

Title	The equivariant span of the unit spheres in representation spaces
Author(s)	Kakutani, Shin-ichiro
Citation	Osaka Journal of Mathematics. 1983, 20(2), p. 439-460
Version Type	VoR
URL	https://doi.org/10.18910/9625
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

THE EQUIVARIANT SPAN OF THE UNIT SPHERES IN REPRESENTATION SPACES

SHIN-ICHIRO KAKUTANI

(Received September 21, 1981)

1. Introduction

Let G be a finite group and M be a smooth G-manifold. We define $\operatorname{Span}_G(M)$ to be the largest integer k such that M has k linearly independent smooth G-vector fields. Let V be an orthogonal G-representation space and let S(V) denote the unit sphere in V. In the case where G acts freely on S(V), $\operatorname{Span}_G(S(V))$ (= $\operatorname{Span}(S(V)/G)$) has been studied by Becker [6], Iwata [13], Sjerve [23] and Yoshida [29]. In this paper, we consider $\operatorname{Span}_G(S(V))$ when G does not act freely on S(V). Our main results are Theorems 1.1 and 1.2, which are generalizations of Theorems 2.1 and 2.2 in [6] respectively. Our method is due to Becker [6].

Let H be a subgroup of G, then we write H < G.

Theorem 1.1. Let G be a finite group and let V, W be unitary G-representation spaces. Suppose that

- (i) $\dim_{\mathcal{C}} V^H = \dim_{\mathcal{C}} W^H$ for all H < G,
- (ii) For each H < G, $\dim_{\mathbb{R}} V^H \ge 2k$ if $V^H \ne \{0\}$. Then $\operatorname{Span}_G(S(V)) \ge k-1$ if and only if $\operatorname{Span}_G(S(W)) \ge k-1$.

Let ξ and η be orthogonal G-vector bundles over a compact G-space. Denote by $S(\xi)$ (resp. $S(\eta)$) the unit sphere bundle of ξ (resp. η). Then $S(\xi)$ and $S(\eta)$ are said to be G-fiber homotopy equivalent if there are fiber-preserving G-maps:

$$f: S(\xi) \to S(\eta), \ f': S(\eta) \to S(\xi)$$

such that $f \circ f'$ and $f' \circ f$ are fiber-preserving G-homotopic to the identity ([6], [19]).

Let $\mathbb{R}P^{k-1}$ denote the (k-1)-dimensional real projective space with trivial G-action and let η_k denote the non-trivial line bundle over $\mathbb{R}P^{k-1}$ with trivial G-action.

Theorem 1.2. Let G be a finite group and let V be an orthogonal G-representation space. Then we have the following:

(i) Suppose that $\operatorname{Span}_G(S(V)) \ge k-1$. Then there are an integer t and a G-fiber homotopy equivalence

$$f: S((\eta_k \otimes \underline{V}) \oplus \underline{R}^t) \to S(\underline{V} \oplus \underline{R}^t)$$
.

Moreover we suppose that $\dim_{\mathbb{R}} V^{H} \ge k+1$ if $V^{H} \ne \{0\}$ for each H < G. Then there is a G-fiber homotopy equivalence

$$f: S(\eta_k \otimes \underline{\underline{V}}) \to S(\underline{\underline{V}})$$
.

(ii) Suppose that $\dim_{\mathbf{R}} V^H \ge 2k$ if $V^H \ne \{0\}$ for each H < G and there is a G-fiber homotopy equivalence

$$f: S(\eta_k \otimes \underline{V}) \to S(\underline{V})$$
.

Then $\operatorname{Span}_{G}(S(V)) \geq k-1$.

Here V denotes the trivial G-vector bundle $\mathbb{R}P^{k-1} \times V \rightarrow \mathbb{R}P^{k-1}$.

Throughout this paper G will be a finite group.

The paper is organized as follows:

In § 2, we discuss some preliminary results. In § 3, we consider equivariant duality, reducibility and coreducibility. In § 4, we consider stunted projective spaces with linear G-actions. In §§ 5 and 6, we state an equivariant version of the theorem of James. In § 7, we prove Theorem 1.1. In § 8, we prove Theorem 1.2. In § 9, we give an example.

The author wishes to thank Mr. S. Hashimoto and Dr. M. Murayama for valuable discussions.

2. Preliminary results

First we shall fix some notations. Let X and Y be G-spaces. Let A be a G-subspace of X and let $\alpha \colon A \to Y$ be a G-map. Denote by $F((X, A), Y; \alpha)$ the space of all maps $f \colon X \to Y$ such that $f \mid A = \alpha$ in the compact open topology. $F((X, A), Y; \alpha)$ is a G-space with the following G-action: if $f \colon X \to Y$ and $g \in G$, we put

$$(g \cdot f)(x) = g(f(g^{-1}x)).$$

For H < G, X^H denotes the H-fixed point set in X. The set $F((X, A), Y; \alpha)^G$ is just the set of G-maps $f: X \to Y$ such that $f \mid A = \alpha$. Denote by $[(X, A), Y; \alpha]^G$ the set of G-homotopy classes rel A of G-maps $f: X \to Y$ such that $f \mid A = \alpha$. If $A = \phi$, we write F(X, Y) (resp. $[X, Y]^G$) instead of $F((X, A), Y; \alpha)$ (resp. $[(X, A), Y; \alpha]^G$), for simplicity. If X, Y are G-spaces with base points, then we denote the set of G-homotopy classes relative to the base points of pointed G-maps from X to Y by $[X, Y]_0^G$. The base points are G-fixed points as usual. For H < G, (H) denotes the conjugacy class of H in G. Denote by G_x the isotropy group at $x \in X$ and we put

$$Iso(X) = \{(G_x) | x \in X\}.$$

For a space Z, we define conn(Z) to be the largest integer n such that Z is n-connected. In particular, when Z is not path-connected (resp. $Z=\phi$), we put conn(Z)=-1 (resp. $conn(Z)=\infty$).

The following two lemmas are easily seen by the definition of G-complexes (see Bredon [8] and Waner [26]).

Lemma 2.1. Let $f: X \to Y$ be a G-map of G-spaces such that $f^H = f \mid X^H: X^H \to Y^H$ is an n_H -equivalence for each H < G. Let (K, L) be a pair of G-complexes and $\alpha: L \to X$ be a G-map. Then

$$f_*: [(K, L), X; \alpha]^c \rightarrow [(K, L), Y; f \circ \alpha]^c$$

is surjective if $\dim(K^H-L) \leq n_H$ and bijective if $\dim(K^H-L) \leq n_H-1$ for each $(H) \in \text{Iso}(K-L)$.

Lemma 2.2. Let (K, L) be a pair of G-complexes and X be a G-space. Let $\alpha: L \rightarrow X$ be a G-map. Then the G-fixed point morphism

$$\phi_G: [(K, L), X; \alpha]^G \rightarrow [(K^G, L^G), X^G; \alpha^G]$$

is surjective if $\dim(K^H - L \cup K^G) \leq \operatorname{conn}(X^H) + 1$ and bijective if $\dim(K^H - L \cup K^G) \leq \operatorname{conn}(X^H)$ for each $(H) \in \operatorname{Iso}(K - L \cup K^G)$.

DEFINITION 2.3. Let X be a G-space. Then X is said to be G-path-connected if and only if conn $(X^H) \ge 0$ for all H < G.

Let X and Y be G-spaces. We recall that the join X*Y is the space obtained from the union of X, Y and $X \times Y \times [0, 1]$ by identifying

$$(x, y, 0) = x$$
, $(x, y, 1) = y$ for $x \in X$, $y \in Y$.

We generally omit to write in the identification map, so that the image of (x, y, t) in X*Y is denoted by the same expression. A canonical G-action on X*Y is given by $g \cdot (x, y, t) = (gx, gy, t)$. Let V be an orthogonal G-representation space. We see that

$$(X*Y)^{\scriptscriptstyle H} = X^{\scriptscriptstyle H} * Y^{\scriptscriptstyle H}$$

and

$$conn((X*S(V))^{H}) = conn(X^{H}) + dim_{R} V^{H}$$

for H < G. Let $i_{S(V)} : S(V) \to X * S(V)$ be an inclusion map defined by $i_{S(V)}(v) = (-, v, 1)$. We have the following theorem (cf. [18; Theorem 3.6], [20]):

Theorem 2.4. Let K be a G-complex and X be a G-space. Let V be

an orthogonal G-representation space. Assume that $conn(X^H) \ge 0$ for each $(H) \in Iso(K)$. Then the suspension map

$$\tau_*^V : [K, X]^G \to [(K*S(V), S(V)), X*S(V); i_{S(V)}]^G$$

is surjective if dim $K^H \leq n_H$ and bijective if dim $K^H \leq n_H - 1$ for each $(H) \in \text{Iso}(K)$, where

$$n_H = \min_{L < H} \begin{cases} 2 \operatorname{conn}(X^H) + 1 & \text{if } H = L \text{ and } V^H \neq \{0\} \text{ ,} \\ \operatorname{conn}(X^L) & \text{if } V^H \neq V^L \text{ ,} \\ \infty & \text{otherwise.} \end{cases}$$

Proof. Let D(V) denote the unit disk in V. We define a G-map

$$\lambda: X \to F((D(V), S(V)), X*S(V); i_{S(V)})$$

by $\lambda(x)(tv)=(x, v, t)$ for $x \in X$, $v \in S(V)$, $t \in [0, 1]$. Consider the following commutative diagram:

$$[K, X]^{c} \downarrow^{\tau_{*}^{V}} [(K*S(V), S(V)), X*S(V); i_{S(V)}]^{c} \downarrow^{\varphi} \downarrow^{\varphi} [K, F((D(V), S(V)), X*S(V); i_{S(V)})]^{c},$$

where φ is the exponential correspondence given by

$$\varphi(f)(k)(tv) = f(k, v, t)$$
 for $k \in K$, $v \in S(V)$, $t \in [0, 1]$.

