<table>
<thead>
<tr>
<th>Title</th>
<th>The equivariant span of the unit spheres in representation spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kakutani, Shin-ichiro</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 20(2) P.439-P.460</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1983</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/9625</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/9625</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
THE EQUIVARIANT SPAN OF THE UNIT SPHERES IN REPRESENTATION SPACES

SHIN-ICHIRO KAKUTANI

(Received September 21, 1981)

1. Introduction

Let G be a finite group and M be a smooth G-manifold. We define $\text{Span}_G(M)$ to be the largest integer k such that M has k linearly independent smooth G-vector fields. Let V be an orthogonal G-representation space and let $S(V)$ denote the unit sphere in V. In the case where G acts freely on $S(V)$, $\text{Span}_G(S(V)) (= \text{Span}(S(V)/G))$ has been studied by Becker [6], Iwata [13], Sjerve [23] and Yoshida [29]. In this paper, we consider $\text{Span}_G(S(V))$ when G does not act freely on $S(V)$. Our main results are Theorems 1.1 and 1.2, which are generalizations of Theorems 2.1 and 2.2 in [6] respectively. Our method is due to Becker [6].

Let H be a subgroup of G, then we write $H < G$.

Theorem 1.1. Let G be a finite group and let V, W be unitary G-representation spaces. Suppose that
(i) $\dim_H V = \dim_H W$ for all $H < G$,
(ii) For each $H < G$, $\dim_H V^H \geq 2k$ if $V^H \neq \{0\}$.
Then $\text{Span}_G(S(V)) \geq k-1$ if and only if $\text{Span}_G(S(W)) \geq k-1$.

Let ξ and η be orthogonal G-vector bundles over a compact G-space. Denote by $S(\xi)$ (resp. $S(\eta)$) the unit sphere bundle of ξ (resp. η). Then $S(\xi)$ and $S(\eta)$ are said to be G-fiber homotopy equivalent if there are fiber-preserving G-maps:
$$ f: S(\xi) \to S(\eta), \quad f': S(\eta) \to S(\xi) $$
such that $f \circ f'$ and $f' \circ f$ are fiber-preserving G-homotopic to the identity ([6], [19]).

Let $\mathbb{R}P^{k-1}$ denote the $(k-1)$-dimensional real projective space with trivial G-action and let η_k denote the non-trivial line bundle over $\mathbb{R}P^{k-1}$ with trivial G-action.

Theorem 1.2. Let G be a finite group and let V be an orthogonal G-representation space. Then we have the following:
4. Preliminary results

First we shall fix some notations. Let X and Y be G-spaces. Let A be a G-subspace of X and let $\alpha: A \to Y$ be a G-map. Denote by $F((X, A), Y; \alpha)$ the space of all maps $f: X \to Y$ such that $f|_A = \alpha$ in the compact open topology. $F((X, A), Y; \alpha)$ is a G-space with the following G-action: if $f: X \to Y$ and $g \in G$, we put

$$(g \cdot f)(x) = g(f(g^{-1}x)).$$

For $H < G$, X^H denotes the H-fixed point set in X. The set $F((X, A), Y; \alpha)^G$ is just the set of G-maps $f: X \to Y$ such that $f|_A = \alpha$. Denote by $[(X, A), Y; \alpha]^G$ the set of G-homotopy classes rel A of G-maps $f: X \to Y$ such that $f|_A = \alpha$. If $A = \phi$, we write $F(X, Y)$ (resp. $[X, Y]^G$) instead of $F((X, A), Y; \alpha)$ (resp. $[(X, A), Y; \alpha]^G$), for simplicity. If X, Y are G-spaces with base points, then we denote the set of G-homotopy classes relative to the base points of pointed G-maps from X to Y by $[X, Y]_G^G$. The base points are G-fixed points as usual. For $H < G$, (H) denotes the conjugacy class of H in G. Denote by G_x the isotropy group at $x \in X$ and we put
For a space Z, we define $\text{conn}(Z)$ to be the largest integer n such that Z is n-connected. In particular, when Z is not path-connected (resp. $Z=\phi$), we put $\text{conn}(Z)=-1$ (resp. $\text{conn}(Z)=\infty$).

The following two lemmas are easily seen by the definition of G-complexes (see Bredon [8] and Waner [26]).

Lemma 2.1. Let $f: X\to Y$ be a G-map of G-spaces such that $f^H=f|X^H$: $X^H\to Y^H$ is an n_H-equivalence for each $H< G$. Let (K, L) be a pair of G-complexes and $\alpha: L\to X$ be a G-map. Then

$$f^*_\alpha: [(K, L), X; \alpha]_G \to [(K, L), Y; f\circ \alpha]_G$$

is surjective if $\dim(K^H-L)\leq n_H$ and bijective if $\dim(K^H-L)\leq n_H-1$ for each $(H)\in \text{Iso}(K-L)$.

Lemma 2.2. Let (K, L) be a pair of G-complexes and X be a G-space. Let $\alpha: L\to X$ be a G-map. Then the G-fixed point morphism

$$\phi_\alpha: [(K, L), X; \alpha]_G \to [(K^G, L^G), X^G; \alpha^G]$$

is surjective if $\dim(K^H-L\cup K^G)\leq \text{conn}(X^H)+1$ and bijective if $\dim(K^H-L\cup K^G)\leq \text{conn}(X^H)$ for each $(H)\in \text{Iso}(K-L\cup K^G)$.

Definition 2.3. Let X be a G-space. Then X is said to be G-path-connected if and only if $\text{conn}(X^H)\geq 0$ for all $H< G$.

Let X and Y be G-spaces. We recall that the join $X*Y$ is the space obtained from the union of X, Y and $X\times Y\times [0,1]$ by identifying

$$(x, y, 0) = x, \quad (x, y, 1) = y \quad \text{ for } x\in X, y\in Y.$$

We generally omit to write in the identification map, so that the image of (x, y, t) in $X*Y$ is denoted by the same expression. A canonical G-action on $X*Y$ is given by $g*(x, y, t)=(gx, gy, t)$. Let V be an orthogonal G-representation space. We see that

$$(X*Y)^H = X^H*Y^H$$

and

$$\text{conn}((X*S(V))^H) = \text{conn}(X^H)+\dim R V^H$$

for $H< G$. Let $i_{S(V)}: S(V)\to X*S(V)$ be an inclusion map defined by $i_{S(V)}(v)=(-, v, 1)$. We have the following theorem (cf. [18; Theorem 3.6], [20]):

Theorem 2.4. Let K be a G-complex and X be a G-space. Let V be
an orthogonal G-representation space. Assume that $\text{conn}(X^H) \geq 0$ for each $(H) \in \text{Iso}(K)$. Then the suspension map

$$
\tau^G_{*} : [K, X]^G \rightarrow [(K \ast S(V), S(V)), X \ast S(V); i_{s(V)}]^G
$$

is surjective if $\dim K^H \leq n^H$ and bijective if $\dim K^H \leq n^H - 1$ for each $(H) \in \text{Iso}(K)$, where

$$
n^H = \min \begin{cases}
2 \text{conn}(X^H) + 1 & \text{if } H = L \text{ and } V^H \neq \{0\}, \\
\text{conn}(X^L) & \text{if } V^H = V^L, \\
\infty & \text{otherwise}.
\end{cases}
$$

Proof. Let $D(V)$ denote the unit disk in V. We define a G-map

$$
\lambda : X \rightarrow F((D(V), S(V)), X \ast S(V); i_{s(V)})
$$

by $\lambda(x)(tv) = (x, v, t)$ for $x \in X$, $v \in S(V)$, $t \in [0, 1]$. Consider the following commutative diagram:

$$
\begin{array}{ccc}
[K, X]^G & \xrightarrow{\tau^G_{*}} & [(K \ast S(V), S(V)), X \ast S(V); i_{s(V)}]^G \\
\downarrow \phi & & \downarrow \\
[K, F((D(V), S(V)), X \ast S(V); i_{s(V)})]^G
\end{array}
$$

where ϕ is the exponential correspondence given by

$$
\phi(f)(k)(tv) = f(k, v, t) \quad \text{for } k \in K, v \in S(V), t \in [0, 1].
$$

As is easily seen, ϕ is bijective. Using Lemma 2.2, we see that

$$
\lambda^H : X^H \rightarrow F((D(V), S(V)), X \ast S(V); i_{s(V)})^H
$$

is an n^H-equivalence for each $(H) \in \text{Iso}(K)$ by the same argument as in the proof of Theorem 3.6 in [18]. We are now in a position to apply Lemma 2.1.

q.e.d.

