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ABSTRACT 

From the Human Genome Project onwards, biology research has happily undertaken the 

path of high-throughput methodologies with the promise that big data would help reverse 

engineering biological systems. I formulate quantitative and qualitative objections to this 

sole inductive practice of biology, and I defend that biologists should give more 

consideration to deduction. Model-Based Biology (MBB) is my take at such deductive 

approach. 

To incite biologists to practice deduction, we need to lead them to care more about the 

shape of the solution space of biology rather than the specific solutions observable on Earth. 

Biologists need tools to easily iterate on versions of models, test multiple alternatives, check 

for their integrity, and share with colleagues. That is why, I developed tools focusing on 

interactivity, trial and error, and collaboration. 

The two software I developed are based on Real-Time (RT) technologies originally successful 

in engineering and, more recently, in entertainment. Indeed, the interactivity of RT 

simulation systems, as well as their scalability to support even complex systems such as 

digital twins or the Metaverse, makes them highly relevant for the interactive exploration of 

small or large biological models. 

The first software, ECellEngine, was designed to build, simulate, and analyze plausible 

biological systems via a node-based scripting interface similar to flow-based programing in a 

GUI editor, linking with the RT simulation engine. Hence, this software has two levels; the 

low level is an interface in C++ for real-time simulation of scientific models for seasoned 

programmers, and the high level is a node-based editor that non-programmers can use to 

intuitively encode models. The second software, Kosmogora + ECellDive, is leveraging the 

benefits of RT collaboration in a scientific metaverse for the iterative design of models of 

biological systems. Kosmogora is a server instance helping to centralize biological data and 

simulation requests for users in the virtual reality software ECellDive. This explores the 

modes of collaboration between biologists to also promote MBB thanks to RT collaboration. 

ECellEngine is part of the few software in systems biology which try to integrate all steps of 

modelling in systems biology. This is the unity of space because there is only one tool. The 

edge of ECellEngine over the other software lies in the unity of time because there is no clear 

separation between model building, simulation, and analysis thanks to the real-time 

architecture. Users can modify anything about a model, at any time, and immediately watch 

the effects. Kosmogora + ECellDive are among the first VR software for systems biology that 

go beyond data visualization to include modeling as its main feature. In addition, ECellDive 

may not be as polished as other software visually, but it questions the place of the 

Metaverse in a research field which other software hardly do. 
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I. INTRODUCTION 

Induction is Dominating Biology  

Induction is fueled by the big data 

Modern biology research is guided by the advent of high-throughput methodologies to the 

point that the field produces more data than it can handle. Sydney Brenner expressed a 

similar opinion in his Nobel prize lecture (Brenner, 2002) as a reaction to the data generated 

by the Human Genome Project (HGP) (Genome Sequencing Workshop, 1986; Bitensky, 1986; 

Collins and Galas, 1993; Collins et al., 1998; Lander et al., 2001; Venter et al., 2001): 

“We are all conscious today that we are drowning in a sea of data and 

starving for knowledge.” 

At the time the HGP was launched, the committee estimated sequencing speeds around to 

be around 100,000 base pairs (bp) per year which converts to about 11 bp per hour. Since 

then, data collection in biology has never ceased to accelerate with current sequencing 

technologies1 advertising rates of 3.7 billion bp per hour to even 184 billion bp per hour. The 

data acquisition protocols in proteomics or metabolomics via nuclear magnetic resonance or 

mass spectrometry (and the prior processing steps) is much more fragile than for genomics. 

That is why many studies (Derks et al., 2023; Jeppesen and Powers, 2023) are dedicated to 

improving the protocols. (Hajjar et al., 2023) have, while reviewing metabolomics studies in 

human and plant research, pointed out the lack of standardized protocols in the 

communities yet. Moreover, they found that “[…] methods generally enabled detecting less 

than 250 metabolites in human biofluids, except for lipidomics approaches where more than 

500 lipid species can be profiled in large populations […]” which is one or two orders of 

magnitude lower than the theoretical diversity. About proteomics, opinion paper (Slavov, 

2021) also reports a wide diversity of protocols to identify a couple thousand proteins at 

most. Moreover, if the scan of a sample takes only a few minutes, the cohorts may very well 

reach several thousand which, with the preparation of the samples upstream and analysis 

downstream inevitably limits the throughput in comparison to genomics. Nevertheless, we 

observe the same efforts to strive for higher throughput methods in proteomics, with a 

notable interest for “untargeted” studies that falls right into big data approaches and, hence, 

induction. Independently of extraction methods, we also observe consequent efforts to 

break free from human limitations by using automated robot platforms to perform biological 

assays without human input (King et al., 2009; Coutant et al., 2019; Brunnsåker et al., 2023). 

 

1 Pacbio (https://www.pacb.com/) Revio is based on long reads of 15-20kb yielding 90Gb in about 24h, Onso is 

based on short reads of 200bp yielding 100Gb in about 32h. Oxford Nanopore Technology 

(https://nanoporetech.com/) and its flagship PromethION advertises a theoretical output of 13.3Tb in 72h. 

While Illumina (https://www.illumina.com/) and its system NextSeq 550 indicates yielding 120Gb with runs of 

30h and advertises support for transcriptomics. These statistics are provided by the companies and were not 

verified. 

https://www.pacb.com/
https://nanoporetech.com/
https://www.illumina.com/
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The seminal paper (King et al., 2009) describes a prototype robotic platform designed to 

work without human intervention to automate the discovery of biological knowledge. This 

platform works as a closed loop between experiments and hypothesis generation, ultimately 

relying on the data produced2 . This closed-loop architecture has then been further 

developed as illustrated by (Coutant et al., 2019) whose goal is to accelerate the iteration 

process of the model design in systems biology. The introductive statement of the paper 

acknowledges the need to increase the throughput of research techniques if biologists want 

to continue doing systems biology. An approach which will inevitably lead to more data. The 

work from (Brunnsåker et al., 2023) specifically targets the automatization of cell cultures of 

Saccharomyces cerevisiae with untargeted mass-spectrometry to smooth the bottleneck of 

data throughput in metabolomics studies. 

Following these strategies, induction in biology has yielded notable results. This is all thanks 

to a new kind of observations that the double helix structure of the DNA was discovered. It is 

all thanks to observations that diseases are detected, understood, and cured. It is all thanks 

to observations that species’ genomes can edited. 

Despite these incredible feats, I advocate there are reasons to worry about pursuing the big 

data in biology in the long-term. The first group of problems are quantitative and related to 

the intractability of data and knowledge acquisitions. Here, I use “intractability” as defined in 

the field of computer science: there does not exist any efficient solution to acquire data and 

knowledge and one can only use a “brute force” approach. The second group of problems 

are qualitative and related to ethical and philosophical considerations. 

Quantitative problem 1: data acquisition is intractable 

The first quantitative problem is that biologists will never have enough time or resources to 

acquire and store the data describing the whole biology of the universe. This can easily be 

illustrated thanks to the UniProt entry P04637 of the protein p53. The available information 

indicates 23 possible post-translational modifications effectively representing a solution 

space of 223 states to investigate. Taken alone, there is no way to know which states have a 

causal relationship with biological behaviors so they must all be experimentally tested. And 

as experimental tests must be repeated to increase their statistical value the number of 

samples is probably greater than 225 (i.e., at least 4 samples for each test). In the incredibly 

good situation where the output of the experiment can be measured with a single binary 

result (0 or 1), we can store 2 experiments of 4 samples into one byte. Therefore, we need to 

acquire 222 bytes of data which only amounts to 4 MB. This lower bound is very acceptable 

today but would have already been a real challenge in the 90s. A bit more realistically, the 

output of the experiment will likely be, at least, a 16-bits (2 bytes) numeric value for each 

sample so the required data. This corresponds to 512 MB. That is still acceptable by today’s 

 

2 The experiments to test the hypothesis are deduced from a model so, strictly speaking, it is incorrect to say 

that there is only induction (or abduction). 
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storage standards but note that this is the amount of data required to totally explore a 

unique causal link for all states. Of course, the holistic approach of systems biology enforces 

the view that the protein is only a single piece of a much bigger system. And causal link 

between the protein and other pieces of the system should, in theory, also be tested. So, 

one sample do not generate one 16-bits value but an arbitrary number 𝑥. Which linearly 

scales the required data to 512 𝑥 MB. Considering a human cell typically has at least 

hundreds modalities of interest, we can expect to easily reach 51,200 MB. That’s 50 GB to 

describe the whole interaction space of one human protein, in interaction with a hundred 

elements in one type of cell. Then, the next question is what about the remaining protein 

states in the cell. What about the other species? What about multi-cellular organisms? What 

about the rest of the universe? Even if we limited ourselves to the biology on Earth, it is 

unrealistic to acquire enough data to describe all these subjects. The human species will 

surely go extinct or will not look like the human species anymore before we can manage this 

amount of data. 

Of course, the classic response to this issue I am raising is that my worries are unwarranted 

because biologists do not need everything. But if that is really true, why bother with big data 

to begin with? Indeed, as (Leonelli, 2014) points out “[…] having a lot of data is not the same 

as having all of them […]”. Indeed, Leonelli found that a major claim for advocates of the big 

data3 is that one can truly start relying on correlations thanks to the innate diversity of the 

collected data. But as soon as one starts removing or favorizing a segment of the data 

collection, this “self-correcting” property of the big data shatters. So, no one who advocates 

for big data in biology can say that we don’t need all the data without contradicting himself. 

Leonelli also argues that, anyway, “The ways in which Big Data is assembled for further 

analysis clearly introduce numerous biases related to methods for data collection, storage, 

dissemination and visualization.” This point is also brought forward in (Leonelli, 2019) where 

Leonelli argues that the tools themselves used to acquire data are biased toward what 

biologists think is relevant data in the first place. Thus, the act of creating an online database 

to aggregate a type of biological data rather than another is not without consequences.  It 

elevates this database to the rank of de facto benchmark for this collection of data (e.g., PDB 

or UniProt), it is guiding the way mainstream biology think this data, and the scientific value 

it supposedly brings. Consequently, the belief that big data in biology can reach “self-

correct[ness]” is a misconception because the big data in biology is full of biases. 

Unfortunately, despite this misconception, Leonelli obverses that databases have enabled 

enough breakthroughs that biologists are ignoring the weaknesses of their arguments in 

favour of the big data, and even promotes the acquisition of more data.  

 

3 In the paper, Leonelli analyses the claims of Mayer-Schönberger and Cukier in their book “Big Data”(Mayer-

Schönberger and Cukier, 2014) 
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Quantitative problem 2: knowledge acquisition is intractable 

The second quantitative problem is that, even if we somehow acquire all the data, there is 

nonetheless the issue of extracting meaningful information from it. Brenner’s criticism of the 

big data for biology was also about this problem of knowledge acquisition. He feared that 

the amount of individual collected facts renders the extraction of core knowledge 

particularly hard. He was convinced that the holistic approach of systems biology to reverse 

engineer the fundamental properties of life would fail because of the intractable nature of 

knowledge extraction in biology. The knowledge extraction methodologies are always 

lagging behind the quantity of data. He argued that biology should develop a better 

theoretical scheme to frame data acquisition to a specific context and extract the essential 

biological knowledge encoded in the extracted data. Since 2002 and his Nobel prize lecture, 

he suggested that the correct unit to study biology was the cell, in opposition to the 

predominant view that genes were the correct unit. According to his claims, focusing on 

genes would make the task too complicated for a long time because we have yet too much 

to learn about them to fully grasp their implications. Cells, on the other hand, were easier to 

probe —this still holds true today— and stand at a perfect junction point between 

biomolecules and organisms. Brenner also argued that there would be a methodological 

unification of sorts where we would start seeing organisms as a network of interacting cells 

the same way we approach cells as a network of interacting molecules (Brenner, 2010). He 

called this approach CELLMAP and suggested that biological science should undergo a 

planet-wide project similar to the HGP to build this map. Funnily enough, he noted (Brenner, 

2002) that it took 17 years from the start of the HGP to the publication of the genome; so 

we’d be finished with CELLMAP by 2020. None of that ever happened during Brenner’s 

career, but we must today recognize the launch of the Human Cell Atlas project (Rozenblatt-

Rosen et al., 2017; Regev et al., 2017, 2018) which shares the ambition although, maybe, too 

oriented toward cataloging the diversity of cells thanks to experiments rather than an effort 

to modeling and reductionism as Brenner appeared to defend. Around 2010, Brenner 

himself seemed to acknowledge biology had gone full-in the big data approach instead of 

anything close to what he suggested (Brenner, 2010, 2012). He continued to argue that 

reductionism and forward modeling was the only way. 

What Brenner did not foresee is the rise of Machine Learning (ML) methods that can actually 

help us extract knowledge from this kind of gigantic data repositories. Consequently, system 

biologists have, as in other fields, started relying on ML methods to filter the noise out of the 

big data and extract biological knowledge from it. From the perspective of reductionists, this 

is an admission of weakness of holism. From the holist’s perspective, this is just a 

methodological continuation and a golden opportunity to eventually see their approach 

prevail. 

But there is still a fatal flow to ML methods. They are themselves dependent on data to 

perform correctly. Which means that using ML methods to solve Quantitative Problem 2 on 

knowledge extraction from data, actually exacerbates Quantitative Problem 1 on data 
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acquisition because additional data must be extracted upstream to train ML methods. 

Hence, using ML methods puts even more pressure on  biologists to acquire data. 

Moreover, biologists themselves tend to forget the epistemic heterogeneity of their own 

field. This is illustrated by (Callebaut, 2012) where he points out the overlap and lacks of 

clear definitions of “bioinformatics”, “computational biology”, “systems biology”, and 

“synthetic biology”. All four of which are part of the movement of the big data in biology and 

are working with the same data objects but have different point of view. Similarly, “the lack 

of unary definitions for biological terms” is also acknowledged in (Leonelli, 2019) as 

operating as a multiplicative factor for the interpretation of data. 

Qualitative problem 1: “always more” is morally questionable 

The big data is yet another embodiment of our societies thinking “more is better”? As 

opportunistic as it may seem, and fully aware that analogies and comparison across history 

are dangerous, I point out that big data approaches bear many similarities with economical 

productivism. Productivism has supported the capitalistic economies of western countries 

since the industrial revolution, and the whole planet since, let’s say, the end of the 2nd World 

War (this is, of course, a very crude approximation). Furthermore, it is nowadays largely 

accepted that this way of life is chiefly responsible for Earth’s resources depletion and 

climate downfall. Despite this tragic consequences, human societies and social sub-groups 

default practices perpetuates the thinking that “more is better”. I am sincerely anxious to 

see that, once again, a human population (biologists) has reacted to the problem of “we 

have too much” (data) by relying on a technological solution that “needs even more” 

(machine learning). Training deep ML models on the latest GPUs takes terra watts of 

electricity (Strubell et al., 2019; Bender et al., 2021) and, ironically, newest learning 

algorithms often require even more data than we already had to properly train the previous 

generation. If that is not a self-reinforcing predatory pattern, I don’t know what is. 

In my opinion, despite the spectacular results that tools like AlphaFold (Jumper et al., 2021) 

brought in biology to predict protein structure, it is a serious ethical breach to let supervised 

ML become the new default methodology to extract biological knowledge from biological 

facts. I would very much like if every biologist (experimentalists and modelers alike) could 

think a bit more about the data sustainability of their experiments before they implement 

them. How much data is enough to answer a biological question? What is the sufficient 

minimal amount of information to solve my problem? 

Answers to those questions obviously depend on a lot of factors, and their difficulty is also a 

reason why it is so tempting to embrace big data. Because it is much more convenient to 

ignore this problem, acquire as much data as possible to, only then, see what knowledge you 

can extract from it. But this is a devil in disguise: the less focused you behave, the more 

entropy you generate, and the more you indirectly participate to global warming. There are 

environmental consequences to scientific practices, and I do not want to ignore them. 
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That is why, it feels wrong to practice systems biology the same way my peers do. And this is 

where I agree with Brenner’s incentive to develop a theoretical framework for biology which 

he reiterated in a short opinion paper (Brenner, 2012) at the occasion of Turing’s centenary4. 

Given the legacy of Turing’s work, I understand Brenner had very high standards as to what a 

theoretical framework of biology should be. And I think he had hoped his CELLMAP project 

would eventually lead to that. For sure, I would have sincerely liked to see that. 

Qualitative problem 2: induction is biasing biology research toward mechanisms 

The second qualitative problem is that, if we only increase our biological knowledge based 

on what we can observe, then we will never be able to cope with the biology we do not have 

access to. The corollary of this problem is that biologists focus more on how biological 

systems solve environmental problems on Earth, rather than what defines biotic systems. 

It is my hypothesis that biology’s legacy from naturalists has biased it toward studying 

biological systems that live only on Earth with little consideration for investigating life in 

general. This stance is a direct consequence of naturalists’ practice to mainly dedicate 

themselves to the description and observation of biological systems rather than their 

analysis. On that note, (Callebaut, 2012; Leonelli, 2014) both argue that the work of 

naturalists or taxonomists from the 18th century greatly diminishes the claims that the big 

data in biology is a new and transformative scientific practice. Focusing on data acquisition 

has deprived biologists of a whole way of investigating life by restricting them to reverse 

engineering based on observations. Indeed, the more biological data biologists have, the 

more they focus on understanding the process exemplified by the data rather than the 

problem solved by the process. Thus, more often asking “how does this biological system 

solves that problem according to the data?” instead of “what is the problem?”, even when 

the latter question is a more general way to reach the answer to the former. 

In fact, the concept of homoplasy5 between organisms in the field of phylogeny illustrates 

that the “what-question” is as much relevant as the “how-question”. Indeed, if you 

understand the problem that must be solved (“what-question”), the solution found by a 

biological system (“how-question”) is but one occurrence in a much larger solution space. 

Focusing on answering a set of “how-questions” will only yield a point cloud in the solution 

space, and not the overall shape. Interestingly, this can be linked back to the enthusiasm of 

system biologists for ML because the primary goal of a classifier in ML is to find the shape of 

a solution space from only observations making the point cloud. Therefore, machine learning 

 

4 Here is the quote of the first paragraph of the paper: “Biological research is in crisis, and in Alan Turing’s work 

there is much to guide us. Technology gives us the tools to analyse organisms at all scales, but we are drowning 

in a sea of data and thirsting for some theoretical framework with which to understand it. Although many 

believe that ‘more is better’, history tells us that ‘least is best’. We need theory and a firm grasp on the nature 

of the objects we study to predict the rest.” 

5 Homoplasy is the convergence of unrelated biological systems (species) over time toward similar features to 

solve an environmental problem. 
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and the big data of biology are the technological solutions to exploring biology primarily 

through “how-questions” in the hope of eventually answering “what-questions”. 

In my opinion, focusing on “how-questions” has led the biology community to rather ironic 

situations where the consensus was that life in deep seas or other extreme environments 

was impossible because it wouldn’t match the current observations. Nowadays, this kind of 

life is acknowledged and often described as “extremophiles”. Which is no less ironic because 

it perpetuates the belief that the life observed until then was the norm and precludes 

biologists from considering the existence of yet unknown life forms. 

Although Brenner apparently decided to accept the big data of biology6 (Brenner, 2010) and, 

therefore, the dominance of “how-questions” over “what-question”, I do not. I believe that 

there is room for an alternative to inductive biology. 

Defining a Deductive Approach for Biology 

Instead of induction, it is my thesis that a deductive approach would benefit biology 

tremendously. 

Non-inductive biology already exists 

Theoretical frameworks for biology have received a lot of interest from the side of 

philosophers (Woodger, 1937, 1952, 1962), mathematicians (Turing, 1952), computer 

scientists (Nagasaki et al., 1999; Danos and Laneve, 2004; Blinov et al., 2004), astrobiologists 

(Bartlett and Wong, 2020; Wong et al., 2022), data scientists (Wong and Prabhu, 2023), 

artificial life researchers (Lehman and Stanley, 2015; Hernández-Orozco et al., 2018; 

Gershenson, 2023), and probably others. But even if we decide to dismiss these peripheral 

frameworks for some reason, Darwin’s evolution theory (Darwin, 1859) or the work on 

genetics initiated by Mendel (Mendel, 1865) and later Fischer (Fisher, 1930), do not need 

any observations to build them. 

Of course, it so happens that these theories seem verified by observations on Earth. But, for 

instance, in the case of Darwin’s evolution theory, a founding hypothesis along the line of: 

“only biological systems matching the constraints of their ecosystems can survive”, is 

enough. From this statement, any change in the environment implies failure of some 

biological systems and a long term “selection” of the more “fitted” ones takes place. I think 

anything related to evolution and genetics do not require biological observations to be 

formalized. Consider the following statements: 

• Information can be encoded physically (as in, it takes physical space) 

• Information can be stored physically 

 

6 Here is a citation: “No use will be served by regretting the passing of the golden years of molecular genetics 

when much was accomplished by combining thought with a few well-chosen experiments in simple virus and 

bacterial systems; nor is it useful to decry the present approach of ‘low input, high throughput, no output’ 

biology which dominates the pages of our relentlessly competing scientific journals.” 
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• Information can be shuffled 

The phrasing I used for this set of hypotheses is indeed very influenced by human’s young 

history of devices to store information (arguably only 150 years old if I put paper and clay 

tablets aside). On that note, it is interesting that Mendel’s work on genetic inheritance 

(Mendel, 1865) was about a decade before Edison’s tin foil phonograph (1877). It is a 

fascinating coincidence that, while Mendel describes biological information inheritance, 

Edison builds a device to store sound information. Had Mendel never worked on this subject, 

then Fisher (Fisher, 1930) would have discovered it anyway (since it is said that nor Darwin 

nor Fisher knew about Mendel’s work).  

If I push this fictional situation further, had Fisher never worked on this subject, then Turing 

machines are an example of a system that satisfies the hypothesis (and even more since a 

Turing machine is capable of encoding and storing, for the sake of computation which might 

result in shuffling). So, I hope these examples illustrate that one does not need biological 

observations to have hints about how biological systems work. 

A definition for model-based biology 

Model-based biology is the definition of symbols which can be combined to encode and 

deduce biological knowledge. Many would probably argue that “model-based” is nothing 

new in biology. I might agree with them to some extent because we can find plethora of 

studies (see for example (Chance et al., 1960; Goldbeter et al., 1990; Novak et al., 2001; 

Nijhout et al., 2004; Akman et al., 2008; Sivakumar et al., 2011; Dritschel et al., 2018; 

Dudziuk et al., 2019; Nikolov et al., 2020; Novak and Tyson, 2022), and hundreds of others 

on the BioModels database (Malik-Sheriff et al., 2020)) that work out a model of a 

phenomenon first and analyze its qualitative behavior; some pursue further to confront 

hypothesis with experiments, and may update the model accordingly. This approach is, in my 

understanding, what Brenner’s meant with his “way forward” to biology (as opposed to 

reverse engineering)(Brenner, 2010) and it contains some level of deduction. This is also very 

much a classic strategy in physics with famous successful examples in astronomy, gravity, or 

fundamental particle models. 

Name Addition Multiplication 

Associativity (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) (𝑎 𝑏) 𝑐 = 𝑎 (𝑏 𝑐) 

Commutativity 𝑎 + 𝑏 = 𝑏 + 𝑎 𝑎 𝑏 = 𝑏 𝑎 

Distributivity 𝑎 (𝑏 + 𝑐) = 𝑎 𝑏 + 𝑎 𝑐 (𝑎 + 𝑏) 𝑐 = 𝑎 𝑐 + 𝑏 𝑐 

Identity 𝑎 + 0 = 𝑎 = 0 + 𝑎 𝑎 1 = 𝑎 = 1 𝑎 

Inverses 𝑎 + (−𝑎) = 0 = (−𝑎) + 𝑎 𝑎 𝑎−1 = 1 = 𝑎−1𝑎 𝑖𝑓 𝑎 ≠ 0 

Table 1: Field Axioms. Reproduced from (Weisstein) 

The difference with my model-based biology is that I do not limit it to the formal expression 

of a target phenomenon. In fact, I include the formal expression of the problem associated 
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with the phenomenon using the same symbols used to encode the model of the 

phenomenon and its solutions. This is classically the case in mathematics where axioms form 

elementary symbols that can be used to encode questions about the symbols themselves 

(problems), definitions of new symbols (models), and the relationships between the symbols 

(solutions). For example, the field axioms (see Table 1) specify the basic behavior for 

addition and multiplication of scalars. These axioms are used to encode a structure of the 

same name (i.e., Field); The identity axiom has the interesting consequence that it requires 

Fields to have at least two elements (0 and 1). 

Name Vector Scalar 

Commutativity 𝑋 + 𝑌 = 𝑌 + 𝑋  

Associativity  (𝑋 + 𝑌) + 𝑍 = 𝑋 + (𝑌 + 𝑍) 𝑎 (𝑏 𝑋) = (𝑎 𝑏) 𝑋 

Identity 𝑋 + 0 = 0 = 0 + 𝑋 1 𝑋 = 𝑋 

Additive inverse ∀𝑋 ∈ 𝑉, ∃(−𝑋), 𝑋 + (−𝑋) = 0  

Distributivity 𝑎 (𝑋 + 𝑌) = 𝑎 𝑋 + 𝑎 𝑌 (𝑎 + 𝑏) 𝑋 = 𝑎 𝑋 + 𝑏 𝑋 

Table 2: Vector Space Axioms. 𝑉 Is a vector space and 𝐹 a field, 𝑋, 𝑌, 𝑍 ∈ 𝑉 and 𝑎, 𝑏 ∈ 𝐹. Adapted from (Weisstein). 

Coupled with a Vector Space7, this specifies a Vector Space over Field which axioms are 

written in Table 2. Without such Vector Space over Field it is formally impossible to perform 

any Algebra (Weisstein); hence impossible to count over real numbers, vectors, matrices, 

etc. Every piece of mathematics that is commonly used in physics or biology is void without 

these axioms; but the axioms themselves are unprovable. Despite that, they are the root of 

many scientific theories and that is why one judges the usefulness of a set of axioms to the 

usefulness of its theorems and not the opposite. The model-based biology I am suggesting 

would rely on such low-level statements to specify the basic notions of biological systems. 

Then, the statements would be combined together and with further hypotheses relevant to 

the domain of a target biological system. It would then be possible to derive new statements 

corresponding to the biological implications of the biological system. 

An example of model-based biology 

The following is an example of logic statements by John H. Woodger in his book Biology and 

Language (Woodger, 1952) derived from William Harvey’s natural language statements in  

his work Anatomical Disquisition on the Motion of the Heart and Blood in Animals (1628). 

Starting with the hypothesis (at the time of Harvey) that a heart is a muscle, Woodger 

writes: 

∀𝑥 𝐻𝑒𝑎𝑟𝑡(𝑥) ⊃ 𝑀𝑢𝑠𝑐𝑙𝑒(𝑥)  𝐻1 

 

7 A vector space alone is only a “set that is closed under finite vector addition and scalar multiplication.” In 

short, in a Cartesian space, this correspond to a component-wise addition of two vectors, and the 

multiplication of the scalar on each component. (Weisstein) 
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In English, 𝐻1 reads as “For all 𝑥, if 𝑥 is a heart, then 𝑥 is a muscle”. Which is indeed a more 

formal way of saying that a heart is a muscle. Then, in conjunction with the following 

statement (known to be true at Harvey’s time) that a muscle in action is hard: 

∀𝑥 ((𝑀𝑢𝑠𝑐𝑙𝑒(𝑥) & 𝐴𝑐𝑡𝑖𝑜𝑛(𝑥)) ⊃ 𝐻𝑎𝑟𝑑(𝑥))  𝑆1 

We can deduce from 𝐻1 and 𝑆1 that “A heart in action is hard”: 

∀𝑥 ((𝐻𝑒𝑎𝑟𝑡(𝑥) & 𝐴𝑐𝑡𝑖𝑜𝑛(𝑥)) ⊃ 𝐻𝑎𝑟𝑑(𝑥))  𝑆2 

The symbols  {∀, &,  ⊃}  are inherited from Boolean Logic while the symbols 

{𝐻𝑒𝑎𝑟𝑡,  𝑀𝑢𝑠𝑐𝑙𝑒,  𝐴𝑐𝑡𝑖𝑜𝑛} are inherited from Biology. This is the kind of biology where one 

starts from statements and manipulates the statements to deduce new laws. Of course, this 

biological knowledge appears quite trivial to nowadays. But what matters is the capacity of a 

deductive framework to suggest knowledge without actually observing a heart firsthand. 

The validity of results in model-based biology 

In this approach, the skepticism of biologists (probably built up by their experience in solving 

“how-questions”) who might want to ask, “How do you verify that your model is true?” is 

uncalled for. In fact, when biologists ask this question about the validity of the model, the 

“truth” they speak of is usually associated with the predictive capabilities of a model. They 

judge the usefulness and truthfulness of a model to the accuracy of its solutions compared 

with the biological phenomena they have observed on Earth. Once again, they focus on the 

point cloud and not the overall shape of the solution space. Whereas, if you encode the 

problem in your model as I suggest, then the validity of the model is self-contained, and it is 

harmless to keep making biological hypothesis without data within this frame. It is possible 

that none of the solutions within the frame are observable on Earth. In fact, if one defines 

large problems, it is very likely that it is not, because Earth is only representative of a subset 

of the constraints that leads to a subset of biological problems. For example, it is unlikely 

(but maybe not impossible) to find biological systems with functions similar to fishes if the 

constraint associated with large water areas are absent from the environment. Biomedicine 

is probably the only subfield of biology that should strongly require that predictions of a 

model match the observations on Earth. But even so, it does not disqualify the “model-

based” approach, as I already explained that answering “what-questions” is a more general 

way to answer “how-questions”. Therefore, I believe the premise of scientific work in 

biology should be to identify and understand the problems rather than phenomena. 

