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Abstract
This dissertation presents a novel exploration into T cell receptors (TCRs), crucial com-
ponents of the immune system that interact with ligand peptides. These peptides, pre-
sented by Major Histocompatibility Complex (MHC) molecules, are recognized by TCRs
to initiate immune responses. The interaction between a TCR and its corresponding
peptide-MHC complex (pMHC) is fundamental to initiating protective immune reactions
against pathogens and malfunctioning cells. Understanding TCR-pMHC interactions
is, therefore, vital for analyzing immune system mechanics, designing vaccines, and
developing targeted immunotherapies. However, current experimental methodologies
for studying TCR-pMHC interactions are resource-intensive and time-consuming, with
computational models limited to retrospective data analysis and lacking interpretability.
Additionally, the prediction of the TCR-pMHC interaction is difficult due to the massive
combination patterns of TCRs and peptides. Addressing these challenges, this work in-
troduces a novel approach using a machine learning model with a modified Transformer
encoder, employing a source-target-attention neural network, or cross-attention layer.
Central to this research is the development of a model that predicts TCR-pMHC inter-
actions from amino acid sequences of the TCR’s complementarity-determining region 3
(CDR3) and peptides. Unique to this study is the utilization of an external prospective
dataset and the Transformer encoder layer to examine TCR-pMHC structural prop-
erties through attention weights. The model demonstrates superior performance on
benchmark test sets and external datasets, surpassing other models in the average pre-
cision score, although the score limitation of the model is revealed by visualizing the
data distribution difference. A detailed analysis links neural network attention weights
to protein structural properties, classifying residues into attended groups to identify
statistically significant properties, such as hydrogen bonds within CDR3, not between
CDR3s and peptides. Chapters 2 and 3 of the dissertation delve into the cross-attention
mechanism’s predictive power and its interpretability in TCR-pMHC interactions, with
Chapter 3 specifically comparing the efficacy of cross-attention and standard-attention
mechanisms. The findings affirm the cross-attention model’s superiority in revealing
interaction dynamics at the molecular level, thus confirming more interpretability. In
summary, this dissertation contributes substantially to bioinformatics and immunologi-
cal studies using the Transformer-based attention’s interpretability, providing a pathway
toward more effective and interpretable computational tools. The insights acquired hold
significant implications for the prediction of TCR-pMHC interactions, and this research
not only enhances our understanding of molecular recognition but also lays the ground-
work for developing new therapeutic approaches.
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Chapter 1

General Introduction

This chapter provides a comprehensive introduction to the interactions between T cell
receptors and peptides. It begins with an overview of the fundamental aspects of this
interaction. Subsequently, the chapter delves into an examination of previous studies
focused on predicting the binding of T cell receptor and peptide. Following this, an
overview of self-attention and cross-attention mechanisms is presented, offering a brief
look into these concepts. Finally, the chapter ends by outlining the contributions of this
dissertation and describing the primary objectives of the study.

1.1 T cell receptor and peptide binding

The T cell receptor (TCR) serves as an antigen receptor, primarily composed of alpha
(TCRα) and beta (TCRβ) chains. The TCRs are vital for recognizing antigenic peptides
presented by the major histocompatibility complex (MHC) molecule. The molecule
recognized by the TCR is called peptide-major histocompatibility complex (pMHC) and
the interaction between the two leads to the biological responses.

In a broader context, understanding TCR-pMHC interactions is crucial for effective im-
mune surveillance, enabling the identification and elimination of pathogens and cancer
cells. It also provides insights into autoimmune diseases where these interactions mal-
function. Crucially, this understanding aids vaccine development, informing the design
of antigens that can be effectively recognized by T cells. Additionally, it supports ad-
vancements in cancer immunotherapy, such as in designing T cell based therapies, and
plays a role in addressing transplant rejection and managing infectious diseases. The
study of TCR-pMHC interactions is pivotal in shaping the approach to various medical
challenges and enhancing healthcare outcomes.

1
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However, the TCRs have an enormous sequence diversity in their complementarity de-
termining regions 3 (CDR3s), similar to antibodies, B cell receptors. The CDR3s of
TCR, found in both α and β chains (CDR3α and CDR3β, respectively), are the most
diverse parts that are produced through somatic recombination. The sequence diver-
sity of peptides in nature as a form of pathogens is immense needless to say, therefore,
CDR’s potential responses with different peptides are almost infinite patterns. Also,
determining protein functions experimentally in the lab can be resource-intensive and
time-consuming, involving many human resources and lab facilities.

Therefore, predicting and confirming TCR-pMHC interaction, primarily involving CDR3-
peptide binding, is difficult, despite its importance. This prediction has the potential to
greatly enhance our understanding of biological processes and mechanisms underlying
diseases, and it could inform strategies for disease treatment and recovery.

1.2 Related previous work on T cell receptor predictions

Generally, experimentally determining protein functions can be challenging due to the
significant resources and the need for various techniques in biochemistry, genetics, and
structural biology. Understanding the functions of proteins is often enhanced by exam-
ining their three-dimensional (3D) structures [2–4], utilizing methods like X-ray crys-
tallography and cryo-electron microscopy. However, these methods are expensive and
require a lot of time.

In response to this challenge, there have been many machine learning (ML) methods
created for TCR-pMHC prediction [2, 5–10]. There also exist researches trying to de-
velop the attention models to predict the TCR-pMHC binding [11–14]. Notably, when
performing predictions of computational models based on cellular assay data regarding
the recognition of pMHC by TCRs, the term, “TCR–pMHC interactions” is appropri-
ate despite the absence of MHC or the non-CDR3 TCR sequence in the computational
model inputs.

The Transformer-related models like BERT [15, 16] are famous for their exceptional
performance and their interpretability [17–19]. They have shown the effectiveness of
the cross-attention mechanism, or source-target-attention, in tasks involving multiple
inputs like machine translation or image-text classification [20–22]. There are studies
in the bioinformatics field using the source-target-attention [23–26]. Additionally, using
cross-attention for two distinct sequences during training is more efficient than applying
self-attention to combined sequences, as the computational load of the Transformer’s
attention escalates quadratically with the input sequence length. However, despite the
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Transformer’s broad usage, there’s a lack of in-depth interpretative analysis for multi-
input tasks like the TCR-pMHC protein complex. Few studies have attempted to use the
Transformer’s source-target-attention model to examine individual residues in CDR3αβ
or peptides, particularly for structural aspects like hydrogen bonds.

For instance, Vig et al.[27] found that attention values are more critical in protein binding
sites after training large models and conducting statistical tests. In contrast to their
approach, my model leverages pairs of CDR3 and peptide, enhancing the modeling of the
relationship. While models like NetTCR-2.0 [5] and ERGO-II [8] show strong predictive
capabilities, they rely on convolutional or recurrent neural networks. PanPep[10] uses
attention but is limited to CDR3β, ignoring key residues of the α chains and interaction
factors related to H-bonds. TCR-BERT[11] considers both α and β chains but lacks
peptide training and attended structural analysis with bonds. AttnTAP[13] applies
attention but without directly using Transformer attention for both TCR and peptide,
and also excludes the α chain. DLpTCR [14] employs ResNet attention but does not
use Transformer attention.

To summarize those models in comparison to this study, I provide a rough view of
the comparison in Table 1.1. The model in this study presents the pivotal difference
of key factors in using Transformer-based attention and its interpretation analysis on
structures, with the data both of peptide binding and α chain.

Table 1.1: Comparison with other models in terms of key factors.

Net-
TCR2.0

ERGO-
II

Pan
Pep

TCR-
BERT

Attn
TAP

DLp
TCR

This
Study

Uses the Trans-
former attention

NO NO YES YES YES NO YES

Uses only the cross-
attention for inter-
actions

NO NO NO NO NO NO YES

Analyzes structures
on each residue

NO NO YES YES NO NO YES

Analyzes structural
features statistically

NO NO YES* YES NO NO YES

Predicts TCR-
peptide binding

YES YES YES NO YES YES YES

Utilizes α chain’s
CDR3

YES YES NO YES NO YES YES

*Although Panpep shows statistical test, no research has been made on Hydrogen bonds
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1.3 Advancing TCR-Peptide interaction analysis; beyond
traditional self-attention to cross-attention

The attention layer proposed in the Transformer [15] represents a great computational
strategy that learns the conditional relationship between the two sequences, namely the
source and target sequences. Although attention mechanisms are widely used in predic-
tion tasks, studies on TCR-peptide interactions have yet to perform statistical analysis
of attention weights. Such analysis could uncover relationships within sequence data
provided another sequence and highlight significant structural features like hydrogen
bonds (H-bonds).

Current approaches predominantly use deep learning models, such as those similar to
BERT, which incorporate attention networks [16–19]. However, I think the self-attention
mechanism in the BERT model, when it comes to the residue binding analysis, holds
a few limitations. Primarily, the BERT attention covers the two sequences of proteins
simultaneously at the same layer, which means the self-attention mechanism of the
BERT model does not specifically focus on mutual interactions. The attention of BERT
is dependent on the two entire sequences, making it harder to analyze the interaction
between the two sequences. Also, it is conceivable that self-attention might predict a
positive result with only a specific TCR part without considering its relationship with
the peptide. In other words, the prediction from those self-attention values may yield a
positive value due to only the self-coincidence relationship inherent to a sequence, using
only one side of the information. When one gets a largely attended TCR residue from
the self-attention approach of concatenated TCR-peptides analysis, that attention might
be due to only TCR side information of TCR-TCR attention weights. Furthermore, the
numerous stacked layers in BERT and its computational complexity can complicate the
analysis of attention layer results.

Therefore, I have limited the attention mechanism exclusively to the intersecting seg-
ment, overcoming these limitations by employing a modified attention layer, referred
to as a cross-attention layer or a source-target-attention layer [23–26], along with an
extensive analysis of protein structures. Chapter 3 of this dissertation will compare the
standard-attention and cross-attention in terms of their predictive performance. The
cross-attention framework is designed to address the BERT’s limitation, ensuring an
attention analysis of TCR-peptide interactions.
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1.4 Contribution of the dissertation

In this thesis, by summarizing the published research [1], I aimed to contribute to the
TCR research regarding two key points: providing the very competitive prediction model
on TCR-pMHC benchmark datasets and revealing relationships between the attention
weights and protein structural properties.

The model demonstrated superior performance on benchmark datasets in our previous
article [1], particularly when evaluated using the average precision score which is more
appropriate for assessing datasets with few positive samples than the ROCAUC score.
Additionally, while I acknowledge the limitations in generalizing my model to unseen
data, such challenges are not exclusive to my approach but are also present in other
models.

A key contribution in the previous work [1] was the application of statistical tests to
attention values in protein structures. By performing statistical tests on the attention
values over the complex structures, the previous work [1] successfully identified statis-
tically significant structural properties of largely attended residues such as hydrogen
bonds and residue distance. This statistical test on attention values was only possible
because I used the source-target-attention neural network as the source-target-attention
pays attention to a sequence given the other side. The modified cross-attention layer pro-
vides clearer insights into the binding relationship between TCR and peptides, avoiding
the interpretability issues seen in standard-attention models like BERT.

In this dissertation, I included Chapter 3 in addition to the previous work [1], where
I improved the previous model by changing the hyperparameters, compared the cross-
attention model with the standard Transformer encoder, and included more PDB struc-
tures to analyze the attention weights. In summary, my approach not only advances
TCR-pMHC interaction prediction but also enhances the interpretability of these predic-
tions, linking them to structural protein properties in a way that has not been previously
explored. This should advance the research of molecule recognition and the design of
new therapeutics.

1.5 The main objective of this dissertation

This dissertation aims to develop a new computational methodology for TCR-pMHC
interaction analysis. Distinct from existing research, it focuses on developing a method
that integrates CDR3α, CDR3β, and peptide sequences. Also, it can provide detailed
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residue-wise structural analysis. This approach leverages a Transformer-based attention
mechanism applied to sequence data.

I hypothesize that the attention layer can accurately predict TCR-pMHC interaction
and provide interpretable biological insights about the CDR3-peptide binding, or TCR
function. To achieve this objective, I propose a model, Cross-TCR-Interpreter, which
uses the cross-attention layers for predicting TCR-pMHC interaction, the binding be-
tween a peptide and CDR3 regions of both the α and β chains.

Following this introduction, Chapter 2 presents our previously published work [1], which
lays the groundwork for this research. Chapter 3 delves into a comparative analysis be-
tween self-attention and cross-attention mechanisms, exploring the advantages of the
cross-attention model in the context of TCR-pMHC interaction prediction. The disser-
tation ends with the conclusion chapter, which synthesizes the findings and implications
of this research.



Chapter 2

Transformer-based model for
predicting TCR-peptide binding
and interpretability

This chapter is based on our paper “Attention network for predicting T cell receptor-
peptide binding can associate attention with interpretable protein structural properties”
[1], for which I am the first author. This journal’s editorial office has confirmed that, as
an author, I retain the copyright for the article including images and I am free to use it
in the dissertation. To maintain the academic standards of this work, the contents of the
paper are appropriately adapted and integrated within the context of this dissertation.
This approach ensures continuity in the narrative and alignment with the broader themes
and objectives of my research.

2.1 Abstract

Understanding the way a T cell receptor (TCR) identifies its corresponding ligand pep-
tide is key to gaining insight into biological processes and the mechanisms behind dis-
eases. However, experimentally analyzing interactions between TCR, peptide, and ma-
jor histocompatibility complex (TCR-pMHC) is both costly and time-consuming. In
response, computational techniques have been developed. Yet, these are usually only
assessed through internal retrospective validation, and few have integrated and exam-
ined an attention layer from language models in the context of structural data.

7
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Therefore, in this research, I developed a machine learning (ML) model using an adapted
version of the Transformer, a source-target-attention neural network, to predict the in-
teraction of TCR-pMHC using just the amino acid sequences of TCR’s complementarity-
determining region (CDR) 3 and the peptide.

The model exhibited competitive performance on both benchmark TCR-pMHC datasets
and a new external prospective dataset. Furthermore, I associated the neural network’s
weights with the structural attributes of proteins. By categorizing residues into groups
of high and low attention, I uncovered statistically significant characteristics linked to
residues receiving large attention values, like hydrogen bonds within the CDR3. The
creation of this dataset and the model’s capacity for providing interpretable predictions
of TCR-peptide binding are steps forward in enhancing our understanding of molecular
recognition and could lead to the development of novel therapeutic solutions.
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2.2 Introduction

In this chapter, I introduce our previously published work [1], focusing on the inter-
pretability of the Transformer models of the T cell receptor (TCR). The TCR, serving
as a crucial antigen receptor, is primarily composed of α and β chains. It has a re-
markable sequence diversity in its complementarity-determining region 3 (CDR3). The
CDR3 region of the TCR, located in both the α and β chains (referred to as CDR3α and
CDR3β), is remarkably diverse and plays a crucial role in identifying antigenic peptides
presented by the major histocompatibility complex (MHC) molecule.

This chapter describes a computational method that can incorporate the protein se-
quence pairs of CDR3α, CDR3β, and peptide while enabling a residue-wise structural
analysis and leveraging a Transformer-based [15, 16] attention mechanism on the protein
sequences. I hypothesize that an attention-based neural network can accurately predict
TCR-peptide binding and provide interpretable biological insights into the TCR func-
tion. I should be able to answer the question of why the interaction happens based on two
amino acid sequences. To achieve the interpretation purpose, I created a cross-attention-
based model using Transformer encoders. I tested the models on benchmark test sets, a
prospective test dataset that is chronologically distinct from the training dataset, and a
test dataset derived from a study on Covid-19. The attention weights with crystal struc-
tures were analyzed to see any meaningful features on amino acid residues and a paired
t-test was conducted to see any property difference between the attended residues and
not-attended residues. Also, the input perturbation method was utilized to analyze the
effect of the change on the input CR3 sequences of attended residues, where I changed
the input CR3 sequences and observed any changes in attention values.

2.3 Method

2.3.1 Model of this study

An overview of the models used in this chapter is shown in Figure 2.1, which is the
same as the model Cross-TCR-Interpreter from our previous paper [1]. In the model
overview depicted in Figure 2.1, the sequences of the peptide and the connected CDR3α
and CDR3β (linked by a colon “:”) were processed independently in the embedding
layer and Transformer. These layers were designed to extract the sequence information
independently in a way not related to each other. They were then fed into a specially
designed cross-attention layer for predicting sequence relationships. Two cross-attention
layers were utilized to form a layer focused solely on mutual interactions, allowing the
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model to assess their relationship. The outputs from the cross-attention layer were
merged and then averaged across their length in the output layer. It’s worth noting that
in Chapter 3, the cross-attention layers will be substituted with a standard-attention
layer as an ablation and comparative model study. A multi-layer perceptron (MLP)
layer produces a prediction value in the form of a real value, termed the confidence
value, ranging from 0 to 1. In contrast, an actual binding data point was stored as a
binary value, either 0 or 1. Therefore, the loss function employed was Binary Cross
Entropy (BCE), and the output of the model was assessed using both the ROCAUC
score and the average precision score.

The model processes only the amino acid sequences of CDR3α, CDR3β, and peptide,
focusing on the CDR3s rather than the full TCR sequences. It does not incorporate
additional data like gene types. I believe relying purely on sequence data, without the
inclusion of domain-specific expertise such as gene or MHC information, is crucial for
mimicking interpretability, closely mirroring the natural binding processes of CDR3.
The sequences of CDR3 and peptides were encoded using the standard 20 amino acids.
Additionally, positional embeddings and padding tokens were integrated into these se-
quences. Padding at the end of each sequence was performed to ensure the lengths of
each CDR3 sequence aligned with the maximum sequence length in the training data;
hence, each CDR3α had the same length. This was also performed for CDR3β and
peptide. The maximum length and the minimum length for the datasets used in this
study are provided in the Results section.

2.3.2 Training and test datasets preparation for sequences

In the realm of TCR-pMHC interaction prediction, particularly concerning CDR3s and
peptide binding datasets, I utilized the same datasets as the study [1]. They used The
ERGO-II repository [8], which incorporates McPAS [28] and VDJdb [29]. Additionally,
I independently sourced and compiled a more recent version of the VDJdb and Covid-19
datasets [30].

