
Title Model-Based Biology Using Soft Real-Time Systems

Author(s) Jacopin, Eliott

Citation 大阪大学, 2024, 博士論文

Version Type VoR

URL https://doi.org/10.18910/96344

rights

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Model-Based Biology Using

Soft Real-Time Systems

By JACOPIN Eliott

Ph.D. Thesis

In fulfillment of the requirements for a Doctor’s Degree

March 2024

Graduate School of Frontier Biosciences

Osaka University

Chair: Prof. Ueda Masahiro
Vice-Chair: Prof. Kondo Shigeru
Vice-Chair: Prof. Horie Takeo

Supervisor: Prof. Taiji Makoto

1

ABSTRACT

From the Human Genome Project onwards, biology research has happily undertaken the

path of high-throughput methodologies with the promise that big data would help reverse

engineering biological systems. I formulate quantitative and qualitative objections to this

sole inductive practice of biology, and I defend that biologists should give more

consideration to deduction. Model-Based Biology (MBB) is my take at such deductive

approach.

To incite biologists to practice deduction, we need to lead them to care more about the

shape of the solution space of biology rather than the specific solutions observable on Earth.

Biologists need tools to easily iterate on versions of models, test multiple alternatives, check

for their integrity, and share with colleagues. That is why, I developed tools focusing on

interactivity, trial and error, and collaboration.

The two software I developed are based on Real-Time (RT) technologies originally successful

in engineering and, more recently, in entertainment. Indeed, the interactivity of RT

simulation systems, as well as their scalability to support even complex systems such as

digital twins or the Metaverse, makes them highly relevant for the interactive exploration of

small or large biological models.

The first software, ECellEngine, was designed to build, simulate, and analyze plausible

biological systems via a node-based scripting interface similar to flow-based programing in a

GUI editor, linking with the RT simulation engine. Hence, this software has two levels; the

low level is an interface in C++ for real-time simulation of scientific models for seasoned

programmers, and the high level is a node-based editor that non-programmers can use to

intuitively encode models. The second software, Kosmogora + ECellDive, is leveraging the

benefits of RT collaboration in a scientific metaverse for the iterative design of models of

biological systems. Kosmogora is a server instance helping to centralize biological data and

simulation requests for users in the virtual reality software ECellDive. This explores the

modes of collaboration between biologists to also promote MBB thanks to RT collaboration.

ECellEngine is part of the few software in systems biology which try to integrate all steps of

modelling in systems biology. This is the unity of space because there is only one tool. The

edge of ECellEngine over the other software lies in the unity of time because there is no clear

separation between model building, simulation, and analysis thanks to the real-time

architecture. Users can modify anything about a model, at any time, and immediately watch

the effects. Kosmogora + ECellDive are among the first VR software for systems biology that

go beyond data visualization to include modeling as its main feature. In addition, ECellDive

may not be as polished as other software visually, but it questions the place of the

Metaverse in a research field which other software hardly do.

2

ACKNOWLEDGEMENTS

I would like to thank Prof. Taiji for allowing me to apply to the doctor course of the FBS

under his guidance, as well as for the valuable comments during the report meetings.

Thank you also very much to Dr. Takahashi for accepting me within his laboratory and

providing me with an incredible work environment! Thank you to Dr. Kaizu for supervising

my work during the past 3 years and our numerous fascinating conversations. Thank you

very much also to Dr. Sakamoto for his great help in implementing Kosmogora! It saved me a

considerable amount of time to focus on ECellDive. Thank you very much to Julien

Soysouvanh for his high-quality insight into software architecture, C++ development, and

video games engines: ECellEngine would have been very (very) different without you.

I would also like to thank Ikegami Kaoru, assistant for Dr. Takahashi’s laboratory, Ohyama

Yumie, assistant for Prof. Taiji’s laboratory, and all the staff of the FBS Educational Affairs

section for your constant help. Your presence and invaluable support have greatly facilitated

my life as an international student in Japan.

Which brings me to my final thanks: thank you Japan for welcoming me. It might sound

strange, but I think it is far too easy to forget that international and intercultural exchanges

are fragile and should be protected by all the parties involved in it.

3

CONTENTS

LIST OF ABBREVIATIONS ... 6

LIST OF FIGURES .. 7

LIST OF TABLES .. 7

I. INTRODUCTION ... 8

Induction is Dominating Biology ... 8

Induction is fueled by the big data ... 8

Quantitative problem 1: data acquisition is intractable... 9

Quantitative problem 2: knowledge acquisition is intractable .. 11

Qualitative problem 1: “always more” is morally questionable .. 12

Qualitative problem 2: induction is biasing biology research toward mechanisms ... 13

Defining a Deductive Approach for Biology .. 14

Non-inductive biology already exists ... 14

A definition for model-based biology ... 15

An example of model-based biology .. 16

The validity of results in model-based biology ... 17

About model-based biology in this thesis .. 17

Basic Theoretical Methods in Systems Biology ... 18

Modeling with differential equations... 18

Modeling with stochastic events .. 20

Modeling with rules ... 22

Modeling with software ... 23

II. REAL-TIME TECHNOLOGIES ... 26

Basics on Real-Time Systems .. 26

Terminology ... 26

Tasks execution scheduling to enable real-time .. 28

Fault-tolerant real-time systems .. 29

Design methodology of real-time systems ... 31

Applications of Real-Time Systems ... 36

4

When real-time systems are imposed.. 36

When real-time systems are chosen .. 37

Real-time monitoring systems ... 38

Real-time simulation systems .. 38

From real-time systems to digital twins ... 39

From real-time systems to the Metaverse ... 41

III. CHARACTERIZING SOFT REAL-TIME SYSTEMS FOR MODEL-BASED BIOLOGY 43

Why Real-Time Technologies for Model-Based Biology? .. 44

Imagining a Perfect Real-Time System for Whole-Cell Modeling .. 45

Background of Whole-Cell Modeling ... 45

Integration level 1: predictive SIL with RT interactive WC simulations asynchronous to experiments. 47

Integration level 2: generative SIL with RT interactive WC simulations with no experiments 48

Integration level 3: predictive SIL with RT interactive WC simulations and HIL synchronized experiments. .. 48

Transferring Real-Time Technologies to Model-Based Biology ... 49

“But how should the simulation be structured in order to support a wide variety of vehicles and subsystems

in fully integrated configurations?” ... 51

“How should the computer systems be configured such that simulation uptime is maximized […]?” 51

“How should the computer systems be configured such that […] future study requirements are independent

of hardware configuration?” .. 52

“How should the simulation be distributed across the computer facility to minimize software development

time […]?” ... 53

“How should the simulation be distributed across the computer facility […], to produce a high degree of

confidence during integration […]?” .. 53

“How should the simulation be distributed across the computer facility […] to allow for straightforward

operation?” .. 55

Additional conceptual considerations when designing .. 56

Additional technical considerations when designing ... 58

Game-Engine-Inspired Real-Time Systems ... 59

Generators of “soft real-time interactive agent-based computer simulation” .. 59

About the real-time simulation loop of a game engine ... 61

The game engine frameworks I used ... 63

IV. USING SOFT REAL-TIME SYSTEMS FOR MODEL-BASED BIOLOGY 64

Designing a Soft Real-Time Simulation Engine: ECellEngine.. 64

5

User requirements: build, play, learn ... 64

Elements of architecture .. 67

Designing a Collaborative Soft Real-Time Modeling Environment: Kosmogora + ECellDive 71

User requirements: collaborative biology modeling in the Metaverse ... 71

Elements of architecture .. 75

Satisfying Soft Real-Time Systems Requirements to Benefit Model-Based Biology .. 81

User experience for iterative biological model design ... 81

Interactive simulations ... 86

Integrated analysis ... 87

Soft Real-Time Systems in Action for Model-Based Biology ... 88

A published model with ECellEngine .. 88

A flux balance analysis with Kosmogora + ECellDive .. 90

Comparisons .. 92

COPASI vs. ECellEngine ... 93

CellDesigner vs. ECellEngine ... 93

Nanome vs. Kosmogora + ECellDive ... 94

NVIDIA Omniverse vs. Kosmogora + ECellDive ... 95

V. CLOSING REMARKS ... 97

APPENDICES ... 101

A1. Primer on Numerical Integration of Ordinary Differential Equations .. 101

Newton on Euler’s initial value problem .. 101

Explicit fixed step-size Runge-Kutta method .. 101

Explicit variable step-size Runge-Kutta method ... 102

Implicit Runge-Kutta formula ... 104

A2. Supplementary Figures ... 105

REFERENCES ... 108

6

LIST OF ABBREVIATIONS

API Application Programming Interface

AGC Apollo Guidance Computer

CPU Control Processor Unit

DARTS Design Approach for Real-Time Systems

FAIR Findable, Accessible, Interoperable, Reusable

FBA Flux Balance Analysis

FPS Frames Per Second

GE Game Engine

GL Game Loop

GO Game Object

GUI Graphic User Interface

HGP Human Genome Project

HIL Hardware-In-the-Loop

HRT-HOOD Hard Real-Time Hierarchical Object-Oriented Design

HTTP HyperText Transfer Protocol

MARS Maintainable Real-Time System

MBB Model-Based Biology

ML Machine Learning

NASA National Aeronautics and Space Administration

ODE Ordinary Differential Equation

OOD Object-Oriented Design

OOP Object-Oriented Programming

RBM Rule-Based Modeling

RNG Random Number Generator

RT Real-Time

RUDIL Real-time User’s Design and Implementation Language

SE Stochastic Event

SIL Software-In-the-Loop

SS Stochastic System

STAR Self-Testing And Repairing

TARP Testing And Repair Processor

TMO Time-triggered Message-triggered Object

UI User Interface

URL Uniform Resource Locators

USD Universal Scene Description

UX User eXprience

VR Virtual Reality

WC Whole-Cell

WCET Worst Case Estimation Time

XR eXtended Reality

7

LIST OF FIGURES

Figure 1: Ordinary Differential Equations (ODEs) vs. Stochastic Systems (SSs) implementation

of Lotka-Volterra prey-predator model (Lotka, 1925; Volterra, 1926). 19

Figure 2: Conceptual structure of real-time systems. .. 27

Figure 3: Why use real-time systems? ... 36

Figure 4: Publication count per year or articles that contain the words “Real-Time Systems”

or “Digital Twin” (capital case or not) referenced in Google Scholar between 1960 and 2023

(last count on December 9, 2023). ... 39

Figure 5: Nature of the intersections between the knowledge of biologists, the knowledge

embedded in a whole-cell model, and the truth about cell biology.. 45

Figure 6: Event execution options during simulation integration. .. 59

Figure 7: Various execution sequence of real-time loops.. 61

Figure 8: Logo of ECellEngine. .. 64

Figure 9: High-level structured view of the user’s requirements for ECellEngine. 65

Figure 10: Logo of ECellDive ... 71

Figure 11: Logo of Kosmogora .. 71

Figure 12: Distribution of the center of interests of different actors of the construction of the

Metaverse. ... 72

Figure 13: Centralization and management of biological data by Kosmogora 76

Figure 14: High-level interaction schemes in ECellDive between users and 3D objects in dive

scenes. .. 79

Figure 15: Simplified sequence diagram for data import in the Client/Host work session of

ECellDive. .. 80

Figure 16: Screenshot of the editor of ECellEngine. .. 82

Figure 17: Diving between scenes. ... 85

Figure 18: A model of the division cycle of fission yeast (Novak et al., 2001) in ECellEngine. 89

Figure 19: Illustration of the main steps of a flux balance analysis in ECellDive on model

iJO1366. .. 91

Figure 20: The integration of ECellEngine within a bigger loop involving automated

laboratory hardware. ... 99

LIST OF TABLES

Table 1: Field Axioms. ... 15

Table 2: Vector Space Axioms. ... 16

Table 3: Nodes available in the scripting interface of the editor of ECellEngine 83

Table 4: Modules available in ECellDive. .. 84

Table 5: Software whose objectives or technologies overlap with ECellEngine. 94

Table 6: Tools overlapping with concepts also present in Kosmogora+ECellDive. 95

8

I. INTRODUCTION

Induction is Dominating Biology

Induction is fueled by the big data

Modern biology research is guided by the advent of high-throughput methodologies to the

point that the field produces more data than it can handle. Sydney Brenner expressed a

similar opinion in his Nobel prize lecture (Brenner, 2002) as a reaction to the data generated

by the Human Genome Project (HGP) (Genome Sequencing Workshop, 1986; Bitensky, 1986;

Collins and Galas, 1993; Collins et al., 1998; Lander et al., 2001; Venter et al., 2001):

“We are all conscious today that we are drowning in a sea of data and

starving for knowledge.”

At the time the HGP was launched, the committee estimated sequencing speeds around to

be around 100,000 base pairs (bp) per year which converts to about 11 bp per hour. Since

then, data collection in biology has never ceased to accelerate with current sequencing

technologies1 advertising rates of 3.7 billion bp per hour to even 184 billion bp per hour. The

data acquisition protocols in proteomics or metabolomics via nuclear magnetic resonance or

mass spectrometry (and the prior processing steps) is much more fragile than for genomics.

That is why many studies (Derks et al., 2023; Jeppesen and Powers, 2023) are dedicated to

improving the protocols. (Hajjar et al., 2023) have, while reviewing metabolomics studies in

human and plant research, pointed out the lack of standardized protocols in the

communities yet. Moreover, they found that “[…] methods generally enabled detecting less

than 250 metabolites in human biofluids, except for lipidomics approaches where more than

500 lipid species can be profiled in large populations […]” which is one or two orders of

magnitude lower than the theoretical diversity. About proteomics, opinion paper (Slavov,

2021) also reports a wide diversity of protocols to identify a couple thousand proteins at

most. Moreover, if the scan of a sample takes only a few minutes, the cohorts may very well

reach several thousand which, with the preparation of the samples upstream and analysis

downstream inevitably limits the throughput in comparison to genomics. Nevertheless, we

observe the same efforts to strive for higher throughput methods in proteomics, with a

notable interest for “untargeted” studies that falls right into big data approaches and, hence,

induction. Independently of extraction methods, we also observe consequent efforts to

break free from human limitations by using automated robot platforms to perform biological

assays without human input (King et al., 2009; Coutant et al., 2019; Brunnsåker et al., 2023).

1 Pacbio (https://www.pacb.com/) Revio is based on long reads of 15-20kb yielding 90Gb in about 24h, Onso is

based on short reads of 200bp yielding 100Gb in about 32h. Oxford Nanopore Technology

(https://nanoporetech.com/) and its flagship PromethION advertises a theoretical output of 13.3Tb in 72h.

While Illumina (https://www.illumina.com/) and its system NextSeq 550 indicates yielding 120Gb with runs of

30h and advertises support for transcriptomics. These statistics are provided by the companies and were not

verified.

https://www.pacb.com/
https://nanoporetech.com/
https://www.illumina.com/

9

The seminal paper (King et al., 2009) describes a prototype robotic platform designed to

work without human intervention to automate the discovery of biological knowledge. This

platform works as a closed loop between experiments and hypothesis generation, ultimately

relying on the data produced2 . This closed-loop architecture has then been further

developed as illustrated by (Coutant et al., 2019) whose goal is to accelerate the iteration

process of the model design in systems biology. The introductive statement of the paper

acknowledges the need to increase the throughput of research techniques if biologists want

to continue doing systems biology. An approach which will inevitably lead to more data. The

work from (Brunnsåker et al., 2023) specifically targets the automatization of cell cultures of

Saccharomyces cerevisiae with untargeted mass-spectrometry to smooth the bottleneck of

data throughput in metabolomics studies.

Following these strategies, induction in biology has yielded notable results. This is all thanks

to a new kind of observations that the double helix structure of the DNA was discovered. It is

all thanks to observations that diseases are detected, understood, and cured. It is all thanks

to observations that species’ genomes can edited.

Despite these incredible feats, I advocate there are reasons to worry about pursuing the big

data in biology in the long-term. The first group of problems are quantitative and related to

the intractability of data and knowledge acquisitions. Here, I use “intractability” as defined in

the field of computer science: there does not exist any efficient solution to acquire data and

knowledge and one can only use a “brute force” approach. The second group of problems

are qualitative and related to ethical and philosophical considerations.

Quantitative problem 1: data acquisition is intractable

The first quantitative problem is that biologists will never have enough time or resources to

acquire and store the data describing the whole biology of the universe. This can easily be

illustrated thanks to the UniProt entry P04637 of the protein p53. The available information

indicates 23 possible post-translational modifications effectively representing a solution

space of 223 states to investigate. Taken alone, there is no way to know which states have a

causal relationship with biological behaviors so they must all be experimentally tested. And

as experimental tests must be repeated to increase their statistical value the number of

samples is probably greater than 225 (i.e., at least 4 samples for each test). In the incredibly

good situation where the output of the experiment can be measured with a single binary

result (0 or 1), we can store 2 experiments of 4 samples into one byte. Therefore, we need to

acquire 222 bytes of data which only amounts to 4 MB. This lower bound is very acceptable

today but would have already been a real challenge in the 90s. A bit more realistically, the

output of the experiment will likely be, at least, a 16-bits (2 bytes) numeric value for each

sample so the required data. This corresponds to 512 MB. That is still acceptable by today’s

2 The experiments to test the hypothesis are deduced from a model so, strictly speaking, it is incorrect to say

that there is only induction (or abduction).

10

storage standards but note that this is the amount of data required to totally explore a

unique causal link for all states. Of course, the holistic approach of systems biology enforces

the view that the protein is only a single piece of a much bigger system. And causal link

between the protein and other pieces of the system should, in theory, also be tested. So,

one sample do not generate one 16-bits value but an arbitrary number 𝑥. Which linearly

scales the required data to 512 𝑥 MB. Considering a human cell typically has at least

hundreds modalities of interest, we can expect to easily reach 51,200 MB. That’s 50 GB to

describe the whole interaction space of one human protein, in interaction with a hundred

elements in one type of cell. Then, the next question is what about the remaining protein

states in the cell. What about the other species? What about multi-cellular organisms? What

about the rest of the universe? Even if we limited ourselves to the biology on Earth, it is

unrealistic to acquire enough data to describe all these subjects. The human species will

surely go extinct or will not look like the human species anymore before we can manage this

amount of data.

Of course, the classic response to this issue I am raising is that my worries are unwarranted

because biologists do not need everything. But if that is really true, why bother with big data

to begin with? Indeed, as (Leonelli, 2014) points out “[…] having a lot of data is not the same

as having all of them […]”. Indeed, Leonelli found that a major claim for advocates of the big

data3 is that one can truly start relying on correlations thanks to the innate diversity of the

collected data. But as soon as one starts removing or favorizing a segment of the data

collection, this “self-correcting” property of the big data shatters. So, no one who advocates

for big data in biology can say that we don’t need all the data without contradicting himself.

Leonelli also argues that, anyway, “The ways in which Big Data is assembled for further

analysis clearly introduce numerous biases related to methods for data collection, storage,

dissemination and visualization.” This point is also brought forward in (Leonelli, 2019) where

Leonelli argues that the tools themselves used to acquire data are biased toward what

biologists think is relevant data in the first place. Thus, the act of creating an online database

to aggregate a type of biological data rather than another is not without consequences. It

elevates this database to the rank of de facto benchmark for this collection of data (e.g., PDB

or UniProt), it is guiding the way mainstream biology think this data, and the scientific value

it supposedly brings. Consequently, the belief that big data in biology can reach “self-

correct[ness]” is a misconception because the big data in biology is full of biases.

Unfortunately, despite this misconception, Leonelli obverses that databases have enabled

enough breakthroughs that biologists are ignoring the weaknesses of their arguments in

favour of the big data, and even promotes the acquisition of more data.

3 In the paper, Leonelli analyses the claims of Mayer-Schönberger and Cukier in their book “Big Data”(Mayer-

Schönberger and Cukier, 2014)

11

Quantitative problem 2: knowledge acquisition is intractable

The second quantitative problem is that, even if we somehow acquire all the data, there is

nonetheless the issue of extracting meaningful information from it. Brenner’s criticism of the

big data for biology was also about this problem of knowledge acquisition. He feared that

the amount of individual collected facts renders the extraction of core knowledge

particularly hard. He was convinced that the holistic approach of systems biology to reverse

engineer the fundamental properties of life would fail because of the intractable nature of

knowledge extraction in biology. The knowledge extraction methodologies are always

lagging behind the quantity of data. He argued that biology should develop a better

theoretical scheme to frame data acquisition to a specific context and extract the essential

biological knowledge encoded in the extracted data. Since 2002 and his Nobel prize lecture,

he suggested that the correct unit to study biology was the cell, in opposition to the

predominant view that genes were the correct unit. According to his claims, focusing on

genes would make the task too complicated for a long time because we have yet too much

to learn about them to fully grasp their implications. Cells, on the other hand, were easier to

probe —this still holds true today— and stand at a perfect junction point between

biomolecules and organisms. Brenner also argued that there would be a methodological

unification of sorts where we would start seeing organisms as a network of interacting cells

the same way we approach cells as a network of interacting molecules (Brenner, 2010). He

called this approach CELLMAP and suggested that biological science should undergo a

planet-wide project similar to the HGP to build this map. Funnily enough, he noted (Brenner,

2002) that it took 17 years from the start of the HGP to the publication of the genome; so

we’d be finished with CELLMAP by 2020. None of that ever happened during Brenner’s

career, but we must today recognize the launch of the Human Cell Atlas project (Rozenblatt-

Rosen et al., 2017; Regev et al., 2017, 2018) which shares the ambition although, maybe, too

oriented toward cataloging the diversity of cells thanks to experiments rather than an effort

to modeling and reductionism as Brenner appeared to defend. Around 2010, Brenner

himself seemed to acknowledge biology had gone full-in the big data approach instead of

anything close to what he suggested (Brenner, 2010, 2012). He continued to argue that

reductionism and forward modeling was the only way.

What Brenner did not foresee is the rise of Machine Learning (ML) methods that can actually

help us extract knowledge from this kind of gigantic data repositories. Consequently, system

biologists have, as in other fields, started relying on ML methods to filter the noise out of the

big data and extract biological knowledge from it. From the perspective of reductionists, this

is an admission of weakness of holism. From the holist’s perspective, this is just a

methodological continuation and a golden opportunity to eventually see their approach

prevail.

But there is still a fatal flow to ML methods. They are themselves dependent on data to

perform correctly. Which means that using ML methods to solve Quantitative Problem 2 on

knowledge extraction from data, actually exacerbates Quantitative Problem 1 on data

12

acquisition because additional data must be extracted upstream to train ML methods.

Hence, using ML methods puts even more pressure on biologists to acquire data.

Moreover, biologists themselves tend to forget the epistemic heterogeneity of their own

field. This is illustrated by (Callebaut, 2012) where he points out the overlap and lacks of

clear definitions of “bioinformatics”, “computational biology”, “systems biology”, and

“synthetic biology”. All four of which are part of the movement of the big data in biology and

are working with the same data objects but have different point of view. Similarly, “the lack

of unary definitions for biological terms” is also acknowledged in (Leonelli, 2019) as

operating as a multiplicative factor for the interpretation of data.

Qualitative problem 1: “always more” is morally questionable

The big data is yet another embodiment of our societies thinking “more is better”? As

opportunistic as it may seem, and fully aware that analogies and comparison across history

are dangerous, I point out that big data approaches bear many similarities with economical

productivism. Productivism has supported the capitalistic economies of western countries

since the industrial revolution, and the whole planet since, let’s say, the end of the 2nd World

War (this is, of course, a very crude approximation). Furthermore, it is nowadays largely

accepted that this way of life is chiefly responsible for Earth’s resources depletion and

climate downfall. Despite this tragic consequences, human societies and social sub-groups

default practices perpetuates the thinking that “more is better”. I am sincerely anxious to

see that, once again, a human population (biologists) has reacted to the problem of “we

have too much” (data) by relying on a technological solution that “needs even more”

(machine learning). Training deep ML models on the latest GPUs takes terra watts of

electricity (Strubell et al., 2019; Bender et al., 2021) and, ironically, newest learning

algorithms often require even more data than we already had to properly train the previous

generation. If that is not a self-reinforcing predatory pattern, I don’t know what is.

In my opinion, despite the spectacular results that tools like AlphaFold (Jumper et al., 2021)

brought in biology to predict protein structure, it is a serious ethical breach to let supervised

ML become the new default methodology to extract biological knowledge from biological

facts. I would very much like if every biologist (experimentalists and modelers alike) could

think a bit more about the data sustainability of their experiments before they implement

them. How much data is enough to answer a biological question? What is the sufficient

minimal amount of information to solve my problem?

Answers to those questions obviously depend on a lot of factors, and their difficulty is also a

reason why it is so tempting to embrace big data. Because it is much more convenient to

ignore this problem, acquire as much data as possible to, only then, see what knowledge you

can extract from it. But this is a devil in disguise: the less focused you behave, the more

entropy you generate, and the more you indirectly participate to global warming. There are

environmental consequences to scientific practices, and I do not want to ignore them.

13

That is why, it feels wrong to practice systems biology the same way my peers do. And this is

where I agree with Brenner’s incentive to develop a theoretical framework for biology which

he reiterated in a short opinion paper (Brenner, 2012) at the occasion of Turing’s centenary4.

Given the legacy of Turing’s work, I understand Brenner had very high standards as to what a

theoretical framework of biology should be. And I think he had hoped his CELLMAP project

would eventually lead to that. For sure, I would have sincerely liked to see that.

Qualitative problem 2: induction is biasing biology research toward mechanisms

The second qualitative problem is that, if we only increase our biological knowledge based

on what we can observe, then we will never be able to cope with the biology we do not have

access to. The corollary of this problem is that biologists focus more on how biological

systems solve environmental problems on Earth, rather than what defines biotic systems.

It is my hypothesis that biology’s legacy from naturalists has biased it toward studying

biological systems that live only on Earth with little consideration for investigating life in

general. This stance is a direct consequence of naturalists’ practice to mainly dedicate

themselves to the description and observation of biological systems rather than their

analysis. On that note, (Callebaut, 2012; Leonelli, 2014) both argue that the work of

naturalists or taxonomists from the 18th century greatly diminishes the claims that the big

data in biology is a new and transformative scientific practice. Focusing on data acquisition

has deprived biologists of a whole way of investigating life by restricting them to reverse

engineering based on observations. Indeed, the more biological data biologists have, the

more they focus on understanding the process exemplified by the data rather than the

problem solved by the process. Thus, more often asking “how does this biological system

solves that problem according to the data?” instead of “what is the problem?”, even when

the latter question is a more general way to reach the answer to the former.

In fact, the concept of homoplasy5 between organisms in the field of phylogeny illustrates

that the “what-question” is as much relevant as the “how-question”. Indeed, if you

understand the problem that must be solved (“what-question”), the solution found by a

biological system (“how-question”) is but one occurrence in a much larger solution space.

Focusing on answering a set of “how-questions” will only yield a point cloud in the solution

space, and not the overall shape. Interestingly, this can be linked back to the enthusiasm of

system biologists for ML because the primary goal of a classifier in ML is to find the shape of

a solution space from only observations making the point cloud. Therefore, machine learning

4 Here is the quote of the first paragraph of the paper: “Biological research is in crisis, and in Alan Turing’s work

there is much to guide us. Technology gives us the tools to analyse organisms at all scales, but we are drowning

in a sea of data and thirsting for some theoretical framework with which to understand it. Although many

believe that ‘more is better’, history tells us that ‘least is best’. We need theory and a firm grasp on the nature

of the objects we study to predict the rest.”

5 Homoplasy is the convergence of unrelated biological systems (species) over time toward similar features to

solve an environmental problem.

14

and the big data of biology are the technological solutions to exploring biology primarily

through “how-questions” in the hope of eventually answering “what-questions”.

In my opinion, focusing on “how-questions” has led the biology community to rather ironic

situations where the consensus was that life in deep seas or other extreme environments

was impossible because it wouldn’t match the current observations. Nowadays, this kind of

life is acknowledged and often described as “extremophiles”. Which is no less ironic because

it perpetuates the belief that the life observed until then was the norm and precludes

biologists from considering the existence of yet unknown life forms.

Although Brenner apparently decided to accept the big data of biology6 (Brenner, 2010) and,

therefore, the dominance of “how-questions” over “what-question”, I do not. I believe that

there is room for an alternative to inductive biology.

Defining a Deductive Approach for Biology

Instead of induction, it is my thesis that a deductive approach would benefit biology

tremendously.

Non-inductive biology already exists

Theoretical frameworks for biology have received a lot of interest from the side of

philosophers (Woodger, 1937, 1952, 1962), mathematicians (Turing, 1952), computer

scientists (Nagasaki et al., 1999; Danos and Laneve, 2004; Blinov et al., 2004), astrobiologists

(Bartlett and Wong, 2020; Wong et al., 2022), data scientists (Wong and Prabhu, 2023),

artificial life researchers (Lehman and Stanley, 2015; Hernández-Orozco et al., 2018;

Gershenson, 2023), and probably others. But even if we decide to dismiss these peripheral

frameworks for some reason, Darwin’s evolution theory (Darwin, 1859) or the work on

genetics initiated by Mendel (Mendel, 1865) and later Fischer (Fisher, 1930), do not need

any observations to build them.

Of course, it so happens that these theories seem verified by observations on Earth. But, for

instance, in the case of Darwin’s evolution theory, a founding hypothesis along the line of:

“only biological systems matching the constraints of their ecosystems can survive”, is

enough. From this statement, any change in the environment implies failure of some

biological systems and a long term “selection” of the more “fitted” ones takes place. I think

anything related to evolution and genetics do not require biological observations to be

formalized. Consider the following statements:

• Information can be encoded physically (as in, it takes physical space)

• Information can be stored physically

6 Here is a citation: “No use will be served by regretting the passing of the golden years of molecular genetics

when much was accomplished by combining thought with a few well-chosen experiments in simple virus and

bacterial systems; nor is it useful to decry the present approach of ‘low input, high throughput, no output’

biology which dominates the pages of our relentlessly competing scientific journals.”

15

• Information can be shuffled

The phrasing I used for this set of hypotheses is indeed very influenced by human’s young

history of devices to store information (arguably only 150 years old if I put paper and clay

tablets aside). On that note, it is interesting that Mendel’s work on genetic inheritance

(Mendel, 1865) was about a decade before Edison’s tin foil phonograph (1877). It is a

fascinating coincidence that, while Mendel describes biological information inheritance,

Edison builds a device to store sound information. Had Mendel never worked on this subject,

then Fisher (Fisher, 1930) would have discovered it anyway (since it is said that nor Darwin

nor Fisher knew about Mendel’s work).

If I push this fictional situation further, had Fisher never worked on this subject, then Turing

machines are an example of a system that satisfies the hypothesis (and even more since a

Turing machine is capable of encoding and storing, for the sake of computation which might

result in shuffling). So, I hope these examples illustrate that one does not need biological

observations to have hints about how biological systems work.

A definition for model-based biology

Model-based biology is the definition of symbols which can be combined to encode and

deduce biological knowledge. Many would probably argue that “model-based” is nothing

new in biology. I might agree with them to some extent because we can find plethora of

studies (see for example (Chance et al., 1960; Goldbeter et al., 1990; Novak et al., 2001;

Nijhout et al., 2004; Akman et al., 2008; Sivakumar et al., 2011; Dritschel et al., 2018;

Dudziuk et al., 2019; Nikolov et al., 2020; Novak and Tyson, 2022), and hundreds of others

on the BioModels database (Malik-Sheriff et al., 2020)) that work out a model of a

phenomenon first and analyze its qualitative behavior; some pursue further to confront

hypothesis with experiments, and may update the model accordingly. This approach is, in my

understanding, what Brenner’s meant with his “way forward” to biology (as opposed to

reverse engineering)(Brenner, 2010) and it contains some level of deduction. This is also very

much a classic strategy in physics with famous successful examples in astronomy, gravity, or

fundamental particle models.

Name Addition Multiplication

Associativity (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) (𝑎 𝑏) 𝑐 = 𝑎 (𝑏 𝑐)

Commutativity 𝑎 + 𝑏 = 𝑏 + 𝑎 𝑎 𝑏 = 𝑏 𝑎

Distributivity 𝑎 (𝑏 + 𝑐) = 𝑎 𝑏 + 𝑎 𝑐 (𝑎 + 𝑏) 𝑐 = 𝑎 𝑐 + 𝑏 𝑐

Identity 𝑎 + 0 = 𝑎 = 0 + 𝑎 𝑎 1 = 𝑎 = 1 𝑎

Inverses 𝑎 + (−𝑎) = 0 = (−𝑎) + 𝑎 𝑎 𝑎−1 = 1 = 𝑎−1𝑎 𝑖𝑓 𝑎 ≠ 0

Table 1: Field Axioms. Reproduced from (Weisstein)

The difference with my model-based biology is that I do not limit it to the formal expression

of a target phenomenon. In fact, I include the formal expression of the problem associated

16

with the phenomenon using the same symbols used to encode the model of the

phenomenon and its solutions. This is classically the case in mathematics where axioms form

elementary symbols that can be used to encode questions about the symbols themselves

(problems), definitions of new symbols (models), and the relationships between the symbols

(solutions). For example, the field axioms (see Table 1) specify the basic behavior for

addition and multiplication of scalars. These axioms are used to encode a structure of the

same name (i.e., Field); The identity axiom has the interesting consequence that it requires

Fields to have at least two elements (0 and 1).

Name Vector Scalar

Commutativity 𝑋 + 𝑌 = 𝑌 + 𝑋

Associativity (𝑋 + 𝑌) + 𝑍 = 𝑋 + (𝑌 + 𝑍) 𝑎 (𝑏 𝑋) = (𝑎 𝑏) 𝑋

Identity 𝑋 + 0 = 0 = 0 + 𝑋 1 𝑋 = 𝑋

Additive inverse ∀𝑋 ∈ 𝑉, ∃(−𝑋), 𝑋 + (−𝑋) = 0

Distributivity 𝑎 (𝑋 + 𝑌) = 𝑎 𝑋 + 𝑎 𝑌 (𝑎 + 𝑏) 𝑋 = 𝑎 𝑋 + 𝑏 𝑋

Table 2: Vector Space Axioms. 𝑉 Is a vector space and 𝐹 a field, 𝑋, 𝑌, 𝑍 ∈ 𝑉 and 𝑎, 𝑏 ∈ 𝐹. Adapted from (Weisstein).

Coupled with a Vector Space7, this specifies a Vector Space over Field which axioms are

written in Table 2. Without such Vector Space over Field it is formally impossible to perform

any Algebra (Weisstein); hence impossible to count over real numbers, vectors, matrices,

etc. Every piece of mathematics that is commonly used in physics or biology is void without

these axioms; but the axioms themselves are unprovable. Despite that, they are the root of

many scientific theories and that is why one judges the usefulness of a set of axioms to the

usefulness of its theorems and not the opposite. The model-based biology I am suggesting

would rely on such low-level statements to specify the basic notions of biological systems.

