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Abstract

Real-world data are usually in the form of spatio-temporal data, such as weather sys-

tems, transport demand, and disease outbreaks. However, the complexity of this type

of data means that analysis techniques are not as well established. Identifying relation-

ships, specifically causal relationships, within the spatio-temporal data can yield further

understanding of natural phenomena, but the area is not well understood. This work

proposed a method to extract causal relations of clusters from multi-dimensional event

sequence data. The proposed Granger Cluster Sequence Mining (G-CSM) algorithm

identifies the pairs of spatial data clusters that have causality over time with each other.

It extended the Cluster Sequence Mining algorithm, which utilized a statistical inference

technique to identify occurrence relation, with a causality inference based on Granger

causality. In addition, the proposed method utilizes a false discovery rate to control

the significance of the causality. The method was tested using both synthetic data and

semi-real data and can extract embedded causal relations with high F-scores over differ-

ent sets of data even under high spatial noise. False discovery rate also helps to increase

the accuracy even more under such cases and also makes the algorithm less sensitive

to the hyper-parameters. Furthermore, a local density estimation procedure was also

proposed. This procedure is a pre-processing step to the vector autoregressive modeling

of point-process data, a process which was used during Granger causality inference in

the proposed algorithm, by applying a density estimation. Results on synthetic data

showed that the procedure improved model accuracy, especially under sparse data.
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Chapter 1

Introduction

Many of the data being generated today are spatio-temporal in nature. Many real-

world organizations deal with a large amount of spatio-temporal data on a day-to-

day basis. Such organizations are spread across multiple fields including aerospace,

meteorological, transportation, police, and healthcare [1]. The applications also range

widely including the ecology and environmental management [2], crime analysis [3],

transport route analysis [4], disease management [5], precision agriculture [6], and many

more.

Spatio-temporal data have both a spatial part and a temporal part. They represent

multidimensional, continuous data at a specific time point. This is in contrast to spatial

data, which are just data points in some n-dimensional space. They are also different

from temporal data, which are data over a span of time. At present, there are still many

challenges in the analysis of spatio-temporal data. Because they have both spatial and

temporal parts, spatio-temporal data are inherently more complex than just spatial

data or temporal data, with data and relationships that may span across spatial and

temporal domains. Existing techniques for spatial data or temporal data do not work

well with spatio-temporal data. Moreover, precisely because the spatio-temporal data

span across many data domains, domain knowledge is also required [7]. Therefore,

new techniques are being researched and developed specifically for spatio-temporal data

and each problem domain [1] to extract knowledge from a wealth of spatio-temporal

databases.

A spatio-temporal point process [8] is a type of point process data (Fig 1.1a). A

regular point process is a list of timestamps, or events, on a timeline. That is, the
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(a) Regular point process
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𝓓

(b) Spatio-temporal point process. D ⊂ Rn

Figure 1.1: Point process and spatio-temporal point process data

data itself is the timestamp. This is in contrast to time series where the timestamps

have constant intervals with the actual data being the value at each timestamp. When

each event has an associated value, that is both the timestamp and the value are the

data, this becomes a spatio-temporal point process. This is illustrated in Fig. 1.1b.

A spatio-temporal point process can represent a pinpoint spatial location on a sparse,

unscheduled timeline. An example of a spatio-temporal point process includes a list

of points in an Euclidean space, etc. This type of data has freedom in both temporal

and spatial dimensions. Many real-world spatio-temporal data can be represented as a

point process, such as earthquake epicenters as a list of latitude and longitude as the

spatial part and the occurrence time as the temporal part; or social network posts can

be considered as features extracted by natural language processing (NLP) algorithm for

the spatial part and the post time as the temporal part.

Existing research using point-process spatio-temporal data includes modeling earth-

quake [9] or ambulance demand [10]. A direct model of a spatio-temporal point process

is very hard to optimize, resulting in various model simplifications [11]. Newer develop-

ments included neural-network-based method [12] or using reinforcement learning [13].

These works focused on modeling the actual point process, which is a mathematical

model that captures the occurrence of each data point in the spatio-temporal domain.

This model is useful for studying the mechanics of each occurrence or for predicting fu-

ture events, however, none of the existing methods deal with relation extraction. Since a

2
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(a) Causal relation in the spatio-temporal point process. D ⊂ Rn

(b) A PC algorithm finding causal relations within random variables. A is
the true relations, with the PC algorithm iterating to find the right relations
[14].

Figure 1.2: Different types of causal relations.

spatial cluster of these data can represent a meaningful concept, the causal relationships

between these clusters over the time series indicate the mechanism of operation. Thus,

the objective of this thesis is to find two spatial clusters of the data that have a causal

relationship with each other, as shown in Fig 1.2a. This is in contrast to a standard

causal relation graph from random variables, where a causal relation, or relations graph,

is extracted from a set of random variables with no regard to time of occurrence[14],

shown in Fig 1.2b.

There were many existing works for identifying causal relationships within purely

temporal or spatial data. Granger causality [15], for example, can identify causal re-

lations between time series, or PC algorithm [16] for discrete random variables. When

extended to spatio-temporal data, even though several works can identify non-causal

relations [1], none can identify causal relations. With causal relations, a more thorough

understanding of the occurrence mechanism could be achieved.

A brief comparison of existing works is shown in Table 1.1. This table shows the

3



Table 1.1: A brief comparison of different spatio-temporal relation mining methods

Field/Method Input Output
Spatial division Type of relations

Geoinformatics [17] Multivariate
time-series Predefined Causality

Neuroscience [18] Spatio-temporal
raster Estimated Causality

Cluster Sequence Mining [20] Spatio-temporal
Point-process Estimated Co-occurrence

Proposed Method Spatio-temporal
Point-process Estimated Causality

difference in relationship mining within spatio-temporal data. In the geoinformatics

field [17], the spatial part is just a sensor located at different locations, thus making the

data a multivariate time series. They then try to find causality from these data, with

the aforementioned sensor locations forming a predefined spatial division. On the other

hand, in neuroscience [18], they usually work with a spatio-temporal raster, a series of

images. This work aimed to find causality between regions from these data.

Recently, Co-occurrence Cluster Mining (CCM) [19] and Cluster Sequence Mining

(CSM) [20] algorithms were previously proposed algorithms directly for extracting rela-

tionships between spatial clusters from the point-process spatio-temporal data, namely,

a co-occurrence relationship. The CSM algorithm can successfully find the correlation

between earthquake occurrences during the 2011 Great East Japan earthquake, as shown

in Fig. 1.3. However, since correlation does not imply causation, the result from those

algorithms cannot be considered causal relations.

The concrete problem of this work is detailed in Fig. 1.4. With spatio-temporal

point process data (Fig. 1.4a), this work aims to, firstly, perform spatial clustering of

the point process (Fig. 1.4b), before trying to find pairs of spatial clusters that have a

causal relationship with each other (Fig. 1.4c and 1.4d).

To solve the aforementioned problem, in this thesis, the Granger Cluster Sequence

Mining (G-CSM) algorithm is proposed. It is an extension of the Cluster Sequence

Mining (CSM) algorithm. The Granger Causality [15] method for causality inference

was integrated. Granger causality is one of the most commonly used temporal causality

analysis techniques. It originated from the field of economics, where it is being used

to analyze the relationships between different time series. The principle of Granger

causality is that if A causes B, then B must be easier to predict using all available

4



Figure 1.3: Correlation between spatial clusters of earthquake occurrence as extracted
by Cluster Sequence Mining algorithm.

data than to predict using all available data except A. A False Discovery Rate (FDR)

method was also used to quantify the significance of the detected causality, allowing us

to be certain of the statistical significance and to eliminate false positive results. The

proposed algorithm can extract causal relations between spatial clusters within a point

process spatio-temporal data according to the causality proposed by Granger.

The performance of our proposed G-CSM algorithm was validated against the orig-

inal CSM algorithm using synthetic data. The result showed that the proposed G-CSM

algorithm can detect causal relations more accurately and is more robust against noise.

The hyper-parameters of the G-CSM algorithm were analyzed, and was found that the

G-CSM algorithm is less sensitive to them, unlike the original CSM which required a

careful setting of its hyper-parameters. The usage of FDR for statistical testing also

increases the accuracy of the algorithm. The G-CSM algorithm was also applied to

the semi-real world data, namely, existing real-world spatial data were used with the

synthetic temporal relationships.

Furthermore, a new procedure called local density estimation was proposed, which

is a pre-processing step to modeling the vector autoregressive (VAR) model. A VAR

model is used for modeling time-series data by modeling the next step in the series

5
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Figure 1.4: Concrete problem definition
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using the history of itself. The G-CSM algorithm utilized a VAR model during its

causality inference steps, by dividing the timeline into multiple small time windows and

creating a time series out of the presence of events in each window. By applying a kernel-

density estimation as a pre-processing step to the VAR model that was used for Granger

causality estimation, the procedure allowed the VAR model to better capture the precise

timestamp of each data in the point process, especially on sparse data, as well as allow

easy scaling to longer temporal history length by having a few parameters covering long

time span, while keeping the number of inputs to the model at a manageable level.

Using a linear and Gaussian kernel density model, experiments with synthetic data

generated with the Poisson model were performed. The result showed that the local

density estimation procedure improved the accuracy of prediction while still maintaining

the same number of inputs.

The contributions of this thesis are:

• Granger Cluster Sequence Mining (G-CSM) algorithm is proposed. The G-CSM

algorithm is an extension to the existing Cluster Sequence Mining algorithm by

adding Granger causality inference.

• The application of the FDR procedure for evaluation of the significance of the

causality is introduced.

• Local density estimation procedure is proposed. This is a pre-processing step for

vector autoregressive modeling of point process data to enhance the accuracy and

robustness of the model especially on sparse data.

This thesis is organized as follows: In Chapter 2, the related literature and surveys

are discussed. In Chapter 3, the Granger Cluster Sequence Mining (G-CSM) algorithm

is proposed, and the local density estimation procedure is detailed in Chapter 4. The

discussions are in Chapter 5, with Chapter 6 concluding the thesis.