3. Equivariant duality, reducibility and coreducibility

In this section, we recall the definitions of equivariant duality, reducibility and coreducibility (see [18] and [26]) and consider an equivariant version of Atiyah's duality theorem. Let X and Y be pointed G-spaces. The reduced join $X \land Y$ has a natural G-action induced from the diagonal action on $X \times Y$. For an orthogonal G-representation space V, Σ^V denotes the one-point compactification of V and $\Sigma^V X = \Sigma^V \land X$ is called Σ^V-suspension of X. We remark that Σ^V is a pointed finite G-complex ([12]).

Definition 3.1. Let X and X^* be G-path-connected pointed finite G-
Let U be an orthogonal G-representation space. Then a pointed G-map

$$\mu: \Sigma^U \to X \wedge X^*$$

is said to be a (U)-duality G-map if $\mu^H: \Sigma^H \to X^H \wedge X^{*H}$ is a duality map in the usual sense ([6], [24]) for each $H<G$.

Definition 3.2. Let X be a G-path-connected pointed finite G-complex and V be an orthogonal G-representation space.

(i) A pointed G-map $f: \Sigma^V \to X$ is said to be a (V)-reduction G-map if $f^H: \Sigma^V \to X^H$ is a reduction map in the usual sense ([3]) for each $H<G$, and then X is called G- (V)-reducible.

(ii) A pointed G-map $f: X \to \Sigma^V$ is said to be a (V)-coreduction G-map if $f^H: X^H \to \Sigma^V$ is a coreduction map in the usual sense ([3]) for each $H<G$, and then X is called G- (V)-coreducible.

Let M be a path-connected closed smooth manifold with trivial G-action. Let ξ be a smooth G-vector bundle over M. The fibers ξ_x for $x \in M$ are orthogonal G-representation spaces. Since M is path-connected, ξ_x does not depend on the choice of $x \in M$. So we put $V = \xi_x$. Assume that $V^G \neq \{0\}$. Then $T(\xi)$ is a G-path-connected pointed finite G-complex ([12]), where $T(\xi)$ denotes the Thom space of ξ.

Proposition 3.3. If $T(\xi)$ is G-V-coreducible, then there is a G-fiber homotopy equivalence $f: S(\xi \oplus B^1) \to S(V \oplus B^1)$. Conversely, if there is a G-fiber homotopy equivalence $f: S(\xi) \to S(V)$, then $T(\xi)$ is G-V-coreducible.

Using Equivariant Dold Theorem (Kawakubo [19; Theorem 2.1]) and Equivariant J.H.C. Whitehead Theorem (Bredon [8; Chap. II Corollary (5.5)]), the proof is almost parallel to that of Proposition 2.8 in [3]. So we omit it.

Let ω, ξ_1 and ξ_2 be smooth G-vector bundles over M. We put $V = \omega_x$, $W_1 = (\xi_1)_x$ and $W_2 = (\xi_2)_x$ for $x \in M$. Assume that $V^G \neq \{0\}$, $W_1^G \neq \{0\}$ and $W_2^G \neq \{0\}$. Then $T(\omega)$, $T(\xi_1)$ and $T(\xi_2)$ are G-path-connected pointed finite G-complexes.

Lemma 3.4. If there are a reduction G-map $\alpha: \Sigma^V \to T(\omega)$ and a coreduction G-map $\beta: T(\xi_1 \oplus \xi_2) \to \Sigma^{W_1 \oplus W_2}$, then there is a duality G-map

$$\mu: \Sigma^{W_1 \oplus W_2} \to T(\xi_1) \wedge T(\xi_2 \oplus \omega).$$

Using Equivariant J.H.C. Whitehead Theorem ([8]), the proof is quite similar to that of (13.2) in [6]. So we omit it.
4. Linear actions on stunted projective spaces

Let V be an orthogonal G-representation space and ε_R be the non-trivial orthogonal 1-dimensional Z_2-representation space. Then $\varepsilon_R \otimes V$ is an orthogonal $(Z_2 \times G)$-representation space.

Definition 4.1.
(i) $R^P(V) = \{\varepsilon_R \otimes V\} / (Z_2 \times \{e\})$,
(ii) For $m \geq k$, $P_R(V \oplus R^m) = R^P(V \oplus R^m) / R^P(V \oplus R^{m-k})$.

Then $P_R(V \oplus R^m)$ is a pointed finite G-complex ([12]). We see that, if $m > k$, then for $H < G$

$$P_R(V \oplus R^m)_H = P_R(V^H \oplus R^m),$$

$$\dim P_R(V \oplus R^m)_H = \dim_R V^H + m - 1$$

and

$$\text{conn}(P_R(V \oplus R^m)_H) = \dim_R V^H + m - k - 1.$$

In particular, if $m > k$, then $P_R(V \oplus R^m)$ is G-path-connected. Atiyah [3] identifies the Thom space of a multiple of η_k as a stunted projective space. As G-spaces this identification takes the form

$$T(\eta_k \otimes (V \oplus R^{m-1})) = P_R(V \oplus R^m).$$

Let $a_k(R) (k > 0)$ be the integer defined by [4; § 5]. We recall that the group $J(R)$ is cyclic of order $a_k(R) ([1], [2])$. We remark that $a_k(R) \geq k$ for $k > 0$.

Lemma 4.2. Let m, n and k be integers such that $m \equiv 0 \mod a_k(R)$, $n \equiv k \mod a_k(R)$ and $n > m \geq 2k \geq 4$. Let U be an arbitrary orthogonal G-representation space. Then we have the following:

(i) If $\Sigma^m P_R(V \oplus R^m)$ is $G-U \oplus V \oplus R^{m-1}$-reducible, then there is a duality G-map

$$\mu_1: \Sigma R^{m-1} \oplus V \oplus R^n \rightarrow P_R(R^m) \setminus \Sigma^m P_R(V \oplus R^m),$$

(ii) If $\Sigma^m P_R(V \oplus R^m)$ is $G-U \oplus V \oplus R^{m-1}$-coreducible, then there is a duality G-map

$$\mu_2: \Sigma U \oplus V \oplus R^{m-1} \oplus R^n \rightarrow \Sigma^m P_R(V \oplus R^m) \setminus P_R(R^n).$$

Proof. We remark that

$$T(U \oplus (\eta_k \otimes (V \oplus R^{m-k}))) = \Sigma^m P_R(V \oplus R^m),$$

$$T(U \oplus (\eta_k \otimes (V \oplus R^{m-k}))) = \Sigma^m P_R(V \oplus R^n).$$

First we show (i). By assumption, there is a reduction G-map

$$\alpha: \Sigma^m U \oplus V \oplus R^{m-1} \rightarrow T(U \oplus (\eta_k \otimes (V \oplus R^{m-k}))).$$
EQUIVARIANT SPAN OF THE UNIT SPHERES

Set

\[\omega = U \oplus (\eta_k \otimes (V \oplus R^{m-k})) \], \hspace{1em} \xi_1 = \eta_k \otimes R^{m-k}, \hspace{1em} \xi_2 = \eta_k \otimes R^{n-m}. \]

Since \(\xi_1 \oplus \xi_2 \) is trivial, there is a coreduction \((G-)\)map

\[\beta: T(\xi_1 \oplus \xi_2) \to \Sigma R^{n-k}. \]

Applying Lemma 3.4 to \(\alpha, \beta, \omega, \xi_1 \) and \(\xi_2 \), we have a duality \(G \)-map \(\mu_1 \).