Then, the statements would be combined together and with further hypotheses relevant to

the domain of a target biological system. It would then be possible to derive new statements

corresponding to the biological implications of the biological system.

An example of model-based biology

The following is an example of logic statements by John H. Woodger in his book Biology and

Language (Woodger, 1952) derived from William Harvey’s natural language statements in

his work Anatomical Disquisition on the Motion of the Heart and Blood in Animals (1628).

Starting with the hypothesis (at the time of Harvey) that a heart is a muscle, Woodger

writes:

∀𝑥 𝐻𝑒𝑎𝑟𝑡(𝑥) ⊃ 𝑀𝑢𝑠𝑐𝑙𝑒(𝑥) 𝐻1

7 A vector space alone is only a “set that is closed under finite vector addition and scalar multiplication.” In

short, in a Cartesian space, this correspond to a component-wise addition of two vectors, and the

multiplication of the scalar on each component. (Weisstein)

17

In English, 𝐻1 reads as “For all 𝑥, if 𝑥 is a heart, then 𝑥 is a muscle”. Which is indeed a more

formal way of saying that a heart is a muscle. Then, in conjunction with the following

statement (known to be true at Harvey’s time) that a muscle in action is hard:

∀𝑥 ((𝑀𝑢𝑠𝑐𝑙𝑒(𝑥) & 𝐴𝑐𝑡𝑖𝑜𝑛(𝑥)) ⊃ 𝐻𝑎𝑟𝑑(𝑥)) 𝑆1

We can deduce from 𝐻1 and 𝑆1 that “A heart in action is hard”:

∀𝑥 ((𝐻𝑒𝑎𝑟𝑡(𝑥) & 𝐴𝑐𝑡𝑖𝑜𝑛(𝑥)) ⊃ 𝐻𝑎𝑟𝑑(𝑥)) 𝑆2

The symbols {∀, &, ⊃} are inherited from Boolean Logic while the symbols

{𝐻𝑒𝑎𝑟𝑡, 𝑀𝑢𝑠𝑐𝑙𝑒, 𝐴𝑐𝑡𝑖𝑜𝑛} are inherited from Biology. This is the kind of biology where one

starts from statements and manipulates the statements to deduce new laws. Of course, this

biological knowledge appears quite trivial to nowadays. But what matters is the capacity of a

deductive framework to suggest knowledge without actually observing a heart firsthand.

The validity of results in model-based biology

In this approach, the skepticism of biologists (probably built up by their experience in solving

“how-questions”) who might want to ask, “How do you verify that your model is true?” is

uncalled for. In fact, when biologists ask this question about the validity of the model, the

“truth” they speak of is usually associated with the predictive capabilities of a model. They

judge the usefulness and truthfulness of a model to the accuracy of its solutions compared

with the biological phenomena they have observed on Earth. Once again, they focus on the

point cloud and not the overall shape of the solution space. Whereas, if you encode the

problem in your model as I suggest, then the validity of the model is self-contained, and it is

harmless to keep making biological hypothesis without data within this frame. It is possible

that none of the solutions within the frame are observable on Earth. In fact, if one defines

large problems, it is very likely that it is not, because Earth is only representative of a subset

of the constraints that leads to a subset of biological problems. For example, it is unlikely

(but maybe not impossible) to find biological systems with functions similar to fishes if the

constraint associated with large water areas are absent from the environment. Biomedicine

is probably the only subfield of biology that should strongly require that predictions of a

model match the observations on Earth. But even so, it does not disqualify the “model-

based” approach, as I already explained that answering “what-questions” is a more general

way to answer “how-questions”. Therefore, I believe the premise of scientific work in

biology should be to identify and understand the problems rather than phenomena.

About model-based biology in this thesis

In this thesis, I focus on tools to achieve MBB because I believe this is the easiest way to talk

to biologists. The theoretical framework of mathematics has roughly 5000 years of history. It

probably will not take biologists another 5000 years to reach an equivalent quality for the

theoretical framework of biology because we are (hopefully) more knowledgeable of other

concepts which can inspire us. Hence, if one accepts to consider that model-based might be

a viable way to do biology, where to start? What symbols to use? What language? What

18

ground theory? What tools? As I already mentioned, many scientists have tried before to

develop such deductive framework for biology but it has never persisted. Conincidently, I

note that the abstract level of the frameworks was rather high which is usually not the best

medium to communicate with biologists. That is why I am taking the direction of intuitive

easy-to-use, direct feedback tools. To enable biologists to see, manipulate, to get a feel, and

share with other biologists what MBB is like. The tools I developed are software to explore

new ways to build biological models, simulate them, and analyze them collaboratively, or

alone.

In the following sections of this introduction, I will present modeling approaches and well-

established approaches that relate to my endeavor to practice MBB. Then, I will focus on a

set of technologies which, as far as I know, have never been used for modeling and

simulations in systems biology until my work, namely real-time technologies. I argue that

these technologies offer multiple advantages to practice model-based science in general

and, hence, are adapted for MBB.

Basic Theoretical Methods in Systems Biology

The aim of this section is dual. First, it is the occasion to present state-of-the-art modeling

methods that will be mentioned repeatedly in the rest of this thesis. Second, and the most

significant in light of what I discussed in the previous section, it is to raise awareness about

the implications of using a specific modeling method on our conceptualization and

perception of a target biological system. It is even more necessary as there are no

techniques or tools in theoretical system biology that has not been imported from other

fields.

Modeling with differential equations

A differential equation defines an unknown function by its derivative. Differential equations

are pure mathematical constructs which inherits from the versatility of mathematical

symbols to encode problems, models, and solutions. If I stopped here, differential equations

would appear as a very good sole candidate to practice MBB. And I will indeed use them

later on in this thesis. But, as differential equations are very well defined, they are

accompanied by theoretical constraints that are often ignored when modeling biological

systems. In the following, I will focus on first order ordinary differential equations (ODE) as

these are the most common in biology.

A first order (ODE) is of the form 𝑦′ = 𝑓(𝑥, 𝑦) (Hairer and Wanner, 1993) with a given

function 𝑓(𝑥, 𝑦). Thanks to the work of Cauchy in the 19th century (Cauchy, 1823), we know

a unique solution may exist for arbitrary first-order differential equations when both 𝑓 and

𝜕𝑓/𝜕𝑦 are continuous on an open set in ℝ2. In that case, a function 𝑦(𝑥) is a unique

solution of 𝑦′(𝑥) = 𝑓(𝑥, 𝑦(𝑥)) for all 𝑥 under the initial condition 𝑦(𝑥0) = 𝑦0. This is a very

important result as it guarantees that a phenomenon modeled this way will always yield a

solution provided that the function 𝑓 is chosen very carefully. I find it interesting that

modelers in biology seldom take care to verify that this condition holds for all the differential

19

equations they write. Of course, they often reuse and assemble well-known equations which

have proven harmless in that regard but there are also instances of models where the

functions are adapted forms and no care is given whatsoever to verify the condition (Chance

et al., 1960; Novak et al., 2001); the equations are justified from a biology viewpoint but not

from a mathematical one.

The physical interpretation of a first-order differential equation is that it represents the

speed at which an entity varies relative to a variable (i.e., the derivation variable). Hence,

using differential equations to model a system biases the conceptualization of the system as

a set of variable-dependent transformations. In the case of biological systems, the set of

variables is often limited to time or space. This limitation is the result of a more general

research bias that modelers cultivate to always conceptualize a biological system as a

physico-chemical system8. Consequently, in biology, first order ODEs are has been used to

model time-dependent physico-chemical changes at various scales such as for reactions

(Michaelis and Menten, 1913; Johnson and Goody, 2011), population (Lotka, 1925; Volterra,

1926) (see Figure 1.a for an example of the dynamics), epidemiology (Ross, 1916; Ross and

Hudson, 1917a, 1917b; Kermack et al., 1927), and more. It is noteworthy that in all these

8 Here is another interesting quote from J. H. Woodger (Woodger, 1929) when he discusses the role of

calculations and explanations in biology (p83): “It is evident that physics and chemistry, having developed

earlier than the other sciences, have, so to speak, set the fashion in this respect. The hypothetical entities of

physical science have been imagined on the basis of perceptible physical objects. Consequently when biology

began to develop it found an explanatory apparatus already to hand with which to pursue analysis. Had biology

developed first it is at least possible that its infraperceptual entities might have been conceived on a biological

model, and physics might have employed the notion of the organized body for its analysis. Physics would then

perhaps have borrowed from biology, instead of vice versa.”

Figure 1: Ordinary Differential Equations (ODEs) vs. Stochastic Systems (SSs) implementation of Lotka-Volterra prey-predator
model (Lotka, 1925; Volterra, 1926). The Lotka-Volterra model tries to capture the interactions between preys and
predators. Preys can replicate natuarlly and die from being eaten by the predators. Predators grow only when eating preys

and can die naturally. The equation system is
𝑑𝑝𝑟𝑒𝑦

𝑑𝑡
= 𝛼. 𝑝𝑟𝑒𝑦 − 𝛽. 𝑝𝑟𝑒𝑦. 𝑝𝑟𝑒𝑑 and

𝑑𝑝𝑟𝑒𝑑

𝑑𝑡
= 𝛾. 𝑝𝑟𝑒𝑦. 𝑝𝑟𝑒𝑑 − 𝛿. 𝑝𝑟𝑒𝑑. Both

simulations were realized with 𝛼 = 1, 𝛽 = 0.01, 𝛾 = 0.01, and 𝛿 = 1; the seed of the random number generator in
Mathematica was set to 12357. a) Solved using ODEs. b) Solved using an SS. This is one of the stochastic realization of the
simulation of the SS which happens to look similar to the ODE solution in value range. Other solutions may have higher or
lower values, but the qualitative dynamics over time between ODEs and SSs are conserved if equivalent parameter values
are used.

20

examples, it is not trivial to identify the initial condition 𝑦(𝑥0) = 𝑦0 because a modeler does

not have control over the biological system and may be able to observe the current values of

variables but does not have access to the initial ones. This implies that a modeler is often

forced to estimate the initial values; sometimes thanks to established biological knowledge,

some other times via unprovable hypotheses. In any case, the estimation becomes an ad hoc

constraint that limits the outreach of the solutions of the model. This is not an issue in so far

as the model does not focus on its general predictive capacity.

The condition on continuity of 𝑓 also has a strange effect that might preclude the

interpretation of the numerical solution of the ODE model of a biological system. In fact, if it

is not much of an issue in physics to abstract quantities to floating point numbers to quantify

abstract concepts (e.g. free energy, entropy, diffusion, debit, etc.), it is not so evident in

biology where the goal is often to quantify concrete concepts. For example, when modeling

an ecological system, what does 0.8 rabbit and 12.6 wolves mean? In such cases the value of

the solution lies more in its dynamics over the derivation variable (e.g., time) than its exact

numerical value at some points, and its predictive usefulness is limited to the qualitative

changes observed over a large open set of the derivation variable. For example, is the

population of wolve forecasted to decrease anytime soon and what would be the decrease

factor.

Finally, modeling with ODEs also implies that “everything happens together at the same

time”. Indeed, a system of 𝑛 differential equations defined by 𝑦′ = 𝑓(𝑥, 𝑦) (with the vectors

𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛)
𝑇 and 𝑓 = (𝑓1, 𝑓2, … , 𝑓𝑛)

𝑇) is valid for every 𝑥. Hence, if ODEs are used to

model reaction rates in a cell, it implies that any product 𝐴 of a reaction 𝑅1 that is also the

reactant of a reaction 𝑅2 is consumed as soon as it is produced. This likely is not the case in

reality. Physically, 𝐴 is only “consumed” in 𝑅2 when it is in contact with the other reactants

(and probably an enzyme as catalyst). Even if 𝐴 is produced close to the reactants (and/or

the enzyme) of 𝑅2 there must be a delay, albeit imperceptible for humans. That is why we

find, sometimes, mentions in the hypothesis of a model using ODEs that it assumes the

concentration of the enzymes to be larger than that of the reactants. This assumption

implies that it “does not take long” for an enzyme to come into contact with the reactants,

hence ignoring the physical distance.

Modeling with stochastic events

A stochastic event (SE) is used to represent the occurrence of a phenomenon based on its

probability. As for ODEs, stochasticity finds its theoretical ground in mathematics and its

usage in biology inherits a large base of symbols to encode problems, models, and solutions.

The nature of the encoding stands, however, in opposition to the determinism of ODEs as

everything relates to probabilities. As a consequence, even if analytical solutions exist to

describe SEs, they will only ever describe the likelihood that a variable takes some value but

never which one it takes until the event is realized. In that way, SEs provide fewer ways to

probe the phenomenon they represent than ODEs. On the other hand, SEs are better

adapted to encode unary representations thanks to their discrete nature. For example, I

21

mentioned previously that ODEs abstract the count of individuals due to the condition on

continuity of the function. SEs are free from this constraint, and they happen “every once in

a while” as per their probability and the event itself is not tied to a particular numerical

effect. Hence, part of the modeler’s work is to decide what should happen when the event

occurs which, typically in biology, allows to increment or decrement quantities down to the

smallest unit. Thus, it is possible for SEs to represent phenomena requiring concrete counts

of entities.

Stochastic systems (SSs) are a set of stochastic events, and their realization is the sequence

of triggered SEs. It uses the continuity of the axis variable to ensure that there exists a small

interval [𝑥, 𝑥 + 𝛿(during which only one event is realized. Stochastic systems in the case of

biological applications are also subject to the bias of always conceptualizing biological

systems as physical systems, so the axis variable is often time or space.

The range of application subjects of stochastic systems in biology overlaps with the subjects

for ODEs. We find them in biochemistry (Gillespie, 1976, 1977), ecology (Getz, 1976) (see

Figure 1.b for one potential realization of the simulation of the SS corresponding to a Lokta-

Volterra model), epidemiology (Tuckwell and Williams, 2007; Allen, 2008; Jacopin et al.,

2020), and so on. It is actually not rare that a study with a primary model using ODE would

also present some solutions of an equivalent of the model encoded as an SS, or vice versa.

The goal when doing both is to observe an average behavior of the model with the ODEs

while the randomness of a SS allows to observe a different behavior every time a solution is

computed.

Gillespie greatly contributed to the modeling of a system of chemical reactions thanks to a

SS (Gillespie, 1976, 1977, 1992). His modeling started from the probability of collision

between molecules undergoing Brownian motion involved in a reaction with the form 𝑅𝜇 ∶

 𝑆𝑎 + 𝑆𝑏 → 𝑠𝑜𝑚𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 during the infinitesimal time [𝑡, 𝑡 + 𝛿(in a well-stirred and

thermodynamically stable environment. We can demonstrate (Gillespie, 1976, 1992) that

this probability follows the form 𝑃(𝑅𝜇)𝑡+𝛿
= 𝑐𝜇𝛿 where 𝑐𝜇 is “the specific probability

constant for reaction 𝑅𝜇”. Gillespie demonstrated that this stochastic process was an exact

match to the master chemical equation.

The major implication of using SSs is that it assumes the knowledge of the probability

function of each SE, and this is far from obvious. In most cases, similarly to how a modeler

would build up ad hoc functions in ODEs, modelers will write ad hoc probability functions. In

the case of a system of chemical reactions, these are called “propensities” and Gillespie

wrote them as the “number of distinct molecular reactant combinations for 𝑅𝜇 found to be

present in V at time t” (Gillespie, 1976). Hence, for the reactions:

• 𝑆𝑖 ⟶ 𝑠𝑜𝑚𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠

• 𝑆𝑖 + 𝑆𝑗 ⟶ 𝑠𝑜𝑚𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠

• 2𝑆𝑖 ⟶ 𝑠𝑜𝑚𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠

22

The propensities write as 𝑁𝑖, 𝑁𝑖 ∗ 𝑁𝑗, and 𝑁𝑖(𝑁𝑖 − 1)/2 respectively. It is noteworthy that

these propensities follow the law of mass action of reactions of order 1 and 2. This is a direct

consequence of the condition that only elementary reactions may occur during the time

[𝑡, 𝑡 + 𝛿(and reactions of orders different from 0, 1, or 2, can only be sequential

combinations of the elementary ones. However, a common modeling practice in the field is

to write the propensity function as 𝑎𝑖(𝑿) = 𝑓𝑖(𝑿, 𝑡) where 𝑓𝑖 is the deterministic rate

function that would be used in and ODE version of the model. Indeed, the flux-compliant

formalism of ODEs offers a much more convenient way to define the reaction rates. The

theoretical ground for this practice is discussed in (Wu et al., 2011) and they found three

sufficient conditions which would allow it. The following is a direct quote from the paper:

1) 𝑓 is a linear function

2) the reaction is monomolecular

3) all 𝑋𝑖 in the system are noise-free variables, i.e., without (or with ignorable)

fluctuations, which implies that the covariance of any two participating reactants is zero

(or close to zero).

If none of these sufficient conditions are verified, then the propensity is not compatible with

the master chemical equation and the theoretical ground of the method vanishes. It is not

an issue as long as the modeler remembers it and brings forward another rational to justify

the structure of the equation.

Modeling with rules

A rule is a map to describe a transformation between states without committing to a

numerical or simulation method to solve the transformation. That is why both ODEs and SSs

can be used to numerically realize the rule. Rule-based modeling (RBM) is the practice to

describe a process by a set of rules over variables undergoing change through this process.

RBM is a term which appears mainly in theoretical systems biology (Danos and Laneve, 2003,

2004; Blinov et al., 2004; Hlavacek et al., 2006; Faeder et al., 2009; Danos et al., 2012; Harris

et al., 2016; Boutillier et al., 2017) although similar methodologies are employed to describe

processes in different fields such as cellular automaton (Wolfram, 2002) or agent-based

modeling (Bonabeau, 2002; Jacopin et al., 2021). RBM technologies, in particular the κ-

language, have put in a lot of effort to characterize its theoretical framework on the basis of

set theory and has defined its own symbols to encode problems, models and solutions

(Danos and Laneve, 2003, 2004; Danos et al., 2012; Boutillier et al., 2017).

Interestingly, the emergence of RBM – in the late 90s, early 2000 – among other attempts at

devising a formal language to describe biological systems (e.g., based on π-calculus (Regev et

al., 2000; Priami et al., 2001; Regev and Shapiro, 2002)), coincides with the birth of the field

of systems biology. Early papers on the two major RBM technologies κ-language (Danos and

Laneve, 2003) and BioNetGen ((Blinov et al., 2004)) which still remains today motivate their

work by mentioning the increasing amount of experimental data being collected and the

overwhelming complexity of interaction networks in biological systems. In fact, RBM was the

23

pre-machine learning era attempt to satisfy the holistic ambitions of system biology. RBM is

indeed very efficient at reducing a collection of low-level biological phenomena (e.g., post-

translational modification) to a macro representation (i.e., the rule). For example, the

UniProt (The UniProt Consortium, 2023) entry P04637 of the protein p53 indicates 23

possible post-translational modifications. This represents 223 states. Thanks to RBM, this

state space can be compressed to 23 rules which, in BioNetGen, would read as

p53_Ser6Phospho: p53(Ser6~0) -> p53(Ser6~P) kSer6P 9 . Essentially, this decreases the

representation complexity of the state’s space transitions from exponential to linear. In that

way, it is using reductionism to solve holism because there is no loss of information in this

encoding.RBM is not devoid of issues, however. For example, both mainstream technologies

κ-language and BioNetGen are focusing on molecular scale phenomena, thus are excellent

to encode large-scale metabolic or interaction networks, but struggle, for example, to

encode polymerization reactions or to account for compartments. Despite the real potential

of RBM, its development has slowed down from 2010 onward and these problems were, to

the best of my knowledge, never solved.

Modeling with software

This category of modeling is a bit different from the three precedent approaches because it

does not exist alone and is relevant only in so far as it uses some lower-level modeling layers

to encode the effect of processes. In fact, it is encouraged in software engineering to

develop libraries with accessible interfaces promoting the combination of several libraries

inside a unique software. Hence, software becomes a heterogeneous entity that makes the

best of every subpart depending on execution requirements. For example, I mentioned

earlier that ODEs are better suited for compartment-based models whereas SSs have the

possibility to describe events down to the smallest unary elements of a system. As a

consequence, it has become standard to have both an ODE solver and an SS solver in

modeling software in order to use the most appropriate one depending on the nature of the

model. Some software even allow that both are used at the same time (Takahashi et al.,

2004) and synchronized (to some extent) to represent metabolism with ODEs and gene

interactions (i.e., for complexation of enhancers or inhibitors) with SEs.

The Constraint-Based Reconstruction and Analysis (COBRA) (Becker et al., 2007; Ebrahim et

al., 2013; Heirendt et al., 2019) library is a tool suite to generate genome scale metabolic

models with language bindings in Matlab or Python. It starts by gathering multi-omics,

physiology, and biochemistry data to automatically reconstruct metabolic network. This can

be followed by a manual curation before applying physico-chemical constraints such as

9 This is a very simple example of the rule syntax that would describe the phosphorylation of the residue serine

at position 6 in the sequence. Most likely, the phosphorylation rule would be preceded by a rule describing the

binding of the enzyme operating the phosphorylation. Here is a possibility: (next page)

p53_Bind: A(a) + p53(b, Ser6~0) -> A(a!1).p53(b!1, Ser6~0) kBind

p53_Ser6Phospho: A(a!1).p53(Ser6~0) -> A(a) + p53(b, Ser6~P) kSer6P

24

thermodynamics, mass conservation, rate laws, further experimental data. The constraint-

based approach aims to reduce the degrees of freedom of the solutions space of a biological

system. Indeed, relying on the constraints and the theory backing each one of them, the

generated models have meanings in a well-identified frame (solution space is restricted).

The COmplex PAthway SImulator (COPASI) (Hoops et al., 2006) library focuses on

biochemical network modeling that can be simulated using a variety of popular methods

such as ODEs or SSs with multiple language bindings in C#, Python, and Java. It supports

arbitrary detection and trigger of events (even within ODEs system) and provides some tools

to make up for difficulties associated with simulation methods such as parameter estimation

which is very relevant for ODEs.

E-Cell (Tomita et al., 1999; Takahashi, Ishikawa, et al., 2003; Takahashi, Sakurada, et al.,

2003; Kaizu et al., 2020) is a modeling and simulation environment focusing on the

integration of multi-bioprocesses within a model. It is noteworthy that the first version of

the software (Tomita et al., 1999) claimed to rely on RBM to encode models a few years

before the emergence of κ-language and BioNetGen. The first version of the system was also

used to build the first attempt at a whole-cell model using 127 genes of Mycoplasma

genitalium. Currently, ECell is in the fourth version of its tool suite and provides a custom

RBM system, support for ODEs and SSs, and can perform single-particle simulations in

multiple dimensions; all with a Python interface.

 The VIVARIUM (Agmon et al., 2022) library is a modern take on a multi-framework

simulation environment that E-Cell originally intended. It arguably possesses the most

flexible architecture to encode composite models made from the aggregation of other

models that may be running on different frameworks (ODEs and SSs, but also others such as

solid body physics). Vivarium was used to build agent-based whole-cell models of Escherichia

coli colony (Skalnik et al., 2023). I find the case of Vivarium very interesting from a research

practice point of view because it is one of the rare ones that emphasizes the architecture of

the software as a driving force for modeling. The paper takes the time to introduce design

choices because they are believed to enhance the user experience. And, in this case, users

are likely biologists that want to build models. Hence, it is not only about what the software

can do but also a reflection on how software may be designed to do a better job at

modeling in the future.

The reason why I mention software as a modeling approach is because programming

languages are, in my opinion, underutilized when it comes to creating brand-new symbols to

encode a particular system. Usually, a programming language is indeed only viewed as an

interface for humans to write instructions directing computer resources into performing sets

of operations to produce desired effects. But in so doing, any software creates symbols

(variables, functions, classes, etc.) with meaning in the context of the software they are part

of. Hence, software could be the container of symbols used to encode problems, models,

and solutions. A major difference between the encodings from software and the three

25

previous approaches is that the latter have unique theoretical frameworks whereas the

former’s theoretical framework must be redefined for every software.

To summarize, all these modeling approaches have the capacity, to some extent, to encode

problems, models, and solutions. Hence, they are, to some extent, all adapted to answer

“what-questions” and to power the MBB I have in mind. Despite having this capacity, they

keep being used to answer “how-questions.” Biologists do not like ODEs because of the

mathematics backing them up, but because they are a formal expression for fluxes. Likewise,

biologists do not appreciate SSs because of the mathematics backing them up, but because

they are a formal expression for unary events. For biologists, it is not so much about what

the framework can rightfully express but the fact that a particular piece of the framework

happens to be adapted to model a target. Biologists use ODEs or SSs to satisfy physical

representations. It is the same for RBM which, as I already mentioned, was biased toward

molecular descriptions from the start. On the other hand, software is only thought of as

tools to implement the lower-level frameworks (ODEs, SSEs, RBM) and not as a source to

produce new self-contained valid frameworks. Moreover, existing simulation software in

systems biology suffers from a static design which corners the modeler into the cycle build

→ simulate → log → analyze.

To incite biologists into shifting their focus from considering “how-questions” to “what-

questions”, we need a different modeling methodology. We need to lead the modeler to

care more about the problem he is studying than the specific solution he is implementing.

We need tools that give him the power to easily iterate on versions of the models, test

multiple alternatives, check for the integrity of the models, and share with colleagues. In the

following sections of this dissertation, I will defend that real-time technologies have the

means to help me develop this different modeling methodology.

26

II. REAL-TIME TECHNOLOGIES

This section serves as an overview of Real-Time (RT) technologies to understand the

constraints of RT technologies and the reasons why I chose them to support MBB. RT

systems are computational systems, usually integrated within bigger systems, whose criteria

for a task execution’s correctness not only include the accuracy of the computation but also

the guarantee that the task is finished before a deadline. Research in the field started in the

60s, as soon as computers spread in specialized research laboratories or companies. Since

then, the research in the field has spanned across several subjects as the raw performances

of computers evolved, analog and digital communications developed, demand for rare faulty

control systems rose, costs and performance of personal computers shriveled, Control

Processor Units (CPU) went from a unique to multiples cores, and a new sector of non-

critical real-time applications opened. In the beginning, the main concern was simply to

figure out how to make a computer respond to outside signals (which could have been from

humans or other machines) promptly without disrupting already running processes. Then,

this concern evolved toward strict time-fault-free control systems in industrial plants or

avionics and how the RT computer system integrates into a super system. This involved

concurrent research on task scheduling algorithms (Liu and Layland, 1973; Altilar and Paker,

1998; Davis and Burns, 2011), cyber-physical systems (when a computer running simulations

is connected to non-computer components) (Bloem and Naigus, 1988; St. John et al., 1987),

methodology development for RT system design (Sorenson and Hamacher, 1975; Gomaa,

1984), guarantee of execution completion (Puschner and Koza, 1989), parallel and

distributed execution (Avello et al., 1993; Fujimoto, 2001), and so on.

Basics on Real-Time Systems

This section on the basics of RT systems covers some terminology, an introduction on

scheduling algorithms, fault-tolerance, and a history of design methods.

Terminology

RT systems are separated between hard and soft. The difference in denomination stems

from the strictness of the condition on which a real-time system should respect the

deadline. In the case of hard RT systems, the computation of the tasks must always finish

before a set clock tick (Kopetz and Steiner, 2022e). Going over the deadline is called overrun

and will often result in a system failure. Indeed, hard real-time systems are often associated

with time-critical constraints such as the feedback control of an industrial plant, navigation

tools in a plane, power grid regulation, or a braking system in a car. Failure of any of these

will likely result in severe material damage. Conversely, a soft RT system is not expected to

produce a critical failure upon overrun. Instead, the usefulness of the simulation is degraded

and evaluated against a quality of service parameter (Buttazzo, 2005) or quality of user

experience (Kopetz and Steiner, 2022e). Problematics related to soft RT systems are more

recent than hard RT systems and match the joint decrease of costs of microprocessors and

27

the rise of multimedia purposes (streaming, virtual reality, Internet, smartphones, video

games, etc.).

An RT simulation corresponds to the execution of an RT system in which clock time ticks are

synchronized with the physical time such that one second of simulation maps to one second

in reality. The consensus is that a simulation step starts by reading potential inputs from the

other parts of the bigger system in which the RT system is integrated (e.g., input from

sensors in a plant or human actions on operatable devices), performs necessary

computations, sends the computation’s results back to any parts of the system that might

need it (e.g., a valve operator or an engine injection system), receive external events, and

wait until the end of the step (Cellier and Kofman, 2006; Menghal and Laxmi, 2012). The

schematic of the loop is in Figure 2.a.

Several measurements exist that are particularly relevant for hard RT systems to reason

about how well an RT system and its simulations are indeed real-time. The first of which is

called latency jitter and matters greatly for Hardware-In-the-Loop (HIL) (Cellier and Kofman,

2006; Menghal and Laxmi, 2012) RT systems. As the name implies, HIL real-time systems

necessarily integrate components external to the RT simulation computer with which the

computer exchanges data as indicated above (see Figure 2.b) during a simulation time step.

The latency jitter corresponds to the delay between the time at which the external

measurement was taken, and the time at which it reaches the components in the RT

computer that will use it. However short this delay is, the value that reaches the computer

will always be a little inaccurate. In the case of Software-In-the-Loop (SIL) RT systems (see

Figure 2.b), everything is within the same computer but an artificial jitter (Kopetz and

Steiner, 2022d) is usually set between simulated sensors and the RT process to simulate the

real values as closely as possible. Other measures attempt to keep track of the reliability,

safety, maintainability, availability, and security (Kopetz and Steiner, 2022e) of RT systems.

Figure 2: Conceptual structure of real-time systems. a) Typical sequence execution of the simulation loop of an RT system. In
case the execution of all tasks took less time than the deadline 𝑑𝑡, the process waits until then. b) Typical communications
between a human operator, the simulation, and physical components of the RT system. If there is a simulation, the system is
often qualified as software-in-the-loop (SIL). If there is a physical part, it often is hardware-in-the-loop (HIL).

28

Tasks execution scheduling to enable real-time

RT systems rely on scheduling algorithms to execute sets of tasks within deadlines. The

requirements and constraints for scheduling tasks in an RT system vary greatly whether they

are hard or soft.

Scheduling algorithms for the hard RT systems are usually developed using the Worst Case

Estimation Time (WCET) (Liu and Layland, 1973; Buttazzo, 2005; Kopetz and Steiner, 2022c)

as a reference because a single overrun might have catastrophic consequences. Studies to

find other metrics than WCET exist (e.g., maximum execution time (Puschner and Koza,

1989)), but there is always a trade-off between assumptions about the properties of the

tasks and the RT system which may lead to ad hoc solutions. Getting those time estimates

can be manageable on simple, well-isolated, cases analytically (source code and hardware

specification analysis) or experimentally (execution measurements). However, the number

of interacting components grows significantly in complex tasks with multiple computation

processes relying on shared resources (typically data values). In addition, it is always possible

that the administrative tasks of the computer (i.e., the mandatory tasks dictated by the

operating system of the computer) account for a non-negligible overhead which, despite a

valid WCET of the simulation alone, leads to overruns. Hence, there is always a certain level

of uncertainty about the WCET which motivates us to overestimate them by “typically more

than 20%” (Buttazzo, 2005). WCETs are typically done pre-simulation run or adapted during

the development process of the hard RT system. In that case, static scheduling algorithms

are used to search for the best execution order of all tasks without disrespecting the

deadlines. Alternatively, there also exist dynamic algorithms (Liu and Layland, 1973) that

process tasks according to set priorities, and the execution order of those tasks might be

different from one simulation step to another. For example, (Caccamo et al., 2000) describe

an algorithm in which tasks are executed within servers with various budgets whose

deadlines are indexed on the WCET of the tasks. The idea is to let a server help with the

execution of non-finished tasks if it is finished dealing with its set of priority tasks. To that

end, every server is allocated a time budget, and it can execute as much as possible of the

task from another server until the end of its budget. A little later (Caccamo et al., 2002)

achieved a different purpose with the same algorithmic base. The idea is to modulate the

accuracy of the output of the task depending on how much budget is available in a server.

Typically, this means a fast, low-cost, and low-precision version of the task is first computed.

Then, if there is enough time left, higher precision methods are executed and replace the

low-precision evaluation. This can be very useful to make the most of the WCET

independently of how long one execution of the task takes.

Nothing prevents soft RT systems from using WCET but it would be a waste of resources

(Caccamo et al., 2002) because nothing bad would happen if a soft RT system overruns.

Consequently, using the time execution of the average case might be more appropriate.

Many scheduling algorithms soft RT systems (Buttazzo, 2005) trade a few overruns against

much better performances on average. In addition, there are applications for soft RT

29

systems, such as in real-time graphics rendering, which do not have any deadlines at all.

Instead, the system will always try to minimize the time of a simulation step to emphasize

fluidity and interactivity. The soft RT systems I developed during my Ph.D. research are

among these and will be presented in later sections.

Finally, one should note that scheduling problems got much more complicated since the shift

from single-core to multi-core CPUs in consumer-grade computers. Indeed, the evolution of

architecture of CPUs is also a driving force to develop different scheduling algorithms

(Fujimoto, 2001; Davis and Burns, 2011; Maiza et al., 2019)

Fault-tolerant real-time systems

Despite anyone’s best effort, an RT system is bound to fail at some point. As a consequence,

RT systems include hardware and software techniques to reduce the risk of failures or

mitigate their repercussions.

The sources of failures are numerous, starting with the digital nature of computers where a

single faulty bit in a calculation can produce drastically different results. Such errors can

easily be the result of internal hardware fault from “natural” obsolescence and software

bugs, or external fault such as power supply variations, radiations, electromagnetic

interferences, and wrong input data (Kopetz and Steiner, 2022a). Environmental faults are

often transient faults (intermittent malfunctions of components in the RT system) which

might degenerate into permanent faults inevitably leading to permanent component

failures. Should the failure be irrecoverable, the last resort for the RT system is to trigger fail

safe or fail operational countermeasures (Kopetz and Steiner, 2022e). A fail-safe system is a

default idle state of the system guaranteeing that no harm can be done, while a fail-

operational system remains active and keeps providing basic services, maybe even

everything except the failed component. A typical example (Kopetz and Steiner, 2022e) of a

fail-safe RT system is a railway signalization network where one failure switches the whole

network to a state where every train must stop. As for a fail-operational system, it typically

(Kopetz and Steiner, 2022e) corresponds to a plane navigation system where the failure of

one component must certainly not interrupt everything else.