As is easily seen, φ is bijective. Using Lemma 2.2, we see that

$$\lambda^{H}: X^{H} \to F((D(V), S(V)), X*S(V); i_{S(V)})^{H}$$

is an n_H -equivalence for each $(H) \in \text{Iso}(K)$ by the same argument as in the proof of Theorem 3.6 in [18]. We are now in a position to apply Lemma 2.1. q.e.d.

3. Equivariant duality, reducibility and coreducibility

In this section, we recall the definitions of equivariant duality, reducibility and coreducibility (see [18] and [26]) and consider an equivariant version of Atiyah's duality theorem. Let X and Y be pointed G-spaces. The reduced join $X \wedge Y$ has a natural G-action induced from the diagonal action on $X \times Y$. For an orthogonal G-representation space V, Σ^V denotes the one-point compactification of V and $\Sigma^V X = \Sigma^V \wedge X$ is called Σ^V -suspension of X. We remark that Σ^V is a pointed finite G-complex ([12]).

DEFINITION 3.1. Let X and X^* be G-path-connected pointed finite G-

complexes. Let U be an orthogonal G-representation space. Then a pointed G-map

$$\mu: \Sigma^U \to X \wedge X^*$$

is said to be a (*U*-)duality G-map if $\mu^H: \Sigma^{U^H} \to X^H \wedge X^{*H}$ is a duality map in the usual sense ([6], [24]) for each H < G.

DEFINITION 3.2. Let X be a G-path-connected pointed finite G-complex and V be an orthogonal G-representation space.

- (i) A pointed G-map $f: \Sigma^V \to X$ is said to be a (V-) reduction G-map if $f^H: \Sigma^{V^H} \to X^H$ is a reduction map in the usual sense ([3]) for each H < G, and then X is called G-(V-) reducible.
- (ii) A pointed G-map $f: X \to \Sigma^V$ is said to be a (V-)coreduction G-map if $f^H: X^H \to \Sigma^{V^H}$ is a coreduction map in the usual sense ([3]) for each H < G, and then X is called G- (V-)coreducible.

Let M be a path-connected closed smooth manifold with trivial G-action. Let ξ be a smooth G-vector bundle over M. The fibers ξ_x for $x \in M$ are orthogonal G-representation spaces. Since M is path-connected, ξ_x does not depend on the choice of $x \in M$. So we put $V = \xi_x$. Assume that $V^c = \{0\}$. Then $T(\xi)$ is a G-path-connected pointed finite G-complex ([12]), where $T(\xi)$ denotes the Thom space of ξ .

Proposition 3.3. If $T(\xi)$ is G-V-coreducible, then there is a G-fiber homotopy equivalence $f: S(\xi \oplus \underline{\mathbf{R}}^1) \to S(\underline{V} \oplus \underline{\mathbf{R}}^1)$. Conversely, if there is a G-fiber homotopy equivalence $f: S(\xi) \to S(\underline{V})$, then $T(\xi)$ is G-V-coreducible.

Using Equivariant Dold Theorem (Kawakubo [19; Theorem 2.1]) and Equivariant J.H.C. Whitehead Theorem (Bredon [8; Chap. II Corollary (5.5)]), the proof is almost parallel to that of Proposition 2.8 in [3]. So we omit it.

Let ω , ξ_1 and ξ_2 be smooth G-vector bundles over M. We put $V = \omega_x$, $W_1 = (\xi_1)_x$ and $W_2 = (\xi_2)_x$ for $x \in M$. Assume that $V^G \neq \{0\}$, $W_1^G \neq \{0\}$ and $W_2^G \neq \{0\}$. Then $T(\omega)$, $T(\xi_1)$ and $T(\xi_2)$ are G-path-connected pointed finite G-complexes.

Lemma 3.4. If there are a reduction G-map $\alpha: \Sigma^V \to T(\omega)$ and a coreduction G-map $\beta: T(\xi_1 \oplus \xi_2) \to \Sigma^{W_1 \oplus W_2}$, then there is a duality G-map

$$\mu \colon \Sigma^{W_1 \oplus W_2 \oplus V} \to T(\xi_1) \wedge T(\xi_2 \oplus \omega)$$
.

Using Equivariant J.H.C. Whitehead Theorem ([8]), the proof is quite similar to that of (13.2) in [6]. So we omit it.

4. Linear actions on stunted projective spaces

Let V be an orthogonal G-representation space and \mathcal{E}_R be the non-trivial orthogonal 1-dimensional \mathbf{Z}_2 -representation space. Then $\mathcal{E}_R \otimes V$ is an orthogonal $(\mathbf{Z}_2 \times G)$ -representation space.

DEFINITION 4.1. (i)
$$RP(V) = S(\varepsilon_R \otimes V)/(\mathbb{Z}_2 \times \{e\}),$$

(ii) For $m \ge k$, $P_k(V \oplus \mathbb{R}^m) = RP(V \oplus \mathbb{R}^m)/RP(V \oplus \mathbb{R}^{m-k}).$

Then $P_k(V \oplus \mathbf{R}^m)$ is a pointed finite G-complex ([12]). We see that, if m > k, then for H < G

$$P_{k}(V \oplus \mathbf{R}^{m})^{H} = P_{k}(V^{H} \oplus \mathbf{R}^{m}),$$

 $\dim P_{k}(V \oplus \mathbf{R}^{m})^{H} = \dim_{\mathbf{R}} V^{H} + m - 1$

and

$$\operatorname{conn}(P_{k}(V \oplus \mathbf{R}^{m})^{H}) = \dim_{\mathbf{R}} V^{H} + m - k - 1.$$

In particular, if m > k, then $P_k(V \oplus \mathbf{R}^m)$ is G-path-connected. Atiyah [3] identifies the Thom space of a multiple of η_k as a stunted projective space. As G-spaces this identification takes the form

$$T(\eta_k \otimes (\underline{V} \oplus \underline{R}^{m-k})) = P_k(V \oplus R^m).$$

Let $a_k(\mathbf{R})$ (k>0) be the integer defined by [4; § 5]. We recall that the group $\tilde{J}(\mathbf{R}P^{k-1})$ is cyclic of order $a_k(\mathbf{R})$ ([1], [2]). We remark that $a_k(\mathbf{R}) \ge k$ for k>0.

Lemma 4.2. Let m, n and k be integers such that $m \equiv 0 \mod a_k(\mathbf{R})$, $n \equiv k \mod a_k(\mathbf{R})$ and $n > m \ge 2k \ge 4$. Let U be an arbitrary orthogonal G-representation space. Then we have the following:

(i) If $\Sigma^U P_k(V \oplus \mathbf{R}^m)$ is $G - U \oplus V \oplus \mathbf{R}^{m-1}$ -reducible, then there is a duality G-map

$$\mu_1: \Sigma^{\mathbf{R}^{m-1}U \oplus V \oplus \mathbf{R}^{n-k}} \to P_k(\mathbf{R}^m) \wedge \Sigma^U P_k(V \oplus \mathbf{R}^n)$$
,

(ii) If $\Sigma^U P_k(V \oplus \mathbf{R}^n)$ is $G - U \oplus V \oplus \mathbf{R}^{n-k}$ -coreducible, then there is a duality G-map

$$\mu_2 \colon \Sigma^{U \oplus V \oplus \boldsymbol{R}^{m-1} \oplus \boldsymbol{R}^{n-k}} \to \Sigma^U P_k(V \oplus \boldsymbol{R}^m) \wedge P_k(\boldsymbol{R}^n) \; .$$

Proof. We remark that

$$egin{aligned} T(\underline{U} \oplus (\eta_k \otimes (\underline{V} \oplus oldsymbol{R}^{m-k}))) &= \Sigma^U P_k (V \oplus oldsymbol{R}^m) \ , \ T(\underline{U} \oplus (\eta_k \otimes (\underline{V} \oplus oldsymbol{R}^{n-k}))) &= \Sigma^U P_k (V \oplus oldsymbol{R}^n) \ . \end{aligned}$$

First we show (i). By assumption, there is a reduction G-map

$$\alpha: \Sigma^{U \oplus V \oplus \mathbf{R}^{m-1}} \to T(\underline{U} \oplus (\eta_k \otimes (\underline{V} \oplus \mathbf{R}^{m-k})))$$
.

Set

$$\omega = \underline{\underline{U}} \oplus (\eta_k \otimes (\underline{\underline{V}} \oplus \underline{\underline{R}}^{m-k})) , \quad \xi_1 = \eta_k \otimes \underline{\underline{R}}^{m-k} ,
onumber \ \xi_2 = \eta_k \otimes \underline{R}^{n-m} .$$

Since $\xi_1 \oplus \xi_2$ is trivial, there is a coreduction (G-)map

$$\beta \colon T(\xi_1 \oplus \xi_2) \to \Sigma^{R^{n-k}}.$$

Applying Lemma 3.4 to α , β , ω , ξ_1 and ξ_2 , we have a duality G-map μ_1 . Next we show (ii). By assumption, there is a coreduction G-map

$$\beta \colon T(\underline{U} \oplus (\eta_k \otimes (\underline{V} \oplus \underline{R}^{n-k}))) \to \Sigma^{U \oplus V \oplus \underline{R}^{n-k}}.$$

Since $m \equiv 0 \mod a_k(\mathbf{R})$ and $m \geq 2k$, there is a reduction (G-)map

$$\alpha \colon \Sigma^{\mathbf{R}^{m-1}} \to T(\eta_k \otimes \underline{\underline{\mathbf{R}}}^{m-k})$$
.

