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Algebraic Aspects of Multiplier Maps on

Algebraic Dynamical Systems on the Projective

Line

Rin Gotou

1 Introduction

Throughout this paper, we fix a field k of characteristic zero. Without any
mention, any objects are defined over k.

The study of algebraic dynamical system on the projective line P1, endomor-
phism ϕ : P1 → P1 and behaviour of its iterations ϕn, is one of central objects
of the theory of complex dynamical system ([Mil11]). Many complex analytic
and algebraic tools are developed to study dynamical system. For a given endo-
morphism ϕ, one of the most important property of ϕ as a dynamical system is
the periodic points and the multiplier for each periodic point. A point z ∈ P1 is
called a periodic point of period n, or an n-th periodic point, of ϕ if ϕn(z) = z.
Periodic point of period 1 are also called fixed point. For a periodic point z of
period n, the multiplier of ϕ at z (as a n-th periodic point) is defined by

λz(ϕ) := (ϕn)′(z).

The multiplier determines the behaviour of ϕ around the periodic point z. For
example, if k is a topological field, the periodic point is called attracting if
|λz(f)| < 1, and this is because any point y of a neighbourhood of z satisfies
ϕN (y) → z (N → ∞). Another property of multiplier is that the multiplier is
invariant under the coordinate transformation, that is,

λϕ(z) = λγ◦ϕ◦γ−1(γ(z))

for any γ ∈ Aut(P1). On the moduli space Ratd of parameters of endomorphism
of degree d ([Sil98]), the n-th multiplier map is defined as

λn : Ratd ∋ [ϕ] 7→ {λϕ(z) | ϕn(z) = z} ∈ (A1)N/SN .

Under the conjugation action γ · [ϕ] := [γ ◦ ϕ ◦ γ−1] of PGL2 on Ratd, the n-th
multiplier map factors as a rational map

λn : Ratd 99K ratd = “Ratd /PGL2 ” 99K (A1)N/SN .

Here the quotient space ratd is defined by the geometric invariant theory.
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The purpose of this thesis is to observe algebraic aspects of the multiplier
map by using invariant theory with respect to this conjugation action. The
contents of this thesis are based on the preprints [Got22] and [Got23b] and
stated on the fundamental property of moduli spaces of dynamical systems of
correspondences defined in the article [Got23a].

We can consider effective divisorial self-correspondences [Smi05] instead of
endomorphism. In [Got23a], the author considered the moduli space Corrd,e
of self-correspondences on P1 and its quotient Dynd,e defined using geometric
invariant theory. Then Dynd,e parameterizes effective divisors of degree (d, e)

with only mild (i.e. of multiplicity ≤ d+e
2 ) singularities on the diagonal of P1×P1

([Got23a, Theorem 1.1]), up to conjugation by PGL2. As essential structures of
moduli spaces of dynamical systems, iteration maps Ψn : Dynd,e 99K Dyndn,en

and fixed point multiplier map λ1,(d,e) : Dynd,e 99K Pd+e were also introduced.
These respectively indicate n-th iteration C 7→ C ◦ · · · ◦ C and the fixed point
multipliers

C : (f = 0) 7→
{
λz(f) := −∂yf(z, z)

∂xf(z, z)

∣∣∣∣ z ∈ P1 : f(z, z) = 0

}
under the isomorphism {(d+e) (possibly multiple) points in P1} = Symd+e P1 ≃
Pd+e. Fixed point multiplier map has an outstanding property with respect to
the invariant theory. Let Vn be the SL2-representation on the binary n-forms.
For a pair of binary forms (fn, fn−2) ∈ Vn ⊕ Vn−2, we define a system of invari-
ants.

Definition 1.1. The r-th discriminant-resultantsDRn,r ∈ k[Vn⊕Vn−2](2n−2−r,r)

for 0 ≤ r ≤ n is the polynomials which satisfy

n∑
r=0

DRn,r(fn, fn−2)t
r = res(fn(x, y), x∂xfn(x, y) + txyfn−2(x, y))/a0an.

This is an example of resultant system ([vdW30]) including the discriminant
DRn,0 = ∆(fn) and resultant DRn,n = res(fn, fn−2). In [Got23a, Section 7], it
is shown that the fixed point multiplier map is given by discriminant-resultants
up to coordinate transformations on Corrd,e and the codomain Pd+e. In [Got22],
we applied a universal tool called bracket polynomial we will introduce in Section
4 to express SL2-invariant. Then we can give the following bracket polynomial
expression of discriminant-resultants.