In more detail, the sequence datasets used for this dissertation include:

• McPAS and VDJdb-without10x as benchmark datasets (training set
and test set): These foundational datasets, McPAS and VDJdb (excluding 10x
genomics data, termed VDJdb-without10x), were obtained from the ERGO-II
repository. Both datasets comprised training and test sets and encompassed a
mix of positive and negative TCR-pMHC interactions.
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Figure 2.1: Overview of the Cross-TCR-Interpreter model, which is reproduced from
our published paper [1]. The sizes of data tensors are displayed. The cross-attention
layers, located centrally in the diagram, underwent analysis with structural data fol-
lowing training on sequence data. Each embedding layer is designed to receive amino

acid sequences as input.

• Combined data dataset (training set): To develop a more extensive dataset
for model training, I assembled a merged dataset, referred to as the “combined
data”. This dataset combined VDJdb-without10x, VDJdb with the 10x genomics
data (VDJdb-with10x), and the McPAS dataset. This dataset was instrumental
in training the model for subsequent evaluation against the Covid-19 dataset and
the recent data test set.

• Recent data test set (test set): Aiming to validate the model’s performance
on novel and unseen data, I applied the model trained on the combined data to a
recent test set from VDJdb downloaded in 2023. To accommodate the dataset’s
predominantly positive TCR-pMHC interactions, I included randomly selected
negative TCR-pMHC pairs. This approach was pivotal in assessing the model’s
predictive accuracy on the latest TCR-pMHC interactions in the realistic setting.

• Covid-19 dataset (test set): As the last and most stringent dataset to provide
the assessment of the combined-data-trained model, I created a dataset derived
from the Covid-19 study[30]. This dataset poses a significant challenge to the
model that was trained using the combined data dataset.
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This research, centered on a binary classification framework, necessitated the inclusion
of negative label data for model training. Given that the majority of available TCR and
peptide interaction data are positively labeled, the methodology mirrored the approach
of the ERGO-II method that generated random CDR3-peptide pairs and assigned neg-
ative labels to adjust the positive-negative ratio. Notably, the volume of negative data
incorporated was five-fold that of the positive data. Therefore, each data record com-
prised a tuple of CDR3α, CDR3β, peptide with an assigned binary interaction label.
Data records lacking either CDR3α or CDR3β sequences were excluded from the train-
ing set or from the test set to maintain data integrity and ensure accuracy in binary
interaction labeling.

Furthermore, to avoid data redundancy in the analysis, any CDR3α, CDR3β, peptide
combinations found in both the training and test sets were meticulously removed from
the test set. Despite these efforts, it’s important to note that there may be instances of
repeated CDR3α, CDR3β pairs or individual CDR3 sequences or peptides in both sets.
This occurrence is due to the representation of identical TCRs in both sets, which may
be associated with different peptides. The extent and implications of these potential
duplications within the McPAS and VDJdb datasets are further explored in the Results
section.

2.3.3 Benchmark dataset and experiment

The validity of the cross-attention model was assessed by benchmarking it against estab-
lished datasets, specifically McPAS and VDJdb excluding 10x Genomics data (referred
to as VDJdb-without10x). The performance of the model was compared to that of no-
table benchmark models such as ERGO-II [8] and NetTCR2.0 [5], which utilize both
CDR3α and CDR3β chains. Additionally, models focusing exclusively on the CDR3β
chain, including NetTCR2.0[5], PanPep [10], AttnTAP [13], and DLpTCR [14], were
also considered for comparison. In these datasets, binary labels were attributed to the
pairs of CDR3β and peptides.

The performance of the proposed model was thoroughly evaluated, not just on the
complete test set, but also on a per-peptide basis within the test set. The benchmark
datasets utilized in the ERGO-II study were constructed by integrating assumed negative
instances and subsequently dividing them into training and test datasets. This method,
however, might oversimplify the problem due to the potential overlap of peptides or
CDRs in both training and test datasets.

The process for creating the detailed benchmark dataset of McPAS and VDJdb involved:
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• Step 1: Download the test and training sets from ERGO-II, removing any data
records that lack CDR3α, CDR3β, or peptide.

• Step 2: Exclude from the test set any records with duplicated pairs that appear
in the training set.

During the training phase, the focus was on minimizing the binary cross-entropy for
the benchmark datasets. The model underwent hyperparameter optimization using a
validation dataset. Training ceased if there was no improvement in binary cross entropy
after 10 consecutive updates. The optimal model was then determined based on the
weights that yielded the minimum binary cross-entropy value.

2.3.4 The combined data dataset and the recent data test set

Following the validation of the model’s performance on benchmark datasets, I retrained
the model with a whole dataset referred to as the “combined data” dataset. This dataset
combined McPAS, VDJdb-without10x, and VDJdb-with10x. The objective behind em-
ploying the combined data dataset was to delve deeper into the TCR-pMHC interac-
tions, aiming to clarify the binding dynamics and derive insightful interpretations from
the model.

The use of this combined data dataset was intended to facilitate the learning of re-
lationships between sequences within the attention layer of the model. Notably, the
inclusion of the 10x dataset [31], which was previously excluded from the benchmark
experiments, was a strategic choice. This incorporation aimed to integrate an exten-
sive range of binding-related information into the model, thereby enabling a thorough
analysis of the attention weights in the trained model.

For testing the model, I selected the most up-to-date data from VDJdb, constituting the
“recent data” test set, which comprised data downloaded between 2022 and 2023. In
contrast, the training set consisted of VDJdb data acquired before 2022 and the McPAS
data. Subsequent to data acquisition, the recent data test set was augmented with a
5 times greater volume of negative data records, exclusively sampled from the test set
itself and not from the combined data dataset.

This approach of using the recent data test set aimed to simulate a real-world scenario
where the model undergoes prospective validation, thus evaluating its performance in
a forward-looking manner and non-retrospectively. The process of assembling the com-
bined data dataset and the recent data test set involved the following steps:
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• Step 1: Download data from McPAS, VDJdb-without10x, and VDJdb-with10x
from the ERGO-II repository. Perform concatenation and eliminate records miss-
ing any of the components: CDR3α, CDR3β, or peptide.

• Step 2: Remove any duplicated pairs within the dataset (the combined data
dataset).

• Step 3: Acquire the latest VDJdb data as of June 2023, and construct tuples of
CDR3α, CDR3β, and peptide (forming the recent data test set).

• Step 4: Remove, from the recent data test set, any records with duplicated pairs
that overlap with the training set.

• Step 5: Enrich the recent data test set with fivefold more negative data records.

To describe and understand how diverse the recent data and the combined data dataset
were, the sequence-sequence pairwise distance matrix was calculated using Clustal Omega
software [32] for sequence space analysis. A key distinction between the recent test and
benchmark test sets is the timing of the data split, especially before the addition of
assumed negative samples in the recent data test set. This was to avoid the oversimpli-
fication problem often encountered in such datasets. To illustrate the diversity within
the recent data and the combined data dataset, I conducted a sequence-space analysis
using a pairwise distance matrix calculated via Clustal Omega software [32].

2.3.5 Covid-19 data and experiment

To further assess the real-world applicability of the model trained on the combined data,
I conducted an evaluation using a Covid-19 dataset derived from a recent study [30]. This
experiment aimed to test the model’s accuracy in scenarios where the peptides involved
are previously unknown, akin to the conditions presented by the Covid-19 dataset.

For this purpose, I constructed a simulated dataset using TCR pairs and peptides as-
sociated with the S(Spike) protein from the Covid-19 study. In the original research,
the interaction between these peptides and TCRs was determined through a reporter
cell assay, which involved measuring green fluorescent protein expression indicative of
TCR activation. The peptides in that study were synthesized with a 15-residue window,
shifting by four residues each time.

In my virtual replication, I adjusted this approach to better align with the data charac-
teristics of the combined data dataset. Specifically, I created peptides using a 9-residue
window, which reflects the median peptide length in the combined data dataset and
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shifted by one residue at a time. This ensured no overlap between the peptides in the
combined data dataset and the 9-residue peptides from the Covid-19 dataset.

To quantify and demonstrate the diversity of the peptides within the Covid-19 dataset,
I employed the same sequence-sequence pairwise distance matrix analysis as used for
the combined data dataset. This analysis was instrumental in highlighting the distinct
nature of the Covid-19 peptides compared to those in the combined data dataset.

2.3.6 Hyperparameters

The model’s hyperparameters are fine-tuned using the Optuna package [33] and oprim-
ized by using random 20% of the training records. Apart from hyperparameter tun-
ing, the actual training was carried out on a single A100 GPU node at Osaka Univer-
sity’s SQUID cluster, taking about 3 hours. The inference process was completed on
a 2.6 GHz 6-Core Intel Core i7 CPU, taking roughly 2 hours. The best parameters
are learning_rate = 9.387e-05, d_ff of the final MLP layer = 84, dropout_rate =
7.651e-05, and dim in the model = 256. The repeated count of Transformer layers for
the self-attention layers in Figure 2.1 is two on both sides of the CDR3s and the pep-
tide. The n_head, number of heads in the Transformer encoders is four. The number
of cross-attention layers is one.

For the previously published model [1], the positive weight applied in the Binary Cross-
Entropy (BCE) calculation was 15.0. In terms of sequence length, the maximum lengths
for TCRα and TCRβ were padded to 62, and for the peptide, to 26. While more
extensive and exhaustive searches might yield different outcomes, initial explorations
into pre-training and transfer learning did not result in any significant improvements in
the final score.

2.3.7 Analysis of residues with high attention values using 3D struc-
tural data

Following the model’s training on the combined data dataset, I gained the capability to
extract attention matrices for any given residue. I argue that it makes sense to analyze
the model since I used the data that are correctly predicted. The objective was not to
selectively pick data but to examine and interpret the significant features as identified
by the model.

By categorizing the residues into two groups, those with high and low attention, it
became feasible to examine the attention values in detail. For each head where CDR3s
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were given attention provided by a peptide, the definition of the CDR3s residue indices
of large attention values is Rlarge,h in Equation 2.1.

Rlarge,h =

{
t|max

p
at,p > ā+ γ · σ

}
where h denotes head

and at,p denotes an attention value

of CDR3 residue index t and peptide residue index p.

(2.1)

Rlarge,all = Concath(Rlarge,h) (2.2)

The TCR side attention is described in Equation 2.1. Given a head h in the cross-
attention layer, let Ah be a TCR side attention matrix, with elements at,p. Notably,
in the definition of Equation 3.1,

∑
t at,p can be the one-dimensional all-one vector

having the length of P , the peptide’s length. The one dimensional all-one vector is
(11, 12, · · ·, 1p, · · ·, 1P ). This definition of Ah is the TCR-side attention because each p

assigns the attention to TCRs as a sum of one. The function maxp selects the highest
value along the peptide axis. The symbol ā represents the average of the attention
values in Ah, and σ denotes the standard deviation (STD) of Ah. The factor γ is used
to empirically determine the criteria for classifying values as large or small, as further
detailed in the Results section subsection 2.4.6. For calculating the peptide residues that
received significant attention, I interchanged the notation of t and p. In determining
the residues with less attention, I substituted the in-equation operator with a less-than
symbol (“<”). Equation 2.2 illustrates the highly attended TCR side residues when all
heads are combined.

2.3.8 Analysis of structural data from the Protein Data Bank (PDB)

In this study, I focused on analyzing attended residues by attention using TCR-pMHC
complex structures sourced from the Protein Data Bank (PDB) [34]. To compile rel-
evant TCR structures, I utilized the PDB Search and the SCEptRe server [4], which
specializes in collecting TCR complex structures. The SCEptRe dataset referenced here
was accessed on June 2, 2021. Through this process, 65 structures featuring both α and
β chains were identified, with the Anarci tool [35] being instrumental in extracting the
CDR3 segments of these structures.
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Subsequently, I refined this selection to 55 from 65 structures by applying the lengths
criteria of TCRs and peptide sequences. Within these 55 structures, I identified eight
pairs that shared identical sequences in their CDR3s and peptides. Consequently, the
final analysis was conducted on the distinct sequences of 47 structures. Please note that
the same sequences produce identical attention matrix and y-probability, and the same
sequences would bias the statistical test, thus duplicated sequences were eliminated.

To statistically evaluate the differences between the two groups of residues –those receiv-
ing substantial attention and those that did not –I employed a paired student’s t-test,
also known as a dependent t-test. This statistical method is designed to compare the
means of two interrelated groups. In the context of this research, the TCR-pMHC com-
plex structures served as the subjects for this t-test. The variables tested in the t-test
included properties like the percentage of TCR residues forming hydrogen bonds with
the peptide and whether a particular residue was involved in a hydrogen bond, etc. The
extraction and analysis of these structural properties were facilitated using BioPython
[36] and LIGPLOT [37].

2.3.9 Input perturbation

In an effort to delve deeper into specific instances, I applied the input perturbation
technique, mirroring the same approach used in our prior study [1]. This method is
designed to test the model’s sensitivity to alterations in its inputs, serving as a fine-
grained analysis that enhances the broader insights gained from the paired t-test on
grouped data.

The process of input perturbation entails the strategic substitution of certain amino
acids at key positions with different amino acids and then observing the subsequent
shifts in the model’s prediction and attention values. This approach would be thought
of as a similar approach to the Alanine scan, which examines a specific protein residue
functionality by substituting it with Alanine. Through this method, I evaluated how the
model reacts to changes in the residues that received significant attention. This analysis
provided valuable insights into the dynamics of the model’s predictions and attention
mechanisms in response to these alterations.
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2.4 Result

2.4.1 Overview of the study and types of experiments conducted

Three distinct experiments were conducted to demonstrate the effectiveness of the Cross-
TCR-Interpreter model developed in this study.

The initial experiment involved training and validating the model with established
benchmark datasets. This phase included a comparative analysis of the model’s per-
formance against previously developed models in other studies.

For the second experiment, the focus shifted to external prospective validation of TCR-
pMHC interactions. Here, the model was retrained using the “combined data” dataset
and subsequently validated against two specific datasets: the Covid-19 dataset and the
recent data test set.

The third and final experiment was geared towards elucidating the explainability aspect
of the model. In this phase, the model, trained with combined data, was applied to a
dataset of TCR-pMHC complexes with known 3D structures. This application facili-
tated a detailed statistical analysis of the cross-attention values, shedding light on the
biochemical binding events between CDR3 and peptides. Additionally, input pertur-
bation analysis was incorporated to monitor the changes in attention and y-probability
driven by alterations in the input. This experiment underscored that, although the
model’s training was solely based on sequence data, its predictive capabilities could be
effectively interpreted and augmented using structural data.

2.4.2 The presence of unique element overlap and record-wise overlap
in datasets can account for the difficulties of datasets

I have used the same sequence dataset as the previous research [1]. The key statistics
summary of the sequence datasets are described in Table 2.2. The training records
of benchmark datasets are 19,526 for VDJdb-without10x and 23,363 for McPAS. The
records of test sets are 4,010 for VDJdb-without10x and 4,729 for McPAS with no
duplicated records between the test set and the training dataset. Additionally, the
sequence length for each sequence dataset is described in Table 2.1, and Figure 2.2
shows the distribution of the length for each dataset.

In Table 2.2, the unique counts of CDR3s, peptides, and their combinations are pre-
sented. For example, the McPAS training set contains 23,363 records, comprising 3,181
distinct CDR3s sequences and 316 distinct peptides, with a positive rate of 16.67%. Of
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Table 2.1: Sequence length for each dataset, which is reproduced from our published
paper [1]. For the median and mean, the data record was counted on each record

(=pair) basis. The distribution of the length is provided in Figure 2.2.

Dataset Sequence Max Min Median Mean
McPAS CDR3α 26 6 13 13.27

CDR3β 21 7 14 13.79
Peptide 25 8 9 9.761

VDJdb-without10x CDR3α 22 5 13 13.37
CDR3β 21 8 13 13.76
Peptide 20 8 9 9.462

The combined data dataset CDR3α 26 5 14 13.61
CDR3β 26 7 14 14.37
Peptide 25 7 9 9.520

The Covid-19 dataset CDR3α 20 6 14 13.69
CDR3β 21 10 15 14.60
Peptide 9 9 9 9.00

these sequences, 833 CDR3s and 190 peptides also appear in the test dataset, yet no
identical CDR3-peptide pairs are repeated in the test set. Theoretically, under ideal
circumstances, if every unique CDR3 sequence were paired with every unique peptide,
it would result in 1,005,196 possible combinations (= 3181 · 316). However, due to in-
herent limitations in the available data, this comprehensive pairing is not achieved in
reality.

Moreover, there are minimal duplicated CDR3s and peptides shared between the com-
bined data dataset and both the recent data test set and the Covid-19 dataset. This
lack of overlap in the sequences contributes to the challenge in accurately predicting
TCR-pMHC interactions for the recent data test set and the Covid-19 dataset.

Figure 2.3 and Table A.2 detail the pair-wise duplication in each test dataset. This
duplication means the count of records where either the peptide or CDRs overlap with
those in the training dataset. The data reveals that the test set records of McPAS and
VDJdb-without10x consist primarily of peptides already encountered in the training
dataset. Conversely, 14.8% of the records in the recent data test set include known
peptides, while none of the Covid-19 dataset peptides appear in the combined data
dataset. Both the recent data test set and the Covid-19 dataset predominantly feature
records with CDRs or peptides that have not been seen before.

For example, the McPAS test set contains 4,729 records, of which 4,683 records include
peptides that are already present in the training set, and only 46 records hold entirely
new peptides. In contrast, the recent data test set comprises 33,360 records, but only
4,938 of these include peptides that were seen in the training set.
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Figure 2.2: The distribution of the length for each dataset, which is reproduced from
our published paper [1].

Table 2.2: Statistics of datasets which are reproduced from our published paper
[1]. The “Record” column indicates the unique count of CDR3α, CDR3β, Peptide
pairs, while CDR3αβ refers to the unique count of CDR3α and CDR3β pairs. The “in
duplication” row under the “Unique count” column represents the count of unique data
shared between training and test sets, i.e. overlapped data. The “Pos. Rate” column

specifies the ratio of positive instances in the binary label.