Set

$$\omega = \eta_k \otimes \underline{R}^{m-k}$$
, $\xi_1 = \underline{U} \oplus (\eta_k \otimes (\underline{V} \oplus \underline{R}^{m-k}))$, $\xi_2 = \eta_k \otimes \underline{R}^{n-m}$.

Applying Lemma 3.4, we have a duality G-map μ_2 .

q.e.d.

Lemma 4.3. Let m and k be integers such that m>k>0. Let V be an orthogonal G-representation space. Assume that $P_k(V \oplus \mathbf{R}^m)$ is either G- $V \oplus \mathbf{R}^{m-1}$ -reducible or G- $V \oplus \mathbf{R}^{m-k}$ -coreducible. Then we have

$$\dim_{\mathbf{R}} V^{K} - \dim_{\mathbf{R}} V^{H} \geq k$$

if $V^K \neq V^H$ for K < H < G.

Proof. Let K < H < G such that $V^K \neq V^H$. First we assume that $P_k(V \oplus \mathbf{R}^m)$ is $G - V \oplus \mathbf{R}^{m-1}$ -reducible. Then, by definition, $P_k(V^H \oplus \mathbf{R}^m)$ and $P_k(V^K \oplus \mathbf{R}^m)$ are reducible. It follows from Atiyah [3; Theorem 6.2] that $\dim_{\mathbf{R}} V^H + m \equiv 0 \mod a_k(\mathbf{R})$ and $\dim_{\mathbf{R}} V^K + m \equiv 0 \mod a_k(\mathbf{R})$. Thus we see that $\dim_{\mathbf{R}} V^K - \dim_{\mathbf{R}} V^H \equiv 0 \mod a_k(\mathbf{R})$. Now we have

$$\dim_{\mathbf{R}} V^{K} - \dim_{\mathbf{R}} V^{H} \geq a_{k}(\mathbf{R}) \geq k$$
.

Next we assume that $P_k(V \oplus \mathbf{R}^m)$ is $G - V \oplus \mathbf{R}^{m-k}$ -coreducible. Then $P_k(V^H \oplus \mathbf{R}^m)$ and $P_k(V^K \oplus \mathbf{R}^m)$ are coreducible. By Atiyah [3; Proposition 2.8], we have

$$J(\eta_k \otimes (\underline{\underline{V}}^H \oplus \underline{\underline{R}}^{m-k}) - (\underline{\underline{V}}^H \oplus \underline{\underline{R}}^{m-k})) = 0 \quad \text{in } \widetilde{J}(\underline{R}P^{k-1}),$$

$$J(\eta_k \otimes (\underline{V}^K \oplus \underline{R}^{m-k}) - (\underline{V}^K \oplus \underline{R}^{m-k})) = 0 \quad \text{in } \widetilde{J}(\underline{R}P^{k-1}).$$

Thus we obtain that $\dim_{\mathbf{R}} V^{\mathbf{K}} - \dim_{\mathbf{R}} V^{\mathbf{H}} \equiv 0 \mod a_{\mathbf{k}}(\mathbf{R})$. Now we see that

$$\dim_{\mathbf{R}} V^{K} - \dim_{\mathbf{R}} V^{H} \ge a_{k}(\mathbf{R}) \ge k$$
. q.e.d.

Proposition 4.4. Let m, n and k be integers such that $m \equiv 0 \mod a_k(\mathbf{R})$, $n \equiv k \mod a_k(\mathbf{R})$ and $n > m \ge 2k \ge 4$. Let V be an orthogonal G-representation space. Then the following two conditions are equivalent:

- (i) $P_{k}(V \oplus \mathbf{R}^{m})$ is $G-V \oplus \mathbf{R}^{m-1}$ -reducible,
- (ii) $P_k(V \oplus \mathbf{R}^n)$ is $G V \oplus \mathbf{R}^{n-k}$ -coreducible.

Proof. First we show that (i) implies (ii). By Lemma 4.2, there is a duality G-map

$$\mu_1: \Sigma^{\mathbf{R}^{m-1} \oplus V \oplus \mathbf{R}^{n-k}} \to P_k(\mathbf{R}^m) \wedge P_k(V \oplus \mathbf{R}^n)$$
.

We put $U=V\oplus \mathbf{R}^1$. For s>0, we define a homomorphism

$$\overline{\Gamma}_{s}(\mu_{1}) \colon \left[\Sigma^{sU} P_{k}(V \oplus \mathbf{R}^{n}), \Sigma^{sU} \Sigma^{V \oplus \mathbf{R}^{n-k}} \right]_{0}^{G} \\
\rightarrow \left[\Sigma^{sU} \Sigma^{\mathbf{R}^{m-1} \oplus V \oplus \mathbf{R}^{n-k}}, \Sigma^{sU} P_{k}(\mathbf{R}^{m}) \wedge \Sigma^{V \oplus \mathbf{R}^{n-k}} \right]_{0}^{G}$$

by the following: if $f: \Sigma^{sU} P_k(V \oplus \mathbb{R}^n) \to \Sigma^{sU} \Sigma^{V \oplus \mathbb{R}^{n-k}}$ is a pointed G-map, then $\overline{\Gamma}_s(\mu_1)([f])$ is represented by the composition

$$\Sigma^{sU} \Sigma^{\mathbf{R}^{m-1} \oplus V \oplus \mathbf{R}^{n-k}} \xrightarrow{1 \wedge \mu_1} \Sigma^{sU} P_k(\mathbf{R}^m) \wedge P_k(V \oplus \mathbf{R}^n) \xrightarrow{T_1}$$

$$P_k(\mathbf{R}^m) \wedge \Sigma^{sU} P_k(V \oplus \mathbf{R}^n) \xrightarrow{1 \wedge f} P_k(\mathbf{R}^m) \wedge \Sigma^{sU} \Sigma^{V \oplus \mathbf{R}^{n-k}} \xrightarrow{T_2} \Sigma^{sU} P_k(\mathbf{R}^m) \wedge \Sigma^{V \oplus \mathbf{R}^{n-k}},$$

where T_1 and T_2 are the switching maps. Then we have the following:

Assertion 4.4.1. If $s > \dim_{\mathbb{R}} V + m + n + 1$, then $\overline{\Gamma}_s(\mu_1)$ is an isomorphism.

The proof is quite similar to that of Assertion 4.1.1 in [18]. So we omit it.

On the other hand, the standard identification

$$\nu_1 \colon \Sigma^{\boldsymbol{R}^{m-1} \oplus V \oplus \boldsymbol{R}^{n-k}} \to \Sigma^{\boldsymbol{R}^{m-1}} \bigwedge \Sigma^{V \oplus \boldsymbol{R}^{n-k}}$$

is a duality G-map. We define a homomorphism

$$\Gamma_{s}(\nu_{1}) \colon [\Sigma^{sU} \Sigma^{\boldsymbol{R}^{m-1}}, \Sigma^{sU} P_{k}(\boldsymbol{R}^{m})]_{0}^{G} \to [\Sigma^{sU} \Sigma^{\boldsymbol{R}^{m-1} \oplus V \oplus \boldsymbol{R}^{n-k}}, \Sigma^{sU} P_{k}(\boldsymbol{R}^{m}) \wedge \Sigma^{V \oplus \boldsymbol{R}^{n-k}}]_{0}^{G}$$

by the following: if $f: \Sigma^{sU} \Sigma^{\mathbf{R}^{m-1}} \to \Sigma^{sU} P_k(\mathbf{R}^m)$ is a pointed G-map, then $\Gamma_s(\nu_1)([f]) = [f']$, where f' is the composition

$$\Sigma^{sU} \Sigma^{R^{m-1} \oplus V \oplus R^{n-k}} \xrightarrow{1 \wedge \nu_1} \Sigma^{sU} \Sigma^{R^{m-1}} \wedge \Sigma^{V \oplus R^{n-k}} \xrightarrow{f \wedge 1} \Sigma^{sU} P_{k}(R^{m}) \wedge \Sigma^{V \oplus R^{n-k}}.$$

For $s > \dim_{\mathbf{R}} V + m + n + 1$, we put

$$D_s(\nu_1, \ \mu_1) = \overline{\Gamma}_s(\mu_1)^{-1} \circ \Gamma_s(\nu_1) \colon [\Sigma^{sU} \Sigma^{\boldsymbol{R}^{m-1}}, \ \Sigma^{sU} P_k(\boldsymbol{R}^{\boldsymbol{m}})]_0^G \\ \rightarrow [\Sigma^{sU} P_k(V \oplus \boldsymbol{R}^n), \ \Sigma^{sU} \Sigma^{V \oplus \boldsymbol{R}^{n-k}}]_0^G.$$

Since $m \equiv 0 \mod a_k(\mathbf{R})$ and $m \geq 2k$, there is a reduction (G-)map $f_1: \Sigma^{\mathbf{R}^{m-1}} \to P_k(\mathbf{R}^m)$. Let $f_2: \Sigma^{sU} P_k(V \oplus \mathbf{R}^n) \to \Sigma^{sU} \Sigma^{V \oplus \mathbf{R}^{n-k}}$ be a pointed G-map such that $D_s(\nu_1, \mu_1)([1 \land f_1]) = [f_2]$. As is easily seen, f_2 is a coreduction G-map. Here we consider the suspension map

$$\sigma_*^{sU} \colon [P_k(V \oplus \mathbf{R}^n), \, \Sigma^{V \oplus \mathbf{R}^{n-k}}]_0^G \to [\Sigma^{sU} P_k(V \oplus \mathbf{R}^n), \, \Sigma^{sU} \Sigma^{V \oplus \mathbf{R}^{n-k}}]_0^G \ .$$