Theorem 1.2. (Theorem 4.11) We have DR2,2 = f20 and

DRn,r =
∑

I⊔J=[n],
|I|=r

 ∏
j∈J

i∈[n]\{j}

[αi, αj ] ·
∏
i∈I

k∈[n−2]

[βk, αi]

 (1)

except (n, r) = (2, 2), where [m] := {1, 2, . . . ,m}.
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As an application of Theorem 1.2, we can give purely algebraic proofs for the
properties of fixed point multiplier maps obtained from the theory of dynamical
systems in [Got23a]. One is the vanishing of the first discriminant-resultant.

Theorem 1.3. (Corollary 4.12) We have DRn,1 = 0.

The other is the algebraic independence of discriminant-resultants, which
was shown as the non-degeneracy of fixed point multiplier map of dynamical
systems over the projective line. The case of n = 3 is shown by Milnor ([Mil93])
and n ≥ 4 is shown by Fujimura ([Fuj06]). In [Got23a], the author translated
their result into the terms of discriminant-resultant.

Theorem 1.4. (Theorem 4.19) The discriminant-resultants

{DRn,r | r = 0, 2, 3, . . . , n}

are algebraically independent.

These results about bracket polynomial expressions are the results from
[Got22]. The results of [Got23b] is about multiplier maps of other periodic
points. In [Got23a], n-th multiplier maps λn,(d,e) := λ1,(dn,en) ◦ Ψn were also
introduced. Well-definedness of λn,(d,e) for general (n, d, e) remains as an open
problem ([Got23a, Problem 1.9, Remark 7.2]). If the n-th multiplier map λn,(d,e)
is well-defined, then it indicates

C : (f = 0) 7→

{
λ(zi)(f) :=

n−1∏
i=0

(
−∂yf(zi, zi+1)

∂xf(zi, zi+1)

)∣∣∣∣∣ (zi)
n
i=0 ∈ (P1)n+1 :

f(zi, zi+1) = 0, z0 = zn

}
.

A purpose to define morphisms λn := λn,(d,e) is to consider the inverse prob-
lem of multipliers, that is, to what extant information of multipliers determines
morphisms. The results about the inverse problem of multipliers are rephrased
as the properties of multiplier maps to their images. Let

Λn :=
∏

m:m|n

λm : Dynd,e 99K
∏

m:m|n

Pdm+em and

Λ∞ :=
∏
m≥1

λm : Dynd,e 99K
∏
m≥1

Pdm+em ,

where m|n means that m divides n. Let PDynd ⊂ Dyn1,d be the locus of
polynomial maps, the conjugation classes of rational maps with any totally
ramified fixed point. Table 1 is a brief review of known results about the inverse
problem of multipliers, in the form of degrees of multiplier maps to their images.
All known results are about cases of usual morphisms, that is, the degree as self-
correspondence is (1, d).

Remark 1.5. There are some more precise results about the degrees for the loci
where the degrees of multiplier maps changes from generic behaviour ([McM87],
[Sil07], [Fuj06], [Fuj07], [Sug17], [Sug20], [GOV20]).
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Reference locus X degree of map F degree of
morphisms F : X 99K F (X)

[McM87] Dyn1,d d ≥ 2 Λ∞ <∞
[Gor15] Λn (n ≥ 3) <∞
[Sch16] < Recursive formula
[Gor15, Conjecture] Λ2 ?
[Mil93],[Sil98] d = 2 Λ1(= λ1) 1
[JX23] d ≥ 4 Λ∞ 1
(From dimension) d ≥ 3 Λ1 ∞
[HT13] d = 3 Λ2 a3,2
[Fuj06] PDynd d ≥ 2 Λ1 (d− 2)!
[HT13] d = 4, 5 Λ2 1

Table 1: Results about degree of multiplier maps onto their images

In [HT13], a3,2 = 12 was stated, but the author corrected it to a3,2 = 1
([Hut21]). In this thesis, we also give precise proofs of the correction.

Theorem 1.6 (Theorem 7.1). The rational map

Λ2,(1,3) = λ1,(1,3) × λ2,(1,3) : Dyn1,3 99K P3 × P9

is birational to its image.

In Section 7, we give two proofs of this theorem. In Subsection 7.1, we
prove Theorem 7.1 by continuing the computation done in [HT13]. This proof
is the proof mentioned in [Hut21] and independent from other parts (except the
programs in Subsection A.1 used for the proof) of this paper.