About model-based biology in this thesis 

In this thesis, I focus on tools to achieve MBB because I believe this is the easiest way to talk 

to biologists. The theoretical framework of mathematics has roughly 5000 years of history. It 

probably will not take biologists another 5000 years to reach an equivalent quality for the 

theoretical framework of biology because we are (hopefully) more knowledgeable of other 

concepts which can inspire us. Hence, if one accepts to consider that model-based might be 

a viable way to do biology, where to start? What symbols to use? What language? What 
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ground theory? What tools? As I already mentioned, many scientists have tried before to 

develop such deductive framework for biology but it has never persisted. Conincidently, I 

note that the abstract level of the frameworks was rather high which is usually not the best 

medium to communicate with biologists. That is why I am taking the direction of intuitive 

easy-to-use, direct feedback tools. To enable biologists to see, manipulate, to get a feel, and 

share with other biologists what MBB is like. The tools I developed are software to explore 

new ways to build biological models, simulate them, and analyze them collaboratively, or 

alone.  

In the following sections of this introduction, I will present modeling approaches and well-

established approaches that relate to my endeavor to practice MBB. Then, I will focus on a 

set of technologies which, as far as I know, have never been used for modeling and 

simulations in systems biology until my work, namely real-time technologies. I argue that 

these technologies offer multiple advantages to practice model-based science in general 

and, hence, are adapted for MBB. 

Basic Theoretical Methods in Systems Biology 

The aim of this section is dual. First, it is the occasion to present state-of-the-art modeling 

methods that will be mentioned repeatedly in the rest of this thesis. Second, and the most 

significant in light of what I discussed in the previous section, it is to raise awareness about 

the implications of using a specific modeling method on our conceptualization and 

perception of a target biological system. It is even more necessary as there are no 

techniques or tools in theoretical system biology that has not been imported from other 

fields. 

Modeling with differential equations 

A differential equation defines an unknown function by its derivative. Differential equations 

are pure mathematical constructs which inherits from the versatility of mathematical 

symbols to encode problems, models, and solutions. If I stopped here, differential equations 

would appear as a very good sole candidate to practice MBB. And I will indeed use them 

later on in this thesis. But, as differential equations are very well defined, they are 

accompanied by theoretical constraints that are often ignored when modeling biological 

systems. In the following, I will focus on first order ordinary differential equations (ODE) as 

these are the most common in biology. 

A first order (ODE) is of the form 𝑦′ = 𝑓(𝑥, 𝑦) (Hairer and Wanner, 1993) with a given 

function 𝑓(𝑥, 𝑦). Thanks to the work of Cauchy in the 19th century (Cauchy, 1823), we know 

a unique solution may exist for arbitrary first-order differential equations when both 𝑓 and 

𝜕𝑓/𝜕𝑦 are continuous on an open set in ℝ2. In that case, a function 𝑦(𝑥) is a unique 

solution of 𝑦′(𝑥) = 𝑓(𝑥, 𝑦(𝑥)) for all 𝑥 under the initial condition 𝑦(𝑥0) = 𝑦0. This is a very 

important result as it guarantees that a phenomenon modeled this way will always yield a 

solution provided that the function 𝑓 is chosen very carefully. I find it interesting that 

modelers in biology seldom take care to verify that this condition holds for all the differential 
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equations they write. Of course, they often reuse and assemble well-known equations which 

have proven harmless in that regard but there are also instances of models where the 

functions are adapted forms and no care is given whatsoever to verify the condition (Chance 

et al., 1960; Novak et al., 2001); the equations are justified from a biology viewpoint but not 

from a mathematical one.   

The physical interpretation of a first-order differential equation is that it represents the 

speed at which an entity varies relative to a variable (i.e., the derivation variable). Hence, 

using differential equations to model a system biases the conceptualization of the system as 

a set of variable-dependent transformations. In the case of biological systems, the set of 

variables is often limited to time or space. This limitation is the result of a more general 

research bias that modelers cultivate to always conceptualize a biological system as a 

physico-chemical system8. Consequently, in biology, first order ODEs are has been used to 

model time-dependent physico-chemical changes at various scales such as for reactions 

(Michaelis and Menten, 1913; Johnson and Goody, 2011), population (Lotka, 1925; Volterra, 

1926) (see Figure 1.a for an example of the dynamics), epidemiology (Ross, 1916; Ross and 

Hudson, 1917a, 1917b; Kermack et al., 1927), and more. It is noteworthy that in all these 

 

8 Here is another interesting quote from J. H. Woodger (Woodger, 1929) when he discusses the role of 

calculations and explanations in biology (p83): “It is evident that physics and chemistry, having developed 

earlier than the other sciences, have, so to speak, set the fashion in this respect. The hypothetical entities of 

physical science have been imagined on the basis of perceptible physical objects. Consequently when biology 

began to develop it found an explanatory apparatus already to hand with which to pursue analysis. Had biology 

developed first it is at least possible that its infraperceptual entities might have been conceived on a biological 

model, and physics might have employed the notion of the organized body for its analysis. Physics would then 

perhaps have borrowed from biology, instead of vice versa.” 

Figure 1: Ordinary Differential Equations (ODEs) vs. Stochastic Systems (SSs) implementation of Lotka-Volterra prey-predator 
model (Lotka, 1925; Volterra, 1926). The Lotka-Volterra model tries to capture the interactions between preys and 
predators. Preys can replicate natuarlly and die from being eaten by the predators. Predators grow only when eating preys 

and can die naturally. The equation system is 
𝑑𝑝𝑟𝑒𝑦

𝑑𝑡
= 𝛼. 𝑝𝑟𝑒𝑦 − 𝛽. 𝑝𝑟𝑒𝑦. 𝑝𝑟𝑒𝑑 and  

𝑑𝑝𝑟𝑒𝑑

𝑑𝑡
= 𝛾. 𝑝𝑟𝑒𝑦. 𝑝𝑟𝑒𝑑 − 𝛿. 𝑝𝑟𝑒𝑑. Both 

simulations were realized with 𝛼 = 1, 𝛽 = 0.01, 𝛾 = 0.01, and 𝛿 = 1; the seed of the random number generator in 
Mathematica was set to 12357. a) Solved using ODEs. b) Solved using an SS. This is one of the stochastic realization of the 
simulation of the SS which happens to look similar to the ODE solution in value range. Other solutions may have higher or 
lower values, but the qualitative dynamics over time between ODEs and SSs are conserved if equivalent parameter values 
are used. 
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examples, it is not trivial to identify the initial condition 𝑦(𝑥0) = 𝑦0 because a modeler does 

not have control over the biological system and may be able to observe the current values of 

variables but does not have access to the initial ones. This implies that a modeler is often 

forced to estimate the initial values; sometimes thanks to established biological knowledge, 

some other times via unprovable hypotheses. In any case, the estimation becomes an ad hoc 

constraint that limits the outreach of the solutions of the model. This is not an issue in so far 

as the model does not focus on its general predictive capacity.   

The condition on continuity of 𝑓  also has a strange effect that might preclude the 

interpretation of the numerical solution of the ODE model of a biological system. In fact, if it 

is not much of an issue in physics to abstract quantities to floating point numbers to quantify 

abstract concepts (e.g. free energy, entropy, diffusion, debit, etc.), it is not so evident in 

biology where the goal is often to quantify concrete concepts. For example, when modeling 

an ecological system, what does 0.8 rabbit and 12.6 wolves mean? In such cases the value of 

the solution lies more in its dynamics over the derivation variable (e.g., time) than its exact 

numerical value at some points, and its predictive usefulness is limited to the qualitative 

changes observed over a large open set of the derivation variable. For example, is the 

population of wolve forecasted to decrease anytime soon and what would be the decrease 

factor. 

Finally, modeling with ODEs also implies that “everything happens together at the same 

time”. Indeed, a system of 𝑛 differential equations defined by 𝑦′ = 𝑓(𝑥, 𝑦) (with the vectors 

𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛)
𝑇 and 𝑓 = (𝑓1, 𝑓2, … , 𝑓𝑛)

𝑇) is valid for every 𝑥. Hence, if ODEs are used to 

model reaction rates in a cell, it implies that any product 𝐴 of a reaction 𝑅1 that is also the 

reactant of a reaction 𝑅2 is consumed as soon as it is produced. This likely is not the case in 

reality. Physically, 𝐴 is only “consumed” in 𝑅2 when it is in contact with the other reactants 

(and probably an enzyme as catalyst). Even if 𝐴 is produced close to the reactants (and/or 

the enzyme) of 𝑅2 there must be a delay, albeit imperceptible for humans. That is why we 

find, sometimes, mentions in the hypothesis of a model using ODEs that it assumes the 

concentration of the enzymes to be larger than that of the reactants. This assumption 

implies that it “does not take long” for an enzyme to come into contact with the reactants, 

hence ignoring the physical distance. 

Modeling with stochastic events 

A stochastic event (SE) is used to represent the occurrence of a phenomenon based on its 

probability. As for ODEs, stochasticity finds its theoretical ground in mathematics and its 

usage in biology inherits a large base of symbols to encode problems, models, and solutions. 

The nature of the encoding stands, however, in opposition to the determinism of ODEs as 

everything relates to probabilities. As a consequence, even if analytical solutions exist to 

describe SEs, they will only ever describe the likelihood that a variable takes some value but 

never which one it takes until the event is realized. In that way, SEs provide fewer ways to 

probe the phenomenon they represent than ODEs. On the other hand, SEs are better 

adapted to encode unary representations thanks to their discrete nature. For example, I 
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mentioned previously that ODEs abstract the count of individuals due to the condition on 

continuity of the function. SEs are free from this constraint, and they happen “every once in 

a while” as per their probability and the event itself is not tied to a particular numerical 

effect. Hence, part of the modeler’s work is to decide what should happen when the event 

occurs which, typically in biology, allows to increment or decrement quantities down to the 

smallest unit. Thus, it is possible for SEs to represent phenomena requiring concrete counts 

of entities. 

Stochastic systems (SSs) are a set of stochastic events, and their realization is the sequence 

of triggered SEs. It uses the continuity of the axis variable to ensure that there exists a small 

interval [𝑥, 𝑥 + 𝛿( during which only one event is realized. Stochastic systems in the case of 

biological applications are also subject to the bias of always conceptualizing biological 

systems as physical systems, so the axis variable is often time or space. 

The range of application subjects of stochastic systems in biology overlaps with the subjects 

for ODEs. We find them in biochemistry (Gillespie, 1976, 1977), ecology (Getz, 1976) (see 

Figure 1.b for one potential realization of the simulation of the SS corresponding to a Lokta-

Volterra model), epidemiology (Tuckwell and Williams, 2007; Allen, 2008; Jacopin et al., 

2020), and so on. It is actually not rare that a study with a primary model using ODE would 

also present some solutions of an equivalent of the model encoded as an SS, or vice versa. 

The goal when doing both is to observe an average behavior of the model with the ODEs 

while the randomness of a SS allows to observe a different behavior every time a solution is 

computed. 

Gillespie greatly contributed to the modeling of a system of chemical reactions thanks to a 

SS (Gillespie, 1976, 1977, 1992). His modeling started from the probability of collision 

between molecules undergoing Brownian motion involved in a reaction with the form 𝑅𝜇 ∶

 𝑆𝑎 + 𝑆𝑏 → 𝑠𝑜𝑚𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠  during the infinitesimal time [𝑡, 𝑡 + 𝛿( in a well-stirred and 

thermodynamically stable environment. We can demonstrate (Gillespie, 1976, 1992) that 

this probability follows the form 𝑃(𝑅𝜇)𝑡+𝛿
= 𝑐𝜇𝛿  where 𝑐𝜇  is “the specific probability 

constant for reaction 𝑅𝜇”. Gillespie demonstrated that this stochastic process was an exact 

match to the master chemical equation. 

The major implication of using SSs is that it assumes the knowledge of the probability 

function of each SE, and this is far from obvious. In most cases, similarly to how a modeler 

would build up ad hoc functions in ODEs, modelers will write ad hoc probability functions. In 

the case of a system of chemical reactions, these are called “propensities” and Gillespie 

wrote them as the “number of distinct molecular reactant combinations for 𝑅𝜇 found to be 

present in V at time t” (Gillespie, 1976). Hence, for the reactions: 

• 𝑆𝑖 ⟶ 𝑠𝑜𝑚𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 

• 𝑆𝑖 + 𝑆𝑗 ⟶ 𝑠𝑜𝑚𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 

• 2𝑆𝑖 ⟶ 𝑠𝑜𝑚𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 
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The propensities write as 𝑁𝑖, 𝑁𝑖 ∗ 𝑁𝑗, and 𝑁𝑖(𝑁𝑖 − 1)/2 respectively. It is noteworthy that 

these propensities follow the law of mass action of reactions of order 1 and 2. This is a direct 

consequence of the condition that only elementary reactions may occur during the time 

[𝑡, 𝑡 + 𝛿(  and reactions of orders different from 0, 1, or 2, can only be sequential 

combinations of the elementary ones. However, a common modeling practice in the field is 

to write the propensity function as 𝑎𝑖(𝑿) = 𝑓𝑖(𝑿, 𝑡) where 𝑓𝑖  is the deterministic rate 

function that would be used in and ODE version of the model. Indeed, the flux-compliant 

formalism of ODEs offers a much more convenient way to define the reaction rates. The 

theoretical ground for this practice is discussed in (Wu et al., 2011) and they found three 

sufficient conditions which would allow it. The following is a direct quote from the paper: 

1) 𝑓 is a linear function 

2) the reaction is monomolecular 

3) all 𝑋𝑖  in the system are noise-free variables, i.e., without (or with ignorable) 

fluctuations, which implies that the covariance of any two participating reactants is zero 

(or close to zero). 

If none of these sufficient conditions are verified, then the propensity is not compatible with 

the master chemical equation and the theoretical ground of the method vanishes. It is not 

an issue as long as the modeler remembers it and brings forward another rational to justify 

the structure of the equation. 

Modeling with rules 

A rule is a map to describe a transformation between states without committing to a 

numerical or simulation method to solve the transformation. That is why both ODEs and SSs 

can be used to numerically realize the rule. Rule-based modeling (RBM) is the practice to 

describe a process by a set of rules over variables undergoing change through this process. 

RBM is a term which appears mainly in theoretical systems biology (Danos and Laneve, 2003, 

2004; Blinov et al., 2004; Hlavacek et al., 2006; Faeder et al., 2009; Danos et al., 2012; Harris 

et al., 2016; Boutillier et al., 2017) although similar methodologies are employed to describe 

processes in different fields such as cellular automaton (Wolfram, 2002) or agent-based 

modeling (Bonabeau, 2002; Jacopin et al., 2021). RBM technologies, in particular the κ-

language, have put in a lot of effort to characterize its theoretical framework on the basis of 

set theory and has defined its own symbols to encode problems, models and solutions 

(Danos and Laneve, 2003, 2004; Danos et al., 2012; Boutillier et al., 2017). 

Interestingly, the emergence of RBM – in the late 90s, early 2000 – among other attempts at 

devising a formal language to describe biological systems (e.g., based on π-calculus (Regev et 

al., 2000; Priami et al., 2001; Regev and Shapiro, 2002)), coincides with the birth of the field 

of systems biology. Early papers on the two major RBM technologies κ-language (Danos and 

Laneve, 2003) and BioNetGen ((Blinov et al., 2004)) which still remains today motivate their 

work by mentioning the increasing amount of experimental data being collected and the 

overwhelming complexity of interaction networks in biological systems. In fact, RBM was the 
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pre-machine learning era attempt to satisfy the holistic ambitions of system biology. RBM is 

indeed very efficient at reducing a collection of low-level biological phenomena (e.g., post-

translational modification) to a macro representation (i.e., the rule). For example, the 

UniProt (The UniProt Consortium, 2023) entry P04637 of the protein p53 indicates 23 

possible post-translational modifications. This represents 223 states. Thanks to RBM, this 

state space can be compressed to 23 rules which, in BioNetGen, would read as 

p53_Ser6Phospho: p53(Ser6~0) -> p53(Ser6~P) kSer6P 9 . Essentially, this decreases the 

representation complexity of the state’s space transitions from exponential to linear. In that 

way, it is using reductionism to solve holism because there is no loss of information in this 

encoding.RBM is not devoid of issues, however. For example, both mainstream technologies 

κ-language and BioNetGen are focusing on molecular scale phenomena, thus are excellent 

to encode large-scale metabolic or interaction networks, but struggle, for example, to 

encode polymerization reactions or to account for compartments. Despite the real potential 

of RBM, its development has slowed down from 2010 onward and these problems were, to 

the best of my knowledge, never solved. 

Modeling with software 

This category of modeling is a bit different from the three precedent approaches because it 

does not exist alone and is relevant only in so far as it uses some lower-level modeling layers 

to encode the effect of processes. In fact, it is encouraged in software engineering to 

develop libraries with accessible interfaces promoting the combination of several libraries 

inside a unique software. Hence, software becomes a heterogeneous entity that makes the 

best of every subpart depending on execution requirements. For example, I mentioned 

earlier that ODEs are better suited for compartment-based models whereas SSs have the 

possibility to describe events down to the smallest unary elements of a system.  As a 

consequence, it has become standard to have both an ODE solver and an SS solver in 

modeling software in order to use the most appropriate one depending on the nature of the 

model. Some software even allow that both are used at the same time (Takahashi et al., 

2004) and synchronized (to some extent) to represent metabolism with ODEs and gene 

interactions (i.e., for complexation of enhancers or inhibitors) with SEs. 

The Constraint-Based Reconstruction and Analysis (COBRA) (Becker et al., 2007; Ebrahim et 

al., 2013; Heirendt et al., 2019) library is a tool suite to generate genome scale metabolic 

models with language bindings in Matlab or Python. It starts by gathering multi-omics, 

physiology, and biochemistry data to automatically reconstruct metabolic network. This can 

be followed by a manual curation before applying physico-chemical constraints such as 

 

9 This is a very simple example of the rule syntax that would describe the phosphorylation of the residue serine 

at position 6 in the sequence. Most likely, the phosphorylation rule would be preceded by a rule describing the 

binding of the enzyme operating the phosphorylation. Here is a possibility: (next page) 

p53_Bind: A(a) + p53(b, Ser6~0) -> A(a!1).p53(b!1, Ser6~0) kBind 

p53_Ser6Phospho: A(a!1).p53(Ser6~0) -> A(a) + p53(b, Ser6~P) kSer6P 
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thermodynamics, mass conservation, rate laws, further experimental data. The constraint-

based approach aims to reduce the degrees of freedom of the solutions space of a biological 

system. Indeed, relying on the constraints and the theory backing each one of them, the 

generated models have meanings in a well-identified frame (solution space is restricted). 

The COmplex PAthway SImulator (COPASI) (Hoops et al., 2006) library focuses on 

biochemical network modeling that can be simulated using a variety of popular methods 

such as ODEs or SSs with multiple language bindings in C#, Python, and Java. It supports 

arbitrary detection and trigger of events (even within ODEs system) and provides some tools 

to make up for difficulties associated with simulation methods such as parameter estimation 

which is very relevant for ODEs.  

E-Cell (Tomita et al., 1999; Takahashi, Ishikawa, et al., 2003; Takahashi, Sakurada, et al., 

2003; Kaizu et al., 2020) is a modeling and simulation environment focusing on the 

integration of multi-bioprocesses within a model. It is noteworthy that the first version of 

the software (Tomita et al., 1999) claimed to rely on RBM to encode models a few years 

before the emergence of κ-language and BioNetGen. The first version of the system was also 

used to build the first attempt at a whole-cell model using 127 genes of Mycoplasma 

genitalium. Currently, ECell is in the fourth version of its tool suite and provides a custom 

RBM system, support for ODEs and SSs, and can perform single-particle simulations in 

multiple dimensions; all with a Python interface. 

 The VIVARIUM (Agmon et al., 2022) library is a modern take on a multi-framework 

simulation environment that E-Cell originally intended. It arguably possesses the most 

flexible architecture to encode composite models made from the aggregation of other 

models that may be running on different frameworks (ODEs and SSs, but also others such as 

solid body physics). Vivarium was used to build agent-based whole-cell models of Escherichia 

coli colony (Skalnik et al., 2023). I find the case of Vivarium very interesting from a research 

practice point of view because it is one of the rare ones that emphasizes the architecture of 

the software as a driving force for modeling. The paper takes the time to introduce design 

choices because they are believed to enhance the user experience. And, in this case, users 

are likely biologists that want to build models. Hence, it is not only about what the software 

can do but also a reflection on how software may be designed to do a better job at 

modeling in the future. 

The reason why I mention software as a modeling approach is because programming 

languages are, in my opinion, underutilized when it comes to creating brand-new symbols to 

encode a particular system. Usually, a programming language is indeed only viewed as an 

interface for humans to write instructions directing computer resources into performing sets 

of operations to produce desired effects. But in so doing, any software creates symbols 

(variables, functions, classes, etc.) with meaning in the context of the software they are part 

of. Hence, software could be the container of symbols used to encode problems, models, 

and solutions. A major difference between the encodings from software and the three 
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previous approaches is that the latter have unique theoretical frameworks whereas the 

former’s theoretical framework must be redefined for every software.  

To summarize, all these modeling approaches have the capacity, to some extent, to encode 

problems, models, and solutions. Hence, they are, to some extent, all adapted to answer 

“what-questions” and to power the MBB I have in mind. Despite having this capacity, they 

keep being used to answer “how-questions.” Biologists do not like ODEs because of the 

mathematics backing them up, but because they are a formal expression for fluxes. Likewise, 

biologists do not appreciate SSs because of the mathematics backing them up, but because 

they are a formal expression for unary events. For biologists, it is not so much about what 

the framework can rightfully express but the fact that a particular piece of the framework 

happens to be adapted to model a target. Biologists use ODEs or SSs to satisfy physical 

representations. It is the same for RBM which, as I already mentioned, was biased toward 

molecular descriptions from the start. On the other hand, software is only thought of as 

tools to implement the lower-level frameworks (ODEs, SSEs, RBM) and not as a source to 

produce new self-contained valid frameworks. Moreover, existing simulation software in 

systems biology suffers from a static design which corners the modeler into the cycle build 

→ simulate → log → analyze. 

To incite biologists into shifting their focus from considering “how-questions” to “what-

questions”, we need a different modeling methodology. We need to lead the modeler to 

care more about the problem he is studying than the specific solution he is implementing. 

We need tools that give him the power to easily iterate on versions of the models, test 

multiple alternatives, check for the integrity of the models, and share with colleagues. In the 

following sections of this dissertation, I will defend that real-time technologies have the 

means to help me develop this different modeling methodology. 
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II. REAL-TIME TECHNOLOGIES  

This section serves as an overview of Real-Time (RT) technologies to understand the 

constraints of RT technologies and the reasons why I chose them to support MBB. RT 

systems are computational systems, usually integrated within bigger systems, whose criteria 

for a task execution’s correctness not only include the accuracy of the computation but also 

the guarantee that the task is finished before a deadline. Research in the field started in the 

60s, as soon as computers spread in specialized research laboratories or companies.  Since 

then, the research in the field has spanned across several subjects as the raw performances 

of computers evolved, analog and digital communications developed, demand for rare faulty 

control systems rose, costs and performance of personal computers shriveled, Control 

Processor Units (CPU) went from a unique to multiples cores, and a new sector of non-

critical real-time applications opened. In the beginning, the main concern was simply to 

figure out how to make a computer respond to outside signals (which could have been from 

humans or other machines) promptly without disrupting already running processes. Then, 

this concern evolved toward strict time-fault-free control systems in industrial plants or 

avionics and how the RT computer system integrates into a super system. This involved 

concurrent research on task scheduling algorithms (Liu and Layland, 1973; Altilar and Paker, 

1998; Davis and Burns, 2011), cyber-physical systems (when a computer running simulations 

is connected to non-computer components) (Bloem and Naigus, 1988; St. John et al., 1987), 

methodology development for RT system design (Sorenson and Hamacher, 1975; Gomaa, 

1984), guarantee of execution completion (Puschner and Koza, 1989), parallel and 

distributed execution (Avello et al., 1993; Fujimoto, 2001), and so on. 

Basics on Real-Time Systems 

This section on the basics of RT systems covers some terminology, an introduction on 

scheduling algorithms, fault-tolerance, and a history of design methods. 

Terminology 

RT systems are separated between hard and soft. The difference in denomination stems 

from the strictness of the condition on which a real-time system should respect the 

deadline. In the case of hard RT systems, the computation of the tasks must always finish 

before a set clock tick (Kopetz and Steiner, 2022e). Going over the deadline is called overrun 

and will often result in a system failure. Indeed, hard real-time systems are often associated 

with time-critical constraints such as the feedback control of an industrial plant, navigation 

tools in a plane, power grid regulation, or a braking system in a car. Failure of any of these 

will likely result in severe material damage. Conversely, a soft RT system is not expected to 

produce a critical failure upon overrun. Instead, the usefulness of the simulation is degraded 

and evaluated against a quality of service parameter (Buttazzo, 2005) or quality of user 

experience (Kopetz and Steiner, 2022e). Problematics related to soft RT systems are more 

recent than hard RT systems and match the joint decrease of costs of microprocessors and 
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the rise of multimedia purposes (streaming, virtual reality, Internet, smartphones, video 

games, etc.). 

An RT simulation corresponds to the execution of an RT system in which clock time ticks are 

synchronized with the physical time such that one second of simulation maps to one second 

in reality. The consensus is that a simulation step starts by reading potential inputs from the 

other parts of the bigger system in which the RT system is integrated (e.g., input from 

sensors in a plant or human actions on operatable devices), performs necessary 

computations, sends the computation’s results back to any parts of the system that might 

need it (e.g., a valve operator or an engine injection system), receive external events, and 

wait until the end of the step (Cellier and Kofman, 2006; Menghal and Laxmi, 2012). The 

schematic of the loop is in Figure 2.a. 

Several measurements exist that are particularly relevant for hard RT systems to reason 

about how well an RT system and its simulations are indeed real-time. The first of which is 

called latency jitter and matters greatly for Hardware-In-the-Loop (HIL) (Cellier and Kofman, 

2006; Menghal and Laxmi, 2012) RT systems. As the name implies, HIL real-time systems 

necessarily integrate components external to the RT simulation computer with which the 

computer exchanges data as indicated above (see Figure 2.b) during a simulation time step. 

The latency jitter corresponds to the delay between the time at which the external 

measurement was taken, and the time at which it reaches the components in the RT 

computer that will use it. However short this delay is, the value that reaches the computer 

will always be a little inaccurate. In the case of Software-In-the-Loop (SIL) RT systems (see 

Figure 2.b), everything is within the same computer but an artificial jitter (Kopetz and 

Steiner, 2022d) is usually set between simulated sensors and the RT process to simulate the 

real values as closely as possible. Other measures attempt to keep track of the reliability, 

safety, maintainability, availability, and security (Kopetz and Steiner, 2022e) of RT systems. 

Figure 2: Conceptual structure of real-time systems. a) Typical sequence execution of the simulation loop of an RT system. In 
case the execution of all tasks took less time than the deadline 𝑑𝑡, the process waits until then. b) Typical communications 
between a human operator, the simulation, and physical components of the RT system. If there is a simulation, the system is 
often qualified as software-in-the-loop (SIL). If there is a physical part, it often is hardware-in-the-loop (HIL). 
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Tasks execution scheduling to enable real-time 

RT systems rely on scheduling algorithms to execute sets of tasks within deadlines. The 

requirements and constraints for scheduling tasks in an RT system vary greatly whether they 

are hard or soft. 

Scheduling algorithms for the hard RT systems are usually developed using the Worst Case 

Estimation Time (WCET) (Liu and Layland, 1973; Buttazzo, 2005; Kopetz and Steiner, 2022c) 

as a reference because a single overrun might have catastrophic consequences. Studies to 

find other metrics than WCET exist (e.g., maximum execution time (Puschner and Koza, 

1989)), but there is always a trade-off between assumptions about the properties of the 

tasks and the RT system which may lead to ad hoc solutions. Getting those time estimates 

can be manageable on simple, well-isolated, cases analytically (source code and hardware 

specification analysis) or experimentally (execution measurements). However, the number 

of interacting components grows significantly in complex tasks with multiple computation 

processes relying on shared resources (typically data values). In addition, it is always possible 

that the administrative tasks of the computer (i.e., the mandatory tasks dictated by the 

operating system of the computer) account for a non-negligible overhead which, despite a 

valid WCET of the simulation alone, leads to overruns. Hence, there is always a certain level 

of uncertainty about the WCET which motivates us to overestimate them by “typically more 

than 20%” (Buttazzo, 2005). WCETs are typically done pre-simulation run or adapted during 

the development process of the hard RT system. In that case, static scheduling algorithms 

are used to search for the best execution order of all tasks without disrespecting the 

deadlines. Alternatively, there also exist dynamic algorithms (Liu and Layland, 1973) that 

process tasks according to set priorities, and the execution order of those tasks might be 

different from one simulation step to another. For example, (Caccamo et al., 2000) describe 

an algorithm in which tasks are executed within servers with various budgets whose 

deadlines are indexed on the WCET of the tasks. The idea is to let a server help with the 

execution of non-finished tasks if it is finished dealing with its set of priority tasks. To that 

end, every server is allocated a time budget, and it can execute as much as possible of the 

task from another server until the end of its budget. A little later (Caccamo et al., 2002) 

achieved a different purpose with the same algorithmic base. The idea is to modulate the 

accuracy of the output of the task depending on how much budget is available in a server. 

Typically, this means a fast, low-cost, and low-precision version of the task is first computed. 

Then, if there is enough time left, higher precision methods are executed and replace the 

low-precision evaluation. This can be very useful to make the most of the WCET 

independently of how long one execution of the task takes. 

Nothing prevents soft RT systems from using WCET but it would be a waste of resources 

(Caccamo et al., 2002) because nothing bad would happen if a soft RT system overruns. 

Consequently, using the time execution of the average case might be more appropriate. 

Many scheduling  algorithms soft RT systems (Buttazzo, 2005) trade a few overruns against 

much better performances on average. In addition, there are applications for soft RT 
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systems, such as in real-time graphics rendering, which do not have any deadlines at all. 

Instead, the system will always try to minimize the time of a simulation step to emphasize 

fluidity and interactivity. The soft RT systems I developed during my Ph.D. research are 

among these and will be presented in later sections. 

