

Title	Supplementary remarks on categories of indecomposable modules
Author(s)	Harada, Manabu
Citation	Osaka Journal of Mathematics. 1972, 9(1), p. 49-55
Version Type	VoR
URL	https://doi.org/10.18910/9628
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

SUPPLEMENTARY REMARKS ON CATEGORIES OF INDECOMPOSABLE MODULES

Manabu HARADA

(Received May 11, 1971)

In the previous papers [3], [4], we have defined a full sub-category \mathfrak{A} in the category \mathfrak{M}_R of modules over a ring R, whose objects consist of injective modules or directsums of completely indecomposable modules.

Making use of those ideas, in this short note, we shall give a proof of \mathbb{Z} . Papp's theorem in [9] as an application of [3], Theorem 1 and generalize Theorems 4 and 7 in [4] to cases of semi-T-nilpotent system and quasi-projective module, respectively. Especially, we shall show that if R is a right perfect ring, then every quasi-projective module is a direct sum of completely indecomposable modules and the Krull-Remak-Schmidt's theorem is valid for those direct decompositions.

In this note, we always assume that the ring R has the identity and every module is an unitary R-module. We shall use the same notations and definitions in [3], [4] and [5] for categories, those in [1] and [8] for semi-perfect modules and those in [5] for quasi-projective modules.

1. Papp's theorem

We shall give an application of [3], Theorem 1.

Theorem 1 ([9], Z. Papp). Let R be a ring. If every (right) R-injective module is a directsum of indecomposable modules, then R is (right) noetherian.

Proof. It is known by [2], Proposition 4.1 that R is noetherian if and only if any directsum of injective modules is also injective. Let $\mathfrak A$ be the full sub-category of all injective R-modules in the category of right R-modules and $\mathfrak A$ the Jacobson radical of $\mathfrak A$. Then $\mathfrak A/\mathfrak A$ is a completely reducible C_3 -abelian category by the assumption and [3], Theorem 1. Let $\{Q_i\}_1^n$ be a family of injective modules, and E an injective hull of $\sum \oplus Q_i$. From the assumption $E = \sum \oplus E_i$, where E_i 's are (completely) indecomposable. Hence, $\sum \oplus E_j = \sum \oplus Q_i$ in $\mathfrak A/\mathfrak A$ by [3], Theorem 1. Therefore, $E \approx \sum \oplus Q_i$, which means that $\sum \oplus Q_i$ is injective. Hence, R is noetherian.

2. Exchange property

Let M be a directsum of completely indecomposable modules M_{α} ; $M = \sum \oplus M_{\alpha}$. We have defined the (\aleph_0-) exchange property in M for a direct summand N of M in [4]. Namely, we have $M = N \oplus \sum_{I} \oplus T'_{\alpha}$ for any decomposition $M = \sum_{I} \oplus T_{\alpha}$ (with Card $I \leqslant \aleph_0$), where $T'_{\alpha} \subseteq T_{\alpha}$ for all $\alpha \in I$.

Let $M=N\oplus N'$. If N has the exchange property in M, then N and N' are directsums of indecomposable modules.

Now we assume $M = \sum_{I} \oplus M_{\omega}$. A family $\{M_{\beta}\}_{J}$ $(J \subseteq I)$ is called a *semi-T-nilpotent system* with respect to the radical of $[M_{\beta}, M'_{\beta}]_{R}$ if the following condition is satisfied. J is a finite or empty set or if J is otherwise, for any subfamily $\{M_{\beta_{i}}\}$ with $\beta_{i} \in J$ and $\beta_{i} \neq \beta_{j}$ if $i \neq i$ and any set of non isomorphisms $f_{i}: M_{\beta_{i}} \to M_{\beta_{i+1}}$, there exists a natural number n such that $f_{n}f_{n-1}f \cdots f_{1}(m) = 0$ for $m \in M_{\beta_{1}}$, where n may depend on m, (cf. [5]). Then we have a generalization of [4], Theorem 4 as follows;

Theorem 2. Let $M = \sum_{I} \oplus \dot{M}_{\sigma}$ with M_{σ} completely indecomposable and $M = N_{1} \oplus N_{2}$. If the dense submodule of $N_{1}^{(1)}$ is a directsum of indecomposable modules which are a semi-T-nilpotent system with respect to the radical, then N_{i} has the exchange property in M for i=1, 2.

