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1. Introduction

Let G be a finite group and M be a smooth G-manifold. We define
Spang(M) to be the largest integer k such that A has k linearly independent
smooth G-vector fields. Let V' be an orthogonal G-representation space and
let S(V') denote the unit sphere in V. Inthe case where G acts freely on S(V),
Spang(S(V)) (=Span(S(V)/G)) has been studied by Becker [6], Iwata [13],
Sjerve [23] and Yoshida [29]. In this paper, we consider Spang(S(V)) when
G does not act freely on S(V). Our main results are Theorems 1.1 and 1.2,
which are generalizations of Theorems 2.1 and 2.2 in [6] respectively. Our
method is due to Becker [6].

Let H be a subgroup of G, then we write H<<G.

Theorem 1.1. Let G be a finite group and let V, W be unitary G-repre-
sentation spaces. Suppose that

(1) dimgVE=dime W# for all H<G,

(il) For each H<G, dimp VEZ=2k if V= {0}.
Then Spang(S(V))=k—1 if and only if Spang(S(W))=k—1.

Let £ and 5 be orthogonal G-vector bundles over a compact G-space.
Denote by S(&) (resp. S(n)) the unit sphere bundle of £ (resp. ). Then S(§)
and S(z) are said to be G-fiber homotopy equivalent if there are fiber-preserving
G-maps:

f:5(&) = Sty f': S(n) — S(E)

such that fof’ and f'of are fiber-preserving G-homotopic to the identity ([6],
[19]).

Let RP*! denote the (k—1)-dimensional real projective space with trivial
G-action and let %, denote the non-trivial line bundle over RP*! with trivial
G-action.

Theorem 1.2. Let G be a finite group and let V be an orthogonal G-repre-
sentation space. Then we have the following:
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(i) Suppose that Spang(S(V))=k—1. Then there are an integer t and a
G-fiber homotopy equivalence

[ S(n®L)DR) — S(LOR') .

Moreover we suppose that dimpV#=k+1 if VE£{0} for each H<G. Then
there is a G-fiber homotopy equivalence

f: S(m®Y) — S(L).

(i) Suppose that dimg VEZ2k if V= {0} for each H<G and there is a
G-fiber homotopy equivalence

f: Su®@YV) — S(¥).

Then Spang(S(V))=k—1.
Here V denotes the trivial G-vector bundle RP*™*x V —RP*~1.

Throughout this paper G will be a finite group.

The paper is organized as follows:

In §2, we discuss some preliminary results. In §3, we consider equiva-
riant duality, reducibility and coreducibility. In §4, we consider stunted
projective spaces with linear G-actions. In §§5 and 6, we state an equiva-
riant version of the theorem of James. In §7, we prove Theorem 1.1. In
§ 8, we prove Theorem 1.2. In § 9, we give an example.

The author wishes to thank Mr. S. Hashimoto and Dr. M. Murayama
for valuatle discussions.

2. Preliminary results

First we shall fix some notations. Let X and Y be G-spaces. Let 4 be
a G-subspace of X and let @: A—Y be a G-map. Denote by F((X, 4), Y; a)
the space of all maps f: X —Y such that f | A=« in the compact open topology.
F(X, 4), Y; a) is a G-space with the following G-action: if f: X—Y and
g€G, we put

(g+f)(x) = g(f(g™'x)) .

For H<G, X¥ denotes the H-fixed point set in X. The set F((X, 4), Y; a)¢
is just the set of G-maps f: X —Y such that f|4=a. Denote by [(X, 4), Y; «]®
the set of G-homotopy classes rel 4 of G-maps f: X —Y such that f|A=q.
If A=¢, we write F(X, Y) (resp. [X, Y]°) instead of F((X, 4), Y; a) (resp.
(X, 4), Y; a]), for simplicity. If X, Y are G-spaces with base points, then
we denote the set of G-homotopy classes relative to the base points of pointed
G-maps from X to Y by [X, Y]§. The base points are G-fixed points as usual.
For H<G, (H) denotes the conjugacy class of H in G. Denote by G, the
isotropy group at ¥ X and we put
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Iso(X) = {(G,)|xeX} .

For a space Z, we define conn(Z) to be the largest integer n such that Z is
n-connected. In particular, when Z is not path-connected (resp. Z=¢), we
put conn(Z)=—1 (resp. conn(Z)=1o0).

The following two lemmas are easily seen by the definition of G-complexes

(see Bredon [8] and Waner [26]).

Lemma 2.1. Let f: X—Y be a G-map of G-spaces such that f¥=f|X*:
XH#—>YH is an ny-equivalence for each H<G. Let (K, L) be a pair of G-com-
plexes and a: L—X be a G-map. Then

fai [(K, L), X a]® = [(K, L), Y; fea]®

7s surjective if dim(K¥—L)<ny and bijective if dim(K#—L)<ny,—1 for each
(H)eIso(K—L).