7



Chapter 2

Literature review

2.1 Spatio-temporal point process

2.1.1 Intensity Function

A point process is a framework used for modeling discrete points, which are modeled as

an intensity function of the existence of points over the domain — spatial domain for

spatial point-process and temporal domain for temporal point process [21].

A point process can be handled in many different ways. Timestamps T1 < T2 < ... <

Tn may be considered, or the interval time Si = Ti+1 − Ti. Alternatively, a counting

process may be used:

N(t) = ‖{Ti ≤ t}‖, (2.1)

where ‖ · ‖ represent the cardinality of the set, or the interval count:

N(a, b] = N(b)−N(a). (2.2)

The intensity function is modeled as the cumulative incidence function (CIF), generally

in the form:

λ(t) = lim
∆→0

Pr(N(t+∆, t] = 1)

∆
. (2.3)

The intensity function may be in the form of simple Poisson distributions or more

complex distributions [22]. The spatio-temporal point process is a type of point process

for use with spatio-temporal data rather than just pure temporal or spatial data.

8



2.1.2 First-order Separability

For the spatio-temporal point process, the intensity function can be roughly separated

into two groups: with or without first-order spatio-temporal separability [8]. This dis-

tinction is based on whether the intensity function can be factored into two parts: the

temporal part and the spatial part.

The models with first-order spatio-temporal separability are usually simpler and have

previously been used to model and predict real-world phenomena, such as earthquakes

[23, 24], which model the intensity function directly after Epidemic Type Aftershock-

Sequence (ETAS) model. Other earthquake prediction models such as [9] use the Hawkes

model for temporal modeling and just a kernel function for spatial modeling. There is

also the work [12] which uses Neural Ordinary Differential Equations (Neural ODE)

and Continuous Normalizing Flows (CNF) to model the spatial and temporal intensity

function.

On the other hand, this separability usually hinders the accuracy of the model, so

there were also many types of research with non-separatable intensity functions. A

Marked Recurrent Temporal Point Process model [25] extracted the spatial part into

a feature vector and used these features as a part of their temporal model. Some use

deep learning to model the intensity function [26] by creating representative points

in the spatio-temporal space and calculating the final intensity as a function of these

representative points.

In general, the spatio-temporal point process framework deals with modeling the

spatio-temporal discrete data using a point process framework. While that is useful to

study the occurrence mechanism and predict future events, the relationships between

each event in the model are not explicitly defined. Only a few works exist on the topic

of extracting relations of clusters in spatio-temporal point process modeling as discussed

in Section 2.2.

Higuchi et al. proposed a model [27] that uses an expectation-maximization algo-

rithm over both the Gaussian mixtures (the spatial part) and their temporal influences

on each other (the temporal part). Their model can discover latent influences between

each spatial cluster, however, there are two main limitations: the number of possible

spatial clusters is fixed, and the relationship is derived from the coefficients of the model

predictors and not a definite causal relationship. Alternatively, Zhu et al. [28] proposed

a deep learning model that can generate heatmaps of spatial influence for each spatial

9



area for interpretation.

2.1.3 Spatial Cluster with Temporal Relation

On the other hand, several works use the Spatio-temporal point process differently.

That is, there are spatial parts in the data, but those spatial parts are fixed points.

The example includes neural activities modeling [29]. This work does not consider these

types of data, as those are better modeled as multivariate time series.

2.2 Relation mining

Relation mining is a type of data mining where a relation between each random variable

is needed to be determined. This can be many kinds of relationships: similarity, dis-

similarity, causal, or co-occurrence, for example. Specifically for spatio-temporal data,

relationships can be defined in many ways, for example, the similarity between occur-

rence patterns between two spatial areas. However, this work mainly considers the

causal or co-occurrence relation between two spatial areas. Even under this definition,

the relation can still be divided into two types: where cause-effect occurs at the time

same (no time lag), and where the effect occurs after cause (with time lag).

In the case where no time lag is observed between the associating entities, there are

many types of research, especially in neuroscience. Davidson et al. proposed a network

discovery algorithm using constraint tensor analysis from fMRI data [18], in which the

proposed algorithm can identify the node and relation between each brain region. An

example is shown in Fig. 2.1.

However, when a time lag element is added, this field becomes nearly non-existent.

Methods proposed for determining time-lagged relationship included a Co-Occurrence

Sequence Mining (CCM) [19] and Cluster Sequence Mining (CSM) [20].

CCM algorithm is an algorithm designed to extract a non-directional occurrence

correlation from the spatio-temporal event sequence. It worked by trying to first cluster

the data spatially, and then evaluate the co-occurrence coefficient of each pair of clusters.

CSM extends the CCM algorithm by adding a directional requirement and using a

probability inference of the lagged time (called time interval). However, both CCM and

CSM algorithms were for occurrence correlation and not causal relations.

Frequent Pattern Mining might also be related to relation mining. Frequent pattern
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Figure 2.1: Network relationship discovery from fMRI data. Figure is taken from [18]

mining is a technique to detect patterns that occur frequently in the data. For spatio-

temporal data, a variation of frequent pattern is defined including co-occurrence patterns

[30], sequential pattern [31], motif pattern [32], and network pattern [33].

2.3 Causal Inference

Causal inference is a process of concluding that there exists a causal relation based on

observed data. In science, causal inference is usually performed with a statistical method

using techniques that will be discussed below. Nevertheless, there are many challenges

in this field, mainly that correlation does not imply causation.

However, the word “causality” is not very well-defined. Granger was the first person

to define the word causality back in 1969 [15]. Granger stated that A causes B if it is

easier to predict B using all available data than to predict B with all available data using

A. Granger’s definition has been used extensively in economics. On the other hand,

Spirtes et al. introduced that there is no real definition of causality [34]. Instead, all

algorithms or techniques for causality inference must be verified using the “truth”, be

it either data that causalities are known, or synthetic data.

Exploratory causality analysis (ECA) is a practice of inferring causal associations in
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observed data using a statistical algorithm [34]. Specifically, ECA states that there exists

a data analysis technique that can identify random variables from the data collected

during a well-designed experiment, and infer a probable causal association between

them.

There are many kinds of research and techniques on causality analysis and causal

inference. The techniques can be divided into two main groups: for random variables

and for time series. Causality on random variables, basically, has the input of multiple

instances of random variables, and trying to infer causality between each variable that is

true across all instances. For causality on time series, usually, the objective is to find an

effect that is caused by something earlier in the time. This also creates time constraints

on the possible causality, as it cannot travel back in time.

The following popular techniques will be briefly discussed:

1. Time series:

• Granger causality

• Transfer entropy

2. Random variables:

• Constraint-based algorithms

Note that there were also other methods of causality inference other than explained

in this section, but most of the other methods are extensions or applications of the

discussed methods.

2.3.1 Granger Causality

Granger causality was among the earliest and most accepted methods for causality

analysis in temporal data. As stated above, the Granger causality technique is based

on the idea that A causes B if it is easier to predict B using all available data, than to

predict B with all available data using A.

The standard form of Granger causality was to use a vector autoregressive (VAR)
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Figure 2.2: A simplified view of Granger Causality model

model for pairwise causality analysis as follows.

A(t) =

p∑
j=1

Θaa,jA(t− j) +

p∑
j=1

Θab,jB(t− j) + EA(t)

B(t) =

p∑
j=1

Θba,jA(t− j) +

p∑
j=1

Θbb,jB(t− j) + EB(t).

Here, both variable A and B were the time series being predicted using the history of

both variables, EA(t) and EB(t) are residual (error) terms, Θ is the model parameters,

and p is the model order. The residual terms indicated the ability of the history to

predict the new value. If alternate models were created without each other history:

A(t) =

p∑
j=1

Θ′
aa,jA(t− j) + E′

A(t)

B(t) =

p∑
j=1

Θ′
bb,jB(t− j) + E′

B(t),

then this model represented predicting a variable using all available information except

the causal variable in the definition proposed by Granger. If E′
A(t) > EA(t), then B

caused A, and similarly if E′
B(t) > EB(t), then A caused B. The simplified diagram of

the process is shown in Fig. 2.2.

There was also a spectral Granger causality [35]. Spectral Granger causality uses

Fourier transform to transform the input data into a spectral domain, and detect the

causality on the transformed data. This type of Granger causality was being utilized

mainly in neuroscience applications.

Finally, the Granger causality for the spatio-temporal point process has also been

proposed [36]. This is discussed in Chapter 3.

This work uses the Granger Causality as the causality inference method because it
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is the most widely used method. It is also the only causality inference method that has

a point-process variation, thus, this work utilized Granger causality.

2.3.2 Transfer Entropy

Transfer entropy is a statistical method to measure the amount of directional data

between two random processes [37]. The transfer entropy measured the amount of

uncertainty reduced in knowing the future of B if the history of A is known.

Specifically, if there are two random processes A(t) and B(t), transfer entropy from

A to B can be written using Shannon entropy as:

TA→B = H (B(t)|B(t− 1 : t− L))−H (B(t)|B(t− 1 : t− L), A(t− 1 : t− L)) ,

where H(X) is a Shannon entropy of X, and L is the history length to consider. The

Shannon entropy represents the amount of information that is available in the random

processes and its history. Hence, this measures how much entropy is lost by introducing

another process into the mix. However, for the Gaussian process, it has been shown

that transfer entropy and Granger causality are equivalent [38].

2.3.3 Constraint-Based Algorithms

The constraint-based algorithms differ significantly from the previously discussed causal-

ity analysis algorithms. In the case of Granger causality and transfer entropy, a causal

direction is known beforehand (because they have time constraints from the temporal

feature). However, when the causality direction is not known as constraints, the above

algorithms fail.