Let K < H < G such that $(sU)^H \neq (sU)^K$. Since $U = V \oplus \mathbb{R}^1$, we see that $V^H \neq V^K$. Applying Lemma 4.3, we have

$$\begin{cases} \dim\left(P_{k}(V \oplus \mathbf{R}^{n})^{H}\right) = \dim_{\mathbf{R}}V^{H} + n - 1 \text{ ,} \\ 2\operatorname{conn}\left((\boldsymbol{\Sigma}^{V \oplus \mathbf{R}^{n-k}})^{H}\right) + 1 = 2\left(\dim_{\mathbf{R}}V^{H} + n - k - 1\right) + 1 \geq \dim_{\mathbf{R}}V^{H} + n - 1 \text{ ,} \\ \operatorname{conn}\left((\boldsymbol{\Sigma}^{V \oplus \mathbf{R}^{n-k}})^{K}\right) = \dim_{\mathbf{R}}V^{K} + n - k - 1 \geq \dim_{\mathbf{R}}V^{H} + n - 1 \text{ .} \end{cases}$$

By the suspension theorem [18; Theorem 3.6], we see that σ_*^{sU} is surjective. Let $f_3: P_k(V \oplus \mathbf{R}^n) \to \Sigma^{V \oplus \mathbf{R}^{n-k}}$ be a pointed G-map such that $\sigma_*^{sU}([f_3]) = [f_2]$. Then it is easy to see that f_3 is also a coreduction G-map. That is, $P_k(V \oplus \mathbf{R}^n)$ is $G - V \oplus \mathbf{R}^{n-k}$ -coreducible.

Similarly, using μ_2 in Lemma 4.2, we see that (ii) implies (i). q.e.d.

5. An equivariant version of the theorem of James

First we fix some notations. Let $V_k(V)$ denote the Stiefel manifold of orthogonal k-frames in an orthogonal G-representation space V with G-action defined by

$$g \cdot (v_1, \dots, v_k) = (gv_1, \dots, gv_k)$$
.

Then $V_k(V)$ is a smooth G-manifold. If $\dim_R V^H \ge k$ for some H < G, then we see that

$$V_{\scriptscriptstyle k}(V)^{\scriptscriptstyle H} = V_{\scriptscriptstyle k}(V^{\scriptscriptstyle H})$$

and

$$\operatorname{conn}\left(V_{\mathbf{k}}(V)^{\mathbf{H}}\right) = \dim_{\mathbf{R}} V^{\mathbf{H}} - \mathbf{k} - 1 \; .$$

Let

$$q_k \colon V_k(V) \to S(V)$$

send (v_1, \dots, v_k) to v_k . We remark that q_k : $V_k(V) \rightarrow S(V)$ is a smooth G-fiber bundle in the sense of Bierstone [7]. We remark the following:

Lemma 5.1. Span_G $(S(V)) \ge k-1$ if and only if $q_k: V_k(V) \to S(V)$ has a smooth G-cross-section.

Let m>k>0. There is a well-known mapping

$$\tau_k \colon P_k(V \oplus \mathbf{R}^m) \to V_k(V \oplus \mathbf{R}^m)$$

by

$$\tau_k([x]) = (e_{n+m-k+1} - 2(e_{n+m-k+1}, x)x, \dots, e_{n+m} - 2(e_{n+m}, x)x),$$

where $n = \dim_{\mathbb{R}} V$ and e_i denotes the *i*-th unit vector in $V \oplus \mathbb{R}^m$. We see that τ_k is a G-map and for H < G

$$\tau_k^H : P_k(V \oplus \mathbf{R}^m)^H \to V_k(V \oplus \mathbf{R}^m)^H$$

is a $2(\dim_{\mathbf{R}} V^{H} + m - k)$ -equivalence (see James [16; Lemma 8.1]). We remark that $\tau_1: P_1(V \oplus \mathbf{R}^m) \to S(V \oplus \mathbf{R}^m)$ ($= V_1(V \oplus \mathbf{R}^m)$) is a G-homeomorphism. Let

$$p: S(V \oplus \mathbf{R}^m) \to P_k(V \oplus \mathbf{R}^m)$$

and

$$\pi': P_k(V \oplus \mathbf{R}^m) \to P_1(V \oplus \mathbf{R}^m)$$

be the natural projection and the collapsing map respectively. For $S(V \oplus \mathbf{R}^m)$, we choose a base point $x_0 \in S(\mathbf{R}^{m-k}) (\subset S(V \oplus \mathbf{R}^{m-k}) \subset S(V \oplus \mathbf{R}^m))$. There is a pointed G-map $u: P_1(V \oplus \mathbf{R}^m) \to S(V \oplus \mathbf{R}^m)$ such that u and τ_1 are G-homotopic. We put

$$\pi = u \circ \pi' \colon P_k(V \oplus \mathbf{R}^m) \to S(V \oplus \mathbf{R}^m)$$
.

Then p and π are pointed G-maps.

Lemma 5.2. Let m>k>0. Let $f: S(V \oplus \mathbb{R}^m) \to P_k(V \oplus \mathbb{R}^m)$ be a pointed G-map. Then f is a reduction G-map if and only if the composition

$$S(V \oplus \mathbf{R}^m)^H \xrightarrow{f^H} P_k(V \oplus \mathbf{R}^m)^H \xrightarrow{\pi^H} S(V \oplus \mathbf{R}^m)^H$$

is an ordinary homotopy equivalence (i.e. has degree ± 1) for each $(H) \in \text{Iso}(S(V \oplus \mathbf{R}^m))$.

The proof is easy.

A G-homeomorphism

$$h: S(V)*S(\mathbf{R}^m) \to S(V \oplus \mathbf{R}^m)$$

is given by $h(x, y, t) = (x \cdot \cos(\pi t/2), y \cdot \sin(\pi t/2))$. In [14], James defined the intrinsic map

$$\mu \colon V_k(V) * V_k(\mathbf{R}^m) \to V_k(V \oplus \mathbf{R}^m)$$
.

We see that μ is a G-map and the following diagram commutes:

$$V_{k}(V)*V_{k}(\mathbf{R}^{m}) \xrightarrow{\mu} V_{k}(V \oplus \mathbf{R}^{m})$$

$$\downarrow q_{k}*q_{k} \qquad \qquad \downarrow q_{k}$$

$$S(V)*S(\mathbf{R}^{m}) \xrightarrow{h} S(V \oplus \mathbf{R}^{m}).$$

Now we prove the following theorem, which is a generalization of Proposition 11.5 in [6] (see also Theorem 8.2 in [16]):

Theorem 5.3. Let m and k be integers such that $m \equiv 0 \mod a_k(\mathbf{R})$ and $m \ge 2k \ge 4$. If $\operatorname{Span}_G(S(V)) \ge k-1$, then $P_k(V \oplus \mathbf{R}^m)$ is $G - V \oplus \mathbf{R}^{m-1}$ -reducible.

Proof. Since $m \equiv 0 \mod a_k(\mathbf{R})$ and $m \geq 2k$, there is a reduction (G-)map $\rho \colon S(\mathbf{R}^m) \to P_k(\mathbf{R}^m)$. It follows from Lemma 5.1 that there is a G-cross-section of q_k

$$\Delta \colon S(V) \to V_k(V)$$
.

Then we define a G-map

$$\gamma : S(V \oplus \mathbf{R}^m) \to V_k(V \oplus \mathbf{R}^m)$$

by the composition

$$S(V \oplus \mathbf{R}^{m}) \xrightarrow{h^{-1}} S(V) * S(\mathbf{R}^{m}) \xrightarrow{\Delta * \rho} V_{k}(V) * P_{k}(\mathbf{R}^{m}) \xrightarrow{1 * \tau_{k}} V_{k}(V) * V_{k}(\mathbf{R}^{m}) \xrightarrow{\mu} V_{k}(V \oplus \mathbf{R}^{m}).$$

Consider a map

$$\tau_{{\scriptscriptstyle{k}}^*}\colon [S(V\oplus {\textbf{\textit{R}}}^{\scriptscriptstyle{m}}),\, P_{{\scriptscriptstyle{k}}}(V\oplus {\textbf{\textit{R}}}^{\scriptscriptstyle{m}})]^{\scriptscriptstyle{G}} \to [S(V\oplus {\textbf{\textit{R}}}^{\scriptscriptstyle{m}}),\, V_{{\scriptscriptstyle{k}}}(V\oplus {\textbf{\textit{R}}}^{\scriptscriptstyle{m}})]^{\scriptscriptstyle{G}}\,.$$

Since $\tau_k^H: P_k(V \oplus \mathbf{R}^m)^H \to V_k(V \oplus \mathbf{R}^m)^H$ is a $2(\dim_{\mathbf{R}} V^H + m - k)$ -equivalence for each H < G, it follows from Lemma 2.1 that τ_{k^*} is bijective. Moreover we see that

$$[S(V \oplus \mathbf{R}^{m}), P_{k}(V \oplus \mathbf{R}^{m})]^{G} \simeq [S(V \oplus \mathbf{R}^{m}), P_{k}(V \oplus \mathbf{R}^{m})]^{G}_{0}.$$

Hence there is a pointed G-map

$$\lambda \colon S(V \oplus \mathbf{R}^m) \to P_k(V \oplus \mathbf{R}^m)$$

such that $\tau_{k*}([\lambda]) = [\gamma]$. As is easily seen, the composition

$$S(V \oplus \mathbf{R}^m)^H \xrightarrow{\lambda^H} P_k(V \oplus \mathbf{R}^m)^H \xrightarrow{\pi^H} S(V \oplus \mathbf{R}^m)^H$$

is an ordinary homotopy equivalence for each H < G. By Lemma 5.2, λ is a reduction G-map. That is, $P_k(V \oplus \mathbf{R}^m)$ is $G - V \oplus \mathbf{R}^{m-1}$ -reducible. q.e.d.