Lemma 2.2. Let (K, L) be a pair of G-complexes and X be a G-space.
Let a: L—>X be a G-map. Then the G-fixed point morphism

de: [(K, L), X; a]¢ — [(K€, L°), X€; a°]

is surjective if dim(K#—L U K°) < conn(X#)+1 and bijective if dim(K#—L U K€)
=conn(X¥) for each (H)Iso(K—L U KF).

DeFiNiTION 2.3. Let X be a G-space. Then X is said to be G-path-
connected if and only if conn (X#)=0 for all H<G.

Let X and Y be G-spaces. We recall that the join X*Y is the space ob-
tained frem the union of X, ¥ and X x Y x [0, 1] by identifying

(x99, 0)=x, (*y )=y forxeX, yeY.

We generally omit to write in the identification map, sc that the image of
(%, v, t) in XY is denoted by the same expression. A canonical G-action on
XxY is given by g-(x, y, t)=(gx, gy, t). Let VV be an orthogonal G-representa-
tion space. We see that

(X V) = XHxYH
and
conn ((X*S(V))#) = conn (X#)+dimg V¥

for H<G. Letigy): S(V)—=>X=*S(V) be an inclusion map defined by igy)(v)=
(—, v, 1).  We have the following theorem (cf. [18; Theorem 3.6], [20]):

Theorem 2.4. Let K be a G-complex and X be a G-space. Let V be
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an orthogonal G-representation space. Assume that conn(X#)=0 for each (H)€E
Iso(K). Then the suspension map

i [K, X]¢ = [(K*=S(V), S(V)), X*S(V); istn]®
is surjective if dim K# <ny and bijective if dim K# <ny—1 for each (H)&Iso (K),
where
2conn (X*)+1 if H=L and VE+ {0},
ny = min ¢ conn (X%) if VE£VE,
I<H
o0 otherwise.
Proof. Let D(V) denote the unit disk in V. We define a G-map
A X = F(D(V), S(V)), XS(V); i)

by Ax)(tv)=(x, v, t) for x€X, veS(V), t[0, 1]. Consider the following

commutative diagram:

1y [(KxS(V), S(V)), X+S(V); is0n]

(K, X]° P

MK, F(D(V), S(V), XxS(V); i),

where @ is the exponential correspondence given by
o(f)(k)(tv) = f(k, v, t)  for keK,veS(V), te]0, 1].
As is easily seen, @ is bijective. Using Lemma 2.2, we see that
N2 X = F(D(V), S(V)), X#S(V); ist)"

is an my-equivalence for each (H)&Iso(K) by the same argument as in the
proof of Theorem 3.6 in [18]. We are now in a position to apply Lemma 2.1.
q.e.d.

3. Equivariant duality, reducibility and coreducibility

In this section, we recall the definitions of equivariant duality, reducibility
and coreducibility (see [18] and [26]) and consider an equivariant version of
Atiyah’s duality theorem. Let X and Y be pointed G-spaces. The reduced
join X A'Y has a natural G-action induced from the diagonal action on X x Y.
For an orthogonal G-representation space V/, SV denotes the one-point com-
pactification of ¥V and S"X=3VAX is called SV-suspension of X. We remark
that 3V is a pointed finite G-complex ([12]).

DerintTioN 3.1. Let X and X* be G-path-connected pointed finite G-
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complexes. Let U be an orthogonal G-representation space. Then a pointed
G-map

w3V - X NX*

is said to be a (U-)duality G-map if p#: ZU% — X# AX*¥ is a duality map in
the usual sense ([6], [24]) for each H<G.

DerFiniTION 3.2. Let X be a G-path-connected pointed finite G-complex
and ¥ be an orthogonal G-representation space.

(i) A pointed G-map f: S'—X is said to be a (V-)reduction G-map if
f7: "X is a reduction map in the usual sense ([3]) for each H<G, and
then X is called G- (V-)reducible.

(i1) A pointed G-map f: X—3" is said to be a (V-)coreduction G-map
if f#: X#—3" is a coreduction map in the usual sense ([3]) for each H<G,
and then X is called G- (V-)coreducible.

Let M be a path-connected closed smooth manifold with trivial G-action.
Let £ be a smooth G-vector bundle over M. The fibers &, for x&M are orthog-
onal G-representation spaces. Since M is path-connected, &, does not depend
on the choice of x&M. So we put V=E,. Assume that V¢ {0}. Then T(£)
is a G-path-connected pointed finite G-complex ([12]), where T(£) denotes the
Thom space of £.

Proposition 3.3. If T(§) is G-V-coreducible, then there is a G-fiber homo-
topy equivalence f: S(EPR)—>S(VPBR"). Conversely, if there is a G-fiber homo-
topy equivalence f: S(§)—>S(V), then T() is G-V-coreducible.

Using Equivariant Dold Theorem (Kawakubo [19; Theorem 2.1]) and
Equivariant J.H.C. Whitehead Theorem (Bredon [8; Chap. II Corollary (5.5)]),
the proof is almost parallel to that of Proposition 2.8 in [3]. So we omit it.