Proof. We first note that $N_1 = \sum \bigoplus M'_{\beta}$ by the assumption and [7], Corollary to Theorem 1. Furthermore, since the ideal \Im of $S_{N_1} = [N_1, N_1]_R$ defined in [3], $\S 3$ is equal to the Jacobson radical of S_{N_1} by [7], Theorem 1. Hence, we have from the first part of the proof of [4], Theorem 4 that N_2 has the exchange property. Let $M = \sum_K \bigoplus T_{\beta}$ with any Card K. We shall use the same notation in [4]. If we consider the category $\mathfrak{A}/\mathfrak{F}$ in [4], then $\overline{M} = \sum \bigoplus \overline{T}_{\beta} = \overline{N}_1 \oplus \overline{N}_2$ in $\mathfrak{A}/\mathfrak{F}$ by [4], Theorem 1. Since $\mathfrak{A}/\mathfrak{F}$ is a completely reducible C_3 -abelian category, $\overline{M} = \overline{N}_1 \oplus (\sum \bigoplus \overline{T}'_{\beta})$, where $\overline{T}_{\beta} = \overline{T}'_{\beta} \oplus \overline{T}'_{\beta}$ and we may assume that T'_{β} and T'_{β} are in \mathfrak{A} and submodules in T_{β} by [4], Proposition 2. Since $\sum_K \oplus \overline{T}'_{\beta} = \overline{N}_1$, $N_1 \approx \sum \bigoplus T''_{\beta}$ by the assumption and [7], Theorem 1. Let p be a homomorphism of M to $\sum_K \oplus T''_{\beta}$ such that \bar{p} is a projection of \bar{M} to $\sum_K \oplus \bar{T}''_{\beta} = \bar{N}_1 \oplus \bar{N}_1$. Where $\bar{T}_{\beta} = \sum_K \oplus \bar{T}''_{\beta} = \bar{N}_1 \oplus \bar{N}_1 \oplus \bar{N}_1 \oplus \bar{N}_1 \oplus \bar{N}_2 \oplus \bar{N}_3 \oplus \bar$

¹⁾ See [4], §1 for the definition.

 $\sum_{\kappa} \oplus T_{\beta}^*$.

Corollary. Let M be as above and N a direct summand of M. Then the following statements are equivalent.

- 1) Every direct summand of N has the \aleph_0 -exchange property in M.
- 2) Every direct summand of N has the exchange property in M.
- 3) $N = \sum_{J} \oplus N_{\beta}; N_{\beta} \approx M_{\pi(\beta)}$ and $\{N_{\beta}\}$ is a semi-T-nilpotent system with respect to the radical of $[N_{\gamma}, N_{\delta}]_{R}$.

Proof. 1) \rightarrow 3). Let N be a direct summand of M and $N=\sum_{J}\oplus N_{\beta}$, $N'_{\beta}\approx M_{\beta}$ with Card $J\leqslant {\rm Card}\ I$. We first note that every direct summand P of N has the \aleph_0 -exchange property in N. Let $M=N\oplus Q$ and $N=P_1\oplus P_2=\sum_{i=1}^{\infty}\oplus T_i$. Then $M=P_1\oplus (P_2\oplus Q)=\sum \oplus T_i\oplus Q$. Since P_1 has the \aleph_0 -exchange property in M, $M=P_1\oplus \sum \oplus T'_i\oplus Q'$, where $T'_i\subseteq T_i$ and $Q'\subseteq Q$. Hence, $N=P_1\oplus \sum \oplus T'_i\oplus P_1\cap Q'$ and $P_1\cap Q'\subseteq P_1\cap Q=(0)$. Now put $P_1=\sum_{J_0}\oplus N_{\gamma}$ for any $J_0\subseteq I$ with ${\rm Card}\ J_0\leqslant \aleph_0$. Then $\{N_{\gamma}\}_{J_0}$ is a semi-T-nilpotent system by [7], Theorem 1. Hence, $\{N_{\gamma}\}_{J}$ is a semi-T-nilpotent system. 3) \rightarrow 2). Since the ideal \Im of $[N,N]_R$ defined in [3] is the Jacobson radical by [7], Theorem 1, every direct summand of N is a directsum of indecomoposable modules and has the exchange property in M by Theorem 2. 2) \rightarrow 1). It is clear.

Lemma 1. Let M be as above. We assume that $M=N_1\oplus N_2=N_1'\oplus N_2'$. If N_1 has the exchange property in M and there exists an automorphism f of M such that $f(N_i)=N_i'$ for i=1, 2 then N_1' has the exchange property in M.

Proof. It is clear.