Dataset name Unique count CDR3αβ Peptide Record Pos. Rate
McPAS in training 3181 316 23363 0.1665
McPAS in test 833 190 4729 0.1512
- in duplication b/w training and test 132 171 0 N/A
VDJdb-without10x in training 2902 175 19526 0.1670
VDJdb-without10x in test 689 120 4010 0.1504
- in duplication b/w training and test 111 111 0 N/A
The combined data dataset (A) in training 23299 478 119046 0.1400
The recent data test set (B) in test 33183 838 33360 0.1667
The Covid-19 dataset (C) in test 1676 1265 2120140 1.887 ·10−5

- in duplication b/w (A) and (B) 18 44 0 N/A
- in duplication b/w (A) and (C) 1 0 0 N/A

2.4.3 Superior performance of the model in the benchmark datasets

To evaluate the performance of the model, I used the same training and test datasets as
in the previous research [1] that was inspired by those of ERGO-II [8]. Two benchmark
datasets, McPAS and VDJdb without 10x Genomics data (VDJdb-without10x), were
prepared.

When assessed using both the ROCAUC score and the average precision score, the Cross-
TCR-Interpreter model demonstrated robust and competitive performance in compar-
ison to other models across benchmark datasets, specifically within models based only
on sequence features (Table 2.3).
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Figure 2.3: The pie charts display the proportion and count of test set data records
containing elements previously seen in the training data and unseen elements, as de-
tailed in our published paper [1]. Contrasting with the data outlined in Table 2.2,
these figures represent the counts of test records that share either peptides or CDRs
with the training set. Each pie chart shows the number of test records with duplicated
CDR3 pairs or peptides from the training dataset. ‘Is-in-training’ denotes that the
peptides or CDR3s are from the training dataset, while ‘Not-in-training’ indicates they
are unique to the test set, and not found in the training. The total counts of test data
records for McPAS, VDJdb-without10x, the recent data test set, and the Covid-19 test
set are 4,729, 4,010, 33,360, and 2,120,140 respectively. Displayed in two rows, the
upper row represents peptides and the lower row shows CDR3αβ data. Each column
corresponds to a different dataset, starting from the left with the McPAS test set,
VDJdb-without10x test set, recent data test set, and finally the Covid-19 test set. For
instance, of the 4,729 records in the McPAS test set, 4,683 involve peptides previously
seen in training, while 46 feature entirely new peptides. In terms of CDR3s, 560 out
of 4,729 records involve unseen CDR3s, while the remaining are composed of CDR3s

encountered during training.

While I was able to access the performance metrics for ERGO-II’s top model from
their published research repository, their cessation of weight updates using the test set,
presumably to enhance the utility of their code repository, prevented me from precisely
replicating the predictions of their highest-performing model. This limitation posed a
challenge in conducting an equitable comparison based on average precision.

To further elaborate on the model’s performance, particularly on a per-peptide basis,
I computed and detailed the scores for the eight most prevalent peptides in the test
sets (Figure 2.4). This analysis using the Cross-TCR-Interpreter model revealed that
it holds up well in comparison to the NetTCR2.0[5] model, especially in the context of
per-peptide performance metrics.

Given the significant impact that sequence similarity can have on protein prediction
accuracy, it is crucial to eliminate sequences in the test set that closely resemble those
in the training set. Addressing this, I have included an analysis in the Discussion section
that explores the impact of TCR sequence distance on performance variation.
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Table 2.3: Result of benchmark dataset of McPAS and VDJdb, which is reproduced
from our published paper [1]. APS stands for the average precision score.

Dataset Model Features in addition to pep-
tides

ROCAUC APS

McPAS Cross-TCR-
Interpreter [1]

CDR3s of α and β chains 0.9154 0.6211

NetTCR2.0 CDR3s of α and β chains 0.9204 0.5808
PanPep CDR3 Sequence of β chain

with biochemical features
0.8374 0.4519

AttnTAP 1 CDR3 Sequence of β chain 0.840 -
DLpTCR 1 CDR3 Sequence of β chain 0.633 -
ERGO-II, LSTM 2 CDR3s of α and β chains 0.855 -
ERGO-II, LSTM 2 CDR3s of α and β chains, VJ

genes and MHC Type
0.939 -

VDJdb Cross-TCR-
Interpreter [1]

CDR3s of α and β chains 0.9445 0.7600

NetTCR2.0 CDR3s of α and β chains 0.9492 0.7262
PanPep CDR3 Sequence of β chain

with biochemical features
0.9009 0.6435

AttnTAP 1 CDR3 Sequence of β chain 0.894 -
DLpTCR 1 CDR3 Sequence of β chain 0.622 -
ERGO-II, LSTM 2 CDR3s of α and β 0.800 -
ERGO-II, LSTM 2 CDR3s of α and β chains, VJ

genes and MHC Type
0.866 -

1. The numbers were derived from the AttnTAP paper because my implementation only achieved a maximum AUC value of 0.6.
Hence, to avoid potential misinterpretation due to poor scores, I have opted not to display the average precision score in this context.

2. The scores for ERGO-II’s best model were obtained directly from their research paper.
Their ROCAUC for McPAS and VDJdb were 0.939 and 0.866, respectively.
However, their ceased weight updates prevented me from replicating their top-performing model’s predictions accurately,
thus hindering a comparison on the average precision.

2.4.4 The models exhibit limited performance in the recent data test
set

Subsequent to establishing the model’s performance, I undertook the retraining of the
model using a combined dataset, hereafter referred to as the “combined data dataset,”
which included both McPAS and the complete VDJdb along with the 10x Genomics
dataset [31]. The model, having been trained with the combined data, was then ap-
plied to the most recent dataset, termed the “recent data test set,” to evaluate their
performance in real-world TCR-pMHC interaction prediction scenarios.

The aim of using the combined data dataset was primarily to discover pertinent re-
lationships and closely emulate the binding dynamics of TCR-pMHC interactions or
CDR3-peptide binding. However, as indicated in Table 2.4, the majority of the models,
including mine, struggled to surpass a 0.55 ROCAUC score with the purely recent data
dataset, unlike in the benchmark tests where the models achieved 0.9 ROCAUC. This
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Figure 2.4: Performance comparison of two models on the frequent peptide subsets
(Reproduced from our published paper [1]). (A) The number of records for each peptide,
(B) the positive rate inside the records (the ratio of positively recorded CDR3αβ), and
(C) the average precision scores (AP) of Cross-TCR-Interpreter [1] and the NetTCR2.0

model on the benchmark test set of McPAS.

limitation can be attributed to the challenges posed by the inclusion of records with
previously unseen CDRs or peptides.

After the training, the Cross-TCR-Interpreter model achieved an ROCAUC score of
0.952 and an average precision of 0.7952 on the training dataset. Yet, when applied
to the recent data test set (Table 2.4), there was a noticeable drop in performance,
with the ROCAUC and average precision decreasing to 0.5362 and 0.1855, respectively.
However, as also discussed in [1], when the test set was limited to known peptides, there
was a relative improvement in average precision, rising to 0.3318 (Table 3.2). Conversely,
focusing solely on new peptides unseen in the training dataset led to a further decline
in average precision to 0.1707.

This trend of underperformance was not exclusive to the Cross-TCR-Interpreter model;
other models like NetTCR2.0 and PanPep exhibited similar challenges in the recent
data test set and its subcategories. In the case of the PanPep model, despite its zero-
shot setting for unseen peptides and a majority setting for known peptides, the average
precision score only slightly improved. The performance for the test data subset of
known peptides was even lower than for the new peptide subset.

These findings highlight that, despite advances, the current computational models, in-
cluding this research, are still not sufficient to replace wet lab experiments fully. It



24

underscores the significant hurdle in accurately predicting CDR3-peptide interactions
involving peptides that were not present in the training dataset.

Table 2.4: Result of the recent data test dataset (Reproduced from our published
paper [1]). APS stands for the average precision score.

Model Dataset ROCAUC APS Number of
data records

Pos. Rate

Cross- Recent data test set 0.5362 0.1855 33360 0.1667
TCR-

Interpreter
- Recent data test set of
new peptide subset

0.5085 0.1707 28422 0.1662

- Recent data test set of
known peptide subset

0.6598 0.3318 4938 0.1692

- Recent data test set of
new CDR3s subset

0.5355 0.1844 33335 0.1660

NetTCR2.0 Recent data test set 0.5274 0.1808 33360 0.1667
- Recent data test set of
new peptide subset

0.5113 0.1705 28422 0.1662

- Recent data test set of
known peptide subset

0.6327 0.3008 4938 0.1692

- Recent data test set of
new CDR3s subset

0.5267 0.1798 33335 0.1660

PanPep * Recent data test set 0.5337 0.1897 30221 0.1745
- Recent data test set of
new peptide subset

0.5359 0.1908 25661 0.1739

- Recent data test set of
known peptide subset

0.5199 0.1852 4560 0.1779

- Recent data test set of
new CDR3s subset

0.5374 0.1923 29145 0.1752

The scores for the test set comprising only known CDR3s could not be computed as all the data records are positive.
However, when setting a threshold at 0.5, the model achieves a recall score of 0.56, in comparison to NetTCR2.0’s score of 0.44 and PanPep’s 0.59.
* The datasets in the Cross-TCR-Interpreter and NetTCR2.0 were identical, but the dataset utilized in PanPep was different due to its exclusive

use of CDR3β. Consequently, by eliminating duplicates of the β chain CDR3 from the test set, the number of data records was reduced.

2.4.5 The Cross-TCR-Interpreter model does not exhibit satisfactory
performance for the Covid-19 dataset

This subsection assesses the Cross-TCR-Interpreter model’s performance in dealing with
novel peptide scenarios, using the recently released Covid-19 dataset [30] as a test case.
The model, trained with the combined data, was applied to gauge its capability in
accurately predicting TCR-pMHC interactions in a practical scenario. As outlined in
the Methods section, this dataset involved peptides from SARS-CoV-2 proteins, each
featuring a 9-residue length, and generated by shifting one residue at a time. It is
important to note that none of the peptides in the Covid-19 dataset were included in
the combined data dataset.
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The total number of data records was 2,120,140, of which 2,120,100 were negative data
records and only 40 data records were positive. In the 2,120,140 data records, there
were 1,676 unique CDR3 alpha-beta pairs and 1,265 unique peptides (1, 676 · 1, 265 =

2, 120, 140, shown in Table 2.2). Out of the 40 positive records, I found 10 unique
CDR3αβ pairs and 24 unique peptides. Consequently, this means that the remaining
200 records, composed of these specific CDR3s and peptides, are classified as negative
records (10 · 24− 40 = 200).

By maximizing the F1-score of this prediction task, the model achieved a precision of
2.501 · 10−5, and a recall of 0.600. The confusion matrix revealed 24 True Positives, 16
False Negatives, 959,512 False Positives, and 1,160,588 True Negatives. The calculated
ROCAUC score stood at 0.5461, and the average precision score was a mere 2.032×10−5.
Considering the exceedingly low occurrence rate of positive records at 1.887× 10−5 (=
40/2120140), the model demonstrated an ability to identify positive records only 1.326
times (= 2.501/1.887) more effectively than random chance. However, the specificity
of the model was insufficient to consider it a viable alternative to traditional wet lab
experiments.

Table 2.5: PDB identifiers of structural data. The third row shows the 39 PDB IDs
used in the attention analysis.

55 PDBIDs prior
to processing

1D9K, 1FYT, 1J8H, 1LP9, 1U3H, 2BNQ, 2BNR, 2ICW,
2J8U, 2NX5, 2UWE, 2VLJ, 2VLK, 2VLR, 2YPL, 2Z31,
3MBE, 3MV7, 3MV8, 3MV9, 3PQY, 3QIU, 3VXR, 3VXS,
3VXU, 3W0W, 4JFD, 4JFE, 4JRX, 4JRY, 4MJI, 4OZF,
4OZG, 4OZH, 4P2O, 4P2Q, 4P2R, 4QOK, 4Z7V, 5BRZ,
5D2L, 5ISZ, 5KS9, 5MEN, 5NHT, 5TEZ, 5WKF, 5WKH,
5WLG, 6AVF, 6AVG, 6EQA, 6EQB, 6Q3S, 6RPB

47 PDBIDs hav-
ing no duplicated
sequences

1D9K, 1J8H, 1U3H, 2BNR, 2ICW, 2J8U, 2NX5, 2VLK,
2VLR, 2YPL, 2Z31, 3MBE, 3MV8, 3PQY, 3QIU, 3VXR,
3VXS, 3VXU, 4JFD, 4JFE, 4JRX, 4JRY, 4MJI, 4OZF,
4OZG, 4OZH, 4P2O, 4P2Q, 4P2R, 4QOK, 4Z7V, 5BRZ,
5D2L, 5ISZ, 5KS9, 5MEN, 5NHT, 5TEZ, 5WKF, 5WKH,
5WLG, 6AVF, 6AVG, 6EQA, 6EQB, 6Q3S, 6RPB

39 PDB IDs hav-
ing positive pre-
dictions

1D9K, 1J8H, 1U3H, 2BNR, 2J8U, 2NX5, 2VLK, 2VLR,
2YPL, 2Z31, 3MBE, 3MV8, 3PQY, 3QIU, 3VXR, 3VXS,
3VXU, 4JFD, 4JFE, 4JRX, 4JRY, 4MJI, 4OZF, 4OZG,
4OZH, 4P2O, 4P2Q, 4P2R, 4QOK, 4Z7V, 5D2L, 5MEN,
5NHT, 5TEZ, 5WKF, 5WKH, 6EQA, 6EQB, 6Q3S

9 PDB IDs that
are not in the
combined data
dataset

2J8U, 3VXU, 4JFD, 4QOK, 4JFE, 5NHT, 5MEN, 6EQA,
6EQB
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2.4.6 Structural data categorized residues based on their level of at-
tention, into groups of highly attended and less attended ones

While I didn’t achieve perfect generalizability, I focused on interpreting the model using
39 complex structures where the model showed adequate performance for analysis. As
outlined in the Methods section, I began by selecting 47 TCR-related structures from the
SCEptRe server. Out of these, the model identified 39 as showing positive TCR-pMHC
interactions, based on a cutoff point of 0.5.

Interestingly, 30 of these 39 structures had sequences that were also present in the
combined data dataset. My analysis particularly concentrated on these 39 cases, as
I believed the model’s predictions and interpretations to be reliable for them. This
approach is somewhat akin to performing a regression analysis where I explore the
influence of certain variables on the outcome, with the aim here being to pinpoint key
features that the model recognizes, specifically the characteristics of the most focused-on
amino acid residues.

Detailed information about these 39 structures is provided in Table 2.5. For this analysis,
there are 39 PDB IDs involved. Of these, 9 were not part of the combined data dataset,
while the remaining 30 were included.

I defined the attention values as “large” if they were higher than the average (MEAN)
plus 5.5 times the standard deviation (STD) for the peptide side and MEAN plus 4.5
STD for the TCR side. These numbers, 5.5 and 4.5, are referred to as γs in Equation 2.1.
Using this method, I identified about 20% of the residues as having large attention
values on each side. The thresholds were determined through empirical evaluation, and
the residue count generated by changing γ is provided in the Appendix. For each PDB
entry or head, the threshold for what counts as large attention can be different. You can
find more about how I picked these thresholds and the number of residues they identified
in the Appendix.

I carried out this analysis for each of the four heads in the cross-attention layer (heads
0 to 3) of both the TCR and the peptide, looking at each head on its own. The cross-
attention layer works between a sequence of CDR3αβ and a peptide. This creates an
attention matrix, the size of the lengths of the peptide and the CDR3αβ residues. It’s
possible for a specific residue to get attention in one head but not in others, as shown
in Equation 2.1.

For example, in our previous work [1], I looked at the attention values for the TCR-
pMHC complex with the PDB entry 5TEZ. You can see this as eight heatmaps in
Figure 2.5. The 5TEZ structure includes MHC class I HLA-A2, influenza A virus, and
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TCRs [38]. I highlighted the residues getting a lot of attention in different colors. In
Figure 2.6, you can see the 3D structure of this TCR-pMHC complex. The peptide,
CDR3α, and CDR3β sequences for this complex are GILGFVFTL, CAASFIIQGAGKLVF, and
CASSLLGGWSEAFF, respectively.

Figure 2.5: Example visualization of attention values for PDB ID 5TEZ [38] as
reproduced from our published paper [1]. (A) The upper figures display attention values
of a peptide provided a CDR3αβ pair, normalizing the sum to 1 across the peptide.
The X-axis indicates the peptide residues, and the Y-axis shows CDR3 pair residues.
(B) The lower portion reflects the attention of a CDR3 pair provided a peptide, also
normalized to sum to 1 across the CDR3s. Here, the X-axis denotes CDR3 residues, and
the Y-axis corresponds to peptide residues. Both visualizations ensure the attention
sum over the x-direction equals 1. Each column in the four columns corresponds to one
head in the multi-head attention layer. The color scale ranges from dark blue for lower
attention values to bright yellow for higher values, with green indicating intermediate
values. The lower image shows a specific cell of the first head (the leftmost figure) at
the intersection of peptide position L8 (the last row) and CDR3β position W24 (sixth
column from the right), indicating the significance of CDR3 W24 when associated with
peptide L8. Its bright yellow color suggests a high attention value, indicating these
residues might have an important biological role during prediction. This value exceeds
the set threshold of MEAN + γ STD, which is individually determined for each PDB

ID and each head.