Next we show (ii). By assumption, there is a coreduction \(G \)-map

\[\beta: T(U \oplus (\eta_k \otimes (V \oplus R^{m-k}))) \to \Sigma U \oplus V \oplus R^{n-k}. \]

Since \(m \equiv 0 \pmod{a(R)} \) and \(m \geq 2k \), there is a reduction \((G-)\)map

\[\alpha: \Sigma R^{n-1} \to T(\eta_k \otimes R^{m-k}). \]

Set

\[\omega = \eta_k \otimes R^{m-k}, \hspace{1em} \xi_1 = U \oplus (\eta_k \otimes (V \oplus R^{m-k})), \hspace{1em} \xi_2 = \eta_k \otimes R^{n-m}. \]

Applying Lemma 3.4, we have a duality \(G \)-map \(\mu_2 \).

Lemma 4.3. Let \(m \) and \(k \) be integers such that \(m \geq k > 0 \). Let \(V \) be an orthogonal \(G \)-representation space. Assume that \(P_h(V \oplus R^m) \) is either \(G-V \oplus R^{m-1} \)-reducible or \(G-V \oplus R^{m-k} \)-coreducible. Then we have

\[\dim_R V^K - \dim_R V^H \geq k \]

if \(V^K \not= V^H \) for \(K < H < G \).

Proof. Let \(K < H < G \) such that \(V^K \not= V^H \). First we assume that \(P_h(V \oplus R^m) \) is \(G-V \oplus R^{m-1} \)-reducible. Then, by definition, \(P_h(V^H \oplus R^m) \) and \(P_h(V^K \oplus R^m) \) are reducible. It follows from Atiyah [3; Theorem 6.2] that \(\dim_R V^H \equiv m \equiv 0 \pmod{a_h(R)} \) and \(\dim_R V^K \equiv m \equiv 0 \pmod{a_h(R)} \). Thus we see that \(\dim_R V^K - \dim_R V^H \equiv 0 \pmod{a_h(R)} \). Now we have

\[\dim_R V^K - \dim_R V^H \geq 0 \]

Next we assume that \(P_h(V \oplus R^m) \) is \(G-V \oplus R^{m-k} \)-coreducible. Then \(P_h(V^H \oplus R^m) \) and \(P_h(V^K \oplus R^m) \) are coreducible. By Atiyah [3; Proposition 2.8], we have

\[J(\eta_k \otimes (V^H \oplus R^{m-k})) - (V^H \oplus R^{m-k}) = 0 \]

in \(\hat{J}(R^{P_{-1}}) \),

\[J(\eta_k \otimes (V^K \oplus R^{m-k})) - (V^K \oplus R^{m-k}) = 0 \]

in \(\hat{J}(R^{P_{-1}}) \).

Thus we obtain that \(\dim_R V^K - \dim_R V^H \equiv 0 \pmod{a_h(R)} \). Now we see that
Proposition 4.4. Let m, n and k be integers such that $m \equiv 0 \mod a_k(R)$, $n \equiv k \mod a_k(R)$ and $n > m^2 k^4$. Let V be an orthogonal G-representation space. Then the following two conditions are equivalent:

(i) $P_k(V \oplus R^m)$ is G-V@Rm-reducible,

(ii) $P_k(V \oplus R^n)$ is G-V@Rn-coreducible.

Proof. First we show that (i) implies (ii). By Lemma 4.2, there is a duality G-map

$$\mu_1: \Sigma R^{m-1} \oplus V \oplus R^m \to P_k(R^m) \wedge P_k(V \oplus R^n).$$

We put $U = V \oplus R$. For $s > 0$, we define a homomorphism

$$\Gamma_s(\mu_1): [\Sigma^s P_k(V \oplus R^n), \Sigma^s V \oplus R^m]_0 \to [\Sigma^s \Sigma R^{m-1} \oplus V \oplus R^m, \Sigma^s P_k(R^m) \wedge \Sigma V \oplus R^m]_0$$

by the following: if $\cdot: \Sigma^s P_k(V \oplus R^n) \to \Sigma^s \Sigma^s V \oplus R^m$ is a pointed G-map, then $\Gamma_s(\mu_1)(\cdot)$ is represented by the composition

$$\begin{align*}
\Sigma^s P_k(R^m) \wedge \Sigma^s P_k(V \oplus R^n) \xrightarrow{1 / \mu_1} \Sigma^s P_k(R^m) \wedge P_k(V \oplus R^n) \xrightarrow{T_1} P_k(R^m) \wedge \Sigma^s \Sigma V \oplus R^m \xrightarrow{1 / f} P_k(R^m) \wedge \Sigma^s V \oplus R^m \wedge \Sigma V \oplus R^m,
\end{align*}$$

where T_1 and T_2 are the switching maps. Then we have the following:

Assertion 4.4.1. If $s > \dim R V + m + n + 1$, then $\Gamma_s(\mu_1)$ is an isomorphism.

The proof is quite similar to that of Assertion 4.1.1 in [18]. So we omit it.

On the other hand, the standard identification

$$\nu_1: \Sigma R^{m-1} \oplus V \oplus R^m \to \Sigma \Sigma V \oplus R^m$$

is a duality G-map. We define a homomorphism

$$\Gamma_s(\nu_1): [\Sigma^s \Sigma R^{m-1}, \Sigma^s P_k(R^m)]_0 \to [\Sigma^s \Sigma R^{m-1} \oplus V \oplus R^m, \Sigma^s P_k(R^m) \wedge \Sigma V \oplus R^m]_0$$

by the following: if $\cdot: \Sigma^s \Sigma R^{m-1} \to \Sigma^s P_k(R^m)$ is a pointed G-map, then $\Gamma_s(\nu_1)(\cdot) = [\cdot]$, where \cdot is the composition

$$\begin{align*}
\Sigma^s \Sigma R^{m-1} \oplus V \oplus R^m \xrightarrow{1 / \nu_1} \Sigma^s \Sigma R^{m-1} \wedge \Sigma V \oplus R^m \wedge \Sigma V \oplus R^m \xrightarrow{1 / f} \Sigma^s P_k(R^m) \wedge \Sigma V \oplus R^m.
\end{align*}$$

For $s > \dim R V + m + n + 1$, we put

$$D_s(\nu_1, \mu_1) = \Gamma_s(\mu_1)^{-1} \circ \Gamma_s(\nu_1): [\Sigma^s \Sigma R^{m-1}, \Sigma^s P_k(R^m)]_0 \to [\Sigma^s P_k(V \oplus R^n), \Sigma^s \Sigma V \oplus R^m]_0.$$
Since $m \equiv 0 \mod a_k(R)$ and $m \geq 2k$, there is a reduction (G)-map $f_1: \Sigma R^{*k} \to P_k(R^n)$. Let $f_2: \Sigma^G P_k(V \oplus R^n) \to \Sigma^G \Sigma^G R^{*k}$ be a pointed G-map such that $D_i(v, \mu_v)([1 \wedge f_1]) = [f_2]$. As is easily seen, f_2 is a coreduction G-map. Here we consider the suspension map

$$\sigma^G_{*}: [P_k(V \oplus R^n), \Sigma^G \Sigma^G R^{*k}] \to [\Sigma^G P_k(V \oplus R^n), \Sigma^G \Sigma^G R^{*k}]^G.$$