Lemma 2. Let M, N_1 and N_2 be as above. We assume $N_i = \sum_{\alpha \in J_i} \bigoplus M_{i\alpha}$, C and J_i are infinite and $M_{i\alpha}$'s are indecomposable modules for i=1, 2. Let $\{f_i\}_{1}^{\infty}$, $\{g_i\}_{1}^{\infty}$, be sets of non-isomorphic homomorphisms of $M_{1\alpha_i}$ to $M_{2\alpha_i}$ and $M_{2\alpha_i}$ to $M_{1\alpha_{i+1}}$, respectively. Furthermore, we assume that N_1 has the \aleph_0 -exchange property. Then for any m in $M_{1\alpha_1}$ there exists n such that $g_n f_n g_{n-1} f_{n-1} \cdots g_1 f_1(m) = 0$.

Proof. We shall make use of the same argument in [3], Lemma 9. Put $M'_{1\alpha_i} = \{m_i + f_i(m_i) | m_i \in M_{1\alpha_i}\}$ and $M'_{2\alpha_i} = \{m_i + g_i(m_i) | m_i \in M_{2\alpha_i}\}$. Then $M = M'_{1\alpha_1} \oplus M_{2\alpha_1} \oplus M'_{1\alpha_2} \oplus M_{2\alpha_2} \oplus \cdots \oplus M_{10} \oplus M_{20} = M_{1\alpha_1} \oplus M'_{2\alpha_1} \oplus M_{1\alpha_1} \oplus M'_{2\alpha_2} \oplus \cdots \oplus M_{10} \oplus M_{20}$, wherre $M_{i_0} = \sum_{J_i - \{1, 2\cdots\}} M_{i\alpha}$. Since $T = M'_{1\alpha_1} \oplus M'_{1\alpha_2} \oplus \cdots \oplus M_{10} \approx N_1$, T has the \aleph_0 -exchange property in M by Lemma 1. Hence, $M = T \oplus M^*_{1\alpha_1} + M'_{2\alpha_1} \oplus M^*_{1\alpha_2} \oplus M'_{2\alpha_2} \oplus \cdots \oplus M^*_{20}$, where $M^*_{1\alpha_j} = 0$ or $M_{1\alpha_j} (M'_{2\alpha_j} = 0)$ or $M'_{2\alpha_j} = 0$. In this case we can use the same argument in [3], Lemma 9.

M. Harada

From Lemma 2 we have

Proposition 1. Let $M = \sum \bigoplus M_{\sigma}$ with M_{σ} completely indecomposable. We assume that $M = N_1 \bigoplus N_2$ and $N_i = \sum_{\gamma} \sum_{\beta \in J_{\gamma}} \bigoplus M_{\gamma\beta}^{(i)}$, where $M_{\gamma\beta}^{(i)} \approx M_{\gamma\beta'}^{(i)}$ and $M_{\gamma\beta'}^{(i)} \approx M_{\gamma'\beta'}^{(i)}$ if $\gamma \neq \gamma'$, where $M_{\sigma\beta}^{(i)}$'s are indecomposable. We further assume Card $J_{\gamma}^{(2)} \geqslant Card J_{\gamma}^{(1)}$ for all Card $J_{\gamma}^{(2)}$ which is smaller than or equal to \aleph_0 . Then N_1 has the (\aleph_0-) exchange property if and only if $\{M_{\gamma\beta}^{(1)}\}$ is a semi-T-nilpotent system with respect to the radical.

Now we take the category $\mathfrak A$ of all R-modules which is a direct sum of some completely indecomposable modules. Let M be an object in $\mathfrak A$. We call M having the exchange property in $\mathfrak A$ if M has the exchange property in P for any object P in $\mathfrak A$ which contains M as a direct summand.

Corollary 2. Let \mathfrak{A} be the above. Then we have the following equivalent statements for $M = \sum_{r} \oplus M_{\alpha}$ in \mathfrak{A} .

- 1) M has the exchange property in \mathfrak{A} .
- 2) $\{M_{\omega}\}_{I}$ is a semi-T-nilpotent system with respect to the radical, where M_{ω} 's are completely indecomposable.

Proof. 2) \rightarrow 1). It is clear from Corollary to Theorem 2. 1) \rightarrow 2). Let $M = \sum_{\alpha} \sum_{I_{\alpha} \in \beta} \bigoplus M_{\alpha\beta}$, $M_{\alpha\beta} \approx M_{\alpha\beta'}$ and $M_{\alpha\beta} \approx M_{\alpha',\beta'}$ if $\alpha \neq \alpha'$. Put $P = \sum_{1}^{\infty} \bigoplus P_{n}$, $P_{n} = M$. Since M has the exchange property in P by the assumption, $\{M_{\alpha}\}$ is a semi-T-nilpotent system by Proposition 1.