6. A converse of Theorem 5.3

Let m and k be integers such that $m \equiv 0 \mod a_k(\mathbf{R})$ and $m \ge 2k \ge 4$. Let $\kappa \colon S(\mathbf{R}^m) \to V_k(\mathbf{R}^m)$ be a 1-section of q_k . That is, the composition $S(\mathbf{R}^m) \xrightarrow{\kappa} V_k(\mathbf{R}^m) \xrightarrow{q_k} S(\mathbf{R}^m)$ has degree 1. For n > k, we define

$$\theta_{\kappa} \colon V_k(\mathbf{R}^n) * S(\mathbf{R}^m) \to V_k(\mathbf{R}^{n+m})$$

by the composition

$$V_k(\mathbf{R}^n) * S(\mathbf{R}^m) \xrightarrow{1*\kappa} V_k(\mathbf{R}^n) * V_k(\mathbf{R}^m) \xrightarrow{\mu} V_k(\mathbf{R}^{n+m}),$$

where μ is the intrinsic map (see § 5). By Theorem 3.1 in [15], θ_{κ} is a (2n-2k+m-1)-equivalence. The following Theorem is a converse of Theorem 5.3.

Theorem 6.1. Let m and k be integers such that $m \equiv 0 \mod a_k(\mathbf{R})$ and $m \geq 2k \geq 4$. Let V be an orthogonal G-representation space. Assume that

- (i) For each H < G, $\dim_{\mathbb{R}} V^H \ge 2k$ if $V^H \ne \{0\}$,
- (ii) $P_k(V \oplus \mathbf{R}^m)$ is $G V \oplus \mathbf{R}^{m-1}$ -reducible.

Then $\operatorname{Span}_{G}(S(V)) \geq k-1$.

Proof. First we show the following Assertion 6.1.1.

Assertion 6.1.1. There is a G-map

$$\gamma_0: S(V \oplus \mathbf{R}^m) \to V_k(V \oplus \mathbf{R}^m)$$

such that γ_0 satisfies the following:

- $(6.1.2) \quad \gamma_0(S(\mathbf{R}^m)) \subset V_k(\mathbf{R}^m) (\subset V_k(V \oplus \mathbf{R}^m)),$
- (6.1.3) the composition

$$S(\mathbf{R}^m) \xrightarrow{\gamma_0 \mid S(\mathbf{R}^m)} V_k(\mathbf{R}^m) \xrightarrow{q_k} S(\mathbf{R}^m)$$

has degree 1,

(6.1.4) the composition

$$S(V \oplus \mathbf{R}^{m})^{H} \xrightarrow{\gamma_{0}^{H}} V_{k}(V \oplus \mathbf{R}^{m})^{H} \xrightarrow{q_{k}^{H}} S(V \oplus \mathbf{R}^{m})^{H}$$

has degree 1 for each H < G.

Proof of Assertion 6.1.1. By assumption, we have a reduction G-map

$$\lambda': S(V \oplus \mathbf{R}^m) \to P_b(V \oplus \mathbf{R}^m)$$
.

Let $\pi: P_k(V \oplus \mathbf{R}^m) \to S(V \oplus \mathbf{R}^m)$ be the pointed G-map as in § 5. We put

$$\lambda = \lambda' \circ (\pi \circ \lambda') : S(V \oplus \mathbf{R}^m) \to P_k(V \oplus \mathbf{R}^m).$$

Then λ is also a reduction G-map such that

$$\deg(\pi \circ \lambda)^H = 1$$
 for all $H < G$.

We put

$$\gamma_1 = \tau_b \circ \lambda : S(V \oplus \mathbf{R}^m) \to V_b(V \oplus \mathbf{R}^m)$$
.

We consider a G-map

$$\gamma_2 = \gamma_1 | S(\mathbf{R}^m) : S(\mathbf{R}^m) \to V_b(V \oplus \mathbf{R}^m)$$
.

First we assume that $V^G \neq \{0\}$. Since $m \equiv 0 \mod a_k(\mathbf{R})$ and $m \ge 2k$, there is a (G-)cross-section of q_k

$$\Delta \colon S(\mathbf{R}^m) \to V_k(\mathbf{R}^m) \subset V_k(V \oplus \mathbf{R}^m)$$
.

Since $conn(V_k(V \oplus \mathbf{R}^m)^G) \ge \dim S(\mathbf{R}^m)$, γ_2 and Δ are G-homotopic. Remark that $(S(V \oplus \mathbf{R}^m), S(\mathbf{R}^m))$ has the G-homotopy extension property. We have a G-map

$$\gamma_0: S(V \oplus \mathbf{R}^m) \to V_k(V \oplus \mathbf{R}^m)$$

such that γ_0 and γ_1 are G-homotopic and $\gamma_0 | S(\mathbf{R}^m) = \Delta$. As is easily seen, γ_0 satisfies our required properties.

Next we assume that $V^G = \{0\}$. In this case, $\gamma_2 = \gamma_1^G : S(\mathbf{R}^m) \to V_k(\mathbf{R}^m)$ is a 1-section of q_k . Therefore we put $\gamma_0 = \gamma_1$.

This completes the proof of Assertion 6.1.1.

We put
$$\gamma_3 = \gamma_0 | S(\mathbf{R}^m) : S(\mathbf{R}^m) \rightarrow V_k(\mathbf{R}^m) (\subset V_k(V \oplus \mathbf{R}^m))$$
. Consider a map

$$\theta_{\gamma_3^*}: [(S(V \oplus \mathbf{R}^m), S(\mathbf{R}^m)), V_k(V) * S(\mathbf{R}^m); i_{S(\mathbf{R}^m)}]^G \rightarrow [(S(V \oplus \mathbf{R}^m), S(\mathbf{R}^m)), V_k(V \oplus \mathbf{R}^m); \gamma_3]^G.$$

Since γ_3 is a 1-section, $\theta_{\gamma_3}^H$: $V_k(V)^H * S(\mathbf{R}^m) \to V_k(V \oplus \mathbf{R}^m)^H$ is a $(2 \dim_{\mathbf{R}} V^H - 2k + m - 1)$ -equivalence for each $(H) \in \mathrm{Iso}(S(V \oplus \mathbf{R}^m) - S(\mathbf{R}^m))$. Applying Lemma 2.1, θ_{γ_3} is surjective. Therefore we have a G-map

$$\gamma_4 \colon S(V \oplus \mathbf{R}^m) \to V_k(V) * S(\mathbf{R}^m)$$

such that $\theta_{\gamma_3}*([\gamma_4])=[\gamma_0]$ and $\gamma_4|S(\mathbf{R}^m)=i_{S(\mathbf{R}^m)}$. As is easily seen, the composition

$$S(V)^{H} * S(\mathbf{R}^{m}) \xrightarrow{h^{H}} S(V \oplus \mathbf{R}^{m})^{H} \xrightarrow{\gamma_{4}^{H}} V_{k}(V)^{H} * S(\mathbf{R}^{m}) \xrightarrow{q_{k}^{H} * 1} S(V)^{H} * S(\mathbf{R}^{m})$$

has degree 1 for each H < G, where h is as in § 5. Consider the following suspension map

$$\tau_*^{\mathbf{R}^m} \colon [S(V), \ V_k(V)]^c \to [(S(V) * S(\mathbf{R}^m), \ S(\mathbf{R}^m)), \ V_k(V) * S(\mathbf{R}^m); \ i_{S(\mathbf{R}^m)}]^c \ .$$

Since dim $S(V)^H \leq 2 \operatorname{conn}(V_k(V^H)) + 1$ for each $(H) \in \operatorname{Iso}(S(V))$, it follows from Theorem 2.4 that τ_k^{m} is surjective. Then we have a G-map

$$\gamma_5 \colon S(V) \to V_{\nu}(V)$$

such that $\tau_*^{R^m}([\gamma_5]) = [\gamma_4 \circ h]$. As is easily seen, the composition

$$S(V)^H \xrightarrow{\gamma_5^H} V_k(V)^H \xrightarrow{q_k^H} S(V)^H$$

has degree 1 for each $(H) \in \operatorname{Iso}(S(V))$. Let K < H < G such that $V^K \neq V^H$. Using Lemma 4.3, we have $\dim_{\mathbb{R}} V^K - \dim_{\mathbb{R}} V^H \ge k \ge 2$. Thus it follows from Rubinsztein [22; Theorem 8.4] that $q_k \circ \gamma_5$ is G-homotopic to the identity. Since $q_k \colon V_k(V) \to S(V)$ is a smooth G-fiber bundle in the sense of Bierstone [7], q_k has the smooth G-homotopy lifting property. Using Wasserman [27; Corollary 1.12], we see that q_k has a smooth G-cross-section. Now, by Lemma 5.1, we have $\operatorname{Span}_G(S(V)) \ge k-1$.

