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Chapter 1

Introduction

Information geometry originated in an attempt to understand the mechanisms of statistical

inference from the standpoint of differential geometry. An early conception was provided by

Rao in 1945 [28]. He discussed using the Fisher information matrix as a Riemannian metric on

a statistical model, a family of probability distributions with finite parameters. This metric,

called the Fisher metric, is shown to be a unique Riemannian metric that is invariant with

respect to sufficient statistics by Chentsov’s theorem [34]. Efron introduced a curvature of a

statistical model [16]. It is a geometric expression of how “curved” the model is, compared to

the exponential family, which is the most basic model in statistical estimation. This idea was

later organized as an affine connection that is known nowadays as the e-connection. On the other

hand, the natural affineness of the space of probabilities defines another affine connection, called

the m-connection. On the probability simplex S, the e-connection ∇e and m-connection ∇m are

mutually dual with respect to the Fisher metric gF , and they are both flat, where the probability

simplex is a finite dimensional manifold consisting of non-singular probability distributions on

finite events. Such a tuple (S, gF ,∇e,∇m) satisfying the duality and flatness is referred to as a

dually flat manifold. A dually flat manifold admits an extension of the Pythagorean theorem.

This is a remarkable result in information geometry and has been widely applied to statistical

testing and estimation, information processing, and convex programming.

Optimal transport theory also studies a geometry on a space of probability distributions.

It originates from solving the problem of transporting given resources to specified destinations

at minimum cost. When a distance function is used as the cost for transporting an individual

resource, the minimum transportation cost becomes a distance function between the resource

distribution and target distribution, which is called the Wasserstein distance. The topology de-

termined by the Wasserstein distance, unlike information geometry, reflects geometric properties

such as the curvature of the underlying space [36, 35]. The Wasserstein distance itself is an impor-

tant geometric object; however it has also become important in applications in recent years. In

the context of machine learning, a method using the Wasserstein distance as a loss function was

proposed [19]. Based on this idea, in 2017, the Wasserstein-GAN, a generative model minimizing

while estimating the Wasserstein distance, was proposed [8]. This model, using the Kantorovich
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duality for estimation, has been shown to produce stable, high-quality images compared to con-

ventional generative models. Optimal transport theory is also applied to the analysis of the

workings of learning machines. Sonoda and Murata showed that processing in a neural network

with very deep hierarchical structure approximates a gradient flow with respect the Wasserstein

distance [31]. In the field of image processing, the Wasserstein barycenter [1], a barycenter with

respect to Wasserstein distance, has an interesting application. By treating grayscale images as

probability distributions and computing the Wasserstein barycenter of them, one can obtain a

smooth interpolation of those images [13, 9, 23]. The computation of the Wasserstein barycenter

can be executed in a reasonable cost due to the contribution of Cuturi’s entropic regularization

[12]. Cuturi added the Shannon entropy as a regularization term to the objective function of

the optimal transport problem, and showed that an algorithm called the Sinkhorn algorithm can

solve the relaxed problem with significantly less computational cost than the original problem.

In the first part of the thesis, we extend the previous work [3, 4] by Amari et al. on the

relationship of Wasserstein and information geometry. Amari et al. interpreted Cuturi’s entropic

regularization in the framework of information geometry, and proposed a divergence that is

consistent with the Wasserstein distance in the limit where the regularization term tends to zero.

We aim to extend their framework including computational algorithms to the regularization

by general convex functions. In particular, we are interested in the optimal choice of convex

function for each problem setting in practical applications. A straightforward generalization of

the framework requires a tight assumption other than that the regularization term is strictly

convex and smooth; the feasible domain of the dual problem must be unconstrained. Even a

simple regularization term, such as a squared function, violates this assumption. We weaken this

assumption by using subdifferentials on the boundary of the dual problem. As a demonstration,

we constructed a generalized algorithm and computed Wasserstein barycenters regularized by

the squared function. Compared to Cuturi’s regularization, even when the regularization term

is large, the numerical solution obtained in squared regularization has a smaller entropy, which

results in less blurred in image processing applications. Unfortunately, the squared regularization

could not outperform Cuturi’s entropic regularization in terms of computational cost; however, we

established a theoretical foundation for finding the optimal regularization term for computation.

We also study machine learning from a geometric perspective. Similar to statistical estima-

tion, the goal of machine learning is to find a function that explains a given set of data well

from a parametric family of functions. Thus, information geometry is also applied in machine

learning. A well-known example is the Boltzmann machine, which models the function of a

neuron to fire with a probability depending on condition of neighbor neurons. Learning a Boltz-

mann machine can be described as an iteration of alternating projections onto a pair of ∇e-

and ∇m-autoparallel submanifolds [5]. Similar algorithms are applied in different contexts and

known as the em-algorithm. Another example is the natural gradient method. The gradient

descent method is used to train multilayer perceptrons (multilayer feedforward neural networks),

the most basic model of deep learning. This method reduces some loss function by updating

parameters successively in the opposite direction of the gradient using the Newton method. The

parameter space of a multilayer perceptron is often referred to as a perceptron manifold; how-
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ever, the term “gradient” in the gradient descent method simply means a partial derivative in

a particular coordinate system, not a gradient vector in manifold theory. Amari introduced the

Fisher metric into the perceptron manifold by regarding the model of a multilayer perceptron as

a statistical model [2]. The natural gradient method is a learning method using the proper gra-

dient vector field of the loss function with respect to the Fisher metric, and performs remarkably

well compared to the vanilla gradient method.

The perceptron manifold is not a manifold in a strict sense, since it contains many singular

regions composed of parameters that represent the same input-output relation. Due to this fact,

the gradient-based learning process becomes a challenging dynamical system. In 1999, Amari

and Fukumizu investigated the singular regions formed by the degeneration, in which several

neurons act the same role and behave essentially as a single neuron. They showed that a singular

region with both attractive and repulsive parts appears and causes serious stagnation of learning

[20]. Such a region is called a Milnor-like attractor. Although it later became clear that such

a structure is a very special case, the singular regions they examined are essential to elucidate

how the learning machine acquires the ability to express a target function. The singular regions

has a nested structure in the perceptron manifold, and the learning dynamical system reduces

to a smaller dimensional subsystem on such a region. Deep learning involves tuning a huge

number of parameters, and hence, it is usually not necessary to use all the parameters effectively

for representing the target function. In some cases, the input data itself can be reduced to a

smaller dimension, and it may be desirable to process it into a lower dimensional intermediate

representation in the neural network [21]. In these cases, in order for a trained network to behave

well with respect to a given input, the dynamical system needs to be trapped by an appropriate

singular region.

In the second part of the thesis, we aim to analyze how degeneration occurs, focusing on the

geometry of the perceptron manifold. In the author’s thesis for master’s degree, he analyzed

the dynamics of the “averaged” gradient descent method around a Milnor-like attractor using

a center manifold. With the help of the center manifold analysis, we show that the stochastic

gradient descent (SGD), a stochastic learning method using training data randomly chosen for

each instant, which exhibits different dynamical behavior from the averaged gradient method.

Furthermore, for a basic model, we found numerically that the dynamics of SGD tends to cause

stronger degeneration. We have considered that this novel type of degeneration suppresses over-

fitting. Overfitting is a phenomenon in which the system fits too closely to the training data

and therefore fail to explain or predict unknown data. These results are consistent with pre-

vious studies [22, 39, 11]. Our approach is novel in that it deals with the transient dynamics

of individual realization paths, whereas previous studies have been done from an asymptotic

perspective.

The construction of the thesis is divided mainly into two parts. In Part I, we analyze the

discrete optimal transport problem from the viewpoint of information geometry. In Chapter 2,

we outline a regularized problem by Cuturi and the associated geometric structure. In Chapter

3, we give an information geometric analysis to more general regularized problems. In Chapter

4, we further weaken the assumption for regularization term. As a demonstration, we construct
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an algorithm computing Wasserstein barycenters regularized the squared term. In Part II, we

analyze dynamics of gradient descent learning of multilayer perceptrons. We investigate the

learning dynamics in particular around singular regions in the parameter space. In Chapter

5, we outline a multilayer perceptron and its learning methods. In Chapter 6, we introduce

the previous analysis around singular regions, including a remarkable example, a Milnor-like

attractor. In Chapter 7, we compare a behavior of the stochastic gradient learning with the

averaged learning around singular regions. We finally imply that the stochastic learning has a

qualitatively different dynamics from the averaged one, which may bring an advantage in terms

of generalization performance. Chapter 8 is devoted to the concluding remarks.
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Part I

Geometry of optimal transport

problem
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Chapter 2

Preliminaries

2.1 Optimal transport problem

We treat the discrete setting of the optimal transport problem, that is, the sets of sources and

targets are finite. Let Pn−1 be the set of nonsingular probability distributions on {1, 2, . . . , n},
which is given by

Pn−1 :=

{
p ∈ Rn

∣∣∣∣∣
n∑

i=1

pi = 1, pi > 0, 1 ≤ i ≤ n

}
,

where the subscript n − 1 describes the dimension as a manifold. We regard each element of

Pn−1 as a distribution of resources positioned on the set of n sources. We also assign Pm−1 to

the set of distributions of resources required in m targets.

In order to represent transportation, we introduce a set Pnm−1 of marginal distributions

defined by

Pnm−1 :=

 P = (Pij) ∈ Rn×m

∣∣∣∣∣∣
∑
i,j

Pij = 1, Pij > 0, 1 ≤ i ≤ n, 1 ≤ j ≤ m

 .

Each entry Pij means a quantity transported from the source i to the target j, and hence, each

P ∈ Pnm−1 is called a transport plan. Given p ∈ Pn−1, q ∈ Pm−1, each element of the subset

Π(p, q) :=

 P ∈ Pnm−1

∣∣∣∣∣∣
m∑
j=1

Pij = pi,

n∑
i=1

Pij = qj


is called a transport plan from p to q or a coupling of p and q.

Let C = (Cij) be a given matrix with nonnegative entries. Each entry Cij means a transport

cost from a source i to a target j, and we call C a cost matrix. Then, the optimal transport
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problem is presented as the minimization problem:

W (p, q) := inf
P∈Π(p,q)

⟨P,C⟩ = inf
P∈Π(p,q)

∑
i,j

PijC
ij . (2.1)

Here, the target function ⟨P,C⟩ is the total cost of the transport plan P .

When m = n and C is a distance matrix, it is known that the minimum W (p, q) defines a

distance on Pn−1 that is often referred to as the Wasserstein distance.

2.2 Cuturi’s entropic regularization

We herein outline the entropic regularization of the optimal transport problem by Cuturi. In his

article [12], instead of the optimization problem (2.1), Cuturi considered the alternative problem:

Wλ(p, q) := inf
P∈Π(p,q)

⟨C,P ⟩ − λH(P ), λ > 0, (2.2)

H(P ) := −
∑
ij

Pij logPij .

Here, the function H is known as the Shannon entropy and is smooth and concave with respect

to the natural affine structure of Pnm−1. Unlike that of the original problem (2.1), the target

function

Φλ(P ) := ⟨C,P ⟩ − λH(P ) (2.3)

in the problem (2.2) is strictly convex under the natural affine structure of Pnm−1. Since the

function Φλ(P ) is strictly convex on a convex affine subspace Π(p, q), the problem (2.2) has a

unique optimum P ∗(p, q), which is called the optimal transport plan from p to q, at least on

the closure Π(p, q) ⊂ Rn×m. This type of regularization is usually referred to as the entropic

regularization.

The quantity Wλ(p, q) does not define a distance on Pn−1 in general; however it gives an

approximation of the Wasserstein distance W (p, q), that is, Wλ(p, q) converges to W (p, q) as λ

tends to 0 [14].

Cuturi showed that one can thus compute Wλ(p, q) much faster than W (p, q). The optimal

transport problem (2.1) can be solved by interior-point methods; however, it costs O(n3 log n)

time in the worst case form = n [26]. In contrast, Wλ(p, q) is obtained by the Sinkhorn algorithm,

which costs O(max{n,m}2) time [12].

By the Sinkhorn algorithm (Algorithm 1), the optimal transport plan P ∗(p, q) is computed

approximately as follows. Cuturi showed that there exists a solution (α, β) ∈ Rn+m of the dual

problem, which gives the optimal transport plan as

P ∗(p, q)ij = exp

(
1

λ
(αi + βj − Cij)

)
. (2.4)
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Leting Kij := exp(−Cij/λ), ui = exp(αi/λ), vj = exp(βj/λ), it is also denoted as

P ∗(p, q)ij = uiKijvj . (2.5)

By Algorithm 1, we obtain the vectors u(t), v(t), and P (t) ∈ Pnm−1 defined by

P
(t)
ij := u

(t)
i Kijv

(t)
j .

The sequence {P (t)} converges to the optimal plan P ∗(p, q) as t tends to infinity [27, Section 4].

This algorithm requires O(max{n,m}2) time for each iteration of the while loop.

Algorithm 1 Sinkhorn algorithm

p ∈ Pn−1, q ∈ Pm−1,K = (Kij) ∈ Rn×m, λ > 0: given

u(0) ∈ Rn, v(0) ∈ Rm: initial values

while until converge do

for i = 1 to n do

u
(t+1)
i ⇐ pi

/(∑m
j=1 Kijv

(t)
j

)
end for

for j = 1 to m do

v
(t+1)
j ⇐ qj

/(∑n
i=1 u

(t+1)
i Kij

)
end for

t⇐ t+ 1

end while

2.3 Geometry of entropic regularization

Let gF be the Fisher metric, ∇m the m-connection, and ∇m the e-connection on the probability

simplex Pnm−1. Amari et al. [3] focused on the set of optimal transport plans

Popt := { P ∗(p, q) ∈ Pnm−1 | p ∈ Pn−1, q ∈ Pm−1 } ,

which is an exponential family with canonical parameters (α, β) as seen in (2.4). In terms of

the information geometry [6], Popt is a ∇e-autoparallel submanifold of the dually flat manifold

(Pnm−1, gF ,∇m,∇e). On the other hand, for each p ∈ Pn−1, q ∈ Pm−1,

Mp,· :=

 P ∈ Pnm−1

∣∣∣∣∣∣
m∑
j=1

Pij = pi

 , M·,q :=

{
P ∈ Pnm−1

∣∣∣∣∣
n∑

i=1

Pij = qj

}

are ∇m-autoparallel submanifolds. Moreover, they are orthogonal to Popt with respect to gF .

From that fact, the Sinkhorn algorithm is interpreted as an iterative geometric operations.