2.4.7 Statistical analysis shows largely attended residues form H-Bonds
with CDR3

I classified TCR residues into two categories, “large” and “small” attention groups,
based on their attention values. This was done using the γ factor of 4.5 as mentioned in
Equation 2.1, particularly for the TCR residues’ cross-attention when given a peptide.
To understand the characteristics of these groups, I looked at their structural properties.
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Figure 2.6: The visualization highlights attended residues in the TCR interacting
with an influenza virus epitope and HLA complex (PDB ID: 5TEZ), with the CDR3
sequences of TCRα and β being CAASFIIQGAQKLVF and CASSLLGGWSEAFF respectively,
as reproduced from our published paper [1]. The left image (A) depicts the overall
structure of the complex, while the right image (B) zooms in on the interactions in-
volving largely attended residues: VAL104 (14th Val(V) of TCRα), GLN101 (11th
Gln(Q) of TCRα), and TRP99 (9th Trp(W) of TCRβ chain). The TCRα chain is
colored wheat, the TCRβ chain in light-blue, the CDR3 of TCRα in light-pink, and the
CDR3 of TCRβ in pale-cyan. The largely attended residues in CDR3α and CDR3β
are highlighted in magenta and cyan respectively, with MHC in grey. These residues
and their interacting partners are shown as sticks and hydrogen bonds are illustrated
with yellow dotted lines. VAL104 forms two hydrogen bonds with TCRα’s ALA93 (3rd
Alanine Ala(A) of TCRα), contributing to the stability of the CDR3 loop conforma-
tion. GLN101 forms a hydrogen bond with TCRα SER94, which in turn is bonded to
TCRβ, helping to maintain the structure between the α and β chains. Both GLN101
of TCRα and TRP99 of TCRβ form hydrogen bonds with the epitope. The figure was

generated using PyMol [39].

To check for differences between these groups, I used a paired t-test. This test helped
remove variations that might come from each structure’s unique features. For this,
39 TCR-pMHC complex structures were studied, comparing the structural properties
linked to both large and small attention groups. The paired t-test aimed to test whether
the average difference between these pairs was zero. The test value, like the likelihood
of being H-bonded to any peptide residue, was calculated using a formula where P =

Ah/Bh, with Ah being the number of residues with at least one H-bond of the specified
type within the large attention group, and Bh being the number of residues of large
attention values, where h denotes the head.

Each of the four heads was analyzed separately, and they showed varying results. The
combined results for all heads are in Table 2.6. The individual results for each head are
also reported in the Table A.3 and Table A.4 of the Appendix. Since a TCR sequence
includes both CDR3 and non-CDR3 parts, I divided the residues into these two categories
to measure H-bond properties.
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The residues with large attention values often form hydrogen bonds with CDR3 sections
of their chain. However, their likelihood of hydrogen bonding with other TCR residues
isn’t significantly different from less attended residues.

Consequently, those observations indicate that the residues with large attention values
tend to avoid hydrogen bonding with the non-CDR3 portions, compared to the residues
with small attention values. The most notable difference across all attention heads was
observed in the proportion of hydrogen bonds formed with non-CDR3 TCR residues.
Residues with high attention values showed a tendency to avoid hydrogen bonding with
non-CDR3 regions of the TCR. This indicates that the highly attended residues are
more likely to avoid the H-bonded to the non-CDR3 part of TCR, whereas they tend to
form H-bonds with the CDR3 portions.

To avoid pitfalls associated with multiple p-values in the statistical analysis, I executed
the Benjamini Hochberg (BH) procedure and adjusted the p-values. Here, the False
Discovery Rate (FDR) for BH represents the likelihood of incurring a Type I error
among all rejected null hypotheses. At an FDR threshold of 0.05, only the “H-bonded
to any non-CDR3 TCR residue” hypothesis was rejected, demonstrating the rigor of this
threshold. While many assertions in my study might be substantiated when considering
average metrics, they may not attain statistical significance at this level. Meanwhile,
modifying FDR to 0.1 led to the rejection of two hypotheses: “H-bonded to any non-
CDR3 TCR residue” and “H-bonded to any CDR3 residue of own chain”, which was
additionally highlighted by the symbol “**” in Table 2.6. Further increasing FDR to
0.15 expanded the rejections to four hypotheses, adding “H-bonded to any CDR3 residue
of opposite chain” and “H-bonded to any CDR3 residue”, which are designated by “*” in
Table 2.6. Collectively, these statistical evaluations lend support to the hypothesis that
attended residues significantly avoid H-bonds with non-CDR3 TCR regions, favoring
H-bonds within the CDR3 regions.

Contrary to expectations, there was no significant difference in the proportion of highly
attended TCR residues forming hydrogen bonds with any peptide residues across all
attention heads. This unexpected finding was surprising, adding value to the analy-
sis. Additionally, when examining the closest distances between TCR residues and any
peptide residues, no notable differences were observed.

On the peptide side, as shown in Table 2.7, residues with large attention values demon-
strated shorter distances to the nearest TCR residues. This pattern, intriguingly, did
not appear on the TCR side, though the findings were not statistically significant. This
observation introduces an interesting structural dimension to the study.
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Table 2.6: TCR-side attention analysis (Reproduced from our published paper [1]).
Comparative analysis of structural properties between the residue groups receiving large
and small attention is presented. The p-adjusted column shows the adjusted p-value
by the Benjamini Hochberg (BH) procedure. The symbol “***” denotes the significant
difference based on a False Discovery Rate (FDR) of 0.05 in the BH procedure; the
symbol “**” indicates significance with the FDR of 0.10; the symbol “*” indicates the
FDR of 0.15. The numbers in the Large Attention or Small Attention columns are the

average and standard deviation.

Property Large
Atten-
tion 1

Small
Atten-
tion 1

p-value p-
adjusted

H-bonded to any pep-
tide residue

0.0862
±0.1368

0.0805
±0.0675

0.828 0.9108

H-bonded to any
CDR3 residue

0.4846
±0.2216

0.4103
±0.1040

0.0478 0.1315 *

H-bonded to any non-
CDR3 TCR residue

0.2940
±0.1923

0.4672
±0.0846

3.880e-05 4.268e-04 ***

H-bonded to any
TCR residue

0.6845
±0.1650

0.7294
±0.0880

0.0987 0.2145

H-bonded to any
CDR3 residue of own
chain

0.4643
±0.2180

0.3752
±0.0922

0.0107 0.05885 **

H-bonded to any
TCR residue of own
chain

0.6013
±0.1999

0.6561
±0.0880

0.117 0.2145

H-bonded to any
TCR residue of
opposite chain

0.1679
±0.1714

0.1497
±0.0793

0.562 0.7199

H-bonded to any
CDR3 residue of
opposite chain

0.0306
±0.0857

0.0672
±0.0743

0.0369 0.1315 *

In the edge 2 0.6434
±0.2064

0.5928
±0.0570

0.218 0.3426

Closest distance to
peptide (Å) 3

8.4072
±2.2892

8.4122
±0.9592

0.988 0.988

Number of H-bonds
formed 3

2.0234
±0.9370

2.0875
±0.6685

0.589 0.7199

1. Mean and standard deviation (for the 39 structures) of the proportion of residues that satisfy the property shown in the first column.
2. Four residues from the beginning and four from the end of the CDR.
3. In the last two properties, per-residue averages were used instead.

2.4.8 Influence of attended residues on model behaviors: analyzing
through input perturbation method

In this subsection, the focus is on understanding how changes in input sequences influ-
ence prediction outcomes and attention metrics, a method detailed in our earlier work
[1]. This technique was utilized on the training data, PDBID 5TEZ. Additionally, this
method was adapted for a mutation study not included in the training data, as described
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Table 2.7: Peptide side attention analysis (Reproduced from our published paper [1]).
Comparative analysis of structural properties between the residue groups receiving large
and small attention is presented. The p-adjusted column shows the adjusted p-value

by the Benjamini Hochberg procedure.

Property Large
Atten-
tion 1

Small
Atten-
tion 1

p-value p-
adjusted

H-bonded to any pep-
tide residue

0.0495
±0.1443

0.0659
±0.1206

0.458 0.56

H-bonded to any
CDR3 residue

0.2050
±0.3024

0.1682
±0.0982

0.48 0.56

H-bonded to any
TCR residue

0.3401
±0.3714

0.2372
±0.1184

0.151 0.3523

H-bonded to any non-
CDR3 TCR residue

0.1712
±0.3112

0.1118
±0.1283

0.355 0.56

In the edge 2 0.4459
±0.4097

0.5874
±0.1232

0.0795 0.3523

Closest distance to
peptide (Å) 3

4.6398
±1.7149

5.1926
±1.2647

0.141 0.3523

Number of H-bonds
formed 3

2.1126
±1.4959

2.0031
±0.9051

0.668 0.668

1. Mean and standard deviation (for the PDB structures) of the proportion of residues that satisfy the property shown in the first column.
2. Three residues from the beginning and three from the end of the peptide.
3. In the last two properties, per-residue averages were used instead.

in [40]. This research involved altering the CDR3 β loop sequence in A6-TCR and eval-
uating its binding efficacy with the TAX peptide, derived from Human T cell leukemia
virus type I associated with MHC class I HLA-A2. The sequences and their resulting
structures, pre and post-mutation, were documented in the PDB with IDs PDBID 1AO7
(pre-mutation) and PDBID 4FTV (post-mutation).

For the PDB structure 5TEZ, three residues were identified with large attention values:
the 11th Gln(Q) and 14th Val(V) in CDR3α, and the 9th Trp(W) in CDR3β (as shown
in Table 2.8). I evaluated the impact on predictions and attention values when these
residues were replaced with different amino acids. The CDR3α sequence in 5TEZ is
CAASFIIQGAQKLVF, and the CDR3β sequence is CASSLLGGWSEAFF. Notably,
while the 11th Gln(Q), 14th Val(V), and 9th Trp(W) all participate in H-bond formation,
only the 14th Val(V) of the α chain creates two H-bonds within the TCR’s own CDR3
chain.

Substituting the 14th Val(V) in CDR3α significantly influenced predictions, usually
dropping the “unbound”prediction below 0.9 (Figure 2.7), likely due to this residue’s
dual H-bonding within the CDR. Changes to the 11th Gln(Q) in α had less impact, while
modifications to the 9th Trp(W) in β altered predictions but still maintained positive
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outcomes with various amino acid substitutions. These findings, further corroborated by
Figure 2.6, suggest the importance of internal H-bonding in CDR3 for peptide binding.

In the structures of 1AO7 (pre-mutation) and 4FTV (post-mutation), a previous study
[40] observed that altering four residues in the CDR3β chain of the TCR improved
peptide binding by nearly a thousand times. My analysis focused on how these mutations
affected predicted y-values, particularly in these two structurally modified examples.
As detailed in Table 2.8, 1AO7 and 4FTV share the CDR3α sequence CAVTTDSWG.
However, CDR3β differs between them: in 1AO7, it is CASRPGLAGGRP, and in 4FTV,
it is CASRPGLMSAQP. The mutation in 4FTV changed residues 8-11 from AGGR to
MSAQ, notably enhancing binding affinity. Interestingly, the Cross-TCR-Interpreter
model focused on the mutated 10th Ala(A) and 11th Gln(Q) in the β chain, predicting
both as positive. The study [40] also noted that the mutation resulted in one fewer
hydrogen bond with the peptide, yet overall affinity increased, hinting at indirect factors
contributing to binding beyond TCR-peptide H-bonds. This observation supports my
assertion that CDR3’s internal H-bonded structure is crucial for peptide binding and
underscores the biological relevance of attention values in the model.

Figure 2.7: Input Perturbation Analysis (Reproduced from our published pa-
per [1]). (A) The initial diagram illustrates the prediction shift when substituting
the Glutamine(Q) in the CDR3α sequence from CAASFIIQGAQKLVF to CAAS-
FIIQGA(*)KLVF, with (*) indicating the substituted amino acid. (B) The mid-
dle diagram illustrates the prediction shift for Valine(V) in CDR3α, changing from
CAASFIIQGAQKLVF to CAASFIIQGAQKL(*)F. (C) The last diagram shows the
change of Tryptophan(W) of CDR3β, changing from CASSLLGGWSEAFF to CASS-
LLGG(*)SEAFF. Remarkably, it is the Valine(V) of CDR3α, forming two H-bonds
within the same α chain, that exhibits the most substantial impact upon substitution,

suggesting the importance of H-bonds within the CDRs.
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Table 2.8: CDR3 chain analysis for 5TEZ, 1AO7 (Before mutation) and 4FTV (After
mutation). The tables are reproduced from our published paper [1]. The mutation in
4FTV changed residues 8-11 from AGGR to MSAQ, notably enhancing binding affinity.
Interestingly, the Cross-TCR-Interpreter model focused on the mutated 10th Ala(A)

and 11th Gln(Q) in the β chain.

5TEZ α chain β chain
AA types CAASFIIQGAQKLVF CASSLLGGWSEAFF
Attention Large or Small SSSSSSSSSSLSSLS SSSSSSSSLSSSSS
# of Hbonds 212421222253322 22453423486223
# of Hbonds with self CDR3 102120200213120 10220300140020
# of Hbonds with peptide 000000000010000 00000000100000

1AO7 α chain β chain
AA types CAVTTDSWG CASRPGLAGGRP
Attention Large or Small SSLSSSSSL SSSSSSSSSSSS
# of Hbonds 122325223 124610210212
# of Hbonds with self CDR3 102013011 002200010012
# of Hbonds with peptide 000000200 000100100000

4FTV α chain β chain
AA types CAVTTDSWG CASRPGLMSAQP
Attention Large or Small SSLSSSSSL SSSSSSSSSLLS
# of Hbonds 222428312 224711101112
# of Hbonds with self CDR3 102114011 002200001012
# of Hbonds with peptide 000000200 000000000000
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2.5 Discussion

2.5.1 Prediction interpretability with proteins

Interpreting the outcomes of machine learning models, especially in biological sequence
binding predictions, can be challenging. However, for neural network models used in this
context, it’s vital to understand how the model arrives at its predictions. The ability
to pinpoint specific residue positions is crucial for comprehending the model’s decisions
and is essential for their application in advanced stages. My project, the Cross-TCR-
Interpreter, aims to facilitate this interpretative process through the utilization of an
attention layer.

Contrary to initial expectations, my analysis revealed that in the machine learning
model, CDR residues drawing high attention values did not consistently interact directly
with peptide residues. This finding, substantiated statistically in Table 3.3, implies that
even with a relatively low frequency of hydrogen bond formation between CDR3s and a
peptide, the model can still yield positive predictions.

These findings echo previous research [41] that examined the role of TCR’s affinity
enhancement towards a peptide. This study posited that an increase in TCR’s affin-
ity could potentially induce reactivity and damage specificity, leading to a wider and
potentially harmful immune response. The cross-attention model might have more ad-
vantages in interaction prediction. Another former study [40] stated the loss of one
hydrogen bond with the peptide made the overall affinity stronger.

These results resonate with prior study [41], which explored the impact of height-
ened TCR affinity for a peptide. This research suggested that enhanced TCR affinity
might trigger reactivity, potentially compromising specificity and broadening immune
responses, possibly to a detrimental extent. The cross-attention model could offer more
effective interaction prediction in this context because the prediction is made by the
entangled relationship of TCR-peptide. Additionally, another study [40] observed that
a reduction in hydrogen bonding with the peptide actually led to an overall increase in
affinity.

Instead of directly interacting with peptides, TCR residues that gained significant at-
tention in the model seemed to reinforce a specific loop structure crucial for peptide
binding, forming H-bonds within the CDR3s. Research indicates that residues form-
ing this H-bond network within the TCR are often evolutionarily conserved [42, 43],
and the internal organization of the interface plays an important role in protein-protein
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interactions [44, 45]. Our findings imply that certain residues may be oriented in a spe-
cific direction strategically aligned through internal H-bonds, with the attention layer
pinpointing their relevance in TCRs for maintaining binding stability.

This result is intriguing and implies that the extent of connectivity, rather than the
surface area of interaction, primarily determines the strength of binding. Protein–protein
binding sites are not just clusters of nearby interacting residues; rather, they have a high
degree of internal organization. This structure may be essential if the two proteins are
to bind to each other in an aqueous environment. Therefore, it appears that the binding
results from a sophisticated organization within the binding sites, rather than merely
from the matching of surface shapes.

This research also revealed that, on average, the distance between TCR and peptide
in their 3D structures decreases when the peptide side receives high attention values.
This might be due to the peptide’s limited length, making its influence on TCR binding
predominantly distance-based. Conversely, higher attention values on the TCR side did
not consistently result in reduced distances in 3D, likely owing to the TCR’s longer and
more complex role in binding.

Although the availability of 3D structural data for all sequence pairs was limited, I
conducted experiments with as many existing structures as feasible. These 3D structures
were crucial in validating the interpretations derived from the model’s attention layer.
Looking ahead, future research could involve deploying alternative machine learning
models, such as advanced perturbation methods, on a more comprehensively gathered
set of sequences.

2.5.2 Performance limitations coming from the dataset

In my investigation of the TCR-pMHC interaction, I simplified my focus to the CDR3
region of the TCR and its peptides. This approach offers computational efficiency and
enhanced interpretability by emphasizing the most variable and antigen-specific regions.
Also, given the data limitation of the experimental data of the whole sequences, it offers
some advantages over the methods required to have the whole sequences. However,
this narrowed scope might miss out on integral information from the complete TCR
and MHC, potentially leading to overlooked critical interactions vital for binding. For
example, my result about no significant difference in H-bonds with peptide on TCR-side
attention can possibly mean that there might exist an important bond between the MHC
sequence or other TCR residues such as other CDRs, CDR1 or CDR2.
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For a more comprehensive view of the entire binding mechanism, methods such as molec-
ular simulations might be more suitable, though they are computationally demanding.
The Cross-TCR-Interpreter model, similar to other existing models discussed in the gen-
eral introduction section, captures a specific aspect of a complex biological process, and
its utility must be contextualized based on research objectives and available resources.

Admittedly, my analysis and findings may prompt questions about how one interprets
the attention values seen between TCR and peptides. The difference in variety between
TCR samples and peptide samples in the dataset might have influenced the notable
correlation between high attention and structural features like hydrogen bonds, mainly
within the TCRs, not within peptides. This disparity could clarify why my model tends
to link certain TCR residues with reactivity to a specific peptide, rather than focusing
on attention from the peptide’s side.