Finally, we shall consider a special case. Let Z be the ring of integers (or Z may be a Dedekind domain) and $\{P_i\}_I$ a family of primes. Let M be a directsum of any copies of Z/P^{n_i} , where i runs over a sub-set of I and n_i 's are integers. Then $M = \sum_{i \in I} \bigoplus M_{P_i}$, where $M_{P_i} = \sum \bigoplus Z/P_i^{n_i}$. In this case, every submodule N of M is a directsum of N_P , where $N_P = N \cap M_P$. Hence, a direct summand N of M has the exchange property in M if and only if N_P has the exchange property in M_P for each P.

Corollary 3. Let Z, M_P and M be as above. We assume $M = N_1 \oplus N_2$ and $N_i = \sum \bigoplus M_{P_j}^{(i)}$; $M_{P_j}^{(i)} \approx Z/P_{P_j}^{n_j}$. Then N_1 has the exchange property in M if and only if either $\{M_{P_j}^{(1)}\}$ or $\{M_{P_j}^{(2)}\}_j$ is a semi-T-nilpotent system with respect to the radical for every P_j .

Proof. It is clear from Lemma 2 and [3], Lemma 12.

REMARK. If $P_1 \neq P_2$, then $\sum_{n=1}^{\infty} \oplus Z/P_1^n$ has the exchange property in $P = \sum_{i=1}^{\infty} \oplus Z/P_1^n \oplus \sum_{i=1}^{\infty} \oplus Z/P_2^n$ from the above remark. However, $\{Z/P_i^n\}_n$ are not semi-T-nilpotent systems for i=1, 2. Hence, M does not have the exchange

property in A.

3. Quasi-projective modules

First, we consider projective modules of a special type.

Lemma 3. Let P and Q be projective R-modules such that J(P) and J(Q) are small in P and Q, respectively. Then $[P/J(P), Q/J(Q)]_{R/J(R)}=0$ if and only if $[Q/J(Q), P/J(P)]_{R/J(R)}=0$, where J(*) is the Jacobson radical of (*).

Proof. Put $T=P\oplus Q$. Then J(T) is a unique maximal one among small submodules in T. We assume $[P,Q]_R=[P,J(Q)]_R$ and f an element in $[Q,P]_R$. We put $f_T=\left(\begin{smallmatrix}0&0\\0&f\end{smallmatrix}\right)$ in $S_T=[T,T]_R$. Since $[P,Q]_Rf=[P,J(Q)]_Rf\subseteq [Q,J(Q)]_R\subseteq J(S_Q)$ by [4], Proposition 1. Hence, S_Tf_T is in $J(S_T)$. Therefore, $f_T(T)\subseteq J(P)\oplus J(Q)$. Hence, $f(Q)\subseteq J(P)$ and $[Q,P]_R=[Q,J(P)]_R$. It is clear that $[P,J(Q)]_R=[P,Q]_R$ if and only if $[P/J(P),Q/J(Q)]_R=0$, since P is projective.

Proposition 2. Let P and Q be as above. We further assume that P is completely indecomposable, then the following are equivalent.

- 1) P is isomorphic to a direct summand of Q.
- 2) P/J(P) is isomorphic to a sub-module of Q/J(Q).

Proof. It is clear, since J(P) is a unique maximal sub-module in P by [4], Theorem 5.

Changing slightly the proofs in [10], Lemma 1 and [5], Proposition 1, we have

Lemma 4. Let M be a quasi-projective, then $J(S_M) = \{f | \in S_M, f(M) \text{ is small in } M\}$. Furthermore, J(M) is small if and only if $[M, J(M)]_R = J(S_M)$, where, $S_M = [M, M]_R$.

We note that a quasi-projective module with projective cover is nothing but a factor module of projective module P with respect to a small R-sub-module K in P which is a S_P -module by [6], Propositions 2.1 and 2.2. Furthermore, if we take the ring of column summable matrices, we know Proposition 2.4 in [6] is valid for a directsum of infinite components, (cf. [3], § 3).

Proposition 3. Let M be a quasi-projective. We assume that M has projective cover P. Then $S_M \approx S_P / A$ and $P / J(P) \approx M / J(M)$, where A is an ideal contained in $J(S_P)$. Furthermore, J(P) is small in P if and only if J(M) is small in M.

