i=2

E 0

i
[

n�1[

i=j

O0

i
[

n[

i=j+1

!
0

i
, where 1  j  n.

Consequently, any facet of �gn of the form (5.7a) corresponds to F
0 [

{x}, where F
0 2 F(�g0n). It is thus possible to state that the facets

in (5.7a) correspond to facets of �g0n ⇤ {x}. By comparing (5.7b) and
(5.9), we observe that the collection of facets in (5.7b) matches �00⇤O0

1.
Therefore, we have �gn = �g0n ⇤ {x} [�00 ⇤O0

1.

By examining the two forms of facets in F(�gn), it is evident that
the intersection of any facet in (5.7a) with any other facet of (5.7b) is
equal to some facet of �g0n . Hence we have

�g0n ⇤ {x} \�00 ⇤O0

1 = �g0n .

Observe that E 0

2 in (5.10) is just a simplex and therefore the h-
polynomial of the Stanley–Reisner ring k[�00] equals h(k[�g00n ]; t). By
Lemma 5.3.4 we observe that �gn , �g0n ⇤ {x}, and �00 ⇤O0

1 have same
dimension. Furthermore, we have �g0n ⇤ {x} \ �00 ⇤ O0

1 = �g0n and
dim�g0n = dim�gn � 1. Let us assume that dim k[�gn ] = d. Therefore
by applying the inclusion-exclusion principle to the Hilbert series of
k[�gn ] in Lemma 5.3.4, we have

h(k[�gn ]; t)

(1� t)d
=

h(k[�g0n ]; t)

(1� t)d
+

h(k[�g00n ]; t)

(1� t)d
�

h(k[�g0n ]; t)

(1� t)d�1
.

Since the Hilbert series of K/I coincides with that of K/ in�(I) in
general (see, Proposition 2.3.5), we conclude the h-polynomial of the
Stanley–Reisner ring k[�gn ] gives the desired h-polynomial of corre-
sponding edge ring k[gn]. As a result, the h-polynomials are as follows:

h(k[gn]; t) = h(k[g0
n
]; t) + h(k[g00

n
]; t)� (1� t)h(k[g0

n
]; t)

= t h(k[g0
n
]; t) + h(k[g00

n
]; t).

(5.11)
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For any graph gn = gr1,...,rm (m � 1), we can assign the lattice
points (n,N) where n =

P
m

j=1 rj (total number of odd cycles) and
N =

P
m

j=1 jrj, such that N � n � 1. The feasible lattice points
corresponding to any gn are shown in Figure 5.6.

All cycles are 3-cycles

One (2N + 1)-cycle

1 2 3 4 550

1

2

3

4

5

N
=

m P j
=
1
jr

j

n =
mP
j=1

rj

Figure 5.6: Feasible lattice points corresponding to the graph gr1,...,rm

Any graph gn with an arbitrary lattice point (n,N) can be con-
structed from a base graph with n copies of 3-cycles, i.e., with lattice
point (n, n), by a similar method of construction as discussed in Sec-
tion 5.3.2. Thus, we demonstrate our main theorem using an inductive
approach over N in the feasible lattice points (n,N) with N � n � 1.

Proof of Theorem 5.1.1. As earlier, let gn := gr1,...,rm with each i
th

cycle of length 2ki + 1, where ki 2 [m].
For the base case with N � n = 1, i.e., lattice points (1, N), the

edge ring is isomorphic to a polynomial ring in 2N + 1 (length of the
single odd cycle) variables and the h-polynomial has to be 1. Therefore,
(5.1) stands true.

As we can see in Figure 5.6, the graph with n copies of 3-cycles
having a unique common point, or N = n � 1, is another base case. In
Chapter 4, this case has been examined. Thus, Thoerem 4.1.1 implies
that our main theorem is true for the base case N = n � 1.

Let us assume that the h-polynomial is given by (5.1), for any graph
of our concern with corresponding lattice point (n,N).
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As per the discussion in Section 5.3.2, we construct our graph gn
from g0

n
by altering one of the odd cycles of g0

n
. Let g0

n
be a graph

with lattice point (n,N) such that n =
P

m

j=1 r
0

j
and N =

P
m

j=1 jr
0

j
. By

construction, the graph g00
n
has lattice point (n� 1, eN), where n� 1 =P

m

j=1 r
00

j
and eN =

P
m

j=1 jr
00

j
=
P

m

j=1 jr
0

j
� k

0

1
< N . Therefore by the

induction hypothesis, the formula (5.1) holds for both g0
n
and g00

n
. Now,

as per the construction, graph gn has a total of n =
P

m

j=1 rj odd cycles
such that

mX

j=1

jrj = k1(r
0

k1
+ 1) + (k1 � 1)(r0k1�1

� 1) +
X

j�1
j 6=k1,k1�1

jr
0

j

=
mX

j=1

jr
0

j
+ 1 = N + 1.

Therefore, the lattice point corresponding to gn is (n,N + 1).
From (5.11), we have h(k[gn]; t) = t h(k[g0

n
]; t) + h(k[g00

n
]; t). By the

induction hypothesis, we can apply (5.1) to h(k[g0
n
]; t) and h(k[g00

n
]; t),

and we have

h(k[gn]; t) = t

mY

j=1

(1 + · · ·+ t
j)r

0
j � t

2
mY

j=1

(1 + · · ·+ t
j�1)r

0
j

+
mY

j=1

(1 + · · ·+ t
j)r

00
j � t

mY

j=1

(1 + · · ·+ t
j�1)r

00
j ,

where k := k
0

1
; r0

j
= r

00

j
for j 6= k and r

0

k
= r

00

k
+ 1 (by construction).

Therefore we have

h(k[gn]; t) = t(1 + · · ·+ t
k)

mY

j=1

(1 + · · ·+ t
j)r

00
j

� t
2(1 + · · ·+ t

k�1)
mY

j=1

(1 + · · ·+ t
j�1)r

00
j

+
mY

j=1

(1 + · · ·+ t
j)r

00
j � t

mY

j=1

(1 + · · ·+ t
j�1)r

00
j

= (1 + · · ·+ t
k+1)

mY

j=1

(1 + · · ·+ t
j)r

00
j

� t(1 + · · ·+ t
k)

mY

j=1

(1 + · · ·+ t
j�1)r

00
j .
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Furthermore, as per our construction, we can express rj as:

rj =

(
r
00

j
+ 1 for j = k + 1,

r
00

j
otherwise.

Then we have

h(k[gn]; t) = (1 + · · ·+ t
k+1)

mY

j=1

(1 + · · ·+ t
j)r

00
j

� t(1 + · · ·+ t
k)

mY

j=1

(1 + · · ·+ t
j�1)r

00
j

=
mY

j=1

(1 + · · ·+ t
j)rj � t

mY

j=1

(1 + · · ·+ t
j�1)rj .

This concludes our proof.

5.4 On almost Gorensteinness of k[gr1,...,rm]

In this section we characterize the almost Gorensteinness of our edge
ring k[gr1,...,rm ].

Let R be a Cohen–Macaulay homogeneous domain of dimension d

over a field k and let h(R) = (h0, h1, . . . , hs) be its h-vector. Then by
Proposition 2.1.1, we recall that R is almost Gorenstein if and only if

r(R)� 1 =
sX

i=0

((hs + · · ·+ hs�i)� (h0 + · · ·+ hi)) = ẽ(R),

where r(R) denotes the Cohen–Macaulay type of R. In the case of
gr1,...,rm , we have the following.

Proposition 5.4.1 ([51, Theorem 5.7]). For any graph gr1,...,rm con-

sisting of n =
P

m

j=1 rj cycles, r(k[gr1,...,rm ]) = n� 1.

Now we are in the position to provide a proof for the second main
theorem.

Proof of Theorem 5.1.2. As before, let gn := gr1,...,rm . We know
that for n = 1, the edge ring k[gn] is isomorphic to a polynomial ring
in 2N +1 variables. For the case n = 2, the toric ideal Ign has only one
generator and therefore the corresponding edge ring is a hypersurface.
Thus, the edge ring k[gn] is Gorenstein for both n = 1, 2; which implies
that k[gn] is almost Gorenstein.
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Now, let n � 3. From Proposition 2.1.1 and Proposition 5.4.1, we
have that k[gn] is almost Gorenstein if and only if ẽ(k[gn]) = n�2. Let
h(k[gn]) = (h0, h1, . . . , hs) be the h-vector of k[gn] and let us consider
h
0

i
= (hs + · · · + hs�i) � (h0 + · · · + hi), for i = 0, 1, . . . , s. From the

proof of [21, Proposition 2.4], we have

sX

i=0

h
0

i
t
i =

1

1� t

sX

i=0

(hs�i � hi)t
i
. (5.12)

From Theorem 5.1.1, we have s = deg h(k[gn]; t) =
P

m

j=1 jrj = N . For
f(t) =

P
s

i=0 ait
i, we have t

s
f(t�1) =

P
s

i=0 as�it
i. Applying this to

(5.12), we can express

sX

i=0

h
0

i
t
i =

t
N
h(k[gn]; t�1)� h(k[gn]; t)

1� t
.

By (5.1), we have

t
N
h(k[gn]; t�1) = t

N

mY

j=1

(1 + · · ·+ t
�j)rj � t

N�1
mY

j=1

(1 + · · ·+ t
�(j�1))rj .

For N =
P

m

j=1 jrj, we can express N�1 as
P

m

j=1(j�1)rj+
P

m

j=1 rj�1.
Therefore,

t
N
h(k[gn]; t�1) = t

N

mY

j=1

(1 + · · ·+ t
�j)rj

� t
n�1

mY

j=1

t
(j�1)rj

�
1 + · · ·+ t

�(j�1)
�rj

=
mY

j=1

(1 + · · ·+ t
j)rj � t

n�1
mY

j=1

(1 + · · ·+ t
j�1)rj .

Hence, we have

t
N
h(k[gn]; t�1)� h(k[gn]; t)

=
mY

j=1

(1 + · · ·+ t
j)rj � t

n�1
mY

j=1

(1 + · · ·+ t
j�1)rj

�
mY

j=1

(1 + · · ·+ t
j)rj + t

mY

j=1

(1 + · · ·+ t
j�1)rj

= t(1� t
n�2)

mY

j=1

(1 + · · ·+ t
j�1)rj .
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Consequently, (5.12) becomes

sX

i=0

h
0

i
t
i =

t(1� t
n�2)

mQ
j=1

(1 + · · ·+ t
j�1)rj

1� t

= t(1 + t+ · · ·+ t
n�3)

mY

j=1

(1 + · · ·+ t
j�1)rj .

We see that (5.12) evaluated at t = 1 gives ẽ(k[gn]). Therefore, we
have ẽ(k[gn]) = (n � 2)

Q
m

j=1 j
rj . Recall that for n � 3, the edge ring

k[gn] is almost Gorenstein if and only if ẽ(k[gn]) = n � 2. That is,
when

Q
m

j=1 j
rj = 1. This occurs exclusively when rj = 0 for all j > 1.

In other words, every cycle in gn is a 3-cycle (N = n).

From Theorem 5.1.2 in conjunction with Theorem 4.1.1, the follow-
ing result on k[gr1,...,rm ] is derived.

Corollary 5.4.2. For gr1,...,rm with n =
P

m

j=1 rj and N =
P

m

j=1 jrj,

the edge ring k[gr1,...,rm ] is almost Gorenstein but not Gorenstein if and

only if n � 3 and N = n.
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Part III

On non-normal edge rings
and (S2)-condition
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Chapter 6

Non-normal edge rings
satisfying (S2)-condition

In this chapter, we will prove that, given integers d and m, where
d � 7 and d+ 1  m  d

2
�7d+24

2 , there exists a finite simple connected
graph G with |V (G)| = d and |E(G)| = m, such that the edge ring
k[G] is non-normal and satisfies (S2)-condition. The contents of this
chapter are entirely contained in the author’s paper [39].