2.5.3 Prediction difficulties on unseen data of the Covid-19 dataset
and the recent dataset

The method used to create negative data for benchmark datasets might result in the test
dataset being more similar to the training dataset than it would be in typical real-world,
forward-looking evaluation scenarios. This is evidenced by the lower scores in the recent
data test set and the results from the Covid-19 dataset. The challenge in accurately
predicting in both the recent data test set and the Covid-19 dataset stemmed not from
variances in TCR, but from differences in peptides between the Covid-19 data and the
combined data dataset. In Figure 2.8, I have illustrated the sequence-sequence pairwise
distance matrix using UMAP dimension reduction. The analysis showed no notable
variance in the TCR distribution between the combined data dataset and the Covid-19
data. However, a significant difference was observed in the peptide distribution. This
observation aligns with findings from prior studies on TCR predictions ([24, 46, 47]),
which have highlighted the complexities and challenges associated with generalizing and
extrapolating to unseen epitopes.

Furthermore, the positive ratio of the test dataset also influences the metrics. Adjusting
the Covid-19 dataset to have a 20% positive ratio resulted in an ROCAUC value of
0.5881 and an average precision score of 0.2305 for the model. Setting the threshold to
achieve the maximum F1 score yielded a precision of 0.2892 and a recall of 0.60. This
adjustment highlights how the positive ratio can influence the evaluation performance
of the model.

Moreover, I aimed to assess the Cross-TCR-Interpreter’s performance on the records
involving different TCRs or unknown peptides within the test sets of VDJdb and McPAS
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data. This involved either eliminating test records that contained peptides of the training
dataset or excluding test records with TCRs that were similar to those in the training
set.

Despite the training data containing most of the peptides, I found a smaller group within
the datasets consisting of 46 McPAS records (14 positives) and 16 VDJdb records (8
positives) featuring new, unseen peptides. The numbers, 46 and 16, are also detailed
in Figure 2.3. For these subsets of unseen peptides, the ROCAUC scores were notably
lower at 0.721 for McPAS and 0.719 for VDJdb, compared to the higher scores reported
in Table 2.3, which have records with familiar peptides. This trend of improved perfor-
mance with known peptides was similarly noted in the experiments involving the recent
data test set as shown in Table 2.4. Figure 2.9 shows a decrease in performance metrics
when the test dataset was adjusted to exclude records with TCRs exceeding a certain
distance threshold from those in the training set. This pattern highlights the model’s
sensitivity to variations in TCR diversity and distribution within the test data.
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Figure 2.8: The upper pair of diagrams depict UMAP visualizations of sequence
distance for TCRs and peptides in the Covid-19 dataset, while the lower pair illustrates
the same for the recent data test set, as derived from our previously published work
[1]. The left diagrams demonstrate TCR sequences (CDR3αβ), and the right diagrams
show peptide sequences, with orange indicating either the Covid-19 or recent data test
sets, and blue representing the combined data dataset. Left: TCR sequences (CDR3αβ)
visualization. Right: Peptide sequences visualization. Orange points: The Covid-19
dataset or the recent data test set. Blue points: The combined data dataset. Each dot
represents a sequence, with the two colors in the left side pictures are overlapping, and
with the color differentiation in the right diagrams (peptide side) highlighting minimal

overlap, reflecting the distinct nature of peptides between datasets.
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Figure 2.9: Performance delegation of the peptide GILGFVFTL by removing similar
CDR records from the test set (Reproduced from our published paper [1]). The x-axis
shows the distance threshold. For instance, if the x-value is 0.58, no test data less than

that distance is used for evaluation.
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2.6 Conclusion

In this chapter, I have presented the published work [1], illustrating a computational
method for predicting the binding of T cell receptors (TCR) and ligand peptides. The
study employed a cross-attention mechanism to predict TCR-pMHC interactions and
conducted an extensive analysis of available protein structures, thereby providing novel
insights into the functional relationships between TCR and peptides.

The machine learning model, integrating an attention layer inspired by language models,
demonstrated strong performance on a benchmark dataset for TCR-pMHC interaction,
despite facing persistent challenges with the Covid-19 dataset and a recent data test set.

The model’s analysis enabled me to link neural network weights to protein 3D structure
datasets, revealing significant characteristics of residues that received large attention
values, and enabled me to elucidate the binding principles. This was achieved by visu-
alizing and analyzing the cross-attention, source-target-attention layers.

Statistical tests of the attention layer in relation to structural data indicated that
residues receiving high attention tended to interact more with their own CDR3 com-
pared to other residues. This sheds light on the mechanisms of CDR3-peptide binding.
Proteins form hydrogen bonds, leading to unique structural configurations, which are
crucial, particularly in interactions with peptides conditioned to respond to them.



Chapter 3

Comparison between
standard-attention model and
cross-attention model

This chapter advances our paper “Attention network for predicting T cell receptor-
peptide binding can associate attention with interpretable protein structural properties”
[1], for which I am the first author. I advance it in terms of model performance and
amount of structural data. In addition, this chapter strongly supports the usefulness of
the cross-attention model by comparing it with a model with a standard self-attention.

3.1 Abstract

This chapter presents a comprehensive comparison between cross-attention and standard-
attention mechanisms in the context of T cell receptor (TCR) and peptide-major his-
tocompatibility complex (pMHC) interaction prediction. Building on the foundational
work introduced in Chapter 2, this analysis delves deeper into the computational mod-
els’ capabilities, focusing on their performance and interpretability in predicting TCR-
pMHC interactions.

The core objective of this chapter is to experimentally validate the hypothesis that
a cross-attention model, as opposed to a traditional standard-attention model, offers
enhanced accuracy and interpretability in modeling the complex interactions between
TCRs and peptides. To this end, I have meticulously developed and compared two
distinct models: one employing the standard self-attention layers, and the other utilizing
the cross-attention framework identical to Chapter 2 and our study[1].
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Further advancements from our previous work [1] are incorporated, including adjust-
ments to the models’ hyperparameters and the inclusion of additional Protein Data
Bank (PDB) structures for a more inclusive analysis of attention weights. The compar-
ative study aims to demonstrate the superiority of the cross-attention model in capturing
the nuanced dynamics of TCR-peptide interactions, particularly in terms of predictive
performance and the ability to yield biologically relevant insights.

This chapter not only highlights the cross-attention model’s effectiveness in dealing with
TCR-pMHC interactions but also underscores its potential in advancing computational
approaches within the field of bioinformatics, setting a precedent for future research in
TCR-pMHC interaction prediction and analysis.
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3.2 Introduction

Chapter 3 of this dissertation builds upon the foundational research presented in Chap-
ter 2, where I introduced a novel computational model for predicting T cell receptor
(TCR) and peptide-major histocompatibility complex (pMHC) interactions. The focus
of this chapter is to conduct a detailed and rigorous comparison between two pivotal
mechanisms within the realm of ML models: cross-attention and self-attention. This
comparison is crucial for advancing our understanding of the most effective computa-
tional approaches in modeling TCR-pMHC interactions.

In the previous chapter, this dissertation showed that a model based on the cross-
attention mechanism exhibited superior performance in both accuracy and interpretabil-
ity compared to existing computational models. This chapter seeks to experimentally
validate this hypothesis compared to the standard-attention model. I delve into both
approaches, exploring how each model performs on benchmark datasets and interprets
complex protein sequence data, and how this impacts their overall effectiveness in pre-
dicting TCR-pMHC interactions.

To achieve a comprehensive comparison, this chapter introduces an improved version
of the cross-attention model, namely “the improved model”, incorporating refined hy-
perparameters for enhanced performance. Additionally, a new model employing the
standard Transformer encoder with self-attention layers has been developed, namely the
“standard-attention model”. This model should serve as a benchmark to underscore the
distinctions and advantages of the cross-attention approach. Further, I have expanded
the dataset used for analysis by including a broader range of PDB structures, enabling a
more thorough examination of the attention weights and their correlation with protein
structural properties.

The primary objective of this chapter is to provide empirical evidence supporting the
superiority of the cross-attention mechanism over the standard-attention approach in
the context of TCR-pMHC interaction prediction. Through this comparative analysis, I
aim to highlight the strengths and limitations of each model and to showcase the cross-
attention model’s unique ability to yield deeper biological insights into TCR function
and peptide binding mechanisms.

This chapter’s findings are expected to contribute significantly to the field of bioinfor-
matics, particularly in the study of TCR-pMHC interactions, and to pave the way for
the development of more accurate and interpretable computational tools in biomedical
research.
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3.3 Method

3.3.1 The attention models

The Transformer model introduced in the paper “Attention Is All You Need” [15] rep-
resents a significant shift in neural network architecture, particularly for sequence-to-
sequence tasks. Central to its architecture is the attention mechanism, specifically the
self-attention layer, which allows the model to weigh the importance of different parts
of the input sequence when processing each element.

The attention layer works by utilizing three matrices for each amino acid in the sequence:
a query matrix (Q), a key matrix (K), and a value matrix (V), as in Equation 3.1. These
matrices are derived from the amino acid embeddings, which encapsulate the properties
of each amino acid in the sequence. In Equation 3.1 for the attention layer, Q, K, and V
are the data matrices of sequences, and d is the scaling factor. When Q = K = V , this is
a self-attention layer, whereas it is a cross-attention layer when K = V and Q ̸= K. KT

denotes transposed matrix of K, where the sizes of arrays are Q : L1 ×D, K : L2 ×D,
and V : L2 × D, and D is the embedding dimension. The self-attention mechanism
computes attention scores by taking the dot product of the query vector with all the key
vectors, which are then scaled, normalized, and passed through a Softmax function to
yield weights. The output of the attention layer is a weighted sum of the value vectors,
which means the value vectors are weighted on each position as an importance factor.

AttentionLayer(Q,K, V ) = Softmax(QKT /d)V (3.1)

In the context of my study on TCR-pMHC interactions, the attention mechanism in
the Transformer model is utilized to analyze the amino acid sequences of the TCR’s
complementarity-determining region (CDR) 3 and the peptide. In the cross-attention
layer, K(= V ) and Q represent two different inputs, i.e., a connected sequence of
CDR3α:CDR3β and a peptide, respectively as in Equation 3.2 and Equation 3.3. The
Softmax function defines the weights to V when matrix Q is query input, and the
weights are allocated so that the sum is 1 over the length direction of V .

This Softmax(QKT /d) is the attention weights (=AttentionTCR−cross) and is used for
the analysis and visualization in this study, suggesting the residue positions that are
important within the position of the sequence V . These attention weights are the TCR-
side attention given the query input of peptide. The cross-attention layer uses peptides
as inputs and assigns specific weights to each residue of CDR3s to learn the important
sites of CDR3s. This enabled me to analyze each side of the two areas of attention
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separately. The same operation was done for the peptide side and HPeptide can be
obtained as in Equation 3.4 and Equation 3.5. In addition, through the hyperparameter
tuning, I defined four heads for each side in the cross-attention layer, and those heads
were concatenated similarly in a typical Transformer. Visualization and analysis of the
attention layer allow interpretation of the residue interaction across sequences using the
output of Equation 3.3, Equation 3.5.

HTCR = AttentionTCR−crossVTCR (3.2)

AttentionTCR−cross = Softmax(QPeptideK
T
TCR/d) (3.3)

HPeptide = AttentionPeptide−crossVPeptide (3.4)

AttentionPeptide−cross = Softmax(QTCRK
T
Peptide/d) (3.5)

y = MLP (Concat(Mean(HPeptide),Mean(HTCR)))

where the “Mean” layer takes the mean over the length dimension.

On the other hand, my ablation analysis of the standard self-attention model can
be expressed by the following equation with the “TCR&Peptide” output from con-
catenation layer in Figure 3.1, Equation 3.6 and Equation 3.7, where the shape of
AttentionTCR&Peptide is the square, the sum of lengths of TCR and Peptide times the
same length. Each of Q,K, V having “TCR&Peptide” has the shape of (L1 + L2)×D,
where L1 is the length of CDRs and L2 is that of peptide.

HTCR&Peptide = AttentionTCR&PeptideVTCR&Peptide (3.6)

AttentionTCR&Peptide = Softmax(QTCR&PeptideK
T
TCR&Peptide/d) (3.7)

y = MLP (Mean(HTCR&Peptide))

where the “Mean” layer takes the mean over the length dimension.
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Figure 3.1: Overview of the standard-attention model. Data tensor sizes are denoted.
The standard-attention layers in the middle of the figure were analyzed using structural
data after the training. The difference between Figure 2.1 and Figure 3.1 lies in the
standard-attention layer and two cross-attention layers in the middle of the figures.

Obviously, this square-shaped attention layer is dependent on both sequences, meaning
the attended TCR residue might be the result of TCR itself. Therefore, using the
cross-attention model is helpful in identifying the relationship. One should be able to
weight the target sequence given one side of amino acid sequences, query sequence. This
cross-attention effect is not possible by the standard-attention because Equation 3.6 and
Equation 3.7 did not explicitly limit the attention on the one side of the sequences.

3.3.2 Sequence data to train the model and structural data to analyze
the attention weights

I have used the identical sequence dataset to train and evaluate the models, same as
the previous research [1] and as Chapter 2. Hence the combined dataset was used as
the training to evaluate the recent dataset, whereas the benchmark datasets of McPAS
and VDJdb have respective training and test sets. The key statistics of the sequence
datasets are the same as in Table 2.2.
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Just like in Chapter 2, the TCR-peptide complex structures were used as subjects of
the t-test. But this time, I manually searched TCR-peptide complex structures with
CDR3s from the Protein Data Bank (PDB, [34]). The SCEptRe server [4] was also
used, yielding 82 unique CDR3α-CDR3β-peptide sequence pairs as a total. Please note
that identical sequence pairs produce the same outputs and attention values, therefore
I used only one structure for identical sequences.

The target values of the t-test were properties such as the proportion of TCR residues
forming H-bonds with the peptide were the same as in Chapter 2. BioPython [36],
LIGPLOT [37], and Anarci [35] were used again.

Eventually, I performed a paired student’s t-test, in more amount of complex structures
than Chapter 2, to assess the differences between the two residue groups of attended
and not-attended.

3.3.3 Hyperparameters

By following Chapter 2, for both the standard-attention and the improved model, I used
the same hyperparameters; d_ff of the final MLP layer = 84, dim in the model = 256,
dropout_rate = 7.651e-05, and learning_rate = 9.387e-05.

There is one difference in the positive weight on the binary cross entropy; the positive
weight this time was 6.0 for both the standard-attention model and the improved model.
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3.4 Result

3.4.1 Scores on benchmark datasets and recent data dataset

In addition to the previous paper, two new models, the improved model and the standard-
attention model were introduced. I compared the improved model with a normal
Transformer-encoder, namely the “standard-attention” model. It used the standard
self-attention layer, instead of the cross-attention layers, on concatenated hidden repre-
sentations after the Transformer encoders of CDR3s and peptides.

As for the benchmark datasets of McPAS and VDJdb as shown in Table 3.1, the
standard-attention model shows the highest ROCAUC values (0.9206 for McPAS, and
0.9513 for VDJdb-without-10x). However, when it comes to the average precision score
(APS), the improved model outperforms the others in both datasets (0.6349 for McPAS
and 0.7760 for VDJdb-without-10x), suggesting a better precision-recall balance. The
Cross-TCR-Interpreter model shows competitive, but slightly lower performance com-
pared to the improved model and the standard-attention model in both metrics across
the datasets.

As for the recent data test set, the improved model has the highest ROCAUC score
(0.5519), whereas the other models have similar but slightly lower ROCAUC scores, with
the Cross-TCR-Interpreter and the standard-attention model having almost identical
scores. Similarly, the improved model leads in the APS (0.2052), suggesting it has a
better precision-recall balance than the others. The APS scores of the other models
are closely matched, with PanPep showing a slightly better score than the standard-
attention model and Cross-TCR-Interpreter.

Provided that the positive ratio is 16% across both datasets, the APS is better to use
to compare and hence the improved model could be the best model among the models.
Overall, the improved model seems to outperform the others in both metrics on the
recent data test set. However, the overall scores for all models are relatively low, which
indicates the challenging nature of the dataset or the task.

3.4.2 Attention analysis

I sought to interpret the model within the 82 complex structures where the models surely
perform well enough to analyze. The PDB identifiers used are provided in Table 3.4,
which is more than Chapter 2.
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Table 3.1: Result of benchmark dataset. APS stands for the average precision score.

Dataset Model CDR’s Features ROCAUC APS
McPAS The improved model CDR3s of α and β chains 0.9187 0.6349

Cross-TCR-
Interpreter [1]

CDR3s of α and β chains 0.9154 0.6211

Standard-attention
model

CDR3s of α and β chains 0.9206 0.6123

NetTCR2.0 CDR3s of α and β chains 0.9204 0.5808
PanPep CDR3 Sequence of β chain

with biochemical features
0.8374 0.4519

VDJdb- The improved model CDR3s of α and β chains 0.9459 0.7760
without-
10x

Cross-TCR-
Interpreter [1]

CDR3s of α and β chains 0.9445 0.7600

Standard-attention
model

CDR3s of α and β chains 0.9513 0.769

NetTCR2.0 CDR3s of α and β chains 0.9492 0.7262
PanPep CDR3 Sequence of β chain

with biochemical features
0.9009 0.6435

Table 3.2: Result of the recent data test dataset to compare the cross-attention and
the standard-attention. APS stands for the average precision score.

Model Dataset ROCAUC APS
The improved model Recent data test set 0.5519 0.2052
Cross-TCR-Interpreter [1] Recent data test set 0.5362 0.1855
Standard-attention model Recent data test set 0.5357 0.1889
PanPep Recent data test set 0.5337 0.1897

Whereas the models did not fully generalize on the recent data test, I interpreted the
attention layers by using reliable predictions as defined in the following manner. Of the
82 complex structures, the cross-attention model identified 52 with positive interactions,
while the standard-attention model did 54, using a 0.5 threshold. I paid special attention
to these cases in the analysis of attention layers, on the premise that the model’s accurate
interpretability could be safely assumed for these instances. This is similar to a regression
analysis examining the effect of some explanatory variables on target variables, and the
goal was to identify the important features that the model learns, i.e., the features of
the attended amino acid residues.