Finally, one should note that scheduling problems got much more complicated since the shift 

from single-core to multi-core CPUs in consumer-grade computers. Indeed, the evolution of 

architecture of CPUs is also a driving force to develop different scheduling algorithms 

(Fujimoto, 2001; Davis and Burns, 2011; Maiza et al., 2019) 

Fault-tolerant real-time systems 

Despite anyone’s best effort, an RT system is bound to fail at some point. As a consequence, 

RT systems include hardware and software techniques to reduce the risk of failures or 

mitigate their repercussions. 

The sources of failures are numerous, starting with the digital nature of computers where a 

single faulty bit in a calculation can produce drastically different results. Such errors can 

easily be the result of internal hardware fault from “natural” obsolescence and software 

bugs, or external fault such as power supply variations, radiations, electromagnetic 

interferences, and wrong input data (Kopetz and Steiner, 2022a). Environmental faults are 

often transient faults (intermittent malfunctions of components in the RT system) which 

might degenerate into permanent faults inevitably leading to permanent component 

failures. Should the failure be irrecoverable, the last resort for the RT system is to trigger fail 

safe or fail operational countermeasures (Kopetz and Steiner, 2022e). A fail-safe system is a 

default idle state of the system guaranteeing that no harm can be done, while a fail-

operational system remains active and keeps providing basic services, maybe even 

everything except the failed component. A typical example (Kopetz and Steiner, 2022e) of a 

fail-safe RT system is a railway signalization network where one failure switches the whole 

network to a state where every train must stop. As for a fail-operational system, it typically 

(Kopetz and Steiner, 2022e) corresponds to a plane navigation system where the failure of 

one component must certainly not interrupt everything else. 

A solution to limit the risk of reaching complete failure of a component is called protective 

redundancy. This was identified early on in the field and implemented in many RT systems at 

the National Aeronautics and Space Administration (NASA) (Aviz, 1969). The gist of it is to 

have multiple identical components synchronously processing the same tasks connected to 

voters to decide which result to select. Soon after, protective redundancy and other 

methodologies  for fault-tolerant hardware such as concurrent error detection, or rollbacks 

to uncontaminated execution streams were adapted for software (Hecht, 1976). The 

Maintainable Real-Time System (MARS) (Kopetz et al., 1989) is an example of a thorough RT 

system with industrial applications which implemented hardware and software redundancy. 

MARS was used for railway-control systems and added a self-checking feature. Interestingly, 

this would cause the RT system to shut down at the first encountered fault without 
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attempting to recover. Hence, both transient and permanent faults would result in a 

shutdown. 

Later, as distributed RT systems with multiple RT computers and sensors spread, the time 

synchronization between the clocks of each RT computer became a major issue. Indeed, 

every clock undergoes a clock drift which desynchronizes them from other clocks10. Harsh 

environmental conditions can significantly inflate the clock drift. Desynchronization implies 

that a set of time-ordered events is not guaranteed to be processed in the correct order in 

all RT computers. Thus, despite known limitations (Kopetz and Steiner, 2022b), an RT system 

with multiple sensors or computation unit must periodically resynchronize all clocks. Even 

so, some clocks may be found faulty, and simply resetting them across an RT system would 

not be enough. Therefore, special fault-tolerant time synchronization algorithms were 

developed (Dolev et al., 1986; Kopetz and Ochsenreiter, 1987; Kopetz and Steiner, 2022b). 

As I already mentioned, the architecture and protocols of modern multi-core CPUs are 

different from the CPUs that were used at the beginning of the research on real-time 

systems. Technologies such as direct memory access, pre-fetching, or cache management 

were introduced in an attempt to reduce the average execution time of arbitrary tasks but, 

in doing so, also introduced non-deterministic task execution and sometimes accumulation 

(i.e., overload). As a consequence, the analytical or experimental methods to estimate 

execution timings became less and less reliable leading to unexpected underestimations of 

WCET and the obsolescence of the scheduling algorithms. The first basic reaction to these 

unpleasant surprises was to overestimate execution deadlines even more to avoid major 

task accumulations and subsequent, long, overruns which could lead to system failures. 

Scheduling algorithms henceforth moved from purely optimization-motivated to include 

prevention of system failures by overrun. Previously developed algorithms were then 

revisited to adapt to new CPU architectures with an emphasis on getting rid of the pre-

runtime estimations such as WCET altogether while still building fault-tolerant RT software. 

For example, the method in (Xu, 2020) adapts software and hardware redundancy to protect 

against both software and hardware permanent failure, while still managing overruns and 

ensuring recovery before and after a failure. Another example is in (Pazzaglia et al., 2021) 

which handles the sporadic accumulation of tasks that may result from the modern 

architectures also without pre-runtime tasks’ time estimations. 

 

10 Quartz clocks in normal conditions drift by about 10−6 𝑠. 𝑠−1. Room temperature or radiation levels can 

severely degrade the clock drift. A typical quartz is expected to drift about 1 PPM per Celsius degree within a 

range of [−20°𝐶, 70°𝐶] according to the chart at: https://www.jauch.com/blog/en/ask-the-engineer-how-

temperature-sensitive-are-quartz-crystals/. This implies that the clock drift of a computer varies depending on 

its activity. 

https://www.jauch.com/blog/en/ask-the-engineer-how-temperature-sensitive-are-quartz-crystals/
https://www.jauch.com/blog/en/ask-the-engineer-how-temperature-sensitive-are-quartz-crystals/
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Design methodology of real-time systems 

The research community in RT systems quickly investigated the best ways to streamline the 

engineering process of SIL+HIL RT systems, in order to master both economic and safety 

issues. 

Different teams and labs in the community shared early on the architecture design of their 

respective RT system, emphasizing which decision was taken to better deal with their 

requirements. For example, (Aviz, 1969) introduces how they managed to design a Self-

Testing And Repairing (STAR) computer by implementing protective redundancy at every 

level and how to monitor, catch, and repair its components failures. The central monitoring 

system is called the Test And Repair Processor (TARP). Even the TARP itself is a redundant 

entity; it is responsible for scanning all byte streams encoding the computations for 

corruption. The paper also goes into great detail about the relationship between the 

software and hardware redundancy protocols to make sure that, when a fault is detected, 

the code is rolled back to prior execution (thanks to redundant data storage), the execution 

is attempted on the same hardware, and switched to a redundant component if it fails again. 

This work is one of the first to describe in detail the special architecture of a system 

implementing what will later be called fail-operational systems that I already mentioned. 

RT systems such as the STAR required extensive finances, expertise, and time and were more 

akin to artisanal masterpieces built to satisfy very specific objectives. However, according to 

Sorenson and Hamacher (Sorenson and Hamacher, 1975), the majority of RT systems were 

developed from a general purpose hardware of the time which lead to ill-proportioned 

systems. The authors indeed agree that computers must be the tool supporting the RT 

system, and not the RT system constraining the computer to a certain type of computation. 

That’s why the authors recommend starting to design any RT system by laying out the 

environment’s objectives first and start writing code as late as possible. This way, they hope 

the designers will take as few design decisions based on what their computer can or cannot 

do. Moreover, they argued that programmers were re-using software practices that were 

successful for conversational command-based programs running on consoles. Unfortunately, 

these programs are non-RT software. Thus, the practices were unable to deliver on the 

timing constraints at the level of the program of a hard RT system. In addition, despite 

several working RT systems and papers deliberating on the best solutions to implement 

individual components of an RT system, there was yet much of any tool to properly encode 

the control and execution loops of the hard RT systems in a chemical plant or a space 

shuttle. The contribution of their work was to introduce a framework to encode RT systems 

from a top-down approach, starting with the description of the environment in which the RT 

system would run, finishing with the tasks of the components of the RT system. This 

encoding was supported by a new high-level language Real-time User’s Design and 

Implementation Language (RUDIL) dedicated to writing real-time systems and their 

computation centers. The authors also developed an RT system writing system including an 

emulator of the physical machines to be included in the target RT system, and a custom 
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resource management meeting the software requirements of the RT system. Of course, the 

design of the resource manager followed a bottom-up approach to focus on start from an 

abstract description of the computer on which the RT system will run. This gives the 

designers the power to focus on the RT system and not the computer since the writing 

system would manage the low-level data. Finally, the RUDIL linker would translate the RT 

system written in RUDIL into operations the writing system can process. According to the 

paper, using RUDIL and the linker allows to smooth 5 layers of computer abstraction 

encoded in the writing system away. RUDIL can therefore be used to build RT systems more 

easily and was a step forward toward more and better RT systems. 

Even if RUDIL helps describing the environment and the components of an RT system before 

starting to write the code, it does not give help deciding upstream how an RT system should 

be designed. Of course, it is doubtful that the engineers of the STAR computer did not think 

about its architecture before actually building it. RT systems engineers made tools to 

accelerate the construction of an RT system, but they had yet at that time to come up with a 

formal guidance on how these tools could be streamlined into an efficient process. Bennet 

touched on this matter in his technical report on RT systems (Bennett, 1980) when 

emphasizing the awareness for software engineering in RT systems research. To my 

knowledge, Gomaa made a major contribution in this area. His first paper (Gomaa, 1984) on 

this subject presents a software design method called Design Approach for Real-Time 

Systems (DARTS) based on structured design11 applied first on how data moves within a 

target RT system. Bennet had also identified the importance of data transits and status (i.e., 

is it shared among several processes?) for parallel or distributed RT systems12 that he calls 

multi-programming. Gomaa argues that tasks of the RT system are identified thanks to the 

loosely coupled data transformations rather than by the functional purpose of the tasks such 

as in the Mascot design method (Simpson and Jackson, 1979; Simpson, 1986). This allows to 

identify which transformations have risks to change the value of the same data should they 

be grouped in different tasks with overlapping execution durations. Totally data-

independent tasks can then be executed in parallel without any worries for data corruption13 

which participates to alleviate the time constraint of RT systems. The DARTS method starts 

with the specification of the system (the set of features of the perfect RT system); then build 

a diagram of the state transitions of the system (how to move between features); then the 

data flow (the data associated to each sate transition); then, the tasks (a group of data 

 

11 Structured design is a system design approach that aims at decomposing the system into components. 

12 It is clear nowadays that data transit and status is absolutely critical to the integrity of distributed or parallel 

software whether real-time or not. But the slight advantage of non-RT software over RT ones is that there 

should be no time-dependent events so there is one less way to trigger processes that might act upon shared 

data. 

13 In fact, the conflict between multiple transformations that might be using the same data is better known 

under the term “data race”. Supplementary Figure A2.1 illustrates this challenge. 
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transformations that “make sense” conceptually in the context of the system while limiting 

having separated tasks with transformations on the same data); finally a task structures 

diagram to specify the communication schemes between tasks. In a second paper (Gomaa, 

1986), Gomaa enhance DARTS in peripheral design activities such as incremental design 

schedule, software development environment, better characterization of the events callback 

sequences, and automated testing through simulation of the integration of the RT system in 

the target environment.  

A very good example of the first 25 years of research in RT systems can be found in the 

modular space shuttle RT simulation system of NASA (St. John et al., 1987). The goal of this 

paper is originally to demonstrate how this RT system can be repurposed and enhanced to 

build a RT simulation system for a year-round inhabited space station (which we know today 

has become reality). Every physical computation module is made as isolated as possible to 

be able to plug-in various virtual components that would modify the physics of the simulated 

shuttle or new hardware corresponding to instruments relevant to the mission’s objectives. 

The paper is also giving their answer to the problem of developing a modular architecture of 

the RT system modularity of the system allow support for different versions of the shuttle 

guaranteeing simulation time and long-term support independent of future simulation’s 

requirement, task distributed execution, and limited software development time. I find this 

paper fascinating as it gives deep insight into the benefits of carefully thinking about the 

architecture of a tool to make sure that that tool is useful to the best of its potential for a 

long time. 

Moving forward, a major critic about the design methodologies based on structured design 

to identify the components of a system is that, in the case of an RT system, there is nothing 

that forces the designers to account for real-time constraints. Of course, the designers will 

eventually think about it, but if the system abstraction and components identification 

methodology included mentions of how frequently a component is used or how time-critical 

it is, it would help the designers to consider these as early in the development cycle as 

possible. That is why new frameworks such as the Hard Real-Time Hierarchical Object 

Oriented Design (HRT-HOOD) (Burns and Wellings, 1994) or the Time-triggered Message-

triggered Object (TMO) (Kim, 1997) were developed14. HRT-HOOD was developed as part of 

a project supported by the European Space Agency and introduces object types with time 

constraints from which any other object must be based on. Namely, it includes passive, 

 

14 Object-Oriented Design (OOD) is a direct offspring of structured design in the field of software engineering. 

The purpose is to decompose a system into functional objects encapsulating the features of a system, as well as 

data object which mainly group variables that are usually processed together or which “make sense” in the 

context of the system. In practice, the separation between functional and data objects is very blurry. The 

“hierarchy” in HOOD implies that objects can be sub-objects of others (e.g., a car and a truck could be sub-

objects of a vehicle object). In modern software engineering, this is called “inheritance” and commonly 

accepted to the point that the “H” never appears in the abbreviations, and we only say OOD. 
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active, and protective which describe whether an object has control over the execution of its 

tasks and whether it can request execution of tasks in other objects; and it includes cyclic 

and sporadic, which describe if the object must execute something on a regular basis or only 

from time to time. An interesting point brought forward by the authors is that HOOD 

supposedly helps the whole life cycle of a software with long-term support, maintainability, 

and reusability of the components across software. Provided this is true15, it implies that 

when someone makes a timing analysis of a component of an RT system, the result of this 

analysis can be transferred. Moreover, if a component is updated, prior timing knowledge 

about the component should facilitate the timing analysis of the new version. Thus, HOOD 

could help iteratively build and refine timing heuristics about components every time they 

are reused in slightly different contexts. Of course, new designers would have trouble about 

these heuristics, but seniors would not. Kim pursued a similar approach and suggested a 

more unified structure for objects with his TMO concept. A TMO contains data and, as the 

name implied, time-triggered services as well as message-triggered services. Time-triggered 

services are functions that are spontaneously triggered once the clock of the RT system 

reaches the time associated with the service. Message-triggered services are functions that 

are requested by other TMOs and may make reservations to spontaneous services of their 

own TMO. The author argue that this object structure is capable of both RT software and 

non-RT software, as it is possible to simply not set any time constraints to any spontaneous 

service. This approach forces engineers to acknowledge the time constraints very early at 

the abstraction level and hence think about how to actually implement them. This would, 

hopefully, limit the number of iterative refinement steps of the RT system and eventually 

accelerate its development.  

I would like to make a special mention about a mathematical method to specify and verify 

requirements of RT systems thanks to a theoretical framework called duration calculus (Ravn 

et al., 1993). Until now I presented non-rigorous abstraction methods of systems which can 

be helpful to conceptualize but cannot be used to check the integrity of the system beyond 

the mental model of the designers. So, we can only reason about the abstractions of the RT 

system informally without any guarantees as there is no theory to back us up. Ravn et al. 

developed a mathematical (logic) way to encode RT systems for control purposes. Thanks to 

the background of logic theory, it is a formal description that do not let suffer from the 

ambiguity of natural language. It supports the definition of time, system states, and 

assumptions about the system (i.e., its features and effects) under the logic theory. The 

 

15 This idea has had its golden time but, as more and more complicated software was developed in the last 30 

years, there is an increasing proportion of examples demonstrating that HOOD has not delivered as much as 

expected in this area, and no one really manage to take a piece of code from a large software and plug it into a 

new one without changes. 
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control law of the RT system is implemented as a finite state machine16 on which duration 

calculus can be applied to deduce nontrivial state transitions under some predicates (i.e., 

conditions). Doing so, Kim demonstrates how to deduce the final state of the RT system with 

predicates simulating the failure of a component. With this approach, qualitative behavior of 

the RT system can be refined before any implementation. 

A question about RT systems that I find very important, but which seem hardly discussed, is 

how often the RT system really needs to run its execution loop to satisfy its function. Ideally, 

we would, of course, like to always update to be as precise as possible, particularly when the 

RT system is controlling a nuclear plant or any other critical system. But this is obviously 

unreasonable because, independently of all the scheduling algorithms that I already 

mentioned, a computer’s resources are not infinite. Therefore, can we find a rationale 

method to take informed design decisions about the execution frequency of the RT system? 

Kaul et al. (Kaul et al., 2012) mathematically analyzed this question for the communication 

frequency between distributed components of an RT system. The paper derives a statistical 

time of when a component (i.e., monitor) in the RT system is left without any update 

because no fresh message has arrived. The optimization target is to minimize this time 

(maximize the freshness) while not overloading the RT system. Interestingly, the paper 

demonstrates that the best messaging frequency is not “always”, so constantly sending 

messages might not help the RT computer yield any better or more accurate results. This 

approach is rare in RT systems research but more prolific in networks and data warehouse 

management research since it is absolutely critical in that field that the data is correctly 

handled while not overloading the servers. 

To conclude this section, I would like to mention the model-based design from (Kopetz and 

Steiner, 2022d) since the name is close from the MBB I defend in this thesis. In RT systems 

research, the goal of model-based design is to produce an actionable model of a target 

physical system (typically an industrial plant) so that the RT system can be developed under 

the assumption that the model is accurate. If this is true, then engineers can constantly 

check the RT system under development against the actionable model. For example, if the 

RT system is supposed to control the valves of a water drainage system, then the model 

would include actionable valves that mimic as closely as possible the valves in the physical 

world on which the RT system will eventually be deployed. The goal of a model-based design 

is to detect and optimize the RT system as soon as possible during its development cycle and 

to not have to wait its deployment in the physical world to discover major issues. In that 

regard, the RT simulation system of NASA for the space shuttle and space station (St. John et 

al., 1987) employs model-based design since the RT simulation is used to test the whole RT 

 

16 A finite state machine is a computation system defined by its list of possible states and the conditions (e.g., 

inputs,  events, etc.) which allow to go from one state to another. For example, a lock requires a key to switch 

from its locked to unlocked state; we could easily complexify this by introducing a permanently locked if a 

fraudulent key is used. 
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system before the shuttle is sent to flight (as well as to train the astronauts). The major 

difference with the MBB I am defending is that the guarantees the model is correct are not 

based on direct observations (such as when replicating the behavior of the valves) but from 

the theoretical framework used to encode the model. 

Applications of Real-Time Systems 

In this section, I will explain why RT systems were chosen to begin with (see Figure 3), and 

not only where they were chosen. This will be useful to understand the reasons that brought 

me to consider RT systems as the technology stack to engage with MBB. 

When real-time systems are imposed 

There are applications where RT systems are necessary. Going back to the modern definition 

of an RT system, a system is real-time if it correctly executes computation tasks before a 

deadline. The leeway given to respecting the deadline is the criteria to discriminate between 

hard and soft RT systems. But this leeway didn’t exist at the beginning; real-time systems 

were agreed to be hard and nothing else because the concept was specifically introduced to 

deal with time constraints. On one hand, I think the power of modern consumer grade 

computers tends to blindfold us and makes us forget that, in the 1960s, the computer itself 

was a constraint. The Apollo Guidance Computer (AGC) had a mere 2 kilobyte of RAM, 36 

kilobyte of memory, 16-bits precision, and a chip running at about 2 MHz. This is at least of 

the order a thousand times less performant than modern smartphones and the AGC still 

Figure 3: Why use real-time systems? Arrows translate as “used to / used for”; dashed arrows indicate a jump to new 
engineering fields that could not exist without RT systems. The very early reason to use RT systems was to help meet 
deadlines despite hardware limitations: RT technologies were more imposed than chosen. The time constraint is also a 
conceptual limitation in network communications and data streaming; independently of the hardware performance, these 
tasks must be executed under deadlines (e.g., phone call, music/video streaming, LIDAR signal in autonomous car, etc.). RT 
systems are also used in situations where it is not the only solution. They are chosen because their architecture allows them 
to manipulate time scales; this includes a one-to-one (1/1) mapping between the RT system’s time and the physical time in 
reality. This is very practical from monitoring and simulation tasks. 
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managed to deliver and assist the astronauts navigate the shuttle in real-time until they 

landed on the Moon. Therefore, even putting aside the fact that, if the AGC had overrun, 

hard failed as a result, and likely had killed the crew, the first reason why RT systems are 

even relevant is because executing tasks fast enough to not let the human operators waiting 

was not a given. In addition to raw computer performance limitations, some applications 

cannot succeed without RT systems because they are conceptualized as real-time to begin 

with. Network communications are in this case because the goal has always been to get as 

close as possible to the real-time communication of humans meeting face-to-face. Even if it 

is machines communicating with each other, there is no reason to not process an incoming 

message as soon as it is received and to react to it once it has been processed. Moreover, 

beyond my comparison with casual talk between humans, there are cases where prompt 

communication over a network participates to the success of a real-time system. This is what 

motivated NASA to upgrade their network communication system in the first half of the 

1960s in their effort to pull through the Gemini and Apollo programs (Sollaeg, 1964). 

Another example of application field which is conceptually dependent on real-time is data 

streaming. Nowadays, the major type of data streaming is the remote consumption of videos 

or music from on-demand platforms, An RT system is mandatory at the level of the 

consumer’s computer to decode the incoming data stream and project a fluid video or song 

to a user (Altilar and Paker, 1998). Methods in real-time signal processing always require 

some attention because the format of the data encodings or the throughput are regularly 

update and ever more efficient RT systems are required for the tasks (e.g., visualization of 

ultrasound data in medicine (Reichl et al., 2009), or 3D volumetric signal for virtual reality 

(Lee et al., 2020)). Consequently, from the 1960s to today, there are cases where the time 

constraint is part of the main problem and not just a side effect of algorithmically complex 

programs. In these cases, RT systems are the de facto solution and impose themselves on 

the engineers. 

When real-time systems are chosen 

Conversely to the previous paragraph, there are cases where RT systems were willingly 

chosen among other possibilities. Or, at least, it does not seem like they are being imposed 

on the engineers. It is only a few years after Apollo that RT systems were identified to also 

be relevant for side-effects of being able to meet deadlines and not only because the 

deadlines were part of hardware or conceptual limitations. Indeed, the definition of an RT 

system only specifies that it must execute tasks before a deadline, but it says nothing about 

when this deadline should be. As a consequence, computers that consistently deliver results 

before a deadline of a few milliseconds or a few hours both qualify as RT system. In addition, 

there is no telling how these milliseconds or hours of computation time in reality influenced 

the mapping between the simulation time and the real time. It may very well be that the 

milliseconds of computation time were enough for the simulation to forecast everything that 

is going to happen in reality in the next few years, or the hours only managed to cover a few 

seconds. In the former case the computer goes much faster than reality, in the latter case it 
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is much slower. If an RT system can go faster or slower, it can also go just as fast as reality, 

and this special class of RT systems was identified to be adapted for many technological 

challenges from the 1970s onwards. For the purpose of my discourse in this thesis, I will 

denominate such RT system as 1/1-RT system17, but, to my knowledge, this term is not used 

in the community. 

Real-time monitoring systems 

1/1-RT systems are used for the monitoring of complex infrastructures to take informed 

decisions about their activity and accurately control or optimize them to avoid accidents or 

wastes. This classically includes the monitoring of automated factories (Lin and Lee, 1989) to 

check on the production line and measure the economic impact of the factory. 1/1-RT 

monitoring systems are also used to control environmental variables such as the water 

quality of the effluents of a laboratory (Koopman and Yamauchi, 1990) or the pollution of 

lake Toba in Indonesia induced by tourism (Rahmat et al., 2016). Real-time monitoring for 

energy production, security, and distribution is also a long-standing challenge with 

numerous sub-problems that benefits from a 1/1-RT system. It starts with the stability of 

nuclear reactors (March-Leuba and King, 1987) and finishes with the distribution of energy 

across a power grid. At the beginning the challenge was “simply” to be efficient and avoid 

wastes or blackouts at peak load times (Stahlkopf and Wilhelm, 1997) that kept growing 

alongside our consumption of electricity world-wide. In the early 2000s the fear of blackouts 

from badly managed supplies rescinded in favor of remote malicious attacks on a power 

grid; thus RT systems started to also monitor suspicious activity on the grid (Qi et al., 2011; 

Srivastava et al., 2018). The most recent issue for energy distribution originates from the 

introduction of renewable energy in the production mix of a country or super system. 

Unfortunately, renewable energy is depending on environmental conditions and exhibits 

large output variations as a result which must be balanced in real-time (Beier et al., 2017; 

Amir et al., 2022). 

Real-time simulation systems 

In monitoring, the utility of 1/1-RT systems reveals itself at the deployment stage, but being 

able to map the RT system’s time to the time in reality also allows to develop simulations of 

systems that will behave as fast as they would in reality. Real-time simulation is useful to 

train humans to face situations and/or to manipulate RT systems they will encounter in the 

future. Examples abound of RT simulation systems for training purposes. I have already cited 

the replica of the space shuttle (St. John et al., 1987); other very different examples include, 

but are not limited to, surgery training (Bro-Nielsen and Cotin, 1996; Cotin et al., 1999), or 

simulation and visualization of organic molecules (Gandhi et al., 2020). Finally, the approach 

 

17 1/1-RT systems are so common today that some publications (Menghal and Laxmi, 2012) assimilate the 

definition of RT systems to the 1/1 mapping case and classify other systems that may go faster or slower than 

real-time as being offline. But I will not discuss this point further and keep the more general definition of an RT 

system. 
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of model-based design that I already explained strongly relies on RT simulations because 

they are interactive – or close to be. The interactivity is, again, a consequence of the one-to-

one mapping between the simulation time of the RT simulator and the time in reality. 

Interactivity – or high responsiveness – allows to rapidly test technical variations of RT 

systems by simulating faults (i.e., fault injection) (Kopetz et al., 1989; Kopetz and Steiner, 

2022d) even beyond the normal range of operation, at a fraction of the cost of the same 

tests performed in reality (Bloem and Naigus, 1988; Menghal and Laxmi, 2012). From a 

macro perspective, investing in a 1/1-RT simulation system is also the guarantee to have a 

unified design framework within the engineering team for a few years (Schiano and Silberto, 

1986; Koopman and Yamauchi, 1990; Haung et al., 2005) which avoids having to re-train 

engineers on new tools for every new RT system project. As a consequence, 1/1 RT 

simulation systems were employed during the development cycle of numerous products in 

an attempt to shorten the overall development time of the final product (Bloem and Naigus, 

1988). The avionics industry is particularly fond of 1/1-RT simulation systems for these 

economic reasons, and developed many of them to provide reusable RT test platforms 

(Chelini and Farmer, 1981; Schiano and Silberto, 1986; St. John et al., 1987; Bloem and 

Naigus, 1988). The modern video game industry is also heavily relying on 1/1-RT systems 

often called game engines. In fact, as I will describe later in this thesis, a game engine is 

much more than an RT system.  

From real-time systems to digital twins 

RT systems are at the origin of a new “buzz word” in engineering research since 2011 that is 

Digital Twin (see on Figure 4 the exponential explosion of associated publications). The field 

of avionics is, once again, a precursor of this design philosophy (Tuegel et al., 2011; 

Figure 4: Publication count per year or articles that contain the words “Real-Time Systems” or “Digital Twin” (capital case or 
not) referenced in Google Scholar between 1960 and 2023 (last count on December 9, 2023). The first found reference of 
“Digital-Twin” is in 1970 for a thesis entitled “Digital Twin of Cardiovascular Systems”. There were also punctual mentions in 
1973 and 1987. Other than those, one has to wait 2011 for the explosion of publications on the subject. The rate of 
publications on the subject of “Real-Time Systems” seem stable (around 250 per year) or with a very small increase since 
2010. 
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Glaessgen and Stargel, 2012; Reifsnider and Majumdar, 2013) which objective is to produce 

an “ultrarealistic” model of each product down to its manufacturing defects once it is out of 

production (Tuegel et al., 2011). The goal of such a model is to perform high-fidelity 

monitoring of individual products and to follow their evolution during their whole life cycle. 

This is the extension of the 1/1-RT monitoring of the factories, industrial plants, power grids, 

and sewer systems that I have extensively illustrated above, to mobile objects. So, from my 

point of view, the conceptual jump between RT systems and digital twins is almost 

inexistant: it is only the miniaturization of monitoring to be able to cover any object of any 

size. The technological jump is much bigger, however. Indeed, digital twins will only be made 

possible thanks to the advent of high-frequency and reliable enough sensors and their ever 

more seamless integration in the Internet of Things (IoT). This trend was predicted by 

Stankovic in 2003 when he described an RT system tailored to handle dense network of 

weak sensors with the goal of high frequency monitoring (Stankovic et al., 2003). In addition, 

digital twins are personalized per product, so there must be one digital twin bound to every 

replica of an object. This digital twin will then be used to simulate the activity of its real 

counterpart before it is active in reality. In avionics, for example, the digital twin of a plane 

will be simulated through variations of the planned flight and, theoretically, everything 

about the plane will be accounted for, including the possible faults of the navigation system, 

luggage unintentionally moving in the cargo bay, the stress levels on every cm² of the 

airframe, and so one. These simulations will then be used to predict the components in the 

plane that are more likely to fail, and the pre-flight maintenance will be adjusted 

accordingly. Then, data will be collected during the actual flight and directly sent to the RT 

simulator of the digital twin to feed it with the latest information about the state of the 

plane; this data can be used to forecast the near future condition of the plane and warn the 

pilots of any incoming anomalies. Then, once the flight is completed, the post-maintenance 

of the plane will also be adapted depending on the status of the digital twin. Such approach 

will inevitably generate massive amounts of RT sensor data as well as simulation data. It 

pains me, but I am more ready to accept big data to support this design philosophy than I am 

for biology. That is because digital twins have not, until now, been associated with ludicrous 

applications and have the potential to increase the security of safety-critical products. 