6.1 The main theorem and graph Ga,b

In this section, we will first state the basic theorem of our study and
then, explicitly deals with the construction and study of a special graph
Ga,b, whose edge ring k[Ga,b] is non-normal. By stating and proving the
proposition that the edge ring k[Ga,b] meets (S2)-condition, we bring
the section to a close.

Recall the notions and notations related to edge rings from Chap-
ter 3. We will follow the same. The main theorem that we will prove
in this study is as follows:

Theorem 6.1.1. Given integers d and m such that, d � 7 and d +
1  m  d

2
�7d+24

2 , there exists a finite simple connected graph G with

|V (G)| = d and |E(G)| = m such that, the edge ring k[G] is non-normal

and satisfies (S2)-condition.

A detailed explanation of why the quadratic expression d
2
�7d+24

2
appears in the main theorem is provided in Section 6.4.

Let Ga,b be a finite simple connected graph with |V (Ga,b)| = d =
a + b + 1, where 3  a  b. We construct the graph Ga,b (Figure 6.1)
such that, it is formed by the union of two complete graphs Ka+1 and
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Kb+1 with exactly one common vertex. Let us consider the vertex set
V (Ga,b) = V (Ka+1) [ V (Kb+1), such that V (Ka+1) = {u1, . . . , ua, w}
and V (Kb+1) = {v1, . . . , vb, w}.

vb

v1
u1

w
Kb+1

u2

Ka+1

ua

Figure 6.1: The graph Ga,b

Any vertex v 2 V (Ga,b) is regular in Ga,b. We observe that the
fundamental sets in Ga,b are :

{i}, 8 i 2 V (Ga,b) and {i, j}, 8 {i, j} /2 E(Ga,b).

For any fundamental set T ⇢ V (Ga,b), let HT be the bipartite graph
induced by T . We consider Ka to be the induced subgraph of Ga,b on
vertex set V (Ka+1)\{w}, that is, the complete graph on V (Ka) =
{u1, . . . , ua}. Similarly, Kb is the induced subgraph of Ga,b on the
vertex set V (Kb+1)\{w}, which is the complete graph on V (Kb) =
{v1, . . . , vb}.

Let AGa,b
:= {⇢(e) : e 2 E(Ga,b)}. For SGa,b

= Z�0AGa,b
, let

S := SGa,b
and S := SGa,b

. We consider CS to be the convex ratio-
nal polyhedral cone spanned by AGa,b

in Qd, i.e., CS := Q�0AGa,b
. Let

F(Ga,b) be the set of all facets of CS and for any Fi 2 F(Ga,b),

Si := S � S \ Fi = {x 2 ZAGa,b
: 9 y 2 S \ Fi such that x+ y 2 S},

S
0 :=

\

Fi2F(Ga,b)

Si.

Now, let us look at the facets of CS in detail. As stated in Section
3.4, for any regular vertex v 2 V (Ga,b) and any fundamental set T in
Ga,b, we denote Fv and FT as the facets of CS corresponding to the
hyperplanes Hv and HT respectively. We observe that, for any regular
vertex v 2 V (Ga,b),

S \ Fv = Z�0AGa,b\v
.

Corresponding to each fundamental set in Ga,b, we have

S \ F{w} = Z�0AH{w} ,
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S \ F{ui} = Z�0AH{ui}
F

Kb
,

S \ F{vj} = Z�0AKa
F

H{vj}
,

S \ F{ui,vj} = Z�0AH{ui,vj}
,

where 1  i  a and 1  j  b. Note that, throughout this investi-
gation, we are only concerned about the description of S \ Fw, for a
regular vertex w.

Lemma 6.1.2. Let the pair of odd cycles (C,C 0) be exceptional in

Ga,b. Consider vertices v, w 2 V (Ga,b), where w is the common vertex

of Ka+1 and Kb+1. Let ev and ew be the canonical unit coordinate

vectors of Rd
corresponding to vertices v and w respectively. Then,

EC + EC0 + ev + ew 2 S.

Proof. We consider an exceptional pair (C,C 0) in Ga,b. Without loss of
generality, let C = {ui1

, ui2
, ui3

} be a minimal odd cycle in Ka+1 and
C

0 = {vj1 , vj2 , vj3} be a minimal odd cycle in Kb+1.
Since Ka+1 and Kb+1 are complete graphs with common vertex w

and (C,C 0) is exceptional in Ga,b, we have V (C) \ V (C 0) = ; and
w /2 V (C) [ V (C 0).

Without loss of generality, we may assume v 2 V (Ka+1). Given
that Ka+1 and Kb+1 are complete graphs, for any uik

2 V (C) that is
distinct from v, we have {v, uik

} 2 E(Ga,b) and for any vjk 2 V (C 0),
we have {w, vjk} 2 E(Ga,b). Suppose, we choose ui1

6= v. Then we can
express

EC + EC0 + ev + ew =
3P

k=1
euik

+
3P

k=1
evjk + ev + ew

= (ev + eui1
) +

3P
k=2

euik
+

2P
k=1

evjk+

(evj3 + ew).
Therefore, EC + EC0 + ev + ew is equal to:

⇢
�
{v, ui1

}
�
+ ⇢
�
{ui2

, ui3
}
�
+ ⇢
�
{vj1 , vj2}

�
+ ⇢
�
{vj3 , w}

�
.

As we can see, the expression EC + EC0 + ev + ew can be written as
a linear combination of some ⇢(e), where e 2 E(Ga,b). Therefore, for
any v, w 2 V (Ga,b), we have

�
EC + EC0 + ev + ew

�
2 S.

Let us consider x = (xu1
, . . . , xua , xw, xv1

, . . . , xvb
) 2 Zd

�0. We define
a set,

A :=

⇢
x : xw = 0,

X

u2{u1,...,ua}

xu is odd ,

X

v2{v1,...,vb}

xv is odd

�
.
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For the finite simple connected graph Ga,b (Figure 6.1) and the set
A as defined above, we can state the following lemma.

Lemma 6.1.3. S ⇢ S [ A.

Proof. Let ↵ be an arbitrary element in S. As we have seen in Sec-
tion 3.4, the normalization of the edge ring k[Ga,b] can be expressed
as

S = S + Z�0

�
EC + EC0 : (C,C 0) is exceptional in Ga,b

 
.

Therefore, any ↵ 2 S can be expressed as ↵ = � + �, where we have
� 2 S and � 2 Z�0

�
EC +EC0 : (C,C 0) is exceptional in Ga,b

 
. If � = 0,

then ↵ 2 S. So, let us consider the non-trivial case where � 6= 0. Let
↵i, �i and �i represent the i

th coordinates of ↵, � and � respectively.
Since for any two (possibly identical) exceptional pairs (C,C 0),

(C,C
0

), it follows from the completeness of the graphs Ka+1 and Kb+1

that EC +EC0 +E
C
+E

C
0 2 S. Therefore, without loss of generality, for

an exceptional pair (C,C 0) in Ga,b, we may assume that � = EC + EC0 .
Case 1. Let ↵w = 0.

We have ↵w = 0 and � 6= 0 with �w = 0. Therefore �w = 0, that
is, we are not considering any edge adjacent to the common vertex w.
This assures that, both

P
u2V (Ka)

�u and
P

v2V (Kb)
�v have to be even.

Hence, both
P

u2V (Ka)
↵u and

P
v2V (Kb)

↵v will be odd. Thus we have
↵ 2 A and therefore, ↵ 2 S [ A.
Case 2. Let ↵w > 0.

Consider an exceptional pair (C,C 0) in Ga,b. We have � = EC+EC0 .
The condition ↵w > 0 implies �w > 0. This indicates that there must
be at least one edge adjacent to the common vertex w, say {v, w}.
For any exceptional pair (C,C 0) in Ga,b, by Lemma 6.1.2, we have
EC + EC0 + ev + ew 2 S. Hence, ↵ = � + � 2 S. Thus, it proves that
↵ 2 S [ A.

All of the observations we have made so far lead us to the conclusion
that

S ⇢ S
0 ⇢ S ⇢ S [ A.

Proposition 6.1.4. Let Ga,b be a finite simple connected graph with

3  a  b and |V (Ga,b)| = a + b + 1 = d, such that Ga,b (Figure 6.1)

consists of two complete graphs Ka+1 and Kb+1 joined at a common

vertex w. Let k[Ga,b] be the edge ring of the graph Ga,b. Then, k[Ga,b]
is non-normal and satisfies (S2)-condition.

Proof. Since Ga,b is the union of two complete graphs with a common
vertex w, it is assured that all the pairs of odd cycles of the form
({ui, ui+1, ui+2}, {vj, vj+1, vj+2}) where 1  i  a�2 and 1  j  b�2

60



are exceptional. Therefore, the graph Ga,b does not satisfy the odd
cycle condition and by Theorem 3.4.5, we conclude that the edge ring
k[Ga,b] is non-normal.

Let us consider an element ↵ = (xu1
, . . . , xua , 0, xv1

, . . . , xvb
) from

the set A, such that ↵ 2 S\S. We have seen that the common vertex
w is regular in Ga,b and corresponding to this regular vertex we have
S \ Fw = Z�0AGa,b\w

. For any � 2 S \ Fw, let �i represent the i
th

coordinate of �. We observe that �w = 0 and both
P

a

i=1 �ui , andP
b

j=1 �vj are even. Therefore, for all � 2 S \ Fw, we have ↵ + � 2 A

and not in S. Thus, there exists no � 2 S \ Fw, such that ↵ + � 2 S.
Therefore, ↵ /2 Sw. Hence,

↵ /2
\

Fi2F(Ga,b)

Si = S
0
.

This implies that, for any ↵ 2 S\S, we have ↵ /2 S
0. Therefore,

(S\S) \ S
0 = ; and S

0 ⇢ S. We know that S ⇢ S
0
. Hence, S = S

0.

We proved that k[Ga,b] is non-normal and satisfies (S2)-condition.
Now, we are interested in modifying the graph Ga,b, to see how the
behavior of the corresponding edge ring varies.

6.2 Removing edges of Ga,b and (S2)-condition

In Section 6.1, we have studied the graph Ga,b in detail. In this
section, we will investigate whether we can remove edges of Ga,b to

obtain eG, a subgraph of Ga,b, with V ( eG) = V (Ga,b) and |E( eG)| =

d + 1 such that the edge ring k[ eG] is non-normal and satisfies (S2)-
condition. We will modify a method of eliminating edges of Ga,b so
that the common vertex w remains regular in any graph created using
this method. By the end of this section, we prove that k[ eG] is non-
normal and satisfies (S2)-condition.

By eliminating one edge from the graph Ga,b per step, we will grad-

ually build up eG. First of all, we will be removing edges of the graph
Ka+1 and will not alter the graph Kb+1. Let us denote u0 := w and
G

u1

0 := Ga,b. We construct a new subgraph of Ga,b through an edge
removal process such that for each 1  i  a� 3,

• we remove the edge {u0, ui} from G
ui
0 to obtain G

ui
i
, and

• remove the edge {ui, uj} from G
ui
j�1 to obtain G

ui
j
, 8 i + 1  j 

a� 1.
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Let us denote G
ui
0 := G

ui�1

a�1 , 8 2  i  a � 2. By construction, we
observe that

E(Gui
0 ) = E(Ga,b)\

i�1[

p=1

⇢
{up, uq} : q 6= p, 0  q  a� 1

�
,

where 2  i  a � 2. For i = a � 2, the construction of the subgraph
G

ui
j
, a� 2  j  a� 1 is as follows:

• the subgraph G
ua�2

a�2 is obtained by removing the edge {u0, ua�2}
from G

ua�2

0 ;

• the edge {u0, ua�1} is removed from G
ua�2

a�2 , to construct the sub-
graph G

ua�2

a�1 .