Let $K < H < G$ such that $(sU)^H = (sU)^K$. Since $U = V \oplus R^1$, we see that $V^H = V^K$. Applying Lemma 4.3, we have

$$\begin{cases}
\dim (P_k(V \oplus R^n)^H) = \dim R V^H + n - 1, \\
2 \operatorname{conn} ((\Sigma^G R^{*k})^H) + 1 = 2(\dim R V^H + n - k - 1) + 1 \geq \dim R V^H + n - 1, \\
\operatorname{conn} ((\Sigma^G R^{*k})^H) = \dim R V^K + n - k - 1 \geq \dim R V^H + n - 1.
\end{cases}$$

By the suspension theorem [18; Theorem 3.6], we see that σ^G_{*} is surjective. Let $f_3: P_k(V \oplus R^n) \to \Sigma^G \Sigma^G R^{*k}$ be a pointed G-map such that $\sigma^G_{*}([f_3]) = [f_3]$. Then it is easy to see that f_3 is also a coreduction G-map. That is, $P_k(V \oplus R^n)$ is G-$V \oplus R^{*k}$-coreducible. Similarly, using μ_2 in Lemma 4.2, we see that (ii) implies (i). q.e.d.

5. An equivariant version of the theorem of James

First we fix some notations. Let $V_k(V)$ denote the Stiefel manifold of orthogonal k-frames in an orthogonal G-representation space V with G-action defined by

$$g \cdot (v_1, \ldots, v_k) = (gv_1, \ldots, g v_k).$$

Then $V_k(V)$ is a smooth G-manifold. If $\dim R V^H \geq k$ for some $H \leq G$, then we see that

$$V_k(V)^H = V_k(V^H)$$

and

$$\operatorname{conn}(V_k(V)^H) = \dim R V^H - k - 1.$$

Let

$$q_k: V_k(V) \to S(V)$$

send (v_1, \ldots, v_k) to v_k. We remark that $q_k: V_k(V) \to S(V)$ is a smooth G-fiber bundle in the sense of Bierstone [7]. We remark the following:

Lemma 5.1. $\operatorname{Span}(S(V)) \geq k - 1$ if and only if $q_k: V_k(V) \to S(V)$ has a smooth G-cross-section.

Let $m > k > 0$. There is a well-known mapping
τₖ: Pₖ(V ⊕ ℜⁿ) → Vₖ(V ⊕ ℜᵐ)

by

\[\tauₖ([x]) = (e_{n+m-k-2}x, e_{n+m-k+1}x, \ldots, e_{n+m}x) \]

where \(n = \text{dim}_R V \) and \(e_i \) denotes the \(i \)-th unit vector in \(V ⊕ ℜ^n \). We see that \(\tauₖ \) is a \(G \)-map and for \(H < G \)

\[\tauₖ^H: Pₖ(V ⊕ ℜ^n)^H → Vₖ(V ⊕ ℜ^n)^H \]

is a 2(\(\text{dim}_R V + m - k \))-equivalence (see James [16; Lemma 8.1]). We remark that \(τ_i: P_i(V ⊕ ℜ^n) → S(V ⊕ ℜ^n) (= V_i(V ⊕ ℜ^n)) \) is a \(G \)-homeomorphism. Let

\[p: S(V ⊕ ℜ^n) → Pₖ(V ⊕ ℜ^n) \]

and

\[π': Pₖ(V ⊕ ℜ^n) → P_i(V ⊕ ℜ^n) \]

be the natural projection and the collapsing map respectively. For \(S(V ⊕ ℜ^n) \), we choose a base point \(x_0 ∈ S(R^{n+1}) ⊂ S(V ⊕ ℜ^n) \). There is a pointed \(G \)-map \(u: P_i(V ⊕ ℜ^n) → S(V ⊕ ℜ^n) \) such that \(u \) and \(τ_i \) are \(G \)-homotopic. We put

\[π = u \circ π': Pₖ(V ⊕ ℜ^n) → S(V ⊕ ℜ^n) \]

Then \(p \) and \(π \) are pointed \(G \)-maps.

Lemma 5.2. Let \(m ≫ k ≫ 0 \). Let \(f: S(V ⊕ ℜ^n) → Pₖ(V ⊕ ℜ^n) \) be a pointed \(G \)-map. Then \(f \) is a reduction \(G \)-map if and only if the composition

\[S(V ⊕ ℜ^n)^H \xrightarrow{f^H} Pₖ(V ⊕ ℜ^n)^H \xrightarrow{π^H} S(V ⊕ ℜ^n)^H \]

is an ordinary homotopy equivalence (i.e. has degree \(\pm 1 \)) for each \((H) ∈ \text{Iso}(S(V ⊕ ℜ^n)) \).

The proof is easy.

A \(G \)-homeomorphism

\[h: S(V) * S(ℜ^n) → S(V ⊕ ℜ^n) \]

is given by \(h(x, y, t) = (x \cdot \cos(πt/2), y \cdot \sin(πt/2)) \). In [14], James defined the intrinsic map

\[μ: Vₖ(V) * Vₖ(ℜ^n) → Vₖ(V ⊕ ℜ^n) \]

We see that \(μ \) is a \(G \)-map and the following diagram commutes:

\[\begin{CD}
Vₖ(V) * Vₖ(ℜ^n) @>{μ}>> Vₖ(V ⊕ ℜ^n) \\
@VV{qₖ}V \downarrow{qₖ}
S(V) * S(ℜ^n) @>{h}>> S(V ⊕ ℜ^n) \end{CD} \]
Now we prove the following theorem, which is a generalization of Proposition 11.5 in [6] (see also Theorem 8.2 in [16]):

Theorem 5.3. Let m and k be integers such that $m \equiv 0 \mod a_k(R)$ and $m \geq 2k \geq 4$. If $\text{Span}_G(S(V)) \geq k - 1$, then $P_k(V \oplus R^m)$ is $G \cdot V \oplus R^{m-1}$-reducible.

Proof. Since $m \equiv 0 \mod a_k(R)$ and $m \geq 2k$, there is a reduction (G,π)-map $\rho: S(R^m) \rightarrow P_k(R^m)$. It follows from Lemma 5.1 that there is a G-cross-section of q_k

$$\Delta: S(V) \rightarrow V_k(V).$$

Then we define a G-map

$$\gamma: S(V \oplus R^m) \rightarrow V_k(V \oplus R^m)$$

by the composition

$$S(V \oplus R^m) \xrightarrow{h^{-1}} S(V) \ast S(R^m) \xrightarrow{\Delta \ast \rho} V_k(V) \ast P_k(R^m) \xrightarrow{\mu} V_k(V \oplus R^m).$$

Consider a map

$$\tau_{k^*}: [S(V \oplus R^m), P_k(V \oplus R^m)]^G \rightarrow [S(V \oplus R^m), V_k(V \oplus R^m)]^G.$$

Since $\tau_{k^*}^H: P_k(V \oplus R^m)^H \rightarrow V_k(V \oplus R^m)^H$ is a $2(\dim_R V^H + m - k)$-equivalence for each $H < G$, it follows from Lemma 2.1 that τ_{k^*} is bijective. Moreover we see that

$$[S(V \oplus R^m), P_k(V \oplus R^m)]^G \cong [S(V \oplus R^m), P_k(V \oplus R^m)]^G.$$

Hence there is a pointed G-map

$$\lambda: S(V \oplus R^m) \rightarrow P_k(V \oplus R^m)$$

such that $\tau_{k^*}([\lambda]) = [\gamma]$. As is easily seen, the composition

$$S(V \oplus R^m)^H \xrightarrow{\lambda^H} P_k(V \oplus R^m)^H \xrightarrow{\pi^H} S(V \oplus R^m)^H$$

is an ordinary homotopy equivalence for each $H < G$. By Lemma 5.2, λ is a reduction G-map. That is, $P_k(V \oplus R^m)$ is $G \cdot V \oplus R^{m-1}$-reducible. q.e.d.