A solution to limit the risk of reaching complete failure of a component is called protective

redundancy. This was identified early on in the field and implemented in many RT systems at

the National Aeronautics and Space Administration (NASA) (Aviz, 1969). The gist of it is to

have multiple identical components synchronously processing the same tasks connected to

voters to decide which result to select. Soon after, protective redundancy and other

methodologies for fault-tolerant hardware such as concurrent error detection, or rollbacks

to uncontaminated execution streams were adapted for software (Hecht, 1976). The

Maintainable Real-Time System (MARS) (Kopetz et al., 1989) is an example of a thorough RT

system with industrial applications which implemented hardware and software redundancy.

MARS was used for railway-control systems and added a self-checking feature. Interestingly,

this would cause the RT system to shut down at the first encountered fault without

30

attempting to recover. Hence, both transient and permanent faults would result in a

shutdown.

Later, as distributed RT systems with multiple RT computers and sensors spread, the time

synchronization between the clocks of each RT computer became a major issue. Indeed,

every clock undergoes a clock drift which desynchronizes them from other clocks10. Harsh

environmental conditions can significantly inflate the clock drift. Desynchronization implies

that a set of time-ordered events is not guaranteed to be processed in the correct order in

all RT computers. Thus, despite known limitations (Kopetz and Steiner, 2022b), an RT system

with multiple sensors or computation unit must periodically resynchronize all clocks. Even

so, some clocks may be found faulty, and simply resetting them across an RT system would

not be enough. Therefore, special fault-tolerant time synchronization algorithms were

developed (Dolev et al., 1986; Kopetz and Ochsenreiter, 1987; Kopetz and Steiner, 2022b).

As I already mentioned, the architecture and protocols of modern multi-core CPUs are

different from the CPUs that were used at the beginning of the research on real-time

systems. Technologies such as direct memory access, pre-fetching, or cache management

were introduced in an attempt to reduce the average execution time of arbitrary tasks but,

in doing so, also introduced non-deterministic task execution and sometimes accumulation

(i.e., overload). As a consequence, the analytical or experimental methods to estimate

execution timings became less and less reliable leading to unexpected underestimations of

WCET and the obsolescence of the scheduling algorithms. The first basic reaction to these

unpleasant surprises was to overestimate execution deadlines even more to avoid major

task accumulations and subsequent, long, overruns which could lead to system failures.

Scheduling algorithms henceforth moved from purely optimization-motivated to include

prevention of system failures by overrun. Previously developed algorithms were then

revisited to adapt to new CPU architectures with an emphasis on getting rid of the pre-

runtime estimations such as WCET altogether while still building fault-tolerant RT software.

For example, the method in (Xu, 2020) adapts software and hardware redundancy to protect

against both software and hardware permanent failure, while still managing overruns and

ensuring recovery before and after a failure. Another example is in (Pazzaglia et al., 2021)

which handles the sporadic accumulation of tasks that may result from the modern

architectures also without pre-runtime tasks’ time estimations.

10 Quartz clocks in normal conditions drift by about 10−6 𝑠. 𝑠−1. Room temperature or radiation levels can

severely degrade the clock drift. A typical quartz is expected to drift about 1 PPM per Celsius degree within a

range of [−20°𝐶, 70°𝐶] according to the chart at: https://www.jauch.com/blog/en/ask-the-engineer-how-

temperature-sensitive-are-quartz-crystals/. This implies that the clock drift of a computer varies depending on

its activity.

https://www.jauch.com/blog/en/ask-the-engineer-how-temperature-sensitive-are-quartz-crystals/
https://www.jauch.com/blog/en/ask-the-engineer-how-temperature-sensitive-are-quartz-crystals/

31

Design methodology of real-time systems

The research community in RT systems quickly investigated the best ways to streamline the

engineering process of SIL+HIL RT systems, in order to master both economic and safety

issues.

Different teams and labs in the community shared early on the architecture design of their

respective RT system, emphasizing which decision was taken to better deal with their

requirements. For example, (Aviz, 1969) introduces how they managed to design a Self-

Testing And Repairing (STAR) computer by implementing protective redundancy at every

level and how to monitor, catch, and repair its components failures. The central monitoring

system is called the Test And Repair Processor (TARP). Even the TARP itself is a redundant

entity; it is responsible for scanning all byte streams encoding the computations for

corruption. The paper also goes into great detail about the relationship between the

software and hardware redundancy protocols to make sure that, when a fault is detected,

the code is rolled back to prior execution (thanks to redundant data storage), the execution

is attempted on the same hardware, and switched to a redundant component if it fails again.

This work is one of the first to describe in detail the special architecture of a system

implementing what will later be called fail-operational systems that I already mentioned.

RT systems such as the STAR required extensive finances, expertise, and time and were more

akin to artisanal masterpieces built to satisfy very specific objectives. However, according to

Sorenson and Hamacher (Sorenson and Hamacher, 1975), the majority of RT systems were

developed from a general purpose hardware of the time which lead to ill-proportioned

systems. The authors indeed agree that computers must be the tool supporting the RT

system, and not the RT system constraining the computer to a certain type of computation.

That’s why the authors recommend starting to design any RT system by laying out the

environment’s objectives first and start writing code as late as possible. This way, they hope

the designers will take as few design decisions based on what their computer can or cannot

do. Moreover, they argued that programmers were re-using software practices that were

successful for conversational command-based programs running on consoles. Unfortunately,

these programs are non-RT software. Thus, the practices were unable to deliver on the

timing constraints at the level of the program of a hard RT system. In addition, despite

several working RT systems and papers deliberating on the best solutions to implement

individual components of an RT system, there was yet much of any tool to properly encode

the control and execution loops of the hard RT systems in a chemical plant or a space

shuttle. The contribution of their work was to introduce a framework to encode RT systems

from a top-down approach, starting with the description of the environment in which the RT

system would run, finishing with the tasks of the components of the RT system. This

encoding was supported by a new high-level language Real-time User’s Design and

Implementation Language (RUDIL) dedicated to writing real-time systems and their

computation centers. The authors also developed an RT system writing system including an

emulator of the physical machines to be included in the target RT system, and a custom

32

resource management meeting the software requirements of the RT system. Of course, the

design of the resource manager followed a bottom-up approach to focus on start from an

abstract description of the computer on which the RT system will run. This gives the

designers the power to focus on the RT system and not the computer since the writing

system would manage the low-level data. Finally, the RUDIL linker would translate the RT

system written in RUDIL into operations the writing system can process. According to the

paper, using RUDIL and the linker allows to smooth 5 layers of computer abstraction

encoded in the writing system away. RUDIL can therefore be used to build RT systems more

easily and was a step forward toward more and better RT systems.

Even if RUDIL helps describing the environment and the components of an RT system before

starting to write the code, it does not give help deciding upstream how an RT system should

be designed. Of course, it is doubtful that the engineers of the STAR computer did not think

about its architecture before actually building it. RT systems engineers made tools to

accelerate the construction of an RT system, but they had yet at that time to come up with a

formal guidance on how these tools could be streamlined into an efficient process. Bennet

touched on this matter in his technical report on RT systems (Bennett, 1980) when

emphasizing the awareness for software engineering in RT systems research. To my

knowledge, Gomaa made a major contribution in this area. His first paper (Gomaa, 1984) on

this subject presents a software design method called Design Approach for Real-Time

Systems (DARTS) based on structured design11 applied first on how data moves within a

target RT system. Bennet had also identified the importance of data transits and status (i.e.,

is it shared among several processes?) for parallel or distributed RT systems12 that he calls

multi-programming. Gomaa argues that tasks of the RT system are identified thanks to the

loosely coupled data transformations rather than by the functional purpose of the tasks such

as in the Mascot design method (Simpson and Jackson, 1979; Simpson, 1986). This allows to

identify which transformations have risks to change the value of the same data should they

be grouped in different tasks with overlapping execution durations. Totally data-

independent tasks can then be executed in parallel without any worries for data corruption13

which participates to alleviate the time constraint of RT systems. The DARTS method starts

with the specification of the system (the set of features of the perfect RT system); then build

a diagram of the state transitions of the system (how to move between features); then the

data flow (the data associated to each sate transition); then, the tasks (a group of data

11 Structured design is a system design approach that aims at decomposing the system into components.

12 It is clear nowadays that data transit and status is absolutely critical to the integrity of distributed or parallel

software whether real-time or not. But the slight advantage of non-RT software over RT ones is that there

should be no time-dependent events so there is one less way to trigger processes that might act upon shared

data.

13 In fact, the conflict between multiple transformations that might be using the same data is better known

under the term “data race”. Supplementary Figure A2.1 illustrates this challenge.

33

transformations that “make sense” conceptually in the context of the system while limiting

having separated tasks with transformations on the same data); finally a task structures

diagram to specify the communication schemes between tasks. In a second paper (Gomaa,

1986), Gomaa enhance DARTS in peripheral design activities such as incremental design

schedule, software development environment, better characterization of the events callback

sequences, and automated testing through simulation of the integration of the RT system in

the target environment.

A very good example of the first 25 years of research in RT systems can be found in the

modular space shuttle RT simulation system of NASA (St. John et al., 1987). The goal of this

paper is originally to demonstrate how this RT system can be repurposed and enhanced to

build a RT simulation system for a year-round inhabited space station (which we know today

has become reality). Every physical computation module is made as isolated as possible to

be able to plug-in various virtual components that would modify the physics of the simulated

shuttle or new hardware corresponding to instruments relevant to the mission’s objectives.

The paper is also giving their answer to the problem of developing a modular architecture of

the RT system modularity of the system allow support for different versions of the shuttle

guaranteeing simulation time and long-term support independent of future simulation’s

requirement, task distributed execution, and limited software development time. I find this

paper fascinating as it gives deep insight into the benefits of carefully thinking about the

architecture of a tool to make sure that that tool is useful to the best of its potential for a

long time.

Moving forward, a major critic about the design methodologies based on structured design

to identify the components of a system is that, in the case of an RT system, there is nothing

that forces the designers to account for real-time constraints. Of course, the designers will

eventually think about it, but if the system abstraction and components identification

methodology included mentions of how frequently a component is used or how time-critical

it is, it would help the designers to consider these as early in the development cycle as

possible. That is why new frameworks such as the Hard Real-Time Hierarchical Object

Oriented Design (HRT-HOOD) (Burns and Wellings, 1994) or the Time-triggered Message-

triggered Object (TMO) (Kim, 1997) were developed14. HRT-HOOD was developed as part of

a project supported by the European Space Agency and introduces object types with time

constraints from which any other object must be based on. Namely, it includes passive,

14 Object-Oriented Design (OOD) is a direct offspring of structured design in the field of software engineering.

The purpose is to decompose a system into functional objects encapsulating the features of a system, as well as

data object which mainly group variables that are usually processed together or which “make sense” in the

context of the system. In practice, the separation between functional and data objects is very blurry. The

“hierarchy” in HOOD implies that objects can be sub-objects of others (e.g., a car and a truck could be sub-

objects of a vehicle object). In modern software engineering, this is called “inheritance” and commonly

accepted to the point that the “H” never appears in the abbreviations, and we only say OOD.

34

active, and protective which describe whether an object has control over the execution of its

tasks and whether it can request execution of tasks in other objects; and it includes cyclic

and sporadic, which describe if the object must execute something on a regular basis or only

from time to time. An interesting point brought forward by the authors is that HOOD

supposedly helps the whole life cycle of a software with long-term support, maintainability,

and reusability of the components across software. Provided this is true15, it implies that

when someone makes a timing analysis of a component of an RT system, the result of this

analysis can be transferred. Moreover, if a component is updated, prior timing knowledge

about the component should facilitate the timing analysis of the new version. Thus, HOOD

could help iteratively build and refine timing heuristics about components every time they

are reused in slightly different contexts. Of course, new designers would have trouble about

these heuristics, but seniors would not. Kim pursued a similar approach and suggested a

more unified structure for objects with his TMO concept. A TMO contains data and, as the

name implied, time-triggered services as well as message-triggered services. Time-triggered

services are functions that are spontaneously triggered once the clock of the RT system

reaches the time associated with the service. Message-triggered services are functions that

are requested by other TMOs and may make reservations to spontaneous services of their

own TMO. The author argue that this object structure is capable of both RT software and

non-RT software, as it is possible to simply not set any time constraints to any spontaneous

service. This approach forces engineers to acknowledge the time constraints very early at

the abstraction level and hence think about how to actually implement them. This would,

hopefully, limit the number of iterative refinement steps of the RT system and eventually

accelerate its development.

I would like to make a special mention about a mathematical method to specify and verify

requirements of RT systems thanks to a theoretical framework called duration calculus (Ravn

et al., 1993). Until now I presented non-rigorous abstraction methods of systems which can

be helpful to conceptualize but cannot be used to check the integrity of the system beyond

the mental model of the designers. So, we can only reason about the abstractions of the RT

system informally without any guarantees as there is no theory to back us up. Ravn et al.

developed a mathematical (logic) way to encode RT systems for control purposes. Thanks to

the background of logic theory, it is a formal description that do not let suffer from the

ambiguity of natural language. It supports the definition of time, system states, and

assumptions about the system (i.e., its features and effects) under the logic theory. The

15 This idea has had its golden time but, as more and more complicated software was developed in the last 30

years, there is an increasing proportion of examples demonstrating that HOOD has not delivered as much as

expected in this area, and no one really manage to take a piece of code from a large software and plug it into a

new one without changes.

35

control law of the RT system is implemented as a finite state machine16 on which duration

calculus can be applied to deduce nontrivial state transitions under some predicates (i.e.,

conditions). Doing so, Kim demonstrates how to deduce the final state of the RT system with

predicates simulating the failure of a component. With this approach, qualitative behavior of

the RT system can be refined before any implementation.

A question about RT systems that I find very important, but which seem hardly discussed, is

how often the RT system really needs to run its execution loop to satisfy its function. Ideally,

we would, of course, like to always update to be as precise as possible, particularly when the

RT system is controlling a nuclear plant or any other critical system. But this is obviously

unreasonable because, independently of all the scheduling algorithms that I already

mentioned, a computer’s resources are not infinite. Therefore, can we find a rationale

method to take informed design decisions about the execution frequency of the RT system?

Kaul et al. (Kaul et al., 2012) mathematically analyzed this question for the communication

frequency between distributed components of an RT system. The paper derives a statistical

time of when a component (i.e., monitor) in the RT system is left without any update

because no fresh message has arrived. The optimization target is to minimize this time

(maximize the freshness) while not overloading the RT system. Interestingly, the paper

demonstrates that the best messaging frequency is not “always”, so constantly sending

messages might not help the RT computer yield any better or more accurate results. This

approach is rare in RT systems research but more prolific in networks and data warehouse

management research since it is absolutely critical in that field that the data is correctly

handled while not overloading the servers.

To conclude this section, I would like to mention the model-based design from (Kopetz and

Steiner, 2022d) since the name is close from the MBB I defend in this thesis. In RT systems

research, the goal of model-based design is to produce an actionable model of a target

physical system (typically an industrial plant) so that the RT system can be developed under

the assumption that the model is accurate. If this is true, then engineers can constantly

check the RT system under development against the actionable model. For example, if the

RT system is supposed to control the valves of a water drainage system, then the model

would include actionable valves that mimic as closely as possible the valves in the physical

world on which the RT system will eventually be deployed. The goal of a model-based design

is to detect and optimize the RT system as soon as possible during its development cycle and

to not have to wait its deployment in the physical world to discover major issues. In that

regard, the RT simulation system of NASA for the space shuttle and space station (St. John et

al., 1987) employs model-based design since the RT simulation is used to test the whole RT

16 A finite state machine is a computation system defined by its list of possible states and the conditions (e.g.,

inputs, events, etc.) which allow to go from one state to another. For example, a lock requires a key to switch

from its locked to unlocked state; we could easily complexify this by introducing a permanently locked if a

fraudulent key is used.

36

system before the shuttle is sent to flight (as well as to train the astronauts). The major

difference with the MBB I am defending is that the guarantees the model is correct are not

based on direct observations (such as when replicating the behavior of the valves) but from

the theoretical framework used to encode the model.

Applications of Real-Time Systems

In this section, I will explain why RT systems were chosen to begin with (see Figure 3), and

not only where they were chosen. This will be useful to understand the reasons that brought

me to consider RT systems as the technology stack to engage with MBB.

When real-time systems are imposed

There are applications where RT systems are necessary. Going back to the modern definition

of an RT system, a system is real-time if it correctly executes computation tasks before a

deadline. The leeway given to respecting the deadline is the criteria to discriminate between

hard and soft RT systems. But this leeway didn’t exist at the beginning; real-time systems

were agreed to be hard and nothing else because the concept was specifically introduced to

deal with time constraints. On one hand, I think the power of modern consumer grade

computers tends to blindfold us and makes us forget that, in the 1960s, the computer itself

was a constraint. The Apollo Guidance Computer (AGC) had a mere 2 kilobyte of RAM, 36

kilobyte of memory, 16-bits precision, and a chip running at about 2 MHz. This is at least of

the order a thousand times less performant than modern smartphones and the AGC still

Figure 3: Why use real-time systems? Arrows translate as “used to / used for”; dashed arrows indicate a jump to new
engineering fields that could not exist without RT systems. The very early reason to use RT systems was to help meet
deadlines despite hardware limitations: RT technologies were more imposed than chosen. The time constraint is also a
conceptual limitation in network communications and data streaming; independently of the hardware performance, these
tasks must be executed under deadlines (e.g., phone call, music/video streaming, LIDAR signal in autonomous car, etc.). RT
systems are also used in situations where it is not the only solution. They are chosen because their architecture allows them
to manipulate time scales; this includes a one-to-one (1/1) mapping between the RT system’s time and the physical time in
reality. This is very practical from monitoring and simulation tasks.

37

managed to deliver and assist the astronauts navigate the shuttle in real-time until they

landed on the Moon. Therefore, even putting aside the fact that, if the AGC had overrun,

hard failed as a result, and likely had killed the crew, the first reason why RT systems are

even relevant is because executing tasks fast enough to not let the human operators waiting

was not a given. In addition to raw computer performance limitations, some applications

cannot succeed without RT systems because they are conceptualized as real-time to begin

with. Network communications are in this case because the goal has always been to get as

close as possible to the real-time communication of humans meeting face-to-face. Even if it

is machines communicating with each other, there is no reason to not process an incoming

message as soon as it is received and to react to it once it has been processed. Moreover,

beyond my comparison with casual talk between humans, there are cases where prompt

communication over a network participates to the success of a real-time system. This is what

motivated NASA to upgrade their network communication system in the first half of the

1960s in their effort to pull through the Gemini and Apollo programs (Sollaeg, 1964).

Another example of application field which is conceptually dependent on real-time is data

streaming. Nowadays, the major type of data streaming is the remote consumption of videos

or music from on-demand platforms, An RT system is mandatory at the level of the

consumer’s computer to decode the incoming data stream and project a fluid video or song

to a user (Altilar and Paker, 1998). Methods in real-time signal processing always require

some attention because the format of the data encodings or the throughput are regularly

update and ever more efficient RT systems are required for the tasks (e.g., visualization of

ultrasound data in medicine (Reichl et al., 2009), or 3D volumetric signal for virtual reality

(Lee et al., 2020)). Consequently, from the 1960s to today, there are cases where the time

constraint is part of the main problem and not just a side effect of algorithmically complex

programs. In these cases, RT systems are the de facto solution and impose themselves on

the engineers.

When real-time systems are chosen

Conversely to the previous paragraph, there are cases where RT systems were willingly

chosen among other possibilities. Or, at least, it does not seem like they are being imposed

on the engineers. It is only a few years after Apollo that RT systems were identified to also

be relevant for side-effects of being able to meet deadlines and not only because the

deadlines were part of hardware or conceptual limitations. Indeed, the definition of an RT

system only specifies that it must execute tasks before a deadline, but it says nothing about

when this deadline should be. As a consequence, computers that consistently deliver results

before a deadline of a few milliseconds or a few hours both qualify as RT system. In addition,

there is no telling how these milliseconds or hours of computation time in reality influenced

the mapping between the simulation time and the real time. It may very well be that the

milliseconds of computation time were enough for the simulation to forecast everything that

is going to happen in reality in the next few years, or the hours only managed to cover a few

seconds. In the former case the computer goes much faster than reality, in the latter case it

38

is much slower. If an RT system can go faster or slower, it can also go just as fast as reality,

and this special class of RT systems was identified to be adapted for many technological

challenges from the 1970s onwards. For the purpose of my discourse in this thesis, I will

denominate such RT system as 1/1-RT system17, but, to my knowledge, this term is not used

in the community.

Real-time monitoring systems

1/1-RT systems are used for the monitoring of complex infrastructures to take informed

decisions about their activity and accurately control or optimize them to avoid accidents or

wastes. This classically includes the monitoring of automated factories (Lin and Lee, 1989) to

check on the production line and measure the economic impact of the factory. 1/1-RT

monitoring systems are also used to control environmental variables such as the water

quality of the effluents of a laboratory (Koopman and Yamauchi, 1990) or the pollution of

lake Toba in Indonesia induced by tourism (Rahmat et al., 2016). Real-time monitoring for

energy production, security, and distribution is also a long-standing challenge with

numerous sub-problems that benefits from a 1/1-RT system. It starts with the stability of

nuclear reactors (March-Leuba and King, 1987) and finishes with the distribution of energy

across a power grid. At the beginning the challenge was “simply” to be efficient and avoid

wastes or blackouts at peak load times (Stahlkopf and Wilhelm, 1997) that kept growing

alongside our consumption of electricity world-wide. In the early 2000s the fear of blackouts

from badly managed supplies rescinded in favor of remote malicious attacks on a power

grid; thus RT systems started to also monitor suspicious activity on the grid (Qi et al., 2011;

Srivastava et al., 2018). The most recent issue for energy distribution originates from the

introduction of renewable energy in the production mix of a country or super system.

Unfortunately, renewable energy is depending on environmental conditions and exhibits

large output variations as a result which must be balanced in real-time (Beier et al., 2017;

Amir et al., 2022).

Real-time simulation systems

In monitoring, the utility of 1/1-RT systems reveals itself at the deployment stage, but being

able to map the RT system’s time to the time in reality also allows to develop simulations of

systems that will behave as fast as they would in reality. Real-time simulation is useful to

train humans to face situations and/or to manipulate RT systems they will encounter in the

future. Examples abound of RT simulation systems for training purposes. I have already cited

the replica of the space shuttle (St. John et al., 1987); other very different examples include,

but are not limited to, surgery training (Bro-Nielsen and Cotin, 1996; Cotin et al., 1999), or

simulation and visualization of organic molecules (Gandhi et al., 2020). Finally, the approach

17 1/1-RT systems are so common today that some publications (Menghal and Laxmi, 2012) assimilate the

definition of RT systems to the 1/1 mapping case and classify other systems that may go faster or slower than

real-time as being offline. But I will not discuss this point further and keep the more general definition of an RT

system.

39

of model-based design that I already explained strongly relies on RT simulations because

they are interactive – or close to be. The interactivity is, again, a consequence of the one-to-

one mapping between the simulation time of the RT simulator and the time in reality.

Interactivity – or high responsiveness – allows to rapidly test technical variations of RT

systems by simulating faults (i.e., fault injection) (Kopetz et al., 1989; Kopetz and Steiner,

2022d) even beyond the normal range of operation, at a fraction of the cost of the same

tests performed in reality (Bloem and Naigus, 1988; Menghal and Laxmi, 2012). From a

macro perspective, investing in a 1/1-RT simulation system is also the guarantee to have a

unified design framework within the engineering team for a few years (Schiano and Silberto,

1986; Koopman and Yamauchi, 1990; Haung et al., 2005) which avoids having to re-train

engineers on new tools for every new RT system project. As a consequence, 1/1 RT

simulation systems were employed during the development cycle of numerous products in

an attempt to shorten the overall development time of the final product (Bloem and Naigus,

1988). The avionics industry is particularly fond of 1/1-RT simulation systems for these

economic reasons, and developed many of them to provide reusable RT test platforms

(Chelini and Farmer, 1981; Schiano and Silberto, 1986; St. John et al., 1987; Bloem and

Naigus, 1988). The modern video game industry is also heavily relying on 1/1-RT systems

often called game engines. In fact, as I will describe later in this thesis, a game engine is

much more than an RT system.

From real-time systems to digital twins

RT systems are at the origin of a new “buzz word” in engineering research since 2011 that is

Digital Twin (see on Figure 4 the exponential explosion of associated publications). The field

of avionics is, once again, a precursor of this design philosophy (Tuegel et al., 2011;

Figure 4: Publication count per year or articles that contain the words “Real-Time Systems” or “Digital Twin” (capital case or
not) referenced in Google Scholar between 1960 and 2023 (last count on December 9, 2023). The first found reference of
“Digital-Twin” is in 1970 for a thesis entitled “Digital Twin of Cardiovascular Systems”. There were also punctual mentions in
1973 and 1987. Other than those, one has to wait 2011 for the explosion of publications on the subject. The rate of
publications on the subject of “Real-Time Systems” seem stable (around 250 per year) or with a very small increase since
2010.

40

Glaessgen and Stargel, 2012; Reifsnider and Majumdar, 2013) which objective is to produce

an “ultrarealistic” model of each product down to its manufacturing defects once it is out of

production (Tuegel et al., 2011). The goal of such a model is to perform high-fidelity

monitoring of individual products and to follow their evolution during their whole life cycle.

This is the extension of the 1/1-RT monitoring of the factories, industrial plants, power grids,

and sewer systems that I have extensively illustrated above, to mobile objects. So, from my

point of view, the conceptual jump between RT systems and digital twins is almost

inexistant: it is only the miniaturization of monitoring to be able to cover any object of any

size. The technological jump is much bigger, however. Indeed, digital twins will only be made

possible thanks to the advent of high-frequency and reliable enough sensors and their ever

more seamless integration in the Internet of Things (IoT). This trend was predicted by

Stankovic in 2003 when he described an RT system tailored to handle dense network of

weak sensors with the goal of high frequency monitoring (Stankovic et al., 2003). In addition,

digital twins are personalized per product, so there must be one digital twin bound to every

replica of an object. This digital twin will then be used to simulate the activity of its real

counterpart before it is active in reality. In avionics, for example, the digital twin of a plane

will be simulated through variations of the planned flight and, theoretically, everything

about the plane will be accounted for, including the possible faults of the navigation system,

luggage unintentionally moving in the cargo bay, the stress levels on every cm² of the

airframe, and so one. These simulations will then be used to predict the components in the

plane that are more likely to fail, and the pre-flight maintenance will be adjusted

accordingly. Then, data will be collected during the actual flight and directly sent to the RT

simulator of the digital twin to feed it with the latest information about the state of the

plane; this data can be used to forecast the near future condition of the plane and warn the

pilots of any incoming anomalies. Then, once the flight is completed, the post-maintenance

of the plane will also be adapted depending on the status of the digital twin. Such approach

will inevitably generate massive amounts of RT sensor data as well as simulation data. It

pains me, but I am more ready to accept big data to support this design philosophy than I am

for biology. That is because digital twins have not, until now, been associated with ludicrous

applications and have the potential to increase the security of safety-critical products.

Indeed, it mainly concerns planes(Tuegel et al., 2011; Boeing and Bräunl, 2012; Glaessgen

and Stargel, 2012), medicine (Masison et al., 2021; Laubenbacher et al., 2022), factories

(Schluse and Rossmann, 2016; Schluse et al., 2018), laboratories (Palmer et al., 2021;

Zhongcheng et al., 2022), and others. However, the day companies will ship digital twins

alongside each smartphone they produce for their clients only for marketing or to sell new

services, I will vehemently protest. The takeaway message about digital twins is that they are

1/1-RT simulation systems applied on high-fidelity models, and that they were introduced to

41

propagate the benefits that RT systems brought for model-based design to model-based

maintenance18.

From real-time systems to the Metaverse

Digital twins, and RT systems through them, are in turn involved in the development of “the

next iteration of the Internet”19, namely the Metaverse. The Metaverse is originally an

informal concept from a science-fiction novel titled “Snow Crash” (Stephenson, 1992); it is

depicted as an immersive 3D environment accessible by wearing a Virtual Reality (VR) device

and, possibly, additional equipment such suits or gloves that will enhance the immersion. In

the novel, the Metaverse exists as an alternative world tightly interwoven with reality

impacting the whole society and its macroeconomy. 30 years later, the concept of

Metaverse is still fuzzy because evolving along practices (Park and Kim, 2022) and

technologies (Ning et al., 2021; Buchholz et al., 2022), and industrials and academics are not

yet completely aligned on the definition of the Metaverse. Industrials more involved in

manufacturing focus on engineering aspects and define the Metaverse as real-time,

immersive, engineering grade with data integrity and traceability, and collaborative (Are We

There Yet? A Status Check on the Industrial Metaverse, 2023). Other industrials that sell

services among their products focus more on the user experience of the Metaverse through

entertainment, socializing, and work (The Metaverse and How We’ll Build It Together --

Connect 2021, 2021; Are We There Yet? A Status Check on the Industrial Metaverse, 2023).

A qualitative meta-synthesis of various academic definitions of the Metaverse identified a

set of 14 “dominant terms” at the top of which is “immersive” (Weinberger, 2022).

Academia defines immersion (Ning et al., 2021; Wang et al., 2022; Mystakidis, 2022;

Buchholz et al., 2022) in the context of the Metaverse as users embodying avatars

(Mystakidis, 2022; Park and Kim, 2022) in a virtual world. Avatars are a virtual representation

of users that follow their gestures giving multiple users a shared sense of space, presence

and time (Lee et al., 2021). Immersion in the Metaverse is powered by extended reality (XR)

technologies. XR includes VR, augmented reality, and mixed reality, each consisting in

devices that blend (Milgram et al., 1995) the real and virtual worlds to produce various

degrees of immersive experiences. The virtual worlds displayed by XR devices are rendered

in real-time thanks to RT simulation software developed using game engines. This implies

18 To my knowledge, this word is not used by the community; I made it up for the purpose of the comparison

with model-based design.

19 The CEO of Meta, Mark Zuckerberg is a great defender of the idea that the Metaverse will replace the

Internet. Here is an extract of his speech during a keynote he gave (The Metaverse and How We’ll Build It

Together -- Connect 2021, 2021): “We’ve gone from desktop, to web, to phones. From text, to photos, to video.

But this isn’t the end of the line. The next platform and medium will be more immersive, and embodied internet

where you’re in the experience, not just looking at it. And we call this, the Metaverse. You’ll be able to do

almost anything you can imagine, get together with friends and family, work, learn, play, shop, create, as well

as entirely new categories that don’t really fit how we think about computers or phones today. […] We believe

the Metaverse will be the successor to the mobile internet.”

42

that everything in a Metaverse is, in fact, encapsulated in a real-time process and that is why

it can act as the perfect interface for digital twins. The couple digital twin + Metaverse is

expected to become the new standard of 1/1-RT monitoring systems. Indeed, instead of

having a few monitors displaying limited amount of information at a time about a factory,

the factory itself will be entirely reproduced in 3D and fully animated to match the real-time

condition of every inch of the production lines. Of course, this does not mean that

aggregated statistics will disappear, but it is a step forward to benefit from immersion for RT

simulation and monitoring. In conclusion, the Metaverse is, with digital twins, a large

concept that could not exist without the side effects of RT systems.

In all the examples of applications of RT systems I gave in this section, at least half of them is

not used because they are designed to meet deadlines, but because the system to adapt to

deadlines allows them to scale the map between the execution time of its tasks and the

physical time in reality. Hence, RT technologies were not used as per what the definition

precluded them to do, but they were chosen nonetheless for what the definition implied.

Now that I have explained why RT systems have been used since their creation in the 1960s,

I will focus in the next section on how I am suggesting using them for MBB.

43

III. CHARACTERIZING SOFT REAL-TIME SYSTEMS FOR MODEL-BASED

BIOLOGY

In this section I will motivate the value of soft RT systems to produce tools to build biological

axioms informally, interactively, and intuitively to spark the interest of biologists for Model-

Based Biology (MBB). Before that, I will summarize the origin and meaning of MBB that I am

defending in this work. I opened this thesis dissertation explaining how, in my opinion,

biology, and the subfield of systems, biology was obsessed with data. I criticized this

obsession arguing first that induction can only yield results at the expense of increasingly

large resources consumption and is, therefore, unsustainable, and incompatible with the

modern state of our planet. I also suggested, through the words of Sydney Brenner’s critics

of systems biology, that understanding the mechanisms of biological systems from data

alone is intractable and that reverse engineering is likely to fail for biology. I noted that the

broad application of machine learning techniques will indeed support the reverse

engineering of biological systems, but that will intensify untargeted data acquisition which

brings us back to the issue of sustainability. Putting aside these quantitative objections, I

pointed out that obsessing over data is blindfolding biologists to explore the solution space

of biology through “how-questions” alone instead of also asking “what-questions”. As a

consequence, biologists are focusing on the biological systems they can observe on Earth

which are but a few solutions to generic biological problems. So, answering “how-questions”

will only give biologists access to points in the solution space, whereas investigating the

biological problem itself through “what-questions” is more likely to inform them on the

shape of the solution space. Therefore, answering “what-questions” would have a bigger

impact on our understanding of biology than answering a collection of “how-questions”.

However, as answers to “what-questions” are not necessarily observable on Earth, the

problem then arose to figure out how to investigate general biological problems in the

absence of observations and I suggested using MBB. MBB as the definition of symbols which

can be combined to encode and deduce biological knowledge. The purpose of MBB is to

explore biology thanks to an initial set of statements or axioms that defines a frame from

which biologists can deduce further statements and formal solutions to general biological

problems captured in the frame. Of course, the validity of the solutions is guaranteed only

within the bounds of the axioms. Then, targeted experiments can be used to confront the

derived statements with the biological solutions observable on Earth. Hence, MBB first

requires a theoretical framework to encode biological problems, models, and solutions,

which can efficiently interface between formal statements and experiment data.

Unfortunately, there has been a few attempts to produce such a framework in the past

century with little reach in the biology community. That is why, I rather aimed in my

doctorate research at producing tools to build axioms informally, interactively, and

intuitively in biology and see what kind of biological solutions emerge.

44

Why Real-Time Technologies for Model-Based Biology?

I decided to use RT technologies over offline simulation methods classically used in systems

biology (see again section Modeling with software page 23 for examples) because I noted

many similarities between the modern applications of RT systems and the goal I am trying to

reach. I am looking for a way to easily manipulate symbols encoding heterogeneous

biological data, and to quickly receive feedback on how changes on the input symbols

influence the behavior of simulation symbols through their outputs. I also want to easily

manipulate the time variable in order to investigate the different time scales under which

biological systems are established in environment niches. Models of biological systems are

also getting increasingly complex, so the architecture must be scalable to afford simulation

on such large systems.