Indeed, it mainly concerns planes(Tuegel et al., 2011; Boeing and Bräunl, 2012; Glaessgen 

and Stargel, 2012), medicine (Masison et al., 2021; Laubenbacher et al., 2022), factories 

(Schluse and Rossmann, 2016; Schluse et al., 2018), laboratories (Palmer et al., 2021; 

Zhongcheng et al., 2022), and others. However, the day companies will ship digital twins 

alongside each smartphone they produce for their clients only for marketing or to sell new 

services, I will vehemently protest. The takeaway message about digital twins is that they are 

1/1-RT simulation systems applied on high-fidelity models, and that they were introduced to 
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propagate the benefits that RT systems brought for model-based design to model-based 

maintenance18. 

From real-time systems to the Metaverse 

Digital twins, and RT systems through them, are in turn involved in the development of “the 

next iteration of the Internet”19, namely the Metaverse. The Metaverse is originally an 

informal concept from a science-fiction novel titled “Snow Crash” (Stephenson, 1992); it is 

depicted as an immersive 3D environment accessible by wearing a Virtual Reality (VR) device 

and, possibly, additional equipment such suits or gloves that will enhance the immersion. In 

the novel, the Metaverse exists as an alternative world tightly interwoven with reality 

impacting the whole society and its macroeconomy. 30 years later, the concept of 

Metaverse is still fuzzy because evolving along practices (Park and Kim, 2022) and 

technologies (Ning et al., 2021; Buchholz et al., 2022), and industrials and academics are not 

yet completely aligned on the definition of the Metaverse. Industrials more involved in 

manufacturing focus on engineering aspects and define the Metaverse as real-time, 

immersive, engineering grade with data integrity and traceability, and collaborative (Are We 

There Yet? A Status Check on the Industrial Metaverse, 2023). Other industrials that sell 

services among their products focus more on the user experience of the Metaverse through 

entertainment, socializing, and work (The Metaverse and How We’ll Build It Together -- 

Connect 2021, 2021; Are We There Yet? A Status Check on the Industrial Metaverse, 2023). 

A qualitative meta-synthesis of various academic definitions of the Metaverse identified a 

set of 14 “dominant terms” at the top of which is “immersive” (Weinberger, 2022). 

Academia defines immersion (Ning et al., 2021; Wang et al., 2022; Mystakidis, 2022; 

Buchholz et al., 2022) in the context of the Metaverse as users embodying avatars 

(Mystakidis, 2022; Park and Kim, 2022) in a virtual world. Avatars are a virtual representation 

of users that follow their gestures giving multiple users a shared sense of space, presence 

and time (Lee et al., 2021). Immersion in the Metaverse is powered by extended reality (XR) 

technologies. XR includes VR, augmented reality, and mixed reality, each consisting in 

devices that blend (Milgram et al., 1995) the real and virtual worlds to produce various 

degrees of immersive experiences. The virtual worlds displayed by XR devices are rendered 

in real-time thanks to RT simulation software developed using game engines. This implies 

 

18 To my knowledge, this word is not used by the community; I made it up for the purpose of the comparison 

with model-based design. 

19 The CEO of Meta, Mark Zuckerberg is a great defender of the idea that the Metaverse will replace the 

Internet. Here is an extract of his speech during a keynote he gave (The Metaverse and How We’ll Build It 

Together -- Connect 2021, 2021): “We’ve gone from desktop, to web, to phones. From text, to photos, to video. 

But this isn’t the end of the line. The next platform and medium will be more immersive, and embodied internet 

where you’re in the experience, not just looking at it. And we call this, the Metaverse. You’ll be able to do 

almost anything you can imagine, get together with friends and family, work, learn, play, shop, create, as well 

as entirely new categories that don’t really fit how we think about computers or phones today. […] We believe 

the Metaverse will be the successor to the mobile internet.” 
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that everything in a Metaverse is, in fact, encapsulated in a real-time process and that is why 

it can act as the perfect interface for digital twins. The couple digital twin + Metaverse is 

expected to become the new standard of 1/1-RT monitoring systems. Indeed, instead of 

having a few monitors displaying limited amount of information at a time about a factory, 

the factory itself will be entirely reproduced in 3D and fully animated to match the real-time 

condition of every inch of the production lines. Of course, this does not mean that 

aggregated statistics will disappear, but it is a step forward to benefit from immersion for RT 

simulation and monitoring. In conclusion, the Metaverse is, with digital twins, a large 

concept that could not exist without the side effects of RT systems. 

In all the examples of applications of RT systems I gave in this section, at least half of them is 

not used because they are designed to meet deadlines, but because the system to adapt to 

deadlines allows them to scale the map between the execution time of its tasks and the 

physical time in reality. Hence, RT technologies were not used as per what the definition 

precluded them to do, but they were chosen nonetheless for what the definition implied. 

Now that I have explained why RT systems have been used since their creation in the 1960s, 

I will focus in the next section on how I am suggesting using them for MBB. 
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III. CHARACTERIZING SOFT REAL-TIME SYSTEMS FOR MODEL-BASED 

BIOLOGY 

In this section I will motivate the value of soft RT systems to produce tools to build biological 

axioms informally, interactively, and intuitively to spark the interest of biologists for Model-

Based Biology (MBB). Before that, I will summarize the origin and meaning of MBB that I am 

defending in this work. I opened this thesis dissertation explaining how, in my opinion, 

biology, and the subfield of systems, biology was obsessed with data. I criticized this 

obsession arguing first that induction can only yield results at the expense of increasingly 

large resources consumption and is, therefore, unsustainable, and incompatible with the 

modern state of our planet. I also suggested, through the words of Sydney Brenner’s critics 

of systems biology, that understanding the mechanisms of biological systems from data 

alone is intractable and that reverse engineering is likely to fail for biology. I noted that the 

broad application of machine learning techniques will indeed support the reverse 

engineering of biological systems, but that will intensify untargeted data acquisition which 

brings us back to the issue of sustainability. Putting aside these quantitative objections, I 

pointed out that obsessing over data is blindfolding biologists to explore the solution space 

of biology through “how-questions” alone instead of also asking “what-questions”. As a 

consequence, biologists are focusing on the biological systems they can observe on Earth 

which are but a few solutions to generic biological problems. So, answering “how-questions” 

will only give biologists access to points in the solution space, whereas investigating the 

biological problem itself through “what-questions” is more likely to inform them on the 

shape of the solution space. Therefore, answering “what-questions” would have a bigger 

impact on our understanding of biology than answering a collection of “how-questions”. 

However, as answers to “what-questions” are not necessarily observable on Earth, the 

problem then arose to figure out how to investigate general biological problems in the 

absence of observations and I suggested using MBB. MBB as the definition of symbols which 

can be combined to encode and deduce biological knowledge. The purpose of MBB is to 

explore biology thanks to an initial set of statements or axioms that defines a frame from 

which biologists can deduce further statements and formal solutions to general biological 

problems captured in the frame. Of course, the validity of the solutions is guaranteed only 

within the bounds of the axioms. Then, targeted experiments can be used to confront the 

derived statements with the biological solutions observable on Earth. Hence, MBB first 

requires a theoretical framework to encode biological problems, models, and solutions, 

which can efficiently interface between formal statements and experiment data. 

Unfortunately, there has been a few attempts to produce such a framework in the past 

century with little reach in the biology community. That is why, I rather aimed in my 

doctorate research at producing tools to build axioms informally, interactively, and 

intuitively in biology and see what kind of biological solutions emerge. 
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Why Real-Time Technologies for Model-Based Biology? 

I decided to use RT technologies over offline simulation methods classically used in systems 

biology (see again section Modeling with software page 23 for examples) because I noted 

many similarities between the modern applications of RT systems and the goal I am trying to 

reach. I am looking for a way to easily manipulate symbols encoding heterogeneous 

biological data, and to quickly receive feedback on how changes on the input symbols 

influence the behavior of simulation symbols through their outputs. I also want to easily 

manipulate the time variable in order to investigate the different time scales under which 

biological systems are established in environment niches. Models of biological systems are 

also getting increasingly complex, so the architecture must be scalable to afford simulation 

on such large systems. 

The critical deciding factor to use RT systems is obviously the need to manipulate time 

scales. I have indeed extensively discussed the applications of 1/1-RT systems for simulation 

and monitoring purposes in the previous section. Hence, I do not plan to use RT systems 

because they can meet deadlines but because they can manipulate time scales and provide 

RT interactive user interfaces. In addition, research on RT systems has a strong background 

in the development of heterogeneous systems, both physical and digital which match the 

trend in systems biology toward highly heterogeneous models with static data from past 

experiments, real-time data streams from ongoing automated experiments, data streams 

from ongoing simulations, and events from user interactions. Support for this heterogeneity 

is adapted to the definition of various interactive input symbols. Moreover, RT systems are 

the foundation for digital twins and the Metaverse which are highly complex systems, so I 

believe they can manage the complexity level a biological system. In addition, RT systems are 

often used to perform model-based design of other RT systems or themselves. Even if I have 

already explained that the model-based design in the field of RT systems engineering is 

slightly different from the model-based biology I am suggesting, I believe the benefits of the 

former regarding the early detection of issues and hypothesis testing still apply to the later. 

Consequently, I expect RT systems to help shorten the iterative development of viable 

models of biological systems and allow a fast generation of model alternatives in the 

solution space of a biological system instead of focusing on a handful. And last but not least, 

it is ignored in every modeling approach and software that I am aware of, that a living 

biological system is a real-time system. Indeed, it receives input from the outside world, 

process this input, and adapt its internal machinery accordingly. Moreover, it does so under 

soft deadlines which a prolonged overrun (the system cannot react fast enough) leads to a 

critical failure. The reasons why state-of-the-art modeling software do not account for this 

fact is because no biologist has had any use for interactive real-time simulations, and the 

sampling technology to receive inputs from cells as fast as we monitor a nuclear plant or car 

engine is not yet available. But I specifically wish for interactive simulations, and it is only a 

matter of time before autonomous robotic experiment platform can reliably deliver 

measurement streams. 
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Imagining a Perfect Real-Time System for Whole-Cell Modeling 

In this section I imagine how real-time systems would help achieve whole-cell (WC) models 

to illustrate how various levels of integration of RT systems in the design and life cycle of WC 

models would be useful for systems biology as a whole. 

Background of Whole-Cell Modeling 

An ideal WC model is a one-to-one in silico description of everything composing a real cell. It 

is preferred to be bottom-up, starting from the genotype of a cell, it accurately outputs its 

phenotype through the myriad of interactions and regulation of its molecular machinery. It is 

equally the dream of holists and the nightmare of reductionists. WC models result from the 

integration of cellular phenomena and components that are classically studied in isolation. 

The goal of this integration is to simulate the emergence of cellular behavior that would 

otherwise be impossible to get when modeling isolated parts. WC modeling has been in the 

mind of a few since the very beginning of systems biology, notably with the E-Cell project 

(Tomita et al., 1999) (see section Modeling with software, page 23). Rich of his experience 

with the E-Cell project, Tomita deemed WC simulation to be one of the “grand challenge of 

the 21st century” (Tomita, 2001). This statement has proven to be true as WC models are 

still rare more than 20 years later. Of course, there has been progress since the E-Cell project 

(127 genes of Mycoplasma genitalium) with the completion of a WC model of Mycoplasma 

genitalium which was including a complete genome (525 genes) (Karr et al., 2012). More 

recently a partial WC model of Escherichia coli including 1214 genes (43% of the well-

annotated genes) was published (Macklin et al., 2020) followed by its integration in 

simulations of bacterial colonies (Skalnik et al., 2023). Concurrently, alternative WC models 

targeting minimal viable cells (but bigger than the E-Cell) were also published (Rees-Garbutt 

Figure 5: Nature of the intersections between the knowledge of biologists, the knowledge embedded in a whole-cell model, 
and the truth about cell biology. a) Biologists do not know the whole truth about cells, so if the whole-cell model is ill-
formed, there will be biology to learn from it. b) In the limit case where biologists have learned everything about cell biology, 
models can only tell us things we already know or make errors because simulations of the model cannot be exactly what we 
know. So, the more knowledge we acquire about cell biology, the less whole-cell model will be useful. 
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et al., 2020; Thornburg et al., 2022). At every step, all these models are the state-of-the-art 

of what modelers in systems biology can do. They require extensive expertise to build and 

the software platform to simulate them are much more involved than the average software 

otherwise published in the community of systems biology. In fact, this level of complexity is 

one of the reasons why there are so few groups working today on developing technologies 

to support WC modeling. The investment to build a decent model from scratch is frightening 

and hinders the democratization of WC models. 

WC models are advertised more for their predictive capacities, than for their qualitative 

behaviors or what they tell us about fundamental functions in life. Indeed, WC model are 

pushed as platforms for model-based design of biological organisms in synthetic biology 

(Rees-Garbutt et al., 2020), or for hypothesis generation (Karr et al., 2012; Macklin et al., 

2020; Thornburg et al., 2022; Skalnik et al., 2023). The success of these applications is highly 

dependent on how well a WC model will simulate everything happening in the real cell it 

simulates. In practice, experimental biologists expect WC models to deliver a perfect one-to-

one match on every element of the model. 100% and nothing less. This is impossible today, 

however, and existing WC models successfully increase our body of biological knowledge 

only because it is poor enough in the first place (see the highlighted yellow area in Figure 

5.a). Even if a WC model does not cover everything biologists know, it happens that what 

was encoded inside can reach biological knowledge that biologists have yet to acquire, and it 

is this part that makes WC models currently useful for hypothesis generation.  

Unfortunately, WC models are data-based. As such, they are inheriting the faults of reverse 

engineering voiced by Sydney Brenner and which I narrowed down to the intractability of big 

data approaches for biology at the beginning of this thesis. Accordingly, raising the 

predictive capacity of WC models will get increasingly more difficult and costly as it improves 

over experiment tests. Indeed, the more complex a system of interest, the more potential 

interactions, and the more experiments required to test every hypothesis. Suppose that we 

have variables ∀𝑖 ∈ ℕ, 𝑠𝑖 = {0,1} and a set of such variables ∀𝑛 ∈ ℕ, 𝑆𝑛 = {𝑠1, … , 𝑠𝑛}, that 

represents 2𝑛 configurations that must be tested. So, every time a WC models will be used 

to generate hypothesis within that domain, the number of tests will increase by a factor of 2 

(i.e., 2𝑛+1, 2𝑛+2, 2𝑛+3,…). This is a gross worst-case scenario where all variables have an 

effect on each other. Thankfully for experimentalists, outside knowledge helps them put 

constraints and can drastically reduce the number of experiments. Nonetheless, data-based 

WC models are within a self-reinforcing loop to more data to encode more complex 

phenomena, that will generate new hypotheses, which will require more data than the 

previous batch to verify, and so on. Consequently, we will eventually reach a maximum rate 

of hypothesis testing because of the colossal number of mandatory experiments and data 

acquisition. Moreover, as biological systems are not closed systems but open-ended because 

of evolution, the rate of hypothesis testing must be high enough to allow us to catch up, and 

then keep up, with the new states of biological systems. Only then may we hope to reach a 
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100% match between the body of biological knowledge and what a WC model can tell us 

about a cell. 

In the event this happens, however, the limits of using empirical and unformal simulation 

methods will kick in. For example, the complete model of Mycoplasma genitalium from Karr 

et al. integrates 28 submodules. This may seem relatively little but there was (and there still 

is) a lack of formally established techniques to simulate that many modules and the 

hundreds or thousands of equations they contain. Although the exact number of equations 

is not given for this model of 525 genes of Mycoplasma genitalium, the 1214 genes of 

Escherichia coli (Macklin et al., 2020) is based on “19,000 parameter values […] a system of 

over 10,000 mathematical equations […]”. The solution chosen at the time, and which is still 

used today (Macklin et al., 2020; Agmon et al., 2022; Skalnik et al., 2023) is to approximate 

that the modules are independent over small time scales (e.g., 1 sec) such that we can 

sequentially integrate the modules over this short duration. This approximation is good 

enough that both models successfully helped uncover new biological knowledge, but one 

must keep in mind that we have no way to investigate how much the approximation impacts 

the accuracy of the results. Other existing methods of WC simulation such as spatial lattices 

(Thornburg et al., 2022) or the particle simulations with millions of agents20 are also 

empirical to some degree. We know they work because the simulations they generate has 

helped biologists, but there is no way to know how well they perform in theory or how they 

rank between each other. This lack of formal proof is a conceptual limit of modern WC 

simulation technologies and there are arguably very little resources invested in finding 

solutions for it. If the biological knowledge increases but the technology to run WC models 

hits a glass ceiling, we will reach a point where the WCM will only predict things we already 

know or make errors (see Figure 5.b). WC simulation methods must then improve 

concurrently to the accumulation of knowledge or, in the absence of perfect simulation 

results, at least be coupled with a method to evaluate the error made by the WC model 

without having to perform experiments to find out. 

Perfecting WC models is then contingent on technologies that can lower cost of 

development, increase the hypothesis testing rate, and accommodate formal simulations or 

self-analysis. Integrating WC model design and simulation within RT systems can help with 

these three at different levels depending on how deep the integration is.  

Integration level 1: predictive SIL with RT interactive WC simulations asynchronous to 

experiments. 

This is the entry level of integration focusing on adapting the WC models’ simulation 

algorithm to the real-time paradigm. Experiments are performed independently of the WC 

simulations; it can be concurrent to the simulations, but the experiments measurements are 

not periodically fed to the RT simulations in a way that the RT simulations cannot 

 

20 Unpublished system by Dr. Kazunari Kaizu at the Laboratory for Biologically Inspired Computing, RIKEN BDR. 
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periodically optimize its parameters based on the data trace. However, being real-time, WC 

simulations become interactive both during the design phase and the hypothesis generation 

phase. Both phases will likely be interwoven at some point similarly to how early integration 

of RT simulation in the engineering of RT systems led to the identification of shortcomings of 

the said system (see section on Design methodology of real-time systems, page 31). So, 

early simulations will result in the update of the model. Compared to classic WC simulations, 

the modeler will be in complete control of the time scale. He will be able to play, pause, 

resume, go forward, go backward to leverage the manual analysis of the characteristics of 

the model. Furthermore, the models can be updated while they are running, and 

experimental data can be manually added and compared to the simulation while the model 

keeps running. Automated real-time analysis can also be implemented to help detect 

anormal signals and support the identification of theoretical issues in the structure of the 

model. This level of integration of WC models in a RT system helps lower their cost of 

development by accelerating the design cycle on the side of the model and provide tools for 

self-analysis. 

Integration level 2: generative SIL with RT interactive WC simulations with no 

experiments 

This level of integration is identical to the previous one, but the purpose of the integration is 

different. It is not to provide a simulation framework where biologists can easily compare 

the prediction of the simulations with experiments and adjust the structure of the model 

accordingly. Rather it is to explore the biological solution space, it is to provide an interactive 

simulation framework where biologists can proceed by trial and error, ask more general 

questions than usual, and think outside of the biology they can observe on earth. This is a 

tool to investigate “what-questions”. What are the conditions or emergence of information 

storing in cells? What is a minimal cellular system? What is the drive of cellular evolution? 

What are the abiotic conditions leading the systematic emergence of cellular systems? And 

so on. As such, the modelers will probably manipulate more abstract objects in the model 

space and value the comparison of alternatives over the optimization of one solution. Once 

again, the benefits of using RT systems over classic offline simulations is the interactivity to 

accelerate the exploration of the solution space and to quickly get feedback about what is 

plausible and what is not. It is also a perfect playground to analyze the implications of 

various WC simulation techniques and to develop more formal methods in which 

computation errors are analytically defined or very easily measurable.  

Integration level 3: predictive SIL with RT interactive WC simulations and HIL 

synchronized experiments. 

This level of integration inherits everything from level one, but the WC simulation receives 

scheduled periodic measurements from autonomous experiment hardware. The received 

data can be used in at least two ways. In the first case, it is to periodically assess the quality 

of the WC simulations relative to the output of the experiments. This can be done with the 

intent to optimize the design of the WC model or to give feedback on hypotheses generated 
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before the start of the experiment. In the latter case, the modelers already have some 

confidence in the predictive capacity of their model. In the second case, the purpose is to 

monitor cells and to update their digital twin encoded as WC models. Monitoring can then 

be subdivided into two categories. We could have a digital twin of an archetype cell of a 

species that receives the aggregated data from different cells. Or, we could have a digital 

twin of one cell within the population. In both cases the modelers have high confidence in 

the predictive capacity of their WC model. In addition, the latter case is yet very challenging 

as the state-of-the-art single cell sequencing techniques are destructive, but the next 

generation should solve this problem (Tang, 2022). This level of integration is the equivalent 

to monitoring systems for factories or nuclear plants in the field of industrial engineering 

(see Real-time monitoring systems, page 38). This level of integration is the one that will 

increase the rate of hypothesis testing, allowing experiments to be conducted at any time of 

the day, all year round. It is the only solution to hope producing the amount of data that will 

be necessary to heighten and sustain the predictive capacity of WC models.  

I will keep referring to these three levels of integration, although the target is not necessarily 

WC models. 

Transferring Real-Time Technologies to Model-Based Biology 

I have argued in the past few sections why RT systems could be useful for model-based 

biology, now I will discuss the conceptual and technical challenges that pertains to RT 

systems and that I will have to deal with in order to reap the benefits of RT systems.  

I am first looking for an RT system that can help quickly iterate on the design of models of 

biological systems and which remains operatable even as the size of models grow. In the 

frame of this thesis, I focus on the levels of integration 1 and 2 presented in the previous 

section. That is to say, I will focus on SIL RT systems for predictive and generative purposes. I 

am personally more interested in the latter because this is what my definition of model-

based biology is about, but I cannot ignore the appetence of biologists for predictive models. 

Moreover, satisfying both do not put so much stress on the architecture as we will see in 

later sections. The third level of integration of RT systems with HIL is much more demanding 

to implement and this thesis do not contain results about it because there are already 

enough to say about the first two levels. Regardless, I will keep discussing it from a 

theoretical perspective when relevant to not gloss over the future challenges.  

In this thesis, I do not want to consider the problematic of the design of my RT systems only 

under the lens of the question “Does it output the correct result?”21. Unfortunately, this is 

usually happening for many software programs in scientific fields aside from computer 

science. In fact, the pressure scientists are facing to solve their problems at hand leads them 

to disregard how well they are using the tools from other fields that are helping them. I 

believe this issue is not as frequent when the tools are hardware. I think the grounding of 
 

21 Although it is, of course, mandatory to answer this question. 
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hardware in reality raises the users’ awareness of the costs involved in case of misuse. For 

example, bad management of reactants can have dire effects on the number of experiments 

one can conduct. Or wrongly focusing a microscope is not really an option. Whereas the 

immateriality of software and the growing facility with which one can code makes users 

believe that software design is without consequences, and that what truly matters is only to 

get the correct computation result. Behaving this way is no different from using computers 

and algorithms only as fancy calculators. This might have been true until the 90s when 

consumer grade computers had a straightforward architecture. But modern computers’ 

architecture got more elaborated as a result of optimizing their performance without 

increasing the frequency of the CPU. Consequently, calculating something as simple as a sum 

can be at least 10 times faster if you write code adapted to the computer’s architecture22. 

Beyond these technological aspects, the effect of the design of a scientific software program 

on its everyday ease of use is also largely ignored. Very little care is given to its User 

Interface (UI) and User eXperience (UX). For hardware, it would be unimaginable to not 

strive for the best UI and UX possible because it is directly linked to the survivability of the 

product on the market. For example, a microscope which focus ring or controls for the 

position of the plate would be inaccessible to the user without taking his eyes of the 

binoculars would be doomed. For consumer grade software, UI and UX mostly correspond to 

what users can see on a monitor and is also a major concern for software companies. But for 

scientific software I argue that UI and UX concerns spread deeper into the architecture. In 

effect, scientific software must be reusable for the community or, at least, it must be 

explorable. It will hardly be possible for any scientific software which architecture was not 

carefully questioned during its design step. This idea that the design of a software matters 

not only to ensure the correctness of the computation, but also how well one can use it, 

maintain it, and extend it is acknowledged as well in works I have already cited. (St. John et 

al., 1987; Masison et al., 2021; Agmon et al., 2022). 

That is why, I believe more consideration about the design step of scientific software is 

required to discuss how efficiently the architecture of a scientific software powers scientific 

novelty. What are the trade-offs users should be aware of when they decide to do task 𝑇 

with software with architecture 𝐴 instead of software with architecture 𝐵? This is even more 

true in cases such as mine where RT systems are far from the mainstream modelling and 

simulation technologies in systems biology. I believe it is critical to evaluate and 

communicate about whether the challenges contingent to the design of RT systems in heavy 

engineering fields are all transferred when designing RT systems in systems biology. Do all 

design constraints stay relevant in our field? Are there additional ones? For this purpose, I 

 

22 It is indeed very simple to observe. Using the same programming language, one can write code that will be 

better fitted to the architecture of the computer and be about 10 times faster than different version. 

Moreover, the fast code is as simple to write as the slow code. And I am not talking about using multi-cores vs. 

single core; in this case, we can easily reach x100 speed increase (if not x1000) to compute a sum. 
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will use the following citation from the paper describing the RT system by NASA for the 

space shuttle and the space station (St. John et al., 1987): 

“But how should the simulation be structured in order to support a wide 

variety of vehicles and subsystems in fully integrated configurations? How 

should the computer systems be configured such that simulation uptime is 

maximized and future study requirements are independent of hardware 

configuration? How should the simulation be distributed across the 

computer facility to minimize software development time, to produce a 

high degree of confidence during integration, and to allow for 

straightforward operation?” 

These questions all focus on delivering the best tool possible to improve the long-term usage 

of the tool and the quality of the output. 

“But how should the simulation be structured in order to support a wide variety of 

vehicles and subsystems in fully integrated configurations?” 

Translating this question to my case involves replacing “vehicles and subsystems” with 

“biological systems”. Then the question evidently asks about the versatility of the simulation 

system and the capacity to run simulations for various encodings of biological systems. I 

discussed already two major numeric simulation methods in systems biology in sections 

Modeling with differential equations and Modeling with stochastic events pages 18 and 

20 respectively. ODEs and SSs are more adapted to subsets of biological targets or systems. 

In addition, the input data for simulations of biological systems is heterogeneous with, for 

example, static tables of float numbers for parameters or markup files encoding models such 

as SBML (Keating et al., 2020). Therefore, it is worth considering an architecture which 

allows to easily add or remove, say, modules, that may encapsulate functions or 

transformations on other modules which, themselves, encapsulate functions or raw data. 

Then the versatility of the simulation system would emerge and be guaranteed by the 

number of possible combinations of modules. I followed this idea of modules for both the RT 

systems I implemented in the course of my PhD research. 

“How should the computer systems be configured such that simulation uptime is 

maximized […]?” 

This question is about the requirements of the RT system such that implementation is fault-

tolerant, and a simulation continues to run for as long as possible without errors. I believe 

the relevancy of this question highly depends on the level of integration of the target RT 

systems. 

If it stays at levels 1 or 2 for predictive or generative SIL, then I believe the requirements for 

fault-tolerant architecture is low. Of course, it is always something we can wish for which 

will improve the reliability and reusability of the system over its life cycle. But, for one thing, 

RT systems for systems biology have soft real-time constraints. Indeed, for my objective in 

this thesis, I chose RT technologies for the interactivity they enable as in data streaming or 
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video games and not because I needed a system that could consistently meet deadlines. I 

believe there will be no damage impaired in case of overrun. The reason we might want to 

include fault-tolerant systems is to enhance the reliability of RT simulations results with 

protective redundancy of data to protect against failure of the electric power of the 

computer, for example. We might also want to implement a checkpoint system to roll back 

the computation of a task in case a self-check system detected an anomaly such as excessive 

numeric error. In the case of level 3 of the integration of an RT system, fault-tolerance is 

much more significant. Indeed, as level 3 includes HIL, the real-time constraint gets stricter. 

Level 3 RT systems must guarantee that the simulation will not be lagging and stay 

synchronized with the physical time in reality (or faster if we consider forecasting). Overruns 

could not be as critical as in the case of a nuclear plant, but it might imply financial loss for 

any downtime usage of the autonomous robot performing the experiments. Truthfully, the 

likelihood of overrun with modern RT systems (like the ones in this thesis) delaying modern 

robots is low because the former is orders of magnitude faster than the latter unless the 

simulation is incredibly complex (it may be the case for lattice-based or agent-based WC 

simulations). As I focused on levels 1 and 2 in this thesis, the need for fault-tolerant methods 

was low. Moreover, it would have been very time consuming, so I decided to focus on other 

aspects, and I did not implement fault-tolerance. 

“How should the computer systems be configured such that […] future study 

requirements are independent of hardware configuration?” 

This question is about the link between the hardware and the software. It asks two implicit 

questions: i) Will the hardware running the simulation change and how does it impact the 

tasks scheduling, execution, and the aptitude to meet the deadlines? ii) Will the hardware 

external to the RT simulation computer likely change and impact the communication 

channels or network protocols between the two? 

Question i) is relevant for the SIL part of all three levels. I already mentioned on several 

occasions that the evolution of computer hardware had severely impacted the design 

process and final architecture of RT systems (e.g., switch from single core to multi-cores 

CPU). So, preparing for the case where the nature of the hardware might change even if it 

was not the intention of the designers is not uncalled for. Moreover, even though it might be 

branded as niches applications, it is not impossible to wish to run an RT simulation on a low-

power computer. It could simply be in an effort toward green computing to save energy for 

the sake of fighting against climate change. But it could also be for the purpose of a mission 

where the energy supply is strictly regulated. A possible example is the International Space 

Station. It is well-known that biological experiments are performed on the ISS to study the 

adaptation of plants or microbes to living in space. One of these experiments may eventually 

involve an RT simulation system to help the astronauts to pre-analyze the samples before 

they are sent back on Earth. Or, alternatively, a (level 3) RT system might be installed in the 

ISS to automatize the biological experiments and free the time of astronauts for different 

tasks. However, a low-power computer also means that the frequency and computation 
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power will be decreased compared to conventional hardware. Such a decrease will 

inevitably impact the ability of the RT system to meet deadlines and must therefore be 

carefully considered in the design steps: what is the range of expected simulation hardware? 