Let w, & and &, be smooth G-vector bundles over M. We put V'=w,,
W,=(§), and W,=(§,), for x&M. Assume that V= {0}, W{= {0} and
W§=+{0}. Then T(w), T(£,) and T(§,) are G-path-connected pointed finite
G-complexes.

Lemma 3.4. If there are a reduction G-map a: ZV—T(w) and a coreduc-
tion G-map B: T(E,DE,)—>Z"1®"2, then there is a duality G-map

i SV s T(ENAT(E,Pw) .

Using Equivariant J.H.C. Whitehead Theorem ([8]), the proof is quite
similar to that of (13.2) in [6]. So we omit it.
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4. Linear actions on stunted projective spaces

Let V be an orthogonal G-representation space and € be the non-trivial
orthogonal 1-dimensional Z,-representation space. Then €@V is an orthog-
onal (Z,X G)-representation space.

DerINITION 4.1. (i) RP(V)=S(ErQV)/(Z,X {e}),
(i) For m=k, PV ®R™=RP(V®OR")|RP(V DR"").

Then P(VER™) is a pointed finite G-complex ([12]). We see that, if
m>Rk, then for H<G

P(V@R")" = P(VEBR"),
dim P(VR™? = dimp VZ+m—1
and

conn(P(V@R")") = dimp VA+m—k—1.

In particular, if m>>k, then P,(V @R™) is G-path-connected. Atiyah [3] identi-
fies the Thom space of a multiple of 7, as a stunted projective space. As
G-spaces this identification takes the form

T(m@(VDR"™) = P(VDOR").

Let a,(R) (k>0) be the integer defined by [4; §5]. We recall that the group
J(RP*Y) is cyclic of order a,(R) ([1],[2]). We remark that a,(R)=k for k>0.

Lemma 4.2. Let m, n and k be integers such that m =0 mod a,(R),
n=kmod a,(R) and n>m=2k=4. Let U be an arbitrary orthogonal G-repre-
sentation space. Then we have the following:

(i) If SUP(VOR"™) is G-UDV PR™ '-reducible, then there is a duality
G-map

py: SR"TUSVORE . p (R ASUP(V ®R"),

(i) If SVP(VDR") is G-UDVBR" *-coreducible, then there is a duality
G-map

1g: SUSVER"IOR K SUD, (7 GR") AP(R").
Proof. We remark that

T(UD QU DR ) = ZVP(VEDOR"),
TUD(uQRU DR *)) = ZVP(VEDR").

First we show (i). By assumption, there is a reduction G-map

a: SVVER™™ > T(UG (7, QL BR™ ).
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Set
o= UDnQUDBR"™), &=nQR"*,
Ez = 77k®§”-m .

Since &,PE, is trivial, there is a coreduction (G-)map
B: T(EDE,) — 3"

Applying Lemma 3.4 to «, 8, w, & and &, we have a duality G-map u,.
Next we show (ii). By assumption, there is a coreduction G-map

B: TUD(QVDR"H))) — SUeVer™ ™"
Since m=0 mod a,(R) and m =2k, there is a reduction (G-)map

a: SE" > T(q,QR™™) .

Set
o=nuQR"", £ =UDnIUSR"™),
Er=mQR"™™.
Applying Lemma 3.4, we have a duality G-map p,. q.e.d.

Lemma 4.3. Let m and k be integers such that m>k>0. Let V be an
orthogonal G-representation space. Assume that P (VP R") is either G-VPR™ -
reducible or G-V @ R™ *-coreducible. Then we have

dimg VE—dimp VE=k
if VE£VE for K<H<G.

Proof. Let K<<H<G such that VX¥+TV#. First we assume that P,(VEPR"™)
is G-V@R™ *-reducible. Then, by definition, P(VZ@R™) and P(VEPR™)
are reducible. It follows from Atiyah [3; Theorem 6.2] that dimgV¥#+4m=
0 mod a,(R) and dimgV¥+m=0mod a,(R). Thus we see that dim,V¥—
dimg V¥=0mod a,(R). Now we have

dimp VE—dimg V7 =a,(R) =k .

Next we assume that P, (V@ R") is G-V @ R" *-coreducible. Then
P(VZPR™) and P(VEPR™) are coreducible. By Atiyah [3; Proposition 2.8],
we have

JnQ@VEDR" ) —(VEOR"*)) =0 in J(RP*Y),
Ju®(VEOR" ) —(L*®R" ™) =0 in JIRP*").

Thus we obtain that dimg V¥—dimg V#=0 mod a,(R). Now we see that
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dimg V& —dimg V2 ay(R) 2k . q.e.d.

Proposition 4.4. Let m, n and k be integers such that m=0 mod a,(R),
n=kmod a,(R) and n>m=2k=4. Let V be an orthogonal G-representation
space. Then the following two conditions are equivalent:

(i) P(VBR")is G-V PR '-reducible,

(i) Py(VHR")is G-V BR" *-coreducible.