The critical deciding factor to use RT systems is obviously the need to manipulate time

scales. I have indeed extensively discussed the applications of 1/1-RT systems for simulation

and monitoring purposes in the previous section. Hence, I do not plan to use RT systems

because they can meet deadlines but because they can manipulate time scales and provide

RT interactive user interfaces. In addition, research on RT systems has a strong background

in the development of heterogeneous systems, both physical and digital which match the

trend in systems biology toward highly heterogeneous models with static data from past

experiments, real-time data streams from ongoing automated experiments, data streams

from ongoing simulations, and events from user interactions. Support for this heterogeneity

is adapted to the definition of various interactive input symbols. Moreover, RT systems are

the foundation for digital twins and the Metaverse which are highly complex systems, so I

believe they can manage the complexity level a biological system. In addition, RT systems are

often used to perform model-based design of other RT systems or themselves. Even if I have

already explained that the model-based design in the field of RT systems engineering is

slightly different from the model-based biology I am suggesting, I believe the benefits of the

former regarding the early detection of issues and hypothesis testing still apply to the later.

Consequently, I expect RT systems to help shorten the iterative development of viable

models of biological systems and allow a fast generation of model alternatives in the

solution space of a biological system instead of focusing on a handful. And last but not least,

it is ignored in every modeling approach and software that I am aware of, that a living

biological system is a real-time system. Indeed, it receives input from the outside world,

process this input, and adapt its internal machinery accordingly. Moreover, it does so under

soft deadlines which a prolonged overrun (the system cannot react fast enough) leads to a

critical failure. The reasons why state-of-the-art modeling software do not account for this

fact is because no biologist has had any use for interactive real-time simulations, and the

sampling technology to receive inputs from cells as fast as we monitor a nuclear plant or car

engine is not yet available. But I specifically wish for interactive simulations, and it is only a

matter of time before autonomous robotic experiment platform can reliably deliver

measurement streams.

45

Imagining a Perfect Real-Time System for Whole-Cell Modeling

In this section I imagine how real-time systems would help achieve whole-cell (WC) models

to illustrate how various levels of integration of RT systems in the design and life cycle of WC

models would be useful for systems biology as a whole.

Background of Whole-Cell Modeling

An ideal WC model is a one-to-one in silico description of everything composing a real cell. It

is preferred to be bottom-up, starting from the genotype of a cell, it accurately outputs its

phenotype through the myriad of interactions and regulation of its molecular machinery. It is

equally the dream of holists and the nightmare of reductionists. WC models result from the

integration of cellular phenomena and components that are classically studied in isolation.

The goal of this integration is to simulate the emergence of cellular behavior that would

otherwise be impossible to get when modeling isolated parts. WC modeling has been in the

mind of a few since the very beginning of systems biology, notably with the E-Cell project

(Tomita et al., 1999) (see section Modeling with software, page 23). Rich of his experience

with the E-Cell project, Tomita deemed WC simulation to be one of the “grand challenge of

the 21st century” (Tomita, 2001). This statement has proven to be true as WC models are

still rare more than 20 years later. Of course, there has been progress since the E-Cell project

(127 genes of Mycoplasma genitalium) with the completion of a WC model of Mycoplasma

genitalium which was including a complete genome (525 genes) (Karr et al., 2012). More

recently a partial WC model of Escherichia coli including 1214 genes (43% of the well-

annotated genes) was published (Macklin et al., 2020) followed by its integration in

simulations of bacterial colonies (Skalnik et al., 2023). Concurrently, alternative WC models

targeting minimal viable cells (but bigger than the E-Cell) were also published (Rees-Garbutt

Figure 5: Nature of the intersections between the knowledge of biologists, the knowledge embedded in a whole-cell model,
and the truth about cell biology. a) Biologists do not know the whole truth about cells, so if the whole-cell model is ill-
formed, there will be biology to learn from it. b) In the limit case where biologists have learned everything about cell biology,
models can only tell us things we already know or make errors because simulations of the model cannot be exactly what we
know. So, the more knowledge we acquire about cell biology, the less whole-cell model will be useful.

46

et al., 2020; Thornburg et al., 2022). At every step, all these models are the state-of-the-art

of what modelers in systems biology can do. They require extensive expertise to build and

the software platform to simulate them are much more involved than the average software

otherwise published in the community of systems biology. In fact, this level of complexity is

one of the reasons why there are so few groups working today on developing technologies

to support WC modeling. The investment to build a decent model from scratch is frightening

and hinders the democratization of WC models.

WC models are advertised more for their predictive capacities, than for their qualitative

behaviors or what they tell us about fundamental functions in life. Indeed, WC model are

pushed as platforms for model-based design of biological organisms in synthetic biology

(Rees-Garbutt et al., 2020), or for hypothesis generation (Karr et al., 2012; Macklin et al.,

2020; Thornburg et al., 2022; Skalnik et al., 2023). The success of these applications is highly

dependent on how well a WC model will simulate everything happening in the real cell it

simulates. In practice, experimental biologists expect WC models to deliver a perfect one-to-

one match on every element of the model. 100% and nothing less. This is impossible today,

however, and existing WC models successfully increase our body of biological knowledge

only because it is poor enough in the first place (see the highlighted yellow area in Figure

5.a). Even if a WC model does not cover everything biologists know, it happens that what

was encoded inside can reach biological knowledge that biologists have yet to acquire, and it

is this part that makes WC models currently useful for hypothesis generation.

Unfortunately, WC models are data-based. As such, they are inheriting the faults of reverse

engineering voiced by Sydney Brenner and which I narrowed down to the intractability of big

data approaches for biology at the beginning of this thesis. Accordingly, raising the

predictive capacity of WC models will get increasingly more difficult and costly as it improves

over experiment tests. Indeed, the more complex a system of interest, the more potential

interactions, and the more experiments required to test every hypothesis. Suppose that we

have variables ∀𝑖 ∈ ℕ, 𝑠𝑖 = {0,1} and a set of such variables ∀𝑛 ∈ ℕ, 𝑆𝑛 = {𝑠1, … , 𝑠𝑛}, that

represents 2𝑛 configurations that must be tested. So, every time a WC models will be used

to generate hypothesis within that domain, the number of tests will increase by a factor of 2

(i.e., 2𝑛+1, 2𝑛+2, 2𝑛+3,…). This is a gross worst-case scenario where all variables have an

effect on each other. Thankfully for experimentalists, outside knowledge helps them put

constraints and can drastically reduce the number of experiments. Nonetheless, data-based

WC models are within a self-reinforcing loop to more data to encode more complex

phenomena, that will generate new hypotheses, which will require more data than the

previous batch to verify, and so on. Consequently, we will eventually reach a maximum rate

of hypothesis testing because of the colossal number of mandatory experiments and data

acquisition. Moreover, as biological systems are not closed systems but open-ended because

of evolution, the rate of hypothesis testing must be high enough to allow us to catch up, and

then keep up, with the new states of biological systems. Only then may we hope to reach a

47

100% match between the body of biological knowledge and what a WC model can tell us

about a cell.

In the event this happens, however, the limits of using empirical and unformal simulation

methods will kick in. For example, the complete model of Mycoplasma genitalium from Karr

et al. integrates 28 submodules. This may seem relatively little but there was (and there still

is) a lack of formally established techniques to simulate that many modules and the

hundreds or thousands of equations they contain. Although the exact number of equations

is not given for this model of 525 genes of Mycoplasma genitalium, the 1214 genes of

Escherichia coli (Macklin et al., 2020) is based on “19,000 parameter values […] a system of

over 10,000 mathematical equations […]”. The solution chosen at the time, and which is still

used today (Macklin et al., 2020; Agmon et al., 2022; Skalnik et al., 2023) is to approximate

that the modules are independent over small time scales (e.g., 1 sec) such that we can

sequentially integrate the modules over this short duration. This approximation is good

enough that both models successfully helped uncover new biological knowledge, but one

must keep in mind that we have no way to investigate how much the approximation impacts

the accuracy of the results. Other existing methods of WC simulation such as spatial lattices

(Thornburg et al., 2022) or the particle simulations with millions of agents20 are also

empirical to some degree. We know they work because the simulations they generate has

helped biologists, but there is no way to know how well they perform in theory or how they

rank between each other. This lack of formal proof is a conceptual limit of modern WC

simulation technologies and there are arguably very little resources invested in finding

solutions for it. If the biological knowledge increases but the technology to run WC models

hits a glass ceiling, we will reach a point where the WCM will only predict things we already

know or make errors (see Figure 5.b). WC simulation methods must then improve

concurrently to the accumulation of knowledge or, in the absence of perfect simulation

results, at least be coupled with a method to evaluate the error made by the WC model

without having to perform experiments to find out.

Perfecting WC models is then contingent on technologies that can lower cost of

development, increase the hypothesis testing rate, and accommodate formal simulations or

self-analysis. Integrating WC model design and simulation within RT systems can help with

these three at different levels depending on how deep the integration is.

Integration level 1: predictive SIL with RT interactive WC simulations asynchronous to

experiments.

This is the entry level of integration focusing on adapting the WC models’ simulation

algorithm to the real-time paradigm. Experiments are performed independently of the WC

simulations; it can be concurrent to the simulations, but the experiments measurements are

not periodically fed to the RT simulations in a way that the RT simulations cannot

20 Unpublished system by Dr. Kazunari Kaizu at the Laboratory for Biologically Inspired Computing, RIKEN BDR.

48

periodically optimize its parameters based on the data trace. However, being real-time, WC

simulations become interactive both during the design phase and the hypothesis generation

phase. Both phases will likely be interwoven at some point similarly to how early integration

of RT simulation in the engineering of RT systems led to the identification of shortcomings of

the said system (see section on Design methodology of real-time systems, page 31). So,

early simulations will result in the update of the model. Compared to classic WC simulations,

the modeler will be in complete control of the time scale. He will be able to play, pause,

resume, go forward, go backward to leverage the manual analysis of the characteristics of

the model. Furthermore, the models can be updated while they are running, and

experimental data can be manually added and compared to the simulation while the model

keeps running. Automated real-time analysis can also be implemented to help detect

anormal signals and support the identification of theoretical issues in the structure of the

model. This level of integration of WC models in a RT system helps lower their cost of

development by accelerating the design cycle on the side of the model and provide tools for

self-analysis.

Integration level 2: generative SIL with RT interactive WC simulations with no

experiments

This level of integration is identical to the previous one, but the purpose of the integration is

different. It is not to provide a simulation framework where biologists can easily compare

the prediction of the simulations with experiments and adjust the structure of the model

accordingly. Rather it is to explore the biological solution space, it is to provide an interactive

simulation framework where biologists can proceed by trial and error, ask more general

questions than usual, and think outside of the biology they can observe on earth. This is a

tool to investigate “what-questions”. What are the conditions or emergence of information

storing in cells? What is a minimal cellular system? What is the drive of cellular evolution?

What are the abiotic conditions leading the systematic emergence of cellular systems? And

so on. As such, the modelers will probably manipulate more abstract objects in the model

space and value the comparison of alternatives over the optimization of one solution. Once

again, the benefits of using RT systems over classic offline simulations is the interactivity to

accelerate the exploration of the solution space and to quickly get feedback about what is

plausible and what is not. It is also a perfect playground to analyze the implications of

various WC simulation techniques and to develop more formal methods in which

computation errors are analytically defined or very easily measurable.

Integration level 3: predictive SIL with RT interactive WC simulations and HIL

synchronized experiments.

This level of integration inherits everything from level one, but the WC simulation receives

scheduled periodic measurements from autonomous experiment hardware. The received

data can be used in at least two ways. In the first case, it is to periodically assess the quality

of the WC simulations relative to the output of the experiments. This can be done with the

intent to optimize the design of the WC model or to give feedback on hypotheses generated

49

before the start of the experiment. In the latter case, the modelers already have some

confidence in the predictive capacity of their model. In the second case, the purpose is to

monitor cells and to update their digital twin encoded as WC models. Monitoring can then

be subdivided into two categories. We could have a digital twin of an archetype cell of a

species that receives the aggregated data from different cells. Or, we could have a digital

twin of one cell within the population. In both cases the modelers have high confidence in

the predictive capacity of their WC model. In addition, the latter case is yet very challenging

as the state-of-the-art single cell sequencing techniques are destructive, but the next

generation should solve this problem (Tang, 2022). This level of integration is the equivalent

to monitoring systems for factories or nuclear plants in the field of industrial engineering

(see Real-time monitoring systems, page 38). This level of integration is the one that will

increase the rate of hypothesis testing, allowing experiments to be conducted at any time of

the day, all year round. It is the only solution to hope producing the amount of data that will

be necessary to heighten and sustain the predictive capacity of WC models.

I will keep referring to these three levels of integration, although the target is not necessarily

WC models.

Transferring Real-Time Technologies to Model-Based Biology

I have argued in the past few sections why RT systems could be useful for model-based

biology, now I will discuss the conceptual and technical challenges that pertains to RT

systems and that I will have to deal with in order to reap the benefits of RT systems.

I am first looking for an RT system that can help quickly iterate on the design of models of

biological systems and which remains operatable even as the size of models grow. In the

frame of this thesis, I focus on the levels of integration 1 and 2 presented in the previous

section. That is to say, I will focus on SIL RT systems for predictive and generative purposes. I

am personally more interested in the latter because this is what my definition of model-

based biology is about, but I cannot ignore the appetence of biologists for predictive models.

Moreover, satisfying both do not put so much stress on the architecture as we will see in

later sections. The third level of integration of RT systems with HIL is much more demanding

to implement and this thesis do not contain results about it because there are already

enough to say about the first two levels. Regardless, I will keep discussing it from a

theoretical perspective when relevant to not gloss over the future challenges.

In this thesis, I do not want to consider the problematic of the design of my RT systems only

under the lens of the question “Does it output the correct result?”21. Unfortunately, this is

usually happening for many software programs in scientific fields aside from computer

science. In fact, the pressure scientists are facing to solve their problems at hand leads them

to disregard how well they are using the tools from other fields that are helping them. I

believe this issue is not as frequent when the tools are hardware. I think the grounding of

21 Although it is, of course, mandatory to answer this question.

50

hardware in reality raises the users’ awareness of the costs involved in case of misuse. For

example, bad management of reactants can have dire effects on the number of experiments

one can conduct. Or wrongly focusing a microscope is not really an option. Whereas the

immateriality of software and the growing facility with which one can code makes users

believe that software design is without consequences, and that what truly matters is only to

get the correct computation result. Behaving this way is no different from using computers

and algorithms only as fancy calculators. This might have been true until the 90s when

consumer grade computers had a straightforward architecture. But modern computers’

architecture got more elaborated as a result of optimizing their performance without

increasing the frequency of the CPU. Consequently, calculating something as simple as a sum

can be at least 10 times faster if you write code adapted to the computer’s architecture22.

Beyond these technological aspects, the effect of the design of a scientific software program

on its everyday ease of use is also largely ignored. Very little care is given to its User

Interface (UI) and User eXperience (UX). For hardware, it would be unimaginable to not

strive for the best UI and UX possible because it is directly linked to the survivability of the

product on the market. For example, a microscope which focus ring or controls for the

position of the plate would be inaccessible to the user without taking his eyes of the

binoculars would be doomed. For consumer grade software, UI and UX mostly correspond to

what users can see on a monitor and is also a major concern for software companies. But for

scientific software I argue that UI and UX concerns spread deeper into the architecture. In

effect, scientific software must be reusable for the community or, at least, it must be

explorable. It will hardly be possible for any scientific software which architecture was not

carefully questioned during its design step. This idea that the design of a software matters

not only to ensure the correctness of the computation, but also how well one can use it,

maintain it, and extend it is acknowledged as well in works I have already cited. (St. John et

al., 1987; Masison et al., 2021; Agmon et al., 2022).

That is why, I believe more consideration about the design step of scientific software is

required to discuss how efficiently the architecture of a scientific software powers scientific

novelty. What are the trade-offs users should be aware of when they decide to do task 𝑇

with software with architecture 𝐴 instead of software with architecture 𝐵? This is even more

true in cases such as mine where RT systems are far from the mainstream modelling and

simulation technologies in systems biology. I believe it is critical to evaluate and

communicate about whether the challenges contingent to the design of RT systems in heavy

engineering fields are all transferred when designing RT systems in systems biology. Do all

design constraints stay relevant in our field? Are there additional ones? For this purpose, I

22 It is indeed very simple to observe. Using the same programming language, one can write code that will be

better fitted to the architecture of the computer and be about 10 times faster than different version.

Moreover, the fast code is as simple to write as the slow code. And I am not talking about using multi-cores vs.

single core; in this case, we can easily reach x100 speed increase (if not x1000) to compute a sum.

51

will use the following citation from the paper describing the RT system by NASA for the

space shuttle and the space station (St. John et al., 1987):

“But how should the simulation be structured in order to support a wide

variety of vehicles and subsystems in fully integrated configurations? How

should the computer systems be configured such that simulation uptime is

maximized and future study requirements are independent of hardware

configuration? How should the simulation be distributed across the

computer facility to minimize software development time, to produce a

high degree of confidence during integration, and to allow for

straightforward operation?”

These questions all focus on delivering the best tool possible to improve the long-term usage

of the tool and the quality of the output.

“But how should the simulation be structured in order to support a wide variety of

vehicles and subsystems in fully integrated configurations?”

Translating this question to my case involves replacing “vehicles and subsystems” with

“biological systems”. Then the question evidently asks about the versatility of the simulation

system and the capacity to run simulations for various encodings of biological systems. I

discussed already two major numeric simulation methods in systems biology in sections

Modeling with differential equations and Modeling with stochastic events pages 18 and

20 respectively. ODEs and SSs are more adapted to subsets of biological targets or systems.

In addition, the input data for simulations of biological systems is heterogeneous with, for

example, static tables of float numbers for parameters or markup files encoding models such

as SBML (Keating et al., 2020). Therefore, it is worth considering an architecture which

allows to easily add or remove, say, modules, that may encapsulate functions or

transformations on other modules which, themselves, encapsulate functions or raw data.

Then the versatility of the simulation system would emerge and be guaranteed by the

number of possible combinations of modules. I followed this idea of modules for both the RT

systems I implemented in the course of my PhD research.

“How should the computer systems be configured such that simulation uptime is

maximized […]?”

This question is about the requirements of the RT system such that implementation is fault-

tolerant, and a simulation continues to run for as long as possible without errors. I believe

the relevancy of this question highly depends on the level of integration of the target RT

systems.

If it stays at levels 1 or 2 for predictive or generative SIL, then I believe the requirements for

fault-tolerant architecture is low. Of course, it is always something we can wish for which

will improve the reliability and reusability of the system over its life cycle. But, for one thing,

RT systems for systems biology have soft real-time constraints. Indeed, for my objective in

this thesis, I chose RT technologies for the interactivity they enable as in data streaming or

52

video games and not because I needed a system that could consistently meet deadlines. I

believe there will be no damage impaired in case of overrun. The reason we might want to

include fault-tolerant systems is to enhance the reliability of RT simulations results with

protective redundancy of data to protect against failure of the electric power of the

computer, for example. We might also want to implement a checkpoint system to roll back

the computation of a task in case a self-check system detected an anomaly such as excessive

numeric error. In the case of level 3 of the integration of an RT system, fault-tolerance is

much more significant. Indeed, as level 3 includes HIL, the real-time constraint gets stricter.

Level 3 RT systems must guarantee that the simulation will not be lagging and stay

synchronized with the physical time in reality (or faster if we consider forecasting). Overruns

could not be as critical as in the case of a nuclear plant, but it might imply financial loss for

any downtime usage of the autonomous robot performing the experiments. Truthfully, the

likelihood of overrun with modern RT systems (like the ones in this thesis) delaying modern

robots is low because the former is orders of magnitude faster than the latter unless the

simulation is incredibly complex (it may be the case for lattice-based or agent-based WC

simulations). As I focused on levels 1 and 2 in this thesis, the need for fault-tolerant methods

was low. Moreover, it would have been very time consuming, so I decided to focus on other

aspects, and I did not implement fault-tolerance.

“How should the computer systems be configured such that […] future study

requirements are independent of hardware configuration?”

This question is about the link between the hardware and the software. It asks two implicit

questions: i) Will the hardware running the simulation change and how does it impact the

tasks scheduling, execution, and the aptitude to meet the deadlines? ii) Will the hardware

external to the RT simulation computer likely change and impact the communication

channels or network protocols between the two?

Question i) is relevant for the SIL part of all three levels. I already mentioned on several

occasions that the evolution of computer hardware had severely impacted the design

process and final architecture of RT systems (e.g., switch from single core to multi-cores

CPU). So, preparing for the case where the nature of the hardware might change even if it

was not the intention of the designers is not uncalled for. Moreover, even though it might be

branded as niches applications, it is not impossible to wish to run an RT simulation on a low-

power computer. It could simply be in an effort toward green computing to save energy for

the sake of fighting against climate change. But it could also be for the purpose of a mission

where the energy supply is strictly regulated. A possible example is the International Space

Station. It is well-known that biological experiments are performed on the ISS to study the

adaptation of plants or microbes to living in space. One of these experiments may eventually

involve an RT simulation system to help the astronauts to pre-analyze the samples before

they are sent back on Earth. Or, alternatively, a (level 3) RT system might be installed in the

ISS to automatize the biological experiments and free the time of astronauts for different

tasks. However, a low-power computer also means that the frequency and computation

53

power will be decreased compared to conventional hardware. Such a decrease will

inevitably impact the ability of the RT system to meet deadlines and must therefore be

carefully considered in the design steps: what is the range of expected simulation hardware?

Question ii) is mainly relevant for level 3 and in the case that simulation hardware is

distributed. It is about the modularity of the hardware in general. Since hardware is never

perpetual and the field of autonomous robots for biological experiments is moving fast, a

robot might be superseded every 3-5 years. It is true that robots cost tens of thousands of

dollars and it is unlikely that research labs have the funds to renew their fleet of robots this

frequently (but companies might). Ignoring technological obsolescence, a laboratory with

several autonomous systems specializing in different types of experiments might want to

connect the RT simulation systems to any of the robots. Therefore, whatever the cause, if

the hardware sending periodic data to the RT simulation computer changes, it is possible

that the nature of the data or the communication protocol changes with it. In the case of

one of the RT systems I implemented during my research, the simulation hardware has

limited computation power compared which prevents it to do much more than what it is

built for. Hence, the RT system was coupled with an external computation unit to delegate

some work.

“How should the simulation be distributed across the computer facility to minimize

software development time […]?”

I must admit that I could not fully understand the meaning of this question. I could not figure

out how the distribution of the simulation on the computer facility influences software

development time. In particular, I am unsure of what the author meant by “computer

facility”. Is it simulation hardware? Does it include human resources? In the former case, I do

not understand how distributing the simulation will minimize the development time. Maybe

because distribution allows us to run more tests and figure out bugs and system faults. In

the latter case the link between manpower and simulation distribution puzzles me. Thus, I

could not translate this question to my case.

“How should the simulation be distributed across the computer facility […], to

produce a high degree of confidence during integration […]?”

This question is about the possible loss of the integrity of data when it transits over a

computing system. Scientific research and engineering both undergo strict constraint

regarding the accuracy of computation and simulation results. For science, accuracy raises

the usefulness of experiments and increases the likelihood of enriching a body of knowledge.

For engineering, it is to improve the faculty to take informed decisions regarding design

problems. This question is linked to how easy it is to verify or validate computations in a

simulation and eventually to how well the integration methodologies are supported by a

theoretical framework. If we can design an RT system based on simulation techniques that

can be formally analyzed, then we can hope to compute a degree of certainty in the

simulation’s results. Formalization can happen at different points in an RT system. There is

the input of data, the computation itself, and the output of the simulation.

54

For the input, I already discussed the difficulties associated with the clock drift leading to

possible difficulties to restore the original order of occurrence of events which were

timecoded with two different clocks. In the case of RT systems for biology, I think this

problem might occur for level 1 and 2 of integration in the situation where different modules

of a model are solved on different CPU and, therefore, have different clocks. In that case,

timecoded events on one module might have trouble to be exactly synchronized on another.

I do not know the details of the distribution scheme, but I would expect this might happen in

the WC colony model (Skalnik et al., 2023) because the design paper of Vivarium (Agmon et

al., 2022) mentions heavily relying on CPU distribution for the simulation. Without hardware

distribution, the synchronization problem for input data might be emulated when

submodules are approximated to be time independent over some time scales such as for the

WC model of M. genitalium and E. coli (Karr et al., 2012; Macklin et al., 2020). In such case, if

an event is simulated at the beginning of the time step, it will only be accounted for by the

other modules at the beginning of the next time step. Of course, in the case of the WC

models mentioned above, the modules were separated in a way to limit this situation, if not

to completely eradicate it. But one must then be aware that the design pressure relieved

from designing an RT system relying on short time-step independence is, in fact, traded-off

to more pressure on the design of the model. It might also happen in the case of level 3

integration if we consider an experimental setup where several autonomous systems

periodically send measure data to the RT simulation or monitoring system. However, with

modern sampling technology in biology, the clock times between the two autonomous

robots must be very desynchronized for a time order error to occur. Indeed, biochemical

processes are mainly at the order of minutes or above and we can expect clock drift for

embedded quartz clocks in normal conditions is about 10−6 𝑠. 𝑠−1. So, unless the robotic

system is recording at frequency higher than the total clock drift over the course of the

experiment, time integrity is likely preserved. High frequency sampling experiments such as

measuring the current propagation in cells of tissues might be problematic, however.

For the computation itself, loss of data integrity might happen because of bounded numeric

precision and float number calculations. The theory to measure calculation errors has been

extensively studied for ODE numeric integration. Using ODEs as the computation formalism

of a model therefore provides ways to take informed decisions about simulation results.

Modern ODE solvers often rely on the computation of the error to adapt the size of the

integration time step of the system23. This approach allows to integrate over large time steps

when the error is small and to integrate over small time steps when the error is large. The

former typically happens when the numeric solution is not varying a lot over time and,

conversely, the latter happens when the numeric solution abruptly changes values. In

biology, the former happens over steady or quasi-steady states, while the latter may happen

after a regulation factor has been introduced in the system resulting in the activation or

23 The theory is briefly described in Appendix A1.

55

inhibition of a chemical species. To my knowledge, equivalent techniques to measure the

output error of SSs do not exist. However, the quality of the randomness of the pseudo–

Random Number Generator (RNG) used as the basis of the SSs can be measured. By now,

some RNG are known to be of poor quality and vice-versa. Whether for ODEs or SSs,

increasing the accuracy of the computations involves sacrificing some computation time and

it is always a trade-off between executing the tasks fast enough to satisfy the deadline and

having good enough simulations.

As for the integrity of the output data of RT simulations, I am talking about the ability to

replay or analyze a posteriori the simulations with the assurance that every step of the

simulation is clearly distinguishable from others and that no recorded data is corrupted. As I

already mentioned, this integrity is often achieved thanks to protective redundancy of the

hardware that stores the data: several copies of the simulation output is saved on different

devices to reduce the probability of corrupted data. This approach appears to me just as

relevant when integrating RT systems in biology. I will add, however, that independently of

making sure the data is correctly logged, there is a need for tools to analyze the trace of the

data. Indeed, in the case of a research activity, building a model is an iterative process and

every step of this process might be discussed among pears at any time. Therefore, there is a

need for non-destructive, yet, iterative, recording format of the data of models being

designed.

In the case of the RT systems I developed, I faced the need to adapt existing off-line

algorithms to enable input integrity of data within the simulation. Namely, the correct

detection and timely execution of events in all different modules. I selected a popular

variable time-step size ODE solver to integrate ODE systems, and I studied how to include

traceability of the output data of my RT systems.

“How should the simulation be distributed across the computer facility […] to allow

for straightforward operation?”

In my understanding, this question is the complement of the first question on the modularity

of the simulation software for the sake of better simulations. Here, it is about the modularity

of the simulation for the sake of better usage. This question is the expression (37 years ago)

of my intention to also consider the influence of the architecture of my RT systems on the UI

and UX of the system. In the original paper, the answer to this question involves the

architecture of the SIL part but also the HIL part as the RT system of the space shuttle is a

physical replica of the actual shuttle. According to the paper, the architecture of the shuttle

was so easily modular that testing alternative models of the airframe of the shuttle for the

flight simulation or the new on-board radio was only a matter of loading definition files or

plugging off and on a few cables (I give a bit more details in section Design methodology of

real-time systems page 31). In this context, a good architecture design drives the

development cycle of the product. Alternative versions of the hardware and software can be

seamlessly installed. This will power the model-based approach where designers can try

56

models early on. Overall, an architecture that promotes modularity speeds up production,

because we can easily perform tests and start manipulations early in the development cycle.

For levels 1 and 2 of the integration of RT systems for biology, this matter corresponds to the

seamless update of the model encodings or parameter values. Currently, models of

biological systems are manipulated exclusively via files (e.g., SBML); hence, when a modeler

has an idea and wishes to modify the structure of the model, he must adapt the code inside

the file. Sometimes, the Graphic User Interface (GUI) of the software performing the

simulations permits to update parameters, reactions, and other concepts encoded in the file.

But the modifications are rarely accounted for by a simulation unless it is stopped and

started back at the beginning. Instead, if we consider the simulation of a WC model, users

could add or remove cellular compartments, drop a carbon source in the simulation

environment, knockout a gene, induce a signal cascade, and so on. The purpose is to design

the RT system in such a way that users can test anything they want while the simulation is

still running.

In the case of level 3, I believe this question is linked to the variability of the hardware I

already discussed. The challenge is slightly different however as, here, the problem is to

willingly test various versions and not to target some range of hardware. In biology, this

would be more akin to testing various experimental protocols which might result in a change

of data input in the RT simulation system, even if it is formatted the same way as before. For

example, it could be testing which protocol is more adapted between counting a bacterial

population by measuring the absorbance or by image recognition. In both cases, the nature

of the information sent to the RT simulation system is a count, but the method to generate

the value is clearly different. Only minimal changes should be allowed on the side of the RT

simulation system, if any.

For one of my RT systems, I implemented this type of modularity to be agnostic toward

external computation hardware that executes tasks too heavy for the RT computer running

the simulation.

Additional conceptual considerations when designing

The last question from St John et al. is inviting to examine the architecture of RT systems for

the sake of its accelerated development and long-term life cycle. Specifically, how engineers

should design RT systems so that they can keep shaping and using them for a long time. But

what about the reverse modality? How should engineers design an RT system so that it

shapes its users back and orients them toward specific behaviors? Another way to phrase it

would be: How to design an ecosystem that guides the users in the tasks the software is

meant to help them accomplish? These questions arguably reach beyond the field of RT

technologies, and I am sure I could find many conceptual papers on the subject in the field of

applied psychology or recently trending nudges in marketing. I believe I could find similar

questions in architecture as well (in the sense of architecture of buildings or cities, not

57

software or systems) where architects often consider how to shape spaces so that the utility

of the space reveals itself to users.

I do not wish to venture in these fields at this point of my thesis, however. But I want to

point out that, including this problematic, as complicated as it may be and seemingly

unrelated to the primary objective of a software, could have large-scale benefits in the early

design process of an RT system. For example, engineering and research in RT systems are

seldom individual tasks. On the contrary, the deployment scale or the criticality of the

applications warrant collaborative efforts to increase the likelihood of success of the system.

Developing a new RT system from scratch or updating an existing one is always an expensive

process; RT systems for engineering tasks are meant to be used during several years

(Schiano and Silberto, 1986; St. John et al., 1987; Kopetz et al., 1989; Koopman and

Yamauchi, 1990; Haung et al., 2005) and incidentally define the outline of every future

engineering tasks that will use it. During the life cycle of an RT system, engineers and

designers all share a common tool and language. Hence, in my opinion a reasonable

question would be: how do you design an RT system so that it invites its designers and end-

users to collaborate for the sake of making it even better? How do you shape this RT system

so that several users can coexist in the user space and complement each other? Indeed, if an

RT system has a non-negligeable lifetime, it should help different teams work well together

and not only run simulations or monitoring tasks.

Biology, like other sciences, is fragmented into several subfields to study life at different

scales. If we consider that RT systems can be used in biology, my previous question about

collaboration also holds. For instance, what is the architecture of an RT system that would

promote inter-specialty collaboration and the mutualization of resources and ideas for faster

development of models in biology? For the level 1 integration, such collaborative RT system

would be like a “Google Document for modeling”. Several biologists would connect to the RT

simulation system and work together in real-time. Experimentalists would provide the data,

modelers would connect solvers and arrange the structure of the model, experimentalists

again would comment the structure of the model based on their knowledge and

observations, visualization specialists would handle the display of relevant variables and

output data of the simulation, and statisticians would formally compare simulations’ output

with experimental data. In the case of level 2, the above would stay valid but artificial life

researchers would probably take the place of fundamental biology experimentalists. Here,

MBB and the exploration of the solution space of a model would aim to provide explanations

about the emergence of life and biological functions. The level 3 of a collaborative RT system

would make use this time (and contrary to what I have been advocating in this thesis), of the

capacity of RT systems to meet deadlines to efficiently schedule experiments over a crowd of

laboratory robots (Yachie and Natsume, 2017). The purpose would be to maximize the

uptime of the robots that have been jointly purchased or are simply shared.

58

One of the RT systems presented in this thesis was specifically developed with the objective

to provide an environment where users could work alone, but also with collaborators.

Additional technical considerations when designing

Until now I have only mentioned technological challenges of implementing an RT system as

consequences of conceptual challenges. In this section I will concentrate on technological

challenges that are valid when implementing an RT system for biology but that are not

present in state-of-the-art offline modeling software in systems biology. The primary source

of technological challenges is the real-time constraint.

Whatever application it is for, the paradigm to execute a heterogeneous set of tasks under a

deadline prevents from using many algorithmic solutions that were working fine in an offline

system. Especially when the set of tasks is dynamic, either because some are aperiodic or

their definition might change during the simulation, it becomes impossible to use static

scheduling algorithms ahead of the simulation. In the worst case, the order of execution of

the tasks must be reevaluated at the beginning of every step of the simulation. The data

storage of the simulation elements must also be always dynamic. Indeed, with an interactive

RT simulation system, the parameters, rules, or equations defined in a model file (e.g.,

SBML) might be changed by the user at any point of the simulation to test a different

configuration. Updating a value is not going to be much different in an RT simulation

software compared to an offline one. But adding or deleting a value will change the memory

layout and might trigger moving an entire table of values from one point of the memory to

another. This copy will evidently take time off the execution and put more constraint on

respecting the deadline. Moreover, if a component of the model is deleted from the

simulation, every other component that was using its output will not receive data anymore

or received the data from another object that took its place in memory24. For example,

biological model files often define equations for reaction rates. This reaction rate might be a

composition of numeric constants, parameters defined in the file, chemical species

quantities, or other functions (e.g., 𝑓′(𝑡) = 0.5 ∗ 𝑘2 ∗ [𝑋] + 𝑔(𝑡)). In an offline simulation

software, the code corresponding to the equation would be generated at the beginning of

the simulation and statically linked with the values (i.e., point to the memory location) of 𝑘,

[𝑋], and 𝑔(𝑡). But, if the user decides to internal representation of 𝑔(𝑡) or delete parameter

𝑘, or species [𝑋], what should be done to compute the value of 𝑓′? Deletion might result in

memory error and simulation crash. It is, of course, possible to implement countermeasures,

but should it be a fail-safe or fail-operational system? What are the coding constraints of

both? How to implement it so that it has a minimal impact on the objective to meet the

deadlines?