Proposition 2.1 (Amari et al. [3]). Let {u(t)}t, {v(t)}t be a sequence given by Algorithm 1, and
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P (t), Q(t) ∈ Pnm−1 defined as

P
(t)
ij := u

(t)
i Kijv

(t)
j , Q

(t)
ij := u

(t+1)
i Kijv

(t)
j ,

for each t ∈ N. Then, for each instant t, Q(t) attains the e-projection of P (t) onto Mp,·, and

P (t+1) attains that of Q(t) onto M·,q.

The Kullback-Leibler divergence, the canonical divergence on (Pnm−1, gF ,∇m,∇e), is given

by

KL [P∥Q] :=
∑
i,j

Pij log
Pij

Qij
, P,Q ∈ Pnm−1.

Due to the projection theorem [6, Theorem 3.9], the e-projection Q(t) of P (t) is given as

Q(t) = argmin
R∈Mp,·

KL
[
R∥P (t)

]
. (2.6)

In this sense, Q(t) is the “nearest” point on Mp,· to P (t). In addition, from the Pythagorean

theorem [6, Theorem 3.8], it holds that

KL
[
P ∗(p, q)∥P (t)

]
= KL

[
P ∗(p, q)∥Q(t)

]
+KL

[
Q(t)∥P (t)

]
≥ KL

[
P ∗(p, q)∥Q(t)

]
,

and the equality holds if and only if P (t) = Q(t). Combined with a similar argument for P (t+1),

we obtain

KL
[
P ∗(p, q)∥P (t)

]
≥ KL

[
P ∗(p, q)∥Q(t)

]
≥ KL

[
P ∗(p, q)∥P (t+1)

]
,

and thus, the Kullback-Leibler divergence between P ∗(p, q) and P (t) decreases monotonically

during the Sinkhorn algorithm (Figure 2.1).
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Figure 2.1: A schematic diagram for the geometric interpretation of the Sinkhorn algorithm.

The point Q(t) is the e-projection of P (t) onto Mp,·, and P (t+1) is that of Q(t) onto M·,q. All of

P (t) and Q(t) belong to Popt except for P (0). They converge to the optimal plan P ∗(p, q), which

is located at the intersection of Popt and Π(p, q) = Mp,· ∩M·,q (presented by the red point).

2.4 Barycenter problem

The minimum Wλ(p, q) in the problem (2.2) is a strictly convex function on Pn−1 × Pm−1

with respect to the natural (∇m-) affine structure. In fact, letting pt := (1 − t)p0 + tp1, qt :=

(1− t)q0 + tq1, we have

Wλ(pt, qt) = inf
P∈Π(pt,qt)

Φλ(P )

≤ Φλ ((1− t)P ∗
0 + tP ∗

1 )

≤ (1− t)Φλ(P
∗
0 ) + tΦλ(P

∗
1 )

= (1− t)Wλ(p0, q0) + tWλ(p1, q1),

where P ∗
0 , P

∗
1 are optimal plans for (p0, q0), (p1, q1) respectively. We used the convexity of Φλ at

the second inequality. The strict convexity of Wλ follows from that of Φλ.

As λ tends to 0, Wλ(p, q) goes to the minimal cost W (p, q) defined by (2.1). Assuming m = n

and some conditions for the cost matrix C, the quantity W (p, q) can be regarded as a distance

on Pn−1, called the Wasserstein distance [35]. Then, one can consider the problem of computing

the Fréchet mean

p∗ := arg inf
q∈Pn−1

N∑
k=1

rk W (pk, q), (2.7)

of given points p1, . . . , pN ∈ Pn−1 and weights r1, . . . , rN > 0 with
∑N

k=1 rk = 1. Such a type of

mean is called the Wasserstein barycenter.
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Let us consider a relaxed variant of the problem (2.7): given p1, . . . , pN ∈ Pn−1 and r1, . . . , rN >

0 with
∑N

k=1 rk = 1,

Minimize

N∑
k=1

rk Wλ(p
k, q) under q ∈ Pn−1. (2.8)

Benamou et al. showed that this problem can be solved by a Sinkhorn-like algorithm [9], which

is presented in Algorithm 2. In order to devise this algorithm, they enlarged the domain of the

problem to (Pn2−1)
N and considered the problem

Minimize

N∑
k=1

rk Φλ(P
k) under (P 1, . . . , PN ) ∈M1 ∩M2,

where

M1 =
{
(P 1, . . . , PN ) ∈ (Pn2−1)

N
∣∣ P k ∈Mpk,· for

∀k
}
,

M2 =
{
(P 1, . . . , PN ) ∈ (Pn2−1)

N
∣∣ ∃q ∈ Pn−1 s.t. P k ∈M·,q, for ∀k

}
.

This problem is, in fact, equivalent to the original one (2.8). Algorithm 2 is obtained by comput-

ing the ∇e-projection onto the pair of ∇m-autoparallel submanifolds M1 and M2 of (Pn2−1)
N ,

iteratively. Each iteration of the while loop costs O(Nn2) time.

Algorithm 2 Benamou et al.’s algorithm

p1, . . . , pN ∈ Pn−1, r1, . . . , rN > 0 with
∑N

k rk = 1,K ∈ Rn×m: given

(u(1;0), . . . , u(N ;0)), (v(1;0), . . . , v(N ;0)) ∈ Rn×N : initial values

while until converge do

for k = 1 to N do

for i = 1 to n do

u
(k;t+1)
i ⇐ pki

/(∑n
j=1 Kijv

(k;t)
j

)
end for

end for

for j = 1 to n do

p̃j ⇐
∏N

k=1

(∑n
i=1 u

(k;t+1)
i Kij

)rk
end for

for k = 1 to N do

for j = 1 to n do

v
(k;t+1)
j ⇐ p̃j

/(∑n
i=1 u

(k;t+1)
i Kij

)
end for

end for

t⇐ t+ 1

end while
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Chapter 3

Generalized entropic

regularization

In this chapter, for given p ∈ Pn−1 and q ∈ Pm−1, we consider the minimization problem

φ(p, q) = inf
P∈Π(p,q)

Φ(P ) (3.1)

where Φ is a strictly convex smooth function on Pnm−1. We herein assume that Φ can be

presented as a restriction of a strictly convex smooth function Φ̃ defined on an open convex set

U ⊂ Rn×m
++ including Pnm−1, where R++ denote the sets of positive real numbers. This problem

includes Cuturi’s regularized optimal transport problem as the case where Φ = Φλ given by (2.3).

We construct the dually flat structure suitable for the problem (3.1), and devise a procedure which

generalizes the Sinkhorn algorithm. We also address the generalized barycenter problem:

Minimize

N∑
k=1

rk φ(p
k, q) under q ∈ Pn−1. (3.2)

3.1 Geometric framework

On Pnm−1, the Bregman divergence D associated to Φ is given by

D(P ||Q) := Φ(η(P ))− Φ(η(Q))−
⟨
∂Φ

∂η
(η(Q)), η(P )− η(Q)

⟩
,

where η is an affine coordinate system on Pnm−1 compatible with the standard affine structure,

which is specified later by the equation (3.5). The partial derivative ∂Φ/∂η defines the dual

affine coordinate system θ, i.e.,

θ(P ) :=
∂Φ

∂η
(η(P )), ∀P ∈ Pnm−1. (3.3)
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The divergence D induces a dualistic structure (g,∇,∇∗) in the standard manner [6]:

gP (X,Y ) = −XPYQD(P ||Q)
∣∣
Q=P

,

gP (∇XY, Z) = −XPYPZQD(P ||Q)
∣∣
Q=P

,

gP (∇∗
XY, Z) = −XQYQZPD(P ||Q)

∣∣
Q=P

,

for X,Y, Z ∈ X (Pnm−1) and P ∈ Pnm−1, where X (Pnm−1) denotes the set of vector fields

on Pnm−1. The connections ∇ and ∇∗ automatically become flat, and η and θ are their affine

coordinate systems, respectively. Moreover, η and θ are mutually dual with respect to g, that is,

they satisfy the relation

g

(
∂

∂ηi
,

∂

∂θj

)
= δij , (3.4)

where δij denotes the Kronecker delta.

In order to illustrate a geometric presentation of the problem (3.1), we use the affine coordi-

nate system η defined by
ηij(P ) = Pij , 1 ≤ ∀i ≤ n− 1, 1 ≤ ∀j ≤ m− 1,

ηim(P ) =
∑m

j=1 Pij , 1 ≤ ∀i ≤ n− 1,

ηnj(P ) =
∑n

i=1 Pij , 1 ≤ ∀j ≤ m− 1.

(3.5)

Under this coordinate system, the subset Π(p, q) is presented as

Π(p, q) = Mp,· ∩M·,q

by using ∇-autoparallel submanifolds defined by

Mp,· :=
{
P ∈ Pnm−1

∣∣ ηim(P ) = pi, 1 ≤ ∀i ≤ n− 1
}
,

M·,q :=
{
P ∈ Pnm−1

∣∣ ηnj(P ) = qj , 1 ≤ ∀j ≤ m− 1
}
.

In particular, Π(p, q) itself is also an ∇-autoparallel submanifold. Then, the problem (3.1) is

reduced to 
∂Φ

∂ηij
(η) = 0, 1 ≤ ∀i ≤ n− 1, 1 ≤ ∀j ≤ m− 1,

ηim = pi, ηnj = qj , 1 ≤ ∀i ≤ n, 1 ≤ ∀j ≤ m,

(3.6)

if its solution lies in the open simplex Pnm−1.
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From the inverse of (3.5)
Pij = ηij , 1 ≤ ∀i ≤ n− 1, 1 ≤ ∀j ≤ m− 1,

Pim = ηim −
∑m−1

j=1 ηij , 1 ≤ ∀i ≤ n− 1,

Pnj = ηnj −
∑n−1

i=1 ηij , 1 ≤ ∀j ≤ m− 1,

Pnm = 1−
∑n−1

i=1 ηim −
∑m−1

j=1 ηnj +
∑n−1

i=1

∑m−1
j=1 ηij ,

and the relation (3.3), one can check that the dual affine coordinate system θ is given by
θij = Sij(P )− Sim(P )− Snj(P ) + Snm(P ),

1 ≤ ∀i ≤ n− 1, 1 ≤ ∀j ≤ m− 1

θim = Sim(P )− Snm(P ), 1 ≤ ∀i ≤ n− 1,

θnj = Snj(P )− Snm(P ), 1 ≤ ∀j ≤ m− 1.

(3.7)

Here, we denote by Sij := ∂Φ̃/∂Aij for 1 ≤ i ≤ n, 1 ≤ j ≤ m, where Φ̃ is an extension of Φ to

U ⊂ Rn×m
++ and A = (Aij) indicates an element of Rn×m

++ . Thus, the critical condition

θij =
∂Φ

∂ηij
= 0

in (3.6) is rewritten as

Sij(P )− Sim(P ) = Snj(P )− Snm(P ),

which implies that Sij(P ) − Sim(P ) does not depend on i. By rearranging terms, one can also

check that Sij(P ) − Snj(P ) is independent of j. As a consequence, there exist α ∈ Rn and

β ∈ Rm satisfying

Sij(P ) = αi + βj , 1 ≤ ∀i ≤ n, 1 ≤ ∀j ≤ m.

From (3.7), we obtain

θim(P ) = αi − αn, 1 ≤ ∀i ≤ n− 1,

θnj(P ) = βj − βm, 1 ≤ ∀j ≤ m− 1,

and thus, the quantities θim and θnj are equivalent variables to αi and βj up to additive constants

αn, βm.

Let us consider a ∇∗-autoparallel submanifold defined by

Popt :=
{
θij = 0, 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m− 1

}
.

Each element P ∈ Popt lies in Π(p, q) for some p ∈ Pn−1, q ∈ Pm−1, and then, P is the solution

of the problem (3.1) for those p, q. Therefore, Popt is the set of optimal solutions for some

source and target distributions. From the duality (3.4) of the coordinate systems η and θ,

Popt is orthogonal to Π(p, q) with respect to g. Now, the problem (3.1) is interpreted as the

problem of finding the intersection point between the ∇∗-autoparallel submanifold Popt and the
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∇-autoparallel submanifold Π(p, q), which are mutually orthogonal.

To describe such a type of problem, the concept of a mixed coordinate system is useful.

Proposition 3.1 (Mixed coordinate system). Let (M, g,∇,∇∗) be an n-dimensional dually flat

manifold, and η = (ηi) and θ = (θi) be affine coordinate systems of ∇ and ∇∗, respectively.

Suppose that η and θ are mutually dual. Then, for 1 ≤ k ≤ n,

ξ = (θ1, . . . , θk, ηk+1, . . . , ηn)

becomes a coordinate system on M , which is called a mixed coordinate system.

We use the mixed coordinate system ξ = (ξij) defined by
ξij(P ) = θij(P ), 1 ≤ ∀i ≤ n− 1, 1 ≤ ∀j ≤ m− 1,

ξim(P ) = ηim(P ), 1 ≤ ∀i ≤ n− 1,

ξnj(P ) = ηnj(P ), 1 ≤ ∀j ≤ m− 1.

Under this coordinate system, the equation (3.6) is presented by

ξij(P ) = 0, ξim(P ) = pi, ξnj(P ) = qj , 1 ≤ ∀i ≤ n− 1, 1 ≤ ∀j ≤ m− 1.

From the above discussion, the solution P ∗(p, q) of the problem (3.1) is, if it exists, given by

Sij(P ∗(p, q)) = (α∗)i + (β∗)j ,

and α∗ ∈ Rn and β∗ ∈ Rm are determined by the conditions

ηim(P ∗(p, q)) = pi, ηnj(P
∗(p, q)) = qj , 1 ≤ ∀i ≤ n, 1 ≤ ∀j ≤ m,

due to Proposition 3.1.

3.2 Generalized Sinkhorn algorithm

We herein assume that the convex function Φ has a smooth extension Φ̃ onto U = Rn×m
++ , and

that S : Rn×m
++ → Rn×m is surjective. For example, the function Φλ defined by (2.3) has the

extension

Φ̃λ(A) := ⟨A,C⟩ − λH̃(A), (3.8)

H̃(A) := −
∑
i,j

Aij logAij +

∑
i,j

Aij − 1

 , A ∈ Rn×m
++ ,

which satisfies the assumption. These assumptions are slightly too strong for introducing an

information geometric structure; however, those assumptions are necessary for a straightforward

generalization of the entropic regularization, including algorithms which solve it numerically.
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Before we discuss the generalization of the Sinkhorn algorithm, let us introduce a dual problem

of the problem (3.1). The next lemma is a relaxed version of the Kantorovich duality [35], which

is a well-known theorem in the optimal transport theory. A proof of the lemma is located in

Appendix A.