7. Proof of Theorem 1.1

Let V and W be unitary G-representation spaces such that $\dim_{\mathbb{C}} V^H = \dim_{\mathbb{C}} W^H$ for all H < G. By Lee-Wasserman [21; Proposition 3.17], there are direct sum decompositions

$$\begin{cases} V = V_1 \oplus V_2 \oplus \cdots \oplus V_r, \\ W = W_1 \oplus W_2 \oplus \cdots \oplus W_r \end{cases}$$

such that V_i and W_i $(1 \le i \le r)$ are irreducible unitary G-representation spaces and V_i is conjugate to W_i by a field automorphism of C for $1 \le i \le r$. That is, there are integers $n(i)(1 \le i \le r)$ such that (n(i), |G|) = 1 and $W_i = \psi^{n(i)}(V_i)$ for $1 \le i \le r$, where ψ^s denotes the equivariant s-th Adams operation and |G| denotes the order of G. Since $\psi^{s+|G|} = \psi^s$, we may assume that $n(i)(1 \le i \le r)$ are odd integers. Let \mathcal{E}_C be the non-trivial unitary 1-dimensional Z_2 -representation space. Then $\mathcal{E}_C \otimes V$ and $\mathcal{E}_C \otimes W$ are unitary $(Z_2 \times G)$ -representation spaces and

$$\begin{cases} \varepsilon_{\boldsymbol{c}} \bigotimes_{\boldsymbol{c}} V = (\varepsilon_{\boldsymbol{c}} \bigotimes_{\boldsymbol{c}} V_1) \oplus (\varepsilon_{\boldsymbol{c}} \bigotimes_{\boldsymbol{c}} V_2) \oplus \cdots \oplus (\varepsilon_{\boldsymbol{c}} \bigotimes_{\boldsymbol{c}} V_r), \\ \varepsilon_{\boldsymbol{c}} \bigotimes_{\boldsymbol{c}} W = (\varepsilon_{\boldsymbol{c}} \bigotimes_{\boldsymbol{c}} W_1) \oplus (\varepsilon_{\boldsymbol{c}} \bigotimes_{\boldsymbol{c}} W_2) \oplus \cdots \oplus (\varepsilon_{\boldsymbol{c}} \bigotimes_{\boldsymbol{c}} W_r) \end{cases}$$

are decompositions of $\mathcal{E}_{C} \underset{c}{\otimes} V$ and $\mathcal{E}_{C} \underset{c}{\otimes} W$ into direct sums of irreducible unitary $(\mathbf{Z}_{2} \times G)$ -representation spaces respectively. Since n(i) $(1 \leq i \leq r)$ are odd, there are integers $\bar{n}(i)$ $(1 \leq i \leq r)$ such that $(\bar{n}(i), 2 | G|) = 1$ and $n(i) \cdot \bar{n}(i) \equiv 1 \mod |2G|$. Then we have

$$\left\{egin{aligned} & arepsilon_c \otimes V_i = \psi^{ar{m{n}}(i)}(arepsilon_c \otimes W_i) & & ext{for } 1 \leq i \leq r \ , \ & arepsilon_c \otimes W_i = \psi^{m{n}(i)}(arepsilon_c \otimes V_i) & & ext{for } 1 \leq i \leq r \ . \end{aligned}
ight.$$

The following lemma is due to Tornehave [25] (see also [11]).

Lemma 7.1. There are
$$(\mathbf{Z}_2 \times G)$$
-maps

$$\begin{cases} \varphi_i \colon S(\varepsilon_c \underset{c}{\otimes} V_i) \to S(\varepsilon_c \underset{c}{\otimes} W_i) ,\\ \psi_i \colon S(\varepsilon_c \underset{c}{\otimes} W_i) \to S(\varepsilon_c \underset{c}{\otimes} V_i) \end{cases}$$

for $1 \le i \le r$ such that

$$\deg \varphi_i^K = n(i)^{d_i(K)}$$
 and $\deg \psi_i^K = \bar{n}(i)^{d_i(K)}$

for each $K < \mathbf{Z}_2 \times G$, where $d_i(K) = \dim_C (\mathcal{E}_C \otimes V_i)^K (= \dim_C (\mathcal{E}_C \otimes W_i)^K)$.

We put

(7.2)
$$\begin{cases} \varphi = \varphi_1 * \cdots * \varphi_r \colon S(\varepsilon_c \otimes V) \to S(\varepsilon_c \otimes W), \\ \psi = \psi_1 * \cdots * \psi_r \colon S(\varepsilon_c \otimes W) \to S(\varepsilon_c \otimes V). \end{cases}$$

Then, for each $K < \mathbb{Z}_2 \times G$, we have

$$\deg(\psi \circ \varphi)^K \equiv 1 \mod 2|G|$$
 and $\deg(\varphi \circ \psi)^K \equiv 1 \mod 2|G|$.

Let U be a unitary G-representation space and $m \ge 2$. We define a homomorphism

$$\Psi \colon [\Sigma^{U \oplus R^{m-1}}, \, \Sigma^{U \oplus R^{m-1}}]_0^G \to \prod_{(H) \in \operatorname{Iso}(\Sigma^{U \oplus R^{m-1}})} Z$$

by the following: if $f: \Sigma^{U \oplus R^{m-1}} \to \Sigma^{U \oplus R^{m-1}}$ is a pointed G-map, then $\Psi([f]) = \prod_{\substack{(H) \in \text{Iso}(\Sigma^{U \oplus R^{m-1}})}} \deg f^H$ (for details see Rubinsztein [22]). By the same argument as in tom Dieck [10; Proposition 1.2.3], we have the following:

Lemma 7.3. Let $x \in \prod_{(H) \in Iso(\Sigma^{\mathcal{D} \oplus \mathbb{R}^{m-1}})} \mathbb{Z}$ be an arbitrary element. Then $|G|x \in Im \Psi$.

Proposition 7.4. Let $m>k\geq 2$. Let V and W be unitary G-representation spaces such that $\dim_C V^H = \dim_C W^H$ for all H < G. Then the following two conditions are equivalent:

(i) There is a reduction G-map

$$f: \Sigma^{V \oplus \mathbf{R}^{m-1}} \to P_k(V \oplus \mathbf{R}^m)$$
,

(ii) There is a reduction G-map

$$g: \Sigma^{W \oplus \mathbf{R}^{m-1}} \to P_k(W \oplus \mathbf{R}^m)$$
.

Proof. It suffices to show that (i) implies (ii). Let

$$\begin{cases} \varphi : S(\varepsilon_c \bigotimes V) \to S(\varepsilon_c \bigotimes W), \\ \psi : S(W) \to S(V) \end{cases}$$

be a $(\mathbf{Z}_2 \times G)$ -map and a $G(\subset \mathbf{Z}_2 \times G)$ -map as in (7.2) respectively. We put a $(\mathbf{Z}_2 \times G)$ -map

$$\varphi_1 = \varphi * 1_{S(\varepsilon_{\boldsymbol{R}} \otimes \boldsymbol{R}^m)} \colon S((\varepsilon_{\boldsymbol{C}} \otimes V) \oplus (\varepsilon_{\boldsymbol{R}} \otimes \boldsymbol{R}^m)) \to S((\varepsilon_{\boldsymbol{C}} \otimes W) \oplus (\varepsilon_{\boldsymbol{R}} \otimes \boldsymbol{R}^m))$$

and a pointed G-map

$$\psi_1 = \psi * 1_{S(\mathbf{R}^m)} : S(W \oplus \mathbf{R}^m) \to S(V \oplus \mathbf{R}^m)$$
.

Remark that φ_1 induces a pointed G-map

$$\varphi_2: P_k(V \oplus \mathbf{R}^m) \to P_k(W \oplus \mathbf{R}^m)$$

such that the following diagram commutes:

$$S((\varepsilon_{c} \otimes V) \oplus (\varepsilon_{R} \otimes \mathbf{R}^{m})) \xrightarrow{\varphi_{1}} S((\varepsilon_{c} \otimes W) \oplus (\varepsilon_{R} \otimes \mathbf{R}^{m}))$$

$$\downarrow p_{1} \qquad \qquad \downarrow p_{2}$$

$$P_{k}(V \oplus \mathbf{R}^{m}) \xrightarrow{\varphi_{2}} P_{k}(W \oplus \mathbf{R}^{m}),$$

where p_1 and p_2 are the natural projections as in § 5. We define a pointed G-map

$$g_1: \Sigma^{W \oplus \mathbf{R}^{m-1}} \to P_k(W \oplus \mathbf{R}^m)$$

by the composition

$$\Sigma^{W \oplus \mathbf{R}^{m-1}} \xrightarrow{d_2} S(W \oplus \mathbf{R}^m) \xrightarrow{\psi_1} S(V \oplus \mathbf{R}^m) \xrightarrow{d_1}$$

$$\Sigma^{V \oplus \mathbf{R}^{m-1}} \xrightarrow{f} P_k(V \oplus \mathbf{R}^m) \xrightarrow{\varphi_2} P_k(W \oplus \mathbf{R}^m),$$

where d_1 and d_2 are pointed G-homeomorphisms. Let $\pi_1: P_k(V \oplus \mathbf{R}^m) \to S(V \oplus \mathbf{R}^m)$ and $\pi_2: P_k(W \oplus \mathbf{R}^m) \to S(W \oplus \mathbf{R}^m)$ be the natural collapsing maps as in § 5. Let

$$g_2 \colon \Sigma^{W \oplus \mathbf{R}^{m-1}} \to \Sigma^{W \oplus \mathbf{R}^{m-1}}$$

be a G-map defined by the composition

$$\Sigma^{W \oplus \mathbf{R}^{m-1}} \xrightarrow{g_1} P_k(W \oplus \mathbf{R}^m) \xrightarrow{\pi_2} S(W \oplus \mathbf{R}^m) \xrightarrow{d_2^{-1}} \Sigma^{W \oplus \mathbf{R}^{m-1}}$$

Then it is easy to see that

$$\deg g_2^H \equiv \deg (d_1 \circ \pi_1 \circ f)^H \mod 2 |G|$$
 for each $H < G$.