Remark 6.2.1. For 1  i  a � 2, i  j  a � 1 and (i, j) 6=
(a� 2, a� 1), we have

E(Gui
j
) = E(Ga,b)\

�
{up, uq} : q 6= p, (p, q) 2 [a� 1]⇥ [i� 1]
[{(0, 1), . . . , (0, i), (i, i+ 1), . . . , (i, j)}

 
.

In particular, if 1  p < q  a, then {up, uq} 2 E(Gui
j
) if and only if

one of the following cases happens:

(i) p � i+ 1;

(ii) p = i, j + 1  q  a;

(iii) p  i� 1, q = a.

If 1  p < q < r  a, then up, uq, ur form a 3-cycle in G
ui
j

if and only
if either of the following cases happens:

(a) p = i, j + 1  q;

(b) p � i+ 1.

Moreover, for 1  t  a, we have {ut, w} 2 E(Gui
j
) if and only if

t � i+ 1.

Remark 6.2.2. For (i, j) = (a� 2, a� 1), we have

E(Gua�2

a�1 ) = E(Ga,b)\
�
{up, uq} : q 6= p, (p, q) 2 [a� 1]⇥ [a� 3]
[{(0, 1), (0, 2), . . . , (0, a� 1)}

 
.

In particular, if 1  p < q, then {up, uq} 2 E(Gua�2

a�1 ) if and only if one
of the following cases happens:

(i) p � a� 1, q = a;
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(ii) (p, q) = (a� 2, a� 1).

If 1  p < q < r  a, then up, uq, ur form a 3-cycle in G
ua�2

a�1 if and only
if (p, q, r) = (a� 2, a� 1, a). Moreover, {ut, w} 2 E(Gua�2

a�1 ) if and only
if t = a.

An example of the sequence of subgraphs G
ui
j
; 1  i  2 and

i  j  3 that is constructed from the graph G4,3 using the edge
removal process defined above is illustrated in Figure 6.2.

G4,3 =: G
u1

0 Gu1

1 Gu1

2 Gu1

3 =: Gu2

0

Gu2

2 Gu2

3

 !�{u0,u1}  !�{u1,u2}  !�{u1,u3}  

!
�{u0,u2}

 !�{u0,u3}

Figure 6.2: A sequence of subgraphs constructed from G4,3

As per our construction, V (Gui
j
) = V (Ga,b), 8 1  i  a � 2,

i  j  a � 1. By the end of this entire process, we construct the
subgraph of Ga,b, as shown in Figure 6.3.

vb

v1
u1

w
Kb+1

ua�1

ua�2

ua�3

ua

Figure 6.3: The graph Gua�2

a�1

Let C = {ui1
, ui2

, . . . , ui2l+1
} be an odd cycle in G

ui
j
, such that

2l + 1 � 5 and 1  i1 < i2 < · · · < i2l+1. We have {ui1
, ui2

} 2
E(Gui

j
) and {ui1

, ui2l+1
} 2 E(Gui

j
). Thus, according to our construction,

{ui1
, uk} 2 E(Gui

j
), for all i1 < k  i2l+1. Hence, for all 1  i  a� 2;

i  j  a� 1, the minimal odd cycles of Gui
j

are cycles of length three.

Remark 6.2.3. Let 1  i  a � 2, i  j  a � 1 be integers. Let
C = {ui1

, ui2
, ui3

} be a 3-cycle in G
ui
j
, where 1  i1 < i2 < i3. Then

from Remarks 6.2.1 and 6.2.2, w is always adjacent to ui3
. Indeed, if

(i, j) 6= (a � 2, a � 1) then w is even adjacent to both ui2
and ui3

. If
(i, j) = (a�2, a�1) then (i1, i2, i3) = (a�2, a�1, a) and w is adjacent
to ui3

= ua.
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Remark 6.2.4. Let 1  i  a�2, i  j  a�1 be integers. Let C and
C be two (possibly identical) 3-cycles in G

ui
j
. Then by Remarks 6.2.1

and 6.2.2, there is an edge connecting two vertices of C and C. Indeed,
let C = {ui1

, ui2
, ui3

} and C = {uj1
, uj2

, uj3
} where 1  i1 < i2 < i3,

1  j1 < j2 < j3. Then i2, j2 � i+ 1, so ui2
is adjacent to either uj2

or
uj3

.

Lemma 6.2.5. Let 1  i  a � 2, i  j  a � 1 be integers. Let

(C,C 0) be an exceptional pair in G
ui
j
. If {w, v} 2 E(Gui

j
), then

EC + EC0 + ew + ev 2 S
G

ui
j
.

Proof. Since (C,C 0) is an exceptional pair, we have V (C) \ V (C 0) =
; and w /2 V (C) [ V (C 0). By Remark 6.2.4, we may assume that
V (C) = {ui1

, ui2
, ui3

} ⇢ V (Ka) and V (C 0) = {vj1 , vj2 , vj3} ⇢ V (Kb),
where i1 < i2 < i3, j1 < j2 < j3.
Case 1. Let v = uk 2 V (Ka). We claim that EC+ev, EC0+ew 2 S

G
ui
j
.

By Remark 6.2.3, w is adjacent to vj3 , so

EC0 + ew = ⇢
�
{w, vj3}

�
+ ⇢
�
{vj1 , vj2}

�
2 S

G
ui
j
.

Since {ui1
, ui2

}, {ui1
, ui3

} are edges and i1 < i2 < i3, by Remarks 6.2.1
and 6.2.2, i1 � i and hence i2 � i+1. Since {w, uk} is an edge, by the
same results, k � i+ 1. Hence Remarks 6.2.1 and 6.2.2 imply that uk

is adjacent to either ui2
or ui3

. This implies EC + ev 2 S
G

ui
j
.

Case 2. Let v 2 V (Kb). We claim that EC + ew, EC0 + ev 2 S
G

ui
j
.

Since Kb is complete, EC0 + ev 2 S
G

ui
j
. By Remark 6.2.3, w is adjacent

to ui3
. Hence EC + ew 2 S

G
ui
j
.

In both cases, we get the desired containment.

For the graph G
ui
j
, where 1  i  a� 2, i  j  a� 1 and the set

A as defined in Section 6.1, we have the following lemma.

Lemma 6.2.6. S
G

ui
j
⇢ S

G
ui
j
[A, for all 1  i  a�2 and i  j  a�1.

Proof. Let ↵ be an arbitrary element in S
G

ui
j
, where 1  i  a � 2,

i  j  a � 1. The normalization of the semigroup S
G

ui
j

can be

expressed as

S
G

ui
j
= S

G
ui
j

+ Z�0

�
EC + EC0 : (C,C 0) is exceptional in G

ui
j

 
.

Therefore, any ↵ 2 S
G

ui
j
can be expressed as ↵ = �+�, where � 2 S

G
ui
j

and � 2 Z�0

�
EC + EC0 : (C,C 0) is exceptional in G

ui
j

 
. If � = 0, then
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↵ 2 S
G

ui
j
. So, let us consider the non-trivial case where � 6= 0. Let ↵k,

�k and �k represent the k
th coordinates of ↵, � and � respectively.

For any two (possibly identical) exceptional pairs (C,C 0), (C,C
0

),
using Remark 6.2.4 and from the completeness of Kb+1, we have that
EC + EC0 + E

C
+ E

C
0 2 S

G
ui
j
, for all 1  i  a � 2 and i  j  a � 1.

Therefore, without loss of generality, for an exceptional pair (C,C 0) in
G

ui
j
, we may assume that � = EC + EC0 .

Case 1. Let ↵w = 0.
We have �w = 0 and ↵w = 0. Therefore �w = 0, that is, we are not

considering any edge adjacent to the common vertex w. This assures
that, both

P
u2V (Ka)

�u and
P

v2V (Kb)
�v have to be even. Hence, bothP

u2V (Ka)
↵u and

P
v2V (Kb)

↵v will be odd. Thus we have ↵ 2 A.
Case 2. Let ↵w > 0.

The condition ↵w > 0 implies �w > 0. This indicates that among
the edges defining the vector �, there must be at least one edge ad-
jacent to w, say {w, v}. For any exceptional pair (C,C 0) in G

ui
j
, by

Lemma 6.2.5, EC+EC0+ew+ev 2 S
G

ui
j
, and thus ↵ = �+� 2 S

G
ui
j
.

Therefore, for all 1  i  a� 2, and i  j  a� 1, we can observe
that,

S
G

ui
j
⇢ S

0

G
ui
j
⇢ S

G
ui
j
⇢ S

G
ui
j
[ A.

Proposition 6.2.7. The edge ring k[Gui
j
] of the graph G

ui
j

is non-

normal and satisfies (S2)-condition, for all 1  i  a� 2 and i  j 
a� 1.

Proof. For any 1  k  b�2, the pair ({ua�2, ua�1, ua}, {vk, vk+1, vk+2})
is always exceptional in G

ui
j
. Hence, k[Gui

j
] is always non-normal.

Let us consider an element ↵ 2 S
G

ui
j
\S

G
ui
j
. By Lemma 6.2.6, we

have ↵ 2 A and ↵w = 0. We observe that, the common vertex w

is regular in G
ui
j
. Hence, corresponding to w, we have S

G
ui
j
\ Fw :=

Z�0AG
ui
j \w

. For any � 2 S
G

ui
j
\ Fw, let �k be the k

th coordinate of �.

We observe that �w = 0 and both
P

a

i=1 �ui , and
P

b

j=1 �vj are even.
Therefore, for all � 2 S

G
ui
j
\ Fw, we have ↵ + � 2 A and not in S

G
ui
j
.

Thus, there exists no � 2 S
G

ui
j
\ Fw, such that ↵ + � 2 S

G
ui
j
, and this

implies that, ↵ /2 S
0

G
ui
j
. As a result, we have (S

G
ui
j
\S

G
ui
j
) \ S

0

G
ui
j

= ;
and S

0

G
ui
j
⇢ S

G
ui
j
. Therefore, S

G
ui
j
= S

0

G
ui
j
.

Now, let us continue a similar edge removal process on Kb+1 and
remove the maximum number of edges from Kb+1 resulting in the for-
mation of the graph eG, as per our requirement. Let v0 := w and
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eGv1

0 := G
ua�2

a�1 . We construct a new subgraph of Ga,b through an edge
removal process such that for each 1  i  b� 3,

• we remove the edge {v0, vi} from eGvi
0 to obtain eGvi

i
, and

• remove the edge {vi, vj} from eGvi
j�1 to obtain eGvi

j
, 8 i + 1  j 

b� 1.

Let us denote eGvi
0 := eGvi�1

b�1 , 8 2  i  b � 2. By construction, we
observe that

E( eGvi
0 ) = E( eGv1

0 )\
i�1[

p=1

⇢
{vp, vq} : q 6= p, 0  q  b�1

�
, 8 2  i  b�2.

For i = b� 2, the construction of the subgraph eGvi
j
, b� 2  j  b� 1

is as follows:

• the subgraph eGvb�2

b�2 is constructed by removing the edge {v0, vb�2}
from eGvb�2

0 , and

• the edge {v0, vb�1} is removed from eGvb�2

b�2 , to obtain the subgraph
eGvb�2

b�1 .

