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In the previous papers [3], [4], we have defined a full sub-category A in
the category My of modules over a ring R, whose objects consist of injective
modules or directsums of completely indecomposable modules.

Making use of those ideas, in this short note, we shall give a proof of Z.
Papp’s theorem in [9] as an application of [3], Theorem 1 and generalize
Theorems 4 and 7 in [4] to cases of semi-T-nilpotent system and quasi-
projective module, respectively. Especially, we shall show that if R is a right
perfect ring, then every quasi-projective module is a directsum of completely
indecomposable modules and the Krull-Remak-Schmidt’s theorem is valid for
those direct decompositions.

In this note, we always assume that the ring R has the identity and every
module is an unitary R-module. We shall use the same notations and
definitions in [3], [4] and [5] for categories, those in [1] and [8] for semi-perfect
modules and those in [5] for quasi-projective modules.

1. Papp’s theorem
We shall give an application of [3], Theorem 1.

Theorem 1 ([9], Z. Papp). Let R be a ring. If every (right) R-injective
module is a directsum of indecomposable modules, then R is (right) noetherian.

Proof. It is known by [2], Proposition 4.1 that R is noetherian if and
only if any directsum of injective modules is also injective. Let 2 be the full
sub-category of all injective R-modules in the category of right R-modules and
J the Jacobson radical of A. Then A/J is a completely reducible C;-abelian
category by the assumption and [3], Theorem 1. Let {Q,}7 be a family of
injective modules, and E an injective hull of >I@Q,. From the assumption
E=3 ®E;, where Ejs are (completely) indecomposable. Hence, 2IPE, =
2P0, in A/ by [3], Theorem 1. Therefore, E~>IPQ;, which means that
PO, is injective. Hence, R is noetherian,
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2. Exchange property

Let M be a directsum of completely indecomposable modules M,; M=
>PpM,. We have defined the (N) exchange property in M for a direct
summand N of M in [4]. Namely, we have M=N@> P Ts for any decom-

I

position M=> 1P T, (with Card I<R,), where T4 T, for all a= 1.
I

Let M=N @ N’. If N has the exchange property in M, then N and N’
are directsums of indecomposable modules.
Now we assume M=>) @ M,. A family {Mg}, (J<I)is called a semi-
I

T-nilpotent system with respect to the radical of [Mp, M§]r if the following
condition is satisfied. [ is a finite or empty set or if J is otherwise, for any
subfamily {Mp,} with 8, Jand B;% 8, if i41 and any set of non isomorphisms
fi:Mg,—Myg,, , there exists a natural number z such that f,f,_,f:-- fi(m)=0 for
me My, where n may depend on m, (cf. [5]). Then we have a generalization of
[4], Theorem 4 as follows;

Theorem 2. Let M=S"®M, with M, completely indecomposable and
I

M=N,PBN,. If the dense submodule of N, is a directsum of indecomposable
modules which are a semi-T-nilpotent system with respect to the radical, then N; has
the exchange property in M for i=1, 2.

Proof. We first note that N,=>1PM} by the assumption and [7], Coro-
llary to Theorem 1. Furthermore, since the ideal ¥ of Sy =[N,, N,]r defined
in [3], 83 is equal to the Jacobson radical of Sy, by [7], Theorem 1. Hence, we
have from the first part of the proof of [4], Theorem 4 that IV, has the exchange
property. Let M 2%‘,@ T with any Card K. We shall use the same notation

in [4]. If we consider the category U/ in [4], then M=3PTz=N,PBN, in
A/ by [4], Theorem 1. Since 2A/F is a completely reducible C,-abelian category,
M=N, DD T}), where Te=T4D T}’ and we may assume that T4 and T’ are
in 2 and submodules in T's by [4], Proposition 2. Since ;EB Ty ~N,, N~

21T’ by the assumption and [7], Theorem 1. Let p be a homomorphism

of M to SXP T4 such that p is a projection of M to DPT4 with Ker p=
K K

SYP T4 Then p splits.  Put L=Ker p, then Tp=T3' P TF, where TF=TsN

K

L. Since L=3PT¥ and L=Ker p, NP TF=>®T};. Hence, M=N,P

K K
(Z@T§)=;@T§’@;@Tg. Therefore, Ker pN N,=0 and p(N,)=p(M)=
;ED T}4’, which implies p|N, is isomorphic. Hence, M=N, @ Ker p=N,D

1) See [4], §1 for the definition.
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2IDTE.