In constraint-based algorithms, firstly, random variable dependencies and indepen-

dencies were inferred from the observed data, using Hoeffding’s test of independence or

other statistical testing methods. All probable causal models are created (including with

hidden cause) and are tested if the model fits with the observed (in)dependencies. The

only causal relations that can be inferred are those that exist in all the valid models.

While the above algorithm can be done naively, the state-of-the-art algorithm for

doing the constraint-based causal analysis is the PC algorithm [34], named after the

inventor, Peter and Clark. It involved a computational optimization to allow a speedup

over a naive implementation. Recently, there are also more parallel version [16] and
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GPU version [39]. There was also an algorithm designed to deal with non-Gaussian

data called LiNGAM [40].

15



Chapter 3

Granger Cluster Sequence Mining

(G-CSM)

3.1 Overview

The Granger Cluster Sequence Mining (G-CSM) algorithm extended the original Cluster

Sequence Mining (CSM) by implementing the Granger causality inference method to

detect causality. This is done by adapting the Granger casualty to work with point

process data.

This chapter first describes the working of the original CSM algorithm, then the

Granger Causality and its adaption to the point process data. Next, the actual G-CSM

algorithm is described. The False Discovery Rate (FDR) algorithm was introduced to

control the false positive rate of the causality inference. Finally, the experiments and

results are discussed.

3.2 Cluster Sequence Mining (CSM)

Cluster Sequence Mining (CSM) [20], on which the Granger Cluster Sequence Mining

(G-CSM) is based, is an algorithm designed to identify occurrence correlations in the

multidimensional event sequence. In this section, the detail of the original CSM algo-

rithm is described.

Definition 3.1. A Multidimensional Event Sequence is a sequence of length N of n-
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dimensional vectors of real number representing events, each with an associated times-

tamp, ordered sequentially:

X = {x(i) ∈ Rn} (|X| = N) (3.1)

Xt = 〈t(x(1)) ≤ t(x(2)) ≤ ... ≤ t(x(N))〉. (3.2)

An example of an event sequence is shown in Fig. 1.1b with 15 events in both spatial

(data space) and temporal (timeline) view.

The CSM algorithm took an input of multi-dimensional event sequence as defined in

Def. 3.1, and produced a cluster sequence pattern, which is defined as follow:

Definition 3.2. A Cluster Sequence Pattern is a pair of spatial clusters of the event

sequence, called prior cluster and posterior cluster.

SA→B = 〈A = {x(i)|Ai = 1},B = {x(i)|Bi = 1}〉, (A ∩B = ∅), (3.3)

where A and B is an assignment vector for set A and B respectively. The set A is a

prior cluster, while set B is a posterior cluster.

An example of a cluster sequence pattern is shown in Fig. 1.2a, created from the

event sequence in Fig. 1.1b.

The objective of the CSM algorithm is to find cluster sequence patterns that satisfy

the following three conditions:

1. Temporal proximity Each event in the posterior cluster x(b) ∈ B occurs im-

mediately or soon after some event in prior cluster x(a) ∈ A. The time interval

between the two events, tab = t(x(b)) − t(x(a)) must be a positive number and

follow some distribution Ψ(tab).

2. Frequency The more frequent x(a) ∈ A and x(b) ∈ B, the better the cluster

sequence. The number of pairs of events in the cluster sequence pattern must be

larger than some hyper-parameter Suppmin.

3. Spatial proximity The variance of the event within each cluster A or B must

be low. This was evaluated using the SSW (sum of squares within) measure. SSW

of A and B were evaluated independently.
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Figure 3.1: Overview of CSM algorithm

Figure 3.2: AHC dendrogram nodes

To find cluster sequence patterns that met these conditions, the CSM algorithm op-

erated in three steps: 1) Candidate Generation 2) Candidate Evaluation 3) Elimination

of Inclusive Relation. The overall process of the CSM algorithm is shown in Fig. 3.1.

Candidate Generation

For the candidate generation process, CSM used Agglomerative Hierarchical Clustering

(AHC). Each node in the AHC dendrogram was a possible cluster to be chosen, as shown

in Fig. 3.2.

The candidates were generated by trying to pair all possible clusters from the AHC

dendrogram, and checking if they met the frequency requirement (requirement 2) by

calculating each corresponding event. If the pair of clusters had the number of corre-

spondent events at least Suppmin, it was considered to be a candidate cluster sequence

pattern.

In this work, a simple one-to-one matching method was used to calculate the corre-
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sponding events. The simple one-to-one matching method considered each event in the

prior cluster A separately. For each event in the prior cluster A, the closest event in

posterior cluster B that had not been chosen was selected as the corresponding event.

This matching algorithm is shown in Alg. 3.1.

Algorithm 3.1 CSM one-to-one event matching algorithm
Input List of timestamps of prior and posterior A and B
Output List of time interval

1: Lb ← 0
2: T ← 〈〉
3: for all a ∈ A do
4: while Lb < |B| ∧B[Lb] < a do
5: Lb ← Lb + 1
6: end while
7: if Lb < |B| then
8: Append (B[Lb]− a) to T
9: end if

10: end for
11: return T

Evaluation

The pattern candidates were evaluated using the following evaluation functions:

F(λ̂AB) =
1

1 + exp(−τ λ̂AB)
, (3.4)

G(A,B) = exp

(
−SSW(A)2 + SSW(B)2

2σ2

)
, (3.5)

L(SA→B) = F(SA→B)
γ · G(A,B)(1−γ). (3.6)

F is a time proximity evaluation according to the time proximity requirement (re-

quirement 1). The greater the F , the higher the time proximity. This work assumed

that the lower the time interval between the events, the better the cluster sequence.

Thus, Ψ(tab) is an exponential distribution Exp(λ̂AB). The variable λ̂AB is the maxi-

mum likelihood parameter from the observed time interval. Thus, the higher the λ̂AB

the better the temporal proximity. The value was then normalized using the sigmoid
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function to be in a range of [0, 1]. The hyper-parameter of the sigmoid function, τ , is

used to control the relative resolution.

G is a space proximity function for the space proximity requirement. Similarly,

the higher the value of this function, the higher the spatial proximity. The sum of

square within (SSW) measure was used to evaluate each prior and posterior cluster

separately. SSW measures the variance of the data in relation to the cluster center. The

values were combined and normalized to [0, 1] using a Gaussian function, with σ being

a hyper-parameter to control the relative resolution.

L is the final evaluation score that combined both spatial and temporal proximity.

The final evaluation was constructed from the product of time and proximity function,

weighted by the parameter γ. The higher γ, the more important is the time proximity.

An equal weight would be γ = 0.5. The higher the final evaluation score, the better the

cluster sequence satisfied all 3 CSM requirements. Only the cluster sequence pattern

candidates with L(SA→B) ≥ Lmin, where Lmin is a predefined minimum threshold, were

considered as the final cluster sequence patterns.

Elimination of Inclusive Relation

If any two final cluster sequence patterns have an inclusive relation with each other,

then only the pattern with a higher evaluation score was kept.

Any two patterns were considered to have an inclusive relation with each other when

the prior cluster of one relation is a subset of the prior cluster of the other relation, and

the posterior cluster is also a subset of the other. Note that the subset may be in a

different direction for the prior and posterior clusters.

ClusterInclusive(X,Y) =



1 X ⊆ Y

1 Y ⊆ X

0 otherwise

(3.7)

PatternInclusive(SA→B, SC→D) = ClusterInclusive(A,C) · ClusterInclusive(B,D)

(3.8)

This operation can be performed efficiently by checking the AHC dendrogram. If
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any two clusters are (grand)parent/(grand)child of each other, the two clusters have an

inclusive relation.

3.3 Granger Causality

Granger causality [15] is causality testing based on the idea that: if A causes B, then it

must be easier to predict B using all available data than to predict B using all available

data except A.

Assuming a data A with A(t) representing the data A from time 0 to time t. Let

P (A(t)|X(t)) be an optimum predictor of A(t) based on data X(t), and let U(t) be

all available data up to time t. Denote the predictive error of P (A(t)|X(t)) with

ε(A(t)|X(t)), and the variance of ε(A(t)|X(t)) as σ2(A(t)|X(t)).

Definition 3.3. Granger Causality. If σ2(B(t + 1)|U(t)) < σ2(B(t + 1)|U(t) − A(t)),

then A is causing B. This is written as A granger-cause (g-cause) B.

In reality, it is not practical to construct a model using all the available data. Gen-

erally, the data used to model the predictor is usually limited to the observed variables.

For pairwise causality, only two random variables are considered.

In addition to the number of variables, there is also the problem of history length.

Using all available data, even just for two random variables, means using all observations

since the beginning. This is not practical for many reasons. The standard practice is to

limit the history to some small time frame.

Pairwise Point Process Granger Causality

Traditionally, the Granger causality works on time series or spectral data. However,

in this work, such data was not available. The only temporal data available was the

point process of the timestamps of the event occurrence time. A generic point process

Granger causality was proposed in [36]. This sub-section contains a slight adaption of

the method from the aforementioned work to fit the needs of the G-CSM algorithm.

Basically, a Granger causality of the cluster sequence pattern SA→B is whether A

g-causes B or not. A cumulative incidence function (CIF) for the point process of event
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Figure 3.3: Simplified view of the GLM model for point-process Granger causality.

B occurrence can be defined as:

λb(t|Hb(t)) = lim
∆→0

Pr[Nb(t+∆)−Nb(t) = 1]

∆
, (3.9)

where Nb(t) is a counting measure of event b within the time of (0, t], Hb(t) is an

occurrence history of all event occurrences up to time t for event b. The probability that

event b occurring in a small time window [t, t+∆) can be written as λb(t|Hb(t))∆.

Since it is not feasible to consider the entire history, only the history from time

[t−MiW, t] is considered. The time range was divided into Mi equal windows of length

W . The number of occurrence of event q in the time window [t−mW, t− (m− 1)W ] is

denoted as Rq,m(t) for q ∈ {A,B} is either a prior or posterior event, and m = 1, ...,Mi

is the window number.