Proof. First we show that (i) implies (ii). By Lemma 4.2, there is a
duality G-map
iz SRTTSVERTH . P(RM APV ®R).

We put U=V @R'. For s>0, we define a homomorphism

lT‘s(ll‘l): [ESUPk(VeaR”)’ ESUEV@R"—Iz]OG
— [ESU ERM—IGBV@R”—’?, ESUPk(Rm)/\EVe}Rn-k]OG

by the following: if f: SVP,(V BR")—>ZVS'®E" ™" is a pointed G-map, then
Ty(u)([f]) is represented by the composition

1A
N s pR™ APV DR —

A M n-
P(R"ASVP,(VDR") __f) P,(R") AS¥SVeR k_"2 SUP,(R™) ASVOR k ,

SSUSR™" laveR" -+

where 7' and T, are the switching maps. Then we have the following:
Assertion 4.4.1. If s>dimgV-+m+n+1, then T (u,) is an isomorphism.
The proof is quite similar to that of Assertion 4.1.1 in [18]. So we omit it.
On the other hand, the standard identification
v SR"TGVER" N SR A SVeR"!
is a duality G-map. We define a homomorphism
Dy(v)): [SVEE", 3V P(R")]§ — [SVSF"T VR SUP(R") \ZVORTH§

by the following: if f: SVSE"" »>3SUP(R™ is a pointed G-map, then
Ty(v))([f])=[f"], where f’ is the composition

P ER"‘“@V@R" W1AY lzsu SR"" 1/\ SVeR'" ’?f ESUP (Rm)/\zvgn" k

For s>dim, V+m+n+1, we put

Dy(vy, ) = Ty(p) "ol (v)): [SVER"", SV P(R™)]S
— [SVP(VEDR"), SVSVeR"1S
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Since m=0 mod a,(R) and m=2k, there is a reduction (G-)map f,: SF" '—
Py(R™. Let f;: SVP(VDR")—>ZVI®®" ™" be a pointed G-map such that
D(vy, m)([1Afi])=[f2]- As is easily seen, f, is a coreduction G-map. Here
we consider the suspension map

oV [P(VEDR"), 3R "¢ — [SVP(V PR"), VIR TS

Let K<H<G such that (sU)? == (sU)%. Since U=V@DR', we see that V7 =VX,
Applying Lemma 4.3, we have
jdim (P(VBR") = dimp Vi+n—1,

2 conn ((SVOF" M) 41 = 2(dimg VA+n—k—1)+1=dimp VZi+n—1,

conn ((SVOE"""K) — dimp VE4+n—k—1=dimg VZ+4n—1.
By the suspension theorem [18; Theorem 3.6], we see that o3’ is surjective.
Let f,: P(V @®R")—>3"®E""* be a pointed G-map such that o37([f;])=[f,]. Then
it is easy to see that f, is also a coreduction G-map. That is, P,(VHR") is

G-V @R" *-coreducible.
Similarly, using w, in Lemma 4.2, we see that (ii) implies (i). q.e.d.

5. An equivariant version of the theorem of James

First we fix some notations. Let V,(V) denote the Stiefel manifold of
orthogonal k-frames in an orthogonal G-representation space V' with G-action

defined by
2+ (01, -, v) = (g, -+, 8V) -

Then Vi(V) is a smooth G-manifold. If dimgV# =k for some H<G, then
we see that

Vi(V)# = V(V")
and

conn (Vy(V)#) = dimp V#—k—1.

Let

g Vi(V) = S(V)

send (vy, **+, v;) to v,. We remark that g,: V(V)—S(V) is a smooth G-fiber
bundle in the sense of Bierstone [7]. We remark the following:

Lemma 5.1. Spang(S(V))=k—1 if and only if q,: V(V)—=>S(V) has a

smooth G-cross-section.

Let m>k>0. There is a well-known mapping
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Tet Pk(V®Rm) - Vk(V®Rm)
by
Tk([x]) = (en+m—k+1_2(€n+m—-k+l’ x)x) R en+m"2(en+my x)x) )

where n=dimy,V and e; denotes the i-th unit vector in VEPR". We see that
7, 18 a G-map and for H<G

it P(VOR™? — Vy(VDOR")"

is a 2(dimg V#+m—k)-equivalence (see James [16; Lemma 8.1]). We remark
that 7,: P (V@AR™)—-S(VAR") (=V,(VBR™)) is a G-homeomorphism. Let

p: S(VOR"™) — P(VHBR™)
and
7z': P(V®R") — P(VAR")

be the natural projection and the collapsing map respectively. For S(V GR™),
we choose a base point x,&S(R" *)(CS(VAR" *)CS(VAR™). There is a
pointed G-map u: P,(V@R™)—S(V B R") such that u and 7, are G-homotopic.
We put

n = uor’: P(VOR")— S(VHR").
Then p and = are pointed G-maps.