As per construction, V ( eGvi
j
) = V (Ga,b), 8 1  i  b�2, i  j  b�1

and by the end of this removal procedure, we construct the graph
depicted in Figure 6.4.

vb

v1

vb�1

vb�3
vb�2

u1

w

ua�1

ua�2

ua�3

ua

Figure 6.4: The graph eG

Remark 6.2.8. For 1  i  b�2, i  j  b�1 and (i, j) 6= (b�2, b�1),
we have

E( eGvi
j
) = E( eGv1

0 )\
�
{vp, vq} : q 6= p, (p, q) 2 [b� 1]⇥ [i� 1]
[{(0, 1), . . . , (0, i), (i, i+ 1), . . . , (i, j)}

 
.

In particular, if 1  p < q  b, then {vp, vq} 2 E( eGvi
j
) if and only if

one of the following cases happens:
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(i) p � i+ 1;

(ii) p = i, j + 1  q  b;

(iii) p  i� 1, q = b.

If 1  p < q < r  b, then vp, vq, vr form a 3-cycle in eGvi
j
if and only if

either of the following cases happens:

(a) p = i, j + 1  q;

(b) p � i+ 1.

Moreover, for 1  t  b, we have {vt, w} 2 E( eGvi
j
) if and only if

t � i+ 1.

Remark 6.2.9. For (i, j) = (b� 2, b� 1), we have

E( eGvb�2

b�1 ) = E( eGv1

0 )\
�
{vp, vq} : q 6= p, (p, q) 2 [b� 1]⇥ [b� 3]
[{(0, 1), (0, 2), . . . , (0, b� 1)}

 
.

In particular, if 1  p < q, then {vp, vq} 2 E( eGvb�2

b�1 ) if and only if one
of the following cases happens:

(i) p � b� 1, q = b;

(ii) (p, q) = (b� 2, b� 1).

If 1  p < q < r  b, then vp, vq, vr form a 3-cycle in eGvb�2

b�1 if and only

if (p, q, r) = (b� 2, b� 1, b). Moreover, {vt, w} 2 E( eGvb�2

b�1 ) if and only
if t = b.

Remark 6.2.10. From Remarks 6.2.8 and 6.2.9, we see that the min-
imal odd cycles of eGvi

j
are 3-cycles. Let C be a 3-cycle of eGvi

j
, we claim

that a vertex of C is adjacent to w. If V (C) ✓ V (Ka), as eGvi
j

is a

subgraph of eGv1

0 = G
ua�2

a�1 , we must have C = {ua�2, ua�1, ua}. In this
case, w adjacent to ua.
If C is a subgraph of Kb, let its vertices be vj1 , vj2 , vj3 where 1  j1 <

j2 < j3  b. Then w is adjacent to vj3 , as Remarks 6.2.8 and 6.2.9
implies that j1 � i and i+ 1  j2 < j3. In both cases, a vertex of C is
adjacent to w.
Moreover, for any two (possibly identical) 3-cycles C and C of eGvi

j
,

whose vertices are inside Kb, there is an edge of eGvi
j
connecting a vertex

of C to a vertex of C.
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Lemma 6.2.11. Let us consider an exceptional pair (C,C 0) in eGvi
j
,

where 1  i  b � 2 and i  j  b � 1. If {w, v} 2 E( eGvi
j
), then we

have

EC + EC0 + ew + ev 2 S eGvi
j
.

Proof. By Remark 6.2.10, we may assume that V (C) ✓ V (Ka) and
V (C 0) ✓ V (Kb). The same remark implies that C = {ua�2, ua�1, ua}.
Let the vertices of C 0 be vj1 , vj2 , vj3 where 1  j1 < j2 < j3  b.
Case 1. v 2 V (Ka). We claim that EC + ev, EC0 + ew 2 S eGvi

j
.

Given {w, v} 2 E( eGvi
j
), as per the construction of eGvi

j
, v = ua. Since

C = {ua�2, ua�1, ua}, we see that v is adjacent to both ua�2 and ua�1,
so EC + ev 2 S eGvi

j
. By Remark 6.2.10, w is adjacent to a vertex of C 0,

hence EC0 + ew 2 S eGvi
j
.

Case 2. v = vk 2 V (Kb). We claim that EC + ew, EC0 + ev 2 S eGvi
j
.

Since w is adjacent to ua, EC + ew 2 S eGvi
j
. Since w is adjacent to vk,

by Remarks 6.2.8 and 6.2.9, k � i + 1. The same remarks imply that
j1 � i, j2 � i+1. Hence vk is adjacent to either vj2 or vj3 . This yields
EC0 + ev 2 S eGvi

j
.

In both cases, we get the desired containment.

For the set A as defined in Section 6.1 and the graph eGvi
j
, where

1  i  b� 2, and i  j  b� 1, we have the following lemma.

Lemma 6.2.12. S eGvi
j
⇢ S eGvi

j
[A, for all 1  i  b�2 and i  j  b�1.

Proof. Let ↵ be an arbitrary element in S eGvi
j
. Due to the similar edge

removal process, the proof is similar to that of Lemma 6.2.6. By similar
arguments as in the proof of Lemma 6.2.6, we reduce to the case ↵ =
� + �, where � 2 S eGvi

j
, � = EC + EC0 for an exceptional pair (C,C 0)

of eGvi
j
. Furthermore, we also get that ↵ 2 A if ↵w = 0. Assume that

↵w > 0, then so is �w. Hence among the edges defining the vector �,
there is at least one edge of the form {w, v}. Using Lemma 6.2.11, we
get that the semigroup S eGvi

j
contains EC + EC0 + ew + ev, hence it also

contains ↵.

From the above observations, S eGvi
j
⇢ S

0

eGvi
j

⇢ S eGvi
j
⇢ S eGvi

j
[ A, for

all 1  i  b� 2, and i  j  b� 1.

Proposition 6.2.13. The edge ring k[ eGvi
j
] of the graph eGvi

j
is non-

normal and satisfies (S2)-condition, for all 1  i  b � 2 and i  j 
b� 1.
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Proof. According to our construction of the graph eGvi
j
, the pair of odd

cycles ({ua�2, ua�1, ua}, {vb�2, vb�1, vb}) is contained in every eGvi
j

and

is exceptional, for all 1  i  b � 2, and i  j  b � 1. Hence, k[ eGvi
j
]

is always non-normal.
Let us consider an element ↵ 2 A such that ↵ 2 S eGvi

j
\S eGvi

j
. The

common vertex w is regular in eGvi
j
, and corresponding to this regular

vertex, we have S eGvi
j
\ Fw := Z�0A eGvi

j \w
. By a similar proof as that

of Proposition 6.2.7, we can demonstrate that there exists no � 2
S eGvi

j
\ Fw, such that ↵ + � 2 S eGvi

j
, and hence S eGvi

j
= S

0

eGvi
j

.

Let the graph eGvb�2

b�1 := eG (Figure 6.4). We observe that, eG is a

subgraph of Ga,b with |V ( eG)| = |V (Ga,b)| and |E( eG)| = a+b+2 = d+1.

By Proposition 6.2.13, we know that the edge ring k[ eG] is non-normal
and also satisfies (S2)-condition. Therefore, we observe that eG is the
graph on d vertices with the least number of edges, d+1 edges, such that
the edge ring is non-normal and meets (S2)-condition. This completes
the proof of a part of the statement of Theorem 6.1.1.

6.3 Addition of edges to Ga,b breaks non-normality
or (S2)-condition

In this section, we prove that any addition of (one or more) new edges
to Ga,b either breaks the non-normality of the edge ring or violates the
(S2)-condition.

Let us construct a new graph G
0 on the vertex set V (G0) = V (Ga,b),

by introducing one or more edges to Ga,b. Since Ka+1 and Kb+1 are
complete graphs, each of the new edges will be of the form {ui, vj}, for
some 1  i  a and 1  j  b. For instance, addition of a single edge
{u2, v3} to the graph Ga,b is illustrated in Figure 6.5.

vb

v1
u1

w Kb+1

u2 v3

Ka+1

ua

Figure 6.5: The graph G0 obtained by adding edge {u2, v3} to Ga,b
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We can observe that for any G
0, all of its vertices are regular and

the fundamental sets are: {i}, for some i 2 V (G0) and {i, j}, 8 {i, j} /2
E(G0).

Proposition 6.3.1. Let G
0
be a graph on the vertex set V (G0) =

V (Ga,b), such that G
0
is constructed by adding one or more new edges

to Ga,b. Then for any G
0
, the edge ring k[G0] is either normal or it does

not satisfy (S2)-condition.

Proof. Suppose we construct a graph G
0 by adding at least minimal

number of edges {ui, vj}, where 1  i  a and 1  j  b, such that
we connect all the exceptional pairs of Ga,b. Thus, G

0 satisfies the
odd cycle condition, and therefore the corresponding edge ring k[G0] is
normal.

Now, let us consider the case where we construct a graph G
0 such

that k[G0] is non-normal. Then, we prove that for any such G
0, the

edge ring k[G0] will not satisfy (S2)-condition.
Suppose, we construct G0 by adding new edges {ui, vj} to the graph

Ga,b, for some 1  i  a and 1  j  b, such that G0 consists of at least
one pair of 3-cycles, ({ui1

, ui2
, ui3

}, {vj1 , vj2 , vj3}) with either ik 6= i or
jk 6= j for any 1  k  3. This pair will be exceptional in G

0 and thus,
the corresponding edge ring k[G0] is non-normal.

Now, we consider any exceptional pair (C,C 0) of the graph G
0. For

any regular vertex v 2 V (G0)\[V (C) [ V (C 0)] such that v 6= w, we
observe that G

0\v is a connected graph with the common vertex w.
Let us consider the regular vertex w 2 V (G0)\[V (C) [ V (C 0)]. As per
our construction, the graph G

0 contains edges of the type {ui, vj}, for
some 1  i  a and 1  j  b. The existence of such edges in G

0

ensures the connectedness of the graph G
0\w.

Thus for any regular vertex v 2 V (G0)\[V (C) [ V (C 0)], we observe
that the graph G

0\v is always a connected graph. Hence both C and
C

0 belong to the same connected components of G0\v.
Since both Ka+1 and Kb+1 are complete graphs, any vertex in

V (Ka+1) or V (Kb+1) is adjacent to all the other vertices of Ka+1 and
Kb+1 respectively. Hence for all v 2 V (G0), we have [V (C) [ V (C 0)] \
[{v} [NG0({v})] 6= ;. Let us consider the fundamental set of the form
{ui, vj}, such that {ui, vj} /2 E(G0). By the completeness of Ka+1 and
Kb+1, {ui, vj} [NG0({ui, vj}) = V (G0). Hence for any fundamental set
T of G0, we have

h
V (C) [ V (C 0)

i
\
h
T [NG0

�
T
�i
6= ;.

Therefore, by Theorem 3.4.6, EC + EC0 2 S
0

G0 . In particular, SG0 6=
S
0

G0 . Hence, the edge ring k[G0] does not satisfy (S2)-condition.
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6.4 Conclusions

A finite simple connected graph on d vertices with a non-normal edge
ring must contain at least one exceptional pair of odd cycles. Thus the
minimal graph on d vertices satisfying the above condition must be
a graph consisting of two disjoint minimal odd cycles and a path (of
at least length 2) connecting the two cycles. This minimal graph will
have exactly d + 1 number of edges. In Section 6.2, we proved the
existence of such a minimal graph eG, which satisfies the main theorem
(Theorem 6.1.1).