Question ii) is mainly relevant for level 3 and in the case that simulation hardware is 

distributed. It is about the modularity of the hardware in general. Since hardware is never 

perpetual and the field of autonomous robots for biological experiments is moving fast, a 

robot might be superseded every 3-5 years. It is true that robots cost tens of thousands of 

dollars and it is unlikely that research labs have the funds to renew their fleet of robots this 

frequently (but companies might). Ignoring technological obsolescence, a laboratory with 

several autonomous systems specializing in different types of experiments might want to 

connect the RT simulation systems to any of the robots. Therefore, whatever the cause, if 

the hardware sending periodic data to the RT simulation computer changes, it is possible 

that the nature of the data or the communication protocol changes with it. In the case of 

one of the RT systems I implemented during my research, the simulation hardware has 

limited computation power compared which prevents it to do much more than what it is 

built for. Hence, the RT system was coupled with an external computation unit to delegate 

some work.  

“How should the simulation be distributed across the computer facility to minimize 

software development time […]?” 

I must admit that I could not fully understand the meaning of this question. I could not figure 

out how the distribution of the simulation on the computer facility influences software 

development time. In particular, I am unsure of what the author meant by “computer 

facility”. Is it simulation hardware? Does it include human resources? In the former case, I do 

not understand how distributing the simulation will minimize the development time. Maybe 

because distribution allows us to run more tests and figure out bugs and system faults. In 

the latter case the link between manpower and simulation distribution puzzles me. Thus, I 

could not translate this question to my case. 

“How should the simulation be distributed across the computer facility […], to 

produce a high degree of confidence during integration […]?” 

This question is about the possible loss of the integrity of data when it transits over a 

computing system. Scientific research and engineering both undergo strict constraint 

regarding the accuracy of computation and simulation results. For science, accuracy raises 

the usefulness of experiments and increases the likelihood of enriching a body of knowledge. 

For engineering, it is to improve the faculty to take informed decisions regarding design 

problems. This question is linked to how easy it is to verify or validate computations in a 

simulation and eventually to how well the integration methodologies are supported by a 

theoretical framework. If we can design an RT system based on simulation techniques that 

can be formally analyzed, then we can hope to compute a degree of certainty in the 

simulation’s results. Formalization can happen at different points in an RT system. There is 

the input of data, the computation itself, and the output of the simulation. 
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For the input, I already discussed the difficulties associated with the clock drift leading to 

possible difficulties to restore the original order of occurrence of events which were 

timecoded with two different clocks. In the case of RT systems for biology, I think this 

problem might occur for level 1 and 2 of integration in the situation where different modules 

of a model are solved on different CPU and, therefore, have different clocks. In that case, 

timecoded events on one module might have trouble to be exactly synchronized on another. 

I do not know the details of the distribution scheme, but I would expect this might happen in 

the WC colony model (Skalnik et al., 2023) because the design paper of Vivarium (Agmon et 

al., 2022) mentions heavily relying on CPU distribution for the simulation. Without hardware 

distribution, the synchronization problem for input data might be emulated when 

submodules are approximated to be time independent over some time scales such as for the 

WC model of M. genitalium and E. coli (Karr et al., 2012; Macklin et al., 2020). In such case, if 

an event is simulated at the beginning of the time step, it will only be accounted for by the 

other modules at the beginning of the next time step. Of course, in the case of the WC 

models mentioned above, the modules were separated in a way to limit this situation, if not 

to completely eradicate it. But one must then be aware that the design pressure relieved 

from designing an RT system relying on short time-step independence is, in fact, traded-off 

to more pressure on the design of the model. It might also happen in the case of level 3 

integration if we consider an experimental setup where several autonomous systems 

periodically send measure data to the RT simulation or monitoring system. However, with 

modern sampling technology in biology, the clock times between the two autonomous 

robots must be very desynchronized for a time order error to occur. Indeed, biochemical 

processes are mainly at the order of minutes or above and we can expect clock drift for 

embedded quartz clocks in normal conditions is about 10−6 𝑠. 𝑠−1. So, unless the robotic 

system is recording at frequency higher than the total clock drift over the course of the 

experiment, time integrity is likely preserved. High frequency sampling experiments such as 

measuring the current propagation in cells of tissues might be problematic, however. 

For the computation itself, loss of data integrity might happen because of bounded numeric 

precision and float number calculations. The theory to measure calculation errors has been 

extensively studied for ODE numeric integration. Using ODEs as the computation formalism 

of a model therefore provides ways to take informed decisions about simulation results. 

Modern ODE solvers often rely on the computation of the error to adapt the size of the 

integration time step of the system23. This approach allows to integrate over large time steps 

when the error is small and to integrate over small time steps when the error is large. The 

former typically happens when the numeric solution is not varying a lot over time and, 

conversely, the latter happens when the numeric solution abruptly changes values. In 

biology, the former happens over steady or quasi-steady states, while the latter may happen 

after a regulation factor has been introduced in the system resulting in the activation or 

 

23 The theory is briefly described in Appendix A1. 
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inhibition of a chemical species. To my knowledge, equivalent techniques to measure the 

output error of SSs do not exist. However, the quality of the randomness of the pseudo–

Random Number Generator (RNG) used as the basis of the SSs can be measured. By now, 

some RNG are known to be of poor quality and vice-versa. Whether for ODEs or SSs, 

increasing the accuracy of the computations involves sacrificing some computation time and 

it is always a trade-off between executing the tasks fast enough to satisfy the deadline and 

having good enough simulations. 

As for the integrity of the output data of RT simulations, I am talking about the ability to 

replay or analyze a posteriori the simulations with the assurance that every step of the 

simulation is clearly distinguishable from others and that no recorded data is corrupted. As I 

already mentioned, this integrity is often achieved thanks to protective redundancy of the 

hardware that stores the data: several copies of the simulation output is saved on different 

devices to reduce the probability of corrupted data. This approach appears to me just as 

relevant when integrating RT systems in biology. I will add, however, that independently of 

making sure the data is correctly logged, there is a need for tools to analyze the trace of the 

data. Indeed, in the case of a research activity, building a model is an iterative process and 

every step of this process might be discussed among pears at any time. Therefore, there is a 

need for non-destructive, yet, iterative, recording format of the data of models being 

designed.  

In the case of the RT systems I developed, I faced the need to adapt existing off-line 

algorithms to enable input integrity of data within the simulation. Namely, the correct 

detection and timely execution of events in all different modules. I selected a popular 

variable time-step size ODE solver to integrate ODE systems, and I studied how to include 

traceability of the output data of my RT systems. 

“How should the simulation be distributed across the computer facility […] to allow 

for straightforward operation?” 

In my understanding, this question is the complement of the first question on the modularity 

of the simulation software for the sake of better simulations. Here, it is about the modularity 

of the simulation for the sake of better usage. This question is the expression (37 years ago) 

of my intention to also consider the influence of the architecture of my RT systems on the UI 

and UX of the system. In the original paper, the answer to this question involves the 

architecture of the SIL part but also the HIL part as the RT system of the space shuttle is a 

physical replica of the actual shuttle. According to the paper, the architecture of the shuttle 

was so easily modular that testing alternative models of the airframe of the shuttle for the 

flight simulation or the new on-board radio was only a matter of loading definition files or 

plugging off and on a few cables (I give a bit more details in section Design methodology of 

real-time systems page 31). In this context, a good architecture design drives the 

development cycle of the product. Alternative versions of the hardware and software can be 

seamlessly installed. This will power the model-based approach where designers can try 
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models early on. Overall, an architecture that promotes modularity speeds up production, 

because we can easily perform tests and start manipulations early in the development cycle. 

For levels 1 and 2 of the integration of RT systems for biology, this matter corresponds to the 

seamless update of the model encodings or parameter values. Currently, models of 

biological systems are manipulated exclusively via files (e.g., SBML); hence, when a modeler 

has an idea and wishes to modify the structure of the model, he must adapt the code inside 

the file. Sometimes, the Graphic User Interface (GUI) of the software performing the 

simulations permits to update parameters, reactions, and other concepts encoded in the file. 

But the modifications are rarely accounted for by a simulation unless it is stopped and 

started back at the beginning. Instead, if we consider the simulation of a WC model, users 

could add or remove cellular compartments, drop a carbon source in the simulation 

environment, knockout a gene, induce a signal cascade, and so on. The purpose is to design 

the RT system in such a way that users can test anything they want while the simulation is 

still running. 

In the case of level 3, I believe this question is linked to the variability of the hardware I 

already discussed. The challenge is slightly different however as, here, the problem is to 

willingly test various versions and not to target some range of hardware. In biology, this 

would be more akin to testing various experimental protocols which might result in a change 

of data input in the RT simulation system, even if it is formatted the same way as before. For 

example, it could be testing which protocol is more adapted between counting a bacterial 

population by measuring the absorbance or by image recognition. In both cases, the nature 

of the information sent to the RT simulation system is a count, but the method to generate 

the value is clearly different. Only minimal changes should be allowed on the side of the RT 

simulation system, if any. 

For one of my RT systems, I implemented this type of modularity to be agnostic toward 

external computation hardware that executes tasks too heavy for the RT computer running 

the simulation. 

Additional conceptual considerations when designing 

The last question from St John et al. is inviting to examine the architecture of RT systems for 

the sake of its accelerated development and long-term life cycle. Specifically, how engineers 

should design RT systems so that they can keep shaping and using them for a long time. But 

what about the reverse modality? How should engineers design an RT system so that it 

shapes its users back and orients them toward specific behaviors? Another way to phrase it 

would be: How to design an ecosystem that guides the users in the tasks the software is 

meant to help them accomplish? These questions arguably reach beyond the field of RT 

technologies, and I am sure I could find many conceptual papers on the subject in the field of 

applied psychology or recently trending nudges in marketing. I believe I could find similar 

questions in architecture as well (in the sense of architecture of buildings or cities, not 
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software or systems) where architects often consider how to shape spaces so that the utility 

of the space reveals itself to users. 

I do not wish to venture in these fields at this point of my thesis, however. But I want to 

point out that, including this problematic, as complicated as it may be and seemingly 

unrelated to the primary objective of a software, could have large-scale benefits in the early 

design process of an RT system. For example, engineering and research in RT systems are 

seldom individual tasks. On the contrary, the deployment scale or the criticality of the 

applications warrant collaborative efforts to increase the likelihood of success of the system. 

Developing a new RT system from scratch or updating an existing one is always an expensive 

process; RT systems for engineering tasks are meant to be used during several years 

(Schiano and Silberto, 1986; St. John et al., 1987; Kopetz et al., 1989; Koopman and 

Yamauchi, 1990; Haung et al., 2005) and incidentally define the outline of every future 

engineering tasks that will use it. During the life cycle of an RT system, engineers and 

designers all share a common tool and language. Hence, in my opinion a reasonable 

question would be: how do you design an RT system so that it invites its designers and end-

users to collaborate for the sake of making it even better? How do you shape this RT system 

so that several users can coexist in the user space and complement each other? Indeed, if an 

RT system has a non-negligeable lifetime, it should help different teams work well together 

and not only run simulations or monitoring tasks. 

Biology, like other sciences, is fragmented into several subfields to study life at different 

scales. If we consider that RT systems can be used in biology, my previous question about 

collaboration also holds. For instance, what is the architecture of an RT system that would 

promote inter-specialty collaboration and the mutualization of resources and ideas for faster 

development of models in biology? For the level 1 integration, such collaborative RT system 

would be like a “Google Document for modeling”. Several biologists would connect to the RT 

simulation system and work together in real-time. Experimentalists would provide the data, 

modelers would connect solvers and arrange the structure of the model, experimentalists 

again would comment the structure of the model based on their knowledge and 

observations, visualization specialists would handle the display of relevant variables and 

output data of the simulation, and statisticians would formally compare simulations’ output 

with experimental data. In the case of level 2, the above would stay valid but artificial life 

researchers would probably take the place of fundamental biology experimentalists. Here, 

MBB and the exploration of the solution space of a model would aim to provide explanations 

about the emergence of life and biological functions. The level 3 of a collaborative RT system 

would make use this time (and contrary to what I have been advocating in this thesis), of the 

capacity of RT systems to meet deadlines to efficiently schedule experiments over a crowd of 

laboratory robots (Yachie and Natsume, 2017). The purpose would be to maximize the 

uptime of the robots that have been jointly purchased or are simply shared. 



58 

 

One of the RT systems presented in this thesis was specifically developed with the objective 

to provide an environment where users could work alone, but also with collaborators. 

Additional technical considerations when designing 

Until now I have only mentioned technological challenges of implementing an RT system as 

consequences of conceptual challenges. In this section I will concentrate on technological 

challenges that are valid when implementing an RT system for biology but that are not 

present in state-of-the-art offline modeling software in systems biology. The primary source 

of technological challenges is the real-time constraint. 

Whatever application it is for, the paradigm to execute a heterogeneous set of tasks under a 

deadline prevents from using many algorithmic solutions that were working fine in an offline 

system. Especially when the set of tasks is dynamic, either because some are aperiodic or 

their definition might change during the simulation, it becomes impossible to use static 

scheduling algorithms ahead of the simulation. In the worst case, the order of execution of 

the tasks must be reevaluated at the beginning of every step of the simulation. The data 

storage of the simulation elements must also be always dynamic. Indeed, with an interactive 

RT simulation system, the parameters, rules, or equations defined in a model file (e.g., 

SBML) might be changed by the user at any point of the simulation to test a different 

configuration. Updating a value is not going to be much different in an RT simulation 

software compared to an offline one. But adding or deleting a value will change the memory 

layout and might trigger moving an entire table of values from one point of the memory to 

another. This copy will evidently take time off the execution and put more constraint on 

respecting the deadline. Moreover, if a component of the model is deleted from the 

simulation, every other component that was using its output will not receive data anymore 

or received the data from another object that took its place in memory24. For example, 

biological model files often define equations for reaction rates. This reaction rate might be a 

composition of numeric constants, parameters defined in the file, chemical species 

quantities, or other functions (e.g., 𝑓′(𝑡) = 0.5 ∗ 𝑘2 ∗ [𝑋] + 𝑔(𝑡)). In an offline simulation 

software, the code corresponding to the equation would be generated at the beginning of 

the simulation and statically linked with the values (i.e., point to the memory location) of 𝑘, 

[𝑋], and 𝑔(𝑡). But, if the user decides to internal representation of 𝑔(𝑡) or delete parameter 

𝑘, or species [𝑋], what should be done to compute the value of 𝑓′? Deletion might result in 

memory error and simulation crash. It is, of course, possible to implement countermeasures, 

but should it be a fail-safe or fail-operational system? What are the coding constraints of 

both? How to implement it so that it has a minimal impact on the objective to meet the 

deadlines? 

 

24 That is called a stale pointer in C++. This kind of error is very language specific. But it is easy to encounter 

similar bugs in any language when creation/deletion of objects is involved. 
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Another challenge stems from the size of 

the RT time step (i.e., the deadline) relative 

to the size of the integration time steps of 

the numeric solvers. This mainly concerns 

continuous solvers such as the ODE solvers 

which may require a much smaller time 

step than the RT time step to limit the local 

error. In fact, it is rarely possible to ask the 

ODE solver to integrate for more than a few 

milliseconds or even microseconds for 

biological systems. But the RT time step is 

not limited in size and could be of any time 

order according to the definition of an RT 

system. The solution, in that case, is to have 

the ODE solver integrate within the 

boundary of the RT step using an adequate 

integration step size to limit the local error (corresponds to subdividing the grey area into 

smaller steps such as the red one in Figure 6). But then, the problem arises to correctly 

detect and synchronize the execution of events within the integration process. Is it necessary 

to adapt the ODE integration because an event was detected? In which case, the event 

detection algorithm must be triggered at the end of every integration step, then the 

integration must be rolled back to the time right before the event, execute the event, and 

resume the integration (see Figure 6.a). Or is it possible to apply events only at the scale of 

the RT time step (see Figure 6.b)? In which case, events detected in the past RT time step are 

simply approximated to have happened right before the beginning of the new RT time step. 

The two options have dramatically different implication on the computation cost of an RT 

time step with the former being much more expensive, but also much more accurate. The 

latter option is the choice that was made for the WC model of M. genitalium (Karr et al., 

2012), and which, to my knowledge, stays true in Vivarium (Agmon et al., 2022) for in-

between modules events. 

In the last section of my thesis, I concretely describe the RT systems I developed. I give the 

major architecture details and how they relate to my vision of MBB. I will describe use cases 

and give running examples. 

Game-Engine-Inspired Real-Time Systems 

I will conclude this major section by presenting Game Engines (GEs) as their architecture, 

features, and development cycle practices inspired the RT systems that I developed. 

Generators of “soft real-time interactive agent-based computer simulation” 

Jason Gregory, author of the book Game Engine Architecture (Gregory, 2018a), analyzed that 

scientists would probably call video games “soft real-time interactive agent-based computer 

simulation” (third edition, page 9). A GE is a reusable software packing all the core tools and 

Figure 6: Event execution options during simulation 
integration. The grey area represents one RT time step. The 
red area represents one integration time step. a) Higher 
precision of the timing of execution of simulation events. The 
algorithm backtrack to the start of the step (2), integrates 
until right before the event is supposed to execute + do 
execute it (3), then resumes integration (4). b) The algorithm 
waits for the end of the RT time step. to execute the event. 
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technologies used to author video games. Therefore, a GE is a generator of SIL soft RT 

systems. This characteristic only should suffice to realize the potential of a GE-like software 

for MBB. Indeed, my vision of MBB involves quickly iterating over a model through RT 

simulations to optimize it (biologists who want predictions), or to generate viable model 

alternatives (for me who wants to explore the solution space of biology). Thus, I need a 

generator of RT simulations and, as I discussed previously, the deadline constraints for the 

RT simulation of a biological model are soft which makes GEs a perfect match in this respect. 

Moreover, I am explicitly interested in the interactivity of the RT simulations for a biological 

model to obtain immediate feedback of the choices made by the modeler and further 

support quick design iterations. Iterating over a model will also likely involve a lot of trial and 

errors, updating values, and adding or deleting components of the systems. This type of 

data-wise dynamic environment is common in video games where many objects are 

managed, created, and deleted as the player interacts with the simulation. This is what 

Gregory included in the “agent-based” denomination in the definitions of video games. GEs 

therefore seem to also have achieved support for dynamic simulations that I am looking for. 

In addition, these agent-based simulations are rarely small. On the contrary, there is a fierce 

fight in the video game industry to make stunning simulations thriving with details even on 

embedded hardware with limited computation power. This underlines the capacity of GEs to 

scale up should there be a need for large-scale simulations. As models in biology becomes 

increasingly more complex (e.g., WC models), the guarantee that GEs can also successfully 

deliver for these extreme scenarios should be very appealing to any modeler in systems 

biology. GEs are can also scale up to integrate very heterogeneous data types (e.g. audio, 3D 

models, textures, physics models, code scripts, and so on)25. Likewise, biological simulations 

must integrate heterogeneous data ranging from model files (e.g., SBML) to raw data from 

experiments or other simulations. Heterogeneity in biology is also accentuated by the 

provenance of the data from databases such as BiGG (King et al., 2016), MetaNetX (Ganter 

et al., 2013; Moretti et al., 2016, 2021), or BioModels (Malik-Sheriff et al., 2020), for which 

models are not harmonized and translations are non-trivial. Finally, GEs are highly optimized 

software with the belief that a well-designed architecture enhances the way it is used. 

Notably with the modularity of the GE itself which helps engineers extending the capabilities 

of the engine; this practice is called “engine tooling”. This is not a direct requirement for 

MBB but, as I have already argued, I believe it is a good practice for scientific software 

engineering. Therefore, GEs successfully solve similar ranges of problems than the ones I am 

facing to make MBB a reality. 

 

25 Gregory gives the following list section 7.2 page 493 (third edition) (Gregory, 2018a): “Every game is 

constructed from a wide variety of resources (sometimes called assets or media). Examples include meshes, 

materials, textures, shader programs, animations, audio clips, level layouts, collision primitives, physics 

parameters, and the list goes on. A game’s resources must be managed, both in terms of the offline tools used 

to create them and in terms of loading, unloading and manipulating at runtime.” He gives a slightly more 

general list a bit earlier in the book (section 7, page 481). 
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About the real-time simulation loop of a game engine 

The RT simulation loop of a GE is traditionally called the Game Loop (GL). GEs are soft RT 

systems which may not have to guarantee the execution of one GL before a deadline, but 

instead execute as many GL as possible. That is because one of the marketed criteria for the 

success of a game is how smooth it is on a target hardware, which is equivalent to achieving 

a high refresh rate of the game simulation and the visual rendering (hence as many GL as 

possible). At the beginning of the millennial, the target refresh rate of video games on 

consoles would often be of 30 Frames Per Second (FPS) which effectively gives a time budget 

of 33 ms to execute a simulation step. Later, with the advent of more powerful hardware on 

consoles, video games are often advertised to run at a stable 60 FPS (16 ms). On a computer, 

however, consumers expect the game to run as fast as their hardware allows it for the best 

experience possible. In that case, it is not rare to have machines that run a particular game 

at more than 60 FPS, and even up to 300 FPS (3 ms) for some competitive titles. Even in 

these cases, consumers expect the frame rate to be stable enough in all circumstances of the 

simulation so that variations are unnoticeable. That being the case, unless the game is highly 

optimized, or the hardware is not saturated by the simulation, the higher the frame rate, the 

more complicated it is to keep it stable. The reason is easy to understand: video games have 

variable amounts of work to do every GL, if the simulation allocated a tight time budget for 

one GL based on the average workload, but there is sudden spike of activity, there will be a 

transient drop of frame rate. Overruns for games therefore initiate a decrease in quality of 

the simulation and user experience. In extreme cases, critics from consumers and negative 

reviews are bound to severely impact the sales of a game and impair a loss of income. Be 

that as it may, no life-threatening damages will ever ensue for the consumers, so GEs are 

indeed soft RT systems. Consequently, a GL may have to “Wait Until” if the frame rate is set 

Figure 7: Various execution sequence of real-time loops. a) Same as Figure 2.a, provided for comparison; typical sequence 
execution of the simulation loop of an RT system. In case the execution of all tasks took less time than the deadline 𝑑𝑡, the 
process waits until then. b) Basic variable time step size. The time budget of the next step is set to the execution time of the 
step that just finished to be processed. It assumes the execution of the next step is not going to be much different from the 
past one. This will naturally stabilize to on the best update rate the hardware can afford. Simulation and rendering have the 
same time steps. Main issue of this architecture is that the quality of the simulation depends on the power of the hardware 
because small 𝑑𝑡 implies higher precision for the integration. c) Semi fixed time step size. Compared to the loop in b), the 
simulation has its own fixed time step. The integrity of the simulation is better maintained. The difficulty with this approach 
is to select 𝛿𝑡 such that even low-end computers can finish to execute the simulation in less time than 𝑑𝑡𝑛. 
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such as on consoles (similarly to RT loops in heavy engineering, see Figure 7.a), or start 

processing the next update immediately such as on computers (this is the case in Figure 7.b 

& Figure 7.c ). 

Another specificity of GLs over simulation loops in heavy engineering RT systems is the 

presence of a specific rendering task concluding the GL (see Figure 7.b & Figure 7.c). In 

practice this task takes a big share of the time budget. Indeed, rendering the state of the 

simulation on a display is the major output for video games and high visual quality is often a 

selling point for games. So, it is not surprising that most of the time budget is dedicated to 

the rendering at the expense of the simulation. However, it is unreasonable in the scientific 

context represented by this thesis to allocate more time for stunning visual graphics if it 

means decreasing the precision of the simulation. This is one of the major hurdles that must 

be dealt with when adapting a GE architecture to scientific simulations. In this work, one 

solution I implemented is to decouple the computation resources used for scientific 

simulations from the resources used for graphic rendering. The second solution is simply to 

use a low-cost rendering scheme to give more importance to the simulation task. Finally, a 

classic GL do not contain any communication with physical components because games are 

expected to be self-contained on the machine of the consumer (computer, smartphone, or 

console alike). There is also no need to synchronize with other simulation systems that might 

be running on distributed nodes, and which would be computing complementary simulation 

data. Indeed, if a video game happens to be a multiplayer experience over a network, the 

communications are processed as part of the simulation task. To my knowledge, there is no 

game that would rely on the aggregated computation resources of a set of connected 

machines. In this work, I will only be concerned about level 1 and 2 of the integration of RT 

systems in modeling for biology, so no communications with hardware will be required. 

As I mentioned, the target frame rates of the GL are set provide the experience possible for 

consumers depending on the computation resources their hardware has. One might chose 

to implement slightly different flavors of the update policies of the GL as a consequence 

(Fiedler, 2004; Nystrom, 2014; Gregory, 2018c). The easiest solution that is also reasonably 

agonistic of computer hardware decouples the simulation update from the rendering 

update. The former will be computed at a fixed integration time step, while the latter will be 

updated only after simulation has finished all its integration steps (see Figure 7.c). Nystrom 

described this algorithm as the simulation loop “playing catch up” to the 𝑑𝑡. The main 

benefit of this approach is to make the simulation computation deterministic across all 

hardware, whether low-end or high-end. Indeed, the alternative solution where both 

updates are not decoupled (see Figure 7.b) will result in the high-end hardware doing more 

updates than the low-end hardware. In such case, we will have 𝑑𝑡𝑙𝑜𝑤 > 𝑑𝑡ℎ𝑖𝑔ℎ, so the local 

error of the simulation integration will be higher for the low-end hardware. In the decoupled 

solution (see Figure 7.c), however, the simulation integration step is always 𝛿𝑡, which is fixed 

in advance by the engineers. Consequently, both low-end and high-end hardware should 

perform very close computations. The delicate point then becomes to find a value for 𝛿t 
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which is not too small that the low-end hardware might be overwhelmed. In fact, if 𝛿t is too 

small, then the computation time to integrate the simulation from 𝑡 to 𝑡 + 𝑑𝑡 might become 

greater than 𝑑𝑡. If this happens, the simulation will lag and be asked to integrate bigger 𝑑𝑡 at 

every step, which will result in bigger computation time, and so on. A security to avoid this 

“spiral of death” (Fiedler, 2004) is to set a maximum threshold 𝜇 for 𝑑𝑡(Gregory, 2018c). 

This can protect against transient expensive simulation updates on a hardware which 

normally has no problems. But if we set 𝑑𝑡 = 𝜇 all the time because the hardware is never 

powerful enough to catch up to the real-time, the simulation will be slower than real-time by 

the factor 𝑑𝑡/𝜇 every step. On another note, Fiedler also argues (Fiedler, 2004) that, 

because of floating point errors during calculations, a different number of integration step 

between low-end and high-end hardware on the coupled solution (see Figure 7.b) will 

produce different rounding error accumulations as well.  

The game engine frameworks I used 

The RT systems I developed in my thesis are using two different game engine frameworks. 

One of them is entirely custom and inspired from general architecture and pattern designs 

encountered in GEs. This is the one that I developed as a tool to support my vision for levels 

1 and 2 of RT biological simulations. I had to make concessions, however, due to the 

gruesome size and complexity of building a typical modern game-engine-like software from 

scratch. The second RT system uses the game engine Unity (Unity Technologies, 2022b) to 

benefit from the already existing support for 3D simulations. Unity is a professional game 

engine which is now used in many other fields than the video game industry such as 

architecture, automobile manufacture, cinema, robotics (Unity Technologies, 2020b), and AI 

(Unity Technologies, 2020a, 2022c; Juliani et al., 2018).  I developed this second RT system to 

investigate how the architecture of an RT system can promote RT collaboration among 

biologists in an immersive 3D virtual world. 
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IV. USING SOFT REAL-TIME SYSTEMS FOR MODEL-BASED BIOLOGY 

The RT systems I developed during my PhD thesis are tools supporting my vision of MBB. 

Namely, tools that motivate biologists to consider the solution space of biology instead of 

punctual observations. To do so, my RT systems were designed to easily test alternative 

versions of the model and to provide users with as much flexibility as possible as to what 

kind of model they want to build. The flexibility was achieved by giving the possibility to 

manipulate the passing of time of the simulations, change parameter values at will, add or 

remove symbols. Components of my RT systems were inspired both by RT systems geared 

for monitoring and simulation in heavy engineering. I was particularly impressed by the 

thoughts, concepts, and methods researchers on RT systems developed to rationalize the 

design of RT systems. In particular how they strived to include a working system as soon as 

possible in the design cycle to perform tests early on and quickly identify the shortcomings 

of the current version. In addition, I explored how to design an RT system so that it 

motivates the users to work collaboratively to increase the final quality of the model. My RT 

systems fall within levels 1 and 2 of the integration of an RT system with biology. Although I 

did keep in mind the possibility of extending them to level 3, there is no direct support. The 

RT systems I developed are not the most optimized, because their goal is first to introduce 

RT simulations in the modeling framework of biologists. In a way, this work is equivalent to 

the early research on RT systems for heavy engineering in the 1960s: it is first important to 

understand the advantages by examples before we can identify what should be optimized. 

Designing a Soft Real-Time Simulation Engine: ECellEngine 

ECellEngine is meant to help biologists 

explore the solution space of biology 

rather than focusing on specific solutions. 

It can be used to build, and analyze models 

while the simulation is running in real-

time. The source code of ECellEngine is 

accessible publicly on GitHub 

(https://github.com/ecell/ECell_Engine). 

User requirements: build, play, learn 

ECellEngine must give the possibility to assemble heterogeneous biological data, easily 

interact with this data in real-time to for edition and analysis. 