Lemma 3.2. Let Φ̃ : Rn×m
++ → R be a convex function. For p ∈ Pn−1, q ∈ Pm−1,

inf
P∈Π(p,q)

Φ̃(P ) = sup
α∈Rn,β∈Rm

{⟨p, α⟩+ ⟨q, β⟩ − Φ̃∗(α⊕ β)},

where Φ̃∗ : Rn×m → R ∪ {+∞} is the Legendre transform of Φ̃ defined by

Φ̃∗(u) := sup
A∈Rn×m

++

{⟨A, u⟩ − Φ̃(A)}, u ∈ Rn×m,

and α⊕ β ∈ Rn×m is defined by (α⊕ β)ij := αi + βj.

In our setting, since Φ̃ is an extension of Φ, the left hand side in Lemma 3.2 is equal to

that of (3.1). Let us note that the dual problem always has a solution, which is guaranteed by

Lemma A.2 in Appendix. We also note that the assumption that the domain of Φ̃ is Rn×m
++ is

essential for obtaining this lemma. Using the above lemma, we obtain the following theorem,

which guarantees that the primal solution P ∗(p, q) is located on the interior of the domain,

namely,

inf
P∈Π(p,q)

Φ(P ) = min
P∈Π(p,q)

Φ(P ).

Theorem 3.3. Suppose that Φ̃ : Rn×m
++ → R is smooth and strictly convex and that S : Rn×m

++ →
Rn×m is surjective. There exists a unique solution P ∗(p, q) ∈ Π(p, q) of the minimization problem

(3.1) for each p ∈ Pn−1, q ∈ Pm−1. Moreover, a pair of dual solutions (α∗, β∗) ∈ Rn×Rm satisfies

Sij(P ∗(p, q)) = (α∗)i + (β∗)j .

Proof. Since Φ is strictly convex and the closure Π(p, q) is compact,

P ∗(p, q) := arg inf
P∈Π(p,q)

Φ(P )

exists uniquely in Π(p, q). From the surjectivity of S, we can choose A∗ ∈ S−1(α∗ ⊕ β∗). We

show that P ∗(p, q) = A∗.

Due to Lemma 3.2, the primal and dual solutions P ∗(p, q), (α∗, β∗) attain the equality

Φ̂(P ∗(p, q)) = ⟨P ∗, α∗ ⊕ β∗⟩ − Φ̃∗(α∗ ⊕ β∗),

where Φ̂(P ∗(p, q)) := limÃ→P∗(p,q) Φ̃(Ã). This implies that α∗ ⊕ β∗ ∈ Rn×m is a subgradient of

Φ̃ at P ∗(p, q). On the other hand, by the choice of A∗, α
∗ ⊕ β∗ is also a subgradient of Φ̃ at A∗.
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Hence, for any t ∈ (0, 1), we have

Φ̃(tP ∗(p, q) + (1− t)A∗)

≥ ⟨(tP ∗(p, q) + (1− t)A∗)− P ∗(p, q), α∗ ⊕ β∗⟩+ Φ̂(P ∗(p, q))

= ⟨tP ∗(p, q) + (1− t)A∗, α
∗ ⊕ β∗⟩ − Φ̃∗(α∗ ⊕ β∗)

= t
(
⟨P ∗(p, q), α∗ ⊕ β∗⟩ − Φ̃∗(α∗ ⊕ β∗)

)
+ (1− t)

(
⟨A∗, α

∗ ⊕ β∗⟩ − Φ̃∗(α∗ ⊕ β∗)
)

= tΦ̂(P ∗(p, q)) + (1− t)Φ̃(A∗).

From the strict convexity of Φ̃, if P ∗(p, q) ̸= A∗, it holds that

Φ̃(tP ∗(p, q) + (1− t)A∗) < tΦ̂(P ∗(p, q)) + (1− t)Φ̃(A∗),

which leads to a contradiction. Hence, we obtain the former assertion

P ∗(p, q) = A∗ ∈ Π(p, q) ∩ Rn×m
++ = Π(p, q).

The latter assertion follows from the smoothness of Φ̃, since α∗ ⊕ β∗ is a subgradient of Φ̃ at

P ∗(p, q).

The Sinkhorn algorithm is generalized as the iterative procedure consisting of

(S-I) the ∇∗-projection onto the ∇-autoparallel submanifold Mp,· and

(S-II) the ∇∗-projection onto the ∇-autoparallel submanifold M·,q.

By the pythagorean theorem [6], the Bregman divergence from the solution P ∗(p, q) will decrease

monotonically for each iteration.

In terms of dual affine coordinate systems, this procedure is written as follows. Suppose that

P (t) is given. Then, using the mixed coordinate system (ηim, θij , θnj), the first projection Q(t)

is designated by the coordinate

ηim(Q(t)) = pi, 1 ≤ i ≤ n− 1,

θij(Q(t)) = 0, θnj(Q(t)) = θnj(P (t)), 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m− 1,
(3.9)

For α ∈ Rn, β ∈ Rm, let A(α, β) denote an element of Rn×m
++ satisfying

Sij(A(α, β)) = αi + βj , 1 ≤ i ≤ n, 1 ≤ j ≤ m. (3.10)

Then, letting P (t) = A(α(t), β(t)), the projection is given by

Q(t) = A(α(t+1), β(t)),
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where α(t+1) is determined by the equation

ηim(A(α(t+1), β(t))) = pi, 1 ≤ i ≤ n− 1. (S-I)′

Let us remark that the second equation θij = 0 in (3.9) is automatically satisfied because of

the equation (3.10), and that the third equation θnj(Q(t)) = θnj(P (t)) means that β(t) is fixed.

Similarly, the second projection P (t+1) = A(α(t+1), β(t+1)) is obtained by solving the equation

ηnj(A(α(t+1), β(t+1))) = qj , 1 ≤ j ≤ m− 1. (S-II)′

Example 3.4 (Sinkhorn algorithm (Algorithm 1)). The partial derivative of the function defined

by (3.8) is

Sij(A) = Cij + λ logAij , A ∈ Rn×m
++ .

Due to Theorem 3.3, we obtain that

P ∗(p, q)ij = exp

(
1

λ
(αi + βj − Cij)

)
= A(α, β)

= uiKijvj ,

for some α ∈ Rn, β ∈ Rm, where we put ui = exp(αi/λ), vj = exp(βj/λ), and Kij := exp(−Cij/λ).

Then, given P (t) = (u(t))TKv(t), the equation (S-I)′ is reduced to

u
(t+1)
i

(∑
j

Kijv
(t)
j

)
= pi, 1 ≤ i ≤ n,

and it is solved to

u
(t+1)
i = pi/(Kv(t))i.

This shows that our algorithm actually gives a generalization of the Sinkhorn algorithm.

In the more general case, the equation (S-I)′ cannot be solved analytically; however, under

some assumptions, one can solve it at least numerically. If each Sij is a function of Aij alone,

the equation (S-I)′ is given as

m∑
j=1

(Sij)−1
(
α
(t+1)
i + β

(t)
j

)
= pi, 1 ≤ i ≤ n− 1.

In this case, its inverse function (Sij)−1 becomes an increasing function, since so does the deriva-

tive Sij of a convex function Φ̃. Hence, in addition, if the function (Sij)−1 is explicitly obtained,

one can solve (S-I)′ by the Newton method (see Section 3.5, for example).

3.3 Generalized barycenter problem

We assume the surjectivity of S : Rn×m
++ → Rn×m also in this section. Then, a∇-affine coordinate

system on the submanifold Popt is given by (ηim, ηnj) = (pi, qj), since Popt is characterized by
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θij = 0. Let φ be a function on Pn−1 × Pm−1 defined by (3.1). Since Φ is strictly convex, φ is

also strictly convex. Then, the function φ is the potential function for the dually flat structure

on Popt. In fact, since θij(P ∗(p, q)) = 0,

∂φ

∂pk
(p, q) =

n−1∑
i=1

m−1∑
j=1

∂Φ

∂ηij
(P ∗(p, q))

∂P ∗
ij(p, q)

∂pk

+

n−1∑
i=1

∂Φ

∂ηim
(P ∗(p, q))

∂pi
∂pk

+

m−1∑
j=1

∂Φ

∂ηnj
(P ∗(p, q))

∂qj
∂pk

=
∑
i,j

θij(P ∗(p, q))
∂P ∗

ij(p, q)

∂pk
+
∑
i

θim(P ∗(p, q))δki

= θkm(P ∗(p, q)). (3.11)

Similarly, the relation ∂φ/∂ql = θnl also follows.

We herein assume that m = n, and consider the barycenter problem (3.2). If the solution lies

in the interior of the domain, this problem is interpreted as solving the critical condition

∂

∂qj

(
N∑

k=1

rk φ(p
k, q)

)
= 0, 1 ≤ j ≤ n,

due to the convexity of φ. Because of the relation (3.11), we can further interpret the problem

as the system of equations on (P 1, . . . , PN ) ∈ (Pn2−1)
N :

ηin(P
k) = pki ,

ηnj(P
1) = · · · = ηnj(P

N ) (= qj),

N∑
k=1

rk θ
nj(P k) = 0,

θij(P k) = 0,

1 ≤ i, j ≤ n− 1, 1 ≤ k ≤ N. (3.12)

In order to illustrate the geometric view of the barycenter problem, we consider the dually

flat structure (ǧ, ∇̌, ∇̌∗) on (Pn2−1)
N induced by the convex function

Φ̌(P 1, . . . , PN ) :=

N∑
k=1

rkΦ(P
k).

We choose a ∇̌-affine coordinate system given by
Hk

ij(P
1, . . . , PN ) = ηij(P

k), 1 ≤ k ≤ N,

Hk
in(P

1, . . . , PN ) = ηin(P
k), 1 ≤ k ≤ N,

Hk
nj(P

1, . . . , PN ) = ηnj(P
k)− ηnj(P

k+1), 1 ≤ k ≤ N − 1,

HN
nj(P

1, . . . , PN ) =
∑N

k=1 ηnj(P
k),

(3.13)
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for 1 ≤ i, j ≤ n − 1, where ηij , ηim, ηnj are defined in (3.5). Then, the dual affine coordinate Θ

is, from the general relation Θ = ∂Φ̌/∂H, given by
Θij

k = rkθ
ij(P k), 1 ≤ k ≤ N,

Θin
k = rkθ

in(P k), 1 ≤ k ≤ N,

Θnj
k (P ) = rkθ

nj(P k)− rk+1θ
nj(P k+1), 1 ≤ k ≤ N − 1,

Θnj
N (P ) =

∑N
k=1 rkθ

nj(P k).

(3.14)

We treat another minimization problem

Minimize Φ̌(P 1, . . . , PN ) under (P 1, . . . , PN ) ∈M1 ∩M2, (3.15)

and show that this problem is equivalent to (3.2). Here, M1 and M2 are ∇̌-autoparallel subman-

ifolds of (Pn2−1)
N defined by

M1 :=

{
(P 1, . . . , PN ) ∈ (Pn2−1)

N

∣∣∣∣∣ Hk
in(P

1, . . . , PN ) = pki ,
1 ≤ i ≤ n− 1,

1 ≤ k ≤ N

}
,

M2 :=

{
(P 1, . . . , PN ) ∈ (Pn2−1)

N

∣∣∣∣∣ Hk
nj(P

1, . . . , PN ) = 0,
1 ≤ j ≤ n− 1,

1 ≤ k ≤ N − 1

}
.

Making use of the dual coordinate system defined in (3.13) and (3.14), the critical condition

(3.12) is interpreted as

Hk
in(P

1, . . . , PN ) = pki , 1 ≤ k ≤ N,

Hk
nj(P

1, . . . , PN ) = 0, 1 ≤ k ≤ N − 1,

Θnj
N (P 1, . . . , PN ) = 0,

Θij
k (P

1, . . . , PN ) = 0, 1 ≤ k ≤ N, 1 ≤ i, j ≤ n− 1,

(3.16)

which is no other than the critical condition

(P 1, . . . , PN ) ∈M1 ∩M2,
∂Φ̌

∂HN
nj

= 0,
∂Φ̌

∂Hk
ij

= 0

of the problem (3.15). In this mean, the problem (3.15) is another form of (3.2). Hence, via the

problem (3.15), the barycenter problem (3.2) is interpreted as the problem finding the intersection

point between ∇̌-autoparallel submanifold M1 ∩M2 and ∇̌∗-autoparallel submanifold{
Θnj

N = 0,Θij
k = 0, 1 ≤ i, j ≤ n− 1, 1 ≤ k ≤ N

}
.

3.4 Generalized algorithm for computing barycenter

Analogously to the Sinkhorn algorithm, the critical condition (3.16) can be solved by an iterative

procedure, which is implemented as
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(B-I) the ∇̌∗-projection Q(t) of P (t) onto the ∇̌-autoparallel submanifold M1, and

(B-II) the ∇̌∗-projection P (t+1) of Q(t) onto the ∇̌-autoparallel submanifold M2.

In fact, due to the pythagorean theorem, the Bregman divergence associated to Φ̌ monotonically

decreases in the procedure.

Suppose that P (t) = (P (1;t), . . . , P (N ;t)) satisfies

Θij
k (P

(t)) = 0, Θnj
N (P (t)) = 0, 1 ≤ i, j ≤ n− 1, 1 ≤ k ≤ N.

Then, the ∇̌∗-projection Q(t) of P (t) onto M1 is presented by a mixed coordinate system of (3.13)

and (3.14) as

Hk
in(Q

(t)) = pki , Θij
k (Q

(t)) = 0(= Θij
k (P

(t))), Θnj
k (Q(t)) = Θnj

k (P (t)),

1 ≤ i, j ≤ n− 1, 1 ≤ k ≤ N.
(B-I)′

On the other hand, the second projection (B-II) onto M2 is given by

Hk
nj(P

(t+1)) = 0, 1 ≤ k ≤ N − 1,

Θij
k (P

(t+1)) = 0(= Θij
k (Q

(t))), Θin
k (P (t+1)) = Θin

k (Q(t)), 1 ≤ k ≤ N,

Θnj
N (P (t+1)) = 0(= Θnj

N (Q(t))),

(B-II)′

where 1 ≤ i, j ≤ n− 1.

