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Abstract

Real-world data are usually in the form of spatio-temporal data, such as weather sys-
tems, transport demand, and disease outbreaks. However, the complexity of this type
of data means that analysis techniques are not as well established. Identifying relation-
ships, specifically causal relationships, within the spatio-temporal data can yield further
understanding of natural phenomena, but the area is not well understood. This work
proposed a method to extract causal relations of clusters from multi-dimensional event
sequence data. The proposed Granger Cluster Sequence Mining (G-CSM) algorithm
identifies the pairs of spatial data clusters that have causality over time with each other.
It extended the Cluster Sequence Mining algorithm, which utilized a statistical inference
technique to identify occurrence relation, with a causality inference based on Granger
causality. In addition, the proposed method utilizes a false discovery rate to control
the significance of the causality. The method was tested using both synthetic data and
semi-real data and can extract embedded causal relations with high F-scores over differ-
ent sets of data even under high spatial noise. False discovery rate also helps to increase
the accuracy even more under such cases and also makes the algorithm less sensitive
to the hyper-parameters. Furthermore, a local density estimation procedure was also
proposed. This procedure is a pre-processing step to the vector autoregressive modeling
of point-process data, a process which was used during Granger causality inference in
the proposed algorithm, by applying a density estimation. Results on synthetic data

showed that the procedure improved model accuracy, especially under sparse data.
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Chapter 1

Introduction

Many of the data being generated today are spatio-temporal in nature. Many real-
world organizations deal with a large amount of spatio-temporal data on a day-to-
day basis. Such organizations are spread across multiple fields including aerospace,
meteorological, transportation, police, and healthcare [1]. The applications also range
widely including the ecology and environmental management [2], crime analysis [3],
transport route analysis [4], disease management [5], precision agriculture [6], and many
more.

Spatio-temporal data have both a spatial part and a temporal part. They represent
multidimensional, continuous data at a specific time point. This is in contrast to spatial
data, which are just data points in some n-dimensional space. They are also different
from temporal data, which are data over a span of time. At present, there are still many
challenges in the analysis of spatio-temporal data. Because they have both spatial and
temporal parts, spatio-temporal data are inherently more complex than just spatial
data or temporal data, with data and relationships that may span across spatial and
temporal domains. Existing techniques for spatial data or temporal data do not work
well with spatio-temporal data. Moreover, precisely because the spatio-temporal data
span across many data domains, domain knowledge is also required [7]. Therefore,
new techniques are being researched and developed specifically for spatio-temporal data
and each problem domain [I] to extract knowledge from a wealth of spatio-temporal
databases.

A spatio-temporal point process [§] is a type of point process data (Fig . A

regular point process is a list of timestamps, or events, on a timeline. That is, the
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Figure 1.1: Point process and spatio-temporal point process data

data itself is the timestamp. This is in contrast to time series where the timestamps
have constant intervals with the actual data being the value at each timestamp. When
each event has an associated value, that is both the timestamp and the value are the
data, this becomes a spatio-temporal point process. This is illustrated in Fig.
A spatio-temporal point process can represent a pinpoint spatial location on a sparse,
unscheduled timeline. An example of a spatio-temporal point process includes a list
of points in an Euclidean space, etc. This type of data has freedom in both temporal
and spatial dimensions. Many real-world spatio-temporal data can be represented as a
point process, such as earthquake epicenters as a list of latitude and longitude as the
spatial part and the occurrence time as the temporal part; or social network posts can
be considered as features extracted by natural language processing (NLP) algorithm for
the spatial part and the post time as the temporal part.

Existing research using point-process spatio-temporal data includes modeling earth-
quake [9] or ambulance demand [10]. A direct model of a spatio-temporal point process
is very hard to optimize, resulting in various model simplifications [11]. Newer develop-
ments included neural-network-based method [12] or using reinforcement learning [13].
These works focused on modeling the actual point process, which is a mathematical
model that captures the occurrence of each data point in the spatio-temporal domain.
This model is useful for studying the mechanics of each occurrence or for predicting fu-

ture events, however, none of the existing methods deal with relation extraction. Since a
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(b) A PC algorithm finding causal relations within random variables. A is
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[14].

Figure 1.2: Different types of causal relations.

spatial cluster of these data can represent a meaningful concept, the causal relationships
between these clusters over the time series indicate the mechanism of operation. Thus,
the objective of this thesis is to find two spatial clusters of the data that have a causal
relationship with each other, as shown in Fig This is in contrast to a standard
causal relation graph from random variables, where a causal relation, or relations graph,
is extracted from a set of random variables with no regard to time of occurrence[14],
shown in Fig [I.2D]

There were many existing works for identifying causal relationships within purely
temporal or spatial data. Granger causality [15], for example, can identify causal re-
lations between time series, or PC algorithm [16] for discrete random variables. When
extended to spatio-temporal data, even though several works can identify non-causal
relations [1], none can identify causal relations. With causal relations, a more thorough
understanding of the occurrence mechanism could be achieved.

A brief comparison of existing works is shown in Table This table shows the



Table 1.1: A brief comparison of different spatio-temporal relation mining methods

. Output
Field/Method Input Spatial division Type of relations
Geoinformatics [17] Multivariate Predefined Causality

time-series

Spatio-temporal

Neuroscience [1§] Estimated Causality
raster
. Spatio-temporal .
Cluster Sequence Mining [20] . Estimated Co-occurrence
Point-process
Spatio-temporal . .
Proposed Method Estimated Causality

Point-process

difference in relationship mining within spatio-temporal data. In the geoinformatics
field [17], the spatial part is just a sensor located at different locations, thus making the
data a multivariate time series. They then try to find causality from these data, with
the aforementioned sensor locations forming a predefined spatial division. On the other
hand, in neuroscience [I§], they usually work with a spatio-temporal raster, a series of
images. This work aimed to find causality between regions from these data.

Recently, Co-occurrence Cluster Mining (CCM) [I9] and Cluster Sequence Mining
(CSM) [20] algorithms were previously proposed algorithms directly for extracting rela-
tionships between spatial clusters from the point-process spatio-temporal data, namely,
a co-occurrence relationship. The CSM algorithm can successfully find the correlation
between earthquake occurrences during the 2011 Great East Japan earthquake, as shown
in Fig. [1.3] However, since correlation does not imply causation, the result from those
algorithms cannot be considered causal relations.

The concrete problem of this work is detailed in Fig. With spatio-temporal
point process data (Fig. , this work aims to, firstly, perform spatial clustering of
the point process (Fig. , before trying to find pairs of spatial clusters that have a
causal relationship with each other (Fig. and .

To solve the aforementioned problem, in this thesis, the Granger Cluster Sequence
Mining (G-CSM) algorithm is proposed. It is an extension of the Cluster Sequence
Mining (CSM) algorithm. The Granger Causality [15] method for causality inference
was integrated. Granger causality is one of the most commonly used temporal causality
analysis techniques. It originated from the field of economics, where it is being used
to analyze the relationships between different time series. The principle of Granger

causality is that if A causes B, then B must be easier to predict using all available
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Figure 1.3: Correlation between spatial clusters of earthquake occurrence as extracted
by Cluster Sequence Mining algorithm.

data than to predict using all available data except A. A False Discovery Rate (FDR)
method was also used to quantify the significance of the detected causality, allowing us
to be certain of the statistical significance and to eliminate false positive results. The
proposed algorithm can extract causal relations between spatial clusters within a point
process spatio-temporal data according to the causality proposed by Granger.

The performance of our proposed G-CSM algorithm was validated against the orig-
inal CSM algorithm using synthetic data. The result showed that the proposed G-CSM
algorithm can detect causal relations more accurately and is more robust against noise.
The hyper-parameters of the G-CSM algorithm were analyzed, and was found that the
G-CSM algorithm is less sensitive to them, unlike the original CSM which required a
careful setting of its hyper-parameters. The usage of FDR for statistical testing also
increases the accuracy of the algorithm. The G-CSM algorithm was also applied to
the semi-real world data, namely, existing real-world spatial data were used with the
synthetic temporal relationships.

Furthermore, a new procedure called local density estimation was proposed, which
is a pre-processing step to modeling the vector autoregressive (VAR) model. A VAR

model is used for modeling time-series data by modeling the next step in the series
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using the history of itself. The G-CSM algorithm utilized a VAR model during its
causality inference steps, by dividing the timeline into multiple small time windows and
creating a time series out of the presence of events in each window. By applying a kernel-
density estimation as a pre-processing step to the VAR model that was used for Granger
causality estimation, the procedure allowed the VAR model to better capture the precise
timestamp of each data in the point process, especially on sparse data, as well as allow
easy scaling to longer temporal history length by having a few parameters covering long
time span, while keeping the number of inputs to the model at a manageable level.

Using a linear and Gaussian kernel density model, experiments with synthetic data
generated with the Poisson model were performed. The result showed that the local
density estimation procedure improved the accuracy of prediction while still maintaining
the same number of inputs.

The contributions of this thesis are:

o Granger Cluster Sequence Mining (G-CSM) algorithm is proposed. The G-CSM
algorithm is an extension to the existing Cluster Sequence Mining algorithm by

adding Granger causality inference.

e The application of the FDR procedure for evaluation of the significance of the

causality is introduced.

e Local density estimation procedure is proposed. This is a pre-processing step for
vector autoregressive modeling of point process data to enhance the accuracy and

robustness of the model especially on sparse data.

This thesis is organized as follows: In Chapter 2, the related literature and surveys
are discussed. In Chapter 3, the Granger Cluster Sequence Mining (G-CSM) algorithm
is proposed, and the local density estimation procedure is detailed in Chapter 4. The

discussions are in Chapter 5, with Chapter 6 concluding the thesis.