To model the predictor for the event occurrence, a generalized linear model (GLM)

framework was used to model the CIF. In GLM, the logarithm of the CIF was modeled

using a linear combination of the occurrence history. This work currently assumes the

linearity of the data by setting a small window size. The simplified model is shown in

Fig. 3.3. In this case, the log-CIF is modeled as:

log λb(t|θb,Hb(t)) = θb,0 +
∑

q∈{A,B}

Mb∑
m=1

θb,q,mRq,m(t), (3.10)

where θb,0 is background activity, and θb,q,m is the effect of Rq,m(t) to the event b. The
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parameter vector, θb, is defined as:

θb = {θb,0, θb,a,1, ..., θb,b,1, ..., θb,b,Mb
} (3.11)

A point process likelihood function [29] was used to fit the GLM model. As [29]

shown that for the point process, both the Binomial and Poisson estimation in GLM

are equivalent, this work chose the former.

To make the calculation easier, the entire timeline [0, T ] was divided into K equal

non-overlapping windows, each with the length of W . The time window k would rep-

resent the time window (tk−1 = (k − 1)W, tk = kW ]. To represent this discretized

time, the history Hb(t) is written as Hb[k], and Rq,m(t) is written as Rq,m[k]. ∆Nb[k] =

Nb[k] −Nb[k − 1] is the number of event occurrence within the time (tk−1, tk], and the

CIF in eq. (3.9) is written as λb(tk|θb,Hb[k]). W should be chosen to be very small so

that ∆Nb[k] can only be either 0 or 1.

Thus, the likelihood function for the Binomial GLM model is given as:

Lb(θb) =

K∏
k=1

[λb(t|θb,Hb[k])∆]∆Nb[k] [1− λb(t|θb,Hb[k])∆]1−∆Nb[k] . (3.12)

As per the Granger causality defined in Def. 3.3, event A is considered to granger-

cause event B if there was a reduction in the likelihood between predicting the occurrence

using history of only B instead of using the history of both A and B. The log-likelihood

ratio, Γ(SA→B) is defined as:

Γ(SA→B) = log
Lb(θ

a
b )

Lb(θb)
, (3.13)

where the likelihood Lb(θb) was obtained from model fitting eq. (3.10), and the likelihood

Lb(θ
a
b ) was obtained using new CIF with history of A cut:

log λa
b (t|θab ,Ha

b (t)) = θab,0 +

Mb∑
m=1

θab,b,mRb,m(t). (3.14)

The log-likelihood ratio Γ(SA→B) in eq. (3.13) is considered to be a Granger causality

strength for pattern SA→B.
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3.3.1 Significance testing

The Granger causality strength from eq. (3.13) cannot tell us whether the relation is

significant enough to be considered a causality. Thus, the following null and alternative

hypotheses were formed:

H0 : θ
′ = θab (the limited predictor is better), (3.15)

H1 : θ
′ = θb (the full predictor is better). (3.16)

To test H0 against H1, likelihood-ratio test [41, 36] were used. The likelihood-ratio

test evaluated the difference of deviance ∆D flowing the χ2 distribution, which is given

by:

∆D = −2Γ(SA→B) ∼ χ2
w, (3.17)

where w is the degree of freedom, in this case, the difference in the dimensionality of

the two predictors, which is equal to the history length of Granger causality Mb.

Because the algorithm performed tens of thousands of significant tests throughout

the algorithm, there is a need to control the type-I error rate. False Discovery Rate

(FDR) procedure [42] was used, specifically the Benjamini–Hochberg procedure, which

can be summed up as:

1. Perform all significant testings and calculate the p-values.

2. Rank all p-values from low to high. So that p1 ≤ p2 ≤ p3 ≤ ... ≤ pn

3. Find maximum k such that pk ≤ k
nα, where α is the acceptable ratio of type-I

error.

4. Accept first k testings.

In the algorithm, FDR was applied over all cluster sequence pattern candidates. The

p-value of each candidate was calculated according to eq. (3.17). Threshold Γ0 for the

Granger causality strength was calculated such that:

P (Γ(SA→B) ≥ Γ0) = pk, (3.18)
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where pk is the highest p-value accepted by the FDR algorithm above, meaning Γ0 is

the likelihood ratio of the kth candidate pattern, sorted by the likelihood ratio.

3.4 Granger Cluster Sequence Mining (G-CSM)

Granger Cluster Sequence Mining (G-CSM) algorithm modified the original CSM as

described in Section 3.2 with a Granger causality-based time proximity.

3.4.1 Time Proximity Evaluation

The temporal evaluation is based on the strength and significance of the Granger causal-

ity of the sequence. This thesis proposed two different methods of temporal evaluation:

threshold strength and scaled strength.

1. Threshold strength. Use the significant threshold as a cutoff, resulting in the

sequence that is deemed to have significant causality to be evaluated using spatial

features only.

FTH(SA→B) =


0 (Γ(SA→B) < Γ0)

1 (Γ(SA→B) ≥ Γ0)

. (3.19)

2. Scaled strength. The strength is scaled from 0 to 1, with anything at or below the

significant threshold yielding 0, and increasing toward 1 as the causality strength

goes toward infinity.

FSC(SA→B) = max

(
0, 1 +

Γ0

Γ(SA→B)

)
. (3.20)

The temporal evaluation is combined with the spatial evaluation resulting in the
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final evaluation for G-CSM:

F(SA→B) = FTH or SC, (3.21)

G(A,B) = exp

(
−SSW(A)2 + SSW(B)2

2σ2

)
, (3.22)

L(SA→B) = F(SA→B)
γ · G(A,B)(1−γ). (3.23)

The spatial proximity G(A,B) in eq. (3.22) and the overall evaluation L(SA→B) in

eq. (3.23) is identical to the original CSM in eq. (3.5) and (3.6).

A cluster sequence pattern with Granger causality is called a Granger cluster se-

quence pattern (g-pattern). The full pseudocode of the G-CSM algorithm is shown in

Alg. 3.2.

3.5 Experiments

To validate the proposed algorithm, multiple experiments were performed with synthetic

data and semi-real data. First, the performance between the proposed G-CSM algorithm

with and without FDR, and the original CSM algorithm was compared. Various patterns

of the synthetic data were also tested. Second, an analysis of the hyper-parameters of

the proposed algorithm was performed. Lastly, a semi-real data was tested. No other

method can be compared other than CSM as discussed in Section 2.3.1.

3.5.1 Data generation

In many of the experiments, synthetic data with embedded true relations and noise were

used. The synthetic data contain an embedded relation, which is a pair of spatial clusters

that has the time interval between the corresponding event in prior and posterior event

clusters following an exponential distribution. The synthetic data also have noise added.

This process is similar to the synthetic data used in the CSM paper [20].

The embedded relation is generated as:

1. Generate N data points from a normal distribution for two clusters: x(i) ∈ X ∼

N (mA,ΣA) and y(i) ∈ Y ∼ N (mB,ΣB).
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Algorithm 3.2 G-CSM algorithm
Input List of event X and timestamps Xt

Output List of cluster sequence patterns
1: # Step 1: Candidate Generation
2: Perform AHC on X
3: C ← ∅ . Set of candidates
4: for all A ∈ AHC(X) do
5: for all B ∈ AHC(X) do
6: if A = B then
7: Continue.
8: end if
9: T ← min(‖A‖, ‖B‖)

10: if T ≥ Suppmin then
11: Append 〈A,B〉 to C
12: end if
13: end for
14: end for
15: # Step 2: Evaluation
16: D ← ∅ . Set of preliminary sequence patterns
17: for SA→B ∈ C do
18: L = L(SA→B) . eq. (3.23)
19: if L ≥ Lmin then
20: Append SA→B to D
21: end if
22: end for
23: # Step 3: Elimination of Inclusive Relation
24: Sort D by evaluation score, high to low.
25: for i from 1 to ‖D‖ do
26: for j from i+ 1 to ‖D‖ do
27: if PatternInclusive(D[i], D[j]) then
28: Remove D[j] from D
29: end if
30: end for
31: end for
32: return D
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Figure 3.4: Example of the input data

2. For each pair of 〈x(i),y(i)〉, generate a t(i) ∼ Exp(λ).

3. Set tGap = ((t1 − t0) −
∑

t(i))/(N − 1), the gap between each event. The input

parameter t0, t1, and λ should be set such that t(i) � tGap.

4. Each pair of 〈x(i),y(i)〉 are allocated a timestamp such that t(x(i)) = t0 + (i −

1)tGap +
∑i−1

j=0 t
(j) and t(y(i)) = t0 + (i− 1)tGap +

∑i
j=0 t

(j).

The noise is generated as a uniform spatial noise uniformly over the timeline:

1. Generate N data points from a uniform distribution: x(i) ∼ U [a,b].

2. For an event x(i), set t(x(i)) ∼ U [t0, t1]

In this experiment, the embedded relation was generated using the parameters N =

300, mA = (−2, 0), ΣA = (0.5, 0.5), mB = (2, 0), ΣB = (0.5, 0.5), t0 = 0, and t1 =

100, 000. Noises were generated using the parameters: a = (−4,−4), b = (4, 4), t0 = 0,

t1 = 100, 000. This created a single cluster sequence pattern, with noise directly over

the event cluster, to test the basic accuracy of the algorithm. The number of noise,

Nnoise is varied by each experiment.

The example spatial view of the data with Nnoise = 1000 and the histogram of the

interval between each relation with λ = 2 (average interval = 0.5) are shown in Fig. 3.4.

3.5.2 Evaluation measure

The precision, recall, and F-score of the identified prior and posterior clusters, and of

the relation itself, were measured. The equations for these scores are as follows:

28



Prec(C) =
‖C ∩X‖
‖C‖

, (3.24)

Rec(C) =
‖C ∩X‖

N
, (3.25)

where Prec(C) and Rec(C) are the precision and recall score of the cluster C given

the ground-truth cluster X. ‖ · ‖ denoted the cardinal of the event set. F-scores were

calculated as the harmonic mean between the precision and recall score.