Moreover, for every finite simple connected graph on d vertices, the
edge ring is always normal if d  6. For this reason, we suppose that
d � 7 in Theorem 6.1.1.

We have examined the graph Ga,b in detail. From Section 6.3, we
can conclude that any addition of (one or more) new edges toGa,b either
breaks the non-normality of the edge ring or violates (S2)-condition.
Thus, we may conclude that Ga,b is the graph on d vertices with the
maximum number of edges such that, the corresponding edge ring is
non-normal and satisfies (S2)-condition. For the graph Ga,b, we have
|V (Ga,b)| = d = a + b + 1 and 3  a  b. Therefore, in order to
maximize the number of edges in Ga,b, we have to consider a = 3 and
b = d� 4. That is,

��E(Ga,b)
�� 

✓
4

2

◆
+

✓
d� 3

2

◆
=

d
2 � 7d+ 24

2
.

This provides us very strong supporting evidence that d
2
�7d+24

2 could
be the maximal number of edges possible for a graph on d vertices such
that, its edge ring is non-normal and satisfies (S2)-condition.

Proof of Theorem 6.1.1. Let us consider the graph G3,b on d ver-
tices such that d � 7. We have |E(G3,b)| = d

2
�7d+24

2 and by Propo-
sition 6.1.4, the edge ring k[G3,b] is non-normal and satisfies (S2)-
condition.

Through the edge removal processes discussed in Section 6.2, by
eliminating one edge from the graph G3,b per step, we can gradually
build up a graph on d vertices with d + 1 edges such that, its edge
ring is non-normal and satisfies (S2)-condition. Proposition 6.2.7 and
Proposition 6.2.13 guarantee that the edge ring of each of the graphs
obtained after each removal step is always non-normal and will satisfy
(S2)-condition.

Therefore we prove that for any given integers d and m such that,
d � 7 and d+1  m  d

2
�7d+24

2 , we can always construct a finite simple

71



connected graph on d vertices and having m edges such that, the edge
ring of the graph is non-normal and satisfies (S2)-condition.

Remark 6.4.1. By further automatic computations using Macaulay2,
we believe that every non-normal edge ring of the family of graphs
studied in this chapter that satisfies (S2)-condition is Cohen–Macaulay.
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Chapter 7

On a special family of cactus
graphs and (S2)-condition

A cactus graph is a connected graph in which every block is either
an edge or a cycle. In this chapter, we will examine a special category of
cactus graphs of diameter 4, where all the blocks are 3-cycles. Our main
focus is to prove that the corresponding edge ring of this special family
of graphs satisfies the (S2)-condition. This chapter and its contents are
a part of the author’s ongoing collaboration with R. Dinu.

7.1 On triangular cacti

All the concepts and notations related to edge rings that are used
in this chapter are defined in Chapter 3.

Let G be a simple finite connected graph. A vertex v 2 V (G) is
called a cutpoint if the subgraph G\v of G has more connected compo-
nents than that of G. From Section 3.4, recall that a vertex v is regular
in G if every connected component of G\v contains at least one odd
cycle. If a cutpoint v is regular in G, then v is called a regular cutpoint.
We say that a connected graph without a cutpoint is non-separable. A
maximal non-separable subgraph of G is called a block of the graph G.

A cactus graph is a connected graph in which every block is either
an edge or a cycle. The cactus graph whose blocks are all n-cycles is
defined as n-cactus graph. In this chapter, we will focus only on the
3-cactus graphs. Let us call a 3-cactus graph as the triangular cactus.

The 3-cycles are triangular cacti of diameter 1. The family of graphs
studied in Chapter 4, consisting of 3-cycles that share a single common
vertex, are triangular cacti of diameter 2. A generic illustration of
a triangular cactus of diameter 3 is shown in Figure 7.1. Therefore,
we observe that any triangular cactus of diameter  3 satisfies the
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odd cycle condition, and by Theorem 3.4.5, it has a normal Cohen–
Macaulay edge ring.

. . . . . .

. . .

Figure 7.1: A general triangular cactus of diameter 3

We focus on the non-normal edge rings associated with triangular
cacti that satisfy (S2)-condition. A broader objective of this study is
to prove the following conjecture.

Conjecture 7.1.1. The edge ring associated with a triangular cactus
of diameter � 4, satisfies (S2)-condition.

In this chapter, we will exclusively study the family of triangular
cacti whose diameter is 4 and prove Conjecture 7.1.1 for this specific
family. LetG be the triangular cactus of diameter 4. For an illustration
of G in general, see Figure 7.2.

. . .

xi

...

w

...

x2
i

x1
i

. . .

xk�1
i

xk
i

...

... ...

...

. . .

Figure 7.2: A general form of a triangular cactus of diameter 4
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The main theorem of our study is as follows.

Theorem 7.1.2. Let G be a triangular cactus with diamG = 4. Then,
the edge ring k[G] is non-normal and satisfies (S2)-condition.

7.2 Towards the proof of Theorem 7.1.2

This section centers on the proof of Theorem 7.1.2. Here, we will
study the two types of graph G and collect the necessary results about
them to finally prove our main theorem.

Let us consider that |V (G)| = d and n copies of 3-cycles are at-
tached to the vertex w in G. Note that, w is always a cutpoint of G.
Moreover, all the non-cutpoints of G are regular in G.

For graph G, we consider AG = {⇢(e) : e 2 E(G)}, SG := Z�0AG

and SG denotes the normalization of SG. We know that the edge ring
k[G] is the a�ne semigroup ring of SG. Recall that, for any regular
vertex v and fundamental set T ofG, we denote Fv and FT as the facets
of Q�0AG corresponding to the hyperplanes Hv and HT respectively.

Recall the notion of exceptional pairs of a graph, explained in Sec-
tion 3.4. The exceptional pairs in G are of the form (C,C 0) where
C = {xp, x

k�1
p

, x
k

p
} and C

0 = {xq, x
k
0
�1

q
, x

k
0

q
} for some p, q 2 [2n] such

that xp 6= xq and {xp, xq} /2 E(G). An illustration of an exceptional
pair in G is shown in Figure 7.3.

. . .

xp

...

w

...

. . .

xk�1
p

xk
p

...

... ...

...xq

xk0
q xk0�1

q

. . .

Figure 7.3: Illustration of an exceptional pair

For any odd cycle C in G, recall that EC :=
P

i2V (C) ei, where ei
represents the i

th canonical vector of Rd.
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Lemma 7.2.1. Let (Ci, Ci0) and (Cj, Cj0) be any two exceptional pairs

in G. Then,

ECi + ECi0 + ECj + ECj0 2 SG

if and only if both (Ci, Cj) and (Ci0 , Cj0)
⇣
or (Ci, Cj0) and (Ci0 , Cj)

⌘

are not exceptional.

Proof. Let us consider Cp = {xp, x
kp�1
p , x

kp
p }, for p 2 {i, i0, j, j0}. We

know that, the pair (Cp, Cq) exceptional in G implies that xp 6= xq and
{xp, xq} /2 E(G).

( =) ) Let us assume that, ECi + ECi0 + ECj + ECj0 2 SG. This
implies that ECi + ECi0 + ECj + ECj0 is a linear combination of ⇢(e) for
some e 2 E(G).

According to the structure of the graph G, {xk

u
, x

k
0

v
} /2 E(G), for

any u 6= v 2 [2n]. Moreover, for the exceptional pairs (Ci, Ci0) and
(Cj, Cj0), we know that xi 6= xi0 , xj 6= xj0 , {xi, xi0} /2 E(G), and
{xj, xj0} /2 E(G). Therefore, ECi + ECi0 + ECj + ECj0 can be expressed
as a linear combination of ⇢(e) for some e 2 E(G) only if both of the
vertices xi and xi0 are such that

xi, xi0 2 {xj, xj0} [NG

�
{xj, xj0}

�
.

This also implies xj, xj0 2 {xi, xi0}[NG

�
{xi, xi0}

�
. That is, either both

ECi + ECj , ECi0 + ECj0 2 SG or both ECi + ECj0 , ECi0 + ECj 2 SG.
Therefore, from the given odd cycles Cp (p = i, i

0
, j, j

0), we can choose
any two pairs of odd cycles that are not exceptional.

( (= ) Let us assume that both the pairs (Ci, Cj) and (Ci0 , Cj0),
are not exceptional. Therefore, we have one of the following cases:

• V (Ci) \ V (Cj) 6= ; and V (Ci0) \ V (Cj0) 6= ;;

• there exists a bridge between Ci, Cj and between Ci0 , Cj0 ;

• V (Ci) \ V (Cj) 6= ; and there exists a bridge between Ci0 , Cj0 or
vice versa.

In any of these cases, the method of the proof remains the same
and therefore, without loss of generality, we assume that Ci, Cj shares
a common vertex, i.e., xi = xj and there exists a bridge between Ci0 , Cj0 ,
i.e., {xi0 , xj0} 2 E(G). Hence,

ECi + ECi0 + ECj + ECj0 = (exi + e
x
ki
i
) + (exi + e

x
ki�1

i
)

+(exj + e
x
kj�1

j

) + (exi0 + exj0 )

+(e
x
ki0
i0

+ e
x
ki0�1

i0
) + (e

x

kj0
j0

+ e
x

kj0�1

j0
).
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This implies, ECi +ECi0 +ECj +ECj0 is a linear combination of ⇢(e) for
some e 2 E(G). Thus, ECi + ECi0 + ECj + ECj0 2 SG.

Lemma 7.2.2. Let (C,C 0) be exceptional in G. Then, for any {v, w} 2
E(G) with v 2 V (C) [ V (C 0) [NG

�
V (C) [ V (C 0)

�
, we have

EC + EC0 + ev + ew 2 SG.

Proof. Since (C,C 0) is exceptional in G, we have V (C) \ V (C 0) = ;
and NG

�
V (C)

�
\ NG

�
V (C 0)

�
= {w} (see, Figure 7.3). Hence both

EC + ew and EC0 + ew can be express as a linear combination of ⇢(e)
for some e 2 E(G). Now, without loss of generality, we assume that
v 2 V (C) [ NG

�
V (C)

�
. Thus we can write EC + ev =

P
e2E(G) ⇢(e).

Hence, EC + EC0 + ev + ew = (EC + ev) + (EC0 + ew), can be expressed
as a linear combination of ⇢(e) for some e 2 E(G). Therefore, we have
EC + EC0 + ev + ew 2 SG.

Based on the fact whether w in G is a regular cutpoint or not, we
classify the graph G into two types. Let us look at these two cases
in-depth in the following subsections.

7.2.1 Type 1: w is a regular cutpoint of G

LetG0 be the triangular cactusG where any 3-cycle inG0 containing
the vertex w is such that at least one of its remaining vertices xi will
have at least one 3-cycle {xi, x

k�1
i

, x
k

i
} attached to it. This is the first

type of triangular cactus G that we will be studying.
Let us denote the vertices xi with no 3-cycles {xi, x

k�1
i

, x
k

i
} attached

to them as ⇣i and let there be l such ⇣i in G0. That is, ⇣i 2 V (G0) has
no 3-cycles attached to each of them, for all 1  i  l. Note that as
per the description of G0, for any {xi, xj} 2 E(G0), at most one of the
vertices (xi or xj) can be a vertex ⇣i. Therefore we have, 0  l  n.
An illustration of the graph G0 is shown in Figure 7.4.