K

Corollary. Let M be as above and N a direct summand of M. Then the
Jollowing statements are equivalent.

1) Ewvery direct summand of N has the R,-exchange property in M.

2) Every direct summand of N has the exchange property in M.

3) N =;@N gsNg~Mep, and {Ng} is a semi-T-nilpotent system with

respect to the radical of [Ny, Ni]g.

Proof. 1)—3). Let N be a direct summand of M and N :;EBN;,
Ni~M_gwith Card J<Card I. We first note that every direct summand P of N
has the R,-exchange property in N. Let M=N®Q and N=P1€BP2=2€B T,.

Then M=P P(P,PQ)=>1PT,PQ. Since P, has the R,-exchange property
in M, M=P, P> PT;PQ’, where T, T,;and Q' Q. Hence, N=P, D> PT;
DOP,NQ and P,NQ'cP,NO=(0). Now put P,= EEBN., for any J,=I with

Card J,<®,. Then {N,}; is a semi-T-nilpotent system by [7], Theorem 1.

Hence, {N,}, is a semi-T-nilpotent system. 3)—2). Since the ideal J of
[V, N]g defined in [3] is the Jacobson radical by [7], Theorem 1, every direct
summand of NV is a directsum of indecomoposable modules and has the exchange
property in M by Theorem 2. 2)—1). Itis clear.

Lemma 1. Let M be as above. We assume that M=N,PN,=N{PNj.
If N, has the exchange property in M and there exists an automorphism f of M such
that f(N;)=N| for i=1, 2 then N{ has the exchange property in M.

Proof. It is clear.

Lemma 2. Let M, N, and N, be as above. We assume N;=>PM,,,

wEJ'-
Card J; are infinite and M,,'s are indecomposable modules for i=1, 2. Let {f;}7,
{8:}5, be sets of non-isomorphic homomorphisms of M, to M,,, and M,,, to M, _,
respectively. Furthermore, we assume that N, has the R,-exchange property.
Then for any m in M, there exists n such that g,f.gu_,fa_,+ & .fi(m)=0.

Proof. We shall make use of the same argument in [3], Lemma 9. Put
log={m;+fi(m;) | m;eM,,} and M3, = {m,+g(m,)|mcM,,}. Then M=
10, DM, DM 10, DM 0, D+ DM DM yy=M 1, DM, DM 5, DM 30,D - D

M, PHM,, wherre M= ZEBMW Since T=M{, DM{,,D---DM, ~N,, T

-2
has the R,-exchange property in M by Lemma 1. Hence, M=T® M, +M5%
DM, DML, D -- DM, where Mif, ;=0 or M., (M4¥,=0 or Mj,;). In this
case we can use the same argument in [3], Lemma 9.
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From Lemma 2 we have

Proposition 1. Let M=>PM, with M, completely indecomposable. We
assume that M=N,DN, and N,;=> DD My,, where MyE~Ms'y and My~

Y BEJy
Mg if vy, where MY ’s are indecomposable. We further assume Card ] >

Card J5® for all Card J* which is smaller than or equal to R,. Then N, has the
(R,—) exchange property if and only if {M} is a semi-T-nilpotent system with
respect to the radical.

Now we take the category 2 of all R-modules which is a directsum of some
completely indecomposable modules. Let M be an object in A. We call M
having the exchange property in 2 if M has the exchange property in P for any
object P in A which contains M as a direct summand.