This work defined relation-based precision and recall as follows:

Prec(SA→B) =
‖{i|x(i) ∈ A ∧ y(i) ∈ B}‖

0.5× (‖A‖+ ‖B‖)
, (3.26)

Rec(SA→B) =
‖{i|x(i) ∈ A ∧ y(i) ∈ B}‖

N
, (3.27)

where x(i) ∈ X and y(i) ∈ Y are ground-truth prior and posterior event clusters, with

x(i) and y(i) being the associated event pair as generated in Section 3.5.1, and N is

the number of event pairs in the ground-truth relations. The precision and recall score

of each relation was calculated using the number of pairs of events that were actually

related to each other in that relation.

Outputted relations were also counted. The number of relations in the generated

data is one. However, the algorithm may output more than one relation, whether because

it detected more than one relation in the input, or because multiple subsets of the same

relation were detected. In such cases, the prior clusters of all relations were merged, and

the posterior clusters were also similarly merged for the purpose of evaluation only.

3.5.3 Performance validation

This section compared the accuracy of the original CSM algorithm with the proposed

G-CSM algorithm with and without FDR.
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Table 3.1: AIC value at different history length. Bold is the lowest.

History
Noise 2 3 5 8 15
100 2928 2856 2781 2760 2771
500 3333 3269 3206 3191 3202
1000 3722 3675 3632 3625 3637
2000 4644 4621 4603 4603 4616
3000 5344 5333 5326 5330 5344

Parameter settings

The hyper-parameters were set with σ = 0.5, γ = 0.5, Lmin = 0.8. These parameters

were set to balance the effect of the spatial and temporal scores.

For the Granger causality, the window size W = 1 was used. The history length, Mb

was set using Akaike Information Criteria (AIC) [43] on the Granger causality model

according to Table 3.1. α for significant testing is set to 0.05, which means 5% error

rate for causality detection was accepted.

The Suppmin parameter, which controls the number of corresponding events in each

pattern candidate, was set to 50. This meant that all candidate patterns must have at

least 50 events within each cluster.

Result with varying noise level

Firstly, the algorithms were tested with various amounts of noise (Nnoise) and λ = 0.5.

The G-CSM using FTH (eq. (3.19)) is denoted with FDR-TH, while the one using FSC

(eq. (3.20)) is denoted with FDR-SC. The result is shown in Table 3.2. All results

were an average of 20 runs.

The example of relations extracted by each algorithm is shown in Fig. 3.5. The

G-CSM without FDR and G-CSM with FDR-SC result are similar, but G-CSM with

FDR-SC result has a slightly bigger posterior cluster, which better matches the generated

data. The G-CSM with FDR-TH has a lower precision cluster and sometimes identifies

an erroneous relation as shown.

Meanwhile, the original CSM failed to extract any relations at all even with noise =

100. The main reason is that the original CSM tried to match each event pair together,

so by having noise without matching pairs in the spatial cluster, it failed to detect

any meaningful relations. In contrast, G-CSM uses window-based event counting in

the time-space, therefore G-CSM is more robust against noise in the time domain than
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Table 3.2: CSM and G-CSM at various noise levels. P = Precision, R = Recall, F =
F-score, (1) = Prior cluster, (2) = Posterior cluster, (R) = Relation, Cnt. = Number of
relations identified. Bold indicated the best result.

Algo. P (1) R (1) F (1) P (2) R (2) F (2) P (R) R (R) F (R) Cnt.
Noise = 100

G-CSM 0.987 0.540 0.693 0.987 0.548 0.701 0.534 0.297 0.381 1.050
FDR-TH 0.987 0.355 0.512 0.989 0.327 0.485 0.324 0.116 0.169 1.250
FDR-SC 0.989 0.495 0.654 0.988 0.492 0.649 0.473 0.242 0.319 1.050
Noise = 500

G-CSM 0.940 0.556 0.695 0.936 0.537 0.678 0.510 0.301 0.377 1.100
FDR-TH 0.921 0.389 0.507 0.912 0.362 0.504 0.318 0.143 0.187 1.450
FDR-SC 0.941 0.536 0.678 0.937 0.513 0.658 0.490 0.277 0.352 1.100
Noise = 1000

G-CSM 0.885 0.551 0.674 0.888 0.549 0.673 0.484 0.305 0.373 1.100
FDR-TH 0.771 0.428 0.519 0.772 0.416 0.503 0.318 0.192 0.227 1.900
FDR-SC 0.883 0.560 0.681 0.887 0.555 0.678 0.491 0.314 0.382 1.100
Noise = 2000

G-CSM 0.783 0.550 0.637 0.791 0.571 0.655 0.436 0.320 0.365 1.300
FDR-TH 0.662 0.476 0.516 0.675 0.473 0.522 0.309 0.245 0.257 2.450
FDR-SC 0.784 0.560 0.643 0.788 0.604 0.679 0.449 0.341 0.385 1.300
Noise = 3000

G-CSM 0.679 0.595 0.623 0.705 0.609 0.643 0.407 0.366 0.381 1.850
FDR-TH 0.500 0.497 0.467 0.530 0.634 0.542 0.272 0.322 0.281 4.050
FDR-SC 0.683 0.611 0.635 0.701 0.631 0.657 0.423 0.389 0.402 1.700

CSM.

In Table 3.2, The FDR-TH algorithm is also uniformly bad, having worse results than

the G-CSM without FDR and FDR-SC in almost all measurements. This is because the

temporal score becomes either 0 or 1, the score relies entirely on the spatial evaluation.

The spatial evaluation prefers compact clusters, thus, FDR-TH has high precision but

low recall. FDR-TH also tends to detect erroneous relations, especially at a higher noise

level.

G-CSM with FDR-SC has a better recall score than G-CSM without FDR, especially

as the noise increases. This result shows the robustness of G-CSM with FDR-SC against

spatial noise. G-CSM with FDR-SC also maintains the relational precision score better

than G-CSM without FDR.

Note that for all algorithms, the number of extracted relations (Cnt. in Table 3.2)

also increased along with the noise. This is because the algorithm finds multiple relations

that are a subset of the ground-truth relation, resulting in more coverage of the ground-

truth data. In turn, this increases the recall score.
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Figure 3.5: Example of relation(s) extracted by each algorithm with Noise = 3000. CSM
cannot identify any relation.
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Table 3.3: CSM and G-CSM at various relation intervals. P = Precision, R = Recall, F
= F-score, (1) = Prior cluster, (2) = Posterior cluster, (R) = Relation, Cnt. = Number
of relations identified. Bold indicated the best result.

Algo. P (1) R (1) F (1) P (2) R (2) F (2) P (R) R (R) F (R) Cnt.
λ = 20 (Interval = 0.05)

G-CSM 0.928 0.683 0.781 0.929 0.693 0.790 0.630 0.471 0.538 1.050
FDR-TH 0.754 0.366 0.456 0.759 0.357 0.458 0.270 0.133 0.170 1.600
FDR-SC 0.926 0.699 0.791 0.928 0.676 0.777 0.631 0.474 0.540 1.050
λ = 2 (Interval = 0.5)

G-CSM 0.940 0.556 0.695 0.936 0.537 0.678 0.510 0.301 0.377 1.100
FDR-TH 0.921 0.389 0.507 0.912 0.362 0.504 0.318 0.143 0.187 1.450
FDR-SC 0.941 0.536 0.678 0.937 0.513 0.658 0.490 0.277 0.352 1.100
λ = 0.2 (Interval = 5)

G-CSM 0.928 0.692 0.790 0.922 0.766 0.835 0.671 0.531 0.592 1.000
FDR-TH 0.870 0.398 0.513 0.875 0.399 0.524 0.328 0.161 0.208 1.500
FDR-SC 0.927 0.698 0.793 0.923 0.767 0.836 0.674 0.536 0.596 1.000

Result with varying temporal interval

The algorithm was also tested at various settings of λ that controls the interval between

each related event with noise Nnoise = 1000. The result is shown in Table 3.3. All

results were an average of 20 runs.

At a low interval between each pair of events, it is also a toss-up between G-CSM

without FDR and G-CSM with FDR-SC. However, at a larger time interval, FDR-SC

performs better. It is suspected that this is because as intervals get longer, there are

more chances for the noise to appear in between the event pair in the temporal domain,

and FDR-SC is more robust to noise.

Analysis of the spatial and temporal score

The temporal evaluation score was plotted against the spatial evaluation score of all

candidates as a scatter plot in Fig. 3.6. This work defined possibly-correct relation as a

relation that both the prior and posterior event clusters are a subset of the ground-truth

prior/posterior event clusters, excluding noise. The black and green dots indicated a

possibly correct relation, shaded by the F-score of the relation from black (low F-score)

to green (high F-score). The red dots indicated wrong relations. The scores of the

orange mark, which is the relation with the highest evaluation score are shown in Table

3.4.

Fig. 3.6 indicated that the FDR-SC algorithm helped to clean up wrong relations

and possibly-correct relations with low F-scores, while still keeping the possibly-correct

relations with high F-scores intact. This results in a wider range of the temporal score
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Figure 3.6: Scatter plot of the temporal and spatial score. Red indicates the wrong
relationship. Black to Green indicated possibly correct relations, shaded by F-score.
The blue mark is the relation with the highest F-score, with orange being the highest
evaluation score. Noise = 3000, λ = 2. Grey lines represented positions with equal final
evaluation scores.
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Table 3.4: Evaluation scores of the relation with the highest evaluation score
from G-CSM

Relation Score
Algo. Prec. Rec. F-Score Temporal1 Spatial

G-CSM w/o FDR 0.334 0.243 0.282 0.952 0.954
G-CSM w/ FDR-SC 0.331 0.270 0.298 0.942 0.947
1 The temporal evaluation scores of G-CSM without FDR and with FDR-SC are calculated

differently and cannot be compared directly.

over the pattern candidates. As shown in Fig. 3.6, the FDR-SC version has a usable

range from around 0.6 to 1.0, while the without FDR is around 0.7 to 1.0. This can also

be seen in Table 3.4, as the relation with the highest evaluation score also has a higher

recall and F-score for the G-CSM with FDR-SC compared to G-CSM without FDR.