Proof. We have the exact sequence $0 \rightarrow [P, K]_R \rightarrow S_P \rightarrow [P, M]_R \rightarrow 0$ from an exact sequence $0 \rightarrow K \rightarrow P \stackrel{\nu}{\rightarrow} M \rightarrow 0$. $A = [P, K]_R$ is a two-sided ideal by [6],

54 M. HARADA

Proposition 2.2. Let f be in $[P, M]_R$. Since P is projective, we have g in S_P such that $\nu g = f$. Hence, $f(K) = \nu g(K) \subseteq \nu(K) = 0$. Therefore, $[P, M]_R = S_M$. Since $K \subseteq J(P)$, $J(M) \approx J(P)/K$ and $P/J(P) \approx M/J(M)$. Furthermore, $A \subseteq J(S_P)$ by Lemma 4. The last part is clear.

Lemma 5. Let $\{M_{\alpha}\}_{I}$ be a family of quasi-projective modules and I an infinite set. We assume $M = \sum_{I} \oplus M_{\alpha}$ is quasi-projective. Then J(M) is small in M if and only if $J(M_{\alpha})$ is small in M_{α} for all $\alpha \in I$ and $\{M_{\alpha}\}_{I}$ is a semi-T-nilpotent system with respect to the radical of $[M_{\alpha}, M_{\beta}]_{R}$.

Proof. We can make use of the same argument in [5], Theorem 3 from Lemma 4.

Theorem 3. Let M be a quasi-projective module with projective cover P. Then P is semi-perfect if and only if 1) $M = \sum_{I} \bigoplus M_{\alpha}$; M_{α} 's are completely indecomposable R-modules, 2) $\{M_{\alpha}\}_{I}$ is a semi-T-nilpotent system with respect to the Jacobson radical of $[M_{\alpha}, M_{\beta}]_{R}$ and 3) M_{α} has a projective cover for all $\alpha \in I$. In this case any direct decomposition of M[J(M) is lifted to M.

Proof. We assume P is semi-perfect. Then 1) is clear from [6], Proposition 2.4 and the above remark. 2) is clear from Proposition 3 and Lemma 4. 3) is clear from [6], Proposition 2.4. Conversely, we assume 1), 2) and 3). Let P_{σ} be a projective cover of M_{σ} via ν_{σ} and $Q = \sum \oplus P_{\sigma}$. We have an exact sequence $0 \to K \to P \to M \to 0$ with K small. Hence, we have $f \in [Q, P]_R$ and $g \in [P, Q]_R$ such that $fg = I_P$ and $\nu' = \nu g$, where $\nu = \sum \oplus \nu_{\sigma}$. Since ν and ν' induce natural isomorphisms $P/J(P) \approx M/J(M) \approx Q/J(Q)$, g is isomorphic. Furthermore, P_{σ} is semi-perfect from Proposition 3 and [4], Theorem 5. We know from 2) and Lemma 4 that J(M) is small in M. Hence, J(P) is small in P by Proposition 3. Therefore, P is semi-perfect by [8], Theorem 5.2. The last part is clear from Proposition 3, [6], Proposition 2.4 and [8], Theorem 4.3.

Corollary. If R is a right perfect (resp, semi-perfect) ring, then every (resp. finitely generated) quasi-projective module is a directsum of completely indecomposable modules and the Krull-Remak-Schmidt's theorem is valid for those decompositions.

OSAKA CITY UNIVERSITY

References

^[1] H. Bass: Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488.

^[2] S.U. Chase: Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457-

473.

- [3] M. Harada and Y. Sai: On categories of indecomposable modules I, Osaka J. Math. 7 (1970), 323-344.
- [4] M. Harada: On categories of indecomposable modules II, Osaka J. Math. 8 (1971), 309-321.
- [5] M. Harada and H. Kanbara: On categories of projective modules, Osaka J. Math. 8 (1971), 471-483.
- [6] J.P. Jans and L.E.Wu: On quasi projectives, Illinois J. Math. 11 (1967), 439-448.
- [7] H. Kanbara: On the Krull-Remak-Schmidt-Azumaya's theorem, to appear.
- [8] E. Mares: Semi-perfect modules, Math. Z. 83 (1963), 347-360.
- [9] Z. Papp: On algebraically closed modules, Publ. Math. Debrecen 6 (1959), 311-323.
- [10] R. Ware and J. Zelmanowitz: The Jacobson radical of the endomorphism ring of a projective module, Proc. Amer. Math. Soc. 26 (1970), 15-20.