24 That is called a stale pointer in C++. This kind of error is very language specific. But it is easy to encounter

similar bugs in any language when creation/deletion of objects is involved.

59

Another challenge stems from the size of

the RT time step (i.e., the deadline) relative

to the size of the integration time steps of

the numeric solvers. This mainly concerns

continuous solvers such as the ODE solvers

which may require a much smaller time

step than the RT time step to limit the local

error. In fact, it is rarely possible to ask the

ODE solver to integrate for more than a few

milliseconds or even microseconds for

biological systems. But the RT time step is

not limited in size and could be of any time

order according to the definition of an RT

system. The solution, in that case, is to have

the ODE solver integrate within the

boundary of the RT step using an adequate

integration step size to limit the local error (corresponds to subdividing the grey area into

smaller steps such as the red one in Figure 6). But then, the problem arises to correctly

detect and synchronize the execution of events within the integration process. Is it necessary

to adapt the ODE integration because an event was detected? In which case, the event

detection algorithm must be triggered at the end of every integration step, then the

integration must be rolled back to the time right before the event, execute the event, and

resume the integration (see Figure 6.a). Or is it possible to apply events only at the scale of

the RT time step (see Figure 6.b)? In which case, events detected in the past RT time step are

simply approximated to have happened right before the beginning of the new RT time step.

The two options have dramatically different implication on the computation cost of an RT

time step with the former being much more expensive, but also much more accurate. The

latter option is the choice that was made for the WC model of M. genitalium (Karr et al.,

2012), and which, to my knowledge, stays true in Vivarium (Agmon et al., 2022) for in-

between modules events.

In the last section of my thesis, I concretely describe the RT systems I developed. I give the

major architecture details and how they relate to my vision of MBB. I will describe use cases

and give running examples.

Game-Engine-Inspired Real-Time Systems

I will conclude this major section by presenting Game Engines (GEs) as their architecture,

features, and development cycle practices inspired the RT systems that I developed.

Generators of “soft real-time interactive agent-based computer simulation”

Jason Gregory, author of the book Game Engine Architecture (Gregory, 2018a), analyzed that

scientists would probably call video games “soft real-time interactive agent-based computer

simulation” (third edition, page 9). A GE is a reusable software packing all the core tools and

Figure 6: Event execution options during simulation
integration. The grey area represents one RT time step. The
red area represents one integration time step. a) Higher
precision of the timing of execution of simulation events. The
algorithm backtrack to the start of the step (2), integrates
until right before the event is supposed to execute + do
execute it (3), then resumes integration (4). b) The algorithm
waits for the end of the RT time step. to execute the event.

60

technologies used to author video games. Therefore, a GE is a generator of SIL soft RT

systems. This characteristic only should suffice to realize the potential of a GE-like software

for MBB. Indeed, my vision of MBB involves quickly iterating over a model through RT

simulations to optimize it (biologists who want predictions), or to generate viable model

alternatives (for me who wants to explore the solution space of biology). Thus, I need a

generator of RT simulations and, as I discussed previously, the deadline constraints for the

RT simulation of a biological model are soft which makes GEs a perfect match in this respect.

Moreover, I am explicitly interested in the interactivity of the RT simulations for a biological

model to obtain immediate feedback of the choices made by the modeler and further

support quick design iterations. Iterating over a model will also likely involve a lot of trial and

errors, updating values, and adding or deleting components of the systems. This type of

data-wise dynamic environment is common in video games where many objects are

managed, created, and deleted as the player interacts with the simulation. This is what

Gregory included in the “agent-based” denomination in the definitions of video games. GEs

therefore seem to also have achieved support for dynamic simulations that I am looking for.

In addition, these agent-based simulations are rarely small. On the contrary, there is a fierce

fight in the video game industry to make stunning simulations thriving with details even on

embedded hardware with limited computation power. This underlines the capacity of GEs to

scale up should there be a need for large-scale simulations. As models in biology becomes

increasingly more complex (e.g., WC models), the guarantee that GEs can also successfully

deliver for these extreme scenarios should be very appealing to any modeler in systems

biology. GEs are can also scale up to integrate very heterogeneous data types (e.g. audio, 3D

models, textures, physics models, code scripts, and so on)25. Likewise, biological simulations

must integrate heterogeneous data ranging from model files (e.g., SBML) to raw data from

experiments or other simulations. Heterogeneity in biology is also accentuated by the

provenance of the data from databases such as BiGG (King et al., 2016), MetaNetX (Ganter

et al., 2013; Moretti et al., 2016, 2021), or BioModels (Malik-Sheriff et al., 2020), for which

models are not harmonized and translations are non-trivial. Finally, GEs are highly optimized

software with the belief that a well-designed architecture enhances the way it is used.

Notably with the modularity of the GE itself which helps engineers extending the capabilities

of the engine; this practice is called “engine tooling”. This is not a direct requirement for

MBB but, as I have already argued, I believe it is a good practice for scientific software

engineering. Therefore, GEs successfully solve similar ranges of problems than the ones I am

facing to make MBB a reality.

25 Gregory gives the following list section 7.2 page 493 (third edition) (Gregory, 2018a): “Every game is

constructed from a wide variety of resources (sometimes called assets or media). Examples include meshes,

materials, textures, shader programs, animations, audio clips, level layouts, collision primitives, physics

parameters, and the list goes on. A game’s resources must be managed, both in terms of the offline tools used

to create them and in terms of loading, unloading and manipulating at runtime.” He gives a slightly more

general list a bit earlier in the book (section 7, page 481).

61

About the real-time simulation loop of a game engine

The RT simulation loop of a GE is traditionally called the Game Loop (GL). GEs are soft RT

systems which may not have to guarantee the execution of one GL before a deadline, but

instead execute as many GL as possible. That is because one of the marketed criteria for the

success of a game is how smooth it is on a target hardware, which is equivalent to achieving

a high refresh rate of the game simulation and the visual rendering (hence as many GL as

possible). At the beginning of the millennial, the target refresh rate of video games on

consoles would often be of 30 Frames Per Second (FPS) which effectively gives a time budget

of 33 ms to execute a simulation step. Later, with the advent of more powerful hardware on

consoles, video games are often advertised to run at a stable 60 FPS (16 ms). On a computer,

however, consumers expect the game to run as fast as their hardware allows it for the best

experience possible. In that case, it is not rare to have machines that run a particular game

at more than 60 FPS, and even up to 300 FPS (3 ms) for some competitive titles. Even in

these cases, consumers expect the frame rate to be stable enough in all circumstances of the

simulation so that variations are unnoticeable. That being the case, unless the game is highly

optimized, or the hardware is not saturated by the simulation, the higher the frame rate, the

more complicated it is to keep it stable. The reason is easy to understand: video games have

variable amounts of work to do every GL, if the simulation allocated a tight time budget for

one GL based on the average workload, but there is sudden spike of activity, there will be a

transient drop of frame rate. Overruns for games therefore initiate a decrease in quality of

the simulation and user experience. In extreme cases, critics from consumers and negative

reviews are bound to severely impact the sales of a game and impair a loss of income. Be

that as it may, no life-threatening damages will ever ensue for the consumers, so GEs are

indeed soft RT systems. Consequently, a GL may have to “Wait Until” if the frame rate is set

Figure 7: Various execution sequence of real-time loops. a) Same as Figure 2.a, provided for comparison; typical sequence
execution of the simulation loop of an RT system. In case the execution of all tasks took less time than the deadline 𝑑𝑡, the
process waits until then. b) Basic variable time step size. The time budget of the next step is set to the execution time of the
step that just finished to be processed. It assumes the execution of the next step is not going to be much different from the
past one. This will naturally stabilize to on the best update rate the hardware can afford. Simulation and rendering have the
same time steps. Main issue of this architecture is that the quality of the simulation depends on the power of the hardware
because small 𝑑𝑡 implies higher precision for the integration. c) Semi fixed time step size. Compared to the loop in b), the
simulation has its own fixed time step. The integrity of the simulation is better maintained. The difficulty with this approach
is to select 𝛿𝑡 such that even low-end computers can finish to execute the simulation in less time than 𝑑𝑡𝑛.

62

such as on consoles (similarly to RT loops in heavy engineering, see Figure 7.a), or start

processing the next update immediately such as on computers (this is the case in Figure 7.b

& Figure 7.c).

Another specificity of GLs over simulation loops in heavy engineering RT systems is the

presence of a specific rendering task concluding the GL (see Figure 7.b & Figure 7.c). In

practice this task takes a big share of the time budget. Indeed, rendering the state of the

simulation on a display is the major output for video games and high visual quality is often a

selling point for games. So, it is not surprising that most of the time budget is dedicated to

the rendering at the expense of the simulation. However, it is unreasonable in the scientific

context represented by this thesis to allocate more time for stunning visual graphics if it

means decreasing the precision of the simulation. This is one of the major hurdles that must

be dealt with when adapting a GE architecture to scientific simulations. In this work, one

solution I implemented is to decouple the computation resources used for scientific

simulations from the resources used for graphic rendering. The second solution is simply to

use a low-cost rendering scheme to give more importance to the simulation task. Finally, a

classic GL do not contain any communication with physical components because games are

expected to be self-contained on the machine of the consumer (computer, smartphone, or

console alike). There is also no need to synchronize with other simulation systems that might

be running on distributed nodes, and which would be computing complementary simulation

data. Indeed, if a video game happens to be a multiplayer experience over a network, the

communications are processed as part of the simulation task. To my knowledge, there is no

game that would rely on the aggregated computation resources of a set of connected

machines. In this work, I will only be concerned about level 1 and 2 of the integration of RT

systems in modeling for biology, so no communications with hardware will be required.

As I mentioned, the target frame rates of the GL are set provide the experience possible for

consumers depending on the computation resources their hardware has. One might chose

to implement slightly different flavors of the update policies of the GL as a consequence

(Fiedler, 2004; Nystrom, 2014; Gregory, 2018c). The easiest solution that is also reasonably

agonistic of computer hardware decouples the simulation update from the rendering

update. The former will be computed at a fixed integration time step, while the latter will be

updated only after simulation has finished all its integration steps (see Figure 7.c). Nystrom

described this algorithm as the simulation loop “playing catch up” to the 𝑑𝑡. The main

benefit of this approach is to make the simulation computation deterministic across all

hardware, whether low-end or high-end. Indeed, the alternative solution where both

updates are not decoupled (see Figure 7.b) will result in the high-end hardware doing more

updates than the low-end hardware. In such case, we will have 𝑑𝑡𝑙𝑜𝑤 > 𝑑𝑡ℎ𝑖𝑔ℎ, so the local

error of the simulation integration will be higher for the low-end hardware. In the decoupled

solution (see Figure 7.c), however, the simulation integration step is always 𝛿𝑡, which is fixed

in advance by the engineers. Consequently, both low-end and high-end hardware should

perform very close computations. The delicate point then becomes to find a value for 𝛿t

63

which is not too small that the low-end hardware might be overwhelmed. In fact, if 𝛿t is too

small, then the computation time to integrate the simulation from 𝑡 to 𝑡 + 𝑑𝑡 might become

greater than 𝑑𝑡. If this happens, the simulation will lag and be asked to integrate bigger 𝑑𝑡 at

every step, which will result in bigger computation time, and so on. A security to avoid this

“spiral of death” (Fiedler, 2004) is to set a maximum threshold 𝜇 for 𝑑𝑡(Gregory, 2018c).

This can protect against transient expensive simulation updates on a hardware which

normally has no problems. But if we set 𝑑𝑡 = 𝜇 all the time because the hardware is never

powerful enough to catch up to the real-time, the simulation will be slower than real-time by

the factor 𝑑𝑡/𝜇 every step. On another note, Fiedler also argues (Fiedler, 2004) that,

because of floating point errors during calculations, a different number of integration step

between low-end and high-end hardware on the coupled solution (see Figure 7.b) will

produce different rounding error accumulations as well.

The game engine frameworks I used

The RT systems I developed in my thesis are using two different game engine frameworks.

One of them is entirely custom and inspired from general architecture and pattern designs

encountered in GEs. This is the one that I developed as a tool to support my vision for levels

1 and 2 of RT biological simulations. I had to make concessions, however, due to the

gruesome size and complexity of building a typical modern game-engine-like software from

scratch. The second RT system uses the game engine Unity (Unity Technologies, 2022b) to

benefit from the already existing support for 3D simulations. Unity is a professional game

engine which is now used in many other fields than the video game industry such as

architecture, automobile manufacture, cinema, robotics (Unity Technologies, 2020b), and AI

(Unity Technologies, 2020a, 2022c; Juliani et al., 2018). I developed this second RT system to

investigate how the architecture of an RT system can promote RT collaboration among

biologists in an immersive 3D virtual world.

64

IV. USING SOFT REAL-TIME SYSTEMS FOR MODEL-BASED BIOLOGY

The RT systems I developed during my PhD thesis are tools supporting my vision of MBB.

Namely, tools that motivate biologists to consider the solution space of biology instead of

punctual observations. To do so, my RT systems were designed to easily test alternative

versions of the model and to provide users with as much flexibility as possible as to what

kind of model they want to build. The flexibility was achieved by giving the possibility to

manipulate the passing of time of the simulations, change parameter values at will, add or

remove symbols. Components of my RT systems were inspired both by RT systems geared

for monitoring and simulation in heavy engineering. I was particularly impressed by the

thoughts, concepts, and methods researchers on RT systems developed to rationalize the

design of RT systems. In particular how they strived to include a working system as soon as

possible in the design cycle to perform tests early on and quickly identify the shortcomings

of the current version. In addition, I explored how to design an RT system so that it

motivates the users to work collaboratively to increase the final quality of the model. My RT

systems fall within levels 1 and 2 of the integration of an RT system with biology. Although I

did keep in mind the possibility of extending them to level 3, there is no direct support. The

RT systems I developed are not the most optimized, because their goal is first to introduce

RT simulations in the modeling framework of biologists. In a way, this work is equivalent to

the early research on RT systems for heavy engineering in the 1960s: it is first important to

understand the advantages by examples before we can identify what should be optimized.

Designing a Soft Real-Time Simulation Engine: ECellEngine

ECellEngine is meant to help biologists

explore the solution space of biology

rather than focusing on specific solutions.

It can be used to build, and analyze models

while the simulation is running in real-

time. The source code of ECellEngine is

accessible publicly on GitHub

(https://github.com/ecell/ECell_Engine).

User requirements: build, play, learn

ECellEngine must give the possibility to assemble heterogeneous biological data, easily

interact with this data in real-time to for edition and analysis.

Build: assembling heterogeneous data | This concept is illustrated by the blue section

denominated “Build” in Figure 9. The first responsibility for ECellEngine is to support the

variety of data used in biology. This starts with models which have either been built from

scratch or extracted from popular model file format in systems biology such as SBML. In

addition, ECellEngine shall also be capable of processing raw experiment data files (e.g., csv

Figure 8: Logo of ECellEngine.

https://github.com/ecell/ECell_Engine

65

or other table-like format) or ontologies. Once the content of the files has been translated to

data structures internal to ECellEngine, they shall be collectively referred assets (as it is the

custom in a GE). Given the diversity of the files potentially relevant to define a model,

ECellEngine must, of course, implement an extensible file importer that can be easily accept

new parsing strategies. Moreover, it is possible that different model files will refer to similar

variables but using different names. Or, on the contrary, different variables will have

colliding names. The probability of such cases is non negligeable because model files stored

on databases are not harmonized at the level of their respective content. To address this

issue, the asset system should perform a conflict check on each import and reports

anomalies to the modeler. The system should also be extensible to rely on popular

ontologies for the biology community in order to suggest curated interactions between

entities identified in independent model files. Finally, as will be expressed in the following

sections as well, the assets will be used very dynamically as a consequence of the

interactivity. Therefore, ECellEngine must ensure easy access to the assets via a global and

very open data state. The data state centralizes and exposes the data contained in the assets

imported while building a model. This way, any processes related to a simulation can query,

update, and display the data.

Play: Interacting with data in real-time | This concept is illustrated by the red section

denominated “Play” in Figure 9. The next responsibility of ECellEngine is to effectively

support my vision for MBB thanks to interactive real-time simulations. For this, I want

ECellEngine to hand over full control of the time axis of simulations to modelers, giving them

the opportunity to pause, play, resume, accelerate, decelerate, go forward or backward,

advance simulations step-by-step or continuously. This feature will be coupled with the

possibility to update the values exposed by model assets that were added to the simulation

environment and that participate to the integrity of models. In addition to updating values,

Figure 9: High-level structured view of the user’s requirements for ECellEngine. It has three main parts. “Build” corresponds
to the components involved with the real-time construction of biological models. “Play” corresponds to the components
involved in the interactive real-time simulation. “Learn” corresponds to the components involved in the real-time analysis of
the simulation.

66

modelers shall be allowed to add new assets to the simulation environment or to delete

already existing ones. Modelers shall also be given the possibility to switch from stochastic

to deterministic solvers at run-time whether they are, for example, more interested in the

diversity of the simulations or steady states. Such switch will invariably require parameter

conversion that ECellEngine must account for.

Learn: Analyzing data in real-time | This concept is illustrated by the orange section

denominated “Learn” in Figure 9. The final responsibility of ECellEngine is to leverage real-

time interactions. Interacting with simulations in real-time is very different from the

mainstream model design cycle in systems biology. In fact, the usual approach enforced by

other software is to sequentially describe the model, run a simulation, log everything, and

analyze the log. Then, depending on the results of the analysis, update the content of the

model and restart the cycle. But as ECellEngine allows to do the first two steps of the cycle in

real-time, the boundaries between the steps get very blurry and it is only natural that the

output of the data might also be analyzed in real-time. Furthermore, my vision of MBB

includes iterating through the design of a model, and it is reasonable that, at some point, the

modeler will want to compare alternatives and not just overwrite the previous version of the

model. Consequently, ECellEngine shall support the instantiation of alternative simulation

environment that branch out from an already running version of a model. Then, ECellEngine

should offer the possibility to display the state of each model; for this purpose, RT plots

seem adapted enough. These features will be easier to implement if ECellEngine do possess

a highly open data state per simulation as I mentioned previously. (see the connection

between the red section “Play” and the orange section “Learn” in Figure 9). However, I can

easily imagine that manual RT analysis of RT simulations can quickly become tiring, especially

if the simulations of several alternatives are running concurrently. To help with this problem,

ECellEngine shall include software objects that I will call watchers and events to help

automatically track elements of the simulation and trigger responses to help the modeler

manage the simulation. For example, the response could be to record the numeric values of

the last 𝑥 seconds of simulation, to update the value of a parameter, or pause the simulation

and let the user decide. This kind of automatic RT data analysis will likely be enriched quite

fast as ECellEngine is used on real modeling tasks. Finally, I expect RT interactions with

simulations to lead to the necessity to remember every modification a modeler has made to

a model in order to understand how the final version was reached. To this end, ECellEngine

shall also include data structures that I will call scenario which contain a record of everything

that happened during a simulation (manual or automatic modifications) to allow to replay

the sequence in ECellEngine or to analyze it on a third-party tool.

67

Elements of architecture

The code base is much too large26 to be discussed in its entirety here, so I will focus on three

aspects of the architecture that are related to challenges of RT systems or requirements of

this project.

Open, accessible, and flat data state | ECellEngine’s data layout was designed to facilitate

the requirement “Play” which involves potentially adding, editing, and removing a lot of

components from the simulation space. Conventionally in Object Oriented Programming

(OOP), the data relative to an object is stored within the boundary of this object. This

approach to data layout in a software is often the modern default choice and is heavily

taught in computer science classes because it makes it straightforward to translate one’s

mental model of a problem to code (as long as we are using an OOP language). Indeed,

mechanisms in the physical world are built from well-defined and carefully shaped lump of

atoms, and we usually judge the brilliancy of an engineer by his capacity to assemble these

parts together. As such, our physical –artificial– world is overflowing with such items. So,

OOP has been extensively used in software engineering since its advent in the early 80s and

the majority of modern code bases are using OOP one way or another. The field of RT

technologies is not exempt as illustrated by the couple of design methodologies (Gomaa,

1986, 1984; Burns and Wellings, 1994) inspired by the object paradigm that I described

earlier in section Design methodology of real-time systems page 31. Although very useful

on small to medium scale projects, some properties and coding practices associated with

OOP might suddenly increase the cost of upgrading and maintaining a code base. The one

that interests me in the present context is the pressure that OOP applies to isolate and

restrict the flow of data in a code base along a single axis with design practices such as

inheritance27. The principle of inheritance is to define an object through his existential

relationships “is-a” to other objects. A nice example is in (Gregory, 2018b): Car
𝒊𝒔−𝒂
→

Terrestrial Vehicle
𝒊𝒔−𝒂
→ Vehicle or Boat

𝒊𝒔−𝒂
→ Aquatic Vehicle

𝒊𝒔−𝒂
→ Vehicle. This type of

relationships produces a graph commonly called Class Hierarchy. The above graph is all good

until someone suggests extending it to incorporate the object Amphibious Vehicle. This

object is both terrestrial and aquatic, so what should we do? Maybe we can inherit from

both terrestrial and aquatic. But maybe we can’t because some data in both classes have the

same name (e.g., engine type). So, we need to fix the data layout of both classes to avoid

collision. But the next problem is that every part of the software that was using the fixed

26 The project has about 20,000 lines of code (not including documentation) over 100+ files and more classes.

The project is in C++ which is rather verbose, so the size is not that big for a “complex” software. Nevertheless,

it has become big enough that describing the whole architecture in this thesis would be counterproductive. The

full documentation can be found online (https://ecell.github.io/ECell_Engine/index.html)

27 Inheritance could, of course, be traded for composition in this example. But I did not want to discuss all

problems and alternative solutions in this section; simply illustrating one of the limits of OOD which influenced

the data layout of ECellEngine.

https://ecell.github.io/ECell_Engine/index.html

68

data now also needs to be updated. And so on. Real world situations can be much more

complicated and many game engine engineers have written compelling pieces about these

kind of issues (Fabian, 2018; Gregory, 2018b). The bottom line is that accessing data in a

strict OOD can become cumbersome and eventually result in accreting design patterns to

solve the problems of other design patterns28. In biology, models tend to be expressed using

OOD because the mental model of biologists is shaped by centuries of classification work in

botany, anatomy, histology, cytology, etc... As such, a common mistake is to use OOD to

literally translate the knowledge layout of a biological object to the layout of the biological

model on a computer. An example would be to separate molecular species in memory

because they are only found in the cytosol, the Golgi apparatus, or the nucleus of a cell,

respectively. Another example would be to separate them in memory because they possess

different qualities which biologists categorized as proteome or metabolome. In effect, it is

essential to understand that a computing system could not care less about the labels we put

on data: it is only bits. Consequently, OOD is only a methodology to help humans keep as

much as possible of the structure of a virtual complex system in their head. OOD do not help

the computer. On the contrary, OOD undermines computational efficiency because it easily

produces memory fragmentation, and it becomes very time consuming for the CPU to fetch

all data relevant to a computation. It is much more important for a computer that the

frequently updated data are close together in memory. With all these issues in mind, I spent

a great deal of time considering the data layout of the mandatory biological concepts to be

included in ECellEngine to trade-off my mental model of biology knowledge, my mental

model of the architecture of the software, and the data processing efficiency for the

processing unit. ECellEngine therefore defines an object called DataState which is unique to

every simulation. The DataState contains every dynamic elementary object defining the

model being simulated. An elementary object might be a Species, Reaction, Parameter,

Equation, Operation, LogicOperation, Event, or Trigger. These elements are stored in C++

standard implementation of hash tables unordered_map. Hash tables are data structure that

allows to retrieve their elements given a unique key. Of course, it incurs memory

fragmentation compared to the likes of arrays, but hash tables are very practical to easily

find individual objects. I needed this property to easily modify or delete existing objects, as

per my requirements for trial & error in MBB. But, as expected, recent performance analysis

indicate that this layout is not the best for the simulation in the update loop. In the future, it

might be worth considering maintaining an array-like (i.e., non-fragmented) copy of the

DataState for the simulation, despite the possible memory cost in large-scale models and the

dangers to have desynchronized values between what the modeler manipulates (from the

hash tables) and what the simulation processes (from the array-like data structure).

28 Richard Fabian wrote a yet unpublished new book focusing on this misuse of design patterns that I was given

the first draft to read for an informal review.

69

Simulation loop | The RT simulation loop follows a modified “Catch up” structure as

discussed in Figure 7.c (page 61). The noticeable difference is that we allow the 𝛿𝑡 to vary

depending on the integration strategy of the simulation. In particular, if the numeric solver

used expects the model to be defined as differential equations, the default ODE solver

implements a Dormand-Prince 5(4) version of the explicit Runge-Kutta method29. This

method allows to calculate a variable time step size based on an approximation of the

numeric local error. Since the calculation of the approximation of the local error is the same

on low-end or high-end hardware, the original argument in favor of a fixed 𝛿𝑡 for

determinism of the simulation is conserved with this approach. And, of course, it has the

added benefit of guaranteeing a certain level of precision. If the numeric solver used expect

the model to be defined as a stochastic system, the default stochastic solver implements a

Gillespie Next Reaction Method. In this case, since the time of the next reaction depends on

the sample of a pseudo-RNG, determinism can only be guaranteed if two runs of a

simulation use the same random seed. As for the detection and trigger of simulation events,

I opted for the highest precision option represented in Figure 6.a (page 59). In effect, both

solvers will integrate their step, check is an event should have been triggered within the last

integration step and backtrack to this exact moment. The current code to implement this

strategy is extremely cumbersome. Moreover, as I already mentioned, this option is the

most expensive one and it might become problematic in the future for large-scale models

where many events must be checked. I plan to eventually refactor this implementation.

Finally, in the simulation engine layer of the code, we completely removed the rendering

step. Consequently, it is up to a third-party using my simulation engine to include a

rendering or not. I demonstrated this practice by also implementing a GUI for the engine

that I will now describe.

Integration of the simulation engine in the editor | The code base for the simulation

engine is separated from the code base used for rendering. In fact, the code base for the

simulation can be used independently of any GUI. For example, it could be simply controlled

from a terminal prompt. However, that would not be very useful and completely undermine

the purpose of implementing an RT simulation to achieve interactivity. Thus, I also

developed a separated GUI to control the simulation engine. It is based on the C++ library

Dear ImGui30 with glfw30 for the windows and input backend, and Vulkan30 for the rendering.

The update loop of the GUI (henceforth referred to as the Editor) follows the structure

represented by Figure 7.c (page 61). Essentially, the user’s mouse and keyboard inputs are

polled by glfw, the simulation loop runs for all active simulations, and rendering is serviced

by Vulkan and handed over to glfw to draw the application’s windows. There are no outputs

for the user. However, an issue with this kind of loop in our context is that, if the simulation

29 Details are in Appendix A1.

30 Dear ImGui: https://github.com/ocornut/imgui; glf: https://www.glfw.org/; Vulkan:

https://vulkan.lunarg.com/

https://github.com/ocornut/imgui
https://www.glfw.org/
https://vulkan.lunarg.com/

70

takes time to compute, the editor will also become sluggish. This is acceptable in a video

game because we usually don’t want the user to be able to do anything while the simulation

has not finished to integrate. But, in the present case, there is no reason to penalize the user

of the editor if a simulation is heavy and cannot be as fast as the physical time. In fact, the

user should be able to interact with the editor whatever the status of the simulation. To

reach this new level of decoupling, the next version of the editor’s update loop will run the

in parallel of the simulation. This requires a powerful messaging system to be able to send

commands to the simulation asynchronously from the editor. For example, when a modeler

updates, creates, or delete a component of the simulation, the corresponding command will

be sent to the simulation engine, queued, and executed once the current step has been

integrated. The base infrastructure of this messaging command system is already

implemented in ECellEngine, and part of the communication between the editor and the

engine are using it. Putting this matter of the synchronization of the two RT loops aside, the

question arises to decide the interaction scheme of the user with the editor to design

models and control simulations efficiently and easily. This problem is a recurrent one for GEs

and falls under the choice of the scripting interface (Gregory, 2018b). A scripting interface in

a GE is either typically a programming language or a GUI that gives game designers the

power to manipulate the simulation without the skills or the knowledge of the engineers

who developed the engine. In Unity, the scripting language is C#; in Unreal Engine (Epic

Games, 2022), the scripting language is a node-based interface called blueprints (Unreal is

especially famous for this interface which allows to make entire games without a line of

C++). A node-based interface is much more user-friendly than code and participates to quick

iteration design, so I naturally went in that direction. Enriching the catalogue of nodes

requires the skills to code in C++, but using the nodes is accessible to anyone. In short, the

nodes of the editor represent data structures from the simulation engine (e.g., molecule,

reaction, parameter, model, solver, event, …) which can be connected to modify the

behavior of the simulation. Modifications resulting from the graph are eventually sent to the

simulation engine using the asynchronous messaging system and are, therefore, accounted

for at the end of the integration steps.

71

Designing a Collaborative Soft Real-Time Modeling Environment: Kosmogora +

ECellDive

Kosmogora and ECellDive are meant to help bringing biologists from different fields together

thanks to the Metaverse to speed up the iterative design cycle of biological models. The

source code of Kosmogora and ECellDive are accessible publicly on Github

(https://github.com/ecell/kosmogora and https://github.com/ecell/ECell_Dive respectively).

The content of this section was adapted from my paper “An architecture for collaboration in

systems biology at the age of the Metaverse” (Jacopin et al., 2024).

User requirements: collaborative biology modeling in the Metaverse

I explained in section From real-time systems to the Metaverse page 41 how the

Metaverse is a product of RT systems by integrating elements from simulation, monitoring,

digital twins, and data streaming. But, as I explained as well, the definition of the Metaverse

has yet to stabilize and there exist many interpretations or focus of interest. In the following,

I will propose conceptual requirements for a scientific metaverse based on my

understanding of the various definitions in academia and the trends I observed in the private

sector.

Proposition of 7 requirements for a scientific metaverse | I identified seven points among

the different concepts discussed by others (Are We There Yet? A Status Check on the

Industrial Metaverse, 2023; Wang et al., 2022; Ning et al., 2021; Buchholz et al., 2022; The

Metaverse and How We’ll Build It Together -- Connect 2021, 2021; Mystakidis, 2022; Lee et

al., 2021; Park and Kim, 2022; Weinberger, 2022) which appear necessary to qualify an RT

system of scientific metaverse including, in my case, a metaverse for biology (see Figure

12).First, there are the technological aspects with (1) real-time, (2) immersive and (3)

multiplatform. There seems to be a consensus on these three between the private sector

and academia. This comes down to the technology used to leverage metaverses and is quite

independent of the systems biology field per se; these three are requirements. Next, I

believe it is necessary to provide a reliable environment to process experiment data and

simulations. An environment much like the one voiced by heavy engineering companies

where the integrity of the data transformations is good enough to generate added value

Figure 11: Logo of Kosmogora Figure 10: Logo of ECellDive

https://github.com/ecell/kosmogora
https://github.com/ecell/ECell_Dive

72

compared to taking decisions outside of the

Metaverse. I believe the term (4)

engineering-grade (high simulation

accuracy, data integrity, and data

traceability) that we hear from the side of

private sector is an appropriate

denomination. I also reckon that (5)

collaborative and (6) social apply to a

scientific metaverse. For (5) collaborative, I

mean close relationships among the

collaborators during the whole timeframe

of the collaboration. The collaborators will

likely share data and actively engage in

discussions about their projects. In (6)

social, I extend the spectrum of human

interactions via asynchronous (e.g.,

newsfeeds, articles) and real-time media (e.g., talks, posters, conferences) with peers

beyond the frame of collaborators. I also believe communications with the public must be

included in this requirement as press releases, interviews or open classes all falls under the

aforementioned media. Finally, I add (7) open. I say that I “add” it because I have hardly read

papers from the academia or heard the private sector explicitly communicate about this

point. Nevertheless, (7) open(-ness) is gaining more traction every day as a modern science

practice via, for example, the implementation the Findable, Accessible, Interoperable,

Reusable (FAIR) data principles. Therefore, I believe that any metaverse that calls itself

scientific in the future shall be (7) open. Moreover, in a scientific metaverse, I do not think

that (7) open(-ness) can be about data alone. As the Metaverse will indeed reach high levels

of hardware integration due to the spread of laboratory automation (King et al., 2009;

Sparkes et al., 2010; Coutant et al., 2019; Ochiai et al., 2021; Kanda et al., 2022) and digital

twins of laboratories (Zhongcheng et al., 2022; Palmer et al., 2021; Rukangu et al., 2021), a

scientific metaverse will likely integrate equipment in the virtual space. It will become

possible to run experiments in the real world while interacting with virtual elements in a

scientific metaverse. Therefore, I foresee the presence of (7) open equipment in an open

scientific metaverse. As an analogy to FAIR data, FAIR equipment could start with a public

collection of the virtual counterparts of research institutions (Findable). Visitors could take a

virtual tour or watch on-going experiments (Accessible). Visitors could also manipulate the

digital twins of equipment provisioned for educational or research purposes (Interoperable).

Manipulations could be re-run to verify results of protocols or adapted for different

experiments (Reusable). Of course, I also foresee difficulties to implement this level of (7)

open(-ness) because, unlike data produced by experiments, equipment is directly related to

an investment cost. So, I expect high barriers against open equipment, but I still believe it is

feasible as this already happens today for the network of telescopes on the planet. Next, I

Figure 12: Distribution of the center of interests of different
actors of the construction of the Metaverse. The “private
sector 1” represents companies with activities more geared
toward heavy engineering. The “private sector2” is
represented by companies that also sell services. The
turquoise area delimits the concepts which I think apply for a
scientific metaverse.

73

will give more details about requirements (4) engineering-grade and (5) collaborative which I

specifically targeted with Kosmogora + ECellDive.

About (4) engineering-grade | A metaverse is engineering-grade if it guarantees the

integrity of data and simulation of complex tasks where mistakes can be costly at best and

dramatic at worse. First, I believe the same requirements as outside apply regarding

simulations in a metaverse. Specifically, usage of rationally designed models, awareness of

integration errors, and understanding of the frame of validity of a simulation method. I think

an added difficulty in performing simulations integrated in a metaverse is the coupling with

immersive 3D rendering. As I presented for ECellEngine, rendering steps are usually the most

expensive in an update loop. Therefore, care must be taken to not unwillingly make any

concessions about the accuracy of the simulation because the immersive visualization was

being too expensive. A solution to this potential problem is to separate the computation

resources used for the simulation from the resources used for the immersive visualization.