In terms of η and θ given in (3.5) and (3.7), these results are represented as follows:

• finding Q(t) = (Q(1;t), . . . , Q(N ;t)) solving

ηin(Q
(k;t)) = pki , θij(Q(k;t)) = 0, θnj(Q(k;t)) = θnj(P (k;t)), (B-I)′′

for 1 ≤ i, j ≤ n− 1, 1 ≤ k ≤ N , and

• finding P (t+1) = (P (1;t+1), . . . , P (N ;t+1)) solving

ηnj(P
(1;t+1)) = · · · = ηnj(P

(N ;t+1)),

N∑
l=1

rlθ
nj(P (l;t+1)) = 0,

θij(P (k;t+1)) = 0, θin(P (k;t+1)) = θin(Q(k;t)),

(B-II)′′

for 1 ≤ i, j ≤ n− 1, 1 ≤ k ≤ N .

By using the representation (3.10), we can further reduce each procedure. Letting

P (k;t) = A
(
α(k;t), β(k;t)

)
,

the algorithm is written as

• finding (α(1;t+1), . . . , α(N ;t+1)) solving

ηin

(
A
(
α(k;t+1), β(k;t)

))
= pki , (B-I)′′′
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for 1 ≤ i ≤ n− 1, 1 ≤ k ≤ N , and

• finding (β(1;t+1), . . . , β(N ;t+1)) solving

ηnj

(
A
(
α(1;t+1), β(1;t+1)

))
= · · · = ηnj

(
A
(
α(N ;t+1), β(N ;t+1)

))
,

N∑
k=1

rk

(
β(k;t+1)

)j
= 0,

(B-II)′′′

for 1 ≤ j ≤ n− 1, 1 ≤ k ≤ N .

When the system of N equations (B-II)′′′ is hard to solve, one can avoid that difficulty by

splitting the projection onto M2. Let us consider the ∇̌∗-projection onto

M2;k :=
{
(P 1, . . . , PN ) ∈ (Pn2−1)

N
∣∣ Hk

nj(P
1, . . . , PN ) = 0, 1 ≤ j ≤ n− 1

}
,

for 1 ≤ k ≤ N − 1. Since

M2 =

N−1∩
k=1

M2;k,

due to the pythagorean theorem, a series of iterative ∇̌∗-projections onto the ∇̌-autoparallel
submanifoldsM2;k decreases monotonically the divergence fromM2. Hence, instead of computing

(B-II)′′′ directly, we can utilize alternative procedure by solving

ηnj

(
A
(
α(k;t+1), β(k;t+1)

))
= ηnj

(
A
(
α(k+1;t+1), β(k+1;t+1)

))
,

rk

(
β(k;t+1)

)j
+ rk+1

(
β(k+1;t+1)

)j
= −

∑
l ̸=k,k+1

rl

(
β(l;t+1)

)j
,

(B-II)k

with fixing (α(1;t+1), . . . , α(N ;t+1)) and (β(1;t+1), . . . , β(k−1;t+1), β(k+2;t+1), . . . , β(N ;t+1)).

3.5 Another perspective using 1-homogeneous extension

Let us introduce another generalization of Amari-Cuturi framework, using 1-homogeneous exten-

sion of the convex function Φ on Pnm−1, which works well to solve the Tsallis entropic regularized

optimal transport problem. Fix q̃ > 0 with q̃ ̸= 1 and λ > 0. We consider the problem

Minimize Φ(P ) = ⟨C,P ⟩ − λTq̃(P ) under P ∈ Π(p, q),

where Tq̃ denotes the q̃-Tsallis entropy, which is given by

Tq̃(P ) =
1

q̃ − 1

1−
∑
i,j

P q̃
ij

 ,

This problem is originally considered in [25].
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With the simple extension A 7→
∑

i,j(q̃ − 1)−1(1−Aq̃
ij) of the Tsallis entropy, the range of

Sij(A) =
∂Φ̃

∂Aij
= Cij +

λq̃

q̃ − 1
Aq̃−1

ij

becomes the subset {
u ∈ Rn×m

∣∣ uij > Cij
}
,

which violates the assumption that S is surjective. We herein consider the extension of Tq̃ defined
by

T̃q̃(A) =
1

q̃ − 1

∑
i,j

Aij −
(∑

k,l

Akl

)1−q̃

Aq̃
ij

 , A ∈ Rn×m
++ .

which is 1-homogeneous, that is, T̃q̃(tP ) = tTq̃(P ) for any t > 0 and P ∈ Pnm−1. Then, the

associated mapping S : Rn×m
++ → Rn×m is given by

Sij(tP ) = Sij(P ) = Cij +
λ

q̃ − 1

(
q̃P q̃−1

ij + (1− q̃)
∑
k,l

P q̃
kl − 1

)
, (3.17)

for t > 0, P ∈ Pnm−1.

In general, a 1-homogeneous convex function induces a dually flat structure, which is called

Dawid’s decision geometry [15]. For a 1-homogeneous Φ̃, its derivative S : Rn×m
++ → Rn×m

induces a mapping from Pnm−1 to Rn×m/ ⟨1nm⟩. Here, Rn×m/ ⟨1nm⟩ denotes a quotient vector

space divided by

u ∼ v ⇐⇒ u− v = c 1nm for some c ∈ R,

where 1nm denotes the matrix whose entries are all 1. Instead of Theorem 3.3, in this case, one

can utilize the next theorem, whose proof is located in Appendix A.

Theorem 3.5. Suppose that Φ̃ : Rn×m
++ → R is 1-homogeneous and is strictly convex on Pnm−1,

and that its derivative S : Rn×m
++ → Rn×m induces a bijection between

Pnm−1
∼= Rn×m/ ⟨1nm⟩ .

Then, there exists a unique solution P ∗(p, q) ∈ Π(p, q) of the minimization problem (3.1) for

each p ∈ Pn−1, q ∈ Pm−1. Moreover, there exists a pair (α∗, β∗) ∈ Rn × Rm satisfying

S(P ∗(p, q))ij = (α∗)i + (β∗)j .

Applying Theorem 3.5 to the mapping (3.17), there are α ∈ Rn, β ∈ Rm satisfying

Cij + λ

(
q̃

q̃ − 1
P ∗(p, q)q̃−1

ij − κ

)
= αi + βj ,

κ :=
∑
k,l

P ∗(p, q)q̃kl +
1

q̃ − 1
.
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We can include κ in (α, β) by replacing αi with αi +λκ. Thus, the optimal plan has the form as

P ∗(p, q)ij =

(
q̃ − 1

λq̃

(
αi + βj − Cij

)) 1
q̃−1

.

The first projection (S-I) in the generalized Sinkhorn algorithm is interpreted in this case as

solving
m∑
j=1

(
q̃ − 1

λq̃

(
αi + βj − Cij

)) 1
q̃−1

= pi, 1 ≤ i ≤ n,

for the variable α with fixing β. In practice, this can be solved by the Newton method, for

example. The second projection (S-II) is similarly given by solving

n∑
i=1

(
q̃ − 1

λq̃

(
αi + βj − Cij

)) 1
q̃−1

= qj , 1 ≤ j ≤ m,

with fixing α.

For the barycenter problem, the procedure (B-I) is similarly given as the equation

n∑
j=1

(
q̃ − 1

λq̃

(
(αk)i + (βk)j − Cij

)) 1
q̃−1

= pki , 1 ≤ i ≤ n, 1 ≤ k ≤ N,

for (α1, . . . , αN ). The procedure (B-II) is given by
n∑

i=1

(
q̃ − 1

λq̃

(
(α1)i + (β1)j − Cij

)) 1
q̃−1

= · · · =
n∑

i=1

(
q̃ − 1

λq̃

(
(αN )i + (βN )j − Cij

)) 1
q̃−1

,

N∑
k=1

rk(β
k)j = 0, 1 ≤ j ≤ n.

However, this equation is hard to solve. As an alternative way, we can make use of the procedure

(B-II)k, which is the equation
n∑

i=1

(
q̃ − 1

λq̃

(
(αk)i + (βk)j − Cij

)) 1
q̃−1

=

n∑
i=1

(
q̃ − 1

λq̃

(
(αk+1)i + (βk+1)j − Cij

)) 1
q̃−1

,

rk(β
k)j + rk+1(β

k+1)j = −
∑

l ̸=k,k+1

rl(β
l)j , 1 ≤ j ≤ n,

only for (βk)j and (βk+1)j . Deleting the variable (βk+1)j by using the second relation, the

solution (βk)j can also be computed by the Newton method.
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Chapter 4

Relaxation of assumptions

In this chapter, we consider a more general case. As in the previous chapter, we assume that the

strictly convex function Φ : Pnm−1 → R has a smooth extension Φ̃ to Rn×m
++ . In this chapter, we

weaken the assumption that the derivative S : Rn×m
++ → Rn×m of Φ̃ is surjective, and consider a

situation where each Sij can be bounded from below. For example, Φ̃(A) = 1
2

∑
i,j A

2
ij with its

derivative Sij(A) = Aij ≥ 0 is a target of this chapter.

The lack of surjectivity of S implies that the optimal plan can be located on the boundary

of Pnm−1. As seen in the above, the mapping S gives a correspondence between the primal and

dual domains. Thus, when the image of S has a boundary in the dual domain, it corresponds to

the boundary of the primal domain Pnm−1.

Such a situation makes the problems difficult; however, it also can provide an advantage. It

allows some masses of the optimal plan to be strictly zero, while all masses necessarily become

positive in Cuturi’s entropic regularization. In the application of optimal transportation in image

processing, this means that a solution in our framework can have strictly white pixels. It can

avoid a blurred image, which has been an issue of the original entropic regularization.

4.1 Duality and subdifferentials

Due to the convex analysis, we obtain the picture as follows. Let Φ̂ : Rn×m → R∪ {+∞} be the

continuous extension of Φ̃ : Rn×m
++ → R, that is,

Φ̂(A) =


Φ̃(A), A ∈ Rn×m

++

lim
Ã→A

Φ̃(Ã), A ∈ Rn×m
+ \ Rn×m

++

+∞, A /∈ Rn×m
+

,

where the symbol R+ denotes the set of nonnegative real numbers. Then, the convex function

Φ̂ is not smooth only on

∂Rn×m
+ :=

{
A ∈ Rn×m

∣∣ Aij = 0 for some (i, j)
}
.
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In contrast with the one-to-one correspondence

η ←→ θ =
∂Φ̂

∂η
(η)

on Rn×m
++ , we make use of a one-to-many correspondence

η ←→ ∂Φ̂(A(η))

on ∂Rn×m
+ . Here, ∂Φ̂(A) denotes the subdifferential of Φ̂ at A ∈ Rn×m

+ , which is a convex subset

of Rn×m defined by

∂Φ̂(A) :=
{
S ∈ Rn×m

∣∣∣ Φ̂(Ã) ≥ Φ̂(A) +
⟨
S, Ã−A

⟩
, ∀Ã ∈ Rn×m

++

}
.

By using this type of one-to-many correspondence, we construct a pseudo-surjective mapping

from the primal domain to the dual domain. The subdifferential on ∂Rn×m
+ is given in detail by

the next lemma.

Lemma 4.1. Suppose that the extension of Φ̂ is finite and of C1 on Rn×m
+ . Then, for A ∈

∂Rn×m
+ , letting

ΛA := { (i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ m s.t. Aij ̸= 0 } ,

the subdifferential of Φ̂ at A is given by

∂Φ̂(A) =

{
S = (Sij)

∣∣∣∣∣ Sij = ∂Φ̂
∂Aij

(A), (i, j) ∈ ΛA,

Sij ≤ ∂Φ̂
∂Aij

(A), (i, j) /∈ ΛA

}
,

where
∂Φ̂

∂Aij
(A) = lim

Ã→A, Ã∈Rn×m
++

∂Φ̃

∂Aij
(Ã)

Proof. Let S = (Sij) ∈ Rn×m satisfy

Sij =
∂Φ̂

∂Aij
(A), (i, j) ∈ ΛA, Sij ≤ ∂Φ̂

∂Aij
(A), (i, j) /∈ ΛA.

Then, for any Ã ∈ Rn×m
+ , it holds that

(i, j) ∈ ΛA =⇒ Ãij −Aij = Ãij ≥ 0,

and thus,

Φ̂(A) +
⟨
S, Ã−A

⟩
= Φ̂(A) +

∑
i,j

Sij
(
Ãij −Aij

)

≤ Φ̂(A) +
∑
i,j

∂Φ̂

∂Aij
(A)

(
Ãij −Aij

)
≤ Φ̂(Ã).
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This implies that S ∈ ∂Φ̂(A), where we used (∂Φ̂/∂A)(A) ∈ ∂Φ̂(A) to obtain the last inequality.

Conversely, let S ∈ ∂Φ̂(A). Since the restriction of Φ̂ onto the affine subspace

RΛA
++ :=

{
Ã = (Ãij)

∣∣∣∣∣ Ãij > 0, (i, j) ∈ ΛA,

Ãij = 0, (i, j) /∈ ΛA

}

is strictly convex and differentiable, the coordinates of the subgradient of the restriction must

be (∂Φ̂/∂Aij)(A), which leads

(i, j) ∈ ΛA =⇒ Sij =
∂Φ̂

∂Aij
(A).

For (k, l) /∈ ΛA, we assume that Skl > (∂Φ̂/∂Akl)(A). Letting

Ã =

{
Ãkl = Akl + ε,

Ãij = Aij , (i, j) ̸= (k, l)
,

from the Taylor expansion

Φ̃(Ã) = Φ̂(A) +
∑
i,j

∂Φ̂

∂Aij
(A)

(
Ãij −Aij

)
+O(∥Ã−A∥2)

= Φ̂(A) + ε
∂Φ̂

∂Akl
(A) +O(ε2),

we obtain, for sufficiently small ε > 0,

Φ̃(Ã) = Φ̂(A) + εSkl < Φ̂(A) +
∑
i,j

Sij
(
Ãij −Aij

)
.

This contradicts to S ∈ ∂Φ̂(A), and hence,

(i, j) /∈ ΛA =⇒ Sij ≤ ∂Φ̂

∂Aij
(A).

4.2 Quadratic regularization of optimal transport

We derive an algorithm to compute the barycenter in a similar way to the previous chapter.

However, the correspondence between η and ∂Φ̂(A) is not one-to-one for A ∈ ∂Rn×m
+ . To

construct a practical algorithm, Lemma 4.1 helps to find a concrete correspondence. In this

section, we introduce the optimal transport problem with quadratic regularization as an instance.

It is also studied by Essid and Solomon [17]; however, they assumed that the cost matrix C is

induced from a distance on a graph. In our framework, such an assumption is not required.
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We consider the convex function

Φ̃(A) = ⟨A,C⟩+ λ

2

∑
i,j

A2
ij , A ∈ Rn×m

++ ,

for a fixed λ > 0. Its continuous extension is given by

Φ̂(A) =


⟨A,C⟩+ λ

2

∑
i,j

A2
ij , A ∈ Rn×m

+ ,

+∞, otherwise

.