Chapter 2

Literature review

2.1 Spatio-temporal point process

2.1.1 Intensity Function

A point process is a framework used for modeling discrete points, which are modeled as
an intensity function of the existence of points over the domain — spatial domain for
spatial point-process and temporal domain for temporal point process [21].

A point process can be handled in many different ways. Timestamps T < Ts < ... <
T, may be considered, or the interval time S; = T;41 — T;. Alternatively, a counting

process may be used:

N(t) = [{Ti < £}, (2.1)
where || - || represent the cardinality of the set, or the interval count:
N(a,b] = N(b) — N(a). (2.2)

The intensity function is modeled as the cumulative incidence function (CIF), generally

in the form:

A = 1im PPN+ A=)

A—0 A (2.3)

The intensity function may be in the form of simple Poisson distributions or more
complex distributions [22]. The spatio-temporal point process is a type of point process

for use with spatio-temporal data rather than just pure temporal or spatial data.



2.1.2 First-order Separability

For the spatio-temporal point process, the intensity function can be roughly separated
into two groups: with or without first-order spatio-temporal separability [§]. This dis-
tinction is based on whether the intensity function can be factored into two parts: the
temporal part and the spatial part.

The models with first-order spatio-temporal separability are usually simpler and have
previously been used to model and predict real-world phenomena, such as earthquakes
[23, 24], which model the intensity function directly after Epidemic Type Aftershock-
Sequence (ETAS) model. Other earthquake prediction models such as [9] use the Hawkes
model for temporal modeling and just a kernel function for spatial modeling. There is
also the work [12] which uses Neural Ordinary Differential Equations (Neural ODE)
and Continuous Normalizing Flows (CNF) to model the spatial and temporal intensity
function.

On the other hand, this separability usually hinders the accuracy of the model, so
there were also many types of research with non-separatable intensity functions. A
Marked Recurrent Temporal Point Process model [25] extracted the spatial part into
a feature vector and used these features as a part of their temporal model. Some use
deep learning to model the intensity function [26] by creating representative points
in the spatio-temporal space and calculating the final intensity as a function of these
representative points.

In general, the spatio-temporal point process framework deals with modeling the
spatio-temporal discrete data using a point process framework. While that is useful to
study the occurrence mechanism and predict future events, the relationships between
each event in the model are not explicitly defined. Only a few works exist on the topic
of extracting relations of clusters in spatio-temporal point process modeling as discussed
in Section 2.2

Higuchi et al. proposed a model [27] that uses an expectation-maximization algo-
rithm over both the Gaussian mixtures (the spatial part) and their temporal influences
on each other (the temporal part). Their model can discover latent influences between
each spatial cluster, however, there are two main limitations: the number of possible
spatial clusters is fixed, and the relationship is derived from the coefficients of the model
predictors and not a definite causal relationship. Alternatively, Zhu et al. [28] proposed

a deep learning model that can generate heatmaps of spatial influence for each spatial



area for interpretation.

2.1.3 Spatial Cluster with Temporal Relation

On the other hand, several works use the Spatio-temporal point process differently.
That is, there are spatial parts in the data, but those spatial parts are fixed points.
The example includes neural activities modeling [29]. This work does not consider these

types of data, as those are better modeled as multivariate time series.

2.2 Relation mining

Relation mining is a type of data mining where a relation between each random variable
is needed to be determined. This can be many kinds of relationships: similarity, dis-
similarity, causal, or co-occurrence, for example. Specifically for spatio-temporal data,
relationships can be defined in many ways, for example, the similarity between occur-
rence patterns between two spatial areas. However, this work mainly considers the
causal or co-occurrence relation between two spatial areas. Even under this definition,
the relation can still be divided into two types: where cause-effect occurs at the time
same (no time lag), and where the effect occurs after cause (with time lag).

In the case where no time lag is observed between the associating entities, there are
many types of research, especially in neuroscience. Davidson et al. proposed a network
discovery algorithm using constraint tensor analysis from fMRI data [18], in which the
proposed algorithm can identify the node and relation between each brain region. An
example is shown in Fig.

However, when a time lag element is added, this field becomes nearly non-existent.
Methods proposed for determining time-lagged relationship included a Co-Occurrence
Sequence Mining (CCM) [19] and Cluster Sequence Mining (CSM) [20].

CCM algorithm is an algorithm designed to extract a non-directional occurrence
correlation from the spatio-temporal event sequence. It worked by trying to first cluster
the data spatially, and then evaluate the co-occurrence coefficient of each pair of clusters.
CSM extends the CCM algorithm by adding a directional requirement and using a
probability inference of the lagged time (called time interval). However, both CCM and
CSM algorithms were for occurrence correlation and not causal relations.

Frequent Pattern Mining might also be related to relation mining. Frequent pattern

10
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Figure 2.1: Network relationship discovery from fMRI data. Figure is taken from [18]

mining is a technique to detect patterns that occur frequently in the data. For spatio-
temporal data, a variation of frequent pattern is defined including co-occurrence patterns

, sequential pattern , motif pattern [32], and network pattern .

2.3 Causal Inference

Causal inference is a process of concluding that there exists a causal relation based on
observed data. In science, causal inference is usually performed with a statistical method
using techniques that will be discussed below. Nevertheless, there are many challenges
in this field, mainly that correlation does not imply causation.

However, the word “causality” is not very well-defined. Granger was the first person
to define the word causality back in 1969 [15]. Granger stated that A causes B if it is
easier to predict B using all available data than to predict B with all available data using
A. Granger’s definition has been used extensively in economics. On the other hand,
Spirtes et al. introduced that there is no real definition of causality [34]. Instead, all
algorithms or techniques for causality inference must be verified using the “truth”, be
it either data that causalities are known, or synthetic data.

Exploratory causality analysis (ECA) is a practice of inferring causal associations in

11



observed data using a statistical algorithm [34]. Specifically, ECA states that there exists
a data analysis technique that can identify random variables from the data collected
during a well-designed experiment, and infer a probable causal association between
them.

There are many kinds of research and techniques on causality analysis and causal
inference. The techniques can be divided into two main groups: for random variables
and for time series. Causality on random variables, basically, has the input of multiple
instances of random variables, and trying to infer causality between each variable that is
true across all instances. For causality on time series, usually, the objective is to find an
effect that is caused by something earlier in the time. This also creates time constraints
on the possible causality, as it cannot travel back in time.

The following popular techniques will be briefly discussed:

1. Time series:

e Granger causality

e Transfer entropy

2. Random variables:

e Constraint-based algorithms

Note that there were also other methods of causality inference other than explained
in this section, but most of the other methods are extensions or applications of the

discussed methods.

2.3.1 Granger Causality

Granger causality was among the earliest and most accepted methods for causality
analysis in temporal data. As stated above, the Granger causality technique is based
on the idea that A causes B if it is easier to predict B using all available data, than to
predict B with all available data using A.

The standard form of Granger causality was to use a vector autoregressive (VAR)

12
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Here, both variable A and B were the time series being predicted using the history of
both variables, F4(t) and Ep(t) are residual (error) terms, O is the model parameters,
and p is the model order. The residual terms indicated the ability of the history to

predict the new value. If alternate models were created without each other history:

Z@aaj +EA( )
7=1

bb] j) + Ep(t),

T M*@

then this model represented predicting a variable using all available information except
the causal variable in the definition proposed by Granger. If E',(t) > E4(t), then B
caused A, and similarly if E%5(t) > Ep(t), then A caused B. The simplified diagram of
the process is shown in Fig.

There was also a spectral Granger causality [35]. Spectral Granger causality uses
Fourier transform to transform the input data into a spectral domain, and detect the
causality on the transformed data. This type of Granger causality was being utilized
mainly in neuroscience applications.

Finally, the Granger causality for the spatio-temporal point process has also been
proposed [36]. This is discussed in Chapter

This work uses the Granger Causality as the causality inference method because it
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is the most widely used method. It is also the only causality inference method that has

a point-process variation, thus, this work utilized Granger causality.

2.3.2 Transfer Entropy

Transfer entropy is a statistical method to measure the amount of directional data

between two random processes [37]. The transfer entropy measured the amount of

uncertainty reduced in knowing the future of B if the history of A is known.
Specifically, if there are two random processes A(t) and B(t), transfer entropy from

A to B can be written using Shannon entropy as:

Tap=H(BO)|B(t—1:t—L))— H(B)|Bt—1:t—L),A(t—1:t— L)),

where H(X) is a Shannon entropy of X, and L is the history length to consider. The
Shannon entropy represents the amount of information that is available in the random
processes and its history. Hence, this measures how much entropy is lost by introducing
another process into the mix. However, for the Gaussian process, it has been shown

that transfer entropy and Granger causality are equivalent [38§].

2.3.3 Constraint-Based Algorithms

The constraint-based algorithms differ significantly from the previously discussed causal-
ity analysis algorithms. In the case of Granger causality and transfer entropy, a causal
direction is known beforehand (because they have time constraints from the temporal
feature). However, when the causality direction is not known as constraints, the above
algorithms fail.

In constraint-based algorithms, firstly, random variable dependencies and indepen-
dencies were inferred from the observed data, using Hoeffding’s test of independence or
other statistical testing methods. All probable causal models are created (including with
hidden cause) and are tested if the model fits with the observed (in)dependencies. The
only causal relations that can be inferred are those that exist in all the valid models.