Second, I think there might be issues with preserving the integrity of the mental model of a

user in a scientific or professional metaverse. It might be more relevant in the former case as

knowledge in science is usually considered less certain and the practice of a scientific activity

in a metaverse might add to the complexity because of the sheer size and heterogeneity of

the data sources one will be able to access in a metaverse. Subsequently, I think a scientific

practice in the Metaverse will require counter measures to protect the integrity of the

mental model of scientists about the subject of their investigation. However, I do not doubt

that scientists will eventually adapt to this practice as they familiarize themselves with it and

as the quality of the counter measures rises. Another issue to realize engineering-grade

metaverses is about the traceability of its user’s scientific decisions. As my vision of MBB

includes a high degree of model versions as a result of the exploration of the solution space

of biology, or the optimization of a particular model for its predictive capacities, there is a

need to keep track of the modifications. This is arguably not new as traceability has been

increasingly recognized as a mandatory scientific practice for the last couple of decades to

allow better peer-review and fight against frauds and falsification of data. But the current

scope of the practice enforcing traceability will be too limited in a data intensive

environment such as a metaverse. I identified three components in knowledge tracing. First,

there is the path of states as a whole – is it possible to identify every intermediate state that

led to the current state? I call this “temporal traceability.” In biological knowledge bases, this

is manifested by maintaining the possibility of accessing every version of a file. UniProt (The

UniProt Consortium, 2023) or BioModels (Malik-Sheriff et al., 2020) implement such

traceability. Second, there is the state itself – how is one state different from another? I call

this “differential traceability.” To our knowledge, only UniProt provides access to such

tracing in biology. Outside biology, Git (Chacon and Straub, 2014) is a well-known versioning

system that enables both temporal and differential traceability. Finally, there is the

transition between two states – what were the actions that led to commit to a new state?

Here I do not focus on the analysis a posteriori of the choices (Dou et al., 2009; North et al.,

74

2011) but rather on their manifestation during real-time collaboration. I call this “real-time

traceability.” To our knowledge, no biology databases provide such information. This is to be

expected, as online databases are “static” environments where knowledge is pushed to (and

pulled from) but never created. Text editing platforms, such as Google Documents, are

examples that enable real-time traceability. In my opinion, temporal and differential

traceability could be leveraged with appropriate data files. Of course, such file would include

the authors that contributed to reaching a specific state. They would also enable non-

destructive modifications of the original file in order to facilitate backtracking by simply re-

importing a previous version. At this point, this type of files would not be conceptually much

different from the commit reports in Git. Except that the nature of the objects that might be

tracked in a scientific metaverse is much more diverse that plain text files. Moreover, these

files must be mobilizable in real-time. A trade-off must be found between raw human-

readability, compression (for environmental sustainability), and fast machine readability. The

file format I created for this purpose will be discussed in sections Elements of architecture

page 75 (paragraph “Biological data management by Kosmogora”).

About (5) collaborative | I believe that the modalities of collaboration we are currently

used to compared to the ones we can expect in a scientific metaverse are different enough

to warrant careful consideration. Indeed, even if the recent pandemic has raised our

awareness toward virtual collaboration tools, they are mainly geared toward remote and

asynchronous communications and not real-time. In addition, RT interactions in a virtual

environment allows for richer interactions powered by visual effects that cannot be

reproduced with RT interactions in a real environment. For example, let’s suppose that two

collaborators are seated at a table and having a meeting in the real world. It is very common

that, at some point in the meeting, one of the collaborators will make use of a physical

object to help him convey his thoughts to his interlocutor. The object can be a notebook, a

whiteboard, a tablet, a computer, or yet another possibility; the nature of the object does

not matter. What matters is that there is only one physical instance of the object in the

world at this meeting. Therefore, ignoring potential optic illusions, both collaborators see

the same object and, should it be passed from one to the other, can exclusively interact with

the object in a sequential way. However, as soon as the object share between the

collaborator switches from being physical to virtual (e.g., RT shared editable documents such

a rich text file or a slide presentation) several consequences ensue. First, they may not see

exactly the same object because a collaborator does not have the same visualization

clearance as the other or, simply, network lag and desynchronizations of content distort the

representation of the object. Second, they now have the possibility (supposing the software

allows it) to interact with the object concurrently in real-time. In which case, there is a

possibility that their actions overlap and result in a deterioration of object leading to a

decrease in the quality of their collaboration. In a virtual world of the Metaverse, the risk of

dissonant collaboration necessarily increases because the meeting space itself has been

virtualized. Therefore, the collaborators cannot be certain that they are interacting with who

75

they are supposed to be and that what their interlocutor is sharing with them is the whole

truth. Consequently, a scientific, or any professional metaverse, requires a very high degree

of trust between the parties involved in the collaboration. I do not doubt that scientists will

respect this assumption, but one malicious intent is enough. Putting aside this unpleasant

scenario, I believe the virtualization of a collaboration environment also has much potential

to increase the quality of the collaboration. In fact, assuming that the collaborators behave

professionally and stay mutually aware (Biocca et al., 2003), the virtualization gives the

possibility to greatly accelerate the iterative design cycle of a model by concurrently working

on alternative versions. This is the offspring of the asynchronous branches in Git with a RT

3D immersive virtual world. A scientific metaverse shall give the possibility to users to create

alternatives of models in real-time, pull the work from collaborators to apply the

modifications on their own branch, and push their work to other collaborators for review.

Thus, where UI/UX was only supposed to support a single flux of activity for physical objects

in reality, it shall now accommodate multiple users in a virtual world, leveraging

collaborative work while helping avoid that some disrupt progress by mistake. Finally,

another interesting notion that comes with the Metaverse is the persistence of the virtual

world. Persistency is the property of a virtual object to not reset after users log out. Hence,

users that connect back in the Metaverse will find it identical to when they left unless other

users modified it in the meantime. I believe the quality of long-term collaboration would

increase if a certain level of persistency was applied to the modeler’s activity and decisions.

This would be analog to archeological traces of human activity in the real-world. Of course,

the traces in the virtual world shall not be as complex to interpret in order to effectively

improve the collaboration. Instead, I propose the trace to be limited to major design

decisions. The long-term of such milestones would become a medium for indirect

communication and collaboration.

Elements of architecture

The code base of Kosmogora and ECellDive is also quite large31, I will focus here on aspects

that are fundamentally different or absent from what was discussed for ECellEngine.

Kosmogora-ECellDive communication | ECellDive communicates with Kosmogora through

HTTP to delegate data management and simulation tasks. Kosmogora is implemented in

Python and utilizes the Uvicorn package (Encode, 2022). Every module in ECellDive that

interacts with Kosmogora (i.e., for importing, saving, and simulating) uses an Application

Programming Interface (API) to build Uniform Resource Locators (URLs) for HTTP requests.

The basic structure of the URLs contains the IP address and the port to reach Kosmogora

separated by a colon; then a page of the URL is the name of the query to run in Kosmogora;

31 The project has about 30,000 lines of code (not including documentation) on over 100+ C# scripts, and 50+

other assets including hand-built 3D models, simple textures, icons, shaders, and so on. A detailed description

of the main systems can be found online

(https://ecell.github.io/ECell_Dive/articles/Dev/before_you_start.html).

https://ecell.github.io/ECell_Dive/articles/Dev/before_you_start.html

76

and finally, the last page describes the parameters of the query (if any). In ECellDive v0.11.X-

alpha, users can ask to see the list of models and view files, to import view files, to see the

list of modification files, to save new modification files and to perform the Flux Balance

Analysis (FBA) of a metabolic network model. Although I developed Kosmogora for

ECellDive, it could be replaced with an alternative server that would also provide data

management services for ECellDive. This is a one-to-many map from the virtual world to the

external services in order to arbitrarily grow or vary the execution of features in the virtual

world. Hence, users can connect to any server if it implements the set of HTTP requests

required by a module. The API of a Kosmogora-like server is checked by ECellDive against its

“server action schema” describing the mandatory subsets of commands for each module. If

every command in the subset is present in the list of commands implemented by a

Kosmogora-like server, then the module is unlocked in ECellDive. Furthermore, if users

connected to multiple Kosmogora-like servers implementing the API for a module, then they

can choose which to use. Thanks to API checking system, I have decoupled the RT rendering

system from the hardware and software that manage the data and performs simulations.

This promises flexibility over a few versions of ECellDive and is my answer to the design

question “How should the computer systems be configured such that […] future study

requirements are independent of hardware configuration?” page 52.

Biological data management by Kosmogora | Kosmogora uses classic file formats and

simulation packages from the field of systems biology to avoid creating yet another

formalism. The metabolic pathway model file is an SBML file (Keating et al., 2020) and the

Figure 13: Centralization and management of biological data by Kosmogora Kosmogora manipulates three types of files:
model files, view files, and modification files. Model files are gathered from online databases and the respective IDs are
linked to allow cross referencing. View files are used in ECellDive to represent all or a portion of a model file; one model file
has at least one view file. View files can be generated by external tools such as Cytoscape47. Modification files record
alterations made by users in ECellDive while manipulating the model (e.g., knockout of a reaction in a metabolic network
model). Modification files may have a parent-child relationship. When a child file is imported into ECellDive, all modifications
recorded in the parent are also imported. This lineage of modification files allows tracing the temporal evolution of a model
(“temporal traceability”). Modification files are lists of entries describing the modifications and can be compared with each
other (“differential traceability”). Finally, Kosmogora-like servers must implement a list of functions declared by ECellDive;
the compatibility is checked in the action schema handshake. *As of Kosmogora 1.1.X, the queries do not use the databases’
API but process locally downloaded content.

77

view file is a CyJson file (Shannon et al., 2003). Currently, I use COBRA (Heirendt et al., 2019)

in Kosmogora to run simulations. Kosmogora uses modification files to alter model files, and

view files to project a part or all the content of a model file. A model file can exist with zero

or more modification files (in Figure 13, model (a) has no associated modification files,

model (b) has two, and (c) has one). Modification files are YAML files with fields declaring

the user saving the file (author), date, root model, and a list of modifications. They can

optionally include a reference to a parent modification file (in Figure 13, modification files of

model (b) have such a relationship). Wherever a parent is referenced, the new modification

file appends all the modifications stored in the parent file upon loading in ECellDive. One

view file is the interface to one model file. A model file has one or more view files (in Figure

13, model file (a) and (b) have only one matching view file while (c) has two view files). The

format of view files can vary to adapt to the most popular format of each research

community. A view file must however store enough information to instantiate the Game

Objects (GOs) that will embody the elements of the model in ECellDive. For example, if a

model file describes a graph (e.g., metabolic network), then the view file requires

information about the positions of the nodes and the sources and targets of the edges. A

view file may also include additional information such as labels and metadata of the objects

that are present in the model. However, not enforcing a general format for the view files has

implications. Indeed, for any new view file format added to Kosmogora, a matching module

must be added in ECellDive to correctly parse it. Modification files are independent of view

files which are only spatial projections of model files, the core information is the model.

Model views may react to modification files only if they both contain entries matching the

same element in the model file. If a modification file contains modifications about parts of a

model that are currently not included in the view file, they will still be accounted for. For

example, if a model file contains three reactions 𝑅1, 𝑅2, 𝑅3 and the view file only includes

information about 𝑅1 and 𝑅3, only these two reactions will be displayed in ECellDive. But, if

the user applies a modification file which indicates to knockout 𝑅2, then this modification is

still applied even if it is invisible with the current loaded view file. Conflicts between

modification files are avoided by always giving priority to the last loaded file. Indeed, I

consider that any modification in the 𝑛-𝑡ℎ loaded file and targeting an element 𝑒 of a model

will override any modification that also targeted 𝑒 and when one of the 𝑛 − 1 previous files

were loaded. Similarly, when users build genealogies of modification files with the parent—

child system, the parent is always the last file loaded. Hence, any modification in the 𝑛 − 1

previous modification files that are not shared with the 𝑛-𝑡ℎ file is considered “new” and will

be explicitly recorded when saving the (𝑛 + 1)-𝑡ℎ modification file.

Working with the game loop in Unity | The VR scenes of ECellDive are managed by Unity’s

GL. The behavior of a GO is defined by the combination of components attached to it. Unity

has prebuilt components to cover classic aspects of a game such as user inputs, physics,

graphics, etc. However, programmers can also implement custom components using C#

scripts. A component is created by defining a class deriving from MonoBehaviour that is part

78

of Unity’s code base. I wrote dozens of custom components for ECellDive (refer to the online

documentation for a full description). Finally, GOs can have parent—child relationships to

further increase the complexity of the behavior of a parent GO. The data and action modules

in ECellDive are GOs to which I added components to customize their behavior accordingly.

Some of the components are part of Unity’s XR package, while others are custom-written C#

scripts. These scripts implement features related to the user interface (e.g., highlight, grab,

move) as well as the core features of the modules. I wrote two C# classes to facilitate the

implementation of new features in ECellDive that are called modules (see Table 4, page 84,

for more details). The first is Module, the second is GameNetModule. The former is used when a

module should only be visible by the user who added it in the collaborative virtual

environment, the latter is used to share the module over the multiplayer network with all

connected collaborators. For example, the server action modules (see Figure 14) in ECellDive

to communicate with Kosmogora inherit from Module because none of them require

simultaneous access or interaction. Conversely, a data module (see Figure 14) is shared

among all users, so it inherits from GameNetModule. The metabolic pathway data module

implemented for this paper uses the default layout of the metabolic network based on the

(X, Y) coordinates of the nodes (i.e. metabolites) stored in a CyJson file inherited from the

desktop software Cytoscape (Shannon et al., 2003). Since every user must be able to dive

into this CyJson data, the CyJsonModule inherits from GameNetModule.

79

ECellDive virtual space division in dive scenes | Dive Scenes are a concept representing a

portion of space in which users can navigate, add modules, interact with data, and

instantiate portals to go to other dive scenes (see Figure 14). They protect the integrity of

the mental model of the users by giving them an abstract unit to delimit the seemingly

infinite space of a virtual environment. In Unity, a scene is an asset containing a hierarchy of

GOs that make up the content of a virtual space. The hierarchy of GOs defines the logic

driving anything that is happening in the space, including user's movement or interaction.

Despite the apparently good match between our concept of Dive Scene and a Unity Scene

there are constraints in how scenes are managed in Unity. For one, as far as I could tell,

scenes assets are built in the application (and it's reasonable). This implies that you can only

add scenes in the Editor and that you must know what the Unity Scenes will contain in

advance which is incompatible with our vision of dynamic Dive Scene when users dive into

newly added data. So, in fact, in ECellDive, players diving from one scene to another never

leave the Main Unity Scene. Our DiveScenesManager keeps track of which GO of the Unity

Scene belongs to which Dive Scene and, when a user dives, the manager hides the GOs of the

previous Dive Scene and shows the GOs of the new Dive Scene. Fellow divers on the

Figure 14: High-level interaction schemes in ECellDive between users and 3D objects in dive scenes. Data files, portals, data,
interactions with the server, and interactions with data are based on tangible 3D objects called modules. In contrast to
windows on a screen, 3D objects in the virtual world of a dive scene participate in the feeling of immersion. Those can also
appear as “landmarks” in the 3D world. That is, data in the dive scene are physically more prominent than the rest and can
be clearly identifiable by users similar to a mountain on the horizon.

80

multiplayer network are also hidden and showed depending on the Dive Scene they are

currently exploring.

Sharing large biological data over the multiplayer network in ECellDive | I used Unity’s

package Netcode for GameObjects (Unity Technologies, 2022a) to implement a host/client

architecture in which a user, the host, runs the server that will synchronize the virtual world

for all other connected collaborators (the clients). This network solution does not require

additional hardware because the instance of the server runs directly on the device of the

host. However, as there is no specialized hardware, the number of synchronized clients is

limited by the computational power and network bandwidth of the host. ECellDive runs on

Meta Quest 2, and it is recommended to not exceed four users to avoid latency and ensure a

good experience in a dive scene. In this framework, a user creates an instance of a

collaboration session at a specific IP address, and clients (collaborators) can join the session.

In a work session, clients can import, edit, and save data with the link between Kosmogora

and ECellDive. Future metaverses will have a much larger network infrastructure than

ECellDive with dedicated servers to oversee the real-time collaboration of more than four

users. For example, current multiplayer video games can manage real-time lobbies of several

Figure 15: Simplified sequence diagram for data import in the Client/Host work session of ECellDive. A Client in the work
session interacts with a server action module targeting a data storage to request for data. Once the data is received, it
triggers a cascade of calls in the work session to create a 3D object encapsulating the data (data module) for all clients in
the session. After every client confirms that it received all the data, any client can dive into the data module to visualize its
content and further interact with it.

81

dozens of users without latency issues. In single-player mode, the user is their own host,

while in multiplayer mode, a player can host others over a local area network. Connection

over the internet with the host/client architecture is theoretically possible but requires every

host to configure port forwarding on their router. This can prove complicated if the host is

within the network of a laboratory where the router’s configuration is probably under strict

management. Connection of a client to a host is protected by a password set by the host.

When a client connects, he will exchange data with the server (the host) to synchronize the

state of its dive scene. This operation is simplified to some extended thanks to the API of

Netcode for GameObject but I encountered difficulties when sharing large data files (e.g.

models and views). Indeed, Netcode for GameObjects was not designed with this use case in

mind. Rather, it is meant to support multiplayer games where small communications

between the server and the clients are the norm. This is an issue in our case because I need

to synchronize large data files: when a client decides to import a module, the content of that

module must be shared to all other clients. A simplified version of the sharing sequence

between users is depicted in Figure 15. A client contacts Kosmogora through a server action

module (left half of the figure); then, when the client receives the data, it is automatically

forwarded to the server that will broadcast it to the other users connected to the session

(right half of the figure). When the data is large, the “Broadcast Data Server RPC” handles

the partitioning into smaller chunks and sends one per frame. Then, the chunks are re-

assembled on the side of the receiving clients.

Satisfying Soft Real-Time Systems Requirements to Benefit Model-Based

Biology

This section reports on the efforts to implement the user requirements discussed in the

previous sections and their effects on practicing MBB.

User experience for iterative biological model design

I implemented a GUI editor for ECellEngine to effortlessly manipulate the RT simulation

engine before and during simulations. I designed it to report useful information in real-time

to help modelers take decisions regarding the structure of the model. The editor notably

includes a graphic scripting interface inspired by the node-based scripting interfaces in GEs32.

Nodes in this interface can encapsulate biological concepts, code routines or visualization

components to directly modify or probe the simulation (see the nodes in Figure 16, point 4).

32 It is also known under the term of flow-based programming.

82

Figure 16: Screenshot of the editor of ECellEngine. At point 1 is a hierarchy exploratory of the model data loaded and the
other nodes in the simulation space. Point 2 is a text console for message outputs. Point 3 are the controls to launch, pause,
stop the simulation, and manipulate the time axis. Point 4 is the node-based scripting language to edit simulations and
model.

The sections COPASI vs. ECellEngine page 93, and CellDesigner vs. ECellEngine page 93

give some elements of comparison with already existing well-known GUI in systems biology.

In ECellDive, iterative model design benefits from the support for real-time and

asynchronous collaboration inspired from the Metaverse paradigm. The virtualization of the

collaboration environment and the VR immersion gives all collaborators the opportunity to

concurrently engage in the construction of a model while still retaining a sense of presence

of the other collaborators due to the use of avatars. In addition, as the modification files are

stored on the server and not locally on one user’s device, anyone can asynchronously access

and further build upon the modifications or backtrack at any time. Finally, it is possible to

apply multiple modification files. This last point is similar to layers in image editing software;

a modification file is a layer that is applied onto the original data and layers can be combined

thus allowing mixing of ideas when testing variations of a model. This solution is possibly not

as powerful as the RT branch pull/push collaboration method I mentioned in the paragraph

“About (5) collaborative” but is still versatile enough to distribute and integrate work among

collaborators.

Heterogeneity | My approach to handle heterogeneity in each software was to offer a set of

built-in representations of data, biological concepts, and functions that modelers could add

to a simulation space and compose together to modify or probe the content of a model.

Table 3 gives the list of the nodes that can be used in the scripting interface of the editor of

83

Category Node Description

Asset Equation Gives access to the root of the tree encoding an equation

of a model.

Model Encapsulates all equations, parameters, reaction, and

species encoded in a SBML model.

Parameter Gives access to the float value of a parameter of a model.

Reaction Gives access to the reactants and products of a reaction of

a model.

Species Gives access to the quantity of a species of a model.

Value Float Defines an arbitrary float.

Event Modify Value in
DataState

Events to change a float value in the DataState is a

condition is satisfied.

Trigger Watch conditions and propagates the result.

Math Arithmetic

operation

Performs addition, subtraction, multiplication, or division

on a pair of floats.

Logic Operation Performs AND, OR on a pair of Booleans.

Plot Line Plot Plots data streams as lines. Requires a unique stream for

the X axis. Multiple streams can be received for the Y axis.

Solver Gillespie Next

Reaction Method

The corresponding algorithm. It receives a model as input.

ODE Explicit Runge-

Kutta

Implements a DOPRI5(4). It receives a model as input.

Time Simulation Time The data structure used to advance the time in the

simulation space. It might be different from the time of the

solvers.

 ECellEngine, and Table 4 gives the list of the modules that can be added to the virtual world

in ECellDive. The category “Asset” for the editor of ECellEngine, are the nodes giving access

to the corresponding data structures on the side of the simulation engine. The nodes in this

category are slightly biased toward the SBML format due to its popularity in systems biology,

but this is not a fatality. These nodes allow to break free from the classic table views in

mainstream software. Modelers can compose the asset nodes with others from the

categories “Event”, “Maths”, or “Plot”. The purpose of these compositions is to

automatically detect state changes in the model, to react to them, and to visualize them. The

Table 3: Nodes available in the scripting interface of the editor of ECellEngine

84

Type Name Description

Data Module CyJson Graph Encapsulate the view file of a graph using

the format CyJson from the software

Cytoscape.

Local Action Module Dive Travel Map A graph representing how a diver

navigated in the dive scenes.

Group By Automatically make colored groups

according to metadata of the elements

loaded in the scene.

Server Action

Module

API Checker Checks that a Kosmogora-like server

implements the HTTP API requested for

ever server action modules in ECellDive.

Flux Balance Analysis Requests an FBA for the model currently

loaded in the dive scene.

Modification Handler Imports and saves modification files

associated to a model loaded in one of the

dive scenes.

Reaction Info Query Queries reaction information from remote

database.

Remote Importer Import view files stored in Kosmogora.

Table 4: Modules available in ECellDive.

modules in ECellDive were not built with composition in mind. Instead, I focused on the

benefits of a 3D immersive virtual world to make them mimic tangible 3D objects that I are

used to manipulate in reality. In UI/UX research, the notion of tangible UI (Ishii and Ullmer,

1997) describes objects in reality that may modify the virtual world. In VR, tangible UI is

approached by associating 3D shapes to functions and haptic feedback in the controllers. 3D

objects give a sense of presence, which I believe is better adapted to biologists because they

are used to working with physical tools in laboratories. Therefore, the heterogeneity is dealt

with by adding tools in the virtual world that correspond to a set of functions.

85

Integrity | The architecture of ECellEngine or Kosmogora + ECellDive was adapted in order to

guarantee the integrity of data and simulations. First, I decoupled the simulation loops from

the rendering loops to reduce the computational impact of the latter on the accuracy of the

former. Second, the format of the modification files implemented in Kosmogora + ECellDive

participates to maintaining the integrity of the Metaverse. The modification files allow

storing information about a model while being disjoint of the original model file so, there is

no risk to corrupt it. Users are then free to try many modifications and to build many

alternatives of the model in a non-destructive way. Third, ECellDive implements protections

for the integrity of the mental model of biologists in a metaverse of biology. Knowledge in

biology is indeed very diverse and spread across subfields targeting different scales of life.

With ecosystems at the top within the order of meters, and metabolites at the bottom

within the order of nanometers, it is hardly possible to be up to date on every subjects. To

answer issue, I simply followed this scale hierarchy to navigate biological data and

knowledge. In ECellDive, I project the physical targets of biology to virtual levels that I call

“dive scenes.” This does not match the way data are stored within Kosmogora or ECellDive

but rather, dive scenes are concepts to help biologists build a mental model of the biological

Figure 17: Diving between scenes. a) Using the scale hierarchy of biological subfields for the mental model of the
architecture of data and knowledge in a metaverse of systems biology. This aims to help the user understand where they
stand in the metaverse of biology similarly to a world map. b) Zoom of the relationship between data centralization and
simulation in Kosmogora and its access in ECellDive in conjunction with the user’s movement between dive scenes. The data
imported into the dive scenes make them fit either the tissue or cell scale.

86

landscape they are exploring. There can be as many dive scenes as needed, and they are not

preset for ecosystems or metabolites; a dive scene becomes what users import in it. Figure

17.a shows three examples of phenomena at the scales of cellular biology (cell division,

signaling, metabolism), which could be attributed to three independent dive scenes to

separate modeling approaches (3D mesh model, logic model, and network model). The

action of moving from one dive scene to another is a “dive”. This allows for a swift change of

scales to facilitate knowledge connections between the different subfields of biology. Users

can then access knowledge outside of their area of expertise.

This is illustrated in Figure 17.b where a user is moving from a dive scene containing data

and a model about a tissue, to another dive scene containing data and a model about a cell.

All data transit through Kosmogora and can originate from experiments or simulation results

hosted on online databases. I implemented a “Dive Travel Map” in ECellDive to display the

dive scenes a user has visited, and in which order much like in Figure 17.a. This travel map

can help users build and maintain their mental model of the biological knowledge they are

exploring. In the context of MBB, I believe these solutions help modelers understand where

their models stand in the landscape of biological knowledge even if they are not directly

relying on experiment data.

Traceability | I provided support in Kosmogora + ECellDive for all three types of traceability

mandatory for a scientific metaverse. Temporal and differential traceability are enabled in

Kosmogora thanks to the fields recording authorship, date, and lineage in the YAML. In

addition, as modifications are stored in a list, it is easy to compare multiple modification

files; thus, leveraging differential traceability. RT traceability is enabled thanks to the RT

immersive collaboration in ECellDive. Compared to the other two traceability types, there is

not data stored on Kosmogora or ECellDive for RT traceability. Rather, real-time traceability

arises as soon as two or more users are following each other’s actions and is contingent to

mutual awareness (Biocca et al., 2003). It follows from their discussions, actions, and

decisions about the data. In ECellDive, real-time traceability is made possible by the fact that

a user can see others’ movements; all users can see others interact with data modules; all

users can see others make groups of modules.

Interactive simulations

ECellEngine and ECellDive are both running within RT loops with small deadlines, henceforth

producing interactive simulation spaces. ECellEngine includes RT versions of the classic

numeric solvers for ODEs and SSs. It is then possible to feed in the system of rate functions

of a biological model and to simulate it using any of these two schemes. Adding model

definitions and choosing which solver to user to simulate the models is made as simple as

connecting two nodes in the scripting interface of the editor. The content of a model can

also be unfolded to have access to low-level variables, especially their quantities, which can

be further connected with mathematic operation nodes, plotting nodes or event nodes. This

versatility facilitates the manipulation of the structure of the model as I was initially aiming

for in the context of MBB. As discussed in the section on user requirements, ECellEngine also

87

allows to manipulate the time axis to the extent of playing, pausing, resuming, and stopping

the simulation. Finally, nodes in the scripting interface can be added and removed even

when the simulation is running to avoid having to stop the simulation every time modelers

wish to edit the model.

In ECellDive, the interactivity with the 3D virtual world is guaranteed by the fact that I used

Unity to develop it. The interactivity of the biological simulation is more complicated to

achieve however because, as I decided to use external computation resources to perform

the simulation, there always is a bit of latency ensued by the network communications with

Kosmogora. Currently, the heavier task of performing a FBA on a network of a couple

hundred reaction takes a bit less than one second to be visualized in ECellDive. I consider this

latency acceptable for now and I know there is plenty of room for optimization if it becomes

an issue in the future.

Integrated analysis

In ECellEngine, immediate analysis is powered by the trigger and event nodes which allow to

automatize the detection of relevant state changes in the model. Numeric feedback is

provided thanks to RT plots updated with the data provided by the modeler. RT plots are

embedded in nodes in the scripting interface of the editor and can easily be set up by

connecting a stream of data for the X and Y axis. Currently ECellEngine only uses the line plot

of the library implot33 compatible with Dear ImGui. However, I carefully laid the groundwork

to be able to include more graphs in ulterior versions of the editor. Thanks to these

integrated analysis tools, modelers do not need to export the simulation’s output to start

learning about the behavior of their models. This also participates in increasing the speed of

model design.

In ECellDive, the VR immersion pushes the boundary of integrated analysis a step further.

Virtual environments of metaverses are infinite and, regardless of the size of the real-world

room the user is in, he can cross kilometers virtually without moving physically. Although

this “infiniteness” is similar to the panning of a 2D canvas on a monitor such as for the

scripting interface in the editor of ECellEngine, the “infiniteness” of a VR environment is

more versatile. For example, users are not constrained to a third-person view when looking

at data encapsulated in a plot anymore. Instead, data can be mapped in the whole virtual

environments to build a landscape users can explore in first-person view. In a “landscape of

data” extrema would appear as “landmarks” similar to mountains on the horizon (see in

Figure 14, page 79).

For both the editor of ECellEngine and ECellDive, the explicit presence of a rendering step in

the RT loop encourages to use animations. This is especially true for ECellDive since it was

implemented with Unity and any GE provide some support for RT visual effects. Thus, virtual

animations are customary in 3D virtual worlds to help users and to add contextual

33 Available at: https://github.com/epezent/implot

https://github.com/epezent/implot

88

information. Continuing with the metaphor of a landscape, exploration can be tedious

without a map or a compass. In the case of a “landscape of data” animated virtual objects

(i.e., compass) would guide users toward noteworthy regions of the landscape. The core

concepts for efficient data visualization (e.g., colors, shape, size, layout, …) on a PC monitor

are still valid in a virtual world but we gain degrees of freedom due to the infinite space, the

third dimension, and the real-time component. In ECellDive, animations are used as a proxy

to numeric values corresponding to fluxes (i.e., after an FBA).

Soft Real-Time Systems in Action for Model-Based Biology

This section contains user examples for both ECellEngine and Kosmogora + ECellDive. For the

former, I used a published model to show how it can be explored and modified with the

node-based scripting API. In the latter, I used a model of the central metabolism of

Escherichia coli to demonstrate the usage of the FBA module.

A published model with ECellEngine

The model I selected for this demonstration is an ODE encoding of the regulation by cyclin-

dependent protein kinases of the division cycle of fission yeast (Novak et al., 2001). The

model consists in a set of nine ODEs, six assignment rules, ten species, 52 parameters, to

represent 19 reactions. This is a fairly small model which still can mobilizes most data

structures and features currently implemented in ECellEngine and its editor.

Events are not yet automatically extracted from the SBML files in ECellEngine. The reason

that an event in SBML is a couple of a passing condition and the effects that should follow

once the condition is verified. This effectively translates as a set of nodes in the node-based

scripting language of ECellEngine. The graph and the nodes are indeed an editor-only

construct and not an engine data structure. Currently (and I don’t see reasons to change in

the near future), a node in the editor corresponds to one data structure in the engine.

Hence, if there are no data structure in the engine side to encapsulate all the data of a

component of a model, I need to create a new one. Creating new data structures is

fortunately not an issue in the current architecture—I did my best to make it that way—but I

have to be careful of which data structures I decide to add to not bloat the scripting API and

complexify the maintenance of the code base. In the current case, I prefer to avoid having

one data structure that specifically represents SBML encodings of events. Instead, we can

manage to translate many events from various model files in biology if we implement two

nodes, one for the condition checking, and one for the effects to apply. The inconvenient of

that solution is that there may be uncertainties regarding how the detection of the event

and the application of the effects are connected (see in Figure 18.a that the Trigger node has

several possible outputs. So, in the current implementation, events must be added to the

simulation space manually after importing a model in ECellEngine.

89

The two events in the model are defined as follows 𝑖𝑓 𝑓𝑙𝑎𝑔𝑀𝑃𝐹 == 1 && 𝑀𝑃𝐹 ≤

0.1, 𝑡ℎ𝑒𝑛 {𝐶𝑒𝑙𝑙𝑀𝑎𝑠𝑠 ⟵
𝐶𝑒𝑙𝑙𝑀𝑎𝑠𝑠

2
 , 𝑓𝑙𝑎𝑔𝑀𝑃𝐹 ← 0 } (𝐸1) and the second event is 𝑖𝑓 𝑀𝑃𝐹 >

0.1, 𝑡ℎ𝑒𝑛 {𝑓𝑙𝑎𝑔𝑀𝑃𝐹 ⟵ 1} (𝐸2). Even if I wrote the events using the 𝑖𝑓/𝑡ℎ𝑒𝑛 syntax, it is

not to be interpreted that the events are triggered as long as the conditions are true. In fact,

these events should trigger a reaction only for the one step the condition became true. This

corresponds in ECellEngine to using the onTriggerEnter as the output of the Trigger node. In

the original model the usage of the parameter 𝑓𝑙𝑎𝑔𝑀𝑃𝐹 is a modeling trick to protect from

triggering (𝐸1) very early in the simulation (within the first 2 min). This is indeed not

something we are looking for with the initial conditions [𝑀𝑃𝐹]𝑡=0 = 0.2 and

𝐶𝑒𝑙𝑙𝑀𝑎𝑠𝑠𝑡=0 = 1. If the authors didn’t make use of the 𝑓𝑙𝑎𝑔𝑀𝑃𝐹𝑡=0 = 0, the value of

𝐶𝑒𝑙𝑙𝑀𝑎𝑠𝑠 would be set to 0.5 very early on in the simulation. This does not seem consistent

in the biological context of a fission yeast. It is indeed more natural to consider that

Figure 18: A model of the division cycle of fission yeast (Novak et al., 2001) in ECellEngine. a) Focus on the construction of
the event defined in the model using the node-based scripting interface. b) Focus on the visualization of the outputs of the
simulation using the node-based scripting interface.

90

𝐶𝑒𝑙𝑙𝑀𝑎𝑠𝑠 = 1 for one yeast cell and 𝐶𝑒𝑙𝑙𝑀𝑎𝑠𝑠 = 2 for 2 yeasts cell, and not 0.5 and 1

respectively. So, in essence, 𝑓𝑙𝑎𝑔𝑀𝑃𝐹 is only useful for the very beginning of the simulation.