Due to Lemma 4.1, for A ∈ ∂Rn×m
+ , we obtain

∂Φ̂(A) =

{
S = (Sij)

∣∣∣∣∣ Sij = Cij + λAij , (i, j) ∈ ΛA,

Sij ≤ Cij , (i, j) /∈ ΛA

}
,

and hence, given S = (Sij) ∈ Rn×m, the corresponding A(S) ∈ Rn×m
+ is presented explicitly by

A(S)ij =
1

λ

(
Sij − Cij

)+
,

where x+ := max{x, 0}. Due to Lemma 3.2, there exists a subgradient (α, β) ∈ Rn × Rm such

that the optimal plan P ∗(p, q) is given as

P ∗(p, q)ij =
1

λ

(
αi + βj − Cij

)+
.

For the minimization problem (3.1), the procedure (S-I) to obtain the ∇∗-projection onto

Mp,· is written as ∑
j

1

λ

(
αi + βj − Cij

)+
= pi. (4.1)

Solving this equation is implemented by Algorithm 3. In the algorithm, the function sort returns

the vector obtained by rearranging the entries of γ so that γ↓
1 ≥ γ↓

2 ≥ · · · ≥ γ↓
m. This rear-

rangement is implemented, for example, by the merge sort, which costs O(m logm) time. The

procedure (S-II) can be similarly implemented, and iterating these two procedures realizes a gen-

eralization of the Sinkhorn algorithm. The time required for (S-I) and (S-II) is O(max{n,m}3)
in the worst case. Although it requires more cost than Cuturi’s algorithm, our algorithm works

with reasonable cost, compared with the computational cost O(n3 log n) required for solving the

original problem (2.1).
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Algorithm 3 Solver of (4.1) for each i

Require: λ > 0, 1 ≤ i ≤ n, β = (βj), p = (pi), C = (Cij)

Ensure:
∑

j
1
λ

(
αi + βj − Cij

)+
= pi

γ ⇐ (βj − Cij)j

γ↓ ⇐ sort(γ)

for J = 1 to m do

αi ⇐
(
λpi −

∑J
j=1 γ

↓
j

)
/J

if
∑

j
1
λ

(
αi + βj − Cij

)+
= pi then

break

end if

end for

For the barycenter problem, the procedure (B-I) is presented in a similar form to (4.1), which

is solved by Algorithm 3 for each k and i. On the other hand, the procedure (B-II) is hard to

solve, and we make use of the alternative procedure (B-II)k, which is written as the equation∑
i

1

λ

(
(αk)i + (βk)j − Cij

)+
=
∑
i

1

λ

(
(αk+1)i + (βk+1)j − Cij

)+
,

rk(β
k)j + rk+1(β

k+1)j = −
∑

l ̸=k,k+1

rl(β
l)j =: Σk;j ,

(4.2)

of βk, βk+1 ∈ Rn, where (α1, . . . , αN ) and (β1, . . . , βk−1, βk+2, . . . , βN ) are fixed. We can solve

this equation by Algorithm 4.

In summary, the barycenter for the quadratic regularized Wasserstein distance is obtained

by applying Algorithm 3 to pk for 1 ≤ k ≤ N and performing Algorithm 4 for 1 ≤ k ≤ N − 1,

iteratively. Since Algorithm 4, in the worst case, costs O(n2) time for each j and k, each iteration

of the main loop may require the cost O(Nn3).
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Algorithm 4 Solver of (4.2) for each j and k

Require: λ > 0, 1 ≤ j ≤ n, 1 ≤ k ≤ N − 1, C = (Cij), (αk, αk+1),Σk;j

Ensure: (βk)j , (βk+1)j solves (4.2)

γ1 ⇐ ((αk)i − Cij)i; γ2 ⇐ ((αk+1)i − Cij)i

(γ1)↓ ⇐ sort(γ1); (γ2)↓ ⇐ sort(γ2)

I1 ⇐ 1; I2 ⇐ 1

while I1 < n and I2 < n do

(βk)j ⇐ 1
rk+1I1+rkI2

(
I2Σ

k;j − rk+1

(∑I1
i=1(γ

1)↓i −
∑I2

l=1(γ
2)↓l

))
(βk+1)j ⇐ 1

rk+1

(
Σk;j − rk(β

k)j
)

if
∑

i

(
(αk)i + (βk)j − Cij

)+
=
∑

i

(
(αk+1)i + (βk+1)j − Cij

)+
then

break

else if
(∑

i

(
(αk)i + (βk)j − Cij

)+ −
∑

i

(
(αk+1)i + (βk+1)j − Cij

)+) · (γ1)↓I1+1 ≤ 0 then

I1 ⇐ I1 + 1

else

I2 ⇐ I2 + 1

end if

end while

4.3 Numerical Simulations

We performed numerical simulations of solving the barycenter problems with Cuturi’s entropic

regularization (2.8) and with quadratic regularization. We prepared two 32× 32 pixel grayscale

images as extreme points p1, p2 ∈ Pn−1, where n = 32 × 32 = 1024. They are presented in

Figure 4.1. The cost matrix C is set to Cij = |i− j|2 for 1 ≤ i, j ≤ n.

Figure 4.1: Two 32× 32 pixel grayscale images prepared as p1, p2 ∈ Pn−1. We regard each pixel

as event i ∈ {1, 2, . . . , n} and brightness of each pixel as a density on i, that is, a white pixel has

its density zero.
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Figure 4.2: Wasserstein barycenters regularized by Shannon entropy computed by Benamou et

al.’s algorithm. The number of iteration is 3,000, and the regularization constant λ is 0.5 (top),

1.0 (middle), and 2.0 (bottom). The ratio (r1, r2) is set to (0.75,0.25), (0.5,0.5), and (0.25,0.75),

for each simulation.
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Figure 4.3: Wasserstein barycenters regularized by quadratic term computed by our algorithm.

The number of iteration is 3,000, and the regularization constant λ is 100 (top), 200 (middle),

and 500 (bottom). The ratio (r1, r2) is set to (0.75,0.25), (0.5,0.5), and (0.25,0.75), for each

simulation.

We set the number of iteration to 3,000, and the ratio (r1, r2) of the Fréchet mean to

(0.75,0.25), (0.5,0.5), and (0.25,0.75). Figure 4.2 presents the results of numerical simulations

for Cuturi’s entropic regularization solved by Benamou et al.’s algorithm (Algorithm 2), and the

regularization constant λ is set to 0.5, 1.0, and 2.0. Figure 4.3 does that of quadratic regular-

ization solved by our algorithm (Algorithm 3 and Algorithm 4), where λ is set to 100, 200, and

500.

One can see that the barycenters for smaller λ is less blurred in both Figure 4.2 and Figure 4.3.

However, the barycenters with Cuturi’s regularization has blurred images even for λ = 0.5, and

Benamou et al.’s algorithm cannot perform well for smaller λ because of underflow. In fact,

the values Kij = exp(−Cij/λ) become too small for practical computation when λ is small.

On the contrary, our algorithm uses only summation, and never causes the underflow. Thus,

the barycenters with quadratic regularization can be computed even for smaller λ, although the

convergence will be slower.
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Part II

Geometry of stochastic gradient

descent method
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Chapter 5

Preliminaries

In this chapter, we introduce notations used throughout the thesis, and outline the basic concepts

of machine learning theory. We also introduce well-known issues on machine learning, plateau

phenomena and overfitting.

5.1 Perceptron

A perceptron is a kind of artificial neural network that models the structure and functions of a

biological brain. It consists of a number of units called artificial neurons, or simple perceptrons,

each of which is defined as

y = φ

(
n∑

i=1

wixi − b

)
= φ(w · x− b).

The vector x ∈ Rn represents input signals of a neuron, and y ∈ R represents an output signal.

The vector w ∈ Rn and real number b ∈ R are system parameters that represent a weighting

factor for input signals and a threshold of activation, respectively. A non-linear function φ called

an activation function.

At an early stage of the study of neural networks, McCulloch-Pitts [24] used the step function

φ(z) :=

{
1 (z ≥ 0)

0 (z < 0)

as an activation function. With this choice of φ, the neuron y returns the output value 1 only

when the weighted accumulation w ·x of input signals exceeds the threshold b. Such a choice of φ

was natural at that time, since the input and output signals were taken to be binary. Later, the

use of analog-valued inputs and outputs became popular, and the class of activation functions

was enlarged accordingly. Nowadays, a variety of functions are used as activation functions. We

only assume that an activation function φ is differentiable (at all but finitely many points), which

allows us to use gradient descent algorithms in learning.
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To simplify the notation, it is convenient to enlarge the vectors x and w as

x = (x0, x1, . . . , xn),

w = (w0, w1, . . . , wn),

where x0 := 1 and w0 := −b are dummy variables, so that the argument of the activation function

φ is simply written as
n∑

i=1

wixi − b = w · x.

Unless otherwise noted, we will use this abridged notation throughout the thesis.

A widely used class of perceptrons is the multilayer perceptron (MLP), a hierarchical model

in which each layer consists of several artificial neurons. A set of input signals is given to the

neurons in the first layer, and their output signals are passed to the next layer. The neurons

in the next layer receive the previous output signals as inputs and send their outputs to the

further next layer. Finally, the output values of the last layer is obtained as the output of the

whole system for the given input. A schematic diagram of a multilayer perceptron is shown in

Figure 5.1.

In the thesis, we mainly deal with a three-layer perceptron, which consists of an input layer,

a hidden layer, and an output layer (Figure 5.2). Since a multilayer perceptron includes a

three-layer perceptron as a subnetwork, the phenomena that occur in learning of a three-layer

perceptron also occur in that of a multilayer perceptron. The three-layer perceptron is a minimal

target for the discussion of learning around singular regions caused by the degeneration of the

hidden layer, which is the subject of this thesis. Mathematically, it is defined as follows.

Definition 5.1 (Three-layer perceptron). A three-layer perceptron composed of n input units,

d hidden units and m output units, which is called an (n-d-m)-perceptron, is defined by the

following input-output relation:

f (d)(x;θ) :=

d∑
j=1

vjφ(wj · x) + η. (5.1)

Here, x ∈ Rn+1 is an input vector, and

θ = (w1, . . . ,wd,v1, . . . ,vd,η)

is the system parameter with w1, . . . ,wd ∈ Rn+1 and v1, . . . ,vd,η ∈ Rm.
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Figure 5.1: Multilayer perceptron.

1

v

w

output

1 η

Figure 5.2: Three-layer perceptron.

In what follows, the word “perceptron” means either the set {f (d)(x;θ)}θ of functions or

each function f (d)(x;θ) designated by a certain value θ according to the context.

5.2 Supervised machine learning

In this section, we introduce the supervised learning. For each problem, we set an input-output

relation which is called a teacher function T (x). The purpose of learning is to adjust the sys-

tem parameters of a perceptron so that the perceptron emulates the given teacher function as

accurately as possible.

To achieve that goal, we consider the minimization problem for a function L(θ) constructed

as follows. Let ℓ(x,y) be a function which satisfies ℓ(x,y) ≥ 0 with equality if and only if

y = T (x). Such a function is called an (instantaneous) loss function. A typical example is the

squared loss function:

ℓ(x,y) =
1

2
||y − T (x)||2. (5.2)

Once an instantaneous loss function is chosen, the averaged loss function (or the risk function)

L(θ) is defined as

L(θ) := Ex [ℓ(x,f(x;θ))] ,

where Ex denotes the expectation over the input vectors x, which are generated according

to an unknown probability distribution. Note that if there is a parameter θ∗ that satisfies

f(x;θ∗) = T (x) for all x, then L(θ∗) = 0 holds.

To minimize the averaged loss function L(θ), we make use of the differential equation

θ̇ = −∂L

∂θ
(θ). (5.3)

A method of finding a minimizer of L(θ) by using such a dynamical system is often referred to as

a gradient decent method. Since the gradient vector ∂L/∂θ tells us the direction in which L(θ)

increases, we can decrease L(θ) by changing θ to the reverse direction of the gradient.
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To implement this method on a computer, we often make use of the Euler method, in which

one changes the value of the parameter θ successively according to the recursion formula:

θt+1 = θt − ε
∂L

∂θ
(θt). (5.4)

However, the calculation of the exact averaged loss function L(θ) is a computationally demanding

task. Therefore, as an alternative to (5.4), a stochastic gradient descent (SGD) method has been

proposed, in which one changes the value of θ successively according to the formula:

θt+1 = θt − ε

S∑
s=1

∂

∂θ
ℓ(xs,f(xs;θ))

∣∣∣
θ=θt

, (5.5)

where {xs}Ss=1 be a set of realization of input vectors chosen at random. A learning strategy

based on this recursion is called the batch mode of the SGD, and the size S of the set of input

data is called the batch size. When S is large enough, the behavior of the batch mode dynamics

(5.5) imitates the dynamics of (5.4) well. On the other hand, when S = 1, the formula (5.5)

reduces to

θt+1 = θt − ε
∂

∂θ
ℓ(x,f(x;θ))

∣∣∣
θ=θt

, (5.6)

with a single realization of x at time t. This method is called the on-line mode of the SGD.

5.3 Known difficulties

5.3.1 Plateau phenomena

In the actual learning process, one sometimes finds that the averaged loss function does not de-

crease for a long period of steps and starts decreasing again thereafter. Generally, this temporary

stagnation of the loss function decrease occurs repeatedly. Such a phenomenon is called a plateau

phenomenon. In the gradient descent learning, plateau phenomena occur near a critical point of

the averaged loss L(θ), since its derivative becomes small there. The learning starts to progress

normally again after the parameter θ gets away from the critical point. As described in the next

chapter, due to the structure of a multilayer perceptron, there are subspaces consisting of critical

points in the parameter space, and which construct a complex structure. These subspaces trap

the dynamics many times during the learning process.