Build: assembling heterogeneous data | This concept is illustrated by the blue section 

denominated “Build” in Figure 9. The first responsibility for ECellEngine is to support the 

variety of data used in biology. This starts with models which have either been built from 

scratch or extracted from popular model file format in systems biology such as SBML. In 

addition, ECellEngine shall also be capable of processing raw experiment data files (e.g., csv 

Figure 8: Logo of ECellEngine. 

https://github.com/ecell/ECell_Engine
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or other table-like format) or ontologies. Once the content of the files has been translated to 

data structures internal to ECellEngine, they shall be collectively referred assets (as it is the 

custom in a GE). Given the diversity of the files potentially relevant to define a model, 

ECellEngine must, of course, implement an extensible file importer that can be easily accept 

new parsing strategies. Moreover, it is possible that different model files will refer to similar 

variables but using different names. Or, on the contrary, different variables will have 

colliding names. The probability of such cases is non negligeable because model files stored 

on databases are not harmonized at the level of their respective content. To address this 

issue, the asset system should perform a conflict check on each import and reports 

anomalies to the modeler. The system should also be extensible to rely on popular 

ontologies for the biology community in order to suggest curated interactions between 

entities identified in independent model files. Finally, as will be expressed in the following 

sections as well, the assets will be used very dynamically as a consequence of the 

interactivity. Therefore, ECellEngine must ensure easy access to the assets via a global and 

very open data state. The data state centralizes and exposes the data contained in the assets 

imported while building a model. This way, any processes related to a simulation can query, 

update, and display the data. 

Play: Interacting with data in real-time | This concept is illustrated by the red section 

denominated “Play” in Figure 9. The next responsibility of ECellEngine is to effectively 

support my vision for MBB thanks to interactive real-time simulations. For this, I want 

ECellEngine to hand over full control of the time axis of simulations to modelers, giving them 

the opportunity to pause, play, resume, accelerate, decelerate, go forward or backward, 

advance simulations step-by-step or continuously. This feature will be coupled with the 

possibility to update the values exposed by model assets that were added to the simulation 

environment and that participate to the integrity of models. In addition to updating values, 

Figure 9: High-level structured view of the user’s requirements for ECellEngine. It has three main parts. “Build” corresponds 
to the components involved with the real-time construction of biological models. “Play” corresponds to the components 
involved in the interactive real-time simulation. “Learn” corresponds to the components involved in the real-time analysis of 
the simulation. 



66 

 

modelers shall be allowed to add new assets to the simulation environment or to delete 

already existing ones. Modelers shall also be given the possibility to switch from stochastic 

to deterministic solvers at run-time whether they are, for example, more interested in the 

diversity of the simulations or steady states. Such switch will invariably require parameter 

conversion that ECellEngine must account for. 

Learn: Analyzing data in real-time | This concept is illustrated by the orange section 

denominated “Learn” in Figure 9. The final responsibility of ECellEngine is to leverage real-

time interactions. Interacting with simulations in real-time is very different from the 

mainstream model design cycle in systems biology. In fact, the usual approach enforced by 

other software is to sequentially describe the model, run a simulation, log everything, and 

analyze the log. Then, depending on the results of the analysis, update the content of the 

model and restart the cycle. But as ECellEngine allows to do the first two steps of the cycle in 

real-time, the boundaries between the steps get very blurry and it is only natural that the 

output of the data might also be analyzed in real-time. Furthermore, my vision of MBB 

includes iterating through the design of a model, and it is reasonable that, at some point, the 

modeler will want to compare alternatives and not just overwrite the previous version of the 

model. Consequently, ECellEngine shall support the instantiation of alternative simulation 

environment that branch out from an already running version of a model. Then, ECellEngine 

should offer the possibility to display the state of each model; for this purpose, RT plots 

seem adapted enough. These features will be easier to implement if ECellEngine do possess 

a highly open data state per simulation as I mentioned previously. (see the connection 

between the red section “Play” and the orange section “Learn” in Figure 9). However, I can 

easily imagine that manual RT analysis of RT simulations can quickly become tiring, especially 

if the simulations of several alternatives are running concurrently. To help with this problem, 

ECellEngine shall include software objects that I will call watchers and events to help 

automatically track elements of the simulation and trigger responses to help the modeler 

manage the simulation. For example, the response could be to record the numeric values of 

the last 𝑥 seconds of simulation, to update the value of a parameter, or pause the simulation 

and let the user decide. This kind of automatic RT data analysis will likely be enriched quite 

fast as ECellEngine is used on real modeling tasks. Finally, I expect RT interactions with 

simulations to lead to the necessity to remember every modification a modeler has made to 

a model in order to understand how the final version was reached. To this end, ECellEngine 

shall also include data structures that I will call scenario which contain a record of everything 

that happened during a simulation (manual or automatic modifications) to allow to replay 

the sequence in ECellEngine or to analyze it on a third-party tool. 
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Elements of architecture 

The code base is much too large26 to be discussed in its entirety here, so I will focus on three 

aspects of the architecture that are related to challenges of RT systems or requirements of 

this project.  

Open, accessible, and flat data state | ECellEngine’s data layout was designed to facilitate 

the requirement “Play” which involves potentially adding, editing, and removing a lot of 

components from the simulation space. Conventionally in Object Oriented Programming 

(OOP), the data relative to an object is stored within the boundary of this object. This 

approach to data layout in a software is often the modern default choice and is heavily 

taught in computer science classes because it makes it straightforward to translate one’s 

mental model of a problem to code (as long as we are using an OOP language). Indeed, 

mechanisms in the physical world are built from well-defined and carefully shaped lump of 

atoms, and we usually judge the brilliancy of an engineer by his capacity to assemble these 

parts together. As such, our physical –artificial– world is overflowing with such items. So, 

OOP has been extensively used in software engineering since its advent in the early 80s and 

the majority of modern code bases are using OOP one way or another. The field of RT 

technologies is not exempt as illustrated by the couple of design methodologies (Gomaa, 

1986, 1984; Burns and Wellings, 1994) inspired by the object paradigm that I described 

earlier in section Design methodology of real-time systems page 31. Although very useful 

on small to medium scale projects, some properties and coding practices associated with 

OOP might suddenly increase the cost of upgrading and maintaining a code base. The one 

that interests me in the present context is the pressure that OOP applies to isolate and 

restrict the flow of data in a code base along a single axis with design practices such as 

inheritance27. The principle of inheritance is to define an object through his existential 

relationships “is-a” to other objects. A nice example is in (Gregory, 2018b): Car 
𝒊𝒔−𝒂
→   

Terrestrial Vehicle 
𝒊𝒔−𝒂
→   Vehicle or Boat 

𝒊𝒔−𝒂
→   Aquatic Vehicle 

𝒊𝒔−𝒂
→   Vehicle. This type of 

relationships produces a graph commonly called Class Hierarchy. The above graph is all good 

until someone suggests extending it to incorporate the object Amphibious Vehicle. This 

object is both terrestrial and aquatic, so what should we do? Maybe we can inherit from 

both terrestrial and aquatic. But maybe we can’t because some data in both classes have the 

same name (e.g., engine type). So, we need to fix the data layout of both classes to avoid 

collision. But the next problem is that every part of the software that was using the fixed 

 

26 The project has about 20,000 lines of code (not including documentation) over 100+ files and more classes. 

The project is in C++ which is rather verbose, so the size is not that big for a “complex” software. Nevertheless, 

it has become big enough that describing the whole architecture in this thesis would be counterproductive. The 

full documentation can be found online (https://ecell.github.io/ECell_Engine/index.html) 

27 Inheritance could, of course, be traded for composition in this example. But I did not want to discuss all 

problems and alternative solutions in this section; simply illustrating one of the limits of OOD which influenced 

the data layout of ECellEngine. 

https://ecell.github.io/ECell_Engine/index.html
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data now also needs to be updated. And so on. Real world situations can be much more 

complicated and many game engine engineers have written compelling pieces about these 

kind of issues (Fabian, 2018; Gregory, 2018b). The bottom line is that accessing data in a 

strict OOD can become cumbersome and eventually result in accreting design patterns to 

solve the problems of other design patterns28. In biology, models tend to be expressed using 

OOD because the mental model of biologists is shaped by centuries of classification work in 

botany, anatomy, histology, cytology, etc... As such, a common mistake is to use OOD to 

literally translate the knowledge layout of a biological object to the layout of the biological 

model on a computer. An example would be to separate molecular species in memory 

because they are only found in the cytosol, the Golgi apparatus, or the nucleus of a cell, 

respectively. Another example would be to separate them in memory because they possess 

different qualities which biologists categorized as proteome or metabolome. In effect, it is 

essential to understand that a computing system could not care less about the labels we put 

on data: it is only bits. Consequently, OOD is only a methodology to help humans keep as 

much as possible of the structure of a virtual complex system in their head. OOD do not help 

the computer. On the contrary, OOD undermines computational efficiency because it easily 

produces memory fragmentation, and it becomes very time consuming for the CPU to fetch 

all data relevant to a computation. It is much more important for a computer that the 

frequently updated data are close together in memory. With all these issues in mind, I spent 

a great deal of time considering the data layout of the mandatory biological concepts to be 

included in ECellEngine to trade-off my mental model of biology knowledge, my mental 

model of the architecture of the software, and the data processing efficiency for the 

processing unit. ECellEngine therefore defines an object called DataState which is unique to 

every simulation. The DataState contains every dynamic elementary object defining the 

model being simulated. An elementary object might be a Species, Reaction, Parameter, 

Equation, Operation, LogicOperation, Event, or Trigger. These elements are stored in C++ 

standard implementation of hash tables unordered_map. Hash tables are data structure that 

allows to retrieve their elements given a unique key. Of course, it incurs memory 

fragmentation compared to the likes of arrays, but hash tables are very practical to easily 

find individual objects. I needed this property to easily modify or delete existing objects, as 

per my requirements for trial & error in MBB. But, as expected, recent performance analysis 

indicate that this layout is not the best for the simulation in the update loop. In the future, it 

might be worth considering maintaining an array-like (i.e., non-fragmented) copy of the 

DataState for the simulation, despite the possible memory cost in large-scale models and the 

dangers to have desynchronized values between what the modeler manipulates (from the 

hash tables) and what the simulation processes (from the array-like data structure). 

 

28 Richard Fabian wrote a yet unpublished new book focusing on this misuse of design patterns that I was given 

the first draft to read for an informal review. 
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Simulation loop | The RT simulation loop follows a modified “Catch up” structure as 

discussed in Figure 7.c (page 61). The noticeable difference is that we allow the 𝛿𝑡 to vary 

depending on the integration strategy of the simulation. In particular, if the numeric solver 

used expects the model to be defined as differential equations, the default ODE solver 

implements a Dormand-Prince 5(4) version of the explicit Runge-Kutta method29. This 

method allows to calculate a variable time step size based on an approximation of the 

numeric local error. Since the calculation of the approximation of the local error is the same 

on low-end or high-end hardware, the original argument in favor of a fixed 𝛿𝑡  for 

determinism of the simulation is conserved with this approach. And, of course, it has the 

added benefit of guaranteeing a certain level of precision. If the numeric solver used expect 

the model to be defined as a stochastic system, the default stochastic solver implements a 

Gillespie Next Reaction Method. In this case, since the time of the next reaction depends on 

the sample of a pseudo-RNG, determinism can only be guaranteed if two runs of a 

simulation use the same random seed. As for the detection and trigger of simulation events, 

I opted for the highest precision option represented in Figure 6.a (page 59). In effect, both 

solvers will integrate their step, check is an event should have been triggered within the last 

integration step and backtrack to this exact moment. The current code to implement this 

strategy is extremely cumbersome. Moreover, as I already mentioned, this option is the 

most expensive one and it might become problematic in the future for large-scale models 

where many events must be checked. I plan to eventually refactor this implementation. 

Finally, in the simulation engine layer of the code, we completely removed the rendering 

step. Consequently, it is up to a third-party using my simulation engine to include a 

rendering or not. I demonstrated this practice by also implementing a GUI for the engine 

that I will now describe. 

Integration of the simulation engine in the editor | The code base for the simulation 

engine is separated from the code base used for rendering. In fact, the code base for the 

simulation can be used independently of any GUI. For example, it could be simply controlled 

from a terminal prompt. However, that would not be very useful and completely undermine 

the purpose of implementing an RT simulation to achieve interactivity. Thus, I also 

developed a separated GUI to control the simulation engine. It is based on the C++ library 

Dear ImGui30 with glfw30 for the windows and input backend, and Vulkan30 for the rendering. 

The update loop of the GUI (henceforth referred to as the Editor) follows the structure 

represented by Figure 7.c (page 61). Essentially, the user’s mouse and keyboard inputs are 

polled by glfw, the simulation loop runs for all active simulations, and rendering is serviced 

by Vulkan and handed over to glfw to draw the application’s windows. There are no outputs 

for the user. However, an issue with this kind of loop in our context is that, if the simulation 

 

29 Details are in Appendix A1. 

30  Dear ImGui: https://github.com/ocornut/imgui; glf: https://www.glfw.org/; Vulkan: 

https://vulkan.lunarg.com/  

https://github.com/ocornut/imgui
https://www.glfw.org/
https://vulkan.lunarg.com/
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takes time to compute, the editor will also become sluggish. This is acceptable in a video 

game because we usually don’t want the user to be able to do anything while the simulation 

has not finished to integrate. But, in the present case, there is no reason to penalize the user 

of the editor if a simulation is heavy and cannot be as fast as the physical time. In fact, the 

user should be able to interact with the editor whatever the status of the simulation. To 

reach this new level of decoupling, the next version of the editor’s update loop will run the 

in parallel of the simulation. This requires a powerful messaging system to be able to send 

commands to the simulation asynchronously from the editor. For example, when a modeler 

updates, creates, or delete a component of the simulation, the corresponding command will 

be sent to the simulation engine, queued, and executed once the current step has been 

integrated. The base infrastructure of this messaging command system is already 

implemented in ECellEngine, and part of the communication between the editor and the 

engine are using it. Putting this matter of the synchronization of the two RT loops aside, the 

question arises to decide the interaction scheme of the user with the editor to design 

models and control simulations efficiently and easily. This problem is a recurrent one for GEs 

and falls under the choice of the scripting interface (Gregory, 2018b). A scripting interface in 

a GE is either typically a programming language or a GUI that gives game designers the 

power to manipulate the simulation without the skills or the knowledge of the engineers 

who developed the engine. In Unity, the scripting language is C#; in Unreal Engine (Epic 

Games, 2022), the scripting language is a node-based interface called blueprints (Unreal is 

especially famous for this interface which allows to make entire games without a line of 

C++). A node-based interface is much more user-friendly than code and participates to quick 

iteration design, so I naturally went in that direction. Enriching the catalogue of nodes 

requires the skills to code in C++, but using the nodes is accessible to anyone. In short, the 

nodes of the editor represent data structures from the simulation engine (e.g., molecule, 

reaction, parameter, model, solver, event, …) which can be connected to modify the 

behavior of the simulation. Modifications resulting from the graph are eventually sent to the 

simulation engine using the asynchronous messaging system and are, therefore, accounted 

for at the end of the integration steps. 
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Designing a Collaborative Soft Real-Time Modeling Environment: Kosmogora + 

ECellDive 

Kosmogora and ECellDive are meant to help bringing biologists from different fields together 

thanks to the Metaverse to speed up the iterative design cycle of biological models. The 

source code of Kosmogora and ECellDive are accessible publicly on Github 

(https://github.com/ecell/kosmogora and https://github.com/ecell/ECell_Dive respectively). 

The content of this section was adapted from my paper “An architecture for collaboration in 

systems biology at the age of the Metaverse” (Jacopin et al., 2024). 

User requirements: collaborative biology modeling in the Metaverse 

I explained in section From real-time systems to the Metaverse page 41 how the 

Metaverse is a product of RT systems by integrating elements from simulation, monitoring, 

digital twins, and data streaming. But, as I explained as well, the definition of the Metaverse 

has yet to stabilize and there exist many interpretations or focus of interest. In the following, 

I will propose conceptual requirements for a scientific metaverse based on my 

understanding of the various definitions in academia and the trends I observed in the private 

sector. 

Proposition of 7 requirements for a scientific metaverse | I identified seven points among 

the different concepts discussed by others (Are We There Yet? A Status Check on the 

Industrial Metaverse, 2023; Wang et al., 2022; Ning et al., 2021; Buchholz et al., 2022; The 

Metaverse and How We’ll Build It Together -- Connect 2021, 2021; Mystakidis, 2022; Lee et 

al., 2021; Park and Kim, 2022; Weinberger, 2022) which appear necessary to qualify an RT 

system of scientific metaverse including, in my case, a metaverse for biology (see Figure 

12).First, there are the technological aspects with (1) real-time, (2) immersive and (3) 

multiplatform. There seems to be a consensus on these three between the private sector 

and academia. This comes down to the technology used to leverage metaverses and is quite 

independent of the systems biology field per se; these three are requirements. Next, I 

believe it is necessary to provide a reliable environment to process experiment data and 

simulations. An environment much like the one voiced by heavy engineering companies 

where the integrity of the data transformations is good enough to generate added value 

     

Figure 11: Logo of Kosmogora Figure 10: Logo of ECellDive 

https://github.com/ecell/kosmogora
https://github.com/ecell/ECell_Dive
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compared to taking decisions outside of the 

Metaverse. I believe the term (4) 

engineering-grade (high simulation 

accuracy, data integrity, and data 

traceability) that we hear from the side of 

private sector is an appropriate 

denomination. I also reckon that (5) 

collaborative and (6) social apply to a 

scientific metaverse. For (5) collaborative, I 

mean close relationships among the 

collaborators during the whole timeframe 

of the collaboration. The collaborators will 

likely share data and actively engage in 

discussions about their projects. In (6) 

social, I extend the spectrum of human 

interactions via asynchronous (e.g., 

newsfeeds, articles) and real-time media (e.g., talks, posters, conferences) with peers 

beyond the frame of collaborators. I also believe communications with the public must be 

included in this requirement as press releases, interviews or open classes all falls under the 

aforementioned media. Finally, I add (7) open. I say that I “add” it because I have hardly read 

papers from the academia or heard the private sector explicitly communicate about this 

point. Nevertheless, (7) open(-ness) is gaining more traction every day as a modern science 

practice via, for example, the implementation the Findable, Accessible, Interoperable, 

Reusable (FAIR) data principles. Therefore, I believe that any metaverse that calls itself 

scientific in the future shall be (7) open. Moreover, in a scientific metaverse, I do not think 

that (7) open(-ness) can be about data alone. As the Metaverse will indeed reach high levels 

of hardware integration due to the spread of laboratory automation (King et al., 2009; 

Sparkes et al., 2010; Coutant et al., 2019; Ochiai et al., 2021; Kanda et al., 2022) and digital 

twins of laboratories (Zhongcheng et al., 2022; Palmer et al., 2021; Rukangu et al., 2021), a 

scientific metaverse will likely integrate equipment in the virtual space. It will become 

possible to run experiments in the real world while interacting with virtual elements in a 

scientific metaverse. Therefore, I foresee the presence of (7) open equipment in an open 

scientific metaverse. As an analogy to FAIR data, FAIR equipment could start with a public 

collection of the virtual counterparts of research institutions (Findable). Visitors could take a 

virtual tour or watch on-going experiments (Accessible). Visitors could also manipulate the 

digital twins of equipment provisioned for educational or research purposes (Interoperable). 

Manipulations could be re-run to verify results of protocols or adapted for different 

experiments (Reusable). Of course, I also foresee difficulties to implement this level of (7) 

open(-ness) because, unlike data produced by experiments, equipment is directly related to 

an investment cost. So, I expect high barriers against open equipment, but I still believe it is 

feasible as this already happens today for the network of telescopes on the planet. Next, I 

Figure 12: Distribution of the center of interests of different 
actors of the construction of the Metaverse. The “private 
sector 1” represents companies with activities more geared 
toward heavy engineering. The “private sector2” is 
represented by companies that also sell services. The 
turquoise area delimits the concepts which I think apply for a 
scientific metaverse. 
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will give more details about requirements (4) engineering-grade and (5) collaborative which I 

specifically targeted with Kosmogora + ECellDive. 

About (4) engineering-grade | A metaverse is engineering-grade if it guarantees the 

integrity of data and simulation of complex tasks where mistakes can be costly at best and 

dramatic at worse. First, I believe the same requirements as outside apply regarding 

simulations in a metaverse. Specifically, usage of rationally designed models, awareness of 

integration errors, and understanding of the frame of validity of a simulation method. I think 

an added difficulty in performing simulations integrated in a metaverse is the coupling with 

immersive 3D rendering. As I presented for ECellEngine, rendering steps are usually the most 

expensive in an update loop. Therefore, care must be taken to not unwillingly make any 

concessions about the accuracy of the simulation because the immersive visualization was 

being too expensive. A solution to this potential problem is to separate the computation 

resources used for the simulation from the resources used for the immersive visualization. 

Second, I think there might be issues with preserving the integrity of the mental model of a 

user in a scientific or professional metaverse. It might be more relevant in the former case as 

knowledge in science is usually considered less certain and the practice of a scientific activity 

in a metaverse might add to the complexity because of the sheer size and heterogeneity of 

the data sources one will be able to access in a metaverse. Subsequently, I think a scientific 

practice in the Metaverse will require counter measures to protect the integrity of the 

mental model of scientists about the subject of their investigation. However, I do not doubt 

that scientists will eventually adapt to this practice as they familiarize themselves with it and 

as the quality of the counter measures rises. Another issue to realize engineering-grade 

metaverses is about the traceability of its user’s scientific decisions. As my vision of MBB 

includes a high degree of model versions as a result of the exploration of the solution space 

of biology, or the optimization of a particular model for its predictive capacities, there is a 

need to keep track of the modifications. This is arguably not new as traceability has been 

increasingly recognized as a mandatory scientific practice for the last couple of decades to 

allow better peer-review and fight against frauds and falsification of data. But the current 

scope of the practice enforcing traceability will be too limited in a data intensive 

environment such as a metaverse. I identified three components in knowledge tracing. First, 

there is the path of states as a whole – is it possible to identify every intermediate state that 

led to the current state? I call this “temporal traceability.” In biological knowledge bases, this 

is manifested by maintaining the possibility of accessing every version of a file. UniProt (The 

UniProt Consortium, 2023) or BioModels (Malik-Sheriff et al., 2020) implement such 

traceability. Second, there is the state itself – how is one state different from another? I call 

this “differential traceability.” To our knowledge, only UniProt provides access to such 

tracing in biology. Outside biology, Git (Chacon and Straub, 2014) is a well-known versioning 

system that enables both temporal and differential traceability. Finally, there is the 

transition between two states – what were the actions that led to commit to a new state? 

Here I do not focus on the analysis a posteriori of the choices (Dou et al., 2009; North et al., 



74 

 

2011) but rather on their manifestation during real-time collaboration. I call this “real-time 

traceability.” To our knowledge, no biology databases provide such information. This is to be 

expected, as online databases are “static” environments where knowledge is pushed to (and 

pulled from) but never created. Text editing platforms, such as Google Documents, are 

examples that enable real-time traceability. In my opinion, temporal and differential 

traceability could be leveraged with appropriate data files. Of course, such file would include 

the authors that contributed to reaching a specific state. They would also enable non-

destructive modifications of the original file in order to facilitate backtracking by simply re-

importing a previous version. At this point, this type of files would not be conceptually much 

different from the commit reports in Git. Except that the nature of the objects that might be 

tracked in a scientific metaverse is much more diverse that plain text files. Moreover, these 

files must be mobilizable in real-time. A trade-off must be found between raw human-

readability, compression (for environmental sustainability), and fast machine readability. The 

file format I created for this purpose will be discussed in sections Elements of architecture 

page 75 (paragraph “Biological data management by Kosmogora”). 

About (5) collaborative | I believe that the modalities of collaboration we are currently 

used to compared to the ones we can expect in a scientific metaverse are different enough 

to warrant careful consideration. Indeed, even if the recent pandemic has raised our 

awareness toward virtual collaboration tools, they are mainly geared toward remote and 

asynchronous communications and not real-time. In addition, RT interactions in a virtual 

environment allows for richer interactions powered by visual effects that cannot be 

reproduced with RT interactions in a real environment. For example, let’s suppose that two 

collaborators are seated at a table and having a meeting in the real world. It is very common 

that, at some point in the meeting, one of the collaborators will make use of a physical 

object to help him convey his thoughts to his interlocutor. The object can be a notebook, a 

whiteboard, a tablet, a computer, or yet another possibility; the nature of the object does 

not matter. What matters is that there is only one physical instance of the object in the 

world at this meeting. Therefore, ignoring potential optic illusions, both collaborators see 

the same object and, should it be passed from one to the other, can exclusively interact with 

the object in a sequential way. However, as soon as the object share between the 

collaborator switches from being physical to virtual (e.g., RT shared editable documents such 

a rich text file or a slide presentation) several consequences ensue. First, they may not see 

exactly the same object because a collaborator does not have the same visualization 

clearance as the other or, simply, network lag and desynchronizations of content distort the 

representation of the object. Second, they now have the possibility (supposing the software 

allows it) to interact with the object concurrently in real-time. In which case, there is a 

possibility that their actions overlap and result in a deterioration of object leading to a 

decrease in the quality of their collaboration. In a virtual world of the Metaverse, the risk of 

dissonant collaboration necessarily increases because the meeting space itself has been 

virtualized. Therefore, the collaborators cannot be certain that they are interacting with who 
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they are supposed to be and that what their interlocutor is sharing with them is the whole 

truth. Consequently, a scientific, or any professional metaverse, requires a very high degree 

of trust between the parties involved in the collaboration. I do not doubt that scientists will 

respect this assumption, but one malicious intent is enough. Putting aside this unpleasant 

scenario, I believe the virtualization of a collaboration environment also has much potential 

to increase the quality of the collaboration. In fact, assuming that the collaborators behave 

professionally and stay mutually aware (Biocca et al., 2003), the virtualization gives the 

possibility to greatly accelerate the iterative design cycle of a model by concurrently working 

on alternative versions. This is the offspring of the asynchronous branches in Git with a RT 

3D immersive virtual world. A scientific metaverse shall give the possibility to users to create 

alternatives of models in real-time, pull the work from collaborators to apply the 

modifications on their own branch, and push their work to other collaborators for review. 

Thus, where UI/UX was only supposed to support a single flux of activity for physical objects 

in reality, it shall now accommodate multiple users in a virtual world, leveraging 

collaborative work while helping avoid that some disrupt progress by mistake. Finally, 

another interesting notion that comes with the Metaverse is the persistence of the virtual 

world. Persistency is the property of a virtual object to not reset after users log out. Hence, 

users that connect back in the Metaverse will find it identical to when they left unless other 

users modified it in the meantime. I believe the quality of long-term collaboration would 

increase if a certain level of persistency was applied to the modeler’s activity and decisions. 

This would be analog to archeological traces of human activity in the real-world. Of course, 

the traces in the virtual world shall not be as complex to interpret in order to effectively 

improve the collaboration. Instead, I propose the trace to be limited to major design 

decisions. The long-term of such milestones would become a medium for indirect 

communication and collaboration. 

Elements of architecture 

The code base of Kosmogora and ECellDive is also quite large31, I will focus here on aspects 

that are fundamentally different or absent from what was discussed for ECellEngine.  

Kosmogora-ECellDive communication | ECellDive communicates with Kosmogora through 

HTTP to delegate data management and simulation tasks. Kosmogora is implemented in 

Python and utilizes the Uvicorn package (Encode, 2022). Every module in ECellDive that 

interacts with Kosmogora (i.e., for importing, saving, and simulating) uses an Application 

Programming Interface (API) to build Uniform Resource Locators (URLs) for HTTP requests. 

The basic structure of the URLs contains the IP address and the port to reach Kosmogora 

separated by a colon; then a page of the URL is the name of the query to run in Kosmogora; 

 

31 The project has about 30,000 lines of code (not including documentation) on over 100+ C# scripts, and 50+ 

other assets including hand-built 3D models, simple textures, icons, shaders, and so on. A detailed description 

of the main systems can be found online 

(https://ecell.github.io/ECell_Dive/articles/Dev/before_you_start.html). 

https://ecell.github.io/ECell_Dive/articles/Dev/before_you_start.html
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and finally, the last page describes the parameters of the query (if any). In ECellDive v0.11.X-

alpha, users can ask to see the list of models and view files, to import view files, to see the 

list of modification files, to save new modification files and to perform the Flux Balance 

Analysis (FBA) of a metabolic network model. Although I developed Kosmogora for 

ECellDive, it could be replaced with an alternative server that would also provide data 

management services for ECellDive. This is a one-to-many map from the virtual world to the 

external services in order to arbitrarily grow or vary the execution of features in the virtual 

world. Hence, users can connect to any server if it implements the set of HTTP requests 

required by a module. The API of a Kosmogora-like server is checked by ECellDive against its 

“server action schema” describing the mandatory subsets of commands for each module. If 

every command in the subset is present in the list of commands implemented by a 

Kosmogora-like server, then the module is unlocked in ECellDive. Furthermore, if users 

connected to multiple Kosmogora-like servers implementing the API for a module, then they 

can choose which to use. Thanks to API checking system, I have decoupled the RT rendering 

system from the hardware and software that manage the data and performs simulations. 

This promises flexibility over a few versions of ECellDive and is my answer to the design 

question “How should the computer systems be configured such that […] future study 

requirements are independent of hardware configuration?” page 52.  