Since f is a reduction G-map, we remark that $\deg(d_1 \circ \pi_1 \circ f)^H = \pm 1$ for each H < G. Let a(H) be an integer such that

$$\deg g_2^H = \deg(d_1 \circ \pi_1 \circ f)^H + 2a(H) |G|$$

for each $(H) \in \text{Iso}(\Sigma^{W \oplus R^{m-1}})$. By Lemma 7.3, there is a pointed G-map

$$g_3: \sum_{W \in \mathbb{R}^{m-1}} \longrightarrow \sum_{W \in \mathbb{R}^{m-1}}$$

such that $\deg g_3^H = a(H)|G|$ for each $(H) \in \operatorname{Iso}(\Sigma^{W \oplus R^{m-1}})$. We define a pointed G-map

$$g_4: \Sigma^{W \oplus \mathbf{R}^{m-1}} \to P_k(W \oplus \mathbf{R}^m)$$

by the composition

$$\Sigma^{W \oplus \mathbf{R}^{m-1}} \xrightarrow{g_3} \Sigma^{W \oplus \mathbf{R}^{m-1}} \xrightarrow{d_2} S(W \oplus \mathbf{R}^m) \xrightarrow{p_2} P_k(W \oplus \mathbf{R}^m).$$

Then we see that the composition

$$(\Sigma^{W \oplus \mathbf{R}^{m-1}})^H \xrightarrow{g_4^H} P_k(W \oplus \mathbf{R}^m)^H \xrightarrow{\pi_2^H} S(W \oplus \mathbf{R}^m)^H \xrightarrow{(d_2^{-1})^H} (\Sigma^{W \oplus \mathbf{R}^{m-1}})^H$$

has degree 2a(H)|G| for each $(H) \in \operatorname{Iso}(\Sigma^{W \oplus \mathbf{R}^{m-1}})$. Since $m \geq 2$, pointed G-homotopy classes of pointed G-maps from $\Sigma^{W \oplus \mathbf{R}^{m-1}}$ to $P_k(W \oplus \mathbf{R}^m)$ form a group. Then we put

$$g = g_1 - g_4 \colon \Sigma^{W \oplus \mathbf{R}^{m-1}} \to P_k(W \oplus \mathbf{R}^m)$$
.

It is easy to see that the composition

$$(\boldsymbol{\Sigma}^{W \oplus \boldsymbol{R}^{m-1}})^H \xrightarrow{\boldsymbol{g}^H} P_k(W \oplus \boldsymbol{R}^m)^H \xrightarrow{\boldsymbol{\pi}_2^H} S(W \oplus \boldsymbol{R}^m)^H \xrightarrow{(d_2^{-1})^H} (\boldsymbol{\Sigma}^{W \oplus \boldsymbol{R}^{m-1}})^H$$

has $\deg(d_1 \circ \pi_1 \circ f)^H = \pm 1$ for each $(H) \in \operatorname{Iso}(\Sigma^{W \oplus \mathbf{R}^{m-1}})$. It follows from Lemma 5.2 that g is a reduction G-map.

Proof of Theorem 1.1. We may assume that $k \ge 2$. Let m be an integer such that $m \equiv 0 \mod a_k(\mathbf{R})$ and $m \ge 2k$. If $\operatorname{Span}_G(S(V)) \ge k-1$, it follows from Theorem 5.3 that $P_k(V \oplus \mathbf{R}^m)$ is $G - V \oplus \mathbf{R}^{m-1}$ -reducible. According to Proposition 7.4, $P_k(W \oplus \mathbf{R}^m)$ is $G - W \oplus \mathbf{R}^{m-1}$ -reducible. By Theorem 6.1, $\operatorname{Span}_G(S(W)) \ge k-1$.

The converse is quite similar.

q.e.d.

8. Proof of Theorem 1.2

In this section, we prove Theorem 1.2.

Lemma 8.1. Let U be an orthogonal G-representation space such that $\dim_{\mathbb{R}} U^H \geq k+1$ if $U^H \neq \{0\}$ for each H < G. Assume that there are an integer m and a G-fiber homotopy equivalence

$$f: S((\eta_k \otimes \underline{\underline{U}}) \oplus \underline{\underline{R}}^m) \to S(\underline{\underline{U}} \oplus \underline{\underline{R}}^m)$$
.

Then we have a G-fiber homotopy equivalence

$$f: S(\eta_k \otimes \underline{U}) \to S(\underline{U})$$
.

Proof. First we show that the following Assertion 8.1.1.

Assertion 8.1.1. There are an integer $n (\geq m)$ and a G-map

$$f_1: S((\eta_k \otimes \underline{U}) \oplus \underline{R}^n) \to S(U \oplus \underline{R}^n)$$

such that a restriction

$$f_1 | S((\eta_k \otimes \underline{U}) \oplus \underline{R}^n)_x : S((\eta_k \otimes \underline{U}) \oplus \underline{R}^n)_x \to S(\underline{U} \oplus \underline{R}^n)$$

for $x \in \mathbb{R}P^{k-1}$ is a G-homotopy equivalence and a restriction $f_1 | S(\underline{\mathbb{R}}^n)$ is the natural projection $S(\mathbb{R}^n) \to S(\mathbb{R}^n) \subset S(U \oplus \mathbb{R}^n)$.

Proof of Assertion 8.1.1. We put $f_2 = p_1 \circ f$: $S((\eta_k \otimes \underline{U}) \oplus \underline{R}^m) \to S(U \oplus \underline{R}^m)$, where p_1 : $S(\underline{U} \oplus \underline{R}^m) \to S(U \oplus \underline{R}^m)$ is the natural projection.

Suppose first that $U^c = \{0\}$. By assumption, we see that $conn(S(U \oplus \mathbf{R}^m)^c)$ $\geq dim S(\mathbf{R}^m)$. Then $f_2 | S(\mathbf{R}^m) : S(\mathbf{R}^m) \to S(U \oplus \mathbf{R}^m)$ and the natural projection p_2 : $S(\mathbf{R}^m) \to S(\mathbf{R}^m) \subset S(U \oplus \mathbf{R}^m)$ are G-homotopic. Since $(S((\eta_k \otimes \underline{U}) \oplus \mathbf{R}^m), S(\mathbf{R}^m))$ has the G-homotopy extension property, we have a G-map

$$f_1: S((\eta_k \otimes \underline{U}) \oplus \underline{\mathbf{R}}^m) \to S(U \oplus \mathbf{R}^m)$$

such that f_1 and f_2 are G-homotopic and $f_1 | S(\underline{\underline{R}}^m) = p_2$. We put n = m. It is easy to see that f_1 has our required properties.

Suppose second that $U^c = \{0\}$. Remark that $f_2^c : S(\underline{\underline{R}}^m) \to S(\underline{R}^m)$ is a map such that $(f_2^c)_x : S(\underline{R}^m) \to S(\underline{R}^m)$ is a homotopy equivalence for $x \in RP^{k-1}$. It is well-known that there is a map $h : S(\underline{\underline{R}}^{m'}) \to S(\underline{R}^{m'})$ such that $f_2^c \not\cong h : S(\underline{\underline{R}}^{m+m'}) \to S(\underline{R}^{m+m'})$ is homotopic to the natural projection $p_3 : S(\underline{\underline{R}}^{m+m'}) \to S(\underline{R}^{m+m'})$, where $\not\cong$ denotes the fiberwise join. We put

$$f_3 = f_2 \tilde{*}h \colon S((\eta_k \otimes \underline{\underline{U}}) \oplus \underline{\underline{R}}^{m+m'}) \to S(U \oplus \underline{R}^{m+m'})$$
.

Then $f_3|S(\underline{R}^{m+m'})=f_3^G$ is (G-)homotopic to p_3 . By the same argument as in the case when $U^G \neq \{0\}$, we have a G-map

$$f_1: S((\eta_k \otimes \underline{U}) \oplus \underline{\mathbf{R}}^{m+m'}) \to S(U \oplus \mathbf{R}^{m+m'})$$

such that f_1 is G-homotopic to f_3 and $f_1|S(\underline{\mathbf{R}}^{m+m'})=p_3$. We put n=m+m'. Then f_1 has our required properties.

This completes the proof of Assertion 8.1.1.

We see that f_1 induces a G-map

$$f_4: S(\eta_k \otimes \underline{\underline{U}}) * S(\mathbf{R}^n) \to S(\underline{U}) * S(\mathbf{R}^n)$$

such that the following diagram commutes:

where q is the natural projection. Then $f_4|S(\mathbf{R}^n)=i_{S(\mathbf{R}^n)}:S(\mathbf{R}^n)\to S(U)*S(\mathbf{R}^n)$. For each $(H)\in \mathrm{Iso}(S(\eta_k\otimes\underline{U}))$ (= $\mathrm{Iso}(S(U))$), we see that dim $S(\eta_k\otimes\underline{U})^H\leq 2\operatorname{conn}(S(U)^H)+1$. It follows from Theorem 2.4 that we obtain a G-map

$$f_5: S(\eta_k \otimes \underline{\underline{U}}) \to S(U)$$

such that $f_5*1_{S(\mathbb{R}^n)}$ is G-homotopic to f_4 . By Equivariant Dold Theorem ([19]), it is easy to see that

$$\bar{f} = p_4 \times f_5 \colon S(\eta_k \otimes \underline{U}) \to \mathbf{R}P^{k-1} \times S(U)$$

gives a G-fiber homotopy equivalence, where p_4 : $S(\eta_k \otimes \underline{U}) \rightarrow \mathbb{R}P^{k-1}$ is the natural projection. q.e.d.