5.3.2 Overfitting

For practical purposes, a learning machine is trained using a prepared training dataset. The goal

of training, however, is for the model to be able to successfully represent the teacher function

even for unknown data outside of the training dataset. When a highly complex model with a

huge number of degrees of freedom is sufficiently trained, the model will be able to explain the

training dataset very well, but will often return significantly different values from the teacher

function for unknown data. This phenomenon is often referred to as overfitting.
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Overfitting is usually formulated as a discrepancy between generalization error and empirical

error. The averaged loss function we defined above is averaged over all possible data including

unknown data. We refer to this type of averaged loss function as the generalization error. On

the other hand, the loss function

Lemp(θ) :=

M∑
m=1

ℓ(xm,f(xm;θ))

averaged over the training dataset {xm}Mm=1 is called the empirical error. Although the formula is

very similar to the summation in the batch mode (5.5) of SGD, note that the batch {xs}Ss=1 in the

batch mode is a subset randomly chosen from the training dataset at an instance. Overfitting is

treated as phenomena in which once can attain very small empirical error while the generalization

error does not decrease.
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Chapter 6

Singular regions and Milnor-like

attractors

In this chapter, we introduce singular regions of multilayer perceptron, which is a key concept in

the dynamics of machine learning. As a remarkable class of singular regions, we also explain a

Milnor-like attractor found by Fukumizu and Amari [20]. We presents a center manifold analysis

of a Milnor-like attractor provided by the author [33].

6.1 Singular regions

The parameter space of a multilayer perceptron is sometimes called a “perceptron manifold.”

However, in many cases, it is not really a manifold since it usually contains a subset whose points

correspond to the same input-output relation. Such a subset is usually referred to as a singular

region. In general, there are many singular regions due to degeneration of hidden units. For

example, let us consider an (n-2-m)-perceptron. Then, for arbitrary w ∈ Rn+1,v ∈ Rm, the

subset

R(w,v) := { θ = (w1,w2,v1,v2) | w1 = w2 = w,v1 + v2 = v }

of the parameter space forms a typical singular region. In fact, on the subset R(w,v), an

(n-2-m)-perceptron f (2)(x;θ) is reduced to the following (n-1-m)-perceptron:

f (1)(x;w,v) := v φ (w · x) .

On such a singular region, the loss function L(2) inherits the criticality of L(1), as the following

proposition shows.

Proposition 6.1 (Fukumizu and Amari [20]). Let θ∗ = (w∗,v∗) be a critical point of L(1).

Then, the parameter θ = (w1,w2,v1,v2) = (w∗,w∗, λv∗, (1 − λ)v∗) is a critical point of L(2)

for any λ ∈ R.
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Proof.

∂L(2)

∂wi
(θ) = E

[(
∂ℓ

∂y
(x,f (1)(x;θ∗)) · vi

)
φ′(w∗ · x)xT

]
= λi

∂L(1)

∂w
(θ∗),

∂L(2)

∂vi
(θ) = E

[
∂ℓ

∂y
(x,f (1)(x;θ∗))φ(w∗ · x)

]
=

∂L(1)

∂v
(θ∗), i = 1, 2,

where λ1 := λ and λ2 := 1− λ. Since θ∗ is a critical point of L(1), these are all zero.

The original form provided in [20] is for an (n-d-1)-perceptron which contains an (n-(d-1)-

1)-perceptron as a subnetwork, for general d ≥ 2. Furthermore, for any d > d1 ≥ 1, a similar

argument can be made for the inheritance of criticality from L(d) to L(d1) . This suggests that

singular regions consisting of critical points universally exist in the parameter space and form a

nested structure with respect to the number d of hidden units.

Near a critical point, since the gradient ∂L/∂θ almost vanishes, the dynamics slows down.

Because of the universality of singular regions, such stagnation is frequently observed, and is

referred to as vanishing gradient phenomena.

6.2 Milnor-like attractors

When m = 1, i.e. the output layer is one-dimensional, every point θ ∈ R(w∗, v∗) is a critical

point of L(2), since R(w∗, v∗) is one-dimensional. In this case, the second-order property of L(1)

is also inherited in L(2), and the singular region R(w∗, v∗) can have a remarkable structure which

causes serious stagnation of learning.

Proposition 6.2 (Fukumizu and Amari [20]). Let m = 1 and θ∗ = (w∗, v∗) be a strict local

minimizer of L(1) with v∗ ̸= 0. Define an (n+ 1)× (n+ 1) matrix H by

H := Ex

[
v∗

∂ℓ

∂y
(x, f (1)(x;θ∗))φ′′(w∗ · x)xxT

]
, (6.1)

and let for λ ∈ R
θλ := (w∗,w∗, λv∗, (1− λ)v∗).

If the matrix H is positive (resp. negative) definite, then the point θ = θλ is a local minimizer

(resp. saddle point) of L(2) for any λ ∈ (0, 1), and is a saddle point (resp. local minimizer) for

any λ ∈ R \ [0, 1]. On the other hand, if the matrix H is indefinite, then the point θλ is a saddle

point of L(2) for all λ ∈ R \ {0, 1}.

This proposition implies that the one-dimensional region R(w∗, v∗) = {θλ | λ ∈ R} may have

both attractive parts and repulsive parts in the gradient descent method (Figure 6.1). Such a

region is referred to as a Milnor-like attractor [37]. The parameter θ near the attractive part

flows into the Milnor-like attractor and fluctuates in the region for a long time, until it reaches

the repulsive part.
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Figure 6.1: Flow near the singular region R(w∗, v∗).

We remark that the phenomenon itself is universal with respect to the number d of hidden

units. In fact, the original theorem is given in [20] for an (n-d-1)-perceptron, which contains

an (n-(d-1)-1)-perceptron as a subnetwork. The proposition above for (n-2-1)-perceptron is a

minimal version.

We also remark that the point θλ cannot be a strict local minimizer. In fact, L(2) takes the

same value on the singular region {θλ | λ ∈ R}. In particular, the second derivative of L(2) along

the direction λ is always zero.

Let us introduce a practically important case outside the scope of Proposition 6.2. Suppose

that a three-layer perceptron has some redundant hidden units to represent the teacher function

T (x). Mathematically, we suppose that a true parameter θtrue exists (i.e. T (x) = f (2)(x;θtrue)),

and that it lies in the singular region R(w∗, v∗). In this case, the function L(2) takes the same

value L(1)(w∗, v∗) = 0 on R(w∗, v∗). Therefore, every point of R(w∗, v∗) becomes a global

minimizer of L(2), and a Milnor-like attractor does not appear. In fact, one can check that the

assumption of Proposition 6.2 fails as follows. For each x ∈ Rn, we obtain

∂ℓ

∂y
(x, f (1)(x;θ∗)) = 0,

since a loss function ℓ(x, y) takes its minimum 0 at y = T (x) = f (1)(x;w∗, v∗). This implies that

the matrix H becomes the zero matrix. Thus, in particular, H is neither positive nor negative

definite.

We next treat the case when m ≥ 2. There also exists a one-dimensional region consisting of

critical points due to Proposition 6.1. However, in this case, the region becomes simply repulsive,

and does not have an attractive part, as the following theorem asserts.

Theorem 6.3 (Tsutsui [33]). Let θ∗ = (w∗,v∗) be a local minimizer of L(1). If the m× (n+1)

matrix

Ex

[
∂ℓ

∂y
(x,f (1)(x;θ∗))φ′(w∗ · x)xT

]
(6.2)

is non-zero, then θλ = (w∗,w∗, λv∗, (1− λ)v∗) is a saddle point of L(2) for any λ ∈ R, where
we regard the derivative ∂ℓ/∂y as a column vector.
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In their article [7], Amari et al. stated a prototype of Theorem 6.3, although they did not

give a full proof. In fact, we found that some additional assumption was necessary to prove their

assertion. In Theorem 6.3, we have added a mild assumption that the matrix (6.2) is non-zero.

Note that since θ∗ = (w∗,v∗) is a local minimizer of L(1), it holds that

0 =
∂L(1)

∂w
(θ∗) = (v∗)T Ex

[
∂ℓ

∂y
(x,f (1)(x;θ∗))φ′(w∗ · x)xT

]
.

Thus, the matrix (6.2) has a kernel whose dimension is greater than one. Hence, the assumption

automatically fails when m = 1. This is an underlying mechanism for Proposition 6.2.

By Theorem 6.3, Milnor-like attractors are not observed in the parameter space when m ≥ 2.

However, also in this case, plateau phenomena can occur because of the nested structure of

singular regions. Since the singular region is composed of saddle points, it is not repulsive in all

directions, but is attractive in some directions, and the dynamics of learning can be attracted

to the nested singular regions. To the best of our knowledge, theoretically rigorous study of

learning dynamics near the nested structure of singular regions is not known. In Chapter 7 of

this thesis, we explain, based on numerical simulation results, that the dynamics of stochastic

learning is qualitatively different from those of averaged learning around singular regions.

6.3 Center manifold of Milnor-like attractor

The content described in this section is the main result of master’s thesis by the author. The

dynamics of the gradient descent method around a Milnor-like attractor can be analyzed by the

center manifold analysis. About the definition of a center manifold, please refer to Appendix B.

Concretely, under a coordinate system ξ = (w, v,u, z) given by

w =
v1 (w1 −w∗) + v2 (w2 −w∗)

v∗
+w∗

v = v1 + v2

u =
v2 (w1 −w∗)− v1 (w2 −w∗)

v∗

z = v1 − v2

, (6.3)

the center manifold theorem for a Milnor-like attractor is described as follows.

Theorem 6.4 (Tsutsui [33]). In the coordinate system (6.3), the dynamical system (5.3) ad-

mits a center manifold structure around the critical points θ = θ0,θ1 in which (w, v) converge

exponentially fast.

Here, the points θ = θ0,θ1 are the boundary points of attractive and repulsive parts in the

Milnor-like attractor R(w∗, v∗) = {θλ | λ ∈ R}. By applying the center manifold theory, near

those points, we can assume that the dynamics (5.3) is on the center manifold. In other words,

we can reduce the dynamical system into that of slow parameters (u, z). Under the assumption

that the dynamics is on the center manifold (w, v) = h(u, z), calculating the Taylor expansion
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of (u̇, ż), we obtain an approximated dynamics around θ = θ1 as

u̇ =
1

2v∗
(z − v∗)Hu+O(∥u, z − v∗∥3),

ż =
1

2v∗
uTHu+O(∥u, z − v∗∥3). (6.4)

Neglecting the higher order terms, we can integrate this equation to obtain

∥u∥2 = (z − v∗)2 + C, (6.5)

where C is an integral constant.

We remark that Theorem 6.4 is valid even when there exists a true parameter in the singular

region R(w∗, v∗); however, in this case, such a simple form of the reduced dynamical system as

(B.10) is not obtained. As mentioned above, this case implies that H becomes the zero matrix.

Then, the second order terms of the reduced dynamical system vanish, and the third order terms

become dominant. It needs to calculate the center manifold (w, v) = h(u, z) up to the second

order, which makes the analysis complicated.

6.4 Numerical simulations

As mentioned in the previous section, the dynamics of (w, v) are fast and those of (u, z) are

slow under the coordinate system (6.3). In this section, we shall verify this fact by numerical

simulations.

As an example, we set the input dimension to be n = 1, and choose the teacher function

T : R→ R defined by

T (x) := 2 tanh(x)− tanh(4x),

where tanh is the hyperbolic tangent function. The shape of T is shown in Figure 6.2 by the

solid black line. We set the activation function φ as tanh. Thus, the teacher function T can be

represented by the (1-2-1)-perceptron with no bias terms

f (2)(x;θ) = v1φ(w1x) + v2φ(w2x),

and the true parameter θtrue is (w1, w2, v1, v2) = (1, 4, 2,−1). We also discard the bias terms

w0
1 and w0

2 of the student perceptron. This makes the matrix H scalar valued, and hence the

assumption of Proposition 6.2 holds trivially.

Let {xs}Ss=1 be a dataset given at random. In order to simulate the averaged learning (5.4),

we use the batch learning (5.5) with the batch size S = 1000. In this simulation, we draw

the dataset {xs}Ss=1 i.i.d. from N(0, 22). Here, N(µ, σ2) denotes the normal distribution with

mean µ and variance σ2. Under the distribution N(0, 22), we obtained a local minimizer θ∗ =

(w∗, v∗) ≈ (0.459, 1.15) of L(1). The shape of the function f (1)(x;θ∗) that corresponds to the

local minimizer is shown by the dashed blue line in Figure 6.2. The value of H is approximately

0.0472. Since H > 0, the attractive region is {θλ | λ ∈ (0, 1)}, due to Proposition 6.2.
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Figure 6.2: The teacher function T (x) and the (1-1-1)-perceptron

f (1)(x;θ∗) which corresponds to the local minimizer θ∗ =

(0.459, 1.15).

Figures 6.3(a-d) display time evolutions of each parameter in the first 1,500 iterations from

50 different initial points. We chose an initial parameter θ(0) = (w
(0)
1 , w

(0)
2 , v

(0)
1 , v

(0)
2 ) by

w
(0)
1 = w∗ + ζ1, w

(0)
2 = w∗ + ζ2,

v
(0)
1 = v∗ +

1

2
(ζ3 + ζ4), v

(0)
2 =

1

2
(ζ3 − ζ4),

so that v = v∗+ζ3, and z = v∗+ζ4, where ζ1, ζ2 ∼ U(−0.2, 0.2), and ζ3, ζ4 ∼ U(−0.2, 0.2). Here,

U(a, b) denotes the uniform distribution on the interval [a, b] ⊂ R. We set the learning rate ε

to be 0.05 and the number of iterations to be 20,000. We can see that the parameters w and v

converge to their equilibriums exponentially fast ((a) and (b)), while u and z evolve slowly ((c)

and (d)).
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(d) Time evolutions of z.

Figure 6.3: Time evolutions of each parameter for the first 1,500 iterations. Each trajectory of

w or v quickly converges to the equilibrium point w∗ = 0.459, v∗ = 1.15 respectively. On the

other hand, trajectories of u and z evolve very slowly compared with w and v.

Figure 6.4 shows evolutions on the (z, ||u||2)-plane. The red circles in the figure represent

initial points. When w = w∗ and v = v∗, the z-axis is a Milnor-like attractor, and the region

|z| < v∗ is the attractive part of it. We can check that parameters near the attractive region

are trapped, and those near the repulsive region are escaping. The intersection point of the line

z = v∗ and z-axis corresponds to the point θ = θ1, the boundary of the attractive and repulsive

parts of the Milnor-like attractor. The analytical trajectories (B.11) are plotted as dashed blue

curves. Numerical evolutions of the parameter follow the analytical trajectories considerably well

around θ = θ1. We can find in the figure that some instances of time evolutions change their

direction sharply. This is because the fast dynamics of w and v are the main dynamics in the

beginning of the learning while the slow dynamics of u and z become dominant after w and v

converge to the center manifold.
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Figure 6.4: Trajectories on the (z, ||u||2)-plane obtained by learning for 20,000

iterations (solid black curves) and analytical trajectories (dashed blue curves)

near θ = θ1 = (w∗, w∗, v∗, 0). Red circles represent initial points.
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Chapter 7

Stochastic gradient descent

In this chapter, we discuss stochastic effects in the learning process. So far, we discussed the

deterministic dynamical system (5.3) driven by the averaged gradient. In practice, the dynamical

system is simulated as the batch mode (5.5) of SGD over a large number of input data as seen

in Section 6.4. In order to reduce the computational cost, the summation is often replaced by

the online mode (5.6) of SGD. We use the term “SGD” as the online mode in this chapter unless

otherwise noted. Unlike the averaged gradient descent, the learning process by the SGD is a

random dynamical system. It is reported that the dynamics of the SGD behaves differently

from than the averaged one and results better generalization performance [22, 39], which is

called implicit regularization [11, 38]. We herein analyze the two instances of difference between

these dynamics: dynamics around a Milnor-like attractor and attraction to a strong degenerated

subspace.