While the above algorithm can be done naively, the state-of-the-art algorithm for
doing the constraint-based causal analysis is the PC algorithm [34], named after the
inventor, Peter and Clark. It involved a computational optimization to allow a speedup

over a naive implementation. Recently, there are also more parallel version [16] and
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GPU version [39]. There was also an algorithm designed to deal with non-Gaussian

data called LINGAM [40].
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Chapter 3

Granger Cluster Sequence Mining

(G-CSM)

3.1 Overview

The Granger Cluster Sequence Mining (G-CSM) algorithm extended the original Cluster
Sequence Mining (CSM) by implementing the Granger causality inference method to
detect causality. This is done by adapting the Granger casualty to work with point
process data.

This chapter first describes the working of the original CSM algorithm, then the
Granger Causality and its adaption to the point process data. Next, the actual G-CSM
algorithm is described. The False Discovery Rate (FDR) algorithm was introduced to
control the false positive rate of the causality inference. Finally, the experiments and

results are discussed.

3.2 Cluster Sequence Mining (CSM)

Cluster Sequence Mining (CSM) [20], on which the Granger Cluster Sequence Mining
(G-CSM) is based, is an algorithm designed to identify occurrence correlations in the
multidimensional event sequence. In this section, the detail of the original CSM algo-

rithm is described.
Definition 3.1. A Multidimensional Event Sequence is a sequence of length N of n-
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dimensional vectors of real number representing events, each with an associated times-

tamp, ordered sequentially:

X ={x" eR"} (|X|=N) (3.1)

X, = txW) < t(x@) < < (xM). (3.2)
An example of an event sequence is shown in Fig. [[.Ib] with 15 events in both spatial
(data space) and temporal (timeline) view.
The CSM algorithm took an input of multi-dimensional event sequence as defined in

Def. and produced a cluster sequence pattern, which is defined as follow:

Definition 3.2. A Cluster Sequence Pattern is a pair of spatial clusters of the event

sequence, called prior cluster and posterior cluster.
Sasp = (A ={xDA"=1},B={xV|B" = 1}), (ANB =10), (3.3)

where A and B is an assignment vector for set A and B respectively. The set A is a

prior cluster, while set B is a posterior cluster.

An example of a cluster sequence pattern is shown in Fig. created from the
event sequence in Fig. [1.1b
The objective of the CSM algorithm is to find cluster sequence patterns that satisfy

the following three conditions:

1. Temporal proximity Each event in the posterior cluster x(*) € B occurs im-
mediately or soon after some event in prior cluster x() € A. The time interval
between the two events, tq, = t(x®) — ¢(x(*)) must be a positive number and

follow some distribution W(t4).

2. Frequency The more frequent x() € A and x(") € B, the better the cluster
sequence. The number of pairs of events in the cluster sequence pattern must be

larger than some hyper-parameter Supppin.

3. Spatial proximity The variance of the event within each cluster A or B must
be low. This was evaluated using the SSW (sum of squares within) measure. SSW

of A and B were evaluated independently.
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Figure 3.1: Overview of CSM algorithm

Figure 3.2: AHC dendrogram nodes

To find cluster sequence patterns that met these conditions, the CSM algorithm op-
erated in three steps: 1) Candidate Generation 2) Candidate Evaluation 3) Elimination

of Inclusive Relation. The overall process of the CSM algorithm is shown in Fig.

Candidate Generation

For the candidate generation process, CSM used Agglomerative Hierarchical Clustering
(AHC). Each node in the AHC dendrogram was a possible cluster to be chosen, as shown
in Fig.

The candidates were generated by trying to pair all possible clusters from the AHC
dendrogram, and checking if they met the frequency requirement (requirement 2) by
calculating each corresponding event. If the pair of clusters had the number of corre-
spondent events at least Suppmin, it was considered to be a candidate cluster sequence
pattern.

In this work, a simple one-to-one matching method was used to calculate the corre-
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sponding events. The simple one-to-one matching method considered each event in the
prior cluster A separately. For each event in the prior cluster A, the closest event in
posterior cluster B that had not been chosen was selected as the corresponding event.

This matching algorithm is shown in Alg.

Algorithm 3.1 CSM one-to-one event matching algorithm
Input List of timestamps of prior and posterior A and B
Output List of time interval

1: Ly <0
2: T <>
3: for all a € A do
4: while L, < ‘B| A B[Lb] < ado
5: Ly+— Ly+1
6: end while
7: if L, < |B| then
8: Append (B[Ly] —a) to T
9: end if
10: end for
11: return T
Evaluation

The pattern candidates were evaluated using the following evaluation functions:

o 1
F(Aap) = T op(—rhag) (3.4)
2 2
G(A.B) — xp <_SSW(A) 2;35\7\/(13) ) (35)
L(Sa-B) = F(Sassp)? - G(A,B)177), (3.6)

F is a time proximity evaluation according to the time proximity requirement (re-
quirement 1). The greater the F, the higher the time proximity. This work assumed
that the lower the time interval between the events, the better the cluster sequence.
Thus, U(te) is an exponential distribution Exp(Asp). The variable Agp is the maxi-
mum likelihood parameter from the observed time interval. Thus, the higher the B

the better the temporal proximity. The value was then normalized using the sigmoid
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function to be in a range of [0,1]. The hyper-parameter of the sigmoid function, 7, is
used to control the relative resolution.

G is a space proximity function for the space proximity requirement. Similarly,
the higher the value of this function, the higher the spatial proximity. The sum of
square within (SSW) measure was used to evaluate each prior and posterior cluster
separately. SSW measures the variance of the data in relation to the cluster center. The
values were combined and normalized to [0, 1] using a Gaussian function, with ¢ being
a hyper-parameter to control the relative resolution.

L is the final evaluation score that combined both spatial and temporal proximity.
The final evaluation was constructed from the product of time and proximity function,
weighted by the parameter . The higher ~, the more important is the time proximity.
An equal weight would be v = 0.5. The higher the final evaluation score, the better the
cluster sequence satisfied all 3 CSM requirements. Only the cluster sequence pattern
candidates with £(S4-5) > Lmin, where L, is a predefined minimum threshold, were

considered as the final cluster sequence patterns.

Elimination of Inclusive Relation

If any two final cluster sequence patterns have an inclusive relation with each other,
then only the pattern with a higher evaluation score was kept.

Any two patterns were considered to have an inclusive relation with each other when
the prior cluster of one relation is a subset of the prior cluster of the other relation, and
the posterior cluster is also a subset of the other. Note that the subset may be in a

different direction for the prior and posterior clusters.

ClusterInclusive(X,Y) =491 v cX (3.7)

0 otherwise

Patternlnclusive(Sa—p, Sc—p) = ClusterInclusive(A, C) - ClusterInclusive(B, D)

(3.8)

This operation can be performed efficiently by checking the AHC dendrogram. If
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any two clusters are (grand)parent/(grand)child of each other, the two clusters have an

inclusive relation.

3.3 Granger Causality

Granger causality [15] is causality testing based on the idea that: if A causes B, then it
must be easier to predict B using all available data than to predict B using all available
data except A.

Assuming a data A with A(t) representing the data A from time 0 to time ¢. Let
P(A(t)|X(t)) be an optimum predictor of A(t) based on data X (t), and let U(t) be
all available data up to time ¢. Denote the predictive error of P(A(t)|X(t)) with
e(A(t)| X (t)), and the variance of e(A(t)|X (t)) as o?(A(t)| X (t)).

Definition 3.3. Granger Causality. If o(B(t + 1)|U(t)) < o?(B(t + 1)|U(t) — A(2)),

then A is causing B. This is written as A granger-cause (g-cause) B.

In reality, it is not practical to construct a model using all the available data. Gen-
erally, the data used to model the predictor is usually limited to the observed variables.
For pairwise causality, only two random variables are considered.

In addition to the number of variables, there is also the problem of history length.
Using all available data, even just for two random variables, means using all observations
since the beginning. This is not practical for many reasons. The standard practice is to

limit the history to some small time frame.

Pairwise Point Process Granger Causality

Traditionally, the Granger causality works on time series or spectral data. However,
in this work, such data was not available. The only temporal data available was the
point process of the timestamps of the event occurrence time. A generic point process
Granger causality was proposed in [36]. This sub-section contains a slight adaption of
the method from the aforementioned work to fit the needs of the G-CSM algorithm.
Basically, a Granger causality of the cluster sequence pattern S, p is whether A

g-causes B or not. A cumulative incidence function (CIF) for the point process of event
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Figure 3.3: Simplified view of the GLM model for point-process Granger causality.

B occurrence can be defined as:

Mt H() = 1im DTN+ 8) = No() = 1]

A—0 A ’ (3'9)

where Nj(t) is a counting measure of event b within the time of (0,t], Hp(t) is an
occurrence history of all event occurrences up to time ¢ for event b. The probability that
event b occurring in a small time window [t,¢ + A) can be written as A\, (t|Hp(t))A.

Since it is not feasible to consider the entire history, only the history from time
[t — M;W,t] is considered. The time range was divided into M; equal windows of length
W. The number of occurrence of event ¢ in the time window [t — mW,t — (m — 1)W] is
denoted as Ry n(t) for ¢ € {A,B} is either a prior or posterior event, and m =1, ..., M;
is the window number.