6. A converse of Theorem 5.3

Let m and k be integers such that $m \equiv 0 \mod a_k(R)$ and $m \geq 2k \geq 4$. Let $\kappa: S(R^m) \rightarrow V_k(R^m)$ be a 1-section of q_k. That is, the composition

$$S(R^m) \xrightarrow{\kappa} V_k(R^m) \xrightarrow{q_k} S(R^m)$$

has degree 1. For $n > k$, we define
\[\theta_\varepsilon : V_k(R^n) \otimes S(R^m) \to V_k(R^{n+m}) \]

by the composition

\[V_k(R^n) \otimes S(R^m) \xrightarrow{1 \ast \kappa} V_k(R^n) \otimes V_k(R^m) \xrightarrow{\mu} V_k(R^{n+m}) , \]

where \(\mu \) is the intrinsic map (see §5). By Theorem 3.1 in [15], \(\theta_\varepsilon \) is a \((2n-2k+m-1)\)-equivalence. The following Theorem is a converse of Theorem 5.3.

Theorem 6.1. Let \(m \) and \(k \) be integers such that \(m \equiv 0 \mod a_k(R) \) and \(m \geq 2k \geq 4 \). Let \(V \) be an orthogonal \(G \)-representation space. Assume that

(i) For each \(H \lhd G \), \(\dim_R V^H \geq 2k \) if \(V^H \neq \{0\} \),

(ii) \(P_s(V \oplus R^m) \) is \(G \)-\(V \oplus R^{m-1} \)-reducible.

Then \(\text{Span}_G(S(V)) \geq k-1 \).

Proof. First we show the following Assertion 6.1.1.

Assertion 6.1.1. There is a \(G \)-map

\[\gamma_0 : S(V \oplus R^m) \to V_k(V \oplus R^m) \]

such that \(\gamma_0 \) satisfies the following:

(6.1.2) \(\gamma_0(S(R^m)) \subset V_k(R^n) \subset V_k(V \oplus R^m) \),

(6.1.3) the composition

\[S(R^m) \xrightarrow{\gamma_0} V_k(R^n) \xrightarrow{q_k} S(R^m) \]

has degree 1,

(6.1.4) the composition

\[S(V \oplus R^m)^H \xrightarrow{\gamma_0^H} V_k(V \oplus R^m)^H \xrightarrow{q_k^H} S(V \oplus R^m)^H \]

has degree 1 for each \(H \lhd G \).

Proof of Assertion 6.1.1. By assumption, we have a reduction \(G \)-map

\[\lambda' : S(V \oplus R^m) \to P_s(V \oplus R^m) . \]

Let \(\pi : P_s(V \oplus R^m) \to S(V \oplus R^m) \) be the pointed \(G \)-map as in §5. We put

\[\lambda = \lambda' \circ (\pi \circ \lambda') : S(V \oplus R^m) \to P_s(V \oplus R^m) . \]

Then \(\lambda \) is also a reduction \(G \)-map such that

\[\deg(\pi \circ \lambda)^H = 1 \quad \text{for all } H \lhd G . \]

We put

\[\gamma_1 = \tau_k \circ \lambda : S(V \oplus R^m) \to V_k(V \oplus R^m) . \]
We consider a G-map

$$\gamma_2 = \gamma_1|S(R^m): S(R^m) \to V\delta(V \oplus R^n).$$

First we assume that $V^G \neq \{0\}$. Since $m \equiv 0 \mod a_i(R)$ and $m \geq 2k$, there is a (G)-cross-section of q_k

$$\Delta: S(R^m) \to V\delta(V \oplus R^n) \subset V\delta(V \oplus R^n).$$

Since $\text{conn}(V\delta(V \oplus R^n)^G) \geq \dim S(R^m)$, γ_2 and Δ are G-homotopic. Remark that $(S(V \oplus R^n), S(R^m))$ has the G-homotopy extension property. We have a G-map

$$\gamma_0: S(V \oplus R^n) \to V\delta(V \oplus R^n)$$

such that γ_0 and γ_1 are G-homotopic and $\gamma_0|S(R^m) = \Delta$. As is easily seen, γ_0 satisfies our required properties.

Next we assume that $V^G = \{0\}$. In this case, $\gamma_2 = \gamma_1: S(R^m) \to V\delta(V \oplus R^n)$ is a 1-section of q_k. Therefore we put $\gamma_0 = \gamma_1$.

This completes the proof of Assertion 6.1.1.

We put $\gamma_3 = \gamma_0|S(R^m): S(R^m) \to V\delta(V \oplus R^n) \subset V\delta(V \oplus R^n)$. Consider a map

$$\theta_{\gamma_3^*: [S(V \oplus R^n), S(R^m), V\delta(V) \ast S(R^m); i_{S(R^m)}]^G} \rightarrow [S(V \oplus R^n), S(R^m), V\delta(V) \ast S(R^m); \gamma_3]^G.$$

Since γ_3 is a 1-section, $\theta_{\gamma_3^*: V\delta(V) \ast S(R^m) \to V\delta(V \oplus R^n)^H}$ is a $(2 \dim_R V^H - 2k + m - 1)$-equivalence for each $(H) \in \text{Iso}(S(V \oplus R^n) - S(R^m))$. Applying Lemma 2.1, $\theta_{\gamma_3^*}$ is surjective. Therefore we have a G-map

$$\gamma_4: S(V \oplus R^n) \to V\delta(V) \ast S(R^m)$$

such that $\theta_{\gamma_4^*: [\gamma_4]} = [\gamma_0]$ and $\gamma_4|S(R^m) = i_{S(R^m)}$. As is easily seen, the composition

$$S(V)^H \ast S(R^m) \xrightarrow{h^H} S(V \oplus R^n)^H \xrightarrow{\gamma_4^H} V\delta(V) \ast S(R^m) \xrightarrow{q_k^H \ast 1} S(V)^H \ast S(R^m)$$

has degree 1 for each $H \leq G$, where h is as in §5. Consider the following suspension map

$$\tau_{R^m}: [S(V), V\delta(V)]^G \rightarrow [(S(V) \ast S(R^m), S(R^m)), V\delta(V) \ast S(R^m); i_{S(R^m)}]^G.$$

Since $\dim S(V)^H \leq 2 \cdot \text{conn}(V\delta(V))^H + 1$ for each $(H) \in \text{Iso}(S(V))$, it follows from Theorem 2.4 that τ_{R^m} is surjective. Then we have a G-map

$$\gamma_5: S(V) \to V\delta(V)$$

such that $\tau_{R^m}^G([\gamma_5]) = [\gamma_4 \circ h]$. As is easily seen, the composition
\[S(V)^H \xrightarrow{\gamma_s^H} V_s(V)^H \xrightarrow{q_s^H} S(V)^H \]

has degree 1 for each \((H) \in \text{Iso}(S(V))\). Let \(K < H < G\) such that \(V^K \neq V^H\). Using Lemma 4.3, we have \(\dim_R V^K - \dim_R V^H \geq k \geq 2\). Thus it follows from Rubinsztein [22; Theorem 8.4] that \(q_s \circ \gamma_s\) is \(G\)-homotopic to the identity. Since \(q_s: V_s(V) \rightarrow S(V)\) is a smooth \(G\)-fiber bundle in the sense of Bierstone [7], \(q_s\) has the smooth \(G\)-homotopy lifting property. Using Wasserman [27; Corollary 1.12], we see that \(q_s\) has a smooth \(G\)-cross-section. Now, by Lemma 5.1, we have \(\text{Span}_c(S(V)) \geq k - 1\).

q.e.d.