Therefore, the spatial score ended up having less effect on the final evaluation score.

With the noisy data tested here — the higher the noise, the more noise was included

in the candidate clusters — having less influence from the spatial evaluation allows the

clusters to be bigger, thus a higher recall score. This can also be seen in the table, with

FDR-SC having a higher recall score than the one without FDR.

3.5.4 Parameter analysis

Minimum sequence threshold Lmin

To analyze the effect of the minimum sequence threshold Lmin, the histogram of the

final evaluation score of all valid cluster sequence patterns was plotted, and whether

they are considered to be correct or wrong relations. The data used in this experiment

was Noise = 100 and λ = 2. The other hyper-parameters were the same as in Section

3.5.3.

The resulting histogram is shown in Fig. 3.7, and it is clear that G-CSM has a very

good separation between the evaluation score for correct and wrong relations, unlike the

original CSM. It can be concluded that G-CSM is less sensitive to the Lmin parameter.

Note that Lmin = 0.8 and all the generated patterns by the CSM algorithm have scores

less than 0.8, so CSM cannot output any patterns. According to Fig. 3.7, the detected

relations have a final evaluation score of 0.7 or less.
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Figure 3.7: Histogram of L, CSM vs G-CSM. Noise = 100, λ = 2.

36



Table 3.5: CSM and G-CSM at various alpha settings. P = Precision, R = Recall, F =
F-score, (1) = Prior cluster, (2) = Posterior cluster, (R) = Relation, Cnt. = Number of
relations identified. Bold indicated the best result.

Algo. P (1) R (1) F (1) P (2) R (2) F (2) P (R) R (R) F (R) Cnt.
alpha = 0.001

G-CSM 0.684 0.632 0.650 0.696 0.627 0.652 0.428 0.399 0.410 1.400
FDR-TH 0.657 0.499 0.537 0.679 0.555 0.594 0.329 0.279 0.295 2.950
FDR-SC 0.695 0.603 0.642 0.704 0.620 0.654 0.422 0.373 0.395 1.300
alpha = 0.005

G-CSM 0.683 0.633 0.650 0.700 0.632 0.659 0.431 0.401 0.413 1.550
FDR-TH 0.663 0.492 0.539 0.676 0.552 0.592 0.330 0.277 0.295 3.000
FDR-SC 0.685 0.625 0.645 0.698 0.632 0.657 0.428 0.398 0.410 1.450
alpha = 0.01

G-CSM 0.685 0.624 0.645 0.700 0.624 0.655 0.428 0.393 0.407 1.600
FDR-TH 0.606 0.509 0.528 0.612 0.545 0.563 0.304 0.274 0.283 3.250
FDR-SC 0.685 0.627 0.647 0.696 0.641 0.662 0.431 0.404 0.414 1.500
alpha = 0.05

G-CSM 0.682 0.611 0.635 0.703 0.625 0.654 0.422 0.386 0.400 1.700
FDR-TH 0.452 0.519 0.457 0.462 0.560 0.481 0.234 0.284 0.245 4.050
FDR-SC 0.685 0.625 0.646 0.700 0.630 0.658 0.428 0.394 0.408 1.600
alpha = 0.1

G-CSM 0.675 0.614 0.629 0.702 0.613 0.646 0.413 0.380 0.391 1.850
FDR-TH 0.375 0.612 0.426 0.400 0.639 0.455 0.222 0.392 0.264 4.950
FDR-SC 0.682 0.619 0.640 0.698 0.639 0.662 0.428 0.398 0.410 1.700
alpha = 0.2

G-CSM 0.677 0.604 0.624 0.697 0.603 0.636 0.404 0.368 0.379 1.950
FDR-TH 0.251 0.649 0.348 0.296 0.664 0.389 0.169 0.434 0.235 7.050
FDR-SC 0.682 0.611 0.635 0.701 0.629 0.657 0.423 0.388 0.401 1.700

Significant threshold α

This work also investigated how changing the α significant threshold affected the result.

Here, the same data as in the first experiment (Noise = 3000, λ = 2) were used with

different values of α. The result is shown in Table 3.5. The G-CSM uses the specified

alpha value directly to calculate the threshold in eq. (3.18).

With different significant threshold settings from 0.001 (0.1%) to 0.2 (20%), G-CSM

with FDR-SC can maintain both the cluster and relation F-score better than the other

algorithms. The result shows that G-CSM with FDR-SC is less sensitive to the alpha

setting, and also has the number of extracted relations (Cnt.) close to one, which is

better in this case.

3.5.5 Other type of patterns

The experiment in the previous section uses a single pair of events cluster. This section

is to show that the proposed algorithm also worked with other types of data as well.

Four different types of patterns were tested as shown in Fig. 3.8. First, two relations
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were generated using the method described in Section 3.5.1, with Noise = 1000 and λ

= 2, shown in Fig. 3.8a. The second data also has two relations, but the prior event

locations were shared between two relations, shown in Fig. 3.8c. Third, the posterior

cluster of one relation shared the location with the prior cluster of the second relation,

shown in Fig 3.8e. And fourth, the variance of the prior and the posterior cluster were

varied, shown in Fig. 3.8g. The timestamps of events are shifted by a uniform random

number between 0 and 10,000, different for each relation.

The hyper-parameters were the same as in Section 3.5.3. The extracted relations

are shown in Fig. 3.8. The proposed G-CSM with the FDR-SC algorithm can correctly

extract relations in all cases.

3.5.6 Semi-real data

The experiment in this section was using semi-real-world data. That is, real-world

data is used as the spatial component, while the temporal component utilizes the same

method as the synthetic generation.

The test data of UCI Machine Learning Optical Recognition of Handwritten Digits

Data Set [44] was used as the spatial data. This represents a real-world example of spatial

data that has predefined spatial clusters. The data contains 1,797 samples divided into

10 classes. Each class has approximately 180 samples. The data were preprocessed to

normalize the mean and variance of each dimension (z-mean normalization). The input

data with 64 dimensions were reduced to 10 dimensions using Neighborhood Components

Analysis [45], as shown in Fig. 3.9a. This work randomly selected 2 pairs of digits as

the embedded relations, while the other 6 digits’ data were used as noise with uniform

distribution over the temporal component. The interval between each embedded event

pair of both relations followed exponential distribution with λ = 2. The parameters

were the same as the previous experiment in Section 3.5.3. An example of what the

timeline looks like is shown in Fig. 3.9b.

The result is shown in Table 3.6. In this data set, as there was no extra random noise

added, even the original CSM, which is quite weak to spatial noise, can extract some

relations, but it still performed worse than the other algorithms. FDR-SC performed the

best in all evaluation metrics. Since the spatial dimension is reasonably well-separated

and no random noise was added, the precision score was very high as the algorithm can

easily extract the proper cluster. The recall score is limited by the spatial evaluation
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Figure 3.8: Generated data and extracted relations using G-CSM with FDR-SC for
other types of pattern
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(a) 8x8 Handwritten digits data are reduced to 10 dimensions using NCA.

(b) Example of timeline with digits data

Figure 3.9: Semi-real experiments data detail

Table 3.6: CSM and G-CSM result from digits dataset. P = Precision, R = Recall, F
= F-score, (1) = Prior cluster, (2) = Posterior cluster, (R) = Relation, Cnt. = Number
of relations identified. Bold indicated the best result.

Algo. P (1) R (1) F (1) P (2) R (2) F (2) P (R) R (R) F (R) Cnt.
CSM 0.349 0.063 0.106 0.350 0.173 0.231 0.185 0.063 0.094 0.350
G-CSM 0.997 0.519 0.675 1.000 0.487 0.650 0.505 0.255 0.338 2.000
FDR-TH 0.997 0.495 0.658 0.989 0.457 0.622 0.476 0.228 0.308 2.050
FDR-SC 0.997 0.532 0.687 1.000 0.497 0.658 0.517 0.267 0.351 2.000

score, which prefers a compact cluster over a larger cluster. An adjustment to the

hyper-parameters of the evaluation function may be needed to get a higher recall score,

but otherwise, both the prior and posterior clusters of the extracted relations were the

subset of those of the ground-truth relation. The scores on the relation evaluation are

also low for a similar reason.

3.5.7 Complexity Analysis of the G-CSM algorithm

The original CSM algorithm has a run-time complexity of O(N2 logN) in the average

case, where N is the number of data points. Within the algorithm, the time proximity

of temporal evaluation is O(|A|+ |B|) where |A| and |B| is the number of events in the

prior and posterior cluster of each pattern, respectively.

For the proposed G-CSM algorithm, the time proximity algorithm uses GLM model

fitting to calculate Granger causality strength. GLM model-fitting has runtime com-

plexity of O(p3 + Rp2) where p is the number of predictors and R is the number

of samples. In this case, p = 2 × Mi + 1, which is a constant, and R is at most
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(2Mi + 1) × (|A| + |B|) ∼ (|A| + |B|), thus the GLM model fitting takes O(|A| + |B|),

which is the same as original CSM. The FDR procedure takes O(N2 logN) in the worst

case. Thus, G-CSM also has the runtime complexity of O(N2 logN), which is also the

same as the original CSM.

3.5.8 Limitation of the G-CSM algorithm

Algorithm limitation

The G-CSM algorithm inherited all the limitations of the original Granger causality.

The major point is that though Granger causality is one of the accepted methods to

detect causality, it cannot be guaranteed whether it is an actual causality or not, just

that it is causality under Granger’s definition.