To model the predictor for the event occurrence, a generalized linear model (GLM)
framework was used to model the CIF. In GLM, the logarithm of the CIF was modeled
using a linear combination of the occurrence history. This work currently assumes the
linearity of the data by setting a small window size. The simplified model is shown in

Fig. In this case, the log-CIF is modeled as:

M,
log Ap(t[0p, Hy(t)) = Ob0+ D > ObgmBgm(t), (3.10)
ge{A B} m=1

where 6 is background activity, and 6y 4, is the effect of R, (t) to the event b. The
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parameter vector, 0y, is defined as:

Oy = {050, 0b,0,15 - Obp,15 -5 O p 01y } (3.11)

A point process likelihood function [29] was used to fit the GLM model. As [29]
shown that for the point process, both the Binomial and Poisson estimation in GLM
are equivalent, this work chose the former.

To make the calculation easier, the entire timeline [0,7] was divided into K equal
non-overlapping windows, each with the length of W. The time window k& would rep-
resent the time window (tx—1 = (k — 1)W,t, = kW]. To represent this discretized
time, the history Hy(t) is written as Hy[k]|, and Ry, (t) is written as Rq ., [k]. ANy[k] =
Ny[k] — Nplk — 1] is the number of event occurrence within the time (fx_1, %], and the
CIF in eq. is written as A\y(tx|0y, Hp|k]). W should be chosen to be very small so
that ANy[k] can only be either 0 or 1.

Thus, the likelihood function for the Binomial GLM model is given as:

K
H [N (t166, Hp[K]) AT 1 — Xy (116, Hy[k])A]' 2N (3.12)

As per the Granger causality defined in Def. event A is considered to granger-
cause event B if there was a reduction in the likelihood between predicting the occurrence
using history of only B instead of using the history of both A and B. The log-likelihood

ratio, I'(S4-p) is defined as:

Ly(67)
Ly(0y)

I'(Sa-p) = log (3.13)

where the likelihood L;(6y) was obtained from model fitting eq. (3.10)), and the likelihood
Ly(67) was obtained using new CIF with history of A cut:
My
log Aj (¢165, Hi (£)) = 050 + D 05 R (D). (3.14)

m=1

The log-likelihood ratio I'(S4— ) in eq. (3.13)) is considered to be a Granger causality

strength for pattern S4_.p.
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3.3.1 Significance testing

The Granger causality strength from eq. (3.13]) cannot tell us whether the relation is
significant enough to be considered a causality. Thus, the following null and alternative

hypotheses were formed:

Hy: 0 =6f (the limited predictor is better), (3.15)

Hy:0 =0, (the full predictor is better). (3.16)

To test Hy against Hi, likelihood-ratio test [41], [36] were used. The likelihood-ratio
test evaluated the difference of deviance AD flowing the x? distribution, which is given
by:

AD = —2T'(Sa_B) ~ X2, (3.17)

where w is the degree of freedom, in this case, the difference in the dimensionality of
the two predictors, which is equal to the history length of Granger causality M.
Because the algorithm performed tens of thousands of significant tests throughout
the algorithm, there is a need to control the type-I error rate. False Discovery Rate
(FDR) procedure [42] was used, specifically the Benjamini-Hochberg procedure, which

can be summed up as:
1. Perform all significant testings and calculate the p-values.
2. Rank all p-values from low to high. So that p; < ps <p3 <..<p,

3. Find maximum k such that p; < %a, where « is the acceptable ratio of type-I

error.

4. Accept first k testings.

In the algorithm, FDR was applied over all cluster sequence pattern candidates. The
p-value of each candidate was calculated according to eq. (3.17). Threshold I'y for the

Granger causality strength was calculated such that:

P(I'(Sa-B) = To) = pk, (3.18)
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where py is the highest p-value accepted by the FDR algorithm above, meaning I’y is
the likelihood ratio of the k' candidate pattern, sorted by the likelihood ratio.

3.4 Granger Cluster Sequence Mining (G-CSM)

Granger Cluster Sequence Mining (G-CSM) algorithm modified the original CSM as
described in Section [3.2] with a Granger causality-based time proximity.

3.4.1 Time Proximity Evaluation

The temporal evaluation is based on the strength and significance of the Granger causal-
ity of the sequence. This thesis proposed two different methods of temporal evaluation:

threshold strength and scaled strength.

1. Threshold strength. Use the significant threshold as a cutoff, resulting in the
sequence that is deemed to have significant causality to be evaluated using spatial

features only.

0 (I'(Sasm) <To)
Fru(Sasp) = . (3.19)

1 (I'(Sasp) > To)

2. Scaled strength. The strength is scaled from 0 to 1, with anything at or below the
significant threshold yielding 0, and increasing toward 1 as the causality strength

goes toward infinity.

Lo
= 1+ ———— ). 2
]:50(8,4%3) max (0, + F(SA_>B)> (3 0)

The temporal evaluation is combined with the spatial evaluation resulting in the
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final evaluation for G-CSM:

F(Sa-B) = Fri or sC (3.21)
2 2

G(A,B) = exp <— SSW(A) QjQSSW(B) > , (3.22)

L(Ss.p) =F(Sasp)"-G(A, B, (3.23)

The spatial proximity G(A,B) in eq. (3.22) and the overall evaluation £(S4-p) in
eq. (3.23)) is identical to the original CSM in eq. (3.5) and (3.6).
A cluster sequence pattern with Granger causality is called a Granger cluster se-

quence pattern (g-pattern). The full pseudocode of the G-CSM algorithm is shown in
Alg.

3.5 Experiments

To validate the proposed algorithm, multiple experiments were performed with synthetic
data and semi-real data. First, the performance between the proposed G-CSM algorithm
with and without FDR, and the original CSM algorithm was compared. Various patterns
of the synthetic data were also tested. Second, an analysis of the hyper-parameters of
the proposed algorithm was performed. Lastly, a semi-real data was tested. No other

method can be compared other than CSM as discussed in Section [2.3.1

3.5.1 Data generation

In many of the experiments, synthetic data with embedded true relations and noise were
used. The synthetic data contain an embedded relation, which is a pair of spatial clusters
that has the time interval between the corresponding event in prior and posterior event
clusters following an exponential distribution. The synthetic data also have noise added.
This process is similar to the synthetic data used in the CSM paper [20].

The embedded relation is generated as:

1. Generate N data points from a normal distribution for two clusters: x € X ~

N(ma,24) and y € Y ~ N(mp, Tp).

26



Algorithm 3.2 G-CSM algorithm

e e e T e T S S
R I A s el

W W W NN DN DN NDNDNDNDN

o
DR

Input List of event X and timestamps X;
Output List of cluster sequence patterns

# Step 1: Candidate Generation
Perform AHC on X
C <«
for all A € AHC(X) do
for all B € AHC(X) do
if A= B then
Continue.
end if
T min(| 4]l | B])
if T > Suppmin then
Append (A, B) to C
end if
end for

: end for

: # Step 2: Evaluation
: D« > Set of preliminary sequence patterns
: for Sy, € C do

L= E(SA—>B)

if L > L,,;n then
Append Sap_.p to D

end if

: end for

: # Step 3: Elimination of Inclusive Relation
: Sort D by evaluation score, high to low.

: for i from 1 to ||D|| do

for j from i+ 1 to ||D|| do
if PATTERNINCLUSIVE(D]i], D[j]) then
Remove DJj] from D
end if
end for

: end for
: return D

> Set of candidates

> eq. (3.23)

27



~
o

4= TR+ PR Fa s o S £ !
% *i+, H4g + P True Prior 4
34 1 3?‘* }‘ +H4 4 o
+ " bt e+t *?h» <« True Posterior
+ # 7 4+
+ ¢ F *+ 4+ Noise
+ |

R
t* *43* H* +

<+{

%
(=2}
o

w
o

w
o

Event pair frequency
ey
o

N
o

-
+
i
=
o

AT 0 2 4 6 8 10
_ . 29 , . AV S S Time interval
4 3 =2 1 0 1 2 3 4 {Me Interv

(b) Histogram of the intervals between relation,
(a) Spatial view of data with N,uise = 1000 A =0.5

Figure 3.4: Example of the input data

2. For each pair of (x®),yW) generate a t() ~ Exp(\).

3. Set tgap = ((t1 — to) — S2t@)/(N — 1), the gap between each event. The input
parameter tg, t1, and A should be set such that 1) « tGap-

4. Bach pair of (x®, y®) are allocated a timestamp such that t(x®) = ¢q + (i —
Dtgap + 3 i—otY) and t(yW) = to + (i — Dtgap + Y-t

The noise is generated as a uniform spatial noise uniformly over the timeline:

1. Generate N data points from a uniform distribution: x ~ 2/[a, b].
2. For an event x| set t(x(V) ~ Ultg, t1]

In this experiment, the embedded relation was generated using the parameters N =
300, myg = (=2,0), ¥4 = (0.5,0.5), mp = (2,0), X = (0.5,0.5), to = 0, and t; =
100, 000. Noises were generated using the parameters: a = (—4,—4), b = (4,4), to =0,
t; = 100,000. This created a single cluster sequence pattern, with noise directly over
the event cluster, to test the basic accuracy of the algorithm. The number of noise,
Npoise is varied by each experiment.

The example spatial view of the data with Npuse = 1000 and the histogram of the

interval between each relation with A = 2 (average interval = 0.5) are shown in Fig.

3.5.2 Evaluation measure

The precision, recall, and F-score of the identified prior and posterior clusters, and of

the relation itself, were measured. The equations for these scores are as follows:
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_ llenxi

Prec(C) = T (3.24)
Rec(C) = ”CmNX” (3.25)

where Prec(C) and Rec(C) are the precision and recall score of the cluster C' given
the ground-truth cluster X. || - || denoted the cardinal of the event set. F-scores were
calculated as the harmonic mean between the precision and recall score.
This work defined relation-based precision and recall as follows:
_ H{ilx® € Any™ € B

Pree(Sase) = 5 e AT w18 (3.26)

_ IHix" e Any® e By

RGC(SAQB) N )

(3.27)
where x() € X and y@ € Y are ground-truth prior and posterior event clusters, with
x(@ and y( being the associated event pair as generated in Section and N is
the number of event pairs in the ground-truth relations. The precision and recall score
of each relation was calculated using the number of pairs of events that were actually
related to each other in that relation.