7. Proof of Theorem 1.1

Let \(V\) and \(W\) be unitary \(G\)-representation spaces such that \(\dim_c V^H = \dim_c W^H\) for all \(H < G\). By Lee-Wasserman [21; Proposition 3.17], there are direct sum decompositions

\[
\begin{align*}
V &= V_1 \oplus V_2 \oplus \cdots \oplus V_r, \\
W &= W_1 \oplus W_2 \oplus \cdots \oplus W_r
\end{align*}
\]

such that \(V_i\) and \(W_i\) (\(1 \leq i \leq r\)) are irreducible unitary \(G\)-representation spaces and \(V_i\) is conjugate to \(W_i\) by a field automorphism of \(C\) for \(1 \leq i \leq r\). That is, there are integers \(n(i)(1 \leq i \leq r)\) such that \((n(i), |G|) = 1\) and \(W_i = \psi^{n(i)}(V_i)\) for \(1 \leq i \leq r\), where \(\psi^t\) denotes the equivariant \(s\)-th Adams operation and \(|G|\) denotes the order of \(G\). Since \(\psi^{t+|G|} = \psi^t\), we may assume that \(n(i)(1 \leq i \leq r)\) are odd integers. Let \(\varepsilon_c\) be the non-trivial unitary 1-dimensional \(\mathbb{Z}_2\)-representation space. Then \(\varepsilon_c \otimes V\) and \(\varepsilon_c \otimes W\) are unitary \((\mathbb{Z}_2 \times G)\)-representation spaces and

\[
\begin{align*}
\varepsilon_c \otimes V &= (\varepsilon_c \otimes V_1) \oplus (\varepsilon_c \otimes V_2) \oplus \cdots \oplus (\varepsilon_c \otimes V_r), \\
\varepsilon_c \otimes W &= (\varepsilon_c \otimes W_1) \oplus (\varepsilon_c \otimes W_2) \oplus \cdots \oplus (\varepsilon_c \otimes W_r)
\end{align*}
\]

are decompositions of \(\varepsilon_c \otimes V\) and \(\varepsilon_c \otimes W\) into direct sums of irreducible unitary \((\mathbb{Z}_2 \times G)\)-representation spaces respectively. Since \(n(i)(1 \leq i \leq r)\) are odd, there are integers \(\bar{n}(i)(1 \leq i \leq r)\) such that \((\bar{n}(i), 2|G|) = 1\) and \(n(i) \cdot \bar{n}(i) \equiv 1 \text{ mod } |2G|\). Then we have

\[
\begin{align*}
(\varepsilon_c \otimes V_i) &= \psi^{\bar{n}(i)}(\varepsilon_c \otimes W_i) & \text{ for } 1 \leq i \leq r, \\
(\varepsilon_c \otimes W_i) &= \psi^{n(i)}(\varepsilon_c \otimes V_i) & \text{ for } 1 \leq i \leq r.
\end{align*}
\]

The following lemma is due to Torneh have [25] (see also [11]).

Lemma 7.1. There are \((\mathbb{Z}_2 \times G)\)-maps
\[
\begin{align*}
\{ \varphi_i &: S(\mathcal{C}_i \otimes V_i) \to S(\mathcal{C}_i \otimes W_i), \\
\psi_i &: S(\mathcal{C}_i \otimes W_i) \to S(\mathcal{C}_i \otimes V_i)
\end{align*}
\]

for \(1 \leq i \leq r\) such that
\[
\text{deg} \, \varphi_i^K = n(i)^d_i(K) \quad \text{and} \quad \text{deg} \, \psi_i^K = n(i)^d_i(K)
\]

for each \(K < \mathbb{Z}_2 \times G\), where \(d_i(K) = \dim \mathcal{C}(\mathcal{C}_i \otimes V_i)^K\) \((= \dim \mathcal{C}(\mathcal{C}_i \otimes W_i)^K)\).

We put
\[
(7.2)
\]

\[
(\varphi = \varphi_1 \ast \cdots \ast \varphi_r) \colon S(\mathcal{C} \otimes V) \to S(\mathcal{C} \otimes W), \quad (\psi = \psi_1 \ast \cdots \ast \psi_r) \colon S(\mathcal{C} \otimes W) \to S(\mathcal{C} \otimes V).
\]

Then, for each \(K < \mathbb{Z}_2 \times G\), we have
\[
\text{deg} (\psi \circ \varphi)^K \equiv 1 \mod 2|G| \quad \text{and} \quad \text{deg} (\varphi \circ \psi)^K \equiv 1 \mod 2|G|.
\]

Let \(U\) be a unitary \(G\)-representation space and \(m \geq 2\). We define a homomorphism
\[
\Psi : [\Sigma^U \otimes R^{m-1}, \Sigma^U \otimes R^{m-1}] \to \prod_{(H) \in \text{Iso}(\Sigma^U \otimes R^{m-1})} \mathbb{Z}
\]

by the following: if \(f : \Sigma^U \otimes R^{m-1} \to \Sigma^U \otimes R^{m-1}\) is a pointed \(G\)-map, then \(\Psi([f]) = \prod_{(H) \in \text{Iso}(\Sigma^U \otimes R^{m-1})} \text{deg} f^H\) (for details see Rubinsztein [22]). By the same argument as in tom Dieck [10; Proposition 1.2.3], we have the following:

Lemma 7.3. Let \(x \in \prod_{(H) \in \text{Iso}(\Sigma^U \otimes R^{m-1})} \mathbb{Z}\) be an arbitrary element. Then \(|G| \cdot x \in \text{Im} \, \Psi\).

Proposition 7.4. Let \(m > k \geq 2\). Let \(V\) and \(W\) be unitary \(G\)-representation spaces such that \(\dim \mathcal{C} V^H = \dim \mathcal{C} W^H\) for all \(H < G\). Then the following two conditions are equivalent:

(i) There is a reduction \(G\)-map
\[
f : \Sigma^V \otimes R^{m-1} \to P_k(V \oplus R^n),
\]

(ii) There is a reduction \(G\)-map
\[
g : \Sigma^W \otimes R^{m-1} \to P_k(W \oplus R^n).
\]

Proof. It suffices to show that (i) implies (ii). Let
\[
(\varphi : S(\mathcal{C} \otimes V) \to S(\mathcal{C} \otimes W),
\psi : S(W) \to S(V)
\]