Lemma 5.2. Let m>k>0. Let f: S(VOR")—>P,(VPR") be a pointed
G-map. Then f is a reduction G-map if and only if the composition

H H
sy or"y L5 PR T SV ORY

is an ordinary homotopy equivalence (i.e. has degree 4+-1) for each (H)e&
Iso(S(V @ R™)).
The proof is easy.
A G-homeomorphism
h: S(V)xS(R™) — S(VER")

is given by A(x, y, t)=(x-cos(nt/2), y-sin(xt/2)). In [14], James defined the
intrinsic map

p: VV)xV(R"™ — V(V®R").

We see that p is a G-map and the following diagram commutes:

ViV )V (R") — ViV DR

O h 9
S(V)*S(R™) — S(VOR").
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Now we prove the following theorem, which is a generalization of Proposi-
tion 11.5 in [6] (see also Theorem 8.2 in [16]):

Theorem 5.3. Let m and k be integers such that m=0mod a,(R) and
m=2k=4. If Spang(S(V))=k—1, then P(V@DR") is G-VPR™ '-reducible.

Proof. Since m=0mod a,(R) and m=2k, there is a reduction (G-)map
p: S(R™)—=>Py(R"). It follows from Lemma 5.1 that there is a G-cross-section
of g,

A: S(V)y—=TVyV).
Then we define a G-map
v: S(VAR")—-Vy(VHR")

by the composition

-1

Axp 1%,
S(VOR") ~— S(V+S(R") —5 V(V )+P(R") —

V(VV(R™) —> V(V OR™).
Consider a map
ot [S(V®R™, PV R — [S(VOR"), Vi(V HRM]° .

Since 7¥: P(VAR"* -V (VAR™" is a 2(dimg V¥ +m—k)-equivalence for
each H<G, it follows from Lemma 2.1 that 7;» is bijective. Moreover we see
that

[S(V®R™), P(V@R")°=[S(V@&R"), P(VOR") .
Hence there is a pointed G-map
x: S(VPR") — P(VHR")

such that 7,,([A])=[v]. As is easily seen, the composition

H H

A
S(V @R s PV BR")¥ —— S(V S R")"
is an ordinary homotopy equivalence for each H<G. By Lemma 5.2, \ is
a reduction G-map. That is, P,(V @B R") is G-V @ R™ '-reducible. q.e.d.
6. A converse of Theorem 5.3

Let m and k be integers such that m=0moda,(R) and m =2k =4.
Let x: S(R")—V(R"™ be a l-section of ¢, That is, the composition

S(R’”)—K> V,,(R'")& S(R™) has degree 1. For n>k, we define
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Oc: Vi(R")*S(R"™) = V(R"™™)

by the composition

1xx §22
Vi(R")*S(R") — V(R")*V(R") — Vi(R*™),

where p is the intrinsic map (see §5). By Theorem 3.1 in [15], 6, is a
(2n—2k-+m—1)-equivalence. The following Theorem is a converse of Theo-
rem 5.3.

Theorem 6.1. Let m and k be integers such that m=0 mod a,(R) and
m=2k=4. Let V be an orthogonal G-representation space. Assume that

(i) For each H<G, dimg VE# =2k if VE £ {0},

(i) Py(V@R")is G-V BR" *-reducible.
Then Spang(S(V))=k—1.

Proof. First we show the following Assertion 6.1.1.
Assertion 6.1.1. There is a G-map
Yo: S(VAR™) — V(VBR™)

such that v, satisfies the following:
(6.1.2) ¥(S(R"))CVy(R")(CV(V DR")),
(6.1.3) the composition

srmy TS ED 4 mmy &, s

has degree 1,
(6.1.4)  the composition
S(VeR™)H 'Y—éi ViV PR")H q_f) S(VeR™)*
has degree 1 for each H<G.
Proof of Assertion 6.1.1. By assumption, we have a reduction G-map
A S(VOR™) — P(VEBR").
Let z: P(VAR")—S(V@R") be the pointed G-map as in §5. We put
A = \o(mor') : S(VOR") — P(VDOR").
Then X is also a reduction G-map such that

deg(mon)? =1 for all H<G .
We put
7 =T7ion : SWBR™) -V, (VBR").
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We consider a G-map
v = |S(R"): S(R") - V,(VR").

First we assume that V¢ {0}. Since m=0mod a,(R) and m=2k, there
is a (G-)cross-section of g,

A: S(R™) — V{(R"CV(VDR").

Since conn(V, (VP R™)°)=dim S(R"), v, and A are G-homotopic. Remark
that (S(V@R™), S(R™)) has the G-homotopy extension property. We have a
G-map
Y: S(WBR") - V(VOR")

such that v, and v, are G-homotopic and v,|S(R™)=A. As is easily seen, 7,
satisfies our required properties.

Next we assume that V¢={0}. In this case, v,=%7: S(R")—>V(R") is
a l-section of g,. Therefore we put y,=1v,.

This completes the proof of Assertion 6.1.1.