Corollary 2. Let U be the above. Then we have the following equivalent
statements for M=> DM, in A.
I

1) M has the exchange property in U.
2) {M.,}; is a semi-T-nilpotent system with respect to the radical,
where M,’s are completely indecomposable.

Proof. 2)—1). Itis clear from Corollary to Theorem 2. 1)—2). Let
M=3"SBM,s, Mys~M,y and MMy y if aa’. Put P=X1DP,
@ I,E8 T

P,=M. Since M has the exchange property in P by the assumption, {M,} is
a semi-T-nilpotent system by Proposition 1.

Finally, we shall consider a special case. Let Z be the ring of integers (or
Z may be a Dedekind domain) and {P;}; a family of primes. Let M be a
directsum of any copies of Z/P", where 7 runs over a sub-set of I and #;’s are
integers. Then M=} ®Mp, where Mp,=3>IPZ[P;". In this case, every

i€l
submodule N of M is a directsum of Np, where Npo=N N Mp. Hence, a direct
summand N of M has the exchange property in M if and only if Np has the
exchange property in Mp for each P.

Corollary 3. Let Z, Mp and M be as above. We assume M=N,PN, and
N;=2>1DMy); My)~Z|Pyi. Then N, has the exchange property in M if and
only if either {Mp)} or {M;2} ; is a semi-T-nilpotent system with respect to the
radical for every P ;.

Proof. It is clear from Lemma 2 and [3], Lemma 12.

Remark. If P,+P, then _i@Z/P’{ has the exchange property in
P=ﬁ€BZ/P’f€Bi@Z/P§‘ from the above remark. However, {Z/P}}, are not

1 1

semi-T-nilpotent systems for /=1, 2. Hence, M does not have the exchange
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property in 2.
3. Quasi-projective modules

First, we consider projective modules of a special type.

Lemma 3. Let P and Q be projective R-modules such that J(P) and J(Q)
are small in P and Q, respectively. Then [P[J(P), O/J(O)lr/yr>=0 if and only
if [Q[J(O), P[J(P)lr/ycr>=0, where J(*) is the Jacobson radical of (*).

Proof. Put T=P@Q. Then J(T)is a unique maximal one among small
submodules in 7. We assume [P, OQ],=[P, J (Q)]z and f an element in [Q,
Plg. We put fr=(7) in Sr=[T, T]z. Since [P, Qlzf=[P, J(Q)]=f<[O,
J(O)r<J(So) by [4], Proposition 1. Hence, S;fris in J(S7). Therefore,
(D) SJ(P)DJ(Q). Hence, AQ)SJ(P) and [Q, Ple=[Q, J(P)]e. It is clear
that [P, J(Q)]g=[P, Olr if and only if [P[J(P), Q/J(Q)]r=0, since P is

projective.

Proposition 2. Let P and Q be as above. We further assume that P is
completely indecomposable, then the following are equivalent.

1) P is isomorphic to a direct summand of Q.

2) P[J(P) is isomorphic to a sub-module of Q[J(Q).

Proof. It is clear, since J(P) is a unique maximal sub-module in P by
[4], Theorem 5.

Changing slightly the proofs in [10], Lemma 1 and [5], Proposition 1, we
have

Lemma 4. Let M be a quasi-projective, then J(Sp)={f|<Sm, (M) is
small in M}. Furthermore, (M) is small if and only if [M, J(M)]g=](Sm),
where, Sy=[M, M]g.

We note that a quasi-projective module with projective cover is nothing
but a factor module of projective module P with respect to a small R-sub-module
K in P which is a Sp-module by [6], Propositions 2.1 and 2.2. Furthermore,
if we take the ring of column summable matrices, we know Proposition 2.4 in
[6] is valid for a directsum of infinite components, (cf. [3], § 3).

Proposition 3. Let M be a quasi-projective. We assume that M has pro-
jective cover P. Then Sy~Sp|A and P[J(P)y~M|]J(M), where A is an ideal
contained in J(Sp). Furthermore, J(P) is small in P if and only if J(M) is small
in M.