In ECellEngine, however, I could ignore 𝑓𝑙𝑎𝑔𝑀𝑃𝐹 by simply connecting the Trigger node to

the ModifyDataStateValue event shortly after [𝑀𝑃𝐹]𝑡 has decreased below the threshold

0.1. This is possible only because I am using an RT simulation environment: everything does

not have to be set and perfect at the beginning. I agree, however, that it might not appear

rigorous enough for a scientific experiment. But, even though the feature is not yet

implemented in ECellDive, this kind of actions will be recorded in the scenario data structure

I mentioned in the section User requirements: build, play, learn page 64 (in “Learn”) to not

forget it and so that anyone can replay the exact procedure. The ModifyDataStateValue is

responsible for triggering the division of 𝐶𝑒𝑙𝑙𝑀𝑎𝑠𝑠 by two. In input, it takes the signal of the

Trigger; but also, the result of the actual arithmetic operation 0.5 ∗ 𝐶𝑒𝑙𝑙𝑀𝑎𝑠𝑠. This value is

then forwarded to the 𝐶𝑒𝑙𝑙𝑀𝑎𝑠𝑠 Species data structure in the simulation engine via the

connection to the input pin of the node.

As it can be observed in the Figure 19.a, there are multiple nodes that represent the value of

𝐶𝑒𝑙𝑙𝑀𝑎𝑠𝑠 (top left and far right). In fact, the output of the ModifyDataStateValue event

node could have been connected to the input of the Species 𝐶𝑒𝑙𝑙𝑀𝑎𝑠𝑠 node on the left side

of the graph. But it would have lacked visibility. Figure 19.b shows the part of the graph I

added to visualize the results of the simulation. In particular, the line plot on the bottom

right corner shows [𝐶𝑒𝑙𝑙𝑀𝑎𝑠𝑠]𝑡 in green, the [𝑀𝑃𝐹]𝑡, and another variable, [𝐶𝐷𝐶13𝑇]𝑡,

that I added by curiosity. The straight line for the early time of [𝐶𝑒𝑙𝑙𝑀𝑎𝑠𝑠]𝑡 between 𝑡 =

0 𝑚𝑖𝑛 and 𝑡 ~50 𝑚𝑖𝑛 is an artifact due to the addition of [𝐶𝐷𝐶13𝑇]𝑡 to the plot when the

simulation had already been running for some time. Also, the original unit the time variable

in the model is minutes, but I accelerated the simulation such that 1𝑠𝑒𝑐 of real-time

corresponds to 1𝑚𝑖𝑛 of simulation of the system to avoid having to wait the

Finally, I plotted the evolution of the variable integration time step size on the line plot on in

the top right corner of Figure 19.b. This is a demonstration of the monitoring of the quality

of the simulation. We can observe on the plot that the integration step size (i.e. Delta Time

from the ODE solver node) is the smallest when there are sharp variations in the ODE system

(about every 140 min), which is good news because it means the integration system “is

taking more precautions in complicated parts of the simulation” (of course, this is just an

image).

A flux balance analysis with Kosmogora + ECellDive

I used a published model (King et al., 2015; Rowe et al., 2018) (iJO1366) to perform an FBA

(Varma and Palsson, 1994; Orth et al., 2010; Edwards et al., 2002), a common method in

systems biology to analyze the theoretical throughput of metabolic pathways that are in a

steady-state. I retrieved the central metabolism of Escherichia coli downloaded from Escher

(King et al., 2015; Rowe et al., 2018) and stored it in Kosmogora. From there, I imported it

into ECellDive as a data module and dived into it (see Figure 19.a).

91

Figure 19: Illustration of the main steps of a flux balance analysis in ECellDive on model iJO1366. a) The portal used to dive
into the representation of iJO1366 encoded in the view file b) A high view of the pathway after color customization of the
edges to group them according to the main subsystems of this metabolism. c) We performed a Flux Balance Analysis (FBA);
the minimal flux value is -45 and the maximal value is +55. Colors interpolate between blue for low values and red for high

92

In this example, two dive scenes are defined by the root space where the user is dropped

when launching ECellDive, and the scene defined by the metabolic pathway.

By default, the metabolic pathway is mapped on a plane. Biologists are familiar with seeing

metabolic maps in 2D, and typically newcomers expect the TCA cycle to appear as a circle

because that is how it is taught in textbooks. Familiarity with the visualization scheme is an

important consideration that must be considered to ease the transition between traditional

desktop applications and virtual worlds. Once users are ready, local action modules can

customize the layout of the imported biological system.

For example, when the groupby action module is added to the dive scene, it automatically

detects the parts of the model that can be grouped according to their metadata. For a

metabolic pathway, the objects suitable for automatic grouping are the metabolites and the

reactions. Users can then group edges to highlight functional subsystems of the pathway

(e.g., TCA cycle in red in Figure 19.b) and nodes to understand their positions in cellular

compartments (e.g., cytosol).

Users can also interact with an action module to perform FBA remotely on Kosmogora. After

the FBA is processed by the server, the fluxes values are mapped to the color or width of the

edges of the metabolic pathway (see Figure 19.c & Figure 19.d).

This is similar to the conventional visualization in applications running on a computer (King

et al., 2015; Rowe et al., 2018), but large flux values are now akin to mountains on the

horizon due to the immersion provided by a VR device; this illustrates the concept of

“landmarks.” sers can clamp the width of edges to balance between spotting individual

fluxes and global readability. Flux values can also be visualized dynamically due to animated

particles (see Figure 19.e), which are instantiated on edges in proportion to each flux value

to map the flow rate of particles to the quantity of metabolites involved in the reaction

symbolized by an edge. Finally, the numerical value of the flux can be obtained by opening

the information panel attached to every edge. Users can interact with reactions to simulate

knockout experiments, which can influence the FBA and reroutes the fluxes (see Figure 19.e

& Figure 19.f).

Comparisons

The real-time property of ECellEngine and Kosmogora + ECellDive makes them intrinsically

different from mainstream modelling software in biology so it is hard to fairly compare them

together. The examples of software in Table 5 and Table 6 do overlap on the basis of the

application targets, but the practices are radically different. It is probably more appropriate

values. Most of fluxes have value 0 (hence, the pink). d) Manipulating the width of the edges is much more efficient than
relying on colors only. VR immersion enables the concept of “landmark” facilitating the spotting extrema as we would for
mountains in nature: the red fluxes are clearly visible. e) Zoom on a flux; the D-glucose transport through the periplasm. The
FBA gave it a value of 10. The white points on the images are animated particles which debit is proportional to the value of
the flux. f) We knocked out the D-glucose transporter and the flux was redirected. g) An overview of iJO1366’s network
made in Cytoscape (Shannon et al., 2003). This is not available in ECellDive. It is provided here only to help locate where the
user and its field of view in panels a-d. *Colors for the groups were taken to match the situation in panel b), the color
conflicts were a choice of the user at the time.

93

to think of my RT systems as a parallel solution. Be that as it may, I give some elements of

comparison in the next four sections.

COPASI vs. ECellEngine

COPASI is very well established in the community of systems biology to simulate and edit

models of bio-chemical networks. It is currently in its fourth major version and provides

reliable services for time course simulations, parameter optimization, sensitivity analysis,

model building, plotting, and so on. Supplementary Figure A2.2 gives two screenshots of the

GUI showing the interface to setup a plot and perform a simulation of the cell division cycle

model of fission yeast (Novak et al., 2001) . The model is identical to the one used previously

in section A published model with ECellEngine to illustrate the node-based scripting

interface of ECellEngine on a real case. Clearly, ECellEngine’s approach to interacting with

the model has nothing to do with the tabular view of COPASI. In the latter, it takes several

clicks to reach the plot panel, add new plots, new curves, select when we want to draw it,

decide of the X and Y axis, validate the selection then, finally, go back on the tab to run the

simulation. On the contrary it is a matter of few click & drag in ECellEngine. Moreover, it is

disturbing that one must leave the options of the simulation to edit the options for plotting.

In my understanding, COPASI is very good when it comes to having the best of individual

methods to solve modeling problems one-by-one. The goal is not to integrate seamlessly the

pipeline but to regroup under a unique platform a tool suite for many frequently used

modeling techniques. Given that the trend towards larger biological models requiring the

integration of multi-scale or multi-type simulation techniques, it is possible the popularity of

COPASI will progressively decrease in the future.

CellDesigner vs. ECellEngine

CellDesigner overlaps with ECellEngine as it also uses visual elements to support the

construction and editing of biological systems. The intention of CellDesigner is to consider

the biological systems as engineering processes which can be accurately described using the

same process diagrams as for engineering tasks. The result of this approach is a software

where designers can build network schematics representing a cellular system.

Supplementary Figure A2.2.a gives a screenshot of the automatically generated schematics

after I opened the cell division cycle model of fission yeast (Novak et al., 2001) that I used

previously. CellDesigner is an excellent tool to match the mental model of modelers to a

machine-readable file format after translation by CellDesigner. The tool also allows to run

simulation by connecting to one of three simulation backends (including a wrap

94

Name Software Type Field/Subject Description

CellDesigner
(Kitano et al.,

2005)

GUI Cellular Biology

Modeling

Generating & modifying biological

models’ interactive schemas

COPASI (Hoops

et al., 2006)
API + GUI Bio-Chemical

Networks

Many methods to solve problems

associated with bio-chemical

networks (simulation, parameter

optimization, …)

E-Cell Project
(Takahashi,

Sakurada, et al.,

2003; Kaizu et al.,

2020)

API Multi-Scale

Modeling

A software interface for multi-

simulations (rule-based modeling,

2D/3D particle simulations, …)

Vivarium
(Agmon et al.,

2022)

API Multi-Scale

Modeling

A software interface for multi-

simulations (constraint-based,

bio-chemical reactions, solid-

body physics, …)

SOFA (Faure et

al., 2012)
API + GUI Physics-Based

Simulation

Interactive physics simulations of

3D rendered models

 of COPASI, see Supplementary Figure A2.2.b). However, the modeling approach in

CellDesigner is strictly descriptive. It differs from ECellEngine in that it is not a scripting

language, and you cannot mix the model description with logic gates, code routines, or

dynamic visualization.

Nanome vs. Kosmogora + ECellDive

Nanome is VR collaborative software to study molecular dynamics, protein-ligand

interactions and dockings. It is certainly more advanced than ECellDive from an aesthetic

perspective and the RT human interactions in a virtual workroom are more elaborated

thanks to better avatars and gestures. However, my understanding of this software is that its

outreach of functions and domain of application makes it a translation of what equivalent

standalone software on PC. Of course, Nanome greatly benefit from VR and immersion for

the visualization molecule interactions compared to a 2D monitor. But there does not seem

to be a reflection about what it implies to practice this kind of activity in the greater frame of

the Metaverse. That is why I have, along other examples of software listed in Table 6,

labelled it as non-Metaverse-ready. Given that the Metaverse is still only a future construct, I

qualify a software to be metaverse-ready if it implements features to account for some of

the requirements of the Metaverse such as I discussed in the paragraph “Proposition of 7

requirements for a scientific metaverse”. In that respect my couple of software Kosmogora +

ECellDive is closer Nvidia’s Omniverse.

Table 5: Software whose objectives or technologies overlap with ECellEngine.

95

Name Actor Platform Field/Subject Metaverse

-Ready1

Description

Nanome
(Nanome Inc,
2023)

Industry VR Biology,

Chemistry,

Pharmaceutics

No

A collaborative tool for

molecular design and analysis

VR-Omics
(Bienroth et al.,
2023;
Ramialison et
al., 2023)

Academia Desktop 2D &

3D + VR

Omics data

visualization

Desktop to VR pipeline

integration for omics data

processing and visualization

Molecular
Rift (Norrby

et al., 2015)

Academia VR Biology,

Chemistry,

Pharmaceutics

A tool for molecular structure

visualization

Cytoscape

(Shannon et
al., 2003)

Academia Desktop 2D &

3D (via plug-

in)

Network Data

(Biology, Social

Sciences, …)

Popular tool for display and

analysis of network data

Graphia

(Freeman et
al., 2022)

Academia Desktop 2D &

3D

Network Data

(Biology, Agritech,

Social Networks,

…)

Tool for display and analysis of

large-scale network data

SpaceTime

(Xia et al.,
2018)

Academia VR Real-time

collaboration

Research project for new

collaboration schemes and

techniques in real-time VR

DataHop

(Hayatpur et
al., 2020)

Academia VR Data visualization Research project for immersed

data visualization where plots

are laid out according to the

analysis steps of the user

NVIDIA
Omniverse

(NVIDIA, 2022)

Industry Desktop & XR Virtual world

creation

Yes

Large development tool suite

for engineering-grade digital

twins (industrial and scientific)

and metaverse applications

Volvo
Truck R&D

(Horton and
Wurster, 2022)

Industry Desktop & VR Automobile

engineering R&D

In-house R&D system for

collaborative and immersive

design of new trucks

NVIDIA Omniverse vs. Kosmogora + ECellDive

Omniverse is a huge tool suite maintained by Nvidia to help develop the Metaverse. It

originally started as collaborative development platform for artists and designers, but it now

Table 6: Tools overlapping with concepts also present in Kosmogora+ECellDive.

 1Metaverse-Ready means that the tool includes metaverse constraints directly in its specifications; it does not mean that
the tool is a Metaverse or is future-proof against the evolution of the definition of the Metaverse. For example, Nanome and
VR-Omics are very good immersive visualizations, but they do not include concepts in their architecture to integrate with the
larger scale of a Metaverse. NVIDIA Omniverse and the Volvo Truck R&D were designed to support this larger scale, which
makes them “metaverse-ready” in our definition.

96

also includes simulation platforms for digital twins of robots, climate dynamics, computer

vision problems, and so on. Of course, the amount of resources invested to develop and

maintain Omniverse is eon larger than what I could invest alone during my PhD. But it does

not change the fact that Kosmogora + ECellDive are investigating scenarios and work

situations that are also at the heart of the collaborative tools in the ecosystem of Omniverse.

Notably, it includes research on non-destructive modes of iteration over versions of a

project. This problem seems to have been mainly addressed using a file format known as

Universal Scene Description (USD) which allows to preserve the trace of versions for 3D

models in addition to being fast, and extensible. USD files are solving problems that I

addressed via the modification files.

97

V. CLOSING REMARKS

I opened this dissertation with a critic of the gluttony of biologists for experimental data

that, I expect, has likely been met with greater reluctant perplexity than genuine curiosity. At

least, this is the prediction based on my few experiences during the three years of my PhD34

where I was given the opportunity to strike a conversation with experimental biologists in

systems biology about this matter. Long story short, it usually led nowhere. Be it for their

blindsided behavior and faith in observations, my inability to explain my point of view as to

what a theoretical framework for biology would look like, the possible insignificance of the

matter, or a mix of these three and beyond, I could never maintain a meaningful exchange

for more than a few minutes. The point on which appeared to crystallize all their perplexity

was the matter of the verification and validation of a research method that would produce

biological knowledge in the absence of the corresponding repeatable observations. From

there, any attempts I made to motivate and illustrate that a body of axioms was strong

enough to define a self-contained space of validity, never managed to interface with their

conception of biology research should be conducted. The idea that unprovable statements

could be the foundation to rock-solid biological theories was judged, at best, a pipe dream,

at worse, a grave scientific malpractice. Even when I avoided talking about a theory-only

biology, and instead focused the discussion on the uncomfortable fact (for me) that over-

relying on data was limiting us to answer, “how is this problem being solved?” (i.e., “how-

questions”), and ignore “what is the problem?” (i.e., “what-questions”), did not seem to

raise much concern. In effect, rather than considering it as a problem that could be fixed, my

interlocutors recognized it as a neutral quality of induction in biology. Neither bad nor good,

simply a consequence to account for. Then, my arguments about the intractability of reverse

engineering in inductive biology was invariably met with something along the line of “ML

techniques will solve that”. And my final argument about the debatable sustainability of

deep ML approaches did not shake the ambient unwavering optimism that the benefits of

scientific discoveries outweigh the possible costs for the planet.

Somewhat sadly, I then discovered that it was easier to have meaningful discussions on this

topic outside the sphere of influence of systems biology. The first researcher whom I

discussed with about the relative weight of theoretical approaches over observations was a

physicist’s turned biologist for the time of a poster at the International Conference for

Systems Biology in October 2022. His research was about the use of maximum entropy

principle to explain the position of retinal cones (Beygi, 2023). It turned out easier to discuss

with a researcher that was more adept at composing and aggregating abstract layers of

knowledge to formulate questions about phenomena. This made me realize that I was

probably better off honing my arguments with researchers in fields peripheral to biology.

34 In fact, it is only 2 years since my first year coincided with the COVID pandemic and I carried out my research

entirely from my parent’s home in France.

98

This is how I was introduced to the field of Artificial Life. There, I found, and was

recommended, many papers which did not hesitate to cast aside big data to focus on

foundational properties of biotic systems thanks to theoretical frameworks (Montévil and

Mossio, 2015; Hernández-Orozco et al., 2018; Kauffman, 2020) or in silico experiments

(Chan, 2020). Astrobiologists and geochemists which research overlaps with the subject of

the origin of life are also used to perform a lot of hypothetical reasoning (Bartlett and Wong,

2020; Wong et al., 2022; Kauffman, 2020; Kauffman and Roli, 2023) and to constantly deal

with a shortage of data in their field. It is a research practice in a realm of uncertainty and

open variables that would, I assume, make system biologists uncomfortable.

Discussions with researchers outside of the field of systems biology has not changed my

mind about the long-term inadequacy of induction in biology. If anything, it reinforced my

opinion that alternative and complemental practices are possible and a goal worth pursuing.

In this thesis, I investigated my alternative of choice, namely model-based biology powered

by soft real-time systems. I defended that soft RT systems possess properties inherent to

their necessity to execute tasks in a timely manner that can be transferred to modeling in

systems biology for the better. Specifically, the possibility to manipulate the time axis to

control the flow of the simulation for in-depth analysis of the characteristics of the simulated

biological system; the interactivity of the simulations which can be designed to allow

dynamic update, creation, and deletion of components for faster design iteration of

biological models; and the support of the integration of heterogeneous input data, physical

components, and virtual components, for the integration of automated hardware for biology

experiments with synchronized simulations. All three of which can be used to accelerate the

exploration of the solution space of biological systems by quick trial and errors. The

exploration of the solution space can be used to target both “how-questions” and “what-

questions”, even though I am more in favor of the latter. I effectively implemented two RT

systems during my PhD research to demonstrate my claims. The first, ECellEngine, is a soft

RT simulation system for biological models. Its main purpose is to benefit from the RT

framework while building, simulating, and analyzing plausible biological systems via the

node-based scripting interface in the editor. The second, Kosmogora + ECellDive, is a couple

of systems leveraging the benefits of RT collaboration for the iterative design of models of

biological systems in a scientific metaverse.

The work presented in this thesis can be extended in many ways. First, neither ECellEngine

nor Kosmogora + ECellDive, are perfect and both could benefit from longer development

time to make them more accessible, dependable, and versatile. This is particularly true for

ECellEngine which some of the requirements identified in the section User requirements:

build, play, learn page 64 and in Figure 9 page 65 are not yet implemented. This includes

the generation of branches for non-destructive simulation alternatives. Such branches would

be very useful to protect the integrity of simulation data and compare the design choices

made between multiple versions of a biological model.

99

ECellDive is also currently lacking the possibility to simulate in the opposite direction of the

time axis to backtrack simulations to a time of interest for the modelers. Finally, an

inconvenient missing piece is the possibility to export edited models into SBML format but

also into a non-destructive file format to store the history of the modifications. For this task,

I wish to use the USD file format promoted for the description of virtual worlds in the

Metaverse by Nvidia in Omniverse and other big companies such as Pixar, Google, and Apple.

The USD file format is a high-end professional asset and the learning curve is quite steep.

Although initially developed to describe alternative versions of 3D environments within a

file, the USD library allows to define custom fields. I originally planned to customize USD to

export from ECellEngine and store them in memory. Unfortunately, I could not finish the

integration within the frame of my PhD. This must be achieved to truly make ECellEngine

usable by other researchers.

Finally, a direction to build on top of my research is to integrate automated biology

experiment hardware with the RT simulation software I developed in this research as

illustrated in Figure 20. This type of integration would power what is commonly called

“closed-loop AI scientists” to let autonomous systems Design → Simulate → Compare →

Hypothesize, and then the cycle restarts. The comparison between the simulation and the

experiment outputs would allow to generate hypotheses about the biological system which

will likely involve AI technologies (hence, the name). Of course, the purpose of this type of

integration is to optimize a model to match as much as possible all the observations

acquired during autonomous experiments. Given that the update of the model and the

acquisition of data are both present in the cycle, it is neither the inductive biology I criticized,

Figure 20: The integration of ECellEngine within a bigger loop involving automated laboratory hardware. The dotted
arrows indicate asynchronous communications between the simulation component led by ECellEngine and the
physical components.

100

nor the model-based biology (i.e., deductive biology) I defended. I hope this could be an

intermediate setup where the acquisition of data might be indeed large in the long-term, but,

at least, bounded and directed thanks to the model’s simulations. Eventually, whether this

system leans more toward induction or deduction, will depend on whether the hypothesis

generation policy gives more weigh to the experiment results or the model’s simulation. The

design illustrated in Figure 20 would give more weight to the knowledge acquisition by

updating the model first. Indeed, there are two internal loops (in blue) trying to optimize the

parameters and the structure of the model, before generating a new batch of experiments

(dotted arrow green to red). This way, it is the structure of the model that influences the

experiments. It could have been the opposite by giving priority to the exploration of the

input parameter space of the experiments (the value of (𝑖𝑛1, 𝑖𝑛2, … , 𝑖𝑛𝑘)
𝑇), and only then

updating the model after much data has been acquired. In the future, we might observe a

gradient between a full inductive and a full deductive closed loop AI scientist.

101

APPENDICES

A1. Primer on Numerical Integration of Ordinary Differential Equations

A solver for Ordinary Differential Equations (ODEs) was implemented in ECellEngine in order

to simulate models encoded as ODEs. The following is an summary highly inspired by the

two reference textbooks written by Hairer and Wanner (Hairer and Wanner, 1993, 1996).

This primer contains the essential of the knowledge I used (and that anyone uses) to

implement an algorithm derived from Runge-Kutta’s method to numerically solve ODEs.

Newton on Euler’s initial value problem

It is known from Newton’s work that Euler’s initial value problem:

 𝑦′ = 𝑓(𝑥, 𝑦), 𝑦(𝑥0) = 𝑦0 (1.1)

can be solved with better accuracy than Euler’s method (error bounded by 𝐶ℎ where 𝐶 is a

constant and ℎ the step size) if 𝑓 happens to be independent from 𝑦. In that case, (1.1)

rewrites as:

𝑦′ = 𝑓(𝑥), 𝑦(𝑥0) = 𝑦0 (1.2)

and has the solution:

𝑦(𝑥∗) = 𝑦0 +∫ 𝑓(𝑥)𝑑𝑥
𝑥∗

𝑥

 (1.3)

A way to integrate from 𝑥 to 𝑥∗ is to iterate to successively approximate the values 𝑦𝑖(𝑥)

using the midpoint rule 𝑦𝑖(𝑥𝑖 + ℎ𝑖) ≈ 𝑦𝑖 + ℎ𝑖𝑓 (𝑥𝑖 +
ℎ𝑖

2
) until we reach:

𝑦(𝑥∗) ≈ 𝑦∗ = 𝑦𝑛−1 + ℎ𝑛−1𝑓 (𝑥𝑛−1 +
ℎ𝑛−1
2
) (1.4)

Explicit fixed step-size Runge-Kutta method

Runge extended this method to the problem (1.1), which for the first step and an arbitrary ℎ

reads:

𝑦0(𝑥0 + ℎ) ≈ 𝑦0 + ℎ𝑓 (𝑥0 +
ℎ

2
, 𝑦 (𝑥0 +

ℎ

2
)) (1.5)

Further approximating 𝑦 (𝑥0 +
ℎ

2
) with a euler step, we can rewrite the right side of (1.5) as:

𝑦0 + ℎ𝑓 (𝑥0 +
ℎ

2
, 𝑦0 +

ℎ

2
𝑓(𝑥0, 𝑦0)) (1.6)

The iteration form is better visible if we set 𝑘1 = 𝑓(𝑥0, 𝑦0) and 𝑘2 = 𝑓 (𝑥0 +
ℎ

2
, 𝑦0 +

ℎ

2
𝑘1)

to obtain 𝑦1 = 𝑦0 + ℎ𝑘2.

Further expanding this s times to approximate 𝑦1 starting from 𝑦0 forms an s-stage Explicit

Runge-Kutta (ERK) method for (1.1). Generally, the expansion initializes with:

102

𝑘1 = 𝑓(𝑥0, 𝑦0)

𝑘𝑖 = 𝑓(𝑥0 + 𝑐𝑖ℎ, 𝑦0 + ℎ(∑𝑎𝑖,𝑗𝑘𝑗

𝑖−1

𝑗=1

))

and continues as and the approximate solution:

𝑦1 = 𝑦0 + ℎ∑𝑏𝑖𝑘𝑖

𝑠

𝑖=1

 (1.7)

with the function values 𝑎𝑖,𝑗 , 𝑏𝑖 and 𝑐𝑖 real coefficients. In some cases, it is useful to assume

𝑐𝑖 = ∑ 𝑎𝑖,𝑗
𝑖−1
𝑗=1 .

It is conventional to represent the coefficients as in the table below:

𝟎

𝒄𝟐 𝒂𝟐𝟏

𝒄𝟑 𝒂𝟑𝟏 𝒂𝟑𝟐

⋮ ⋮ ⋮ ⋱

 𝒄𝒔 𝒂𝒔𝟏 𝒂𝒔𝟐 … 𝒂𝒔,𝒔−𝟏

 𝒃𝟏 𝒃𝟐 … 𝒃𝒔−𝟏 𝒃𝒔

Appendix Table 1: Generic Runge-Kutta function values tableau.

The variations of Runge-Kutta methods boils down to finding different sets of parameters

which will have slightly different effects on the stability or precision of the method at equal 𝑠

or with higher orders 𝑠. Here are the values usually associated to “The” Runge-Kutta

method:

𝟎

𝟏/𝟐 𝟏/𝟐

𝟏/𝟐 𝟎 𝟏/𝟐

𝟏 𝟎 𝟎 𝟏

 𝟏/𝟔 𝟐/𝟔 𝟐/𝟔 𝟏/𝟔

Appendix Table 2: Function values of the classic Runge-Kutta Method (order 4)

Explicit variable step-size Runge-Kutta method

The hope behind variable step size is to make bigger steps when the integration method

makes small local errors (the error made when computing 𝑦1) and to make smaller steps

after the local error has exceeded a set threshold. In practice, thanks to this approach, we

observe that the integration method “goes fast” when the solution does not vary a lot and it

“goes slowly” when the solution has sharp variations. Of course, there are some

103

optimizations to avoid growing or shrinking the step size too fast depending on the result.

One way to compute the error is simply to compute the difference between two

approximations 𝑦1 and �̂�1, where one of them is of higher order 𝑠. The “trick” to benefit of

variable step-size at a low computational cost is to avoid having to compute 𝑘𝑖 values twice

(for 𝑦1 and �̂�1). The idea is then to find function values that can be used for both

approximations:

𝟎

𝒄𝟐 𝒂𝟐𝟏

𝒄𝟑 𝒂𝟑𝟏 𝒂𝟑𝟐

⋮ ⋮ ⋮ ⋱

 𝒄𝒔 𝒂𝒔𝟏 𝒂𝒔𝟐 … 𝒂𝒔,𝒔−𝟏

 𝒃𝟏 𝒃𝟐 … 𝒃𝒔−𝟏 𝒃𝒔

 �̂�𝟏 �̂�𝟐 … �̂�𝒔−𝟏 �̂�𝒔

Appendix Table 3: Generic Runge-Kutta function values for double approximations

Then, we find 𝑦1 of order p as:

𝑦1 = 𝑦0 + ℎ∑𝑏𝑖𝑘𝑖

𝑠

𝑖=1

 (1.9)

And �̂�1 or order �̂� = 𝑝 + 1 or �̂� = 𝑝 − 1:

�̂�1 = 𝑦0 + ℎ∑�̂�𝑖𝑘𝑖

𝑠

𝑖=1

 (1.10)

A famous set of solutions comes from Dormand-Prince (DOPRI) where 𝑝 = 5 and �̂� = 4. This

is the solution implemented in ECellEngine. The function values are:

𝟎

𝟏

𝟓

𝟏

𝟓

𝟑

𝟏𝟎

𝟑

𝟒𝟎

𝟗

𝟒𝟎

𝟒

𝟓

𝟒𝟒

𝟒𝟓
 −

𝟓𝟔

𝟏𝟓

𝟑𝟐

𝟗

𝟖

𝟗

𝟏𝟗𝟑𝟕𝟐

𝟔𝟓𝟔𝟏
 −

𝟐𝟓𝟑𝟔𝟎

𝟐𝟏𝟖𝟕

𝟔𝟒𝟒𝟒𝟖

𝟔𝟓𝟔𝟏
 −

𝟐𝟏𝟐

𝟕𝟐𝟗

𝟏
𝟗𝟎𝟏𝟕

𝟑𝟏𝟔𝟖
 −

𝟑𝟓𝟓

𝟑𝟑

𝟒𝟔𝟕𝟑𝟐

𝟓𝟐𝟒𝟕

𝟒𝟗

𝟏𝟕𝟔
 −

𝟓𝟏𝟎𝟑

𝟏𝟖𝟔𝟓𝟔

104

𝟏
𝟑𝟓

𝟑𝟖𝟒
 𝟎

𝟓𝟎𝟎

𝟏𝟏𝟏𝟑

𝟏𝟐𝟓

𝟏𝟗𝟐
 −

𝟐𝟏𝟖𝟕

𝟔𝟕𝟖𝟒

𝟏𝟏

𝟖𝟒

𝒚𝟏
𝟑𝟓

𝟑𝟖𝟒
 𝟎

𝟓𝟎𝟎

𝟏𝟏𝟏𝟑

𝟏𝟐𝟓

𝟏𝟗𝟐
 −

𝟐𝟏𝟖𝟕

𝟔𝟕𝟖𝟒

𝟏𝟏

𝟖𝟒
 𝟎

�̂�𝟏
𝟓𝟏𝟕𝟗

𝟓𝟕𝟔𝟎𝟎
 𝟎

𝟕𝟓𝟕𝟏

𝟏𝟔𝟔𝟗𝟓

𝟑𝟗𝟑

𝟔𝟒𝟎
 −

𝟗𝟐𝟎𝟗𝟕

𝟑𝟑𝟗𝟐𝟎𝟎

𝟏𝟖𝟕

𝟐𝟏𝟎𝟎

𝟏

𝟒𝟎

Appendix Table 4: Function values for DOPRI5(4)

The method requires 7 stages to reach order 5.

Implicit Runge-Kutta formula

The general expansion defining an s-stage Explicit Runge-Kutta system can be further

expanded to include terms from stages beyond the current one. This is called an implicit

Runge-Kutta method when there exists at least one 𝑖 such that ∀(𝑖, 𝑗) ∈ [1, 𝑠]2 | 𝑖 ≤ 𝑗, 𝑎𝑖,𝑗 ≠

0. In effect, it means there are non-zero coefficients above the diagonal of the function

values table. The final form for the 𝑘𝑖 that includes both the explicit and implicit definitions

up to stage 𝑠 is:

𝑘𝑖 = 𝑓(𝑥0 + 𝑐𝑖ℎ, 𝑦0 + ℎ(∑𝑎𝑖,𝑗𝑘𝑗

𝑠

𝑗=1

)) (1.11)

It can be proven that implicit methods have a much larger stability space that explicit

methods. A method is stable when the numerical solution does not exhibit oscillating or

explosive behavior. Implicit methods are also more accurate than explicit ones. In

comparison, explicit methods are less computationally expensive and easier to implement.

105

A2. Supplementary Figures

Supplementary Figure A2.1: Basic schematic to introduce the concept of data race between functional units. Data race
occurs when multiple units are using shared memory and one of them is trying to update the value of data in memory that
might be read by any other unit. In such cases it is possible that the value of the data being modified changes in the middle
of the execution of units reading the data. a) No data race. b) no data race. c) Data race between U1 and U2 so they must be
strictly organized one to the other. Another solution not showed here is to interrupt the execution of every unit before
reading data that might be modified until the unit modifying it has finished its job.

106

Supplementary Figure A2.2: Screenshots from the graphic user interface of COPASI. a) The interface to add visualization
after running a simulation. b) The results after simulating using an ODE solver the model of cell division cycle of the fission
yeast from (Novak et al., 2001).

107

Supplementary Figure A2.3: Screenshots from the graphic user interface of CellDesigner. a) The default model view after
opening the model of cell division cycle of the fission yeast from (Novak et al., 2001). b) The simulation panel using COPASI
as the backend simulation software.

108

REFERENCES

Agmon,E. et al. (2022) Vivarium: an interface and engine for integrative multiscale modeling

in computational biology. Bioinformatics, 38, 1972–1979.

Akman,O.E. et al. (2008) Isoform switching facilitates period control in the Neurospora

crassa circadian clock. Mol Syst Biol, 4, 164.

Allen,L.J.S. (2008) An Introduction to Stochastic Epidemic Models. In, Brauer,F. et al. (eds),

Mathematical Epidemiology, Lecture Notes in Mathematics. Springer, Berlin,

Heidelberg, pp. 81–130.

Altilar,D.T. and Paker,Y. (1998) An optimal scheduling algorithm for parallel video processing.

In, Proceedings. IEEE International Conference on Multimedia Computing and Systems

(Cat. No.98TB100241)., pp. 245–248.

Amir,M. et al. (2022) Intelligent based hybrid renewable energy resources forecasting and

real time power demand management system for resilient energy systems. Science

Progress, 105, 00368504221132144.

Are We There Yet? A Status Check on the Industrial Metaverse (2023) GTC Digital Spring.

Avello,A. et al. (1993) A simple and highly parallelizable method for real-time dynamic

simulation based on velocity transformations. Computer Methods in Applied

Mechanics and Engineering, 107, 313–339.

Aviz,A. (1969) Design Methods for Fault = Tolerant Navigation Computers National

Aeronautics and Space Administration, Jet Propulsion Laboratory, Pasadena,

California.

Bartlett,S. and Wong,M.L. (2020) Defining Lyfe in the Universe: From Three Privileged

Functions to Four Pillars. Life, 10, 42.

Becker,S.A. et al. (2007) Quantitative prediction of cellular metabolism with constraint-based

models: the COBRA Toolbox. Nat Protoc, 2, 727–738.

Beier,J. et al. (2017) Energy flexibility of manufacturing systems for variable renewable

energy supply integration: Real-time control method and simulation. Journal of

Cleaner Production, 141, 648–661.

Bender,E.M. et al. (2021) On the Dangers of Stochastic Parrots: Can Language Models Be Too

Big? 🦜. In, Proceedings of the 2021 ACM Conference on Fairness, Accountability,

and Transparency, FAccT ’21. Association for Computing Machinery, New York, NY,

USA, pp. 610–623.

Bennett,S. (1980) On Real Time System Design The University of Sheffield.