Outputted relations were also counted. The number of relations in the generated
data is one. However, the algorithm may output more than one relation, whether because
it detected more than one relation in the input, or because multiple subsets of the same
relation were detected. In such cases, the prior clusters of all relations were merged, and

the posterior clusters were also similarly merged for the purpose of evaluation only.

3.5.3 Performance validation

This section compared the accuracy of the original CSM algorithm with the proposed
G-CSM algorithm with and without FDR.
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Table 3.1: AIC value at different history length. Bold is the lowest.

History

Noise 2 3 5 8 15
100 2928 2856 2781 2760 2771
500 3333 3269 3206 3191 3202
1000 | 3722 3675 3632 3625 3637
2000 | 4644 4621 4603 4603 4616
3000 | 5344 5333 5326 5330 5344

Parameter settings

The hyper-parameters were set with o = 0.5, v = 0.5, L,;n = 0.8. These parameters
were set to balance the effect of the spatial and temporal scores.

For the Granger causality, the window size W = 1 was used. The history length, M,
was set using Akaike Information Criteria (AIC) [43] on the Granger causality model
according to Table « for significant testing is set to 0.05, which means 5% error
rate for causality detection was accepted.

The Suppmin parameter, which controls the number of corresponding events in each
pattern candidate, was set to 50. This meant that all candidate patterns must have at

least 50 events within each cluster.

Result with varying noise level

Firstly, the algorithms were tested with various amounts of noise (Nygise) and A = 0.5.
The G-CSM using Frp (eq. ) is denoted with FDR-TH, while the one using Fg¢
(eq. (B-20)) is denoted with FDR-SC. The result is shown in Table All results
were an average of 20 runs.

The example of relations extracted by each algorithm is shown in Fig. The
G-CSM without FDR and G-CSM with FDR-SC result are similar, but G-CSM with
FDR-SC result has a slightly bigger posterior cluster, which better matches the generated
data. The G-CSM with FDR-TH has a lower precision cluster and sometimes identifies
an erroneous relation as shown.

Meanwhile, the original CSM failed to extract any relations at all even with noise =
100. The main reason is that the original CSM tried to match each event pair together,
so by having noise without matching pairs in the spatial cluster, it failed to detect
any meaningful relations. In contrast, G-CSM uses window-based event counting in

the time-space, therefore G-CSM is more robust against noise in the time domain than
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Table 3.2: CSM and G-CSM at various noise levels. P = Precision, R = Recall, F =
F-score, (1) = Prior cluster, (2) = Posterior cluster, (R) = Relation, Cnt. = Number of
relations identified. Bold indicated the best result.

Algo. P1) R(1) F(1) P2 R((@2 F((2 P(® R F(R) Cnt.

Noise = 100

G-CSM 0.987 0.540 0.693 0.987 0.548 0.701 0.534 0.297 0.381 1.050
FDR-TH 0.987 0.355 0.512 0.989 0.327 0.485 0.324 0.116 0.169 1.250
FDR-SC 0.989 0.495 0.654 0.988 0.492 0.649 0.473 0.242 0.319 1.050

Noise = 500

G-CSM 0.940 0.556 0.695 0.936 0.537 0.678 0.510 0.301 0.377 1.100
FDR-TH 0.921 0.389 0.507 0.912 0.362 0.504 0.318 0.143 0.187 1.450
FDR-SC 0.941 0.536 0.678 0.937 0.513 0.658 0.490 0.277 0.352 1.100

Noise = 1000

G-CSM 0.885 0.551 0.674 0.888 0.549 0.673 0.484 0.305 0.373 1.100
FDR-TH 0.771 0.428 0.519 0.772 0.416 0.503 0.318 0.192 0.227 1.900
FDR-SC 0.883 0.560 0.681 0.887 0.555 0.678 0.491 0.314 0.382 1.100

Noise = 2000

G-CSM 0.783 0.550 0.637 0.791 0.571 0.655 0.436 0.320 0.365 1.300
FDR-TH 0.662 0.476 0.516 0.675 0.473 0.522 0.309 0.245 0.257 2.450
FDR-SC 0.784 0.560 0.643 0.788 0.604 0.679 0.449 0.341 0.385 1.300

Noise = 3000
G-CSM 0.679 0.595 0.623 0.705 0.609 0.643 0.407 0.366 0.381 1.850
FDR-TH 0.500 0.497 0.467 0.530 0.634 0.542 0.272 0.322 0.281 4.050
FDR-SC 0.683 0.611 0.635 0.701 0.631 0.657 0.423 0.389 0.402 1.700

CSM.

In Table[3.2] The FDR-TH algorithm is also uniformly bad, having worse results than
the G-CSM without FDR and FDR-SC in almost all measurements. This is because the
temporal score becomes either 0 or 1, the score relies entirely on the spatial evaluation.
The spatial evaluation prefers compact clusters, thus, FDR-TH has high precision but
low recall. FDR-TH also tends to detect erroneous relations, especially at a higher noise
level.

G-CSM with FDR-SC has a better recall score than G-CSM without FDR, especially
as the noise increases. This result shows the robustness of G-CSM with FDR-SC against
spatial noise. G-CSM with FDR-SC also maintains the relational precision score better
than G-CSM without FDR.

Note that for all algorithms, the number of extracted relations (Cnt. in Table
also increased along with the noise. This is because the algorithm finds multiple relations
that are a subset of the ground-truth relation, resulting in more coverage of the ground-

truth data. In turn, this increases the recall score.
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(a) G-CSM w/o FDR

(b) G-CSM w/ FDR-TH

(¢) G-CSM w/ FDR-SC

Figure 3.5: Example of relation(s) extracted by each algorithm with Noise = 3000. CSM
cannot identify any relation.

32



Table 3.3: CSM and G-CSM at various relation intervals. P = Precision, R = Recall, F
= F-score, (1) = Prior cluster, (2) = Posterior cluster, (R) = Relation, Cnt. = Number
of relations identified. Bold indicated the best result.

Algo. P1) R(1) F(1) P2 R((@2 F((2 P(® R F(R) Cnt.

A = 20 (Interval = 0.05)

G-CSM 0.928 0.683 0.781 0.929 0.693 0.790 0.630 0.471 0.538  1.050
FDR-TH 0.754 0.366 0.456 0.759  0.357  0.458 0.270 0.133 0.170 1.600
FDR-SC 0.926 0.699 0.791 0.928 0.676 0.777  0.631 0.474 0.540 1.050

A = 2 (Interval = 0.5)

G-CSM 0.940 0.556 0.695 0.936 0.537 0.678 0.510 0.301 0.377 1.100
FDR-TH 0.921 0.389 0.507  0.912 0.362 0.504 0.318 0.143 0.187 1.450
FDR-SC 0.941 0.536 0.678 0.937 0.513  0.658 0.490 0.277 0.352  1.100

A=0.2 (Interval = 5)

G-CSM 0.928 0.692 0.790 0.922 0.766  0.835 0.671 0.531 0.592  1.000
FDR-TH 0.870 0.398 0.513  0.875 0.399 0.524 0.328 0.161 0.208 1.500
FDR-SC 0.927 0.698 0.793 0.923 0.767 0.836 0.674 0.536 0.596 1.000

Result with varying temporal interval

The algorithm was also tested at various settings of A that controls the interval between
each related event with noise N,pse = 1000. The result is shown in Table All
results were an average of 20 runs.

At a low interval between each pair of events, it is also a toss-up between G-CSM
without FDR and G-CSM with FDR-SC. However, at a larger time interval, FDR-SC
performs better. It is suspected that this is because as intervals get longer, there are
more chances for the noise to appear in between the event pair in the temporal domain,

and FDR-SC is more robust to noise.

Analysis of the spatial and temporal score

The temporal evaluation score was plotted against the spatial evaluation score of all
candidates as a scatter plot in Fig. This work defined possibly-correct relation as a
relation that both the prior and posterior event clusters are a subset of the ground-truth
prior/posterior event clusters, excluding noise. The black and green dots indicated a
possibly correct relation, shaded by the F-score of the relation from black (low F-score)
to green (high F-score). The red dots indicated wrong relations. The scores of the
orange mark, which is the relation with the highest evaluation score are shown in Table

Fig. indicated that the FDR-SC algorithm helped to clean up wrong relations
and possibly-correct relations with low F-scores, while still keeping the possibly-correct

relations with high F-scores intact. This results in a wider range of the temporal score
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Figure 3.6: Scatter plot of the temporal and spatial score. Red indicates the wrong
relationship. Black to Green indicated possibly correct relations, shaded by F-score.
The blue mark is the relation with the highest F-score, with orange being the highest
evaluation score. Noise = 3000, A = 2. Grey lines represented positions with equal final
evaluation scores.
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Table 3.4: Evaluation scores of the relation with the highest evaluation score
from G-CSM

Relation Score
Algo. Prec. Rec. F-Score | Temporal' Spatial
G-CSM w/o FDR 0.334 0.243 0.282 0.952 0.954
G-CSM w/ FDR-SC | 0.331 0.270 0.298 0.942 0.947

! The temporal evaluation scores of G-CSM without FDR and with FDR-SC are calculated
differently and cannot be compared directly.

over the pattern candidates. As shown in Fig. the FDR-SC version has a usable
range from around 0.6 to 1.0, while the without FDR is around 0.7 to 1.0. This can also
be seen in Table [3.4] as the relation with the highest evaluation score also has a higher
recall and F-score for the G-CSM with FDR-SC compared to G-CSM without FDR.
Therefore, the spatial score ended up having less effect on the final evaluation score.
With the noisy data tested here — the higher the noise, the more noise was included
in the candidate clusters — having less influence from the spatial evaluation allows the
clusters to be bigger, thus a higher recall score. This can also be seen in the table, with

FDR-SC having a higher recall score than the one without FDR.