Since Granger measured the causality based on predictability, it is also limited by

the predictor. In the case of G-CSM, the limitations of GLM models used as a predic-

tor are the same as the traditional multivariate vector autoregressive (MVAR) model,

mainly: linearity, stationarity, and dependency on observed variables. Moreover, since

the proposed algorithm uses pairwise causality, more data from the environment might

be missed, such as when two events are the cause of another event.

Complexity limitation

The algorithm complexity is O(N2 logN), a quadratic complexity, which can be a lim-

iting factor with larger data sets. For example, the data used in the experiment section

was limited to under 5,000 data points. Note that this was not the hard limit, but was

a self-imposed limit to keep the running time reasonable. The author has experimented

with 10,000 data points once (the earthquake data) but the algorithm was not able to

complete it in a reasonable time frame.

In addition, there is a need to adjust the hyper-parameters of the algorithm to match

the data used. With the long running time, adjusting the hyper-parameters is extremely

time-consuming. This is the core limitation that can prevent application with actual

real-world data.
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3.6 Summary

This chapter proposed a Granger Cluster Sequence Mining (G-CSM) algorithm which

is an extension of the original Cluster Sequence Mining (CSM) algorithm. It works

by trying to find two spatial clusters in a point-process spatio-temporal data and try

to detect if there was a causal relationship between the occurrence of events in both

clusters using the Granger Causality procedure.

The experiments showed that the proposed algorithm has better relation extraction

accuracy than the original CSM algorithm while keeping the same runtime complexity.

Nevertheless, the complexity still hinders the application of real-world data.
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Chapter 4

Local Density Estimation for

Point Process Vector

Autoregressive Model

4.1 Overview

The causality inference from the G-CSM algorithm uses a vector autoregressive (VAR)

model with the GLM method to model the predictor. The process, while simple and

fast to run, has drawbacks that a long history length cannot be easily used. To increase

the history length of the predictor, either the number of windows must be increased,

leading to more model parameters and longer running time, or the size of each time

window must be expanded, which results in lower temporal resolution. Both are not

ideal.

This chapter proposed a new procedure called local density estimation, which is a

pre-processing step to modeling the VAR model. Specifically, instead of modeling the

history of temporal point process data just by the presence of data (as in Fig. 3.3), this

procedure instead performs a kernel density estimation over a fixed size of the temporal

history and then applies auto-regression on the estimated density. This model is shown

in Fig. 4.1. The procedure allowed the VAR model to better capture the precise location

of each data in the point process, especially on sparse data, as well as allow easy scaling
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Figure 4.1: A model using local density estimation

to longer temporal history length by having a few parameters covering a long time span,

while keeping the number of inputs to the model at a manageable level.

Using a linear and Gaussian kernel density model, this chapter described experiments

with synthetic data generated with the Poisson model, which showed that the kernel-

density pre-processing step improved the accuracy of prediction while still maintaining

the same number of inputs.

4.2 VAR modeling of point process

Vector auto-regressive (VAR) is a model where a variable at the current time step is

predicted by the past value of itself. For a general VAR model, consider a time-series

A = {a0, a1, . . . , an}, ai ∈ R, the value of ai can be modeled by:

ai = β0 +
k∑

j=1

βjai−j + εi, (4.1)

where k is the number of lagged variables, β are the model parameter, and ε is the error

term.

A cumulative incidence function (CIF) is a core process of modeling a point process.

The function indicates the rate of event occurrence at the specific time t parameterized

by the history of event occurrence:

λ(t|H(t)) = lim
∆→0

Pr[(N(t+∆)−N(t)) = 1]

∆
, (4.2)
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where N(t) is a counting measure of the event within the time of (0, t], and H(t) is an

occurrence history of all event occurrences up to time t. The probability of the event

occurring in a small time window [t, t+∆) can be written as λ(t|H(t))∆.

To use VAR to model a point process CIF, the timeline was divided into small slices

of time windows. Then, take the number of events that occur in each slice of the window

to be the value at each time step of the VAR model. More formally, consider a point

process X = {x1, x2, · · · , xn} where xi is a timestamp of each event in the point process.

Let T0 = x1 and T1 = xn be the minimum and maximum timestamp of the event, the

whole timeline was divided into K = (T1 − T0)/W slices of the window where W is

the window size. Let Ri denote the number of occurrence of events in the time window

[T0 + iW, T0 + (i+ 1)W ), and R(t) denote the Ri that is correspondent to the time t.

To model the incidence function, a generalized linear model (GLM) framework was

used to model the CIF. In GLM, the logarithm of the CIF was modeled using a linear

combination of the occurrence history:

log λ(t|θ,H(t)) = θ0 +

k∑
m=1

θmR(t−mW ), (4.3)

where θ0 is a background activity, and θm is the effect of R(t).

A point process likelihood function [29] was used to fit the GLM model. This process

uses a Generalized Linear Model (GLM) to fit the aforementioned log-CIF model. This

is done by assuming Poisson distribution for λ(t|θ,H(t)), because this target variable of

the predictor can only be zero or positive integer. The GLM with Poisson distribution

has the form of:

log(µ) = η = β0 +
∑

βixi, (4.4)

which is the same from as eq (4.3).

Note that the target variable can also be assumed to be in a binomial distribution

(value is in {0, 1}), which would have a logistic function as the link function. However,

[29] has proved that in case the target window only has 0 or 1 events, then both models

are equivalent.
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4.3 Local density estimation

For the standard VAR model to capture longer history, there is a need to either 1)

increase the number of history slices, or 2) increase the window size W . Both are not

ideal: increasing the number of history slices results in an increased number of model

parameters, which affect the runtime performance of the process; while increasing the

size of the windows W results in reduced temporal accuracy. This can be problematic,

especially in sparse data where a longer history length may be required.

To fix the aforementioned problems, this chapter introduced 1-dimensional kernel

density pre-processing to the VAR model. Instead of using the lagged variable directly,

the procedure sampled from a kernel density estimation trained on the event occurrence

history of each prediction. Note that only event occurrence history relevant to each

prediction was used for estimation to save on computational cost and to avoid informa-

tion leakage from the predictor target. This allowed for increasing the history length

of the model while keeping the number of model parameters low and still keeping some

accuracy. The proposed procedure is hence named local density estimation, which is in

contrast to global density where the density of every point was used. This difference is

shown in Fig. 4.2.

Formally, given kernel K, bandwidth b, history length h, and the number of pa-
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Figure 4.3: Difference between history length and number of parameters.

rameters p, to model CIF at the time window [t, t + ∆), the procedure first created a

list of events during the time [t − h, t), X̂ = {xi; t − h ≤ xi < t}. Then, the estimated

density can be discretized to D = {d1, . . . , dk} from the event list X̂ using kernel density

estimation. The density at di can be calculated using the following formula:

di =
1

n̂

n̂∑
j=1

K((t− ih

k − 1
)− x̂j , b), (4.5)

where n̂ = ‖X̂‖. The discretized D is used instead of R(t − mW ) in eq. (3.10) for

modeling a point process, yielding this new model. Note that the number of di may be

lower than R(t−mW ).

log λ(t|θ,H(t)) = θ0 +

p∑
i=1

θidi. (4.6)

In this work, two types of kernel K were used: a linear (LIN) and a Gaussian (GAU)

kernel:

KLIN (x, b) ∝ 1− |x|/n if |x| < b, (4.7)

KGAU (x, b) ∝ exp

(
− x2

2b2

)
. (4.8)
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Figure 4.4: Histograms of the interval between events at different sparsity.

Table 4.1: Models used in the experiment

Name Kernel History #Params Bandwidth
CNT5 None 5 5 -
CNT20 None 20 20 -
LIN5 Linear 5 5 2
LIN20 Linear 20 5 5
GAU5 Gaussian 5 5 2
GAU20 Gaussian 20 5 5
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Figure 4.5: Mean-squared error (MSE), log-likelihood, and F1-score of each model. CNT
is a regular VAR model, while LIN and GAU are proposed methods with the linear and
Gaussian kernel, respectively.

49



Table 4.2: Mean-squared error (MSE), log-likelihood, and F1-score of each model.

Sparsity CNT5 CNT20 LIN5 LIN20 GAU5 GAU20
Mean squared error (lower is better)
0.01% 0.2359 0.2325 0.2243 0.2245 0.2235 0.2221
0.02% 0.2388 0.2353 0.2227 0.2235 0.2215 0.2201
0.05% 0.2202 0.2106 0.1886 0.1913 0.1872 0.1874
0.1% 0.2057 0.1934 0.1640 0.1680 0.1622 0.1637
0.2% 0.1646 0.1514 0.1202 0.1259 0.1186 0.1218
0.5% 0.1066 0.0958 0.0690 0.0762 0.0679 0.0725
1% 0.0737 0.0670 0.0444 0.0520 0.0435 0.0485
2% 0.0454 0.0427 0.0260 0.0328 0.0255 0.0299
5% 0.0230 0.0228 0.0136 0.0181 0.0133 0.0158
10% 0.0125 0.0127 0.0083 0.0108 0.0082 0.0092
Log-likelihood (higher is better)
0.01% -75945 -75423 -74559 -74152 -74507 -73906
0.02% -77597 -76431 -74807 -74295 -74723 -73976
0.05% -80767 -78371 -75446 -74971 -75312 -74574
0.1% -84755 -80725 -76038 -75738 -75852 -75253
0.2% -89495 -83782 -76830 -77019 -76588 -76438
0.5% -98297 -90825 -79260 -80970 -78963 -80132
1% -107475 -99820 -83046 -87119 -82695 -85878
2% -120250 -113927 -90357 -98409 -89948 -96410
5% -147333 -144173 -111383 -126838 -110882 -122814
10% -181505 -180393 -143822 -163314 -143188 -156588
F1-score (higher is better)
0.01% 0.7562 0.7520 0.7722 0.7719 0.7726 0.7735
0.02% 0.6791 0.7141 0.7700 0.7670 0.7709 0.7717
0.05% 0.6784 0.6644 0.7690 0.7595 0.7711 0.7697
0.1% 0.4846 0.6351 0.7668 0.7506 0.7708 0.7690
0.2% 0.4826 0.5972 0.7612 0.7309 0.7676 0.7626
0.5% 0.4724 0.5411 0.7459 0.6767 0.7575 0.7222
1% 0.4616 0.4968 0.7236 0.5863 0.7443 0.6241
2% 0.4446 0.4420 0.6797 0.4259 0.7166 0.4567
5% 0.3410 0.3503 0.5057 0.2896 0.5281 0.4111
10% 0.2967 0.2916 0.3111 0.2120 0.3537 0.3526
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4.4 Experiments

The proposed kernel-density pre-processing using linear and Gaussian kernel was tested

against a regular vector autoregressive model using synthetic sparse Poisson process

data. Mean-squared error of the prediction result, log-likelihood of the GLM model in

eq. (3.10), and F1 score of each model were measured for comparison.