Biological data management by Kosmogora | Kosmogora uses classic file formats and 

simulation packages from the field of systems biology to avoid creating yet another 

formalism. The metabolic pathway model file is an SBML file (Keating et al., 2020) and the 

Figure 13: Centralization and management of biological data by Kosmogora Kosmogora manipulates three types of files: 
model files, view files, and modification files. Model files are gathered from online databases and the respective IDs are 
linked to allow cross referencing. View files are used in ECellDive to represent all or a portion of a model file; one model file 
has at least one view file. View files can be generated by external tools such as Cytoscape47. Modification files record 
alterations made by users in ECellDive while manipulating the model (e.g., knockout of a reaction in a metabolic network 
model). Modification files may have a parent-child relationship. When a child file is imported into ECellDive, all modifications 
recorded in the parent are also imported. This lineage of modification files allows tracing the temporal evolution of a model 
(“temporal traceability”). Modification files are lists of entries describing the modifications and can be compared with each 
other (“differential traceability”). Finally, Kosmogora-like servers must implement a list of functions declared by ECellDive; 
the compatibility is checked in the action schema handshake. *As of Kosmogora 1.1.X, the queries do not use the databases’ 
API but process locally downloaded content. 
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view file is a CyJson file (Shannon et al., 2003). Currently, I use COBRA (Heirendt et al., 2019) 

in Kosmogora to run simulations. Kosmogora uses modification files to alter model files, and 

view files to project a part or all the content of a model file. A model file can exist with zero 

or more modification files (in Figure 13, model (a) has no associated modification files, 

model (b) has two, and (c) has one). Modification files are YAML files with fields declaring 

the user saving the file (author), date, root model, and a list of modifications. They can 

optionally include a reference to a parent modification file (in Figure 13, modification files of 

model (b) have such a relationship). Wherever a parent is referenced, the new modification 

file appends all the modifications stored in the parent file upon loading in ECellDive. One 

view file is the interface to one model file. A model file has one or more view files (in Figure 

13, model file (a) and (b) have only one matching view file while (c) has two view files). The 

format of view files can vary to adapt to the most popular format of each research 

community. A view file must however store enough information to instantiate the Game 

Objects (GOs) that will embody the elements of the model in ECellDive. For example, if a 

model file describes a graph (e.g., metabolic network), then the view file requires 

information about the positions of the nodes and the sources and targets of the edges. A 

view file may also include additional information such as labels and metadata of the objects 

that are present in the model. However, not enforcing a general format for the view files has 

implications. Indeed, for any new view file format added to Kosmogora, a matching module 

must be added in ECellDive to correctly parse it. Modification files are independent of view 

files which are only spatial projections of model files, the core information is the model. 

Model views may react to modification files only if they both contain entries matching the 

same element in the model file. If a modification file contains modifications about parts of a 

model that are currently not included in the view file, they will still be accounted for. For 

example, if a model file contains three reactions 𝑅1, 𝑅2, 𝑅3 and the view file only includes 

information about 𝑅1 and 𝑅3, only these two reactions will be displayed in ECellDive. But, if 

the user applies a modification file which indicates to knockout 𝑅2, then this modification is 

still applied even if it is invisible with the current loaded view file. Conflicts between 

modification files are avoided by always giving priority to the last loaded file. Indeed, I 

consider that any modification in the 𝑛-𝑡ℎ  loaded file and targeting an element 𝑒 of a model 

will override any modification that also targeted 𝑒 and when one of the 𝑛 − 1 previous files 

were loaded. Similarly, when users build genealogies of modification files with the parent—

child system, the parent is always the last file loaded. Hence, any modification in the 𝑛 − 1 

previous modification files that are not shared with the 𝑛-𝑡ℎ file is considered “new” and will 

be explicitly recorded when saving the (𝑛 + 1)-𝑡ℎ modification file. 

Working with the game loop in Unity | The VR scenes of ECellDive are managed by Unity’s 

GL. The behavior of a GO is defined by the combination of components attached to it. Unity 

has prebuilt components to cover classic aspects of a game such as user inputs, physics, 

graphics, etc. However, programmers can also implement custom components using C# 

scripts. A component is created by defining a class deriving from MonoBehaviour that is part 
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of Unity’s code base. I wrote dozens of custom components for ECellDive (refer to the online 

documentation for a full description). Finally, GOs can have parent—child relationships to 

further increase the complexity of the behavior of a parent GO. The data and action modules 

in ECellDive are GOs to which I added components to customize their behavior accordingly. 

Some of the components are part of Unity’s XR package, while others are custom-written C# 

scripts. These scripts implement features related to the user interface (e.g., highlight, grab, 

move) as well as the core features of the modules. I wrote two C# classes to facilitate the 

implementation of new features in ECellDive that are called modules (see Table 4, page 84, 

for more details). The first is Module, the second is GameNetModule. The former is used when a 

module should only be visible by the user who added it in the collaborative virtual 

environment, the latter is used to share the module over the multiplayer network with all 

connected collaborators. For example, the server action modules (see Figure 14) in ECellDive 

to communicate with Kosmogora inherit from Module because none of them require 

simultaneous access or interaction. Conversely, a data module (see Figure 14) is shared 

among all users, so it inherits from GameNetModule. The metabolic pathway data module 

implemented for this paper uses the default layout of the metabolic network based on the 

(X, Y) coordinates of the nodes (i.e. metabolites) stored in a CyJson file inherited from the 

desktop software Cytoscape (Shannon et al., 2003). Since every user must be able to dive 

into this CyJson data, the CyJsonModule inherits from GameNetModule. 
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ECellDive virtual space division in dive scenes | Dive Scenes are a concept representing a 

portion of space in which users can navigate, add modules, interact with data, and 

instantiate portals to go to other dive scenes (see Figure 14). They protect the integrity of 

the mental model of the users by giving them an abstract unit to delimit the seemingly 

infinite space of a virtual environment. In Unity, a scene is an asset containing a hierarchy of 

GOs that make up the content of a virtual space. The hierarchy of GOs defines the logic 

driving anything that is happening in the space, including user's movement or interaction. 

Despite the apparently good match between our concept of Dive Scene and a Unity Scene 

there are constraints in how scenes are managed in Unity. For one, as far as I could tell, 

scenes assets are built in the application (and it's reasonable). This implies that you can only 

add scenes in the Editor and that you must know what the Unity Scenes will contain in 

advance which is incompatible with our vision of dynamic Dive Scene when users dive into 

newly added data. So, in fact, in ECellDive, players diving from one scene to another never 

leave the Main Unity Scene. Our DiveScenesManager keeps track of which GO of the Unity 

Scene belongs to which Dive Scene and, when a user dives, the manager hides the GOs of the 

previous Dive Scene and shows the GOs of the new Dive Scene. Fellow divers on the 

Figure 14: High-level interaction schemes in ECellDive between users and 3D objects in dive scenes. Data files, portals, data, 
interactions with the server, and interactions with data are based on tangible 3D objects called modules. In contrast to 
windows on a screen, 3D objects in the virtual world of a dive scene participate in the feeling of immersion. Those can also 
appear as “landmarks” in the 3D world. That is, data in the dive scene are physically more prominent than the rest and can 
be clearly identifiable by users similar to a mountain on the horizon. 
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multiplayer network are also hidden and showed depending on the Dive Scene they are 

currently exploring. 

Sharing large biological data over the multiplayer network in ECellDive | I used Unity’s 

package Netcode for GameObjects (Unity Technologies, 2022a) to implement a host/client 

architecture in which a user, the host, runs the server that will synchronize the virtual world 

for all other connected collaborators (the clients). This network solution does not require 

additional hardware because the instance of the server runs directly on the device of the 

host. However, as there is no specialized hardware, the number of synchronized clients is 

limited by the computational power and network bandwidth of the host. ECellDive runs on 

Meta Quest 2, and it is recommended to not exceed four users to avoid latency and ensure a 

good experience in a dive scene. In this framework, a user creates an instance of a 

collaboration session at a specific IP address, and clients (collaborators) can join the session. 

In a work session, clients can import, edit, and save data with the link between Kosmogora 

and ECellDive. Future metaverses will have a much larger network infrastructure than 

ECellDive with dedicated servers to oversee the real-time collaboration of more than four 

users. For example, current multiplayer video games can manage real-time lobbies of several 

Figure 15: Simplified sequence diagram for data import in the Client/Host work session of ECellDive. A Client in the work 
session interacts with a server action module targeting a data storage to request for data. Once the data is received, it 
triggers a cascade of calls in the work session to create a 3D object encapsulating the data (data module) for all clients in 
the session. After every client confirms that it received all the data, any client can dive into the data module to visualize its 
content and further interact with it. 
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dozens of users without latency issues. In single-player mode, the user is their own host, 

while in multiplayer mode, a player can host others over a local area network. Connection 

over the internet with the host/client architecture is theoretically possible but requires every 

host to configure port forwarding on their router. This can prove complicated if the host is 

within the network of a laboratory where the router’s configuration is probably under strict 

management. Connection of a client to a host is protected by a password set by the host. 

When a client connects, he will exchange data with the server (the host) to synchronize the 

state of its dive scene. This operation is simplified to some extended thanks to the API of 

Netcode for GameObject but I encountered difficulties when sharing large data files (e.g. 

models and views). Indeed, Netcode for GameObjects was not designed with this use case in 

mind. Rather, it is meant to support multiplayer games where small communications 

between the server and the clients are the norm. This is an issue in our case because I need 

to synchronize large data files: when a client decides to import a module, the content of that 

module must be shared to all other clients. A simplified version of the sharing sequence 

between users is depicted in Figure 15. A client contacts Kosmogora through a server action 

module (left half of the figure); then, when the client receives the data, it is automatically 

forwarded to the server that will broadcast it to the other users connected to the session 

(right half of the figure). When the data is large, the “Broadcast Data Server RPC” handles 

the partitioning into smaller chunks and sends one per frame. Then, the chunks are re-

assembled on the side of the receiving clients. 

Satisfying Soft Real-Time Systems Requirements to Benefit Model-Based 

Biology 

This section reports on the efforts to implement the user requirements discussed in the 

previous sections and their effects on practicing MBB. 

User experience for iterative biological model design 

I implemented a GUI editor for ECellEngine to effortlessly manipulate the RT simulation 

engine before and during simulations. I designed it to report useful information in real-time 

to help modelers take decisions regarding the structure of the model. The editor notably 

includes a graphic scripting interface inspired by the node-based scripting interfaces in GEs32. 

Nodes in this interface can encapsulate biological concepts, code routines or visualization 

components to directly modify or probe the simulation (see the nodes in Figure 16, point 4). 

 

32 It is also known under the term of flow-based programming. 
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Figure 16: Screenshot of the editor of ECellEngine.  At point 1 is a hierarchy exploratory of the model data loaded and the 
other nodes in the simulation space. Point 2 is a text console for message outputs. Point 3 are the controls to launch, pause, 
stop the simulation, and manipulate the time axis. Point 4 is the node-based scripting language to edit simulations and 
model. 

The sections COPASI vs. ECellEngine page 93, and CellDesigner vs. ECellEngine page 93 

give some elements of comparison with already existing well-known GUI in systems biology. 

In ECellDive, iterative model design benefits from the support for real-time and 

asynchronous collaboration inspired from the Metaverse paradigm. The virtualization of the 

collaboration environment and the VR immersion gives all collaborators the opportunity to 

concurrently engage in the construction of a model while still retaining a sense of presence 

of the other collaborators due to the use of avatars. In addition, as the modification files are 

stored on the server and not locally on one user’s device, anyone can asynchronously access 

and further build upon the modifications or backtrack at any time. Finally, it is possible to 

apply multiple modification files. This last point is similar to layers in image editing software; 

a modification file is a layer that is applied onto the original data and layers can be combined 

thus allowing mixing of ideas when testing variations of a model. This solution is possibly not 

as powerful as the RT branch pull/push collaboration method I mentioned in the paragraph 

“About (5) collaborative” but is still versatile enough to distribute and integrate work among 

collaborators. 

Heterogeneity | My approach to handle heterogeneity in each software was to offer a set of 

built-in representations of data, biological concepts, and functions that modelers could add 

to a simulation space and compose together to modify or probe the content of a model. 

Table 3 gives the list of the nodes that can be used in the scripting interface of the editor of  
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Category Node Description 

Asset  Equation Gives access to the root of the tree encoding an equation 

of a model. 

Model Encapsulates all equations, parameters, reaction, and 

species encoded in a SBML model. 

Parameter Gives access to the float value of a parameter of a model. 

Reaction Gives access to the reactants and products of a reaction of 

a model. 

Species Gives access to the quantity of a species of a model. 

Value Float Defines an arbitrary float. 

Event Modify Value in 
DataState 

Events to change a float value in the DataState is a 

condition is satisfied. 

Trigger Watch conditions and propagates the result. 

Math Arithmetic 

operation 

Performs addition, subtraction, multiplication, or division 

on a pair of floats. 

Logic Operation Performs AND, OR on a pair of Booleans. 

Plot Line Plot Plots data streams as lines. Requires a unique stream for 

the X axis. Multiple streams can be received for the Y axis. 

Solver Gillespie Next 

Reaction Method 

The corresponding algorithm. It receives a model as input. 

ODE Explicit Runge-

Kutta 

Implements a DOPRI5(4). It receives a model as input. 

Time Simulation Time The data structure used to advance the time in the 

simulation space. It might be different from the time of the 

solvers. 

 ECellEngine, and Table 4 gives the list of the modules that can be added to the virtual world 

in ECellDive. The category “Asset” for the editor of ECellEngine, are the nodes giving access 

to the corresponding data structures on the side of the simulation engine. The nodes in this 

category are slightly biased toward the SBML format due to its popularity in systems biology, 

but this is not a fatality. These nodes allow to break free from the classic table views in 

mainstream software. Modelers can compose the asset nodes with others from the 

categories “Event”, “Maths”, or “Plot”. The purpose of these compositions is to 

automatically detect state changes in the model, to react to them, and to visualize them. The  

Table 3: Nodes available in the scripting interface of the editor of ECellEngine 
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Type Name Description 

Data Module CyJson Graph Encapsulate the view file of a graph using 

the format CyJson from the software 

Cytoscape. 

Local Action Module Dive Travel Map A graph representing how a diver 

navigated in the dive scenes.  

Group By Automatically make colored groups 

according to metadata of the elements 

loaded in the scene. 

Server Action 

Module 

API Checker Checks that a Kosmogora-like server 

implements the HTTP API requested for 

ever server action modules in ECellDive. 

Flux Balance Analysis Requests an FBA for the model currently 

loaded in the dive scene. 

Modification Handler Imports and saves modification files 

associated to a model loaded in one of the 

dive scenes. 

Reaction Info Query Queries reaction information from remote 

database. 

Remote Importer Import view files stored in Kosmogora. 

Table 4: Modules available in ECellDive. 

modules in ECellDive were not built with composition in mind. Instead, I focused on the 

benefits of a 3D immersive virtual world to make them mimic tangible 3D objects that I are 

used to manipulate in reality. In UI/UX research, the notion of tangible UI (Ishii and Ullmer, 

1997) describes objects in reality that may modify the virtual world. In VR, tangible UI is 

approached by associating 3D shapes to functions and haptic feedback in the controllers. 3D 

objects give a sense of presence, which I believe is better adapted to biologists because they 

are used to working with physical tools in laboratories. Therefore, the heterogeneity is dealt 

with by adding tools in the virtual world that correspond to a set of functions. 
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Integrity | The architecture of ECellEngine or Kosmogora + ECellDive was adapted in order to 

guarantee the integrity of data and simulations. First, I decoupled the simulation loops from 

the rendering loops to reduce the computational impact of the latter on the accuracy of the 

former. Second, the format of the modification files implemented in Kosmogora + ECellDive 

participates to maintaining the integrity of the Metaverse. The modification files allow 

storing information about a model while being disjoint of the original model file so, there is 

no risk to corrupt it. Users are then free to try many modifications and to build many 

alternatives of the model in a non-destructive way. Third, ECellDive implements protections 

for the integrity of the mental model of biologists in a metaverse of biology. Knowledge in 

biology is indeed very diverse and spread across subfields targeting different scales of life. 

With ecosystems at the top within the order of meters, and metabolites at the bottom 

within the order of nanometers, it is hardly possible to be up to date on every subjects. To 

answer issue, I simply followed this scale hierarchy to navigate biological data and 

knowledge. In ECellDive, I project the physical targets of biology to virtual levels that I call 

“dive scenes.” This does not match the way data are stored within Kosmogora or ECellDive 

but rather, dive scenes are concepts to help biologists build a mental model of the biological 

Figure 17: Diving between scenes. a) Using the scale hierarchy of biological subfields for the mental model of the 
architecture of data and knowledge in a metaverse of systems biology. This aims to help the user understand where they 
stand in the metaverse of biology similarly to a world map. b) Zoom of the relationship between data centralization and 
simulation in Kosmogora and its access in ECellDive in conjunction with the user’s movement between dive scenes. The data 
imported into the dive scenes make them fit either the tissue or cell scale. 
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landscape they are exploring. There can be as many dive scenes as needed, and they are not 

preset for ecosystems or metabolites; a dive scene becomes what users import in it. Figure 

17.a shows three examples of phenomena at the scales of cellular biology (cell division, 

signaling, metabolism), which could be attributed to three independent dive scenes to 

separate modeling approaches (3D mesh model, logic model, and network model). The 

action of moving from one dive scene to another is a “dive”. This allows for a swift change of 

scales to facilitate knowledge connections between the different subfields of biology. Users 

can then access knowledge outside of their area of expertise.  

This is illustrated in Figure 17.b where a user is moving from a dive scene containing data 

and a model about a tissue, to another dive scene containing data and a model about a cell. 

All data transit through Kosmogora and can originate from experiments or simulation results 

hosted on online databases. I implemented a “Dive Travel Map” in ECellDive to display the 

dive scenes a user has visited, and in which order much like in Figure 17.a. This travel map 

can help users build and maintain their mental model of the biological knowledge they are 

exploring. In the context of MBB, I believe these solutions help modelers understand where 

their models stand in the landscape of biological knowledge even if they are not directly 

relying on experiment data. 

Traceability | I provided support in Kosmogora + ECellDive for all three types of traceability 

mandatory for a scientific metaverse. Temporal and differential traceability are enabled in 

Kosmogora thanks to the fields recording authorship, date, and lineage in the YAML. In 

addition, as modifications are stored in a list, it is easy to compare multiple modification 

files; thus, leveraging differential traceability. RT traceability is enabled thanks to the RT 

immersive collaboration in ECellDive. Compared to the other two traceability types, there is 

not data stored on Kosmogora or ECellDive for RT traceability. Rather, real-time traceability 

arises as soon as two or more users are following each other’s actions and is contingent to 

mutual awareness (Biocca et al., 2003). It follows from their discussions, actions, and 

decisions about the data. In ECellDive, real-time traceability is made possible by the fact that 

a user can see others’ movements; all users can see others interact with data modules; all 

users can see others make groups of modules. 

Interactive simulations 

ECellEngine and ECellDive are both running within RT loops with small deadlines, henceforth 

producing interactive simulation spaces. ECellEngine includes RT versions of the classic 

numeric solvers for ODEs and SSs. It is then possible to feed in the system of rate functions 

of a biological model and to simulate it using any of these two schemes. Adding model 

definitions and choosing which solver to user to simulate the models is made as simple as 

connecting two nodes in the scripting interface of the editor. The content of a model can 

also be unfolded to have access to low-level variables, especially their quantities, which can 

be further connected with mathematic operation nodes, plotting nodes or event nodes. This 

versatility facilitates the manipulation of the structure of the model as I was initially aiming 

for in the context of MBB. As discussed in the section on user requirements, ECellEngine also 
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allows to manipulate the time axis to the extent of playing, pausing, resuming, and stopping 

the simulation. Finally, nodes in the scripting interface can be added and removed even 

when the simulation is running to avoid having to stop the simulation every time modelers 

wish to edit the model. 

In ECellDive, the interactivity with the 3D virtual world is guaranteed by the fact that I used 

Unity to develop it. The interactivity of the biological simulation is more complicated to 

achieve however because, as I decided to use external computation resources to perform 

the simulation, there always is a bit of latency ensued by the network communications with 

Kosmogora. Currently, the heavier task of performing a FBA on a network of a couple 

hundred reaction takes a bit less than one second to be visualized in ECellDive. I consider this 

latency acceptable for now and I know there is plenty of room for optimization if it becomes 

an issue in the future. 

Integrated analysis 

In ECellEngine, immediate analysis is powered by the trigger and event nodes which allow to 

automatize the detection of relevant state changes in the model. Numeric feedback is 

provided thanks to RT plots updated with the data provided by the modeler. RT plots are 

embedded in nodes in the scripting interface of the editor and can easily be set up by 

connecting a stream of data for the X and Y axis. Currently ECellEngine only uses the line plot 

of the library implot33 compatible with Dear ImGui. However, I carefully laid the groundwork 

to be able to include more graphs in ulterior versions of the editor. Thanks to these 

integrated analysis tools, modelers do not need to export the simulation’s output to start 

learning about the behavior of their models. This also participates in increasing the speed of 

model design. 

In ECellDive, the VR immersion pushes the boundary of integrated analysis a step further. 

Virtual environments of metaverses are infinite and, regardless of the size of the real-world 

room the user is in, he can cross kilometers virtually without moving physically. Although 

this “infiniteness” is similar to the panning of a 2D canvas on a monitor such as for the 

scripting interface in the editor of ECellEngine, the “infiniteness” of a VR environment is 

more versatile. For example, users are not constrained to a third-person view when looking 

at data encapsulated in a plot anymore. Instead, data can be mapped in the whole virtual 

environments to build a landscape users can explore in first-person view. In a “landscape of 

data” extrema would appear as “landmarks” similar to mountains on the horizon (see in 

Figure 14, page 79). 

For both the editor of ECellEngine and ECellDive, the explicit presence of a rendering step in 

the RT loop encourages to use animations. This is especially true for ECellDive since it was 

implemented with Unity and any GE provide some support for RT visual effects. Thus, virtual 

animations are customary in 3D virtual worlds to help users and to add contextual 

 

33 Available at: https://github.com/epezent/implot  

https://github.com/epezent/implot
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information. Continuing with the metaphor of a landscape, exploration can be tedious 

without a map or a compass. In the case of a “landscape of data” animated virtual objects 

(i.e., compass) would guide users toward noteworthy regions of the landscape. The core 

concepts for efficient data visualization (e.g., colors, shape, size, layout, …) on a PC monitor 

are still valid in a virtual world but we gain degrees of freedom due to the infinite space, the 

third dimension, and the real-time component. In ECellDive, animations are used as a proxy 

to numeric values corresponding to fluxes (i.e., after an FBA). 

Soft Real-Time Systems in Action for Model-Based Biology 

This section contains user examples for both ECellEngine and Kosmogora + ECellDive. For the 

former, I used a published model to show how it can be explored and modified with the 

node-based scripting API. In the latter, I used a model of the central metabolism of 

Escherichia coli to demonstrate the usage of the FBA module. 

A published model with ECellEngine 

The model I selected for this demonstration is an ODE encoding of the regulation by cyclin-

dependent protein kinases of the division cycle of fission yeast (Novak et al., 2001). The 

model consists in a set of nine ODEs, six assignment rules, ten species, 52 parameters, to 

represent 19 reactions. This is a fairly small model which still can mobilizes most data 

structures and features currently implemented in ECellEngine and its editor. 

Events are not yet automatically extracted from the SBML files in ECellEngine. The reason 

that an event in SBML is a couple of a passing condition and the effects that should follow 

once the condition is verified. This effectively translates as a set of nodes in the node-based 

scripting language of ECellEngine. The graph and the nodes are indeed an editor-only 

construct and not an engine data structure. Currently (and I don’t see reasons to change in 

the near future), a node in the editor corresponds to one data structure in the engine. 

Hence, if there are no data structure in the engine side to encapsulate all the data of a 

component of a model, I need to create a new one. Creating new data structures is 

fortunately not an issue in the current architecture—I did my best to make it that way—but I 

have to be careful of which data structures I decide to add to not bloat the scripting API and 

complexify the maintenance of the code base. In the current case, I prefer to avoid having 

one data structure that specifically represents SBML encodings of events. Instead, we can 

manage to translate many events from various model files in biology if we implement two 

nodes, one for the condition checking, and one for the effects to apply. The inconvenient of 

that solution is that there may be uncertainties regarding how the detection of the event 

and the application of the effects are connected (see in Figure 18.a that the Trigger node has 

several possible outputs. So, in the current implementation, events must be added to the 

simulation space manually after importing a model in ECellEngine. 
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The two events in the model are defined as follows 𝑖𝑓 𝑓𝑙𝑎𝑔𝑀𝑃𝐹 == 1 && 𝑀𝑃𝐹 ≤

0.1, 𝑡ℎ𝑒𝑛 {𝐶𝑒𝑙𝑙𝑀𝑎𝑠𝑠 ⟵
𝐶𝑒𝑙𝑙𝑀𝑎𝑠𝑠

2
 , 𝑓𝑙𝑎𝑔𝑀𝑃𝐹 ← 0 } (𝐸1) and the second event is 𝑖𝑓 𝑀𝑃𝐹 >

0.1, 𝑡ℎ𝑒𝑛 {𝑓𝑙𝑎𝑔𝑀𝑃𝐹 ⟵ 1} (𝐸2). Even if I wrote the events using the 𝑖𝑓/𝑡ℎ𝑒𝑛 syntax, it is 

not to be interpreted that the events are triggered as long as the conditions are true. In fact, 

these events should trigger a reaction only for the one step the condition became true. This 

corresponds in ECellEngine to using the onTriggerEnter as the output of the Trigger node. In 

the original model the usage of the parameter 𝑓𝑙𝑎𝑔𝑀𝑃𝐹 is a modeling trick to protect from 

triggering (𝐸1) very early in the simulation (within the first 2 min). This is indeed not 

something we are looking for with the initial conditions  [𝑀𝑃𝐹]𝑡=0 = 0.2  and 

𝐶𝑒𝑙𝑙𝑀𝑎𝑠𝑠𝑡=0 = 1. If the authors didn’t make use of the 𝑓𝑙𝑎𝑔𝑀𝑃𝐹𝑡=0 = 0, the value of 

𝐶𝑒𝑙𝑙𝑀𝑎𝑠𝑠 would be set to 0.5 very early on in the simulation. This does not seem consistent 

in the biological context of a fission yeast. It is indeed more natural to consider that 

Figure 18: A model of the division cycle of fission yeast (Novak et al., 2001) in ECellEngine. a) Focus on the construction of 
the event defined in the model using the node-based scripting interface. b) Focus on the visualization of the outputs of the 
simulation using the node-based scripting interface. 
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𝐶𝑒𝑙𝑙𝑀𝑎𝑠𝑠 = 1 for one yeast cell and 𝐶𝑒𝑙𝑙𝑀𝑎𝑠𝑠 = 2 for 2 yeasts cell, and not 0.5 and 1 

respectively. So, in essence, 𝑓𝑙𝑎𝑔𝑀𝑃𝐹 is only useful for the very beginning of the simulation. 

In ECellEngine, however, I could ignore 𝑓𝑙𝑎𝑔𝑀𝑃𝐹  by simply connecting the Trigger node to 

the ModifyDataStateValue event shortly after [𝑀𝑃𝐹]𝑡 has decreased below the threshold 

0.1. This is possible only because I am using an RT simulation environment:  everything does 

not have to be set and perfect at the beginning. I agree, however, that it might not appear 

rigorous enough for a scientific experiment. But, even though the feature is not yet 

implemented in ECellDive, this kind of actions will be recorded in the scenario data structure 

I mentioned in the section User requirements: build, play, learn page 64 (in “Learn”) to not 

forget it and so that anyone can replay the exact procedure. The ModifyDataStateValue is 

responsible for triggering the division of 𝐶𝑒𝑙𝑙𝑀𝑎𝑠𝑠 by two. In input, it takes the signal of the 

Trigger; but also, the result of the actual arithmetic operation 0.5 ∗ 𝐶𝑒𝑙𝑙𝑀𝑎𝑠𝑠. This value is 

then forwarded to the 𝐶𝑒𝑙𝑙𝑀𝑎𝑠𝑠 Species data structure in the simulation engine via the 

connection to the input pin of the node. 

As it can be observed in the Figure 19.a, there are multiple nodes that represent the value of 

𝐶𝑒𝑙𝑙𝑀𝑎𝑠𝑠 (top left and far right). In fact, the output of the ModifyDataStateValue event 

node could have been connected to the input of the Species 𝐶𝑒𝑙𝑙𝑀𝑎𝑠𝑠 node on the left side 

of the graph. But it would have lacked visibility. Figure 19.b shows the part of the graph I 

added to visualize the results of the simulation. In particular, the line plot on the bottom 

right corner shows [𝐶𝑒𝑙𝑙𝑀𝑎𝑠𝑠]𝑡 in green, the [𝑀𝑃𝐹]𝑡, and another variable, [𝐶𝐷𝐶13𝑇]𝑡, 

that I added by curiosity. The straight line for the early time of [𝐶𝑒𝑙𝑙𝑀𝑎𝑠𝑠]𝑡 between 𝑡 =

0 𝑚𝑖𝑛 and 𝑡 ~50 𝑚𝑖𝑛 is an artifact due to the addition of [𝐶𝐷𝐶13𝑇]𝑡 to the plot when the 

simulation had already been running for some time. Also, the original unit the time variable 

in the model is minutes, but I accelerated the simulation such that 1𝑠𝑒𝑐 of real-time 

corresponds to 1𝑚𝑖𝑛 of simulation of the system to avoid having to wait the  

Finally, I plotted the evolution of the variable integration time step size on the line plot on in 

the top right corner of Figure 19.b. This is a demonstration of the monitoring of the quality 

of the simulation. We can observe on the plot that the integration step size (i.e. Delta Time 

from the ODE solver node) is the smallest when there are sharp variations in the ODE system 

(about every 140 min), which is good news because it means the integration system “is 

taking more precautions in complicated parts of the simulation” (of course, this is just an 

image). 

A flux balance analysis with Kosmogora + ECellDive 

I used a published model (King et al., 2015; Rowe et al., 2018) (iJO1366) to perform an FBA 

(Varma and Palsson, 1994; Orth et al., 2010; Edwards et al., 2002), a common method in 

systems biology to analyze the theoretical throughput of metabolic pathways that are in a 

steady-state. I retrieved the central metabolism of Escherichia coli downloaded from Escher 

(King et al., 2015; Rowe et al., 2018) and stored it in Kosmogora. From there, I imported it 

into ECellDive as a data module and dived into it (see Figure 19.a). 
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Figure 19: Illustration of the main steps of a flux balance analysis in ECellDive on model iJO1366. a) The portal used to dive 
into the representation of iJO1366 encoded in the view file b) A high view of the pathway after color customization of the 
edges to group them according to the main subsystems of this metabolism. c) We performed a Flux Balance Analysis (FBA); 
the minimal flux value is -45 and the maximal value is +55. Colors interpolate between blue for low values and red for high  
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In this example, two dive scenes are defined by the root space where the user is dropped 

when launching ECellDive, and the scene defined by the metabolic pathway. 