3.5.4 Parameter analysis

Minimum sequence threshold L,,;,

To analyze the effect of the minimum sequence threshold L,,;,, the histogram of the
final evaluation score of all valid cluster sequence patterns was plotted, and whether
they are considered to be correct or wrong relations. The data used in this experiment
was Noise = 100 and A = 2. The other hyper-parameters were the same as in Section
B.5.3

The resulting histogram is shown in Fig. 3.7 and it is clear that G-CSM has a very
good separation between the evaluation score for correct and wrong relations, unlike the
original CSM. It can be concluded that G-CSM is less sensitive to the £,,;, parameter.
Note that L,,;, = 0.8 and all the generated patterns by the CSM algorithm have scores
less than 0.8, so CSM cannot output any patterns. According to Fig. the detected

relations have a final evaluation score of 0.7 or less.
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Table 3.5: CSM and G-CSM at various alpha settings. P = Precision, R = Recall, F =
F-score, (1) = Prior cluster, (2) = Posterior cluster, (R) = Relation, Cnt. = Number of
relations identified. Bold indicated the best result.

Algo. P1) R(1) F(1) P2 R((@2 F((2 P(® R F(R) Cnt.

alpha = 0.001
G-CSM 0.684 0.632 0.650 0.696 0.627 0.652 0.428 0.399 0.410 1.400
FDR-TH 0.657 0.499 0.537 0.679 0.555  0.594 0.329 0.279 0.295 2.950
FDR-SC 0.695 0.603 0.642 0.704 0.620 0.654 0.422 0.373 0.395 1.300

alpha = 0.005
G-CSM 0.683 0.633 0.650 0.700 0.632 0.659 0.431 0.401 0.413 1.550
FDR-TH 0.663 0.492 0.539 0.676 0.552  0.592 0.330 0.277 0.295 3.000
FDR-SC 0.685 0.625 0.645 0.698 0.632 0.657 0.428 0.398 0.410 1.450

alpha = 0.01
G-CSM 0.685 0.624 0.645 0.700 0.624  0.655 0.428 0.393 0.407 1.600
FDR-TH 0.606 0.509 0.528 0.612 0.545  0.563 0.304 0.274 0.283 3.250
FDR-SC 0.685 0.627 0.647 0.696 0.641 0.662 0.431 0.404 0.414 1.500

alpha = 0.05
G-CSM 0.682  0.611 0.635 0.703 0.625 0.654 0.422 0.386 0.400 1.700
FDR-TH 0452 0.519 0457 0462 0.560 0.481 0.234 0.284 0.245 4.050
FDR-SC 0.685 0.625 0.646 0.700 0.630 0.658 0.428 0.394 0.408 1.600

alpha = 0.1

G-CSM 0.675 0.614 0.629 0.702 0.613  0.646 0.413 0.380 0.391 1.850
FDR-TH 0375 0.612 0426 0400 0.639 0.455 0.222 0.392 0.264  4.950
FDR-SC 0.682 0.619 0.640 0.698 0.639 0.662 0.428 0.398 0.410 1.700

alpha = 0.2
G-CSM 0.677 0.604 0.624 0.697 0.603  0.636 0.404 0.368 0.379 1.950
FDR-TH 0.251 0.649 0.348 0.296 0.664 0.389 0.169 0.434 0.235 7.050
FDR-SC 0.682 0.611 0.635 0.701 0.629 0.657 0.423 0.388 0.401 1.700

Significant threshold «

This work also investigated how changing the « significant threshold affected the result.
Here, the same data as in the first experiment (Noise = 3000, A = 2) were used with
different values of a. The result is shown in Table The G-CSM uses the specified
alpha value directly to calculate the threshold in eq. .

With different significant threshold settings from 0.001 (0.1%) to 0.2 (20%), G-CSM
with FDR-SC can maintain both the cluster and relation F-score better than the other
algorithms. The result shows that G-CSM with FDR-SC is less sensitive to the alpha
setting, and also has the number of extracted relations (Cnt.) close to one, which is

better in this case.

3.5.5 Other type of patterns

The experiment in the previous section uses a single pair of events cluster. This section
is to show that the proposed algorithm also worked with other types of data as well.
Four different types of patterns were tested as shown in Fig. First, two relations
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were generated using the method described in Section with Noise = 1000 and A
= 2, shown in Fig. [3.8al The second data also has two relations, but the prior event
locations were shared between two relations, shown in Fig. Third, the posterior
cluster of one relation shared the location with the prior cluster of the second relation,
shown in Fig And fourth, the variance of the prior and the posterior cluster were
varied, shown in Fig. The timestamps of events are shifted by a uniform random
number between 0 and 10,000, different for each relation.

The hyper-parameters were the same as in Section The extracted relations
are shown in Fig. The proposed G-CSM with the FDR-SC algorithm can correctly

extract relations in all cases.

3.5.6 Semi-real data

The experiment in this section was using semi-real-world data. That is, real-world
data is used as the spatial component, while the temporal component utilizes the same
method as the synthetic generation.

The test data of UCI Machine Learning Optical Recognition of Handwritten Digits
Data Set [44] was used as the spatial data. This represents a real-world example of spatial
data that has predefined spatial clusters. The data contains 1,797 samples divided into
10 classes. Each class has approximately 180 samples. The data were preprocessed to
normalize the mean and variance of each dimension (z-mean normalization). The input
data with 64 dimensions were reduced to 10 dimensions using Neighborhood Components
Analysis [45], as shown in Fig. This work randomly selected 2 pairs of digits as
the embedded relations, while the other 6 digits’ data were used as noise with uniform
distribution over the temporal component. The interval between each embedded event
pair of both relations followed exponential distribution with A = 2. The parameters
were the same as the previous experiment in Section An example of what the
timeline looks like is shown in Fig. [3.9b

The result is shown in Table[3.6] In this data set, as there was no extra random noise
added, even the original CSM, which is quite weak to spatial noise, can extract some
relations, but it still performed worse than the other algorithms. FDR-SC performed the
best in all evaluation metrics. Since the spatial dimension is reasonably well-separated
and no random noise was added, the precision score was very high as the algorithm can

easily extract the proper cluster. The recall score is limited by the spatial evaluation
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Figure 3.9: Semi-real experiments data detail

Table 3.6: CSM and G-CSM result from digits dataset. P = Precision, R = Recall, F
= F-score, (1) = Prior cluster, (2) = Posterior cluster, (R) = Relation, Cnt. = Number
of relations identified. Bold indicated the best result.

Algo. P1 R(1 FQ1) P2 R((@2 F((@2 PR R F(R) Cnt.

CSM 0.349  0.063 0.106 0.350 0.173  0.231 0.185 0.063 0.094 0.350
G-CSM 0.997 0.519 0.675 1.000 0.487  0.650 0.505 0.255 0.338  2.000
FDR-TH 0.997 0495 0.658 0.989 0457  0.622 0.476 0.228 0.308 2.050
FDR-SC 0.997 0.532 0.687 1.000 0.497 0.658 0.517 0.267 0.351 2.000

score, which prefers a compact cluster over a larger cluster. An adjustment to the
hyper-parameters of the evaluation function may be needed to get a higher recall score,
but otherwise, both the prior and posterior clusters of the extracted relations were the
subset of those of the ground-truth relation. The scores on the relation evaluation are

also low for a similar reason.

3.5.7 Complexity Analysis of the G-CSM algorithm

The original CSM algorithm has a run-time complexity of O(N?log N) in the average
case, where N is the number of data points. Within the algorithm, the time proximity
of temporal evaluation is O(|A| + |B|) where |A| and |B| is the number of events in the
prior and posterior cluster of each pattern, respectively.

For the proposed G-CSM algorithm, the time proximity algorithm uses GLM model
fitting to calculate Granger causality strength. GLM model-fitting has runtime com-
plexity of O(p® + Rp?) where p is the number of predictors and R is the number

of samples. In this case, p = 2 x M; + 1, which is a constant, and R is at most
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(2M; + 1) x (JA] +|B]) ~ (JA| 4+ |B|), thus the GLM model fitting takes O(|A| + | B]),
which is the same as original CSM. The FDR procedure takes O(N?log N) in the worst
case. Thus, G-CSM also has the runtime complexity of O(N?log N), which is also the

same as the original CSM.

3.5.8 Limitation of the G-CSM algorithm

Algorithm limitation

The G-CSM algorithm inherited all the limitations of the original Granger causality.
The major point is that though Granger causality is one of the accepted methods to
detect causality, it cannot be guaranteed whether it is an actual causality or not, just
that it is causality under Granger’s definition.

Since Granger measured the causality based on predictability, it is also limited by
the predictor. In the case of G-CSM, the limitations of GLM models used as a predic-
tor are the same as the traditional multivariate vector autoregressive (MVAR) model,
mainly: linearity, stationarity, and dependency on observed variables. Moreover, since
the proposed algorithm uses pairwise causality, more data from the environment might

be missed, such as when two events are the cause of another event.