We put v,=7,| S(R"): S(R")—V(R")(CV,(V&HR")). Consider a map
Oyp: [(S(VDR"), S(R™)), Vi(V)*S(R"); isrm]®
= [(S(VDR"), S(R")), Vi(VOR"); 75]° .

Since v; is a 1-section, 05 : V(V)*+S(R")—V,(V@R") is a (2dimzV#—
2k 4-m—1)-equivalence for each (H)€& Iso(S(V @ R")—S(R")). Applying
Lemma 2.1, 6,« is surjective. 'Therefore we have a G-map

Y: S(WBR") — V(V)*S(R"™)
such that 0y+([v,])=[Y,] and 7,| S(R")=iggm. As is easily seen, the composi-
tion

H " gix1

SV S(RY) o SV SR Lo V(1SRN B S(vyres ()

has degree 1 for each H<G, where h is as in §5. Consider the following
suspension map

™H" [S(V), Vi(V)I® = [(S(V)*S(R™), S(R™)), Vi(V)#S(R"); isam]° .

Since dim S(V)? =2 conn(V(V#))+1 for each (H)&Iso(S(V)), it follows from
Theorem 2.4 that %" is surjective. 'Then we have a G-map

Y52 S(V) = Vi(V)

such that 78"([vs])=[7,oh]. As is easily seen, the composition
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H

Sy L vy 2 sy

has degree 1 for each (H)€Iso(S(V)). Let K<H<G such that V¥V,
Using Lemma 4.3, we have dimp V¥ —dimgV#=k=2. Thus it follows from
Rubinsztein [22; Theorem 8.4] that g,0v; is G-homotopic to the identity. Since
ge: Vi(V)—S(V) is a smooth G-fiber bundle in the sense of Bierstone [7], g,
has the smooth G-homotopy lifting property. Using Wasserman [27; Corol-
lary 1.12], we see that ¢, has a smooth G-cross-section. Now, by Lemma 5.1,
we have Spang(S(V))=k—1. q.e.d.

7. Proof of Theorem 1.1

Let V and W be unitary G-representation spaces such that dimgV#=
dime W¥ for all H<G. By Lee-Wasserman [21; Proposition 3.17], there are
direct sum decompositions

{V = 1,eV,d---dV,,

W= Wwew,d- oW,

such that V; and W, (1<i=r) are irreducible unitary G-representation spaces
and V; is conjugate to W; by a field automorphism of C for 1=<¢<s. That
is, there are integers n(f)(1=i=<r) such that (n(7), |G |)=1 and W,=y"(V))
for 1<i<r, where 4’ denotes the equivariant s-th Adams operation and |G|
denotes the order of G. Since Y**'¢'=+)°, we may assume that n(i) (1=i{=<7)
are odd integers. Let &; be the non-trivial unitary 1-dimensional Z,-represen-

tation space. Then Ec®V and £,Q W are unitary (Z, X G)-representation spaces
c c
and

50? V= (Ec?Vl)@(gc;@l/z)@"'@(gcg?lfr) ’
EC§ W= (ECQE) WI)EB(EC(? W, ---@(Ec? |8
are decompositions of E,@V and E,QW into direct sums of irreducible unitary
c c

(Z,% G)-representation spaces respectively. Since n(7) (1={=r) are odd, there
are integers 7i(?) (1 =7¢=r) such that (#(7), 2| G |)=1 and #(¢)-7(z)=1mod |2G]|.
Then we have

£C®Vi = 1P"—'(")(60® W,) fOr léiér,
c [of

80®Wi= ‘\l"n(')(EC®V’) fOr 1§i§r .
[of c

The following lemma is due to Tornehave [25] (see also [11]).

Lemma 7.1. There are (Z,x G)-maps
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{%: S(&¢ %Vi) - S(et,'@ Wy,
¥yt S(ec§ w)— S(sc? V)
for 1<i=<r such that
deg ¥ = n(@)%® and degPf = A(d)%®

for each K< Z,x G, where d,-(K)=dimc(Sc? VK (=dimc(ec§) W)X).
We put

P = Pk e k@, S(E(,-? V)— S(E(;@W) ,

Y= s s S(E@ W) S(EDV) .
Then, for each K< Z,x G, we have

(7.2)

deg(Yrop)¥=1mod 2|G| and deg(por) =1mod 2|G|.