The synthetic data are regular Poisson process data that have the interval between

each event occurrence followed by an exponential distribution:

L = {li ∼ Exp(λ)}, (4.9)

X = {xi =
i∑

j=0

lj}, (4.10)

where λ is the exponential distribution mean. Sparsity was artificially added to this

point process by randomly replacing s number of li with gi ∼ Uniform[10, 1000]. This

created a random large gap within the timeline of the point process. This parameter s

is called a sparsity count. This chapter uses λ = 1 for the Poisson process, which has

an average interval of 1 and 90% the intervals are less than 3. Sparsity count s of 10

(0.01% of all data), 20 (0.02%), 50 (0.05%), 100 (0.1%), 200 (0.2%), 500 (0.5%), 1000

(1%), 2000 (2%), 5000 (5%), and 10000 (10% of all data) were used. The histograms of

the interval between events are shown in Fig. 4.4.

100,000 points were generated for each point process, with 80,000 points being used

for training and another 20,000 points for evaluation. The regular VAR model (denoted

as CNT) was tested against the proposed model with a linear (triangle) kernel and

Gaussian kernel (denoted as LIN and GAU). The detail was described in Table 4.1. The

history length was the overall length of the history being used in each prediction, and

the number of parameters described the number of inputs to the model. This is also

shown in Fig. 4.3. All VAR models have a window size of 1. All models have a target

window size of 1.

Each experiment was performed 10 times and the average of the result was taken.

The MSE, the log-likelihood of the predictor, and the F1-score, calculated by thresh-

olding the predictor output at 0.5, are shown in Fig. 4.5. In almost every case, the

GAU5 model performed the best, followed closely by LIN5. The VAR model CNT5 and

CNT20 perform worse in almost every case. Fig. 4.5c also shows that LIN5 and GAU5
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are also less affected by the sparsity. GAU5 outperforms CNT20 with significantly fewer

model parameters; GAU5 has only 5 parameters, whereas CNT20 utilizes 20. Note that

as sparsity increases, the data can get extremely imbalanced so the MSEs are lower with

higher sparsity.

4.5 Complexity analysis

Preparing a temporal point process data, especially for sparse data, for VAR modeling

has the complexity of O(LN + N logN) where L is the number of windows, W is the

window size, and N is the number of data. This came from the following steps:

1. For each data point N :

(a) Find the points that are in the history length (O(logN) using binary search)

(b) Construct a history model from at most N points (O(N))

2. However, in Step 1b, note that all points can be part of at most L history models.

Hence, step 1b amortized to O(LN)

Step 1, minus the amortized part, has the complexity of O(N logN). The amortized

part is O(LN), yielding the final complexity of O(LN +N logN).

For the proposed local density estimation, the complexity is O( hwN +Np+N logN)

where h is the history length, p is the number of history samples (number of parameters),

and w is the time step used for the prediction target. Similarly, this came from:

1. For each data point N :

(a) Find the points that are in the history length (O(logN) using binary search)

(b) Construct and sample p samples of density from at most N points (O(N+p))

2. However, in Step 1b, again, all points can be part of at most h
w history models.

Hence, step 1b amortized to O( hwN +Np)

Note that h
w is essentially L in the complexity of the regular VAR model. Hence,

the proposed algorithm can only be asymptotically slower than the regular VAR model

if and only if Np is larger than both h
wN and N logN , which seems unlikely, as part of

the reason to use this procedure is to reduce the number of model parameter p to be

less than h
w .
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4.6 Summary

This chapter detailed the local density estimation procedure for increasing the history

length of the vector autoregressive model while keeping the model parameter low. This

worked by applying a 1-dimensional kernel density estimation over the event history to

be used for prediction.

The experiments showed that the works well under sparse data, and can beat regular

models even with fewer parameters. However, there are limitations to this method.

Mainly, the vector autoregressive method may not be a good model for specific data in

the first place.
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Chapter 5

Conclusion

5.1 Summary

Spatio-temporal data analysis is already harder than just spatial data analysis or tem-

poral data analysis. Though many techniques have been developed, the field is still very

young, despite a large amount of real-world spatio-temporal data.

While there were some developed methods for spatio-temporal relationship mining

(frequent pattern mining) and spatio-temporal change detection, there were none that

are designed specifically for detecting a change in spatio-temporal relation. Spatio-

temporal relations affect a lot of natural and man-made phenomenon data around us,

including weather systems or crime analysis.

This work first proposed changes to the existing algorithm for spatio-temporal oc-

currence correlation detection technique called Cluster Sequence Mining (CSM) with

the added Granger causality measurement. The result, the Granger Cluster Sequence

Mining (G-CSM) algorithm, is an algorithm for the detection of causal relations in

spatio-temporal data. The experiment shows that G-CSM can better detect and is

much more resilient than the original CSM technique. False Discovery Rate (FDR)

further improved the result.

The local density estimation procedure was also proposed. This procedure allows in-

creasing the history length of the predictor used during causality inference while keeping

the runtime performance. The result showed that this procedure improved the predic-

tor performance significantly, even outperforming the standard VAR model that has a

higher number of model parameters. While this procedure is designed specifically for
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the G-CSM algorithm, it can be used in any instance where the VAR model is used with

the point-process data.

5.2 Future Works

5.2.1 Applying Local Density Estimation to the G-CSM algorithm

The proposed Local Density Estimation algorithm in Chapter 4 is directly designed to

be used as a part of the G-CSM algorithm to allow the model to capture longer history

length while still keeping the runtime performance. This is the immediate future work,

and implementation and experiments are required.

5.2.2 Spatial Clustering Improvement on G-CSM algorithm

The G-CSM algorithm is limited by the performance of the CSM algorithm it is based on.

One of the desired improvements is the improvement of the spatial clustering process.

Currently, the AHC algorithm in the CSM works well enough, but on dense spatial data,

it can fail to capture the proper spatial clusters that are part of the causality. Since the

AHC algorithm is hierarchical, there is a possibility that a ground-truth spatial cluster

may not be a part of clusters that AHC found at all.

The challenge in this part is that the number of spatial clusters directly correlates to

the number of candidates to be evaluated. The number of candidates is quadratic of the

number of spatial clusters, hence, replacing this directly with other types of clustering

algorithm is not feasible. A complete rethinking of the entire CSM algorithm may be

required.

5.2.3 Extension to Non-Stationery Relations

In this work, it is assumed that the relations are stationary. That is, the spatial location

of each cluster is constant in time. This may not be the case in real-world situations,

where the spatial location can drift over time. The proposed algorithm currently cannot

handle the non-stationary relation at all.
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5.2.4 Non-Linear Extension fo Causality Detection

One of the limitations of the current approach to the Granger causality inference method

is that even with Local Density Estimation added, the predictor model is still linear. As

previously discussed, there was a lot of ongoing research on modeling a point process

data using various techniques, but the core problem is that: to check for causality, a

likelihood must be calculated. A good deal of models, especially those involving neural

networks, do not have a closed-form solution for the likelihood value of the model,

requiring numerical integration to calculate the value.

In addition, runtime complexity must also be considered. Unlike most applications of

point process or causality inference, the G-CSM algorithm performs causality inferences

thousands if not millions of times. Currently, the VAR model with GLM is very fast,

hence the algorithm can run in a reasonable time. Any more complex model can and

will extend the runtime of the G-CSM by multiple magnitudes. As many candidates

are superset/subset of each other, a possible solution might be a causality inference

technique that can handle incremental processing or can handle multiple candidates at

the same time.

5.2.5 Performance Improvement to the G-CSM algorithm

The main performance problem of the G-CSM algorithm is currently the number of

candidates generated. This is, in general, quadratic to the number of spatial clusters,

as discussed in Sec. 5.2.2. An improvement to the candidate generation process or

the spatial cluster generation process, for example, by quickly eliminating candidates,

would be very beneficial to the performance. Possible solutions might include a prior

quick testing of causality, or, to completely rethink the process, an incremental causality

inference technique that works directly without requiring candidate generation.

5.2.6 Other time interval distribution

This work currently mainly deals with the Poisson distribution, however, extension to

other types of interval distribution should be possible. Note that as Poisson distribution

usually results in the shortest interval between the cause and effect, the currently short

history length of the predictor can capture the relationships. To model other distri-

butions that may be longer, a longer history length is needed. With the local density
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estimation procedure, it should be possible but has not been tested yet.

5.2.7 Application to real-world usage

It was hoped that this algorithm would work on earthquake data to try to gain an

understanding of the relations between each earthquake location. However, due to run

time limitations, the need to adjust hyper-parameters, and the size of the earthquake

dataset, this work did not complete such experiments. The number of earthquakes

occurring around the Japanese archipelago is more than 10,000 occurrences per year,

and while the number can be decreased by only looking at stronger earthquakes, one

questioned the benefit of analyzing only such information.

However, in the long term, it is hoped that this algorithm can be used to find

causal relations between different concepts in various settings including cross-domain

applications like, for example, relationships between disease outbreaks and financial

markets. This could enable humanity to get a better understanding of the various

mechanics of nature or society.
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