Attention values exceeding MEAN + 5.5 STD for peptides and MEAN + 4.5 STD
for TCRs were deemed “high attention” in the improved model, while the standard-
attention model used the threshold of 4.5 for both ( γs in Equation 2.1). Just like in
Chapter 2, these thresholds with the cumulative outputs of residue index from the four
heads classified approximately 20% of residues as attended on each side of TCR and
peptide, being able to effectively distinguish between large and small attention values.
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Note that the threshold for large attention values is different for each PDB entry or for
head due to differences in the distribution of attention values, just like in the same way
in Chapter 2.

The analysis was performed for the concatenated attended residues from each of the four
heads in the attention layer (heads 0 to 3) on both the TCR and the peptide sides. The
standard-attention layer was defined on an embedded concatenated CDR3αβ sequence
and a peptide sequence, resulting in an attention matrix with a square shape determined
by the length of the peptide plus CDR3αβ residues. When analyzing the standard-
attention model, I limit the attention matrix only to the TCR part or the peptide part.
On the other hand, cross-attention has an attention matrix with a rectangular shape
determined by the length of the peptide and CDR3αβ residues. It was possible for a
particular residue to have a large attention value in a specific head but not in the other
heads (as seen in Equation 2.1).

3.4.3 Statistical analysis shows the same conclusion as Chapter 2

Using the γ factor, I classified the TCR residues into two groups and analyzed their
structural properties. To assess the differences between the two groups, I performed a
paired t-test again just in the same way as Chapter 2.

The results of the statistical tests of all concatenated heads are shown in Table 3.3
for both models of cross-attention model and standard-attention model, and for TCR-
side attention and peptide-side attention. The individual results for each head are also
reported in the Table A.5 and Table A.6 of the Appendix. As a TCR sequence for the
structural analysis includes both CDR3 and non-CDR3 portions, the H-bond properties
were measured by dividing the residues into CDR3 and non-CDR3 portions.

As the TCR side analysis result, Table 3.3 shows a statistically significant observation;
for both models, the attended CDR3 residues often form H-bonds with general CDR3
or their own chain’s CDR3. Unexpectedly, the CDR3 residues forming H-bonds with
peptides were not highlighted by attention values in both models (p-values with 0.6278
and 0.1161), though both models generally indicated a higher rate of binding to pep-
tides on average. Only in the cross-attention model, the attended CDR3 residues are
significantly closer to the peptides (p=0.0155 and p-adj.=0.0850), aligning with the idea
that proximity to peptides and H-bond formation are correlated. Just like in Chapter 2,
the adjusted p-values are also provided to avoid the misunderstanding associated with
multiple p-values. An FDR of 0.1 led to the rejection of two hypotheses in the cross-
attention model TCR-side: “Proportion of residue in edge” and “Distance to the nearest
opposite peptide”. In the standard-attention model TCR-side, an FDR of 0.1 led to the
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Table 3.3: Attention analysis to compare the standard-attention with this study.
Comparative analysis of structural properties between the residue groups receiving
large and small attention is presented. The numbers in the Large Attention or Small
Attention columns are the average and standard deviation. The p-adjusted column
shows the adjusted p-value by the Benjamini Hochberg (BH) procedure. The symbol
“***” denotes the significant difference based on a False Discovery Rate (FDR) of 0.05
in the BH procedure; the symbol “**” indicates significance with the FDR of 0.10; the

symbol “*” indicates the FDR of 0.15.

Model (Side) Property Large Atten.1 Small Atten.1 p-value p-adj.

Improved Model Proportion connecting to peptide 0.0822+-0.1359 0.0732+-0.0478 0.6278 0.6905
Cross-attn. Proportion connecting to CDR 0.5221+-0.2830 0.4271+-0.1030 0.0310 0.1123 *
(TCR Side) Proportion connecting to their own chain TCR 0.7045+-0.2214 0.6540+-0.0981 0.1634 0.2567

Proportion connecting to their own chain CDR 0.4926+-0.2884 0.4016+-0.0988 0.0408 0.1123 *
Proportion connecting to opposite chain TCR 0.1303+-0.1615 0.1604+-0.0794 0.2707 0.3722
Proportion connecting to opposite chain CDR 0.0564+-0.1111 0.0550+-0.0557 0.9225 0.9225
Proportion connecting to TCR 0.7716+-0.2323 0.7354+-0.0988 0.3175 0.3881
Proportion connecting to not-CDR TCR 0.3771+-0.2599 0.4466+-0.0908 0.1041 0.1908
Proportion of residue in edge 2 0.5256+-0.2145 0.6226+-0.0523 0.0077 0.0850 **
Distance to the nearest opposite (Peptide) 3 7.5127+-2.7013 8.4488+-0.9691 0.0155 0.0850 **
Number of bonds 3 2.3375+-1.1661 2.0965+-0.7033 0.1026 0.1908

Improved Model Proportion connecting to peptide 0.0952+-0.2524 0.0707+-0.1311 0.5394 0.6293
Cross-attn. Proportion connecting to CDR 0.3075+-0.4044 0.1593+-0.1157 0.0321 0.0562 **
(Peptide Side) Proportion connecting to TCR 0.4325+-0.4270 0.2361+-0.1426 0.0113 0.0272 ***

Proportion connecting to not-CDR TCR 0.2857+-0.4051 0.1111+-0.1243 0.0116 0.0272 ***
Proportion of residue in edge2 0.5417+-0.4452 0.5611+-0.1171 0.7986 0.7986
Distance to the nearest opposite (TCR) 3 4.2876+-1.8053 5.0500+-1.0295 0.0064 0.0272 ***
Number of bonds 3 2.5873+-2.2743 2.0902+-0.7780 0.1104 0.1545

Standard-attn. Proportion connecting to peptide 0.0820+-0.1129 0.0534+-0.0771 0.1161 0.2155
(TCR Side) Proportion connecting to CDR 0.5361+-0.1713 0.4389+-0.1865 0.0046 0.0255 ***

Proportion connecting to their own chain TCR 0.6881+-0.1537 0.6860+-0.1807 0.9498 0.9498
Proportion connecting to their own chain CDR 0.5046+-0.1750 0.4239+-0.1838 0.0164 0.0601 **
Proportion connecting to opposite chain TCR 0.1553+-0.1191 0.1083+-0.1257 0.0565 0.1554
Proportion connecting to opposite chain CDR 0.0602+-0.0694 0.0262+-0.0594 0.0046 0.0255 ***
Proportion connecting to TCR 0.7706+-0.1526 0.7472+-0.1914 0.4781 0.5843
Proportion connecting to not-CDR TCR 0.4023+-0.1514 0.4392+-0.2231 0.3784 0.5202
Proportion of residue in edge 2 0.6750+-0.1624 0.6085+-0.1854 0.1176 0.2155
Distance to the nearest opposite (Peptide) 3 8.2976+-1.7990 8.3673+-1.8767 0.8350 0.9185
Number of bonds 3 2.1823+-0.8115 2.0340+-0.8724 0.2039 0.3205

Standard-attn. Proportion connecting to peptide 0.0796+-0.1484 0.0824+-0.1718 0.9130 0.9130
(Peptide Side) Proportion connecting to CDR 0.1679+-0.1386 0.2923+-0.2964 0.0170 0.0397 ***

Proportion connecting to TCR 0.2372+-0.1370 0.3626+-0.2829 0.0105 0.0367 ***
Proportion connecting to not-CDR TCR 0.1075+-0.0979 0.1477+-0.2369 0.2837 0.3971
Proportion of residue in edge2 0.5899+-0.1469 0.4818+-0.2767 0.0464 0.0813 **
Distance to the nearest opposite (TCR) 3 5.1301+-1.1127 4.4726+-1.3541 0.0009 0.0062 ***
Number of bonds 3 2.1798+-0.9237 2.1143+-1.2355 0.7275 0.8487

1. Mean and standard deviation (for the PDB structures) of the proportion of residues that satisfy the property shown in the first column.
2. The edge means four residues from the beginning or end of the CDR, whereas three residues for the peptide.
3. In the last two properties, per-residue averages were used instead.

rejection of three hypotheses: “Proportion connecting to CDR”, “Proportion connecting
to opposite chain CDR”, and “Proportion connecting to their own chain CDR”.

In more detail, for the cross-attention model of TCR-side analysis, the most significant
property difference in all concatenated heads occurred in the “Proportion of residue
in edge” of TCR-side, meaning there exist significantly smaller amount of residues lo-
cated in the edge positions when the neural nets paid attention in the CDR sequences
(p=0.0077 and p-adj.=0.0850). The edges of CDRs are often far away from the peptide
because the CDRs form a bow-like shape, so the attended CDRs are not at the edges
and are located in the center on the contrary. This aligns with the significantly smaller
distance of attended residues toward the peptides (p=0.0155 and p-adj.=0.0850) because
the center of CDRs should be located toward the peptide residues. Interestingly, while
the number of H-bonds with peptides isn’t significant, it’s noteworthy that the attended
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Table 3.4: PDB identifiers of structural data used in the attention analysis for the
standard-attention model and the cross-attention model

Collected 82 IDs 1D9K, 1FYT, 1G6R, 1ZGL, 2AK4, 2BNQ, 2CKB, 2E7L, 2F54
with unique 2J8U, 2NX5, 2OI9, 2P5E, 2PXY, 2VLJ, 2VLR, 3DXA, 3E2H
sequences pair 3E3Q, 3GSN, 3HG1, 3MBE, 3MV8, 3PQY, 3QDG, 3QDJ, 3QDM

3QEQ, 3QIB, 3QIU, 3QIW, 3TF7, 3TFK, 3TJH, 3TPU, 3VXR
3VXS, 3W0W, 4JFD, 4JFE, 4JFF, 4JRX, 4JRY, 4L3E, 4MJI
4OZG, 4OZH, 4P2O, 4P2Q, 4P2R, 4PRH, 4PRP, 4QOK, 4Z7W
5BRZ, 5BS0, 5D2L, 5E6I, 5EU6, 5EUO, 5HHO, 5ISZ, 5IVX, 5WKF
5KS9, 5KSA, 5MEN, 5NME, 5NMF, 5NMG, 5SWS, 5SWZ, 5TEZ
5WKH, 5WLG, 6AVF, 6AVG, 6EQA, 6EQB, 6PX6, 6V13, 6V15

52 IDs used 1D9K, 1G6R, 1ZGL, 2AK4, 2BNQ, 2CKB, 2F54, 2J8U, 2NX5
in the analysis of 2P5E, 2PXY, 2VLJ, 2VLR, 3DXA, 3GSN, 3HG1, 3MBE, 3MV8
the cross-attention 3PQY, 3QDJ, 3QEQ, 3QIU, 3QIW, 3VXR, 3VXS, 3W0W, 4JFD
model 4JFE, 4JFF, 4JRX, 4JRY, 4MJI, 4OZG, 4P2O, 4P2Q, 4P2R

4PRH, 4PRP, 4QOK, 4Z7W, 5E6I, 5EUO, 5HHO, 5ISZ, 5MEN
5NMG, 5TEZ, 5WKF, 5WKH, 6EQA, 6EQB, 6V13

54 IDs used 1D9K, 1FYT, 1G6R, 1ZGL, 2AK4, 2BNQ, 2CKB, 2F54, 2NX5
in the analysis of 2P5E, 2PXY, 2VLJ, 2VLR, 3DXA, 3HG1, 3MBE, 3MV8, 3PQY
the standard-attention 3QDG, 3QDJ, 3QEQ, 3QIU, 3QIW, 3VXR, 3VXS, 3W0W, 4JFD
model 4JFE, 4JFF, 4JRX, 4JRY, 4MJI, 4OZG, 4OZH, 4P2O, 4P2Q

4P2R, 4PRH, 4PRP, 4QOK, 4Z7W, 5D2L, 5E6I, 5EU6, 5EUO
5HHO, 5IVX, 5MEN, 5NMG, 5TEZ, 5WKF, 5WKH, 6EQA, 6EQB

CDRs are positioned closer to potential H-bond sites but do not necessarily form these
bonds. The residues with large attention values had a more significant proportion of
having an H-bond with the CDR3 portions (p=0.0310) or with their own chain’s CDR3
(p=0.0408). Nonetheless, the proportion of residues that are H-bonded to any TCR
residue (i.e., H-bonds within the TCR chains) showed larger values but no difference
between the large and small attention groups (p=0.3175).

For the standard-attention model of TCR-side analysis, the most significant property dif-
ference in all concatenated heads occurred in the “Proportion connecting to CDR”(p=0.0046)
and “Proportion connecting to opposite chain CDR”(p=0.0046), meaning the neural nets
paid attention to the residues connecting to the CDR sequences. Furthermore, highly at-
tended CDR3s are not significantly proximate to the peptide (with a p-value of 0.8350),
which is counter-intuitive as one would naturally expect attended CDR3s to be close to
the peptide.

Collectively, these statistical evaluations lend support to the hypothesis that attended
residues significantly favor H-bonds within the CDR3 regions in the same way as Chapter
2.

For the peptide side analysis, peptide residues with high attention by the cross-attention
model were significantly closer to the TCRs and more likely to form H-bonds, offering
a clear insight into the model’s behavior, and this observation matches the previous
CDR observation that attended CDR residues were significantly closer to the peptide.
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Also, the peptide residues forming H-bonds with TCR are significantly attended by the
cross-attention (with a p-value of 0.0321). Contrarily, the standard-attention model’s
peptide side attention was less informative. The peptide residues with high attention
showed a significantly smaller binding proportion to the CDR3 and TCR. Furthermore,
their distance to the TCR was significantly greater (p=0.0009).

This result suggests the intuitively accurate consideration of how attention works in
the cross-attention model, despite highlighting the limitation of the standard-attention
model in which attention values do not showcase the intuitive result. The distinction
in attention between the two models might stem from the conditional relationships in
their attention layers. The distance to the nearest peptide from the attended CDR
was naturally small in the cross-attention, where that behavior was not mirrored in
the standard-attention model. The distance to the nearest CDRs from the attended
peptide is also smaller only in the cross-attention, suggesting that the cross-attention
model might better capture the natural interactions. Additionally, if the result implies
that peptides need to maintain a distance from CDR3s like in the standard-attention
model for effective TCR recognition, it would contradict the known function of MHCs in
presenting peptides. Therefore, such a scenario seems unlikely, reinforcing the validity
of the observed cross-attention behavior. However, regarding the attended CDRs and
the residue property ‘proportion connecting to CDR,’ the standard-attention model
demonstrates a smaller p-value, indicating a more interpretable difference compared
to the cross-attention model, and this could still potentially imply that the standard-
attention model effectively elucidates the interaction.

Therefore, the observations warrant further investigation in future studies. At this
stage, given the overall performance and interpretability, I would like to state that
cross-attention provides a more comprehensive understanding of the interactions.
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3.5 Discussion

3.5.1 Design framework for interactions and interpretations

The cross-attention layer is pivotal for analyzing the interactions between two sequences,
particularly for elucidating changes in one sequence due to its interaction with another,
while focusing exclusively on their mutual interaction. Predicting protein-protein inter-
actions based on sequence data alone is a complex task, and often the case models akin
to BERT process only a single sequence [27]. Even when such models are fed two sepa-
rate input sequences, they fall short of capturing the essence of binding as a “relational”
phenomenon between the two data sets, and merely concatenating these sequences does
not adequately convey the nature of their binding, as illustrated in Equation 3.7.

Although the BERT model processes two sequences, its focus is not exclusively on their
mutual interaction. The visualization of the attention layer for one head in a single
layer, as shown in Figure 3.2, demonstrates how BERT’s attention processes TCRs and
peptides when trained on these sequences. Based on Equation 3.1, the sum along the
x-axis equals one, indicating that BERT’s attention encompasses both self-attention
and cross-attention. This complexity makes it challenging to link the attention matrix
directly to the binding mechanism. Essentially, the model’s self-attention part could
produce a positive prediction based solely on the self-coincidence within a sequence,
neglecting one side of the information. In other words, it is possible to obtain a positive
prediction focused merely on a specific part of the TCR, ignoring its crucial relationship
with the peptide. Consequently, to accurately capture the interaction between TCR and
peptide, the focus should be selectively placed on the cross-attention aspect for more
meaningful interpretation.
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Figure 3.2: The attention matrix visualization of standard-attention. The colon
symbol is used as a token to concatenate α and β chains, while the “&” symbol is
another special separation token for the peptide. This setup doesn’t restrict attention
values strictly to mutual interactions, complicating their interpretation. Moreover, in
a typical robust BERT architecture, the presence of numerous attention heads and
multiple stacked Transformer layers complicates the task of correlating attention values

directly with the binding mechanism.
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3.6 Conclusion

In Chapter 3, I studied an in-depth comparative analysis between cross-attention and
standard-attention mechanisms within the framework of predicting TCR-peptide-major
histocompatibility complex (TCR-pMHC) interactions. This comparative study was
meticulously designed to test the hypothesis that the cross-attention model would not
only enhance predictive performance but also offer greater interpretability in under-
standing TCR-pMHC interactions.

The findings from this chapter have demonstrated the advantages of the cross-attention
mechanism in the improved model over traditional standard-attention models. The
TCR-side attention statistical trend did not change from the Chapter 2 study, showing
H-Bonds within CDRs are attended by the attention layers in both cross-attention and
standard-attention models. However, in the peptide-side attention statistical analysis,
the advantage of cross-attention over the standard-attention was shown. The experi-
ments revealed that the cross-attention model, with its nuanced approach to analyzing
sequences and conditional relationships of sequences, provides a more accurate repre-
sentation of the intricate dynamics of TCR-pMHC interactions. Like in Chapter 2, the
cross-attention model showed a remarkable ability to identify and elucidate key inter-
actions at the residue level, offering insights that were previously unattainable with the
standard-attention approaches.

In summary, this chapter has successfully validated the hypothesis that the cross-
attention model is superior for predicting TCR-pMHC interactions, both in terms of
performance and interpretability. These results underscore the potential of advanced
computational methods in enhancing our understanding of biological systems and pave
the way for more effective and interpretable models in the study of immunological in-
teractions.