Complexity limitation

The algorithm complexity is O(N?log N), a quadratic complexity, which can be a lim-
iting factor with larger data sets. For example, the data used in the experiment section
was limited to under 5,000 data points. Note that this was not the hard limit, but was
a self-imposed limit to keep the running time reasonable. The author has experimented
with 10,000 data points once (the earthquake data) but the algorithm was not able to
complete it in a reasonable time frame.

In addition, there is a need to adjust the hyper-parameters of the algorithm to match
the data used. With the long running time, adjusting the hyper-parameters is extremely
time-consuming. This is the core limitation that can prevent application with actual

real-world data.
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3.6 Summary

This chapter proposed a Granger Cluster Sequence Mining (G-CSM) algorithm which
is an extension of the original Cluster Sequence Mining (CSM) algorithm. It works
by trying to find two spatial clusters in a point-process spatio-temporal data and try
to detect if there was a causal relationship between the occurrence of events in both
clusters using the Granger Causality procedure.

The experiments showed that the proposed algorithm has better relation extraction
accuracy than the original CSM algorithm while keeping the same runtime complexity.

Nevertheless, the complexity still hinders the application of real-world data.
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Chapter 4

Local Density Estimation for
Point Process Vector

Autoregressive Model

4.1 Overview

The causality inference from the G-CSM algorithm uses a vector autoregressive (VAR)
model with the GLM method to model the predictor. The process, while simple and
fast to run, has drawbacks that a long history length cannot be easily used. To increase
the history length of the predictor, either the number of windows must be increased,
leading to more model parameters and longer running time, or the size of each time
window must be expanded, which results in lower temporal resolution. Both are not
ideal.

This chapter proposed a new procedure called local density estimation, which is a
pre-processing step to modeling the VAR model. Specifically, instead of modeling the
history of temporal point process data just by the presence of data (as in Fig. , this
procedure instead performs a kernel density estimation over a fixed size of the temporal
history and then applies auto-regression on the estimated density. This model is shown
in Fig. The procedure allowed the VAR model to better capture the precise location

of each data in the point process, especially on sparse data, as well as allow easy scaling
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Figure 4.1: A model using local density estimation

to longer temporal history length by having a few parameters covering a long time span,
while keeping the number of inputs to the model at a manageable level.

Using a linear and Gaussian kernel density model, this chapter described experiments
with synthetic data generated with the Poisson model, which showed that the kernel-
density pre-processing step improved the accuracy of prediction while still maintaining

the same number of inputs.

4.2 VAR modeling of point process

Vector auto-regressive (VAR) is a model where a variable at the current time step is

predicted by the past value of itself. For a general VAR model, consider a time-series

A = {ag,a1,...,a,},a; € R, the value of a; can be modeled by:
k
ai=Po+ Y Bjaij +ei, (4.1)
j=1

where k is the number of lagged variables, 8 are the model parameter, and ¢ is the error
term.

A cumulative incidence function (CIF) is a core process of modeling a point process.
The function indicates the rate of event occurrence at the specific time ¢ parameterized

by the history of event occurrence:

ACH() = lim Pr[(N(t+ A)A_ N(t) = 1],

(4.2)
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where N (t) is a counting measure of the event within the time of (0,¢], and H(t) is an
occurrence history of all event occurrences up to time ¢. The probability of the event
occurring in a small time window [¢,¢ + A) can be written as A(t|H (t))A.

To use VAR to model a point process CIF, the timeline was divided into small slices
of time windows. Then, take the number of events that occur in each slice of the window
to be the value at each time step of the VAR model. More formally, consider a point
process X = {x1,x9, -+ ,x,} where z; is a timestamp of each event in the point process.
Let Ty = x1 and 17 = z, be the minimum and maximum timestamp of the event, the
whole timeline was divided into K = (17 — Tp)/W slices of the window where W is
the window size. Let R; denote the number of occurrence of events in the time window
[To +iW, Ty + (i + 1)W), and R(t) denote the R; that is correspondent to the time t.

To model the incidence function, a generalized linear model (GLM) framework was
used to model the CIF. In GLM, the logarithm of the CIF was modeled using a linear

combination of the occurrence history:

log A(t|0, H(t)) = 6o + zk: O R(t —mW), (4.3)
m=1
where 6 is a background activity, and 6,, is the effect of R(t).

A point process likelihood function [29] was used to fit the GLM model. This process
uses a Generalized Linear Model (GLM) to fit the aforementioned log-CIF model. This
is done by assuming Poisson distribution for A(¢|f, H(t)), because this target variable of
the predictor can only be zero or positive integer. The GLM with Poisson distribution

has the form of:

log(n) =n=Bo+ Y _ Bii, (4.4)

which is the same from as eq .

Note that the target variable can also be assumed to be in a binomial distribution
(value is in {0,1}), which would have a logistic function as the link function. However,
[29] has proved that in case the target window only has 0 or 1 events, then both models

are equivalent.
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4.3 Local density estimation

For the standard VAR model to capture longer history, there is a need to either 1)
increase the number of history slices, or 2) increase the window size W. Both are not
ideal: increasing the number of history slices results in an increased number of model
parameters, which affect the runtime performance of the process; while increasing the
size of the windows W results in reduced temporal accuracy. This can be problematic,
especially in sparse data where a longer history length may be required.

To fix the aforementioned problems, this chapter introduced 1-dimensional kernel
density pre-processing to the VAR model. Instead of using the lagged variable directly,
the procedure sampled from a kernel density estimation trained on the event occurrence
history of each prediction. Note that only event occurrence history relevant to each
prediction was used for estimation to save on computational cost and to avoid informa-
tion leakage from the predictor target. This allowed for increasing the history length
of the model while keeping the number of model parameters low and still keeping some
accuracy. The proposed procedure is hence named local density estimation, which is in
contrast to global density where the density of every point was used. This difference is
shown in Fig.

Formally, given kernel K, bandwidth b, history length A, and the number of pa-
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rameters p, to model CIF at the time window [¢,t + A), the procedure first created a
list of events during the time [t — h,t), X = {z;;t — h < 2; < t}. Then, the estimated
density can be discretized to D = {dy, ..., d;} from the event list X using kernel density
estimation. The density at d; can be calculated using the following formula:

di= =Y K- )~ ah) (45)

where 7 = || X|. The discretized D is used instead of R(t — mW) in eq. (3.10) for
modeling a point process, yielding this new model. Note that the number of d; may be

lower than R(t — mW).
p
log A(t[0, H(t)) = 0p + > _ O;d;. (4.6)
=1

In this work, two types of kernel K were used: a linear (LIN) and a Gaussian (GAU)

kernel:

Krin(z,b) < 1 — |z|/n if |z| <, (4.7)
72
Kgav(z,b) oc exp <_2l)2> . (4.8)
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Figure 4.4: Histograms of the interval between events at different sparsity.

Table 4.1: Models used in the experiment

Name Kernel History #Params Bandwidth

CNT5 None 5 5 -
CNT20 None 20 20 -
LIN5S Linear 5 5 2
LIN20 Linear 20 5 5
GAU5 Gaussian 5 5 2
GAU20 Gaussian 20 5 5
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Figure 4.5: Mean-squared error (MSE), log-likelihood, and F1-score of each model. CNT
is a regular VAR model, while LIN and GAU are proposed methods with the linear and
Gaussian kernel, respectively.
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Table 4.2: Mean-squared error (MSE), log-likelihood, and F1-score of each model.

Sparsity | CNT5  CNT20 LIN5  LIN20  GAU5 GAU20
Mean squared error (lower is better)

0.01% 0.2359  0.2325  0.2243  0.2245 0.2235 0.2221
0.02% 0.2388  0.2353  0.2227  0.2235 0.2215 0.2201
0.05% 0.2202  0.2106  0.1886  0.1913 0.1872 0.1874

0.1% 0.2057  0.1934  0.1640  0.1680 0.1622 0.1637
0.2% 0.1646  0.1514  0.1202  0.1259 0.1186 0.1218
0.5% 0.1066  0.0958  0.0690  0.0762 0.0679 0.0725
1% 0.0737  0.0670  0.0444  0.0520 0.0435 0.0485
2% 0.0454  0.0427  0.0260  0.0328 0.0255 0.0299
5% 0.0230  0.0228 0.0136  0.0181 0.0133 0.0158
10% 0.0125  0.0127  0.0083  0.0108 0.0082 0.0092
Log-likelihood (higher is better)

0.01% -75945  -T5423  -74559  -74152 -74507 -73906
0.02% -77597  -76431  -T4807  -74295 -74723 -73976
0.05% -80767  -78371  -T75446  -74971 -75312 -74574
0.1% -84755  -80725  -76038  -75738 -75852 -75253
0.2% -89495  -83782  -76830  -77019 -76588 -76438
0.5% -98297  -90825  -79260  -80970 -78963 -80132
1% -107475  -99820  -83046  -87119 -82695 -85878
2% -120250 -113927  -90357  -98409 -89948 -96410
5% -147333  -144173 -111383 -126838 -110882 -122814
10% -181505 -180393 -143822 -163314 -143188  -156588

F1-score (higher is better)

0.01% 0.7562  0.7520  0.7722  0.7719 0.7726 0.7735
0.02% 0.6791  0.7141  0.7700  0.7670 0.7709 0.7717
0.05% 0.6784  0.6644  0.7690  0.7595 0.7711 0.7697

0.1% 0.4846  0.6351  0.7668  0.7506 0.7708 0.7690
0.2% 0.4826  0.5972  0.7612  0.7309 0.7676 0.7626
0.5% 0.4724  0.5411  0.7459  0.6767 0.7575 0.7222
1% 0.4616  0.4968 0.7236  0.5863 0.7443 0.6241
2% 0.4446  0.4420 0.6797  0.4259 0.7166 0.4567
5% 0.3410  0.3503  0.5057  0.2896 0.5281 0.4111
10% 0.2967  0.2916  0.3111  0.2120 0.3537 0.3526
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4.4 Experiments

The proposed kernel-density pre-processing using linear and Gaussian kernel was tested
against a regular vector autoregressive model using synthetic sparse Poisson process
data. Mean-squared error of the prediction result, log-likelihood of the GLM model in
eq. (3.10)), and F1 score of each model were measured for comparison.