Proof of Theorem 1.2. We may assume that $k \ge 2$. Let m and n be integers such that $m \equiv 0 \mod a_k(\mathbf{R})$, $n \equiv k \mod a_k(\mathbf{R})$ and $n > m \ge 2k$.

First we show (i). By Theorem 5.3, $P_k(V \oplus \mathbf{R}^m)$ is $G - V \oplus \mathbf{R}^{m-1}$ -reducible. Applying Proposition 4.4, $P_k(V \oplus \mathbf{R}^n)$ is $G - V \oplus \mathbf{R}^{n-k}$ -correducible. It follows from Proposition 3.3 that we have a G-fiber homotopy equivalence

$$f_1: S((\eta_k \otimes (\underline{\underline{V}} \oplus \underline{\underline{R}}^{n-k})) \oplus \underline{\underline{R}}^1) \to S(\underline{\underline{V}} \oplus \underline{\underline{R}}^{n-k} \oplus \underline{\underline{R}}^1).$$

Since $n \equiv k \mod a_k(\mathbf{R})$ and n > 2k, we have a G-fiber homotopy equivalence

$$f_2: S((\eta_k \otimes \underline{V}) \oplus \underline{R}^{n-k+1}) \to S(\underline{V} \oplus \underline{R}^{n-k+1}).$$

The first result follows. The second result follows from Lemma 8.1

Next we show (ii). Since $n \equiv k \mod a_k(\mathbf{R})$ and n > 2k, we have a G-fiber homotopy equivalence

$$f_3: S(\eta_k \otimes (\underline{\underline{V}} \oplus \underline{\underline{R}}^{n-k})) \to S(\underline{\underline{V}} \oplus \underline{\underline{R}}^{n-k}).$$

By Proposition 3.3, $P_k(V \oplus \mathbf{R}^n)$ is $G - V \oplus \mathbf{R}^{n-k}$ -coreducible. Applying Proposition 4.4, $P_k(V \oplus \mathbf{R}^m)$ is $G - V \oplus \mathbf{R}^{m-1}$ -reducible. It follows from Theorem 6.1 that $\operatorname{Span}_G(S(V)) \ge k-1$.

9. An example

Let G be a metacyclic group

$${a, b | a^m = b^q = e, bab^{-1} = a^r},$$

where m is a positive odd integer, q is an odd prime integer, (r-1, m)=1 and r is a primitive q-th root of $1 \mod m$. Let $\mathbf{Z}_m = \langle a \rangle < G$ and let $t^h(h \in \mathbf{Z})$ be the unitary 1-dimensional \mathbf{Z}_m -representation space with a acting on \mathbf{C}^1 as multiplication with $\exp(2\pi h\sqrt{-1}/m)$. Let T_h denote the induced representation space Ind $\frac{G}{\mathbf{Z}_m}(t^h)$ of the \mathbf{Z}_m -representation space t^h . Then T_h is a unitary q-dimensional G-representation space (for details see [9; § 47] or [17]). We put

$$V_n = T_{h_1} \oplus T_{h_2} \oplus \cdots \oplus T_{h_n}$$
,

where $(h_i, m) = 1$ for $1 \le i \le n$.

EXAMPLE 9.1. If $n \ge 9$, then $\operatorname{Span}_G(S(V_n)) = \rho(2n, \mathbf{R}) - 1$. Here $\rho(s, \mathbf{R})$ denotes the largest integer k such that $s \equiv 0 \mod a_k(\mathbf{R})$ ([1]).

Proof of Example 9.1. Since $\dim_{\mathbf{R}} V_n = 2nq$ and q is odd, $\operatorname{Span}(S(V_n)) = \rho(2nq, \mathbf{R}) - 1 = \rho(2n, \mathbf{R}) - 1$. Thus we have

$$(9.1.1) \operatorname{Span}_{G}(S(V_{n})) \leq \operatorname{Span}(S(V_{n})) = \rho(2n, \mathbf{R}) - 1.$$

By Becker [6; Theorems 1.1 and 2.2], there is a \mathbb{Z}_m -fiber homotopy equivalence

$$f_1: S(\eta_{\rho(2n,\mathbf{R})} \otimes \underline{nt}) \to S(\underline{nt})$$
.

By the same argument as in [5; II. Proposition 2.2], we have a G-fiber homotopy equivalence

$$f_2: S(\eta_{\rho(2n,\mathbf{R})} \bigotimes_{\mathbf{R}} \underbrace{nT_1}) \to S(\underbrace{nT_1})$$
.

Since $n \ge 9$, we see that $\dim_{\mathbf{R}} nT_1^H \ge 2\rho(2n, \mathbf{R})$ if $nT_1^H \ne \{0\}$ for each H < G. Applying Theorem 1.2, we have $\operatorname{Span}_G(S(nT_1)) \ge \rho(2n, \mathbf{R}) - 1$. It is easy to see that $\dim_{\mathbf{C}} V_n^H = \dim_{\mathbf{C}} nT_1^H$ for all H < G. Thus it follows from Theorem 1.1 that we have

(9.1.2)
$$\operatorname{Span}_{G}(S(V_{n})) \geq \rho(2n, \mathbf{R}) - 1.$$

Combining (9.1.1) and (9.1.2), we have $\operatorname{Span}_{G}(S(V_{n})) = \rho(2n, \mathbf{R}) - 1$. q.e.d.

Added in proof. Professor P. May kindly informed me that Dr. U. Namboodiri has obtained similar results [30].

References

- [1] J.F. Adams: Vector fields on spheres, Ann. of Math. 75 (1962), 603-632.
- [2] —: On the groups J(X)-II, Topology 3 (1965), 137–171.
- [3] M.F. Atiyah: Thom complexes, Proc. London Math. Soc. 11 (1961), 291-310.

- [4] ——, R. Bott and A. Shapiro: Clifford modules, Topology 3 (1964), Suppl. 1, 3-38.
- [5] —— and D.O. Tall: Group representations, λ-rings and the J-homomor-phism, Topology 8 (1969), 253-297.
- [6] J.C. Becker: The Span of spherical space forms, Amer. J. Math. 94 (1972), 991– 1026.
- [7] E. Bierstone: The equivariant covering homotopy property for differentiable G-fiber bundles, J. Differential Geom. 8 (1973), 615-622.
- [8] G.E. Bredon: Equivariant cohomology theories, Lecture Notes in Math. 34, Springer-Verlag, 1967.
- [9] C.W. Curtis and I. Reiner: Representation theory of finite groups and associative algebras, Interscience, 1962.
- [10] T. tom Dieck: Transformation groups and representation theory, Lecture Notes in Math. 766, Springer-Verlag, 1979.
- [11] ——— and T. Petrie: Geometric modules over the Burnside ring, Invent. Math. 47 (1978), 273-287.
- [12] S. Illman: Smooth equivariant triangulations of G-manifolds for G a finite group, Math. Ann. 233 (1978), 199-220.
- [13] K. Iwata: Span of lens spaces, Proc. Amer. Math. Soc. 26 (1970), 687-688.
- [14] I.M. James: The intrinsic join: A study of the homotopy groups of Stiefel manifolds, Proc. London Math. Soc. 8 (1958), 507-535.
- [15] ———: Cross-sections of Stiefel manifolds, Proc. London Math. Soc. 8 (1958), 536-547.
- [16] ——: Spaces associated with Stiefel manifolds, Proc. London Math. Soc. 9 (1959), 115-140.
- [17] S. Kakutani: On the groups $J_{Z_{m,q}}(*)$, Osaka J. Math. 17 (1980), 513–524.
- [18] ——— and M. Murayama: Equivariant duality, reducibility and coreducibility, preprint 1981.
- [19] K. Kawakubo: Compact Lie group actions and fiber homotopy type, J. Math. Soc. Japan 33 (1981), 295–321.
- [20] K. Komiya and M. Morimoto: Equivariant desuspension of G-maps, Osaka J. Math. 18 (1981), 525-532.
- [21] C.N. Lee and A.G. Wasserman: On the groups JO(G), Memoirs of Amer. Math. Soc. 159 (1975).
- [22] R.L. Rubinsztein: On the equivariant homotopy of spheres, Dissertationes Math. 134 (1976).
- [23] D. Sjerve: Vector bundles over orbit manifolds, Trans. Amer. Math. Soc. 138 (1969), 97-106.
- [24] E.H. Spanier: Function spaces and duality, Ann. of Math. 70 (1959), 338-378.
- [25] J. Tornehave: Equivariant maps of spheres with conjugate orthogonal actions, Aarhus Universitet preprint series No. 24 (1976/77).
- [26] S. Waner: Equivariant homotopy theory and Milnor's theorem, Trans. Amer. Math. Soc. 258 (1980), 351-368.
- [27] A.G. Wasserman: Equivariant differential topology, Topology 8 (1969), 127– 150.
- [28] K. Wirthmüller: Equivariant S-duality, Arch. Math. 26 (1975), 427-431.

- [29] T. Yoshida: A remark on vector fields on lens spaces, J. Sci. Hiroshima Univ. Ser. A-I 31 (1967), 13-15.
- [30] U. Namboodiri: Equivariant vector fields on spheres, Dr. Phil. Thesis, Univ. of Chicago, 1982.

Department of Mathematics Faculty of Science Kochi University Kochi, 780 Japan