Proof. We have the exact sequence 0—[P, K]g—>Sp—[P, M]g—0 from
an exact sequence 0—>K—P5>M-—>0. A=[P, K]y is a two-sided ideal by [6],
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Proposition 2.2. Let f be in [P, M]g. Since P is projective, we have g in Sp
such that vg=f. Hence, f(K)=vg(K)Cv(K)=0. Therefore, [P, M]g=Spu.
Since K C J(P), J(M)~J(P)/K and P|J(P)~M/[J(M). Furthermore, AC J(Sp)
by Lemma 4. The last part is clear.

Lemma 5. Let {M,}; be a family of quasi-projective modules and I an
infinite set. We assume M= DM, is quasi-projective. Then J(M) is small in
I

M if and only if J(M,) is small in M, for all eI and {M} is a semi-T-nilpotent
system with respect to the radical of [M,, Mg]g.

Proof. We can make use of the same argument in [5], Theorem 3 from
Lemma 4.

Theorem 3. Let M be a quasi-projective module with projective cover P.
Then P is semi-perfect if and only if 1) M=>\PM,; M,'s are completely
I

indecomposable R-modules, 2) {M,}, is a semi-T-nilpotent system with respect to
the Jacobson radical of [M,, Mglg and 3) M, has a projective cover for all ac1.
In this case any direct decomposition of M[J(M) is lifted to M.

Proof. We assume P is semi-perfect. Then 1) is clear from [6], Proposition
2.4 and the above remark. 2) is clear from Proposition 3 and Lemma 4. 3) is
clear from [6], Proposition 2.4. Conversely, we assume 1), 2) and 3). Let
P, be a projective cover of M, via v, and OQ=>'PP,. We have an exact

sequence 0—K—>P->M—>0 with K small. Hence, we have f&[Q, P]; and g&
[P, Qlg such that fg=1Ip and v'=vg, where v=3Pv,. Since » and »’ induce
natural isomorphisms P/ J(P)~M|]J(M)~Q/](Q), g is isomorphic. Furthermore,
P, is semi-perfect from Proposition 3 and [4], Theorem 5. We know from 2)
and Lemma 4 that J(#/) is smallin M. Hence, J(P) is small in P by Proposition
3. Therefore, P is semi-perfect by [8], Theorem 5.2. The last part is clear
from Proposition 3, [6], Proposition 2.4 and [8], Theorem 4.3.

Corollary. If R is a right perfect (resp, semi-perfect) ring, then every (resp.
finitely generated) quasi-projective module is a directsum of completely indecomposable
modules and the Krull-Remak-Schmidt's theorem is valid for those decompositions.

OsakA City UNIVERSITY

References

[1] H. Bass: Finitistic dimension and a homological generalization of semi-primary
rings, Trans. Amer. Math. Soc. 95 (1960), 466—488.
[2] S.U.Chase: Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457—



[31]
[4]
[5]
[6]
[7]
[81]
[9]

(10]

CATEGORIES OF INDECOMPOSABLE MODULES 55

473.

M. Harada and Y. Sai: On categories of indecomposable modules 1, Osaka J. Math.
7 (1970), 323-344.

M. Harada: On categories of indecomposable modules 11, Osaka J. Math. 8 (1971),
309-321.

M. Harada and H. Kanbara: On categories of projective modules, Osaka J. Math.
8 (1971), 471-483.

J.P. Jans and L.E.Wu: On quasi projectives, lllinois J. Math. 11 (1967), 439-448.
H. Kanbara: On the Krull-Remak-Schmidt-Azumaya’s theorem, to appear.

E. Mares: Semi-perfect modules, Math. Z. 83 (1963), 347-360.

Z. Papp: On algebraically closed modules, Publ. Math. Debrecen 6 (1959), 311—-
323.

R. Ware and J. Zelmanowitz: The Jacobson radical of the endomorphism ring
of a projective module, Proc. Amer. Math. Soc. 26 (1970), 15-20.