The synthetic data are regular Poisson process data that have the interval between

each event occurrence followed by an exponential distribution:

L = {l; ~ Exp(\)}, (4.9)

j=0

where A is the exponential distribution mean. Sparsity was artificially added to this
point process by randomly replacing s number of I; with g; ~ Uniform[10,1000]. This
created a random large gap within the timeline of the point process. This parameter s
is called a sparsity count. This chapter uses A\ = 1 for the Poisson process, which has
an average interval of 1 and 90% the intervals are less than 3. Sparsity count s of 10
(0.01% of all data), 20 (0.02%), 50 (0.05%), 100 (0.1%), 200 (0.2%), 500 (0.5%), 1000
(1%), 2000 (2%), 5000 (5%), and 10000 (10% of all data) were used. The histograms of
the interval between events are shown in Fig. 4.4

100,000 points were generated for each point process, with 80,000 points being used
for training and another 20,000 points for evaluation. The regular VAR model (denoted
as CNT) was tested against the proposed model with a linear (triangle) kernel and
Gaussian kernel (denoted as LIN and GAU). The detail was described in Table[4.1] The
history length was the overall length of the history being used in each prediction, and
the number of parameters described the number of inputs to the model. This is also
shown in Fig. All VAR models have a window size of 1. All models have a target
window size of 1.

Each experiment was performed 10 times and the average of the result was taken.
The MSE, the log-likelihood of the predictor, and the Fl-score, calculated by thresh-
olding the predictor output at 0.5, are shown in Fig. In almost every case, the
GAUS5 model performed the best, followed closely by LIN5. The VAR model CNT5 and
CNT20 perform worse in almost every case. Fig. also shows that LIN5 and GAU5
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are also less affected by the sparsity. GAUS outperforms CNT20 with significantly fewer
model parameters; GAU5 has only 5 parameters, whereas CNT20 utilizes 20. Note that
as sparsity increases, the data can get extremely imbalanced so the MSEs are lower with

higher sparsity.

4.5 Complexity analysis

Preparing a temporal point process data, especially for sparse data, for VAR modeling
has the complexity of O(LN + N log N) where L is the number of windows, W is the

window size, and N is the number of data. This came from the following steps:
1. For each data point N:

(a) Find the points that are in the history length (O(log N) using binary search)

(b) Construct a history model from at most N points (O(NV))

2. However, in Step 1b, note that all points can be part of at most L history models.

Hence, step 1b amortized to O(LN)

Step 1, minus the amortized part, has the complexity of O(N log N). The amortized
part is O(LN), yielding the final complexity of O(LN + N log N).

For the proposed local density estimation, the complexity is O (%N +Np+ NlogN)
where h is the history length, p is the number of history samples (number of parameters),

and w is the time step used for the prediction target. Similarly, this came from:
1. For each data point N:

(a) Find the points that are in the history length (O(log V) using binary search)

(b) Construct and sample p samples of density from at most N points (O(N +p))

2. However, in Step 1b, again, all points can be part of at most % history models.

Hence, step 1b amortized to O(ZN + Np)

Note that % is essentially L in the complexity of the regular VAR model. Hence,
the proposed algorithm can only be asymptotically slower than the regular VAR model
if and only if Np is larger than both %N and N log N, which seems unlikely, as part of
the reason to use this procedure is to reduce the number of model parameter p to be

less than 2.
w
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4.6 Summary

This chapter detailed the local density estimation procedure for increasing the history
length of the vector autoregressive model while keeping the model parameter low. This
worked by applying a 1-dimensional kernel density estimation over the event history to
be used for prediction.

The experiments showed that the works well under sparse data, and can beat regular
models even with fewer parameters. However, there are limitations to this method.
Mainly, the vector autoregressive method may not be a good model for specific data in

the first place.
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Chapter 5

Conclusion

5.1 Summary

Spatio-temporal data analysis is already harder than just spatial data analysis or tem-
poral data analysis. Though many techniques have been developed, the field is still very
young, despite a large amount of real-world spatio-temporal data.

While there were some developed methods for spatio-temporal relationship mining
(frequent pattern mining) and spatio-temporal change detection, there were none that
are designed specifically for detecting a change in spatio-temporal relation. Spatio-
temporal relations affect a lot of natural and man-made phenomenon data around us,
including weather systems or crime analysis.

This work first proposed changes to the existing algorithm for spatio-temporal oc-
currence correlation detection technique called Cluster Sequence Mining (CSM) with
the added Granger causality measurement. The result, the Granger Cluster Sequence
Mining (G-CSM) algorithm, is an algorithm for the detection of causal relations in
spatio-temporal data. The experiment shows that G-CSM can better detect and is
much more resilient than the original CSM technique. False Discovery Rate (FDR)
further improved the result.

The local density estimation procedure was also proposed. This procedure allows in-
creasing the history length of the predictor used during causality inference while keeping
the runtime performance. The result showed that this procedure improved the predic-
tor performance significantly, even outperforming the standard VAR model that has a

higher number of model parameters. While this procedure is designed specifically for
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the G-CSM algorithm, it can be used in any instance where the VAR model is used with

the point-process data.

5.2 Future Works

5.2.1 Applying Local Density Estimation to the G-CSM algorithm

The proposed Local Density Estimation algorithm in Chapter 4 is directly designed to
be used as a part of the G-CSM algorithm to allow the model to capture longer history
length while still keeping the runtime performance. This is the immediate future work,

and implementation and experiments are required.

5.2.2 Spatial Clustering Improvement on G-CSM algorithm

The G-CSM algorithm is limited by the performance of the CSM algorithm it is based on.
One of the desired improvements is the improvement of the spatial clustering process.
Currently, the AHC algorithm in the CSM works well enough, but on dense spatial data,
it can fail to capture the proper spatial clusters that are part of the causality. Since the
AHC algorithm is hierarchical, there is a possibility that a ground-truth spatial cluster
may not be a part of clusters that AHC found at all.

The challenge in this part is that the number of spatial clusters directly correlates to
the number of candidates to be evaluated. The number of candidates is quadratic of the
number of spatial clusters, hence, replacing this directly with other types of clustering
algorithm is not feasible. A complete rethinking of the entire CSM algorithm may be

required.

5.2.3 Extension to Non-Stationery Relations

In this work, it is assumed that the relations are stationary. That is, the spatial location
of each cluster is constant in time. This may not be the case in real-world situations,
where the spatial location can drift over time. The proposed algorithm currently cannot

handle the non-stationary relation at all.
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5.2.4 Non-Linear Extension fo Causality Detection

One of the limitations of the current approach to the Granger causality inference method
is that even with Local Density Estimation added, the predictor model is still linear. As
previously discussed, there was a lot of ongoing research on modeling a point process
data using various techniques, but the core problem is that: to check for causality, a
likelihood must be calculated. A good deal of models, especially those involving neural
networks, do not have a closed-form solution for the likelihood value of the model,
requiring numerical integration to calculate the value.

In addition, runtime complexity must also be considered. Unlike most applications of
point process or causality inference, the G-CSM algorithm performs causality inferences
thousands if not millions of times. Currently, the VAR model with GLM is very fast,
hence the algorithm can run in a reasonable time. Any more complex model can and
will extend the runtime of the G-CSM by multiple magnitudes. As many candidates
are superset/subset of each other, a possible solution might be a causality inference
technique that can handle incremental processing or can handle multiple candidates at

the same time.

5.2.5 Performance Improvement to the G-CSM algorithm

The main performance problem of the G-CSM algorithm is currently the number of
candidates generated. This is, in general, quadratic to the number of spatial clusters,
as discussed in Sec. An improvement to the candidate generation process or
the spatial cluster generation process, for example, by quickly eliminating candidates,
would be very beneficial to the performance. Possible solutions might include a prior
quick testing of causality, or, to completely rethink the process, an incremental causality

inference technique that works directly without requiring candidate generation.

5.2.6 Other time interval distribution

This work currently mainly deals with the Poisson distribution, however, extension to
other types of interval distribution should be possible. Note that as Poisson distribution
usually results in the shortest interval between the cause and effect, the currently short
history length of the predictor can capture the relationships. To model other distri-
butions that may be longer, a longer history length is needed. With the local density
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estimation procedure, it should be possible but has not been tested yet.

5.2.7 Application to real-world usage

It was hoped that this algorithm would work on earthquake data to try to gain an
understanding of the relations between each earthquake location. However, due to run
time limitations, the need to adjust hyper-parameters, and the size of the earthquake
dataset, this work did not complete such experiments. The number of earthquakes
occurring around the Japanese archipelago is more than 10,000 occurrences per year,
and while the number can be decreased by only looking at stronger earthquakes, one
questioned the benefit of analyzing only such information.

However, in the long term, it is hoped that this algorithm can be used to find
causal relations between different concepts in various settings including cross-domain
applications like, for example, relationships between disease outbreaks and financial
markets. This could enable humanity to get a better understanding of the various

mechanics of nature or society.
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