Let U be a unitary G-representation space and m=2. We define a homo-
morphism

W [SUSR™T SUSR™ G _, I z

(D) elso(sUSR™ 1)

by the following: if f: SY®R"'>3U®R" ™" is a pointed G-map, then W([f])=
I deg f# (for details see Rubinsztein [22]). By the same argument

(e1solzTOR" )

as in tom Dieck [10; Proposition 1.2.3], we have the following:

Lemma 7.3. Let x& 1I Z be an arbitrary element. Then
|G |xeIm V. (metso(zTOR" )

Proposition 7.4. Let m>k=2. Let V and W be unitary G-representation
spaces such that dim¢ V#=dim¢c W¥ for all H<G. Then the following two con-
ditions are equivalent:

(1) There is a reduction G-map

f:3VeR"  P(VOR"),
(ii) There is a reduction G-map
g: SVerR™ . P(WDR").
Proof. It suffices to show that (i) implies (ii). Let
{¢ : S(‘%? V)—> S(Ec(?VV) ’
¥ S(W) > S(V)
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be a (Z,X G)-map and a G(C Z,X G)-map as in (7.2) respectively. We put a
(Z,X G)-map

?1= P¥lg, et S(ERV)BEDR) ~ S(ERWID(ERDE))
and a pointed G-map
Yy = Pxlgpm: S(WOR"™) — S(VOR™).
Remark that ¢, induces a pointed G-map
P.: P(VOR") > P(WODR")

such that the following diagram commutes:

S(E@VIDEDR) > S(Ec@W)D(EDR™)

2 @ 2
P(VOR") s P(W®R"),

where p, and p, are the natural projections as in §5. We define a pointed
G-map
&1 SWeR" P(WOR")

by the composition

m—1 dz m Yry m dl
srer" 2, S(W@R") —> S(VOR") ——

2V®R’“‘1 ‘_f__) Pk(VGaRm) _&) Pk(W@RM) ,

where d, and d, are pointed G-homeomorphisms. Let =, : P(VHR")—
S(VOR™) and =n,: P(WDR™)—S(WDR") be the natural collapsing maps as
in §5. Let

m-1 m-—1
g2: EWG)R — EWGBR

be a G-map defined by the composition

-1

m-1 &1 w2 m @2 m-1
SWerR"™ — P(W@R")— S(WPHR") — SVer"""
Then it is easy to see that
deg gf =deg(d,om,o f)? mod2|G|  for each H<G.

Since f is a reduction G-map, we remark that deg(d;omof)?=4-1 for each
H<G. Leta(H) be an integer such that

deg g7 = deg(d om0 f)+2a(H)|G |
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for each (H)&Iso(S7®R"""), By Lemma 7.3, there is a pointed G-map
gy TVOR"TT > sWeR™!
such that deg gf=a(H)|G | for each (H)&Iso(Z¥®2""). We define a pointed
G-map
g: S"eR"" > P(W@OR")

by the composition

1 m-—1 d
svornt 8, swermt % qyapm 22, pwarm.

Then we see that the composition
m—1 giI m ”g ”m EI)H m—1
(z7or" "y £ PWOR )Y~ SWORY “—> (3o s
has degree 2a(H)|G | for each (H)E€Iso(Z¥®®"™"). Since m=2, pointed G-
homotopy classes of pointed G-maps from SWeR" o P,(W @R"™) form a group.
Then we put

£=g—8: """ > P(WOR").
It is easy to see that the composition

g a5y

H
(SR PR S(WOR =25 (37er" s

has deg(dyomof)? (=4 1) for each (H)eIso(SVeE"™"). It follows from
Lemma 5.2 that g is a reduction G-map. q.e.d.

Proof of Theorem 1.1. We may assume that 2=2. Let m be an integer
such that m=0mod a,(R) and m=2k. If Spang,(S(V))=k—1, it follows
from Theorem 5.3 that P, (V@O R") is G-V @ R" '-reducible. According
to Proposition 7.4, P(W@R™) is G-W@R" '-reducible. By Theorem 6.1,
Spang(S(W))=k—1.

The converse is quite similar. q.e.d.

8. Proof of Theorem 1.2

In this section, we prove Theorem 1.2.

Lemma 8.1. Let U be an orthogonal G-representation space such that
dimp URZk+1 if UZ{0} for each H<G. Assume that there are an integer
m and a G-fiber homotopy equivalence

[ S(@U)DR") - S(USR™) .
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Then we have a G-fiber homotopy equivalence
f: Su®U) = S(U).
Proof. First we show that the following Assertion 8.1.1.
Assertion 8.1.1. There are an integer n (=m) and a G-map
fi: S(@U)DR") -~ S(UDR')
such that a restriction
LIS(RU)DORY),: S(mQU)DR"), — S(USR")

for x& RP*™' is a G-homotopy equivalence and a restriction f,| S(R") is the natural
projection S(R")—S(R")C S(UBR").

Proof of Assertion 8.1.1. We put fi=p,of: S(QU)PR")—>S(UBR"),
where p,: S(UPR")—S(U @ R") is the natural projection.

Suppose first that U¢5{0}. By assumption, we see that conn (S(U @ R")°)
=dim S(R™). Then f,|S(R™): S(R™)—S(U@R") and the natural projection
p:: S(BR")—S(R")CS(UDR"™) are G-homotopic. Since (S((,QU)PR™),
S(R™)) has the G-homotopy extension property, we have a G-map

fi: S(n@U)OR") —~ S(UDR™)

such that f; and f, are G-homotopic and f,|S(R")=p,. We put n=m. It is
easy tc see that f, has our required properties.