Then, for each \(K < \mathbb{Z}_2 \times G\), we have
\[
\text{deg} (\psi \circ \varphi)^K \equiv 1 \mod 2|G| \quad \text{and} \quad \text{deg} (\varphi \circ \psi)^K \equiv 1 \mod 2|G|.
\]
be a \((\mathbb{Z}_2 \times G)\)-map and a \(G(\subset \mathbb{Z}_2 \times G)\)-map as in (7.2) respectively. We put a \((\mathbb{Z}_2 \times G)\)-map
\[
\varphi_1 = \varphi^*1_{S(\mathcal{C} \otimes \mathbb{R}^m)}: S((\mathcal{C} \otimes V) \oplus (\mathcal{R} \otimes \mathbb{R}^m)) \to S((\mathcal{C} \otimes W) \oplus (\mathcal{R} \otimes \mathbb{R}^m))
\]
and a pointed \(G\)-map
\[
\psi_1 = \psi^*1_{S(\mathbb{R}^m)}: S(W \oplus \mathbb{R}^m) \to S(V \oplus \mathbb{R}^m).
\]
Remark that \(\varphi_1\) induces a pointed \(G\)-map
\[
\varphi_2: P_{\text{A}}(V \oplus \mathbb{R}^m) \to P_{\text{A}}(W \oplus \mathbb{R}^m)
\]
such that the following diagram commutes:
\[
\begin{array}{ccc}
S((\mathcal{C} \otimes V) \oplus (\mathcal{R} \otimes \mathbb{R}^m)) & \xrightarrow{\varphi_1} & S((\mathcal{C} \otimes W) \oplus (\mathcal{R} \otimes \mathbb{R}^m)) \\
\downarrow{p_1} & & \downarrow{p_2} \\
P_{\text{A}}(V \oplus \mathbb{R}^m) & \xrightarrow{\varphi_2} & P_{\text{A}}(W \oplus \mathbb{R}^m),
\end{array}
\]
where \(p_1\) and \(p_2\) are the natural projections as in § 5. We define a pointed \(G\)-map
\[
g_1: \Sigma^{W \oplus \mathbb{R}^m-1} \to P_{\text{A}}(W \oplus \mathbb{R}^m)
\]
by the composition
\[
\Sigma^{W \oplus \mathbb{R}^m-1} \xrightarrow{d_2} S(W \oplus \mathbb{R}^m) \xrightarrow{\psi_1} S(V \oplus \mathbb{R}^m) \xrightarrow{d_1} \Sigma^{V \oplus \mathbb{R}^m-1} \xrightarrow{f} P_{\text{A}}(V \oplus \mathbb{R}^m) \xrightarrow{\varphi_2} P_{\text{A}}(W \oplus \mathbb{R}^m),
\]
where \(d_1\) and \(d_2\) are pointed \(G\)-homeomorphisms. Let \(\pi_1: P_{\text{A}}(V \oplus \mathbb{R}^m) \to S(V \oplus \mathbb{R}^m)\) and \(\pi_2: P_{\text{A}}(W \oplus \mathbb{R}^m) \to S(W \oplus \mathbb{R}^m)\) be the natural collapsing maps as in § 5. Let
\[
g_2: \Sigma^{W \oplus \mathbb{R}^m-1} \to \Sigma^{W \oplus \mathbb{R}^m-1}
\]
be a \(G\)-map defined by the composition
\[
\Sigma^{W \oplus \mathbb{R}^m-1} \xrightarrow{g_1} P_{\text{A}}(W \oplus \mathbb{R}^m) \xrightarrow{\pi_2} S(W \oplus \mathbb{R}^m) \xrightarrow{d_2^{-1}} \Sigma^{W \oplus \mathbb{R}^m-1}.
\]
Then it is easy to see that
\[
\deg g_2^H \equiv \deg (d_1 \circ \pi_1 \circ f)^H \mod 2 |G| \quad \text{for each } H < G.
\]
Since \(f\) is a reduction \(G\)-map, we remark that \(\deg (d_1 \circ \pi_1 \circ f)^H = \pm 1\) for each \(H < G\). Let \(a(H)\) be an integer such that
\[
\deg g_2^H = \deg (d_1 \circ \pi_1 \circ f)^H + 2a(H) |G|
\]
for each \((H) \in \text{Iso}(\Sigma^W \oplus R^{m-1})\). By Lemma 7.3, there is a pointed \(G\)-map
\[
g_3: \Sigma^W \oplus R^{m-1} \to \Sigma^W \oplus R^{m-1}
\]
such that \(\deg g_3^H = a(H)|G|\) for each \((H) \in \text{Iso}(\Sigma^W \oplus R^{m-1})\). We define a pointed \(G\)-map
\[
g_4: \Sigma^W \oplus R^{m-1} \to P_h(W \oplus R^m)
\]
by the composition
\[
\begin{array}{c}
\Sigma^W \oplus R^{m-1} \xrightarrow{g_3} \Sigma^W \oplus R^{m-1} \\
\quad \quad \downarrow d_2 \quad \quad \downarrow \quad \quad \quad \quad \quad \quad \downarrow \quad \quad \quad \quad \quad \quad \downarrow
\quad \q
Then we have a G-fiber homotopy equivalence

$$f: S(\eta_k \otimes U) \to S(U).$$

Proof. First we show that the following Assertion 8.1.1.

Assertion 8.1.1. There are an integer $n (\geq m)$ and a G-map

$$f_1: S((\eta_k \otimes U) \oplus \mathbb{R}^n) \to S(U \oplus \mathbb{R}^n)$$

such that a restriction

$$f_1|S((\eta_k \otimes U) \oplus \mathbb{R}^n)_x: S((\eta_k \otimes U) \oplus \mathbb{R}^n)_x \to S(U \oplus \mathbb{R}^n)$$

for $x \in \mathbb{R}^{P^{k-1}}$ is a G-homotopy equivalence and a restriction $f_1|S(\mathbb{R}^n)$ is the natural projection $S(\mathbb{R}^n) \to S(\mathbb{R}^n) \subset S(U \oplus \mathbb{R}^n)$.

Proof of Assertion 8.1.1. We put $f_2 = p_1 \circ f: S((\eta_k \otimes U) \oplus \mathbb{R}^n) \to S(U \oplus \mathbb{R}^n)$, where $p_1: S(U \oplus \mathbb{R}^n) \to S(U \oplus \mathbb{R}^n)$ is the natural projection.

Suppose first that $U^G \neq \{0\}$. By assumption, we see that $\mathrm{conn}(S(\mathbb{R}^m)^G) \geq \dim S(\mathbb{R}^n)$. Then $f_2|S(\mathbb{R}^n): S(\mathbb{R}^n) \to S(U \oplus \mathbb{R}^n)$ and the natural projection $p_2: S(\mathbb{R}^n) \to S(\mathbb{R}^n) \subset S(U \oplus \mathbb{R}^n)$ are G-homotopic. Since $(S((\eta_k \otimes U) \oplus \mathbb{R}^n), S(\mathbb{R}^n))$ has the G-homotopy extension property, we have a G-map

$$f_1: S((\eta_k \otimes U) \oplus \mathbb{R}^n) \to S(U \oplus \mathbb{R}^n)$$

such that f_1 and f_2 are G-homotopic and $f_1|S(\mathbb{R}^n) = p_2$. We put $n = m$. It is easy to see that f_1 has our required properties.

Suppose second that $U^G = \{0\}$. Remark that $f_2^G: S(\mathbb{R}^n) \to S(\mathbb{R}^n)$ is a map such that $(f_2^G)_x: S(\mathbb{R}^n) \to S(\mathbb{R}^n)$ is a homotopy equivalence for $x \in \mathbb{R}^{P^{k-1}}$. It is well-known that there is a map $h: S(\mathbb{R}^n) \to S(\mathbb{R}^n)$ such that $f_2^G \bar{h}: S(\mathbb{R}^{n+m}) \to S(\mathbb{R}^{n+m})$ is homotopic to the natural projection $p_3: S(\mathbb{R}^{n+m}) \to S(\mathbb{R}^{n+m})$, where $\bar{\cdot}$ denotes the fiberwise join. We put

$$f_3 = f_2^G \bar{h}: S((\eta_k \otimes U) \oplus \mathbb{R}^{n+m}) \to S(U \oplus \mathbb{R}^{n+m}).$$

Then $f_3|S(\mathbb{R}^{n+m}) = f_2^G$ is (G)-homotopic to p_3. By the same argument as in the case when $U^G \neq \{0\}$, we have a G-map

$$f_1: S((\eta_k \otimes U) \oplus \mathbb{R}^{n+m}) \to S(U \oplus \mathbb{R}^{n+m})$$

such that f_1 is G-homotopic to f_3 and $f_1|S(\mathbb{R}^{n+m}) = p_3$. We put $n = m + m'$. Then f_1 has our required properties.