Now, let us look at the regular vertices and fundamental sets in G0.
To recollect the concept of regular vertices and fundamental sets, see
Section 3.4. The vertex w and all the xi of G0 with at least one 3-cycle
{xi, x

k�1
i

, x
k

i
} attached to them, are cutpoints of G0. That is, the set

of cutpoints in G0 is {w} [
⇣
{xi : 1  i  2n}\

S
l

i=1{⇣i}
⌘
. The vertex

w and all the non-cutpoints of G0 are regular in G0.
Let us now focus on the fundamental sets in G0. For i 2 [2n],

let si number of 3-cycles, not containing the vertex w, be attached to
xi 2 V (G0). Then the fundamental set in G0, containing the vertex w,

is of the form {w} [
S

1i2n{x
k1

i
, x

k2

i
, . . . , x

ksi
i

}, where ku 2 [2si] and
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none of the vertices xku
i

are adjacent to each other. Note that, for the
fundamental set T with w 2 T , and any exceptional pair (C,C 0) in G0,
we have

�
T [NG0(T )

�
\
�
V (C) [ V (C 0)

�
6= ;.

⇣i

xj

w

...
x2
j

x1
j

xk�1
j

xk
j

...

... ...

...

. . .

Figure 7.4: An illustration of graph G0

For graph G0, and for any i, j 2 [2n], the building blocks of any
fundamental set not containing w are as follows.

(i) Suppose s is the number of 3-cycles attached to the vertex xi that
do not contain the vertex w. Then, the set {xk1

i
, x

k2

i
, . . . , x

ks
i
},

where ku 2 [2s], and none of the vertices x
ku
i

adjacent to each
other, is fundamental in G0.

(ii) Let {xi, xj} 2 E(G0), and let t be the number of 3-cycles attached
to the vertex xj that do not contain the vertex w. Then, the set
{xi, x

k1

j
, x

k2

j
, . . . , x

kt
j
}, where none of the vertices xkv

j
are adjacent

to each other for kv 2 [2t], forms a fundamental set in G0.

Note that any fundamental set T in G0 with w /2 T is either one of
the listed building blocks or can be expressed as their union. Moreover,
for any fundamental set T in G0 consisting of building blocks listed in
(ii), we have w 2 NG0(T ).

Proposition 7.2.3. For the triangular cactus G0
(Figure 7.4), let T

be the set of all fundamental sets T in G0
such that w 2 NG0(T ) and�

T [NG0(T )
�
\
�
V (Ci)[V (C 0

i
)
�
= ;, for any exceptional pair (Ci, C

0

i
).

Then,

SG0\SG0 =
[

T2T

(qi + FT ) [
[

i

(qi + Fw), (7.1)

where the index i is taken over all possible exceptional pairs (Ci, C
0

i
) of

G0
, for which we define qi =

P
i
(ECi + EC

0
i
) /2 SG0.
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Proof. As we have seen in Section 3.4, the normalization of edge ring
k[G0] can be expressed as

SG0 = SG0 [ Z�0{EC + EC0 : (C,C 0) are exceptional in G0}.

Also note that in (7.1), we choose i in accordance with Lemma 7.2.1.

(�) Let ↵ 2 qi + Fw for some qi. This implies that ↵ does not have
any contribution from any edges adjacent to w. Thus, ↵ 2 SG0\SG0 .
Note that, all T 2 T is such that

�
T [NG(T )

�
\
�
V (Ci)[ V (C 0

i
)
�
= ;.

Therefore, any combination of edges of the facet FT added to qi never
belong to SG0 . Hence, (qi + FT ) 2 SG0\SG0 , for all T 2 T.

(⇢) Now let us prove that SG0 ⇢ SG0 [
S

T2T(qi+FT )[
S

i
(qi+Fw).

Let ↵ 2 SG0 . We can write ↵ = � + �, where � 2 SG0 and � 2
Z�0{EC + EC0 : (C,C 0) are exceptional in G0}.
Case 1. Let ↵w = 0. This implies �w = 0 and we have � 2 Fw. From
the structure of G0, we can see that any ECi + ECi0 + ECj + ECj0 2 SG0

(in Lemma 7.2.1) is always contained in the facet Fw. Thus, we express
↵ = qi + Fw, for some i.

Case 2. Let ↵w > 0. This implies �w > 0 and indicates that among the
edges defining the vector �, there must be at least one edge adjacent
to w, say {v, w}. By Lemma 7.2.2, we have ECi + EC

0
i
+ ev + ew 2 SG0

if the vertex v belongs to
�
V (Ci) [ V (C 0

i
)
�
[ NG0

�
V (Ci) [ V (C 0

i
)
�
.

Let us consider that v /2
�
V (Ci) [ V (C 0

i
)
�
[NG0

�
V (Ci) [ V (C 0

i
)
�
, and

therefore ECi +EC
0
i
+ev +ew 2 SG0\SG0 . By observing the structure of

the fundamental sets, the existence of edge {v, w} in the formation of �
implies that � belongs to some facets corresponding to the fundamental
sets with building blocks of type (ii). Therefore, we see that {v, w} is
contained in some facet FT corresponding to the fundamental set T of
G0 such that v 2 T , w 2 NG0(T ), and

�
{v} [ NG0({v})

�
\
�
V (Ci) [

V (C 0

i
)
�
= ;. Hence, any ECi+EC

0
i
+ev+ew 2 SG0\SG0 can be expressed

as qi + FT for some T 2 T.

In both cases, we get the desired containment.

7.2.2 Type 2: w is not regular in G

Let eG be our second type of triangular cactus G such that there
exists at least one 3-cycle in eG containing w, and the remaining vertices
of this cycle do not have any other 3-cycles attached to them. Moreover,
diam eG = 4.
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As earlier, we denote the vertices xi with no 3-cycles {xi, x
k�1
i

, x
k

i
}

attached to them as ⇣i and let there be l such ⇣i in eG. Note that as per
the description of eG, there exists at least a pair of vertices (⇣i, ⇣j) in eG
such that {⇣i, ⇣j} 2 E(eG). Since diam eG = 4, the number of vertices

⇣i 2 V (eG) is at most 2(n� 1). Therefore we have, 2  l  2(n� 1). A
generic diagram of eG is shown in Figure 7.5.

⇣i

⇣j

w

...

... ...

...

. . .

Figure 7.5: An illustration of graph eG

The set of cutpoints of eG is {w} [
⇣
{xi : 1  i  2n}\

S
l

i=1{⇣i}
⌘
.

Since there exists at least one {⇣i, ⇣j} 2 E(eG), we observe that w is

not regular in eG. Note that, the only regular vertices in eG are the
non-cutpoints of eG.

For i 2 [2n], let si number of 3-cycles, not containing the vertex

w, be attached to xi 2 V (eG). Then {w} [
S

1i2n{x
k1

i
, x

k2

i
, . . . , x

ksi
i

},
where ku 2 [2si] and none of the vertices xku

i
adjacent to each other, is

the only fundamental set in eG that contains the vertex w.
Let us consider that there are m pair of vertices (⇣p, ⇣p0) in eG such

that {⇣p, ⇣p0} 2 E(eG). For such a pair of vertices (⇣p, ⇣p0), we define !p

as !p 2 {⇣p, ⇣p0}, 1  p  m. In eG, and for any i, j 2 [2n], the building
blocks of any fundamental set not containing w, are as follows.

(a) The set
S

m

p=1{!p} is fundamental in eG.

(b) Suppose that s number of 3-cycles that do not contain the vertex
w, are attached to xi. Then the set {xk1

i
, x

k2

i
, . . . , x

ks
i
}, where

ku 2 [2s] such that none of the vertices x
ku
i

adjacent to each
other, is a fundamental set in eG.
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(c) Let {xi, xj} 2 E(eG) and t number of 3-cycles that do not contain
w be attached to xj. Then,

S
m

p=1{!p}[{xi, x
k1

j
, x

k2

j
, . . . , x

kt
j
} with

none of the vertices x
kv
j
, kv 2 [2t], adjacent to each other, is a

fundamental set in eG.

Any fundamental set T in eG with w /2 T is either one of the listed
building blocks or can be expressed as their union. For any fundamental
set T consisting of the building blocks in (a) or (c), we observe that
w 2 N eG(T ).

Proposition 7.2.4. For the triangular cactus eG, let T be the set of

all fundamental sets T in eG such that w 2 N eG(T ) and
�
T [N eG(T )

�
\�

V (Ci)[ V (C 0

i
)
�
= ;, for any exceptional pair (Ci, C

0

i
). Then, we have

S eG\S eG =
[

T2T

(qi + FT ), (7.2)

where the index i is taken over all possible exceptional pair (Ci, C
0

i
) of

eG, for which we define qi =
P

i
(ECi + EC

0
i
) /2 S eG.

Proof. For our graph eG, we do not have any facet Fw since the vertex
w is not regular. Therefore note that, for any � 2 S eG, we have �w > 0.
Further, we can proceed with a similar proof as that of Proposition 7.2.3
and prove (7.2).

We combine all the above results and proceed to the proof of our
main theorem.

Proof of Theorem 7.1.2. Since diamG = 4, there exists at least
one pair of odd cycles of the form ({xp, x

k�1
p

, x
k

p
}, {xq, x

k
0
�1

q
, x

k
0

q
}) in

G such that the distance between xp and xq is 2. All such pairs of odd
cycles are exceptional in G. Therefore, the graph G does not satisfy
the odd cycle condition and by Theorem 3.4.5, we conclude that the
edge ring k[G] is non-normal irrespective of the two types of G.

In Sections 7.2.1 and 7.2.2, we explored the two types of graph G.
Let us assume that both G0 and eG are triangular cacti on d vertices.
We know that for a graph G on d vertices, all the facets FT and Fv

correspond to hyperplanes HT and Hv respectively and therefore are of
dimension d�1. Now, we compare (7.1) and (7.2) with the description
of holes given in (2.1) and observe that, all qi+FT and qi+Fw in both
(7.1) and (7.2) correspond to the holes of dimension d � 1. Hence by
Theorem 2.2.2, we say that the edge ring k[G] always satisfies (S2)-
condition.
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7.3 Conclusions

We have seen that the associated edge ring of a triangular cactus
of diameter 4 is always non-normal and satisfies (S2)-condition. More-
over, our primary theorem, Theorem 7.1.2 provides supporting pieces
of evidence to Conjecture 7.1.1.

Remark 7.3.1. By further automatic computations using Macaulay2,
we believe that every non-normal edge ring of triangular cacti satis-
fying (S2)-condition is always Cohen–Macaulay. To the best of our
knowledge, no triangular cactus has been identified whose edge ring
does not satisfy (S2)-condition. Hence, we expect that the edge ring of
every triangular cactus is Cohen–Macaulay.
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Part IV

Some graph-theoretical
approach
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Chapter 8

On super edge-magic total
strength of some unicyclic
graphs

Here, we work on some unicyclic graphs and provide shreds of evi-
dence to conjecture that the super edge-magic total strength of a cer-
tain family of unicyclic graphs consisting of odd cycle of length n and
having m edges is equal to 2m + n+3

2 . This chapter and all of its con-
tents are part of the author’s ongoing research [40] on super edge-magic
total strength.

8.1 Introduction to the main conjecture

A graph labeling is an assignment of integers to either the vertices
or edges, or both, subject to certain conditions. In this chapter, the
domain will usually be the set of all vertices and edges; such labelings
are called total labelings. A useful survey on graph labeling can be
found in [14].

Let G be a finite simple graph with vertex set V (G) and edge set
E(G). Let us assume that |V (G)| = p and |E(G)| = q, then G is called
a (p, q)-graph. Let uv := {u, v}, for any edge {u, v} 2 E(G). For any
undefined graph theoretical terms and notations in this chapter, one
may refer to [5] or [6].