By default, the metabolic pathway is mapped on a plane. Biologists are familiar with seeing 

metabolic maps in 2D, and typically newcomers expect the TCA cycle to appear as a circle 

because that is how it is taught in textbooks. Familiarity with the visualization scheme is an 

important consideration that must be considered to ease the transition between traditional 

desktop applications and virtual worlds. Once users are ready, local action modules can 

customize the layout of the imported biological system. 

For example, when the groupby action module is added to the dive scene, it automatically 

detects the parts of the model that can be grouped according to their metadata. For a 

metabolic pathway, the objects suitable for automatic grouping are the metabolites and the 

reactions. Users can then group edges to highlight functional subsystems of the pathway 

(e.g., TCA cycle in red in Figure 19.b) and nodes to understand their positions in cellular 

compartments (e.g., cytosol). 

Users can also interact with an action module to perform FBA remotely on Kosmogora. After 

the FBA is processed by the server, the fluxes values are mapped to the color or width of the 

edges of the metabolic pathway (see Figure 19.c & Figure 19.d). 

This is similar to the conventional visualization in applications running on a computer (King 

et al., 2015; Rowe et al., 2018), but large flux values are now akin to mountains on the 

horizon due to the immersion provided by a VR device; this illustrates the concept of 

“landmarks.” sers can clamp the width of edges to balance between spotting individual 

fluxes and global readability. Flux values can also be visualized dynamically due to animated 

particles (see Figure 19.e), which are instantiated on edges in proportion to each flux value 

to map the flow rate of particles to the quantity of metabolites involved in the reaction 

symbolized by an edge. Finally, the numerical value of the flux can be obtained by opening 

the information panel attached to every edge. Users can interact with reactions to simulate 

knockout experiments, which can influence the FBA and reroutes the fluxes (see Figure 19.e 

& Figure 19.f). 

Comparisons 

The real-time property of ECellEngine and Kosmogora + ECellDive makes them intrinsically 

different from mainstream modelling software in biology so it is hard to fairly compare them 

together. The examples of software in Table 5 and Table 6 do overlap on the basis of the 

application targets, but the practices are radically different. It is probably more appropriate 

values. Most of fluxes have value 0 (hence, the pink). d) Manipulating the width of the edges is much more efficient than 
relying on colors only. VR immersion enables the concept of “landmark” facilitating the spotting extrema as we would for 
mountains in nature: the red fluxes are clearly visible. e) Zoom on a flux; the D-glucose transport through the periplasm. The 
FBA gave it a value of 10. The white points on the images are animated particles which debit is proportional to the value of 
the flux. f) We knocked out the D-glucose transporter and the flux was redirected. g) An overview of iJO1366’s network 
made in Cytoscape (Shannon et al., 2003). This is not available in ECellDive. It is provided here only to help locate where the 
user and its field of view in panels a-d. *Colors for the groups were taken to match the situation in panel b), the color 
conflicts were a choice of the user at the time. 
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to think of my RT systems as a parallel solution. Be that as it may, I give some elements of 

comparison in the next four sections. 

COPASI vs. ECellEngine 

COPASI is very well established in the community of systems biology to simulate and edit 

models of bio-chemical networks. It is currently in its fourth major version and provides 

reliable services for time course simulations, parameter optimization, sensitivity analysis, 

model building, plotting, and so on. Supplementary Figure A2.2 gives two screenshots of the 

GUI showing the interface to setup a plot and perform a simulation of the cell division cycle 

model of fission yeast (Novak et al., 2001) . The model is identical to the one used previously 

in section A published model with ECellEngine to illustrate the node-based scripting 

interface of ECellEngine on a real case. Clearly, ECellEngine’s approach to interacting with 

the model has nothing to do with the tabular view of COPASI. In the latter, it takes several 

clicks to reach the plot panel, add new plots, new curves, select when we want to draw it, 

decide of the X and Y axis, validate the selection then, finally, go back on the tab to run the 

simulation. On the contrary it is a matter of few click & drag in ECellEngine. Moreover, it is 

disturbing that one must leave the options of the simulation to edit the options for plotting. 

In my understanding, COPASI is very good when it comes to having the best of individual 

methods to solve modeling problems one-by-one. The goal is not to integrate seamlessly the 

pipeline but to regroup under a unique platform a tool suite for many frequently used 

modeling techniques. Given that the trend towards larger biological models requiring the 

integration of multi-scale or multi-type simulation techniques, it is possible the popularity of 

COPASI will progressively decrease in the future. 

CellDesigner vs. ECellEngine 

CellDesigner overlaps with ECellEngine as it also uses visual elements to support the 

construction and editing of biological systems. The intention of CellDesigner is to consider 

the biological systems as engineering processes which can be accurately described using the 

same process diagrams as for engineering tasks. The result of this approach is a software 

where designers can build network schematics representing a cellular system. 

Supplementary Figure A2.2.a gives a screenshot of the automatically generated schematics 

after I opened the cell division cycle model of fission yeast (Novak et al., 2001) that I used 

previously. CellDesigner is an excellent tool to match the mental model of modelers to a 

machine-readable file format after translation by CellDesigner. The tool also allows to run 

simulation by connecting to one of three simulation backends (including a wrap  
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Name Software Type Field/Subject Description 

CellDesigner 
(Kitano et al., 

2005)  

GUI Cellular Biology 

Modeling 

Generating & modifying biological 

models’ interactive schemas 

COPASI (Hoops 

et al., 2006) 
API + GUI Bio-Chemical 

Networks 

Many methods to solve problems 

associated with bio-chemical 

networks (simulation, parameter 

optimization, …) 

E-Cell Project 
(Takahashi, 

Sakurada, et al., 

2003; Kaizu et al., 

2020) 

API Multi-Scale 

Modeling 

A software interface for multi-

simulations (rule-based modeling, 

2D/3D particle simulations, …) 

Vivarium 
(Agmon et al., 

2022) 

API Multi-Scale 

Modeling 

A software interface for multi-

simulations (constraint-based, 

bio-chemical reactions, solid-

body physics, …) 

SOFA (Faure et 

al., 2012) 
API + GUI Physics-Based 

Simulation 

Interactive physics simulations of 

3D rendered models 

 of COPASI, see Supplementary Figure A2.2.b). However, the modeling approach in 

CellDesigner is strictly descriptive. It differs from ECellEngine in that it is not a scripting 

language, and you cannot mix the model description with logic gates, code routines, or 

dynamic visualization. 

Nanome vs. Kosmogora + ECellDive 

Nanome is VR collaborative software to study molecular dynamics, protein-ligand 

interactions and dockings. It is certainly more advanced than ECellDive from an aesthetic 

perspective and the RT human interactions in a virtual workroom are more elaborated 

thanks to better avatars and gestures. However, my understanding of this software is that its 

outreach of functions and domain of application makes it a translation of what equivalent 

standalone software on PC. Of course, Nanome greatly benefit from VR and immersion for 

the visualization molecule interactions compared to a 2D monitor. But there does not seem 

to be a reflection about what it implies to practice this kind of activity in the greater frame of 

the Metaverse. That is why I have, along other examples of software listed in Table 6, 

labelled it as non-Metaverse-ready. Given that the Metaverse is still only a future construct, I 

qualify a software to be metaverse-ready if it implements features to account for some of 

the requirements of the Metaverse such as I discussed in the paragraph “Proposition of 7 

requirements for a scientific metaverse”. In that respect my couple of software Kosmogora + 

ECellDive is closer Nvidia’s Omniverse. 

Table 5: Software whose objectives or technologies overlap with ECellEngine. 
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Name Actor Platform Field/Subject Metaverse

-Ready1 

Description 

Nanome 
(Nanome Inc, 
2023) 

Industry VR Biology, 

Chemistry, 

Pharmaceutics 

No 

A collaborative tool for 

molecular design and analysis 

VR-Omics 
(Bienroth et al., 
2023; 
Ramialison et 
al., 2023) 

Academia Desktop 2D & 

3D + VR 

Omics data 

visualization 

Desktop to VR pipeline 

integration for omics data 

processing and visualization 

Molecular 
Rift (Norrby 

et al., 2015) 

Academia VR Biology, 

Chemistry, 

Pharmaceutics 

A tool for molecular structure 

visualization 

Cytoscape 

(Shannon et 
al., 2003) 

Academia Desktop 2D & 

3D (via plug-

in) 

Network Data 

(Biology, Social 

Sciences, …) 

Popular tool for display and 

analysis of network data 

Graphia 

(Freeman et 
al., 2022) 

Academia Desktop 2D & 

3D 

Network Data 

(Biology, Agritech, 

Social Networks, 

…) 

Tool for display and analysis of 

large-scale network data 

SpaceTime 

(Xia et al., 
2018) 

Academia VR Real-time 

collaboration 

Research project for new 

collaboration schemes and 

techniques in real-time VR 

DataHop 

(Hayatpur et 
al., 2020) 

Academia VR Data visualization Research project for immersed 

data visualization where plots 

are laid out according to the 

analysis steps of the user 

NVIDIA 
Omniverse 

(NVIDIA, 2022) 

Industry Desktop & XR Virtual world 

creation 

Yes 

Large development tool suite 

for engineering-grade digital 

twins (industrial and scientific) 

and metaverse applications 

Volvo 
Truck R&D 

(Horton and 
Wurster, 2022) 

Industry Desktop & VR Automobile 

engineering R&D 

In-house R&D system for 

collaborative and immersive 

design of new trucks 

NVIDIA Omniverse vs. Kosmogora + ECellDive 

Omniverse is a huge tool suite maintained by Nvidia to help develop the Metaverse. It 

originally started as collaborative development platform for artists and designers, but it now 

Table 6: Tools overlapping with concepts also present in Kosmogora+ECellDive. 

 1Metaverse-Ready means that the tool includes metaverse constraints directly in its specifications; it does not mean that 
the tool is a Metaverse or is future-proof against the evolution of the definition of the Metaverse. For example, Nanome and 
VR-Omics are very good immersive visualizations, but they do not include concepts in their architecture to integrate with the 
larger scale of a Metaverse. NVIDIA Omniverse and the Volvo Truck R&D were designed to support this larger scale, which 
makes them “metaverse-ready” in our definition. 
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also includes simulation platforms for digital twins of robots, climate dynamics, computer 

vision problems, and so on. Of course, the amount of resources invested to develop and 

maintain Omniverse is eon larger than what I could invest alone during my PhD. But it does 

not change the fact that Kosmogora + ECellDive are investigating scenarios and work 

situations that are also at the heart of the collaborative tools in the ecosystem of Omniverse. 

Notably, it includes research on non-destructive modes of iteration over versions of a 

project. This problem seems to have been mainly addressed using a file format known as 

Universal Scene Description (USD) which allows to preserve the trace of versions for 3D 

models in addition to being fast, and extensible. USD files are solving problems that I 

addressed via the modification files.  
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V. CLOSING REMARKS 

I opened this dissertation with a critic of the gluttony of biologists for experimental data 

that, I expect, has likely been met with greater reluctant perplexity than genuine curiosity. At 

least, this is the prediction based on my few experiences during the three years of my PhD34 

where I was given the opportunity to strike a conversation with experimental biologists in 

systems biology about this matter. Long story short, it usually led nowhere. Be it for their 

blindsided behavior and faith in observations, my inability to explain my point of view as to 

what a theoretical framework for biology would look like, the possible insignificance of the 

matter, or a mix of these three and beyond, I could never maintain a meaningful exchange 

for more than a few minutes. The point on which appeared to crystallize all their perplexity 

was the matter of the verification and validation of a research method that would produce 

biological knowledge in the absence of the corresponding repeatable observations. From 

there, any attempts I made to motivate and illustrate that a body of axioms was strong 

enough to define a self-contained space of validity, never managed to interface with their 

conception of biology research should be conducted. The idea that unprovable statements 

could be the foundation to rock-solid biological theories was judged, at best, a pipe dream, 

at worse, a grave scientific malpractice. Even when I avoided talking about a theory-only 

biology, and instead focused the discussion on the uncomfortable fact (for me) that over-

relying on data was limiting us to answer, “how is this problem being solved?” (i.e., “how-

questions”), and ignore “what is the problem?” (i.e., “what-questions”), did not seem to 

raise much concern. In effect, rather than considering it as a problem that could be fixed, my 

interlocutors recognized it as a neutral quality of induction in biology. Neither bad nor good, 

simply a consequence to account for. Then, my arguments about the intractability of reverse 

engineering in inductive biology was invariably met with something along the line of “ML 

techniques will solve that”. And my final argument about the debatable sustainability of 

deep ML approaches did not shake the ambient unwavering optimism that the benefits of 

scientific discoveries outweigh the possible costs for the planet. 

Somewhat sadly, I then discovered that it was easier to have meaningful discussions on this 

topic outside the sphere of influence of systems biology. The first researcher whom I 

discussed with about the relative weight of theoretical approaches over observations was a 

physicist’s turned biologist for the time of a poster at the International Conference for 

Systems Biology in October 2022. His research was about the use of maximum entropy 

principle to explain the position of retinal cones (Beygi, 2023). It turned out easier to discuss 

with a researcher that was more adept at composing and aggregating abstract layers of 

knowledge to formulate questions about phenomena. This made me realize that I was 

probably better off honing my arguments with researchers in fields peripheral to biology. 

 

34 In fact, it is only 2 years since my first year coincided with the COVID pandemic and I carried out my research 

entirely from my parent’s home in France. 
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This is how I was introduced to the field of Artificial Life. There, I found, and was 

recommended, many papers which did not hesitate to cast aside big data to focus on 

foundational properties of biotic systems thanks to theoretical frameworks (Montévil and 

Mossio, 2015; Hernández-Orozco et al., 2018; Kauffman, 2020) or in silico experiments 

(Chan, 2020). Astrobiologists and geochemists which research overlaps with the subject of 

the origin of life are also used to perform a lot of hypothetical reasoning (Bartlett and Wong, 

2020; Wong et al., 2022; Kauffman, 2020; Kauffman and Roli, 2023) and to constantly deal 

with a shortage of data in their field. It is a research practice in a realm of uncertainty and 

open variables that would, I assume, make system biologists uncomfortable.  

Discussions with researchers outside of the field of systems biology has not changed my 

mind about the long-term inadequacy of induction in biology. If anything, it reinforced my 

opinion that alternative and complemental practices are possible and a goal worth pursuing. 

In this thesis, I investigated my alternative of choice, namely model-based biology powered 

by soft real-time systems. I defended that soft RT systems possess properties inherent to 

their necessity to execute tasks in a timely manner that can be transferred to modeling in 

systems biology for the better. Specifically, the possibility to manipulate the time axis to 

control the flow of the simulation for in-depth analysis of the characteristics of the simulated 

biological system; the interactivity of the simulations which can be designed to allow 

dynamic update, creation, and deletion of components for faster design iteration of 

biological models; and the support of the integration of heterogeneous input data, physical 

components, and virtual components, for the integration of automated hardware for biology 

experiments with synchronized simulations. All three of which can be used to accelerate the 

exploration of the solution space of biological systems by quick trial and errors. The 

exploration of the solution space can be used to target both “how-questions” and “what-

questions”, even though I am more in favor of the latter. I effectively implemented two RT 

systems during my PhD research to demonstrate my claims. The first, ECellEngine, is a soft 

RT simulation system for biological models. Its main purpose is to benefit from the RT 

framework while building, simulating, and analyzing plausible biological systems via the 

node-based scripting interface in the editor. The second, Kosmogora + ECellDive, is a couple 

of systems leveraging the benefits of RT collaboration for the iterative design of models of 

biological systems in a scientific metaverse.  

The work presented in this thesis can be extended in many ways. First, neither ECellEngine 

nor Kosmogora + ECellDive, are perfect and both could benefit from longer development 

time to make them more accessible, dependable, and versatile. This is particularly true for 

ECellEngine which some of the requirements identified in the section User requirements: 

build, play, learn page 64 and in Figure 9 page 65 are not yet implemented. This includes 

the generation of branches for non-destructive simulation alternatives. Such branches would 

be very useful to protect the integrity of simulation data and compare the design choices 

made between multiple versions of a biological model. 
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ECellDive is also currently lacking the possibility to simulate in the opposite direction of the 

time axis to backtrack simulations to a time of interest for the modelers. Finally, an 

inconvenient missing piece is the possibility to export edited models into SBML format but 

also into a non-destructive file format to store the history of the modifications. For this task, 

I wish to use the USD file format promoted for the description of virtual worlds in the 

Metaverse by Nvidia in Omniverse and other big companies such as Pixar, Google, and Apple. 

The USD file format is a high-end professional asset and the learning curve is quite steep. 

Although initially developed to describe alternative versions of 3D environments within a 

file, the USD library allows to define custom fields. I originally planned to customize USD to 

export from ECellEngine and store them in memory. Unfortunately, I could not finish the 

integration within the frame of my PhD. This must be achieved to truly make ECellEngine 

usable by other researchers. 

Finally, a direction to build on top of my research is to integrate automated biology 

experiment hardware with the RT simulation software I developed in this research as 

illustrated in Figure 20. This type of integration would power what is commonly called 

“closed-loop AI scientists” to let autonomous systems Design → Simulate → Compare → 

Hypothesize, and then the cycle restarts. The comparison between the simulation and the 

experiment outputs would allow to generate hypotheses about the biological system which 

will likely involve AI technologies (hence, the name). Of course, the purpose of this type of 

integration is to optimize a model to match as much as possible all the observations 

acquired during autonomous experiments. Given that the update of the model and the 

acquisition of data are both present in the cycle, it is neither the inductive biology I criticized, 

Figure 20: The integration of ECellEngine within a bigger loop involving automated laboratory hardware. The dotted 
arrows indicate asynchronous communications between the simulation component led by ECellEngine and the 
physical components. 
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nor the model-based biology (i.e., deductive biology) I defended. I hope this could be an 

intermediate setup where the acquisition of data might be indeed large in the long-term, but, 

at least, bounded and directed thanks to the model’s simulations. Eventually, whether this 

system leans more toward induction or deduction, will depend on whether the hypothesis 

generation policy gives more weigh to the experiment results or the model’s simulation. The 

design illustrated in Figure 20 would give more weight to the knowledge acquisition by 

updating the model first. Indeed, there are two internal loops (in blue) trying to optimize the 

parameters and the structure of the model, before generating a new batch of experiments 

(dotted arrow green to red). This way, it is the structure of the model that influences the 

experiments. It could have been the opposite by giving priority to the exploration of the 

input parameter space of the experiments (the value of (𝑖𝑛1, 𝑖𝑛2, … , 𝑖𝑛𝑘)
𝑇), and only then 

updating the model after much data has been acquired. In the future, we might observe a 

gradient between a full inductive and a full deductive closed loop AI scientist. 
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APPENDICES 

A1.  Primer on Numerical Integration of Ordinary Differential Equations 

A solver for Ordinary Differential Equations (ODEs) was implemented in ECellEngine in order 

to simulate models encoded as ODEs. The following is an summary highly inspired by the 

two reference textbooks written by Hairer and Wanner (Hairer and Wanner, 1993, 1996). 

This primer contains the essential of the knowledge I used (and that anyone uses) to 

implement an algorithm derived from Runge-Kutta’s method to numerically solve ODEs. 

Newton on Euler’s initial value problem 

It is known from Newton’s work that Euler’s initial value problem: 

 𝑦′ = 𝑓(𝑥, 𝑦),     𝑦(𝑥0) = 𝑦0     (1.1) 

can be solved with better accuracy than Euler’s method (error bounded by 𝐶ℎ where 𝐶 is a 

constant and ℎ the step size) if 𝑓 happens to be independent from 𝑦. In that case, (1.1) 

rewrites as: 

𝑦′ = 𝑓(𝑥),     𝑦(𝑥0) = 𝑦0     (1.2) 

and has the solution: 

𝑦(𝑥∗) = 𝑦0 +∫ 𝑓(𝑥)𝑑𝑥
𝑥∗

𝑥

    (1.3) 

A way to integrate from 𝑥 to 𝑥∗ is to iterate to successively approximate the values 𝑦𝑖(𝑥) 

using the midpoint rule 𝑦𝑖(𝑥𝑖 + ℎ𝑖) ≈ 𝑦𝑖 + ℎ𝑖𝑓 (𝑥𝑖 +
ℎ𝑖

2
) until we reach: 

𝑦(𝑥∗) ≈ 𝑦∗ = 𝑦𝑛−1 + ℎ𝑛−1𝑓 (𝑥𝑛−1 +
ℎ𝑛−1
2
)    (1.4) 

Explicit fixed step-size Runge-Kutta method 

Runge extended this method to the problem (1.1), which for the first step and an arbitrary ℎ 

reads: 

𝑦0(𝑥0 + ℎ) ≈ 𝑦0 + ℎ𝑓 (𝑥0 +
ℎ

2
, 𝑦 (𝑥0 +

ℎ

2
))     (1.5) 

Further approximating 𝑦 (𝑥0 +
ℎ

2
) with a euler step, we can rewrite the right side of (1.5) as: 

𝑦0 + ℎ𝑓 (𝑥0 +
ℎ

2
, 𝑦0 +

ℎ

2
𝑓(𝑥0, 𝑦0))     (1.6) 

The iteration form is better visible if we set 𝑘1 = 𝑓(𝑥0, 𝑦0) and 𝑘2 =  𝑓 (𝑥0 +
ℎ

2
, 𝑦0 +

ℎ

2
𝑘1) 

to obtain 𝑦1 = 𝑦0 + ℎ𝑘2. 

Further expanding this s times to approximate 𝑦1 starting from 𝑦0 forms an s-stage Explicit 

Runge-Kutta (ERK) method for (1.1). Generally, the expansion initializes with: 
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𝑘1 = 𝑓(𝑥0, 𝑦0)

𝑘𝑖 = 𝑓(𝑥0 + 𝑐𝑖ℎ, 𝑦0 + ℎ(∑𝑎𝑖,𝑗𝑘𝑗

𝑖−1

𝑗=1

))
 

and continues as and the approximate solution: 

𝑦1 = 𝑦0 + ℎ∑𝑏𝑖𝑘𝑖

𝑠

𝑖=1

     (1.7) 

with the function values 𝑎𝑖,𝑗 , 𝑏𝑖 and 𝑐𝑖 real coefficients. In some cases, it is useful to assume 

𝑐𝑖 = ∑ 𝑎𝑖,𝑗
𝑖−1
𝑗=1 . 

It is conventional to represent the coefficients as in the table below: 

𝟎      

𝒄𝟐 𝒂𝟐𝟏     

𝒄𝟑 𝒂𝟑𝟏 𝒂𝟑𝟐    

⋮ ⋮ ⋮ ⋱   

 𝒄𝒔 𝒂𝒔𝟏 𝒂𝒔𝟐 … 𝒂𝒔,𝒔−𝟏  

 𝒃𝟏 𝒃𝟐 … 𝒃𝒔−𝟏 𝒃𝒔 

Appendix Table 1: Generic Runge-Kutta function values tableau. 

The variations of Runge-Kutta methods boils down to finding different sets of parameters 

which will have slightly different effects on the stability or precision of the method at equal 𝑠 

or with higher orders 𝑠. Here are the values usually associated to “The” Runge-Kutta 

method: 

𝟎     

𝟏/𝟐 𝟏/𝟐    

𝟏/𝟐 𝟎 𝟏/𝟐   

𝟏 𝟎 𝟎 𝟏  

 𝟏/𝟔 𝟐/𝟔 𝟐/𝟔 𝟏/𝟔 

Appendix Table 2: Function values of the classic Runge-Kutta Method (order 4) 

Explicit variable step-size Runge-Kutta method 

The hope behind variable step size is to make bigger steps when the integration method 

makes small local errors (the error made when computing 𝑦1) and to make smaller steps 

after the local error has exceeded a set threshold. In practice, thanks to this approach, we 

observe that the integration method “goes fast” when the solution does not vary a lot and it 

“goes slowly” when the solution has sharp variations. Of course, there are some 



103 

 

optimizations to avoid growing or shrinking the step size too fast depending on the result. 

One way to compute the error is simply to compute the difference between two 

approximations 𝑦1 and �̂�1, where one of them is of higher order 𝑠. The “trick” to benefit of 

variable step-size at a low computational cost is to avoid having to compute 𝑘𝑖  values twice 

(for 𝑦1  and �̂�1 ). The idea is then to find function values that can be used for both 

approximations: 

𝟎      

𝒄𝟐 𝒂𝟐𝟏     

𝒄𝟑 𝒂𝟑𝟏 𝒂𝟑𝟐    

⋮ ⋮ ⋮ ⋱   

 𝒄𝒔 𝒂𝒔𝟏 𝒂𝒔𝟐 … 𝒂𝒔,𝒔−𝟏  

 𝒃𝟏 𝒃𝟐 … 𝒃𝒔−𝟏 𝒃𝒔 

 �̂�𝟏 �̂�𝟐 … �̂�𝒔−𝟏 �̂�𝒔 

Appendix Table 3: Generic Runge-Kutta function values for double approximations 

Then, we find 𝑦1 of order p as: 

𝑦1 = 𝑦0 + ℎ∑𝑏𝑖𝑘𝑖

𝑠

𝑖=1

     (1.9) 

And �̂�1 or order �̂� = 𝑝 + 1 or �̂� = 𝑝 − 1: 

�̂�1 = 𝑦0 + ℎ∑�̂�𝑖𝑘𝑖

𝑠

𝑖=1

     (1.10) 

A famous set of solutions comes from Dormand-Prince (DOPRI) where 𝑝 = 5 and �̂� = 4. This 

is the solution implemented in ECellEngine. The function values are: 

𝟎        

𝟏

𝟓
 

𝟏

𝟓
       

𝟑

𝟏𝟎
 

𝟑

𝟒𝟎
 

𝟗

𝟒𝟎
      

𝟒

𝟓
 

𝟒𝟒

𝟒𝟓
 −

𝟓𝟔

𝟏𝟓
 

𝟑𝟐

𝟗
     

𝟖

𝟗
 
𝟏𝟗𝟑𝟕𝟐

𝟔𝟓𝟔𝟏
 −

𝟐𝟓𝟑𝟔𝟎

𝟐𝟏𝟖𝟕
 
𝟔𝟒𝟒𝟒𝟖

𝟔𝟓𝟔𝟏
 −

𝟐𝟏𝟐

𝟕𝟐𝟗
    

𝟏 
𝟗𝟎𝟏𝟕

𝟑𝟏𝟔𝟖
 −

𝟑𝟓𝟓

𝟑𝟑
 
𝟒𝟔𝟕𝟑𝟐

𝟓𝟐𝟒𝟕
 

𝟒𝟗

𝟏𝟕𝟔
 −

𝟓𝟏𝟎𝟑

𝟏𝟖𝟔𝟓𝟔
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𝟏 
𝟑𝟓

𝟑𝟖𝟒
 𝟎 

𝟓𝟎𝟎

𝟏𝟏𝟏𝟑
 

𝟏𝟐𝟓

𝟏𝟗𝟐
 −

𝟐𝟏𝟖𝟕

𝟔𝟕𝟖𝟒
 

𝟏𝟏

𝟖𝟒
  

𝒚𝟏 
𝟑𝟓

𝟑𝟖𝟒
 𝟎 

𝟓𝟎𝟎

𝟏𝟏𝟏𝟑
 

𝟏𝟐𝟓

𝟏𝟗𝟐
 −

𝟐𝟏𝟖𝟕

𝟔𝟕𝟖𝟒
 

𝟏𝟏

𝟖𝟒
 𝟎 

�̂�𝟏 
𝟓𝟏𝟕𝟗

𝟓𝟕𝟔𝟎𝟎
 𝟎 

𝟕𝟓𝟕𝟏

𝟏𝟔𝟔𝟗𝟓
 
𝟑𝟗𝟑

𝟔𝟒𝟎
 −

𝟗𝟐𝟎𝟗𝟕

𝟑𝟑𝟗𝟐𝟎𝟎
 
𝟏𝟖𝟕

𝟐𝟏𝟎𝟎
 
𝟏

𝟒𝟎
 

Appendix Table 4: Function values for DOPRI5(4) 

The method requires 7 stages to reach order 5. 

Implicit Runge-Kutta formula 

The general expansion defining an s-stage Explicit Runge-Kutta system can be further 

expanded to include terms from stages beyond the current one. This is called an implicit 

Runge-Kutta method when there exists at least one 𝑖 such that ∀(𝑖, 𝑗) ∈ [1, 𝑠]2 | 𝑖 ≤ 𝑗, 𝑎𝑖,𝑗 ≠

0. In effect, it means there are non-zero coefficients above the diagonal of the function 

values table. The final form for the 𝑘𝑖  that includes both the explicit and implicit definitions 

up to stage 𝑠 is: 

𝑘𝑖 = 𝑓(𝑥0 + 𝑐𝑖ℎ, 𝑦0 + ℎ(∑𝑎𝑖,𝑗𝑘𝑗

𝑠

𝑗=1

))     (1.11) 

It can be proven that implicit methods have a much larger stability space that explicit 

methods. A method is stable when the numerical solution does not exhibit oscillating or 

explosive behavior. Implicit methods are also more accurate than explicit ones. In 

comparison, explicit methods are less computationally expensive and easier to implement. 
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A2.  Supplementary Figures 

 

Supplementary Figure A2.1: Basic schematic to introduce the concept of data race between functional units. Data race 
occurs when multiple units are using shared memory and one of them is trying to update the value of data in memory that 
might be read by any other unit. In such cases it is possible that the value of the data being modified changes in the middle 
of the execution of units reading the data. a) No data race. b) no data race. c) Data race between U1 and U2 so they must be 
strictly organized one to the other. Another solution not showed here is to interrupt the execution of every unit before 
reading data that might be modified until the unit modifying it has finished its job. 
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Supplementary Figure A2.2: Screenshots from the graphic user interface of COPASI. a) The interface to add visualization 
after running a simulation. b) The results after simulating using an ODE solver the model of cell division cycle of the fission 
yeast from (Novak et al., 2001). 
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Supplementary Figure A2.3: Screenshots from the graphic user interface of CellDesigner. a) The default model view after 
opening the model of cell division cycle of the fission yeast from (Novak et al., 2001). b) The simulation panel using COPASI 
as the backend simulation software.  
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