Beygi,A. (2023) Universality of Form: The Case of Retinal Cone Photoreceptor Mosaics.

Entropy, 25, 766.

109

Bienroth,D. et al. (2023) Spatially Resolved Transcriptomics Mining in 3D and Virtual Reality

Environments with VR-Omics. 2023.03.31.535025.

Biocca,F. et al. (2003) Toward a More Robust Theory and Measure of Social Presence:

Review and Suggested Criteria. Presence: Teleoperators and Virtual Environments, 12,

456–480.

Bitensky,M.W. (1986) Sequencing the Human Genome, Summary report of the Santa Fe

Workshop Department of Energy, Office of Health and Environmental Research.

Blinov,M.L. et al. (2004) BioNetGen: software for rule-based modeling of signal transduction

based on the interactions of molecular domains. Bioinformatics, 20, 3289–3291.

Bloem,D. and Naigus,R. (1988) Real-time simulation - A tool for development and

verification. In, Flight Simulation Technologies Conference. American Institute of

Aeronautics and Astronautics, pp. 244–249.

Boeing,A. and Bräunl,T. (2012) Leveraging multiple simulators for crossing the reality gap. In,

2012 12th International Conference on Control Automation Robotics Vision (ICARCV).,

pp. 1113–1119.

Bonabeau,E. (2002) Agent-based modeling: Methods and techniques for simulating human

systems. Proceedings of the National Academy of Sciences, 99, 7280–7287.

Boutillier,P. et al. (2017) Incremental Update for Graph Rewriting. In, Yang,H. (ed),

Programming Languages and Systems, Lecture Notes in Computer Science. Springer,

Berlin, Heidelberg, pp. 201–228.

Brenner,S. (2012) Life’s code script. Nature, 482, 461–461.

Brenner,S. (2002) NATURE’S GIFT TO SCIENCE.

Brenner,S. (2010) Sequences and consequences. Philosophical Transactions of the Royal

Society B: Biological Sciences, 365, 207–212.

Bro-Nielsen,M. and Cotin,S. (1996) Real-time Volumetric Deformable Models for Surgery

Simulation using Finite Elements and Condensation. Computer Graphics Forum, 15,

57–66.

Brunnsåker,D. et al. (2023) High-throughput metabolomics for the design and validation of a

diauxic shift model. npj Syst Biol Appl, 9, 1–9.

Buchholz,F. et al. (2022) There’s more than one metaverse. i-com, 21, 313–324.

Burns,A. and Wellings,A.J. (1994) HRT-HOOD: A structured design method for hard real-time

systems. Real-Time Syst, 6, 73–114.

Buttazzo,G.C. ed. (2005) Soft real-time systems: predictability vs. efficiency Springer, New

York.

110

Caccamo,M. et al. (2000) Capacity sharing for overrun control. In, Proceedings 21st IEEE

Real-Time Systems Symposium., pp. 295–304.

Caccamo,M. et al. (2002) Handling execution overruns in hard real-time control systems.

IEEE Transactions on Computers, 51, 835–849.

Callebaut,W. (2012) Scientific perspectivism: A philosopher of science’s response to the

challenge of big data biology. Studies in History and Philosophy of Science Part C:

Studies in History and Philosophy of Biological and Biomedical Sciences, 43, 69–80.

Cauchy,A.L. (1823) Résumé des leçons donnees a l’Ecole Royale Polytechnique sur le calcul

infinitésimal, par m. Augustin-Louis Cauchy... Tome premier A Paris : de l’Imprimerie

Royale chez Debure freres, libraires du Roi et de la bibliotheque du Roi, rue Serpente,

n. 7, 1823.

Cellier,F.E. and Kofman,E. eds. (2006) Real-time Simulation. In, Continuous System

Simulation. Springer US, Boston, MA, pp. 479–518.

Chacon,S. and Straub,B. (2014) Pro Git 2nd ed. Apress, USA.

Chan,B.W.-C. (2020) Lenia and Expanded Universe. MIT Press, pp. 221–229.

Chance,B. et al. (1960) Metabolic control mechanisms. 5. A solution for the equations

representing interaction between glycolysis and respiration in ascites tumor cells. J

Biol Chem, 235, 2426–2439.

Chelini,J. and Farmer,R.H. (1981) Real-time flight management avionics software system. In,

Digital Avionics Systems Conference. American Institute of Aeronautics and

Astronautics, St. Louis.

Collins,F. and Galas,D. (1993) A New Five-Year Plan for the U.S. Human Genome Project.

Science, 262, 43–46.

Collins,F.S. et al. (1998) New Goals for the U.S. Human Genome Project: 1998-2003. Science,

282, 682–689.

Cotin,S. et al. (1999) Real-time elastic deformations of soft tissues for surgery simulation.

IEEE Transactions on Visualization and Computer Graphics, 5, 62–73.

Coutant,A. et al. (2019) Closed-loop cycles of experiment design, execution, and learning

accelerate systems biology model development in yeast. Proceedings of the National

Academy of Sciences, 116, 18142–18147.

Danos,V. et al. (2012) Graphs, Rewriting and Pathway Reconstruction for Rule-Based Models.

In, D’Souza,D. et al. (eds), IARCS Annual Conference on Foundations of Software

Technology and Theoretical Computer Science (FSTTCS 2012), Leibniz International

Proceedings in Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer

Informatik, Dagstuhl, Germany, pp. 276–288.

111

Danos,V. and Laneve,C. (2003) Core Formal Molecular Biology. In, Degano,P. (ed),

Programming Languages and Systems, Lecture Notes in Computer Science. Springer,

Berlin, Heidelberg, pp. 302–318.

Danos,V. and Laneve,C. (2004) Formal molecular biology. Theoretical Computer Science, 325,

69–110.

Darwin,C.R. (1859) On the origin of species by means of natural selection, or the

preservation of favoured races in the struggle for life. 1st edition. John Murray,

London.

Davis,R.I. and Burns,A. (2011) A survey of hard real-time scheduling for multiprocessor

systems. ACM Comput. Surv., 43, 35:1-35:44.

Derks,J. et al. (2023) Increasing the throughput of sensitive proteomics by plexDIA. Nat

Biotechnol, 41, 50–59.

Dolev,D. et al. (1986) Reaching approximate agreement in the presence of faults. J. ACM, 33,

499–516.

Dou,W. et al. (2009) Recovering Reasoning Processes from User Interactions. IEEE Computer

Graphics and Applications, 29, 52–61.

Dritschel,H. et al. (2018) A mathematical model of cytotoxic and helper T cell interactions in

a tumour microenvironment. Letters in Biomathematics, 5, S36–S68.

Dudziuk,G. et al. (2019) Biologically sound formal model of Hsp70 heat induction. J Theor

Biol, 478, 74–101.

Ebrahim,A. et al. (2013) COBRApy: COnstraints-Based Reconstruction and Analysis for

Python. BMC Syst Biol, 7, 1–6.

Edwards,J.S. et al. (2002) Metabolic modelling of microbes: the flux-balance approach.

Environ Microbiol, 4, 133–140.

Encode (2022) Uvicorn: an ASGI web server, for Python.

Epic Games (2022) Unreal Engine.

Fabian,R. (2018) Data-oriented design: software engineering for limited resources and short

schedules Richard Fabian.

Faeder,J.R. et al. (2009) Rule-Based Modeling of Biochemical Systems with BioNetGen. In,

Maly,I.V. (ed), Systems Biology, Methods in Molecular Biology. Humana Press,

Totowa, NJ, pp. 113–167.

Faure,F. et al. (2012) SOFA: A Multi-Model Framework for Interactive Physical Simulation.

Springer, p. 283.

Fiedler,G. (2004) Fix Your Timestep! Gaffer On Games.

Fisher,R.A. (1930) The genetical theory of natural selection Clarendon Press, Oxford.

112

Freeman,T.C. et al. (2022) Graphia: A platform for the graph-based visualisation and analysis

of high dimensional data. PLOS Computational Biology, 18, e1010310.

Fujimoto,R.M. (2001) Parallel and distributed simulation systems. In, Proceeding of the 2001

Winter Simulation Conference (Cat. No.01CH37304)., pp. 147–157 vol.1.

Gandhi,H.A. et al. (2020) Real-Time Interactive Simulation and Visualization of Organic

Molecules. J. Chem. Educ., 97, 4189–4195.

Ganter,M. et al. (2013) MetaNetX.org: a website and repository for accessing, analysing and

manipulating metabolic networks. Bioinformatics, 29, 815–816.

Genome Sequencing Workshop (1986).

Gershenson,C. (2023) Emergence in Artificial Life. Artificial Life, 29, 153–167.

Getz,W.M. (1976) Stochastic equivalents of the linear and Lotka-Volterra systems of

equations— a general birth-and-death process formulation. Mathematical

Biosciences, 29, 235–257.

Gillespie,D.T. (1976) A general method for numerically simulating the stochastic time

evolution of coupled chemical reactions. Journal of Computational Physics, 22, 403–

434.

Gillespie,D.T. (1992) A rigorous derivation of the chemical master equation. Physica A:

Statistical Mechanics and its Applications, 188, 404–425.

Gillespie,D.T. (1977) Exact stochastic simulation of coupled chemical reactions. J. Phys.

Chem., 81, 2340–2361.

Glaessgen,E. and Stargel,D. (2012) The Digital Twin Paradigm for Future NASA and U.S. Air

Force Vehicles. In, 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics

and Materials Conference. American Institute of Aeronautics and Astronautics,

Honolulu, Hawaii.

Goldbeter,A. et al. (1990) Minimal model for signal-induced Ca2+ oscillations and for their

frequency encoding through protein phosphorylation. Proc Natl Acad Sci U S A, 87,

1461–1465.

Gomaa,H. (1984) A software design method for real-time systems. Commun. ACM, 27, 938–

949.

Gomaa,H. (1986) Software development of real-time systems. Commun. ACM, 29, 657–668.

Gregory,J. (2018a) Game engine architecture Third edition. Taylor and Francis, CRC Press,

Boca Raton.

Gregory,J. (2018b) Runtime Gameplay Foundation System. In, Game Engine Architecture.

Taylor and Francis, CRC Press, Boca Raton, pp. 1039–1158.

113

Gregory,J. (2018c) The Game Loop and Real-Time Simulation. In, Game Engine Architecture.

Taylor and Francis, CRC Press, Boca Raton, pp. 525–558.

Hairer,E. and Wanner,G. (1993) Solving Ordinary Differential Equations I Springer, Berlin,

Heidelberg.

Hairer,E. and Wanner,G. (1996) Solving Ordinary Differential Equations II Springer, Berlin,

Heidelberg.

Hajjar,G. et al. (2023) Scaling-up metabolomics: Current state and perspectives. TrAC Trends

in Analytical Chemistry, 167, 117225.

Harris,L.A. et al. (2016) BioNetGen 2.2: advances in rule-based modeling. Bioinformatics, 32,

3366–3368.

Haung,S.-H. et al. (2005) Web-based real time power system dynamic performance

monitoring system. In, Fourtieth IAS Annual Meeting. Conference Record of the 2005

Industry Applications Conference, 2005., pp. 2651-2656 Vol. 4.

Hayatpur,D. et al. (2020) DataHop: Spatial Data Exploration in Virtual Reality. In, Proceedings

of the 33rd Annual ACM Symposium on User Interface Software and Technology.

Association for Computing Machinery, New York, NY, USA, pp. 818–828.

Hecht,H. (1976) Fault-Tolerant Software for Real-Time Applications. ACM Comput. Surv., 8,

391–407.

Heirendt,L. et al. (2019) Creation and analysis of biochemical constraint-based models using

the COBRA Toolbox v.3.0. Nat Protoc, 14, 639–702.

Hernández-Orozco,S. et al. (2018) Undecidability and Irreducibility Conditions for Open-

Ended Evolution and Emergence. Artificial Life, 24, 56–70.

Hlavacek,W.S. et al. (2006) Rules for Modeling Signal-Transduction Systems. Science

Signaling, 2006, re6–re6.

Hoops,S. et al. (2006) COPASI—a COmplex PAthway SImulator. Bioinformatics, 22, 3067–

3074.

Horton,S. and Wurster,J. (2022) The Journey to Collaborative Virtual Workspaces: PopUp-XR

at Volvo Group Trucks Technology.

Ishii,H. and Ullmer,B. (1997) Tangible bits: towards seamless interfaces between people, bits

and atoms. In, Proceedings of the ACM SIGCHI Conference on Human factors in

computing systems, CHI ’97. Association for Computing Machinery, New York, NY,

USA, pp. 234–241.

Jacopin,E. et al. (2024) An architecture for collaboration in systems biology at the age of the

Metaverse. npj Syst Biol Appl, 10, 1–11.

114

Jacopin,E. et al. (2020) Factors favouring the evolution of multidrug resistance in bacteria. J.

R. Soc. Interface., 17, 20200105.

Jacopin,E. et al. (2021) Using Agents and Unsupervised Learning for Counting Objects in

Images with Spatial Organization: In, Proceedings of the 13th International

Conference on Agents and Artificial Intelligence. SCITEPRESS - Science and Technology

Publications, pp. 688–697.

Jeppesen,M.J. and Powers,R. (2023) Multiplatform untargeted metabolomics. Magnetic

Resonance in Chemistry, 61, 628–653.

Johnson,K.A. and Goody,R.S. (2011) The Original Michaelis Constant: Translation of the 1913

Michaelis–Menten Paper. Biochemistry, 50, 8264–8269.

Juliani,A. et al. (2018) Unity: A General Platform for Intelligent Agents.

Jumper,J. et al. (2021) Highly accurate protein structure prediction with AlphaFold. Nature,

596, 583–589.

Kaizu,K. et al. (2020) E-Cell System version 4.

Kanda,G.N. et al. (2022) Robotic search for optimal cell culture in regenerative medicine.

eLife, 11, e77007.

Karr,J.R. et al. (2012) A Whole-Cell Computational Model Predicts Phenotype from

Genotype. Cell, 150, 389–401.

Kauffman,S. (2020) Answering Schrödinger’s “What Is Life?” Entropy (Basel), 22, 815.

Kauffman,S.A. and Roli,A. (2023) A third transition in science? Interface Focus, 13, 20220063.

Kaul,S. et al. (2012) Real-time status: How often should one update? In, 2012 Proceedings

IEEE INFOCOM., pp. 2731–2735.

Keating,S.M. et al. (2020) SBML Level 3: an extensible format for the exchange and reuse of

biological models. Molecular Systems Biology, 16, e9110.

Kermack,W.O. et al. (1927) A contribution to the mathematical theory of epidemics.

Proceedings of the Royal Society of London. Series A, Containing Papers of a

Mathematical and Physical Character, 115, 700–721.

Kim,K.H. (1997) Object structures for real-time systems and simulators. Computer, 30, 62–

70.

King,R.D. et al. (2009) The Automation of Science. Science, 324, 85–89.

King,Z.A. et al. (2016) BiGG Models: A platform for integrating, standardizing and sharing

genome-scale models. Nucleic Acids Research, 44, D515–D522.

King,Z.A. et al. (2015) Escher: A Web Application for Building, Sharing, and Embedding Data-

Rich Visualizations of Biological Pathways. PLOS Computational Biology, 11,

e1004321.

115

Kitano,H. et al. (2005) Using process diagrams for the graphical representation of biological

networks. Nat Biotechnol, 23, 961–966.

Koopman,S. and Yamauchi,R.K. (1990) Real-time sewer effluent monitoring system. Las

Vegas.

Kopetz,H. et al. (1989) Distributed fault-tolerant real-time systems: the Mars approach. IEEE

Micro, 9, 25–40.

Kopetz,H. and Ochsenreiter,W. (1987) Clock Synchronization in Distributed Real-Time

Systems. IEEE Transactions on Computers, C–36, 933–940.

Kopetz,H. and Steiner,W. (2022a) Dependability. In, Kopetz,H. and Steiner,W. (eds), Real-

Time Systems: Design Principles for Distributed Embedded Applications. Springer

International Publishing, Cham, pp. 143–175.

Kopetz,H. and Steiner,W. (2022b) Global Time. In, Kopetz,H. and Steiner,W. (eds), Real-Time

Systems: Design Principles for Distributed Embedded Applications. Springer

International Publishing, Cham, pp. 57–85.

Kopetz,H. and Steiner,W. (2022c) Real-Time Scheduling. In, Kopetz,H. and Steiner,W. (eds),

Real-Time Systems: Design Principles for Distributed Embedded Applications. Springer

International Publishing, Cham, pp. 247–267.

Kopetz,H. and Steiner,W. (2022d) System Design. In, Kopetz,H. and Steiner,W. (eds), Real-

Time Systems: Design Principles for Distributed Embedded Applications. Springer

International Publishing, Cham, pp. 269–305.

Kopetz,H. and Steiner,W. (2022e) The Real-Time Environment. In, Kopetz,H. and Steiner,W.

(eds), Real-Time Systems: Design Principles for Distributed Embedded Applications.

Springer International Publishing, Cham, pp. 1–29.

Lander,E.S. et al. (2001) Initial sequencing and analysis of the human genome. Nature, 409,

860–921.

Laubenbacher,R. et al. (2022) Building digital twins of the human immune system: toward a

roadmap. npj Digit. Med., 5, 1–5.

Lee,K. et al. (2020) GROOT: a real-time streaming system of high-fidelity volumetric videos.

In, Proceedings of the 26th Annual International Conference on Mobile Computing

and Networking, MobiCom ’20. Association for Computing Machinery, New York, NY,

USA, pp. 1–14.

Lee,L.-H. et al. (2021) All One Needs to Know about Metaverse: A Complete Survey on

Technological Singularity, Virtual Ecosystem, and Research Agenda.

Lehman,J. and Stanley,K.O. (2015) Investigating Biological Assumptions through Radical

Reimplementation. Artificial Life, 21, 21–46.

Leonelli,S. (2019) The challenges of big data biology. eLife, 8, e47381.

116

Leonelli,S. (2014) What difference does quantity make? On the epistemology of Big Data in

biology. Big Data & Society, 1, 2053951714534395.

Lin,C.E. and Lee,L.A. (1989) A PC-based real time measurement system for factory

automation on quality control and production control. In, 6th IEEE Conference

Record., Instrumentation and Measurement Technology Conference. Washington,

DC., pp. 57–61.

Liu,C.L. and Layland,J.W. (1973) Scheduling Algorithms for Multiprogramming in a Hard-Real-

Time Environment. J. ACM, 20, 46–61.

Lotka,A.J. (1925) Elements of Physical Biology Williams & Wilkins.

Macklin,D.N. et al. (2020) Simultaneous cross-evaluation of heterogeneous E. coli datasets

via mechanistic simulation. Science, 369, eaav3751.

Maiza,C. et al. (2019) A Survey of Timing Verification Techniques for Multi-Core Real-Time

Systems. ACM Comput. Surv., 52, 56:1-56:38.

Malik-Sheriff,R.S. et al. (2020) BioModels—15 years of sharing computational models in life

science. Nucleic Acids Research, 48, D407–D415.

March-Leuba,J. and King,W.T. (1987) Development of a real-time stability measurement

system for boiling water reactors. In, Trans. Am. Nucl. Soc.; (United States). Dallas.

Masison,J. et al. (2021) A modular computational framework for medical digital twins.

Proceedings of the National Academy of Sciences, 118, e2024287118.

Mayer-Schönberger,V. and Cukier,K. (2014) Big data: a revolution that will transform how we

live, work, and think First Mariner Books edition. Mariner Books, Houghton Mifflin

Harcourt, Boston.

Mendel,G. (1865) Versuche über Pflanzen-Hybriden. Verhandlungen des naturforschenden

Vereines in Brünn, Bd.4 (1865-1866), 3–47.

Menghal,P.M. and Laxmi,A.J. (2012) Real time simulation: Recent progress & challenges. In,

Controls and Computation 2012 International Conference on Power, Signals., pp. 1–6.

Michaelis,L. and Menten,M.L. (1913) Die Kinetik der Invertinwirkung. Biochem Z., 49, 333–

369.

Milgram,P. et al. (1995) Augmented reality: a class of displays on the reality-virtuality

continuum. In, Telemanipulator and Telepresence Technologies. SPIE, pp. 282–292.

Montévil,M. and Mossio,M. (2015) Biological organisation as closure of constraints. J Theor

Biol, 372, 179–191.

Moretti,S. et al. (2016) MetaNetX/MNXref – reconciliation of metabolites and biochemical

reactions to bring together genome-scale metabolic networks. Nucleic Acids

Research, 44, D523–D526.

117

Moretti,S. et al. (2021) MetaNetX/MNXref: unified namespace for metabolites and

biochemical reactions in the context of metabolic models. Nucleic Acids Research, 49,

D570–D574.

Mystakidis,S. (2022) Metaverse. Encyclopedia, 2, 486–497.

Nagasaki,M. et al. (1999) Bio-calculus: Its Concept and Molecular Interaction. Genome

Informatics, 10, 133–143.

Nanome Inc (2023) Nanome: Creating Powerful, Collaborative, and Scientific VR Tools.

Nijhout,H.F. et al. (2004) A mathematical model of the folate cycle: new insights into folate

homeostasis. J Biol Chem, 279, 55008–55016.

Nikolov,S. et al. (2020) The role of cooperativity in a p53-miR34 dynamical mathematical

model. Journal of Theoretical Biology, 495, 110252.

Ning,H. et al. (2021) A Survey on Metaverse: the State-of-the-art, Technologies, Applications,

and Challenges.

Norrby,M. et al. (2015) Molecular Rift: Virtual Reality for Drug Designers. J. Chem. Inf.

Model., 55, 2475–2484.

North,C. et al. (2011) Analytic provenance: process+interaction+insight. In, CHI ’11 Extended

Abstracts on Human Factors in Computing Systems, CHI EA ’11. Association for

Computing Machinery, New York, NY, USA, pp. 33–36.

Novak,B. et al. (2001) Mathematical model of the cell division cycle of fission yeast. Chaos:

An Interdisciplinary Journal of Nonlinear Science, 11, 277–286.

Novak,B. and Tyson,J.J. (2022) Mitotic kinase oscillation governs the latching of cell cycle

switches. Current Biology, 32, 2780-2785.e2.

NVIDIA (2022) NVIDIA Omniverse.

Nystrom,R. (2014) Sequencing Patterns: Game Loop. In, Game Programming Patterns.

genever benning, pp. 123–138.

Ochiai,K. et al. (2021) A Variable Scheduling Maintenance Culture Platform for Mammalian

Cells. SLAS TECHNOLOGY: Translating Life Sciences Innovation, 26, 209–217.

Orth,J.D. et al. (2010) What is flux balance analysis? Nat Biotechnol, 28, 245–248.

Palmer,C. et al. (2021) Virtual Reality Based Digital Twin System for Remote Laboratories and

Online Practical Learning. Advances in Manufacturing Technology XXXIV, 277–283.

Park,S.-M. and Kim,Y.-G. (2022) A Metaverse: Taxonomy, Components, Applications, and

Open Challenges. IEEE Access, 10, 4209–4251.

Pazzaglia,P. et al. (2021) Adaptive Design of Real-Time Control Systems subject to Sporadic

Overruns. In, 2021 Design, Automation & Test in Europe Conference & Exhibition

(DATE)., pp. 1887–1892.

118

Priami,C. et al. (2001) Application of a stochastic name-passing calculus to representation

and simulation of molecular processes. Information Processing Letters, 80, 25–31.

Puschner,P. and Koza,Ch. (1989) Calculating the maximum execution time of real-time

programs. Real-Time Syst, 1, 159–176.

Qi,H. et al. (2011) A Resilient Real-Time System Design for a Secure and Reconfigurable

Power Grid. IEEE Transactions on Smart Grid, 2, 770–781.

Rahmat,R.F. et al. (2016) Real time monitoring system for water pollution in Lake Toba. In,

2016 International Conference on Informatics and Computing (ICIC)., pp. 383–388.

Ramialison,M. et al. (2023) Spatially Resolved Transcriptomics Exploration in 3D desktop and

Virtual Environments with VR-Omics - Application.

Ravn,A.P. et al. (1993) Specifying and verifying requirements of real-time systems. IEEE

Transactions on Software Engineering, 19, 41–55.

Rees-Garbutt,J. et al. (2020) Designing minimal genomes using whole-cell models. Nat

Commun, 11, 836.

Regev,A. et al. (2000) Representation and simulation of biochemical processes using the π-

calculus process algebra. In, Biocomputing 2001. WORLD SCIENTIFIC, pp. 459–470.

Regev,A. et al. (2017) The Human Cell Atlas. eLife, 6, e27041.

Regev,A. et al. (2018) The Human Cell Atlas White Paper.

Regev,A. and Shapiro,E. (2002) Cellular abstractions: Cells as computation. Nature, 419, 343–

343.

Reichl,T. et al. (2009) Ultrasound goes GPU: real-time simulation using CUDA. In, Medical

Imaging 2009: Visualization, Image-Guided Procedures, and Modeling. SPIE, pp. 386–

395.

Reifsnider,K. and Majumdar,P. (2013) Multiphysics Stimulated Simulation Digital Twin

Methods for Fleet Management. In, 54th AIAA/ASME/ASCE/AHS/ASC Structures,

Structural Dynamics, and Materials Conference. American Institute of Aeronautics

and Astronautics, Boston.

Ross,R. (1916) An application of the theory of probabilities to the study of a priori

pathometry.—Part I. Proceedings of the Royal Society of London. Series A, Containing

Papers of a Mathematical and Physical Character, 92, 204–230.

Ross,R. and Hudson,H.P. (1917a) An application of the theory of probabilities to the study of

a priori pathometry.—Part II. Proceedings of the Royal Society of London. Series A,

Containing Papers of a Mathematical and Physical Character, 93, 212–225.

119

Ross,R. and Hudson,H.P. (1917b) An application of the theory of probabilities to the study of

a priori pathometry.—Part III. Proceedings of the Royal Society of London. Series A,

Containing Papers of a Mathematical and Physical Character, 93, 225–240.

Rowe,E. et al. (2018) Escher-FBA: a web application for interactive flux balance analysis. BMC

Systems Biology, 12, 84.

Rozenblatt-Rosen,O. et al. (2017) The Human Cell Atlas: from vision to reality. Nature, 550,

451–453.

Rukangu,A. et al. (2021) Virtual Reality for Remote Controlled Robotics in Engineering

Education. In, 2021 IEEE Conference on Virtual Reality and 3D User Interfaces

Abstracts and Workshops (VRW)., pp. 751–752.

Schiano,C. and Silberto,J. (1986) Grumman’s real time computing system for avionics testing.

In, 3rd Flight Testing Conference and Technical Display. American Institute of

Aeronautics and Astronautics, Las Vegas.

Schluse,M. et al. (2018) Experimentable Digital Twins—Streamlining Simulation-Based

Systems Engineering for Industry 4.0. IEEE Transactions on Industrial Informatics, 14,

1722–1731.

Schluse,M. and Rossmann,J. (2016) From simulation to experimentable digital twins:

Simulation-based development and operation of complex technical systems. In, 2016

IEEE International Symposium on Systems Engineering (ISSE)., pp. 1–6.

Shannon,P. et al. (2003) Cytoscape: a software environment for integrated models of

biomolecular interaction networks. Genome Res, 13, 2498–2504.

Simpson,H. (1986) The Mascot method. Software Engineering Journal, 1, 103–120.

Simpson,H.R. and Jackson,K. (1979) Process synchronisation in MASCOT*. The Computer

Journal, 22, 332–345.

Sivakumar,K.C. et al. (2011) A systems biology approach to model neural stem cell regulation

by notch, shh, wnt, and EGF signaling pathways. OMICS, 15, 729–737.

Skalnik,C.J. et al. (2023) Whole-cell modeling of E. coli colonies enables quantification of

single-cell heterogeneity in antibiotic responses. PLOS Computational Biology, 19,

e1011232.

Slavov,N. (2021) Increasing proteomics throughput. Nat Biotechnol, 39, 809–810.

Sollaeg,D.L. (1964) NASCOM Real-Time System National Aeronautics and Space

Administration, Goddard Space Flight Center.

Sorenson,P.G. and Hamacher,V.C. (1975) A Real-Time System Design Methodology*. INFOR:

Information Systems and Operational Research, 13, 1–18.

120

Sparkes,A. et al. (2010) Towards Robot Scientists for autonomous scientific discovery. Autom

Exp, 2, 1–11.

Srivastava,A.K. et al. (2018) Graph-theoretic algorithms for cyber-physical vulnerability

analysis of power grid with incomplete information. Journal of Modern Power

Systems and Clean Energy, 6, 887–899.

St. John,R.H. et al. (1987) Real-time simulation for space station. Proceedings of the IEEE, 75,

383–398.

Stahlkopf,K.E. and Wilhelm,M.R. (1997) Tighter controls for busier systems [power systems].

IEEE Spectrum, 34, 48–52.

Stankovic,J.A. et al. (2003) Real-time communication and coordination in embedded sensor

networks. Proceedings of the IEEE, 91, 1002–1022.

Stephenson,N. (1992) Snow crash Bantam Books, New York.

Strubell,E. et al. (2019) Energy and Policy Considerations for Deep Learning in NLP. In,

Proceedings of the 57th Annual Meeting of the Association for Computational

Linguistics. Association for Computational Linguistics, Florence, Italy, pp. 3645–3650.

Takahashi,K. et al. (2004) A multi-algorithm, multi-timescale method for cell simulation.

Bioinformatics, 20, 538–546.

Takahashi,K., Ishikawa,N., et al. (2003) E-Cell 2: multi-platform E-Cell simulation system.

Bioinformatics, 19, 1727–1729.

Takahashi,K., Sakurada,T., et al. (2003) E-CELL System Version 3: A Software Platform for

Integrative Computational Biology. Genome Informatics, 14, 294–295.

Tang,L. (2022) Sequencing single cells without killing. Nat Methods, 19, 1166–1166.

The Metaverse and How We’ll Build It Together -- Connect 2021 (2021) Meta.

The UniProt Consortium (2023) UniProt: the Universal Protein Knowledgebase in 2023.

Nucleic Acids Research, 51, D523–D531.

Thornburg,Z.R. et al. (2022) Fundamental behaviors emerge from simulations of a living

minimal cell. Cell, 185, 345-360.e28.

Tomita,M. et al. (1999) E-CELL: software environment for whole-cell simulation.

Bioinformatics, 15, 72–84.

Tomita,M. (2001) Whole-cell simulation: a grand challenge of the 21st century. Trends in

Biotechnology, 19, 205–210.

Tuckwell,H.C. and Williams,R.J. (2007) Some properties of a simple stochastic epidemic

model of SIR type. Mathematical Biosciences, 208, 76–97.

Tuegel,E.J. et al. (2011) Reengineering Aircraft Structural Life Prediction Using a Digital Twin.

International Journal of Aerospace Engineering, 2011, e154798.

121

Turing,A.M. (1952) The chemical basis of morphogenesis. Philosophical Transactions of the

Royal Society of London. Series B, Biological Sciences, 237, 37–72.

Unity Technologies (2022a) Netcode for GameObjects.

Unity Technologies (2022b) Unity Game Engine.

Unity Technologies (2020a) Unity Perception Package.

Unity Technologies (2020b) Unity Robotics Hub.

Unity Technologies (2022c) Unity SynthHomes: A Synthetic Home Interior Dataset

Generator.

Varma,A. and Palsson,B.O. (1994) Metabolic Flux Balancing: Basic Concepts, Scientific and

Practical Use. Nat Biotechnol, 12, 994–998.

Venter,J.C. et al. (2001) The Sequence of the Human Genome. Science, 291, 1304–1351.

Volterra,V. (1926) Variazioni e fluttuazioni del numero d’individui in specie animali

conviventi. Memor. Accad. Lincei, Ser., 6, 31–113.

Wang,Y. et al. (2022) A Survey on Metaverse: Fundamentals, Security, and Privacy. IEEE

Communications Surveys & Tutorials, 1–1.

Weinberger,M. (2022) What Is Metaverse?—A Definition Based on Qualitative Meta-

Synthesis. Future Internet, 14, 310.

Weisstein,E.W. Algebra. MathWorld--A Wolfram Web Resource.

Weisstein,E.W. Vector Space. MathWorld--A Wolfram Web Resource.

Wolfram,S. (2002) The World of Simple Programs. In, A new kind of Science. Wolfram Media,

Champaign, IL, pp. 51–113.

Wong,M.L. et al. (2022) Searching for Life, Mindful of Lyfe’s Possibilities. Life, 12, 783.

Wong,M.L. and Prabhu,A. (2023) Cells as the first data scientists. Journal of The Royal Society

Interface, 20, 20220810.

Woodger,J.H. (1929) Biological Principles Routledge (Republication in 2010).

Woodger,J.H. (1952) Biology and Language: An Introduction to the Methodology of the

Biological Sciences Including Medicine. The Tarner Lectures 1949-50 1st ed. The

University Press, Cambridge.

Woodger,J.H. (1962) Biology and the Axiomatic Method. Annals of the New York Academy of

Sciences, 96, 1093–1116.

Woodger,J.H. (1937) The axiomatic method in biology The University Press, Cambridge.

Wu,J. et al. (2011) Constructing stochastic models from deterministic process equations by

propensity adjustment. BMC Syst Biol, 5, 187.

122

Xia,H. et al. (2018) Spacetime: Enabling Fluid Individual and Collaborative Editing in Virtual

Reality. In, Proceedings of the 31st Annual ACM Symposium on User Interface

Software and Technology, UIST ’18. Association for Computing Machinery, New York,

NY, USA, pp. 853–866.

Xu,J. (2020) Effectively Handling Primary and Backup Overruns and Underruns in a Real-Time

Embedded System That Tolerates Permanent Hardware and Software Failures. In,

IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society., pp.

2267–2274.

Yachie,N. and Natsume,T. (2017) Robotic crowd biology with Maholo LabDroids. Nat

Biotechnol, 35, 310–312.

Zhongcheng,L. et al. (2022) Web-based digital twin online laboratories: Methodologies and

implementation. Digital Twin, 2.

123

ACADEMIC ACCOMPLISHMENTS

Publication

Jacopin Eliott, Sakamoto Yuki, Nishida Kozo, Kaizu Kazunari, Takahashi Kouichi, (2024) An

architecture for collaboration in systems biology at the age of the Metaverse, npj Systems

Biology and Applications, 10, 1—11, doi: https://doi.org/10.1038/s41540-024-00334-8

Conference Participation

ECellDive: Exploring Biological Systems in Virtual Reality – MBSJ 2022 – Poster + Flash Talk

Delivering Virtual Reality and Gaming Technologies to the Field of Systems Biology – ICSB

2022 – Poster

ECellDive: Exploring Biological Systems in Virtual Reality – ISMB BioVis 2022 - Poster + Flash

Talk

https://doi.org/10.1038/s41540-024-00334-8