An edge-magic total labeling of a (p, q)-graph G is a bijection

f : V (G) [ E(G) �! [p+ q]

such that for all edges uv 2 E(G), f(u) + f(uv) + f(v) = c(f), where
c(f) is a constant and is called the magic constant of f . A graph is
said to be edge-magic total if it has an edge-magic total labeling.
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The concept of edge-magic total strength of a graph G was intro-
duced in [1] as the smallest magic constant over all edge-magic total
labelings ofG. Let us denote it by em(G). Therefore, for an edge-magic
total labeling f of G with magic constant c(f),

em(G) = min
�
c(f) : f be an edge-magic total labeling of G

 
.

In this study, we explore an edge-magic total labeling f of the (p, q)-
graph G, such that f(V (G)) = [p]. This type of labeling is defined as
super edge-magic total labeling. If a graph G has a super edge-magic
total labeling, then G is called a super edge-magic total graph.

A necessary and su�cient condition for a graph to be a super edge-
magic total graph is stated in the following lemma.

Lemma 8.1.1 ([11, Lemma 1]). A (p, q)-graph G is a super edge-

magic total graph if and only if there exists a bijection f : V (G) �! [p],
such that the set {f(u) + f(v) : uv 2 E(G)} is consecutive. And, f

extends to a super edge-magic total labeling with magic constant c(f) =
p+ q +min{f(u) + f(v) : uv 2 E(G)}.

Remark 8.1.2. In the above lemma, the vertex labeling f can be
extended to a super edge-magic total labeling of G by defining

f(uv) = p+ q +min
�
f(ũ) + f(ṽ) : ũṽ 2 E(G)

 
� f(u)� f(v),

for every edge uv 2 E(G).

For any regular super edge-magic total graph, we have the following
result.

Lemma 8.1.3 ([11, Lemma 4]). Let G be an r-regular (p, q)-graph,
where r > 0. Let f be any super edge-magic total labeling of G. Then

q is odd and c(f) = 4p+q+3
2 , for all super edge-magic total labeling f .

By using Lemma 8.1.3, we can derive that for an odd cycle C of
length n, and any super edge-magic total labeling f of C,

c(f) = 2n+min{f(u) + f(v) : uv 2 E(C)} = 2n+
n+ 3

2

=) min{f(u) + f(v) : uv 2 E(C)} =
n+ 3

2
.

The article [9] illustrates that through the adoption of a super edge-
magic total labeling for a graph, it is possible to introduce additional
vertices and edges to the existing graph in a manner that ensures the
resulting constructed graph retains its super edge-magic total proper-
ties.
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Theorem 8.1.4 ([9, Theorem 2.4]). Let Gp be a connected super edge-

magic total (p, q)-graph with p � 3. Let f be a super edge-magic total

labeling of Gp and let us consider Ff (Gp) = {f(u)+f(v) : uv 2 E(Gp)}.
Let max(Ff (Gp)) = p + t, and for some a 2 V (Gp), f(a) = t. We

construct a graph fGp, by taking each copy of Gp and mK1, m � 1 and

connecting all the vertices of mK1 to the vertex a 2 V (Gp). Then, fGp

is also a super edge-magic total graph.

Avadayappan–Jeyanthi–Vasuki [2] defined the super edge-magic to-

tal strength of a graph G as the minimum magic constant over all the
super edge-magic total labelings of G, let us denote it as sm(G). That
is, we have

sm(G) = min
�
c(f) : f is a super edge-magic total labeling of G

 
.

Remark 8.1.5. Let G be a super edge-magic total (p, q)-graph. For
any v 2 V (G), the number of edges adjacent to vertex v is called the
degree of v, denoted by deg(v). The vertices that have degree 1 are
called the pendant vertices. Let f be a super edge-magic total labeling
of G, with the magic constant c(f). As noted in [1], each edge’s magic
constants are added together to produce the following result:

qc(f) =
X

v2V (G)

deg(v)f(v) +
X

e2E(G)

f(e). (8.1)

Furthermore, since Im(f) = [p + q] and f(V (G)) = [p], we can derive
that p+ q + 3  sm(G)  3p.

In this chapter, our attention is directed towards the family of uni-
cyclic graphs, comprising an odd cycle C (of length n) and ki pendant
vertices attached to each vertex i 2 V (C).

Let us consider G(n; k1, . . . , kn) to be the unicyclic (p, q)-graph con-
sisting of an odd cycle C = {a1, . . . , an} and ki number of pendant
vertices adjacent to each of the vertex ai, 1  i  n. Swaminathan
and Jeyanthi [46] established a range for the super edge-magic total
strength of this family of unicyclic graphs.

Theorem 8.1.6 ([46, Theorem 4]). The family of unicyclic (p, q)-graph
G(n; k1, . . . , kn), where n = 2s + 1, is a super edge-magic total graph

and

2q + 2 +
1

q

✓
m2 + 2m3 + · · ·+ (n� 1)mn +

n(n� 1)

2

◆

 sm
�
G(n; k1, . . . , kn)

�

 2(k1 + k3 + · · ·+ k2s+1) + 3(k2 + k4 + · · ·+ k2s) + 2n+ s+ 2,

87



where m1 � m2 � · · · � mn are integers such that {m1, . . . ,mn} =
{k1, . . . , kn}.

Corollary 8.1.7 ([46, Corollary 4.1]). For any unicyclic graph of the

form G(n; k1, . . . , kn) with ki = k for any 1  i  n,

sm(G(n; k, . . . , k)) = 2n(k + 1) +
n+ 3

2
.

The prime focus of this study is to provide supporting pieces of
evidence for the following conjecture.

Conjecture 8.1.8. Let G(n; k1, . . . , kn) be the super edge-magic total
unicyclic (p, q)-graph consisting of an odd cycle C = {a1, . . . , an} and
ki number of pendant vertices adjacent to each ai, 1  i  n. Then,

sm(G(n; k1, . . . , kn)) = 2q +
n+ 3

2
.

Within this chapter, we conduct a detailed investigation of three
distinct graphs within the family of unicyclic graphs G(n; k1, . . . , kn).
Our exploration yields significant support for Conjecture 8.1.8.

8.2 Unicyclic graph Gn,k,c

Let Gn,k,c := G(n; k, . . . , k, k + c), where 1  c <
2n(k+1)
n�3 . That is,

we consider that Gn,k,c is the unicyclic graph consisting of an odd cycle
C = {a1, . . . , an}, with k number of pendant vertices adjacent to each
of the vertices ai, 1  i  n� 1 and k + c number of pendant vertices
adjacent to vertex an. For illustration, see Figure 8.1. The number of
vertices and edges of the graph Gn,k,c is p = q = n(k + 1) + c. Let the
vertex set V (Gn,k,c) be

V (C) [
�
ai,j : 1  i  n� 1, 1  j  k

 
[
�
an,j : 1  j  k + c

 

and let the edge set E(Gn,k,c) be

E(C) [
�
aiai,j : 1  i  n� 1, 1  j  k

 
[
�
anan,j : 1  j  k + c

 
.

Theorem 8.2.1. The unicyclic graph Gn,k,c is a super edge-magic total

graph with super edge-magic total strength given by

sm(Gn,k,c) = 2n(k + 1) + 2c+
n+ 3

2
.

88



3

1

4

2

5

35

36

32

33

34

6
31

7
30

16

21

17

20

18

19

11
28

24

15

10

26

14

22

9

29

13

25

8

27

12
23

Figure 8.1: The graph G5,2,3

Proof. By Theorem 8.1.6, the graph Gn,k,c := G(n; k, . . . , k, k + c),

1  c <
2n(k+1)
n�3 , is super edge-magic total. From (8.1), for any super

edge-magic total labeling f of Gn,k,c, we have

qc(f) =
X

v2V (Gn,k,c)

deg(v)f(v) +
X

e2E(Gn,k,c)

f(e)

= q(2q + 1) + (k + 1)
X

ai2V (Cn)

f(ai) + cf(an).

By assigning smaller labels to vertices with higher degrees, we get
the least possible value of c(f), i.e., c(f) � 2q + 1 + (k+1)n(n+1)

2q + c

q
.

Hence, we have

sm(Gn,k,c) � 2q + 1 +
n(k + 1)(n+ 1)

2q
+

c

q
.

Since the super edge-magic total strength sm(Gn,k,c) is an integer,

we consider the integer part of n(k+1)(n+1)
2q + c

q
. We have

n+ 1

2
�
✓
n(k + 1)(n+ 1)

2q
+

c

q

◆
=

(n� 1)c

2(n(k + 1) + c)
.
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Since 1  c <
2n(k+1)
n�3 , we have (n � 1)c < 2(n(k + 1) + c). Therefore,

0 <
(n�1)c

2(n(k+1)+c) < 1. Hence,

sm(Gn,k,c) � 2q + 1 +
(n+ 1)

2

= 2n(k + 1) + 2c+
n+ 3

2
.

That is,

sm(Gn,k,c) � 2n(k + 1) + 2c+
n+ 3

2
. (8.2)

By Theorem 8.1.4 and Theorem 8.1.6, the graph Gn,k,c can be con-
sidered as the super edge-magic total graph constructed from the graph
G(n; k, . . . , k) with super edge-magic total labeling f

0 of G(n; k, . . . , k)
defined as follows.

For 1  i  n,

f
0(ai) =

8
>>><

>>>:

i+ 1

2
if i is odd,

n+ i+ 1

2
if i is even.

For 1  i  n� 1; 1  j  k,

f
0(ai,j) = n(k + 1)� (n� 1)(j � 1)� (i� 1).

And, f 0(an,k) = n+ j, 1  j  k.

Now, we consider a vertex labeling f : V (Gn,k,c) �! [p] as follows:

f(v) =

8
><

>:

f
0(v) if v 2 V (G(n; k, . . . , k)),

n(k + 1) + j � k if v = an,j, for k + 1  j  k + c.

(8.3)

As per the labeling defined in (8.3), for any uv 2 E(Gn,k,c) we
observe the following.

• If u, v 2 V (Gn,k,c), since f 0 is a super edge-magic total labeling of
the graph G(n; k, . . . , k), then {f(u) + f(v)} = {f 0(u) + f

0(v)} is
a consecutive sequence with highest element n(k + 1) + n+1

2 .

• If u = an and v = an,j, k + 1  j  k + c, then we observe that
{f(u) + f(v)} =

�
n+1
2 + n(k + 1) + 1, . . . , n+1

2 + n(k + 1) + c
 
is

a consecutive sequence.

90



Therefore, we see that {f(u) + f(v) : uv 2 E(Gn,k,c)} is a consecutive
sequence and min{f(u) + f(v) : uv 2 E(Gn,k,c)} = n+3

2 .
Thus by Lemma 8.1.1, the vertex labeling f extends to a super

edge-magic total labeling of Gn,k,c with c(f) = 2n(k + 1) + 2c + n+3
2 .

Hence,

sm(Gn,k,c)  2n(k + 1) + 2c+
n+ 3

2
. (8.4)

From (8.2) and (8.4), we have sm(Gn,k,c) = 2n(k + 1) + 2c+ n+3
2 .

Example 8.2.2. Super edge-magic total labeling of the graph G5,2,3

with strength sm(G5,2,3) = 40, is illustrated in Figure 8.1.

Example 8.2.3. Super edge-magic total labeling of graph G9,3,4 with
sm(G9,3,4) = 86 is illustrated in Figure 8.2.