The content of this chapter includes joint research [30] with Sato and Fujiwara.

7.1 Centre manifold analysis of SGD

In numerical simulations, we found that sample paths of the SGD seems quite different from

trajectories obtained in the averaged gradient descent method. We carried out numerical sim-

ulations of the SGD in the same setting as Section 6.4. First, Figure 7.1 (a) shows numerical

trajectories of the averaged gradient descent on the (z, u)-plane around θ = θ1. In order to

approximate the averaged gradient descent sufficiently, we used the empirical distribution on a

dataset of 10,000 data drawn i.i.d. according to N(0, 22). Compared to the above, Figure 7.1

(b) shows sample paths of the SGD for a common input data sequence {xt}t. In contrast to the

averaged gradient descent, in the SGD, some sample paths move from the region {|z| > v∗} to
{|z| < v∗}. Such sample paths are observed even when we use another realization of the input

data sequence.
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(a) Averaged gradient descent method.
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(b) Stochastic gradient descent method.

Figure 7.1: Trajectories on the (z, u)-plane obtained by the averaged gradient descent method

(5.3) and the SGD (5.6) for 20,000 iterations. Red circles represent initial values.

In order to investigate this phenomenon, we observe the evolution of the parameters, again

in the coordinate system (6.3). Figure 7.2 (a-d) show time evolutions of each parameter in

the first 1,500 iterations of the SGD. The parameters (w, v) evolve very fast compared with

(u, z) also in this case. However, in this case, (w, v) does not converge to its equilibrium point

(w∗, v∗) ≈ (0.472, 1.13), but fluctuate stochastically around (w∗, v∗).
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(d) Time evolutions of z.

Figure 7.2: Time evolutions of each parameter for the first 1,500 iterations of the SGD. Each

trajectory of w or v fluctuates intensively around the equilibrium point w∗ ≈ 0.472, v∗ ≈ 1.134

respectively. Trajectories of u and z evolve very slowly compared with w and v also in this case.

Based on these observations, we suppose that w and v run over sufficiently wide range of

their values to be integrated while u and z move in a small range. Then, we assume that the

dynamics of (u, z) is integrated with respect to (w, v) according to some stationary distribution.

We further assume that (w, v) is distributed around (w∗, v∗) with finite variance. By integrating

the dynamics with the “random variables” w and v, we obtain the following dynamical system

near θ = θ1:

u̇ =
1

2
(z − v∗)Hu+ C1,

ż =
1

2
uTHu+ C2. (7.1)

Here, C1 and C2 are constants resulting from the variance and covariance of (w, v). Figure 7.3

is the analytical trajectories of the dynamical system (7.1), where C1 = 1.71 × 10−4 and C2 =
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−3.06×10−4 are determined heuristically. One can find that the deterministic dynamical system

(7.1) gives similar trajectories to sample paths of the SGD presented in Figure 7.1 (b).

z=v*
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Figure 7.3: Analytical trajectories on the (z, u)-plane given by the dynamical

system (7.1) with C1 = 1.71× 10−4 and C2 = −3.06× 10−4.

From the above, we deduce that a fluctuation of the parameter around a centre manifold

causes constants C1 and C2 working as drift terms, and that it makes the SGD qualitatively

different from the averaged gradient descent. This example suggests that stochastic effects can

influence a macroscopic flow of the learning process via a centre manifold structure.

7.2 Noise-induced degeneration

From the viewpoint of random dynamical systems theory, we herein look into the dynamic (5.6)

of the SGD. Let us consider again the dynamics around the singular region R(w,v). In this

section, we impose no constraints on the dimensions of w and v. We assume that ℓ is the

squared loss function, and that R(w,v) has a local minimizer of L. In particular, a minimizer

θ∗ ∈ R(w,v) of L satisfies an equilibrium condition

0 =
∂L

∂w1
(θ∗) = Ex [(vφ(w · x)− T (x))φ′(w · x)x] .

Around the minimizer, the dynamics is attracted to R(w,v).

Here, we consider a more strongly degenerated subspace

Rm(w,v) :=
{
θ = (w1,w2,v1,v2)

∣∣∣ w1 = w2 = w,v1 = v2 =
v

2

}
⊂ R(w,v).

Note that the dynamics is closed on Rm(w,v) even with stochastic effects of the SGD. In other

words, once the dynamics is on the region Rm(w,v), it cannot escape from the region even with

stochastic effects.
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The dynamics of the SGD shows a type of synchronization and tends to be attracted to the

strongly generated subspace Rm(w,v). Using a coordinate system
p =

w1 +w2

2
, q =

v1 + v2

2
,

r =
w1 −w2

2
, s =

v1 − v2

2
,

(7.2)

the singular regions are described as

R(w,v) = { p = w, q = v, r = 0 } ,

Rm(w,v) = { p = w, q = v, r = 0, s = 0 } .

We focus on the dynamics of s

st+1 = st −
ε

2

(
∂

∂v1
ℓ(x,f(x;θ))− ∂

∂v2
ℓ(x,f(x;θ))

)
with an ad hoc assumption that p, q approaches w,v quickly. The is calculated as

st+1 = st −
ε

2

(
∂ℓ

∂y

∂f

∂v1
(x;θ)− ∂ℓ

∂y

∂f

∂v2
(x;θ)

)
= st −

ε

2
(f(x;θ)− T (x)) (φ(w1 · x)− φ(w2 · x)) .

By calculation, we can see that the Taylor expansion with respect to r around 0 is given by

st+1 = −ε (f(x;θ)− T (x)) (r · x)φ′(p · x) +
(
1− 2ε(r · x)2φ′(p · x)2

)
st +O(∥r∥3).

This implies that st is contracting, since the coefficient of st is smaller than 1. On the other

hand, the constant term is, in the average, equal to the zero vector, since

O =
∂L

∂p

∣∣∣
w1=w2

= Ex [(f(x;θ)− T (x))φ′(p · x)x] .

Hence, the parameter st tends to approach zero in average.

This type of degeneration to Rm(w,v) is a characteristic behavior of the dynamics of the

SGD. In the deterministic gradient dynamics (5.3), r approaches the zero vector monotonically

in many cases. By contrast, in the SGD, r fluctuates around the zero vector, which causes the

contraction of s. This phenomenon is comparable with noise-induced synchronization [29, 32] in

random dynamical systems.

Since the dynamics is attracted to the sub-dynamics on Rm(w,v) in the SGD, it is more

difficult to escape from the singular region compared to averaged learning. This implies that the

stochastic learning process of the SGD attempts to estimate the teacher function using fewer

hidden units, and thus the stagnation of learning can be much longer than in averaged learning.

This can be seen as the SGD causing a more serious plateau phenomenon. On the other hand,

it can also be interpreted as a spontaneous suppression of overfitting due to learning dynamics.

Overfitting is caused by the large degrees of freedom of the training model relative to the size of
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the training dataset. Therefore, if the degrees of freedom can be systematically adjusted during

the learning process, overfitting may be avoided. In the SGD, we expect trapping in the strong

degenerated singular region to result in keeping the degrees of freedom at a certain size.
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Chapter 8

Concluding remarks

In this thesis, we addressed two issues; the optimal transport problem and the stochastic gradient

descent machine learning. In Part I, we generalized the entropic regularization of the optimal

transport problem by Cuturi [12], and studied the minimization problem of a strictly convex

smooth function Φ on the set Pnm−1 of joint distributions under the constraint that marginal

distributions are fixed. We clarified that the solution of the problem is represented in a specific

form using a pair of dual affine coordinate systems (Theorem 3.3), and proposed an iterative

method for obtaining the solution. We also studied the barycenter problem [13] from an infor-

mation geometric point of view and provided generalized algorithms to compute the solution

of the regularized barycenter problem. As a demonstration, we showed numerically that our

method works for Φ(P ) = ⟨C,P ⟩ + λ
2 ∥P∥

2. The framework treated in this paper is a maximal

extension of Amari-Cuturi’s one. Our framework subsumes some important problems, such as

the Tsallis entropic regularized transport problem [25], which is represented in our framework

with Φ(P ) = ⟨C,P ⟩ − λTq̃(P ), and the quadratic regularized one on a graph [17], which corre-

sponds to Φ(P ) = ⟨C,P ⟩ + λ
2 ∥P∥

2 with C being a metric matrix induced from a graph. Given

the generality of our framework, it is expected that there exist many other applications. Finding

another practical problem to which our framework can be applied is a future task.

We proved that the Bregman divergence associated to the convex function Φ as measured

from the optimal solution monotonically decreases with our method; however, its convergence

property is not revealed. For the Sinkhorn algorithm, a special case where Φ(P ) = ⟨C,P ⟩ −
λH(P ), Franklin and Lorenz [18] studied the convergence rate, and showed the exponentially fast

convergence of the sequence generated from the algorithm with respect to the Hilbert metric.

However, their analysis is specialized to the Sinkhorn algorithm, and it is difficult to extend their

result to a generic case, since the Hilbert metric has, to the best of our knowledge, no relation

with the information geometry. For a generic Φ, evaluating the convergence rate of our method

is an open problem.

The properties of numerical solutions for the choice of regularization term also remains to

be investigated in future work. Compared to Cuturi’s method, our algorithm using the squared

regularization gives a barycenter with smaller Shannon entropy, which results in a less blurred
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image in the application to image processing. However, each iteration in our algorithm demands

more computational cost than Cuturi’s one. We hope to find a regularization that provides a

less blurred barycenter, with faster convergence and lower computational cost.

In Part II, we first gave a quick review of multilayer perceptrons, gradient descent learning,

and singular regions. We explained how degeneration of hidden units gives rise to a Milnor-like

attractor consisting of both attractive and repulsive parts and causes plateau phenomena in a

three-layer perceptron. We next gave a review for the center manifold analysis for the gradient

descent learning around a Milnor-like attractor, which is first provided in the author’s thesis for

master’s degree. Then, we showed numerically that the dynamics of stochastic gradient descent

(SGD) is qualitatively different from that of the averaged one and gave an explanation for the

characteristic behavior of SGD with the aid of the center manifold analysis. We also found in

our numerical experiments that learning in SGD tends to cause stronger degeneration of hidden

units than averaged learning. This type of degeneration causes stagnation of learning. On the

other hand, degeneration to a smaller dimensional subsystem can suppress overfitting. This

observation is consistent with previous work claiming that SGD achieves higher generalization

performance, which is a key concept of deep learning. Unfortunately, we only gave a conceptual

explanation for the phenomena, and could not give any mathematically rigorous formulation in

the present thesis. Future work should provide the theoretical groundwork for a rigid analysis of

the stronger degeneration in SGD.
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Appendix

A Dual problem and proof of Theorem 3.5

In this section, we give a proof of Lemma 3.2 and Theorem 3.5, and prove the existence of a

dual solution (Lemma A.2). Lemma 3.2 follows from the Fenchel-Rockafellar duality, which is a

prominent result in convex analysis. In order to prove Theorem 3.5 analogously to Theorem 3.3,

we prepare Lemma A.3, which provides the dual problem for a 1-homogeneous Φ.

Proposition A.1 (Fenchel-Rockafellar duality). Let Θ,Ξ : Rn → R∪{+∞} be convex functions

which are proper, i.e., the sets {Θ(u) < +∞} and {Ξ(u) < +∞} are not empty. Let Θ∗,Ξ∗ be

their Legendre transformations, respectively. Then, the equality

inf
u∈Rn

{Θ(u) + Ξ(u) } = sup
A∈Rn

{ −Θ∗(−A)− Ξ∗(A) }

holds.

Proof of Lemma 3.2. Applying Proposition A.1 to the convex functions

Θ(u) = Φ̃∗(−u), Ξ(u) =

{
−⟨p, α⟩ − ⟨q, β⟩ if u = α⊕ β

+∞ otherwise
,

since one can check that

Θ∗(−A) =

{
Φ̂(A) if A ∈ Rn×m

+

+∞ otherwise
,

Ξ∗(A) =

{
0 if

∑m
j=1 Aij = pi

∑n
i=1 Aij = qj

+∞ otherwise
,

the conclusion follows, where Φ̂ denotes the continuous extension of Φ̃ onto Rn×m
+ .

Lemma A.2. Let Φ̃ : Rn×m
++ → R be a convex function and Φ̃∗ : Rn×m → R ∪ {+∞} be its

Legendre transform. Then, there exists a solution (α∗, β∗) of the optimization problem

sup
α∈Rn,β∈Rm

{⟨p, α⟩+ ⟨q, β⟩ − Φ̃∗(α⊕ β)} (A.1)
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for any p ∈ Pn−1, q ∈ Pm−1.

Proof. Let Ψ be a function on Rn × Rm defined by

Ψ(α, β) = Φ̃∗(α⊕ β).

Then, Ψ becomes a convex function on the standard affine structure on Rn ×Rm. The problem

(A.1) is no other than the Legendre transformation

Ψ∗(p, q) = sup
(α,β)∈Rn×Rm

{⟨(p, q), (α, β)⟩ −Ψ(α, β)},

and its supremum (α∗, β∗) is given by a subgradient of Ψ∗ at (p, q). Hence, unless Ψ∗(p, q) = +∞,

we can conclude that (α∗, β∗) exists. Due to Lemma 3.2, we can see that

Ψ∗(p, q) = inf
P∈Π(p,q)

Φ̃(P ),

and it cannot be infinite, since Φ̃ is finite-valued on Rn×m
++ .

Before we prove Theorem 3.5, we observe the dual problem for a 1-homogeneous function Φ̃.

The next lemma is a direct consequence of Lemma 3.2, and thus we omit a proof.