This completes the proof of Assertion 8.1.1.

We see that f_1 induces a G-map

$$f_4: S(\eta_k \otimes U) \ast S(\mathbb{R}^n) \to S(U) \ast S(\mathbb{R}^n)$$
such that the following diagram commutes:

\[
\begin{array}{ccc}
S(\eta_k \otimes U) \times S(R^*) & \xrightarrow{f_1} & S(U) \times S(R^*) \\
q \downarrow & & \downarrow \\
S(\eta_k \otimes U) \times S(R^*) & \xrightarrow{f_i} & S(U) \times S(R^*)
\end{array}
\]

where \(q \) is the natural projection. Then \(f_1 \mid S(R^*) = i_{S(R^*)} : S(R^*) \to S(U) \times S(R^*) \).

For each \((H) \subseteq \text{Iso}(S(\eta_k \otimes U))\) \(= \text{Iso}(S(U))\), we see that \(\dim S(\eta_k \otimes U)^H \leq 2 \text{ conn}(S(U)^H) + 1 \). It follows from Theorem 2.4 that we obtain a \(G \)-map

\[f_5 : S(\eta_k \otimes U) \to S(U) \]

such that \(f_5 \circ 1_{S(R^*)} \) is \(G \)-homotopic to \(f_i \). By Equivariant Dold Theorem ([19]), it is easy to see that

\[f_5 = p_i \times f_5 : S(\eta_k \otimes U) \to R^{p_i-1} \times S(U) \]

gives a \(G \)-fiber homotopy equivalence, where \(p_i : S(\eta_k \otimes U) \to R^{p_i-1} \) is the natural projection.

Proof of Theorem 1.2. We may assume that \(k \geq 2 \). Let \(m \) and \(n \) be integers such that \(m \equiv 0 \mod a_k(R) \), \(n \equiv k \mod a_k(R) \) and \(n > m \geq 2k \).

First we show (i). By Theorem 5.3, \(P_\delta(V \oplus R^n) \) is \(G-V \oplus R^{*k-1} \)-reducible. Applying Proposition 4.4, \(P_\delta(V \oplus R^n) \) is \(G-V \oplus R^{*k-1} \)-coreducible. It follows from Proposition 3.3 that we have a \(G \)-fiber homotopy equivalence

\[f_1 : S((V \oplus R^{*k}) \oplus R^*) \to S(V \oplus R^{*k-1} \oplus R^*) \]

Since \(n \equiv k \mod a_k(R) \) and \(n > 2k \), we have a \(G \)-fiber homotopy equivalence

\[f_2 : S((V \oplus R^{*k}) \oplus R^{*k+1}) \to S(V \oplus R^{*k+1}) \]

The first result follows. The second result follows from Lemma 8.1

Next we show (ii). Since \(n \equiv k \mod a_k(R) \) and \(n > 2k \), we have a \(G \)-fiber homotopy equivalence

\[f_2 : S((V \oplus R^{*k}) \oplus R^{*k+1}) \to S(V \oplus R^{*k+1}) \]

By Proposition 3.3, \(P_\delta(V \oplus R^n) \) is \(G-V \oplus R^{*k} \)-coreducible. Applying Proposition 4.4, \(P_\delta(V \oplus R^n) \) is \(G-V \oplus R^{*k} \)-reducible. It follows from Theorem 6.1 that \(\text{Span}_e(S(V)) \geq k-1 \).

q.e.d.

9. An example

Let \(G \) be a metacyclic group

\[\{a, b \mid a^n = b^2 = e, bab^{-1} = a' \} \]
where \(m \) is a positive odd integer, \(q \) is an odd prime integer, \((r - 1, m) = 1\) and \(r \) is a primitive \(q \)-th root of 1 mod \(m \). Let \(\mathbb{Z}_m = \langle a \rangle < G \) and let \(t^h (h \in \mathbb{Z}) \) be the unitary 1-dimensional \(\mathbb{Z}_m \)-representation space with \(a \) acting on \(C^n \) as multiplication with \(\exp(2\pi h\sqrt{-1}/m) \). Let \(T_h \) denote the induced representation space \(\text{Ind}_{\mathbb{Z}_m}^G(t^h) \) of the \(\mathbb{Z}_m \)-representation space \(t^h \). Then \(T_h \) is a unitary \(q \)-dimensional \(G \)-representation space (for details see [9; §47] or [17]). We put

\[
V_n = T_{h_1} \oplus T_{h_2} \oplus \cdots \oplus T_{h_n},
\]

where \((h_i, m) = 1\) for \(1 \leq i \leq n \).

Example 9.1. If \(n \geq 9 \), then \(\text{Span}_G(S(V_n)) = \rho(2n, \mathbb{R}) - 1 \).

Here \(\rho(s, \mathbb{R}) \) denotes the largest integer \(k \) such that \(s \equiv 0 \mod a_k(\mathbb{R}) \) ([1]).

Proof of Example 9.1. Since \(\dim_{\mathbb{R}} V_n = 2nq \) and \(q \) is odd, \(\text{Span}(S(V_n)) = \rho(2nq, \mathbb{R}) - 1 = \rho(2n, \mathbb{R}) - 1 \). Thus we have

\[
(9.1.1) \quad \text{Span}_G(S(V_n)) = \rho(2n, \mathbb{R}) - 1.
\]

By Becker [6; Theorems 1.1 and 2.2], there is a \(\mathbb{Z}_m \)-fiber homotopy equivalence

\[
f_1: S(\eta_{\rho(2n, \mathbb{R})} \otimes n\mathbb{R}) \rightarrow S(n\mathbb{R}).
\]

By the same argument as in [5; II. Proposition 2.2], we have a \(G \)-fiber homotopy equivalence

\[
f_2: S(\eta_{\rho(2n, \mathbb{R})} \otimes nT_1) \rightarrow S(nT_1).
\]

Since \(n \geq 9 \), we see that \(\dim_{\mathbb{R}} nT_1^n \geq 2 \rho(2n, \mathbb{R}) \) if \(nT_1^n \neq \{0\} \) for each \(H < G \). Applying Theorem 1.2, we have \(\text{Span}_G(S(nT_1)) \supseteq \rho(2n, \mathbb{R}) - 1 \). It is easy to see that \(\text{dim}_C V_n^n = \text{dim}_C nT_1^n \) for all \(H < G \). Thus it follows from Theorem 1.1 that we have

\[
(9.1.2) \quad \text{Span}_G(S(V_n)) \supseteq \rho(2n, \mathbb{R}) - 1.
\]

Combining (9.1.1) and (9.1.2), we have \(\text{Span}_G(S(V_n)) = \rho(2n, \mathbb{R}) - 1 \). q.e.d.

Added in proof. Professor P. May kindly informed me that Dr. U. Namboodiri has obtained similar results [30].

References

EQUIVARIANT SPAN OF THE UNIT SPHERES

Department of Mathematics
Faculty of Science
Kochi University
Kochi, 780 Japan