1 6
2

7

3

84

9

5

36
28 20

49

57 65

35 27 19

45
53

61 26
34

18
58

50

66

25

17

33
54

62

46

16

24

32

67

59

51

15 23 31

63 55

47

14
22

30

68

60

52
29

21

13
48

56

64

10

11

12

37

38

39
40

71

70

69

44

43

42

41

80

79

78

77

72

73

74

75

76

Figure 8.2: The graph G9,3,4

8.3 Unicyclic graph Gn,k,�c

Let us consider the unicyclic graph Gn,k,�c := G(n; k, . . . , k, k � c),
1  c  k. For example, see Figure 8.3.
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ForGn,k,�c, the number of vertices and edges are p = q = n(k+1)�c.
Let the vertex set V (Gn,k,�c) be

V (C) [
�
ai,j : 1  i  n� 1, 1  j  k

 
[
�
an,j : 1  j  k � c

 

and the edge set E(Gn,k,�c) be equal to

E(C) [
�
aiai,j : 1  i  n� 1, 1  j  k

 
[
�
anan,j : 1  j  k � c

 
,

where 1  c  k.
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Figure 8.3: The graph G5,4,�2

Theorem 8.3.1. The unicyclic graph Gn,k,�c is a super edge-magic

total graph with super edge-magic total strength

sm(Gn,k,�c) = 2n(k + 1)� 2c+
n+ 3

2
.

Proof. By Theorem 8.1.6, the graph Gn,k,�c is super edge-magic total
and the lower bound of its super edge-magic total strength is:

sm(Gn,k,�c) � 2q + 2 +
1

q

✓
k(n� 1)

2
+

n(n� 1)

2
� c(n� 1)

◆
.
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Hence we have

sm(Gn,k,�c)

� 2q + 2 +
1

q

✓
k(n� 1)

2
+

n(n� 1)

2
� c(n� 1)

◆

= 2n(k + 1)� 2c+ 2 +
1

n(k + 1)� c

✓
n(n� 1)(k + 1)

2
� c(n� 1)

◆

= 2n(k + 1)� 2c+ 2 +
n� 1

2

✓
n(k + 1)� 2c

n(k + 1)� c

◆
.

Since sm(Gn,k,�c) is an integer, we will consider the integer part of
n�1
2

�
n(k+1)�2c
n(k+1)�c

�
. We have n�1

2 �
n�1
2

�
n(k+1)�2c
n(k+1)�c

�
= (n�1)c

2(n(k+1)�c) . Since

c  k, we observe that (n� 1)c < 2(n(k + 1)� c). Therefore,

0 <
n� 1

2
� n� 1

2

✓
n(k + 1)� 2c

n(k + 1)� c

◆
< 1.

Hence for Gn,k,�c, we have

sm(Gn,k,�c) � 2n(k + 1)� 2c+ 2 +
n� 1

2

= 2n(k + 1)� 2c+
n+ 3

2
.

That is,

sm(Gn,k,�c) � 2n(k + 1)� 2c+
n+ 3

2
. (8.5)

Now, we define a vertex labeling f : V (Gn,k,�c) �! [p] as follows:

For 1  i  n,

f(ai) =

8
>>><

>>>:

i+ 1

2
if i is odd,

n+ i+ 1

2
if i is even.

f(ai,j) = n(k + 2)� c� (n� 1)j � i, 1  i  n� 1, 1  j  k.

f(an,j) = n+ j, 1  j  k � c.

(8.6)

As per the labeling defined in (8.6), for any uv 2 E(Gn,k,�c) we observe
the following.

• If u, v 2 V (Cn) then, {f(u) + f(v)} =
�
1 + n+1

2 , . . . , n + n+1
2

 
is

a consecutive sequence.
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• If u = an and v = an,j, 1  j  k�c, then we have {f(u)+f(v)} =�
n+ n+3

2 , . . . , n+ k � c+ n+1
2

 
, a consecutive sequence.

• If u = ai and v = ai,j, for 1  i  n� 1; 1  j  k, then we have
{f(u) + f(v)} =

�
n + k � c + n+3

2 , . . . , n(k + 1) � c + 2
 
, which

is a consecutive sequence.

Thus we observe that {f(u) + f(v) : uv 2 E(Gn,k,�c)} is a con-
secutive sequence with min{f(u) + f(v) : uv 2 E(Gn,k,�c)} = n+3

2 .
Therefore by Lemma 8.1.1, the vertex labeling f extends to a su-
per edge-magic total labeling of Gn,k,�c with a magic constant c(f) =
2n(k + 1)� 2c+ n+3

2 . Hence,

sm(Gn,k,�c)  2n(k + 1)� 2c+
n+ 3

2
. (8.7)

From (8.5) and (8.7), we have sm(Gn,k,�c) = 2n(k+1)� 2c+ n+3
2 .

Example 8.3.2. Super edge-magic total labeling of the graph G5,4,�2

with super edge-magic total strength sm(G5,4,�2) = 50, is illustrated
in Figure 8.3.
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Figure 8.4: The graph G5,8,�6
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Example 8.3.3. Super edge-magic total labeling of the graph G5,8,�6

with super edge-magic total strength sm(G5,8,�6) = 82, is illustrated
in Figure 8.4.

8.4 Unicyclic graph G(n; k, r)

Let G(n; k, r) be the unicyclic graph G(n, k1, . . . , kn) with ki = k, if
i 6= r, n � r and kr = kn�r = k + 1 for any odd number r, 1  r < n.
For an illustration, see Figure 8.5.

Let p = q = n(k + 1) + 2, be the number of vertices and edges of
G(n; k, r). Let the vertex set V (G(n; k, r)) be

V (C) [
�
ai,j : 1  i  n, 1  j  k

 
[ {ar,k+1, an�r,k+1},

and the edge set E(G(n; k, r)) be

E(C) [
�
aiai,j : 1  i  n, 1  j  k

 
[
�
aiai,k+1 : i 2 {r, n� r}

 
.
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Figure 8.5: The graph G(5; 2, 1)

Theorem 8.4.1. The unicyclic graph G(n; k, r), where r is any odd

number such that 1  r < n, admits a super edge-magic total labeling

and has a super edge-magic total strength

sm(G(n; k, r)) = 2n(k + 1) + 4 +
n+ 3

2
.
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Proof. By Theorem 8.1.6, the unicyclic graph G(n; k, r) is a super edge-
magic total graph with

sm(G(n; k, r))

� 2q + 2 +
1

q

✓
(k + 1) + 2k + · · ·+ (n� 1)k +

n(n� 1)

2

◆

= 2n(k + 1) + 6 +
1

n(k + 1) + 2

✓
nk(n� 1)

2
+

n(n� 1)

2
+ 1

◆

= 2n(k + 1) + 6 +
n� 1

2

✓
n(k + 1)

n(k + 1) + 2

◆
+

1

n(k + 1) + 2
.

That is, we have

sm(G(n; k, r)) � 2n(k+1)+6+
n� 1

2

✓
n(k + 1)

n(k + 1) + 2

◆
+

1

n(k + 1) + 2
.

We know that sm(G(n; k, r)) is an integer and we see that

n� 1

2
�
✓
n� 1

2

✓
n(k + 1)

n(k + 1) + 2

◆
+

1

n(k + 1) + 2

◆

=
n� 1

2

✓
2

n(k + 1) + 2

◆
� 1

n(k + 1) + 2

=
n� 2

n(k + 1) + 2
< 1.

Hence, we observe that the integer part of n�1
2

�
n(k+1)

n(k+1)+2

�
+ 1

n(k+1)+2

is n�1
2 and we have

sm(G(n; k, r)) � 2n(k + 1) + 6 +
n� 1

2
= 2n(k + 1) + 4 +

n+ 3

2
.

Therefore, we can express

sm(G(n; k, r)) � 2n(k + 1) + 4 +
n+ 3

2
. (8.8)

Now, if we prove that there exists a super edge-magic total labeling
f of G(n; k, r) with magic constant c(f) = 2n(k + 1) + 4 + n+3

2 , then
our proof is complete.

Let us define a vertex labeling f : V (G(n; k, r)) �! [p] as follows.

For 1  i  n,

f(ai) =

8
>>><

>>>:

i+ 1

2
if i is odd,

n+ i+ 1

2
if i is even.

(8.9)
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And,

f(ai,j) = n(k � j + 2)� 2f(ai) + 2, 1  i  n, 1  j  k � 1,

f(ai,k) =

8
><

>:

2n+ 2� 2f(ai) if 1  f(ai)  n+1
2 ,

n(k + 2) + 4� 2f(ai) if n+3
2  f(ai)  n� f(ar),

n(k + 2) + 2� 2f(ai) if n� f(ar) + 1  f(ai)  n,

f(ar,k+1) = n(k + 1) + 2,

f(an�r,k+1) = nk + r + 3.
(8.10)

As per the above labeling, for uv 2 E(G(n; k, r)), we observe that:

• For u, v 2 V (C), {f(u) + f(v)} =
�
1 + n+1

2 , . . . , n + n+1
2

 
is a

consecutive sequence.

• Let us consider u = ai and v = ai,j, for any 1  i  n, and
1  j  k � 1. Then the set

{f(u)+f(v)} =
�
n(k�j+2)�f(ai)+2: 1  i  n, 1  j  k�1

 

is a consecutive sequence with minimal element 2n+ 2 and max-
imal element n(k + 1) + 1.

• Let u = ai and v = ai,k, 1  i  n.

– If 1  f(ai)  n+1
2 , then we observe that

{f(ai) + f(ai,k)} =
�
n+

n+ 3

2
, . . . , 2n+ 1

 
,

is a consecutive sequence.

– If n+3
2  f(ai)  n� f(ar), then {f(ai)+ f(ai,k)} is consecu-

tive and equals
�
n(k+1)+4+f(ar), . . . , n(k+1)+4+ n�3

2

 
.

– If n � f(ar) + 1  f(ai)  n, then we see that the set
{f(ai) + f(ai,k)} =

�
n(k+ 1) + 2, . . . , n(k+ 1) + 1+ f(ar)

 
,

is consecutive.

• For u = ar and v = ar,k+1, f(u) + f(v) = n(k + 1) + 2 + f(ar).

• If u = an�r and v = an�r,k+1, then f(u) + f(v) = n(k + 1) + 3 +
f(ar).

Therefore, we observe that {f(u) + f(v) : uv 2 E(G(n; k, r))} is a con-
secutive sequence whose minimum element is n+3

2 .
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Hence by Lemma 8.1.1, the vertex labeling f extends to a super
edge-magic total labeling of G(n; k, r) with c(f) = 2n(k+1)+4+ n+3

2 .
Hence,

sm(G(n; k, r))  2n(k + 1) + 4 +
n+ 3

2
. (8.11)

From (8.8) and (8.11), we have

2n(k + 1) + 4 +
n+ 3

2
 sm(G(n; k, r))  2n(k + 1) + 4 +

n+ 3

2
.

This implies, sm(G(n; k, r)) = 2n(k + 1) + 4 + n+3
2 .

Example 8.4.2. A super edge-magic total labeling of G(5; 2, 1) with
super edge-magic total strength sm(G(5; 2, 1)) = 38 is illustrated in
Figure 8.5.

Example 8.4.3. Super edge-magic total labeling of G(5; 2, 3) with
super edge-magic total strength sm(G(5; 2, 3)) = 38 is illustrated in
Figure 8.6.
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Figure 8.6: The graph G(5; 2, 3)
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8.5 Conclusions

In this chapter, we determine the super edge-magic total strength of
three variations of G(n; k1, . . . , kn), a certain family of unicyclic (p, q)-
graphs. All three of them have super edge-magic total strength equal
to 2q + n+3

2 . These results can be considered as the preliminary steps
to provide evidence in proving the Conjecture 8.1.8.
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