Lemma A.3. Let Φ : Rn×m
++ → R be a 1-homogeneous convex function. For p ∈ Pn−1, q ∈ Pm−1,

inf
P∈Π(p,q)

Φ(P ) = sup

{
⟨p, α⟩+ ⟨q, β⟩

∣∣∣∣∣ α ∈ Rn, β ∈ Rm,

Φ∗(α⊕ β) = 0

}
.

The next result is also important when treating a 1-homogeneous convex function.

Lemma A.4. Let Φ̃ : Rn×m
++ → R be a 1-homogeneous convex function, and S : Rn×m

++ → Rn×m

be its derivative. Then,

Φ̃(A) = ⟨A,S(A)⟩ ≥
⟨
A,S(Ã)

⟩
,

for any A, Ã ∈ Rn×m
++ .

Proof. First, for any ρ ̸= 1, since S(A) ∈ ∂Φ̃(A), we have

H(ρA) ≥ ⟨ρA−A,S(A)⟩+H(A).

Then, since Φ̃ is 1-homogeneous, we can write

(ρ− 1)H(A) ≥ (ρ− 1) ⟨A,S(A)⟩ .

We can choose ρ ̸= 1 arbitrarily, and hence, the first equality is shown.

Second, since S(Ã) ∈ ∂Φ̃(Ã), we have

Φ̃(A) ≥
⟨
A− Ã, S(Ã)

⟩
+ Φ̃(Ã)
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for any A ∈ Rn×m
++ . Then, since Φ̃(Ã) =

⟨
Ã, S(Ã)

⟩
as seen in the above, we finally obtain

Φ̃(A) ≥
⟨
A,S(Ã)

⟩
.

Now, we arrive at the proof of Theorem 3.5.

Proof of Theorem 3.5. The proof proceeds in three steps. First, let P ∗(p, q) ∈ Π(p, q) be a

solution of (3.1), (α∗, β∗) be a dual solution, and we show that α∗ ⊕ β∗ ∈ ∂Φ̃(P ∗). Second, we

construct P∗ ∈ Pnm−1 such that ∇Φ̃(P∗) = α∗ ⊕ β∗. Finally, we show that P ∗(p, q) and P∗ are

equal, and thus it is located in Π(p, q). Here, we can assume that Φ(P ∗(p, q)) <∞ without loss

of generality. Thus, if necessary, let Φ(P ∗(p, q)), S(P ∗(p, q)) denote the continuous extension of

Φ, S to P ∗(p, q) ∈ Π(p, q), respectively.

The existence of P ∗(p, q) follows from the compactness of Π(p, q). Let (α∗, β∗) be a solution

guaranteed in Lemma A.2. Due to the duality in Lemma A.3,

Φ(P ∗(p, q)) = ⟨p, α∗⟩+ ⟨q, β∗⟩ = ⟨P ∗(p, q), α∗ ⊕ β∗⟩ − Φ̃∗(α∗ ⊕ β∗), (A.2)

which implies that α∗ ⊕ β∗ ∈ ∂Φ̃(P ∗(p, q)).

Since S : Pnm−1 → Rn×m/ ⟨1nm⟩ is surjective by assumption, there exist c ∈ R and P∗ ∈
Pnm−1 such that

S(P∗) =
∂Φ̃

∂A
(P∗) = α∗ ⊕ β∗ + c 1nm. (A.3)

If we assume that c > 0, from Lemma A.4, for A ∈ Rn×m
+ ,

Φ̃(A) ≥ ⟨A,S(P∗)⟩

= ⟨A,α∗ ⊕ β∗ + c1nm⟩ .

Letting A tend to P ∗(p, q), compared with (A.2), it yields 0 ≥ c, which leads to a contradiction.

On the other hand, if we assume that c < 0, since Φ̃∗(α∗ ⊕ β∗) = 0, we have

⟨P∗, α
∗ ⊕ β∗⟩ ≤ ⟨P∗, S(P∗)⟩

= ⟨P∗, α
∗ ⊕ β∗ + c 1nm⟩ ,

which also leads to a contradiction. Hence, we obtain c = 0 or S(P∗) = α∗ ⊕ β∗ from (A.3).

Finally, we show that P ∗(p, q) = P∗ ∈ Π(p, q) by contradiction. Otherwise, since Φ is strictly

convex on Pnm−1, for t ∈ (0, 1),

Φ(tP∗ + (1− t)P ∗(p, q)) < tΦ(P∗) + (1− t)Φ(P ∗(p, q))

= ⟨tP∗ − (1− t)P ∗(p, q), α∗ ⊕ β∗⟩ .
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On the other hand, since α∗ ⊕ β∗ is a subgradient of Φ̃ at P ∗(p, q),

Φ(tP∗ + (1− t)P ∗(p, q))

≥ ⟨(tP∗ − (1− t)P ∗(p, q))− P ∗(p, q), α∗ ⊕ β∗⟩+Φ(P ∗(p, q))

= ⟨tP∗ − (1− t)P ∗(p, q), α∗ ⊕ β∗⟩ .

Hence, we obtain a contradiction. This completes the proof.

B Center manifold analysis for averaged gradient learning

B.1 Brief review of center manifold

We herein give a quick review of center manifold according to the textbook [10]. Suppose that

a dynamical system {
ẋ(t) = Ax(t) + f(x(t),y(t))

ẏ(t) = By(t) + g(x(t),y(t))
(B.4)

is given, where the parameters (x,y) ∈ Rd1 ×Rd2 , A and B are constant matrices, and f and g

are C2 functions such that they, along with their first derivatives, vanish at the origin. We assume

that all the eigenvalues of A have zero real parts while all the eigenvalues of B have negative

real parts. This assumption means that the parameter y converges to the origin exponentially

fast, and the parameter x is driven only by the higher order terms of f and evolves very slowly

compared with y. Since f and g are of the second order with respect to x and y, the assumptions

implies that the coefficient matrix of the linearization of the system has the form as(
A O

O B

)
.

Definition B.5. A set S ⊂ Rd1 × Rd2 is said to be a local invariant manifold of (B.4) if for

(x0,y0) ∈ S, the solution (x(t),y(t)) of (B.4) with (x(0),y(0)) = (x0,y0) is in S for |t| < T

with some T > 0.

Definition B.6. A local invariant manifold represented in the form of y = h(x) is called a local

center manifold (or simply a center manifold) if h is differentiable and satisfies h(0) = 0 and
∂h

∂x
(0) = O.

The following center manifold theorems give us a method of simplifying a dynamical system

around an equilibrium point.

Proposition B.7 (Center manifold theorem 1 [10]). The equation (B.4) has a center manifold

y = h(x) for ||x|| < δ, for some δ > 0 and C2 function h.
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Proposition B.8 (Center manifold theorem 2 [10]). Suppose that the origin u = 0 is a stable

equilibrium point of the reduced dynamical system

u̇(t) = Au(t) + f(u(t),h(u(t))). (B.5)

Let (x(t),y(t)) be a solution of (B.4) with the initial value (x0,y0). Then, if ||(x0,y0)|| is
sufficiently small, there exists a solution u(t) of (B.5) such that

x(t) = u(t) +O(e−γt),

y(t) = h(u(t)) +O(e−γt),

as t→∞, where γ is a positive constant.

Proposition B.8 asserts that the parameter (x,y) approaches the center manifold y = h(x)

quickly, and then evolves along it. Thus, the dynamical system (B.4) around the origin is

essentially controlled by the slow parameter x, and reduced to the lower dimensional system.

B.2 Proof of Theorem 6.4

In the following sections, we assume that the matrix H mentioned in Theorem 6.2 is positive def-

inite or negative definite so that a Milnor-like attractor exists. In a column vector representation,

the dynamical system (5.4) for the (n-2-1)-perceptron is written as

θ̇ = −
(
∂L(2)

∂θ

)T

.

By the coordinate transformation to another coordinate system ξ = ξ(θ), the dynamical system

above is transformed to

ξ̇ = −∂ξ

∂θ

(
∂ξ

∂θ

)T (
∂L(2)

∂ξ

)T

. (B.6)

Thus, the coefficient matrix of its linearization at a critical point ξ = ξ∗ is

∂ξ̇

∂ξ
(ξ∗) = − ∂

∂ξ

{
∂ξ

∂θ

(
∂ξ

∂θ

)T (
∂L(2)

∂ξ

)T
}∣∣∣∣∣

ξ=ξ∗

= −∂ξ

∂θ

(
∂ξ

∂θ

)T
∂2L(2)

∂ξ∂ξ
(ξ∗),

where we used (∂L(2)/∂ξ)(ξ∗) = 0. This relation implies that the coefficient matrix has the same

rank as the Hessian matrix (∂2L(2)/∂ξ∂ξ)(ξ∗). In particular, the rank of the coefficient matrix

of the linearization does not depend on the choice of a coordinate system.

To prove the Theorem 6.4, we make use of the following lemma.

Lemma B.9. If the matrix X is positive definite and Y is positive semi-definite, all the eigen-

values of the matrix XY are non-negative.
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Proof. The matrix XY is rewritten as

XY = X
1
2 (X

1
2Y X

1
2 )X− 1

2 ,

where X
1
2 is a unique positive definite matrix such that (X

1
2 )2 = X. Here, the matrix Z :=

X
1
2Y X

1
2 is positive semi-definite. Hence, for each eigenvector a of Z, the vector X

1
2a is an

eigenvector of the matrix XY , and the corresponding eigenvalue is non-negative.

Then, Theorem 6.4 is shown as follows.

Proof of Theorem 6.4. The proof is essentially based on a straightforward calculation. The co-

efficient matrix of the linearization of the dynamical system (B.6) under the coordinate system

ξ defined by (6.3) splits into (w, v) and (u, z) parts at θ = θ0,θ1. In fact, the negative of the

coefficient matrix is written as

Ã0 = Ã1 =

w,v︷ ︸︸ ︷ u︷︸︸︷ z︷︸︸︷
w, v

{ 
Q+H P 0 0

2PT 2R 0 0

u{ 0 0 0 0

z{ 0 0 0 0

. (B.7)

and thus the system (B.6) is written as

ξ̇ = −Ãλ(ξ − ξλ) + g̃λ(ξ), λ = 0, 1,

where g̃λ is the higher order term, which vanish at the ξ = ξλ together with its first derivative.

Here,

P := Ex

[
(∂2ℓ) v∗ φ(w∗ · x)φ′(w∗ · x)x

]
,

Q := Ex

[
(∂2ℓ) (v∗)2 φ′(w∗ · x)2 xxT

]
,

R := Ex

[
(∂2ℓ)φ(w∗ · x)2

]
,

∂ℓ :=
∂ℓ

∂y
(x, f (1)(x;θ∗)),

∂2ℓ :=
∂2ℓ

∂y2
(x, f (1)(x;θ∗)),

and H is the matrix defined by (6.1). Remark that H and Q are matrices, P is a column vectors,

and R is a scalar.

Then, we show that all the eigenvalues of (w, v)-block of the coefficient matrix −Ã0 are

strictly negative. Recall that the coefficient matrix at a critical point ξ∗ of the dynamical system

(5.4) is given by

−∂ξ

∂θ

(
∂ξ

∂θ

)T
∂2L(2)

∂ξ∂ξ
(ξ∗).
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Applying Lemma B.9 to X = (∂ξ/∂θ)(∂ξ/∂θ)T and Y = (∂2L(2)/∂ξ∂ξ)(ξ0), all the eigenvalues

of the coefficient matrix −Ã0 are non-positive. One can check that the Hessian matrix is positive

semi-definite and has rank n + 2 at θ = θ0,θ1, due to the assumption that (w∗, v∗) is a strict

local minimizer of L(1). The coefficient matrix −Ã0 has the same rank as the Hessian matrix,

which implies that the (w, v)-block is of full-rank. Hence, all the eigenvalues of (w, v)-block are

strictly negative. At θ = θ1, a similar assertion for −Ã1 holds.

Finally, due to Proposition B.7, there are center manifolds parametrized by (u, z) around

θ = θ0,θ1 respectively. This completes the proof.

B.3 Reduced dynamical system

By virtue of Proposition B.8 and Theorem 6.4, we can assume that the dynamics (5.4) of the

gradient descent is on the center manifold near the points θ = θ0,θ1. Thus, we can reduce the

dynamical system into that of (u, z). Recalling the coefficient matrix (B.7), we can see that u̇

and ż have no first order terms. In more detail, calculating the Taylor expansion of (u̇, ż) up to

the second order around ξ = ξ1, we obtain

u̇ =
1

v∗

{
−(P · (w −w∗))(u+ (w −w∗))

− (v − v∗)(RI +
1

2
H)(u+ (w −w∗))

+
1

2
(z − v∗)H(u+ (w −w∗))

}
+O(||ξ − ξ1||3), (B.8)

ż =
1

v∗

{
−(w −w∗)TQ(u+ (w −w∗))

− (v − v∗)(P · (u+ (w −w∗)))

− 1

2
(w −w∗)TH(w −w∗) +

1

2
uTHu

}
+O(||ξ − ξ1||3), (B.9)

where I denotes the (n+ 1)× (n+ 1) identity matrix. Now we consider the reduced dynamical

system on the center manifold. Here, the center manifold (w, v) = h(u, z) satisfies that

h(u, z) =

[
w(u, z)

v(u, z)

]
=

[
w∗

v∗

]
+O(∥u, z − v∗∥2),

by definition. This gives an approximation of the dynamics on the center manifold near ξ = ξ1

as

u̇ =
1

2v∗
(z − v∗)Hu+O(∥u, z − v∗∥3),

ż =
1

2v∗
uTHu+O(∥u, z − v∗∥3). (B.10)

Neglecting the higher order terms, we can integrate this equation to obtain

∥u∥2 = (z − v∗)2 + C, (B.11)
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where C is an integral constant.

Around the point ξ = ξ0, we obtain the similar dynamics

u̇ = − 1

2v∗
(z + v∗)Hu+O(∥u, z + v∗∥3),

ż = − 1

2v∗
uTHu+O(∥u, z + v∗∥3).

and the relation

∥u∥2 = (z + v∗)2 + C.

We remark that Theorem 6.4 is valid even when there exists a true parameter in the singular

region R(w∗, v∗); however, in this case, such a simple form of the reduced dynamical system

as (B.10) is not obtained. Since this case implies that H becomes the zero matrix, the second

order terms of the reduced dynamical system (B.10) vanish, and the third order terms become

dominant. Thus, we have to take into account the cross terms between (w − w∗, v − v∗) and

(u, z − v∗). It needs to calculate the center manifold (w, v) = h(u, z) up to the second order,

which makes the analysis complicated.
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