Chapter 4

General Conclusion

This dissertation embarks on a detailed exploration into the complexities of T cell recep-
tor (TCR) interactions with ligand peptides, pivotal for our immune system. It traverses
from presenting our published work to executing a comparative analysis between other
computational models. The approach leads to profound insights into the interactions be-
tween TCRs and peptide-major histocompatibility complex (pMHC), which are essential
in immune responses and designing therapeutic methods.

In Chapter 2, I delved into the TCR-pMHC interactions, employing a cross-attention
mechanism to predict these interactions accurately, with the best average precision
score achieved among other models on the benchmark datasets. Despite facing chal-
lenges with specific datasets, like those from the recent dataset and the Covid-19 data,
I demonstrated the data distribution and the reason behind the prediction difficulties.
Moreover, the proposed model demonstrated a remarkable ability to associate neural
network weights with protein 3D structures, uncovering highly attended residues’ signif-
icant properties such as hydrogen bonds within CDR3. These findings are not just mere
data points but are pivotal because I have shown this over the gathered PDB structures.
The analysis of available protein structures offered new perspectives on TCR-peptide
functional relationships between neural net weights and understanding of molecular im-
munology.

Chapter 3 furthered this exploration by comparing the efficacy of cross-attention and
standard-attention mechanisms in the realm of TCR-pMHC prediction. This rigor-
ous comparative study validated our hypothesis regarding the superiority of the cross-
attention model in the benchmark performance. The distinction of interpretability was
particularly evident in the peptide-side attention analysis and the distance analysis,
which demonstrated the cross-attention model’s unique ability to show key interactions
at the molecular level.
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Collectively, this dissertation has not only demonstrated the predictive power of Transformer-
based models in bioinformatics but has also illuminated the pathway toward more inter-
pretable and effective computational tools in immunological studies. The cross-attention
mechanism, a central theme in both Chapter 2 and Chapter 3, has emerged as a valid
approach to uncovering the mechanism of TCR-pMHC interactions. By unraveling the
intricacies of CDR3-peptide binding mechanisms and highlighting the role of specific
structural formations like hydrogen bonds, this work paves the way for vaccine develop-
ment, cancer immunotherapy, and autoimmune disorder understanding.

In conclusion, this dissertation stands as proof of the power of interpretable machine
learning methods in understanding complex biological interactions. This work not only
significantly enhances the field of bioinformatics but also has the potential to further
various areas where complex mechanisms are yet to be fully understood and can be
explored through machine learning techniques. My aspiration is that this dissertation
helps medicine through deeper understanding and innovative approaches in the TCR-
pMHC interaction prediction.



Appendix A

An Appendix

Occurrence comparison of types of amino acid residues in
the large-valued and small-valued attention groups

Typically, CDR3 sequences predominantly consist of serine (S), alanine (A), and pheny-
lalanine (F). However, those with high attention values frequently exhibit valine (V),
glycine (G), and glutamic acid (E). As indicated in the right panel of Figure A.1, me-
thionine (M), valine (V), and lysine (K) are often associated with larger attention values.
Notably, the side chains of M and V are nonpolar and are categorized under the aliphatic
group.

Figure A.1: Comparison of occurrence of amino acid types. Left: Distribution of
residue types in CDR groups with large and small attention values. Right: The ratio
of occurrence in the large attention group to the small attention group (large divided

by small), highlighting the tendency of residues to have large attention values.
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The influence of the factor γ

In the original research [1], the attention values were deemed “large” if they surpassed
MEAN + 5.5 STD for peptides and MEAN + 4.5 STD for TCRs (with 5.5 and 4.5 being
γ factors). Applying these thresholds, around 20% of residues on each side were classified
as having large attention following the concatenation of the four head classifications. The
counts of each residue by changing γ are shown in Table A.1.

Table A.1: When changing the factor γ, count of large-valued attention or small-
valued attention can vary. Four heads are merged.

TCRs TCRs Peptides Peptides
Large Small Large Small

Attention Attention Attention Attention
count (γ=2.0) 569 468 372 65
count (γ=2.5) 441 596 325 112
count (γ=3.0) 364 673 264 173
count (γ=3.5 299 738 219 218

count (γ=4.0) 244 793 172 265
count (γ=4.5 196 841 137 300

count (γ=5.0) 153 884 111 326
count (γ=5.5 118 919 81 356

count (γ=6.0) 97 940 48 389

Statistics of additional dataset

Table A.2 displays unique count statistics. The record column represents the unique
count of CDR3α, CDR3β, Peptide pairs. The duplication count in rows refers to the
quantity of unique data overlapping between the training and test sets.

Table A.2: Unique count statistics.

Dataset name CDR3α CDR3β Record
McPAS, training 2423 2560 23363
McPAS, test 718 714 4729
McPAS, duplication count 218 198 0
VDJdb-without10x, training 2151 2171 19526
VDJdb-without10x, test 570 572 4010
VDJdb, duplication count 198 196 0
The combined data dataset 17954 19162 119046
The recent data test set 4782 5174 33360
The duplication count of the two above 444 148 0
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Attention layer weights can detect indicators of positive
binding

In a supplementary experiment, I evaluated the effectiveness of the model’s attention
mechanism using mock data. For every CDR3α that has a positive interaction, I ap-
pended two alanine (A) residues as a distinct marker of positive binding. After training
the model with this artificial data from McPAS, it scored a perfect ROCAUC of 1.0.
When examining the attention layer of the trained model, it was evident that the mark-
ers for positive interaction, the double alanine residues, received high attention values,
as illustrated in Figure A.2. Thus, attention values served as a means to interpret the
binding mechanism.

Figure A.2: Visualization of attention values for a positive record in the mock dataset.
The 11th residue position, the first Alanine added to the TCR alpha chain, received
high attention. The X-axis represents residues of CDR3s, and the Y-axis represents
residues of peptides. Dark blue marks zero attention values (padding), while yellow

shows large attention values.

Comparison of models on the recent test dataset

To address the query about the performance of the model trained on the combined data
dataset in comparison to models trained on smaller datasets, I compared three mod-
els: The ”combined-data-trained model”, the ”McPAS-model-trained” and the ”VDJdb-
model”. The question was essentially about whether or not training on a larger combined
dataset degrades the model’s performance.

Each model was evaluated on a recent test dataset. The combined-data-trained model
was developed using a larger training dataset that combines data from both the McPAS
and VDJdb databases. In contrast, the McPAS-model and VDJdb-model were trained
using smaller, individual datasets.

The results are as follows:
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• Combined-data-trained model: This model achieved the average precision
(AP) of 0.1855 and an ROCAUC score of 0.5362 as stated in the table of the main
manuscript.

• McPAS-trained model: Evaluated scores were 0.1797 for AP and 0.5292 for
ROCAUC. These scores were slightly lower than the combined-data-trained model.

• VDJdb-trained model: This model returned an ROCAUC of 0.5235, which
is below the combined model. However, its AP was 0.1860, comparable to the
combined-data-trained model. Given that the recent test dataset originates from
the VDJdb database, this model might have had a slight advantage.

The combined-data-trained model performed at least as well as the VDJdb-trained model
and outperformed the McPAS-model. It’s crucial to note that the ”recent data test set”
for the combined dataset is temporally distinct from its training dataset, providing a
stringent testing condition. In contrast, test sets for VDJdb and McPAS were not
temporally distinct. I believe this temporal distinctness explains the lower scores on the
recent data test set, rather than the influence of the larger training dataset.

In conclusion, training on a larger combined dataset does not degrade the model’s per-
formance. In fact, the combined-data-trained model proves to be competitive, if not
superior, when compared to models trained on individual datasets.

Results of statistical tests on structures with different at-
tention heads

The results of the paired t-tests are shown. Although each head was analyzed equally and
separately, they showed different results. Table A.3 and Table A.4 show the individual
head result for the cross-attention model discussed in Chapter 2, being referenced from
the published paper [1].

In Table A.5 and Table A.6, I showcased the structural property comparison between
attention-highlighted residues and not-highlighted ones by specifying each head of at-
tention layers obtained from Chapter 3.
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Table A.3: Peptide side attention analysis on all heads of Cross-TCR-Interpreter. In
a cell, the left number is the mean value over the PDBIDs and the right number is the

STD value.

Property Large Attention 1 Small Attention 1 p-value Head

Closest distance to peptide (Å) 4.1233±1.3970 5.0796±1.1194 0.0703 0
Number of H-bonds formed 1.6667±1.5986 2.0125±0.7579 0.84 0

H-bonded to any CDR3 residue 0.0833±0.2764 0.1801±0.1086 0.409 0
H-bonded to any peptide residue 0.0833±0.2764 0.0656±0.1218 1 0

H-bonded to any TCR residue 0.3333±0.4714 0.2559±0.1198 0.552 0
H-bonded to any non-CDR3 TCR residue 0.2500±0.4330 0.1167±0.1116 0.318 0

In the edge 2 0.2500±0.4330 0.5637±0.0951 0.0504 0

Closest distance to peptide (Å) 5.1794±2.4525 5.0293±1.0674 0.895 1
Number of H-bonds formed 2.4348±1.7087 1.9672±0.7934 0.154 1

H-bonded to any CDR3 residue 0.3261±0.4570 0.1710±0.0996 0.215 1
H-bonded to any peptide residue 0.0000±0.0000 0.0673±0.1226 0.0711 1

H-bonded to any TCR residue 0.4130±0.4812 0.2499±0.1138 0.168 1
H-bonded to any non-CDR3 TCR residue 0.1739±0.3790 0.1162±0.1197 0.457 1

In the edge 2 0.4783±0.4995 0.5610±0.1018 0.566 1

Closest distance to peptide (Å) 4.5241±1.8359 5.0844±1.0686 0.0771 2
Number of H-bonds formed 1.6304±1.0448 2.0183±0.7681 0.478 2

H-bonded to any CDR3 residue 0.1522±0.3437 0.1791±0.1188 0.653 2
H-bonded to any peptide residue 0.0435±0.2039 0.0659±0.1220 0.527 2

H-bonded to any TCR residue 0.2174±0.4125 0.2574±0.1175 0.827 2
H-bonded to any non-CDR3 TCR residue 0.0652±0.2238 0.1206±0.1151 0.664 2

In the edge 2 0.4783±0.4773 0.5588±0.0997 0.688 2

Closest distance to peptide (Å) 3.7267±1.0947 5.1352±1.0994 5.15e-05 3
Number of H-bonds formed 1.7200±1.2496 2.0264±0.7809 0.503 3

H-bonded to any CDR3 residue 0.2800±0.4490 0.1714±0.0963 0.196 3
H-bonded to any peptide residue 0.1200±0.3250 0.0620±0.1108 0.31 3

H-bonded to any TCR residue 0.4000±0.4899 0.2491±0.1120 0.0866 3
H-bonded to any non-CDR3 TCR residue 0.1200±0.3250 0.1197±0.1162 0.697 3

In the edge 2 0.2600±0.4271 0.5771±0.1191 0.00591 3

H-bonded to any peptide residue 0.0495±0.1443 0.0659±0.1206 0.458 all
H-bonded to any CDR3 residue 0.2050±0.3024 0.1682±0.0982 0.48 all
H-bonded to any TCR residue 0.3401±0.3714 0.2372±0.1184 0.151 all

H-bonded to any non-CDR3 TCR residue 0.1712±0.3112 0.1118±0.1283 0.355 all
In the edge 2 0.4459±0.4097 0.5874±0.1232 0.0795 all

Closest distance to peptide (Å) 4.6398±1.7149 5.1926±1.2647 0.141 all
Number of H-bonds formed 2.1126±1.4959 2.0031±0.9051 0.668 all

1. Mean and standard deviation (for the 39 structures) of the proportion of residues that satisfy the property shown in the first column.
2. Three residues from the beginning and four from the end of the peptide. 3. In the last two properties, per-residue averages were used instead.
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Table A.4: TCR side attention analysis on all heads of Cross-TCR-Interpreter. In a
cell, the left number is the mean and the right number is the STD over the PDBIDs.

Property Large Attention 1 Small Attention 1 p-value Head

H-bonded to any peptide residue 0.0256 ± 0.1581 0.0853 ± 0.0577 0.043 0
H-bonded to any CDR3 residue 0.6068 ± 0.4262 0.4135 ± 0.1061 0.0111 0

H-bonded to any TCR residue of own chain 0.7051 ± 0.4038 0.6408 ± 0.0888 0.353 0
H-bonded to any CDR3 residue of own chain 0.6068 ± 0.4262 0.3792 ± 0.0991 0.0027 0

H-bonded to any TCR residue of opposite chain 0.1111 ± 0.2833 0.1565 ± 0.0756 0.371 0
H-bonded to any CDR3 residue of opposite chain 0.0000 ± 0.0000 0.0642 ± 0.0673 8.37e-07 0

H-bonded to any TCR residue 0.7308 ± 0.3897 0.7193 ± 0.0903 0.864 0
H-bonded to any non-CDR3 TCR residue 0.1966 ± 0.3734 0.4479 ± 0.0738 0.000482 0

In the edge 2 0.8376 ± 0.3235 0.5904 ± 0.0387 5.1e-05 0
Closest distance to peptide (Å) 9.1216 ± 3.1274 8.3528 ± 1.0097 0.119 0

Number of H-bonds formed 1.7479 ± 1.1003 2.0919 ± 0.6806 0.0397 0
H-bonded to any peptide residue 0.1453 ± 0.3162 0.0773 ± 0.0564 0.2 1
H-bonded to any CDR3 residue 0.5171 ± 0.4333 0.4147 ± 0.1077 0.183 1

H-bonded to any TCR residue of own chain 0.5427 ± 0.4315 0.6488 ± 0.0892 0.152 1
H-bonded to any CDR3 residue of own chain 0.5085 ± 0.4335 0.3817 ± 0.0999 0.0913 1

H-bonded to any TCR residue of opposite chain 0.1496 ± 0.3198 0.1510 ± 0.0714 0.979 1
H-bonded to any CDR3 residue of opposite chain 0.0171 ± 0.1054 0.0616 ± 0.0678 0.0467 1

H-bonded to any TCR residue 0.6368 ± 0.4480 0.7211 ± 0.0881 0.264 1
H-bonded to any non-CDR3 TCR residue 0.1581 ± 0.2995 0.4511 ± 0.0648 5.28e-07 1

In the edge 2 0.5513 ± 0.4388 0.6055 ± 0.0443 0.477 1
Closest distance to peptide (Å) 7.7849 ± 3.3952 8.4412 ± 0.9215 0.15 1

Number of H-bonds formed 1.9957 ± 1.5568 2.0725 ± 0.6687 0.742 1
H-bonded to any peptide residue 0.1127 ± 0.2935 0.0805 ± 0.0585 0.654 2
H-bonded to any CDR3 residue 0.3775 ± 0.4470 0.4247 ± 0.0992 0.614 2

H-bonded to any TCR residue of own chain 0.4853 ± 0.4615 0.6499 ± 0.0851 0.067 2
H-bonded to any CDR3 residue of own chain 0.3480 ± 0.4379 0.3919 ± 0.0947 0.633 2

H-bonded to any TCR residue of opposite chain 0.1324 ± 0.3278 0.1557 ± 0.0707 0.759 2
H-bonded to any CDR3 residue of opposite chain 0.0588 ± 0.2353 0.0614 ± 0.0678 0.933 2

H-bonded to any TCR residue 0.5882 ± 0.4451 0.7249 ± 0.0874 0.127 2
H-bonded to any non-CDR3 TCR residue 0.3235 ± 0.4021 0.4399 ± 0.0748 0.144 2

In the edge 2 0.4706 ± 0.4705 0.6060 ± 0.0390 0.126 2
Closest distance to peptide (Å) 7.9293 ± 4.0178 8.3982 ± 1.0153 0.588 2

Number of H-bonds formed 2.1765 ± 1.8190 2.0746 ± 0.6642 0.607 2
H-bonded to any peptide residue 0.0877 ± 0.2470 0.0818 ± 0.0572 0.909 3
H-bonded to any CDR3 residue 0.4342 ± 0.4318 0.4234 ± 0.1013 0.852 3

H-bonded to any TCR residue of own chain 0.5921 ± 0.4270 0.6499 ± 0.0865 0.466 3
H-bonded to any CDR3 residue of own chain 0.3947 ± 0.4161 0.3908 ± 0.0969 0.927 3

H-bonded to any TCR residue of opposite chain 0.2237 ± 0.2993 0.1476 ± 0.0693 0.116 3
H-bonded to any CDR3 residue of opposite chain 0.0526 ± 0.1916 0.0615 ± 0.0631 0.767 3

H-bonded to any TCR residue 0.6842 ± 0.3723 0.7236 ± 0.0884 0.57 3
H-bonded to any non-CDR3 TCR residue 0.3684 ± 0.3590 0.4391 ± 0.0678 0.263 3

In the edge 2 0.7281 ± 0.3735 0.5962 ± 0.0430 0.0464 3
Closest distance to peptide (Å) 3 8.6919 ± 3.5172 8.4100 ± 1.0378 0.597 3

Number of H-bonds formed 3 2.1535 ± 1.4009 2.0690 ± 0.6701 0.622 3
H-bonded to any peptide residue 0.0862±0.1368 0.0805±0.0675 0.828 all
H-bonded to any CDR3 residue 0.4846±0.2216 0.4103±0.1040 0.0478 all

H-bonded to any TCR residue of own chain 0.6013±0.1999 0.6561±0.0880 0.117 all
H-bonded to any CDR3 residue of own chain 0.4643±0.2180 0.3752±0.0922 0.0107 all

H-bonded to any TCR residue of opposite chain 0.1679±0.1714 0.1497±0.0793 0.562 all
H-bonded to any CDR3 residue of opposite chain 0.0306±0.0857 0.0672±0.0743 0.0369 all

H-bonded to any TCR residue 0.6845±0.1650 0.7294±0.0880 0.0987 all
H-bonded to any non-CDR3 TCR residue 0.2940±0.1923 0.4672±0.0846 3.88e-05 all

In the edge 2 0.6434±0.2064 0.5928±0.0570 0.218 all
Closest distance to peptide (Å) 3 8.4072±2.2892 8.4122±0.9592 0.988 all

Number of H-bonds formed 3 2.0234±0.9370 2.0875±0.6685 0.589 all

1. Mean and standard deviation (for the 39 structures) of the proportion of residues that satisfy the property shown in the first column.
2. Four residues from the beginning and four from the end of the CDR. 3. In the last two properties, per-residue averages were used instead.
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Table A.5: For the improved model, the structural property comparison results be-
tween the high and low attention residue groups by each head.