Suppose second that U¢={0}. Remark that f§: S(R™)—S(R")is a map
such that (f§),: S(R™)—S(R™) is a homotopy equivalence for x& RP*~. It is
well-known that there is a map h: S(BR™)—>S(R™) such that f$%h: S(R™*"")—
S(R™*"") is homotopic to the natural projection p,: S(R"™")—S(R"*"’), where
% denotes the fiberwise join. We put

fy=fFh: S(m@U)SR"™) — S(USR"™).

Then f;| S(R"*)=f$ is (G-)homotopic to p;. By the same argument as in
the case when U= {0}, we have a G-map

S S((’?k@Q)@g”"m’) — S(U@Rmﬂn’)

such that f; is G-homotopic to f; and f1|S(1:?m+m’)=p3. We put n=m-+m’.
Then f, has our required properties.
This completes the proof of Assertion 8.1.1.

We see that f, induces a G-map

fi: S@U)*S(R") — S(U)*S(R")
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such that the following diagram commutes:

S(’7k® L——Z)’ES(Q") f1
P
S(7:QU)*S(R") [

where ¢ is the natural projection. Then f,|S(R")=isgn: S(R")—>S(U)*S(R").
For each (H)eIso(S(7,®U)) (=Iso(S(U))), we see that dim S(»QU)¥ =
2 conn(S(U)#)+-1. It follows from Theorem 2.4 that we obtain a G-map

fs: S(u@U) = S(U)

such that f;#14gm is G-homotopic to f,. By Equivariant Dold Theorem ([19]),
it is easy to see that

S(U)xS(R"),

F=p.xfs: S(@U) — RP**x S(U)

gives a G-fiber homotopy equivalence, where p,: S(%,® U)—RP*"! is the natural
projection. q.e.d.

Proof of Theorem 1.2. We may assume that k=2. Let m and # be in-
tegers such that m=0 mod a,(R), n=*k mod a,(R) and n>m=2k.

First we show (i). By Theorem 5.3, P (V@ R™) is G-V@R" '-reducible.
Applying Proposition 4.4, P(VEBR") is G-V @R" *-coreducible. It follows
from Proposition 3.3 that we have a G-fiber homotopy equivalence

fi: S(QVOR)BR) ~ SUDR O R) .

Since n=k mod a,(R) and n>2k, we have a G-fiber homotopy equivalence
fit S(n@V) BB = S(LDE).

The first result follows. The second result follows from Lemma 8.1
Next we show (ii). Since n=k mod a,(R) and n>2k, we have a G-fiber
hemotopy equivalence

fs: Su@UDOB*™) = S(LOR") .
By Proposition 3.3, P(V®R") is G-V @R" *-coreducible. Applying Proposi-
tion 4.4, P(VE@R") is G-V@R" '-reducible. It follows from Theorem 6.1
that Spang(S(V))=k—1. q.e.d.
9. An example

Let G be a metacyclic group
{a, bla" = b* = e, bab™ = a'} ,
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where m is a positive odd integer, ¢ is an odd prime integer, (r—1, m)=1 and
7 is a primitive g-th root of 1 modm. Let Z,=<a><<G and let t"(h€Z) be
the unitary 1-dimensional Z,-representation space with @ acting on C" as multi-
plication with exp (2zh\/—1/m). Let T, denote the induced representation
space Ind § (#*) of the Z,-representation space t*. Then T),is a unitary g¢-
dimensional G-representation space (for details see [9; §47] or [17]). We put

V,= Thl@ThZEB“'EBTh,, ’
where (#;, m)=1 for 1=<i/<n.

ExampLE 9.1. If n=9, then Span,(S(V,))=p(2r, R)—1.
Here p(s, R) denotes the largest integer & such that s=0 mod a,(R) ([1]).

Proof of Example 9.1. Since dimgV,=2ng and ¢ is odd, Span(S(V,))=
p(2nq, R)—1=p(2n, R)—1. Thus we have

(9.1.1) Span,(S(V,))=Span(S(V,)) = p(2n, R)—1.
By Becker [6; Theorems 1.1 and 2.2], there is a Z,-fiber homotopy equivalence

fi: S(’]P(Zn,R)%”:t) — S(nt) .

By the same argument as in [5; II. Proposition 2.2], we have a G-fiber homo-
topy equivalence

fZ: S(’?P(Zﬂ,R)gnTl) - S(Zl_l‘_l) .

Since =9, we see that dimgpnT¥=2p(2n, R) if nT{=+ {0} for each H<G.
Applying Theorem 1.2, we have Spang(S(nT)))=p(2n, R)—1. It is easy to
see that dimg V¥=dimcnT¥ for all H<G. Thus it follows from Theorem 1.1
that we have

(9.1.2) Spang(S(V,))=p(2n, R)—1.
Combining (9.1.1) and (9.1.2), we have Spang(S(V,))=p(2n, R)—1. q.e.d.

Added in proof. Professor P. May kindly informed me that Dr. U.
Namboodiri has obtained similar results [30].
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