

Title	Impact of Borna Disease Virus Infection on the Transcriptome of Differentiated Neuronal Cells and Its Modulation by Antiviral Treatment			
Author(s)	Teng, Da			
Citation	大阪大学, 2024, 博士論文			
Version Type				
URL	https://hdl.handle.net/11094/96273			
rights				
Note	やむを得ない事由があると学位審査研究科が承認した ため、全文に代えてその内容の要約を公開していま す。全文のご利用をご希望の場合は、 大阪大学の博士論文につい てをご参照ください。</a 			

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

[Format-P02]

論文内容の要旨 Synopsis of Thesis

氏 名 Name	TENG DA					
論文題名 Title	Impact of Borna Disease Virus Infection on the Transcriptome of Differentiated Neuronal Cells and Its Modulation by Antiviral Treatment(ボルナ病ウイルス感染が分化した神経細胞のトランスク プトームに与える影響およびそれに対する抗ウイルス治療の調節)					
論文内容の要旨						
Borna disease virus (BoDV-1) is a highly neurotropic RNA virus that causes neurobehavioral disturbances such						
as abnormal social activities and memory impairment. Although impairments in the neural circuits caused by						
BoDV-1 infection induce these disturbances, the molecular basis remains unclear. Furthermore, it is unknown						
whether anti-BoDV-1 treatments can attenuate BoDV-1-mediated transcriptomic changes in neuronal cells. In						
this study, we investigated the effects of BoDV-1 infection on neuronal differentiation and the transcriptome						
of differentiated neuronal cells using persistently BoDV-1-infected cells. Although BoDV-1 infection did not						
have a detectable effect on intracellular neuronal differentiation processes, differentiated neuronal cells						
exhibited transcriptomic changes in differentiation-related genes. Some of these transcriptomic changes, such						
as the decrease in the expression of apoptosis-related genes, were recovered by anti-BoDV-1 treatment, while						
alterations in the expression of other genes remained after treatment. We further demonstrated that a decrease						
in cell viability induced by differentiation processes in BoDV-1-infected cells can be relieved with						
anti-BoDV-1 treatment. This study provides fundamental information regarding transcriptomic changes after						
BoDV-1 infection and the treatment in neuronal cells.						

[Fornat-H07]

		(申請	诸氏名) -	Teny Dr.	
	<u> </u>		(職)	氏 名	
論文審查担当者	圭	查	大阪大学教授	上国轮次	1. X.
	剾	査	大阪大学教授	儿本 圈门	$\delta_{\rm p} = 0.$
	<u>,</u> EI	查	大阪大学教授	拉田艺经	1. A.

論文審査の結果の要旨及び担当者

論文審査の結果の要旨

本論文ではボルナ病ウイルス(BoDV-1)持続感染細胞を用いて、BoDV-1感染がヒト神経細胞の分化及び分化した神経 細胞のトランスクリプトームに及ぼす影響を調査した。

BoDV-1感染は神経分化プロセスに検出可能な影響を与えませんでしたが、分化した神経細胞の分化関連遺伝子のトランスクリプトーム変化を示した。これらの変化のうち、いくつかのアポトーシス関連遺伝子の発現が抗BoDV-1治療 により回復したが、その他の遺伝子発現は回復しなかった。さらに、BoDV-1感染細胞における細胞生存率の低下は、抗BoDV-1治療によって緩和されることを示した。この研究は、BoDV-1感染後のヒト神経細胞のトランスクリプトーム 変化と治療に関する情報を提供している。

以上の如く、本報告は、今後のBoDV-1人間での病態研究に新しい方向を示しており、学位授与に価するものである。