Model Side Property Large Atten. Small Atten. P Value Head

Improved TCR Proportion is_connecting_to_pep 0.0435+-0.2039 0.0779+-0.0536 2.570700e-01 0
Model TCR Proportion is_connecting_to_cdr 0.3913+-0.4768 0.4446+-0.1034 4.817425e-01 0

TCR Proportion is_connecting_to_ownchain_cdr 0.3913+-0.4768 0.4136+-0.0985 7.693818e-01 0
TCR Proportion is_connecting_to_tcr 0.7065+-0.4493 0.7433+-0.0912 5.806234e-01 0
TCR Proportion digit4_is_in_edge 0.2609+-0.3864 0.6170+-0.0416 5.575990e-07 0 ***
TCR distance_value 6.3723+-3.5671 8.3285+-0.9984 6.797449e-04 0 ***
TCR num_bonds 1.6522+-1.1603 2.1445+-0.6957 1.112145e-03 0 ***
TCR Proportion is_connecting_to_pep 0.0952+-0.2586 0.0750+-0.0479 5.818289e-01 1
TCR Proportion is_connecting_to_cdr 0.5918+-0.4442 0.4304+-0.0973 1.651444e-02 1 ***
TCR Proportion is_connecting_to_ownchain_cdr 0.5408+-0.4461 0.4067+-0.0931 4.618516e-02 1 ***
TCR Proportion is_connecting_to_tcr 0.7959+-0.3584 0.7398+-0.0946 2.959348e-01 1
TCR Proportion digit4_is_in_edge 0.6463+-0.4462 0.6017+-0.0383 5.101961e-01 1
TCR distance_value 7.4668+-3.8247 8.3152+-0.9455 1.318983e-01 1
TCR num_bonds 2.5170+-1.4083 2.1075+-0.6953 1.967807e-02 1 ***
TCR Proportion is_connecting_to_pep 0.1496+-0.3393 0.0720+-0.0451 1.410653e-01 2
TCR Proportion is_connecting_to_cdr 0.4872+-0.4472 0.4268+-0.1006 4.277684e-01 2
TCR Proportion is_connecting_to_ownchain_cdr 0.4744+-0.4538 0.3991+-0.0927 3.262043e-01 2
TCR Proportion is_connecting_to_tcr 0.8846+-0.2646 0.7195+-0.0961 9.987631e-04 2 ***
TCR Proportion digit4_is_in_edge 0.5598+-0.4505 0.6034+-0.0380 5.661873e-01 2
TCR distance_value 8.2835+-4.4946 8.2558+-0.9384 9.638520e-01 2
TCR num_bonds 2.3291+-1.5019 2.1180+-0.6936 1.248931e-01 2
TCR Proportion is_connecting_to_pep 0.1111+-0.2893 0.0778+-0.0544 4.609290e-01 3
TCR Proportion is_connecting_to_cdr 0.5781+-0.4123 0.4314+-0.0965 1.993077e-02 3 ***
TCR Proportion is_connecting_to_ownchain_cdr 0.5365+-0.4180 0.4044+-0.0902 3.486602e-02 3 ***
TCR Proportion is_connecting_to_tcr 0.7014+-0.4124 0.7436+-0.0906 4.879866e-01 3
TCR Proportion digit4_is_in_edge 0.5017+-0.4244 0.6136+-0.0437 9.306497e-02 3 *
TCR distance_value 6.8575+-3.4858 8.3529+-0.9824 4.946090e-03 3 ***
TCR num_bonds 2.4514+-1.6116 2.1082+-0.6999 1.103505e-01 3

Peptide Proportion is_connecting_to_cdr 0.2381+-0.3970 0.1581+-0.0830 3.624122e-01 0
Peptide Proportion is_connecting_to_tcr 0.2857+-0.4246 0.2458+-0.1152 6.831083e-01 0
Peptide Proportion pepres__is_in_edge 0.5000+-0.4629 0.5249+-0.1059 8.148104e-01 0
Peptide pepres__distance_value 4.0704+-2.2471 4.9875+-1.0222 3.627001e-02 0 ***
Peptide pepres__num_bonds 1.6905+-1.1178 2.1557+-0.7791 7.297248e-01 0
Peptide Proportion is_connecting_to_cdr 0.3125+-0.4635 0.1363+-0.0894 1.306443e-01 1
Peptide Proportion is_connecting_to_tcr 0.4375+-0.4961 0.2424+-0.1005 1.324123e-01 1
Peptide Proportion pepres__is_in_edge 0.6250+-0.4841 0.5331+-0.1071 4.829076e-01 1
Peptide pepres__distance_value 4.6176+-2.1006 4.9592+-0.9888 2.590448e-01 1
Peptide pepres__num_bonds 2.8750+-1.5360 2.1193+-0.7922 4.432649e-02 1 ***
Peptide Proportion is_connecting_to_cdr 0.3056+-0.4453 0.1926+-0.1361 3.289011e-01 2
Peptide Proportion is_connecting_to_tcr 0.4722+-0.4556 0.2692+-0.1622 1.180892e-01 2
Peptide Proportion pepres__is_in_edge 0.5278+-0.4851 0.5172+-0.0948 9.269207e-01 2
Peptide pepres__distance_value 3.8094+-1.3488 4.9931+-1.0577 4.122880e-03 2 ***
Peptide pepres__num_bonds 2.7778+-2.0630 2.1155+-0.7743 6.390261e-02 2 *
Peptide Proportion is_connecting_to_cdr 0.3478+-0.4763 0.1705+-0.1379 1.323572e-01 3
Peptide Proportion is_connecting_to_tcr 0.3913+-0.4880 0.2532+-0.1588 2.634958e-01 3
Peptide Proportion pepres__is_in_edge 0.4783+-0.4995 0.5407+-0.1233 6.112612e-01 3
Peptide pepres__distance_value 5.0025+-3.7390 4.9582+-0.9705 9.291060e-01 3
Peptide pepres__num_bonds 2.4783+-2.3750 2.1383+-0.7557 5.587625e-01 3
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Table A.6: For the standard attention model, the structural property comparison
results between the high and low attention residue groups by each head

Model Side Property Large Atten. Small Atten. P-Value Head

Standard TCR Proportion is_connecting_to_pep 0.1152+-0.1708 0.0446+-0.0608 5.128678e-03 0 ***
TCR Proportion is_connecting_to_cdr 0.5474+-0.2769 0.4469+-0.1700 3.338341e-02 0 ***
TCR Proportion is_connecting_to_ownchain_cdr 0.5142+-0.2836 0.4228+-0.1708 5.272380e-02 0 *
TCR Proportion is_connecting_to_tcr 0.8325+-0.2087 0.7122+-0.1540 2.316844e-04 0 ***
TCR Proportion digit4_is_in_edge 0.6345+-0.2693 0.6353+-0.0874 9.853132e-01 0
TCR distance_value 8.0513+-2.8446 8.3693+-1.4209 4.264827e-01 0
TCR num_bonds 2.4717+-1.1598 1.9728+-0.7684 3.657217e-04 0 ***
TCR Proportion is_connecting_to_pep 0.0510+-0.1386 0.0752+-0.0818 3.009511e-01 1
TCR Proportion is_connecting_to_cdr 0.6132+-0.3508 0.4490+-0.1323 2.050789e-03 1 ***
TCR Proportion is_connecting_to_ownchain_cdr 0.5726+-0.3585 0.4258+-0.1362 5.497273e-03 1 ***
TCR Proportion is_connecting_to_tcr 0.7639+-0.2941 0.7506+-0.1430 7.696887e-01 1
TCR Proportion digit4_is_in_edge 0.7104+-0.3007 0.6214+-0.0948 8.777165e-02 1 *
TCR distance_value 8.3724+-2.2920 8.2474+-1.3273 6.275842e-01 1
TCR num_bonds 2.1236+-1.0459 2.1213+-0.7447 7.830440e-01 1
TCR Proportion is_connecting_to_pep 0.0455+-0.1249 0.0781+-0.0641 1.723829e-01 2
TCR Proportion is_connecting_to_cdr 0.4798+-0.3989 0.5163+-0.1307 5.742949e-01 2
TCR Proportion is_connecting_to_ownchain_cdr 0.4646+-0.3882 0.4946+-0.1266 6.421815e-01 2
TCR Proportion is_connecting_to_tcr 0.7525+-0.3644 0.7543+-0.1283 9.766426e-01 2
TCR Proportion digit4_is_in_edge 0.7020+-0.3500 0.6113+-0.0710 1.991390e-01 2
TCR distance_value 8.0788+-2.8861 8.2790+-1.3446 7.489801e-01 2
TCR num_bonds 1.9141+-0.9463 2.1240+-0.7434 9.369856e-02 2 *
TCR Proportion is_connecting_to_pep 0.0311+-0.0987 0.0741+-0.0706 1.045949e-02 3 ***
TCR Proportion is_connecting_to_cdr 0.4644+-0.2859 0.4990+-0.1200 4.243659e-01 3
TCR Proportion is_connecting_to_ownchain_cdr 0.4414+-0.2936 0.4746+-0.1285 4.632827e-01 3
TCR Proportion is_connecting_to_tcr 0.6701+-0.3401 0.7643+-0.1599 1.503970e-01 3
TCR Proportion digit4_is_in_edge 0.7264+-0.2799 0.6128+-0.1218 3.770662e-02 3 ***
TCR distance_value 8.9846+-2.9062 8.1733+-1.4200 5.419123e-02 3 *
TCR num_bonds 1.9280+-1.0784 2.1002+-0.7389 2.476485e-01 3

Peptide Proportion is_connecting_to_cdr 0.1068+-0.1983 0.2245+-0.1388 5.888566e-04 0 ***
Peptide Proportion is_connecting_to_tcr 0.2250+-0.2718 0.2978+-0.1430 9.741488e-02 0 *
Peptide Proportion pepres__is_in_edge 0.6428+-0.3077 0.5474+-0.1348 5.579167e-02 0 *
Peptide pepres__distance_value 5.2700+-1.6018 4.7711+-1.0923 5.640764e-02 0 *
Peptide pepres__num_bonds 2.1119+-1.3299 2.1817+-0.9469 7.389934e-01 0
Peptide Proportion is_connecting_to_cdr 0.1628+-0.2243 0.1842+-0.1401 5.633909e-01 1
Peptide Proportion is_connecting_to_tcr 0.3006+-0.3143 0.2788+-0.1527 6.735949e-01 1
Peptide Proportion pepres__is_in_edge 0.5342+-0.3218 0.5577+-0.1529 6.809043e-01 1
Peptide pepres__distance_value 4.9643+-1.8243 4.9214+-0.9025 9.525252e-01 1
Peptide pepres__num_bonds 2.1335+-1.4119 2.1542+-0.9025 8.875797e-01 1
Peptide Proportion is_connecting_to_cdr 0.1945+-0.2071 0.1981+-0.1690 9.234416e-01 2
Peptide Proportion is_connecting_to_tcr 0.2447+-0.2200 0.3075+-0.1709 1.366735e-01 2
Peptide Proportion pepres__is_in_edge 0.5816+-0.2457 0.5401+-0.1902 4.016266e-01 2
Peptide pepres__distance_value 5.0151+-1.3035 4.7941+-1.4010 3.751639e-01 2
Peptide pepres__num_bonds 2.2383+-1.0157 2.1754+-1.0662 7.131025e-01 2
Peptide Proportion is_connecting_to_cdr 0.0884+-0.1988 0.2117+-0.1318 5.864652e-04 3 ***
Peptide Proportion is_connecting_to_tcr 0.2194+-0.2875 0.2941+-0.1333 1.014840e-01 3
Peptide Proportion pepres__is_in_edge 0.6803+-0.3667 0.5381+-0.0951 1.089272e-02 3 ***
Peptide pepres__distance_value 5.1556+-1.4941 4.8600+-1.0564 1.806034e-01 3
Peptide pepres__num_bonds 2.1207+-1.7253 2.1408+-0.7772 8.883590e-01 3
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PyMol Command for PDB 5TEZ

fetch 5TEZ;
set seq_view , 1;
bg_color white;
hide all;
remove waters;
select beta, chain J and not solvent;
select alpha, chain I and not solvent;
select mhc, (chain A or chain B or chain D or chain E) and not solvent;
show cartoon , alpha;
color wheat, alpha;
show cartoon , beta;
color lightblue , beta;
show cartoon ,mhc
color grey90, mhc;
create obj_mhc , mhc
show surface , obj_mhc
set transparency=0.2
sel beta_cdr3 , (chain J and resi 91:104);
#set cartoon_side_chain_helper , on
#show sticks, beta_cdr3;
#util.cbag beta_cdr3;
color palecyan , beta_cdr3
sel alpha_cdr3 , (chain I and resi 91:105);
#set cartoon_side_chain_helper , on
#show sticks, alpha_cdr3;
#util.cbag alpha_cdr3;
color lightpink , alpha_cdr3
select epitope , chain C and not solvent;
show sticks, epitope;
color yellow, epitope
#util.cbay epitope;
#select cdr3, alpha_cdr3 or beta_cdr3;
#select tcr, alpha or beta;
#dist H_cdr_p , cdr3, epitope , mode=2;
#hide labels, H_cdr_p;
#color black, H_cdr_p;
#dist H_cdr_tcr , cdr3, tcr, mode=2;
#hide labels, H_cdr_tcr;
#color grey, H_cdr_tcr;
sel atten_a_head1 , (resi 104 and chain I);
#color pink, atten_a_head1;
sel atten_a_head2 , (resi 101 and chain I);
#color pink, atten_a_head2;
sel atten_a_head3 , (resi 101 and chain I);
#color pink, atten_a_head3;
sel atten_b_head0 , (resi 99 and chain J);
#color pink, atten_b_head0;
show sticks, atten_a_head1
show sticks, atten_a_head2
show sticks, atten_a_head3
show sticks, atten_b_head0
color magenta , atten_a_head1
color magenta , atten_a_head2
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color magenta , atten_a_head3
color cyan, atten_b_head0
sel atten_1_int , (resi 93 and chain I)
sel atten_23_int , (resi 94 and chain I)
sel atten_230_int , (resi 6 and chain C)
show sticks, atten_1_int
show sticks, atten_23_int
show sticks, atten_0_int
sel int_int ,(resi 98 and chain J)
show sticks, int_int
color atomic ,(not elem C)
color gray90, obj_mhc
dist a1_hb ,(resi 104 and chain I),(resi 93 and chain I),mode=2
dist a23_hb ,(resi 101 and chain I),(resi 94 and chain I),mode=2
dist a23p_hb ,(resi 101 and chain I),(resi 6 and chain C),mode=2
dist a0_hb ,(resi 99 and chain J),(resi 6 and chain C),mode=2
dist intint ,(resi 94 and chain I),(resi 98 and chain J),mode=2
hide labels, a1_hb
hide labels, a23_hb
hide labels, a23p_hb
hide labels, a0_hb
hide labels, intint

S Protein sequence of Covid-19

• mfvflvllpl vssqcvnltt rtqlppaytn sftrgvyypd kvfrssvlhs tqdlflpffs nvtwfhaihv sgt-
ngtkrfd npvlpfndgv yfasteksni irgwifgttl dsktqslliv nnatnvvikv cefqfcndpf lgvyyhknnk
swmesefrvy ssannctfey vsqpflmdle gkqgnfknlr efvfknidgy fkiyskhtpi nlvrdlpqgf sale-
plvdlp iginitrfqt llalhrsylt pgdsssgwta gaaayyvgyl qprtfllkyn engtitdavd caldplsetk
ctlksftvek giyqtsnfrv qptesivrfp nitnlcpfge vfnatrfasv yawnrkrisn cvadysvlyn sasf-
stfkcy gvsptklndl cftnvyadsf virgdevrqi apgqtgkiad ynyklpddft gcviawnsnn ldskvg-
gnyn ylyrlfrksn lkpferdist eiyqagstpc ngvegfncyf plqsygfqpt ngvgyqpyrv vvlsfellha
patvcgpkks tnlvknkcvn fnfngltgtg vltesnkkfl pfqqfgrdia dttdavrdpq tleilditpc sfg-
gvsvitp gtntsnqvav lyqdvnctev pvaihadqlt ptwrvystgs nvfqtragcl igaehvnnsy ecdip-
igagi casyqtqtns prrarsvasq siiaytmslg aensvaysnn siaiptnfti svtteilpvs mtktsvd-
ctm yicgdstecs nlllqygsfc tqlnraltgi aveqdkntqe vfaqvkqiyk tppikdfggf nfsqilpdps
kpskrsfied llfnkvtlad agfikqygdc lgdiaardli caqkfngltv lpplltdemi aqytsallag tits-
gwtfga gaalqipfam qmayrfngig vtqnvlyenq klianqfnsa igkiqdslss tasalgklqd vvnq-
naqaln tlvkqlssnf gaissvlndi lsrldkveae vqidrlitgr lqslqtyvtq qliraaeira sanlaatkms
ecvlgqskrv dfcgkgyhlm sfpqsaphgv vflhvtyvpa qeknfttapa ichdgkahfp regvfvsngt
hwfvtqrnfy epqiittdnt fvsgncdvvi givnntvydp lqpeldsfke eldkyfknht spdvdlgdis gi-
nasvvniq keidrlneva knlneslidl qelgkyeqyi kwpwyiwlgf iagliaivmv timlccmtsc csclkgccsc
gscckfdedd sepvlkgvkl
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