The other proof in Subsection 7.2 is by a direct computation on the invariant
ring given in [Wes15], which is the coordinate ring of Dyn1,3. The computation
is done by an interpolation method in Subsection A.2, and some unexpectedly
simple relations among the coordinate functions (Remark 7.2). A merit of this
method is that the part without the direct computation of structure of the
coordinate rings can be used for more general cases of Λn,(d,e). The other aim
of this paper is to give a primitive estimation of the degree of multiplier maps on
moduli spaces of correspondences along this method. This gives a very rough,
but explicit upper bound.

Theorem 1.7. Let p be a prime number. If the p-th multiplier map is well-
defined and

Λp := λ1,(d,e) × λp,(d,e) : Dynd,e 99K Λp(Dynd,e) ⊂ Pd+e × Pdp+ep

is generically finite to its image, then its degree is at most

gcd(d+ e, 2)Nde+d+e−3 · (d+ e− 3)!(de− 3)!

2(d+ e) · (de+ d+ e− 3)!
,
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where

N := 2(d+ e− 1) +
2((dp − 1)(dp − d)− (ep − 1)(ep − e))

p(d− e)
.

Remark 1.8. We can give upper bounds in similar method for generic Λn with a
similar assumption, but N becomes a slightly more complicated polynomial. We
also note that Λ2 can be generically finite to its image only if (d−e)2 ≥ d+e−2
(Remark 6.9 and Remark 5.12).

Combining with the finiteness result ([Gor15] in Table 1), we can see the
following:

Corollary 1.9. For d ≥ 2, the degree of Λ3,(1,d) is at most

gcd(d+ 1, 2)22d−2(d5 + d4 − d2 + 2d)2d−2 · (d− 2)!(d− 3)!

2 · 32d−2 · (d+ 1) · (2d− 1)!
.

For d = 3, this only gives the evaluation deg Λ3,(1,3) ≤ 4369320.

Remark 1.10. In [Sch16], an algorithm to count the degree of multiplier maps
using equivariant Gromov-Witten invariant is given. The author has not com-
pleted the evaluation of the order of the recursion formula.

This paper is organized as follows. In Section 2, we set up notation and
terminology. In Section 3, we define Hilbert series for generic case in a cate-
gorical way. In Section 4, we introduce symbolic method and show the results
about symbolic polynomial expressions of discriminant-resultants. In Section 5,
we introduce moduli spaces of dynamical systems of correspondence and mul-
tiplier maps. In Section 6, we evaluate the degree of multiplier maps using the
evaluation in Subsection 3.5. In Section 7, we give two proofs of Theorem 1.6.
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2 Notation and Terminology

Throughout this paper, we refer to [Liu06] for the terminology of algebraic
geometry.

We fix a field k of characteristic zero. Unless otherwise stated, we consider
any scheme as a scheme over k.

For a ring R and a free R-module M of finite rank, we denote by R[M ] the
polynomial ring generated by a basis ofM (with suitable identifications between
different choices of basis). If a group G and a representation ρ : G→ AutR(M)
are also given, we write I(M) = R[M ]G for the invariant ring.
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3 Some Structures on Categories for Hilbert Se-
ries

3.1 Monoidal structure and Green ring

In this subsection, we introduce monoidal category and Green ring, which is a
well-known tool to consider Hilbert series functorially.

Definition 3.1. Monoidal category is a tuple (C,⊗, I, α, ρ, λ) such that

(i) C is a category,

(ii) ⊗ is a (bi-covariant) bifunctor C × C → C called product functor or tensor
functor,

(iii) I is an object of C called unit object,

(iv) α is a natural isomorphism ⊗ ◦ (⊗ × id) → ⊗ ◦ (id×⊗) (object-wisely, it
can be written as α(A,B,C) : (A⊗B)⊗C ≃ A⊗ (B ⊗C) for each tuple
of objects (A,B,C) of C) called associator,

(v) λ is a natural isomorphism I ⊗ − → idC and ρ is a natural isomorphism
−⊗ I → idC , called left unitor and right unitor respectively,

(vi) α satisfies the pentagon relation, the commutativity of the diagram

(A⊗B)⊗ (C ⊗D)

((A⊗B)⊗ C)⊗D A⊗ (B ⊗ (C ⊗D))

(A⊗ (B ⊗ C))⊗D A⊗ ((B ⊗ C)⊗D)

α(A,B,C⊗D)

α(A,B,C)⊗id

α(A⊗B,C,D)

α(A,B⊗C,D)

id⊗α(B,C,D)

and

(vii) (α, ρ, λ) satisfies the following trivialization commutativity:

(A⊗ I)⊗B A⊗ (I ⊗B)

A⊗B

α(A,I,B)

ρ⊗id

id⊗λ

As in other algebraic structures, we sometimes abbreviate members in the
tuple of monoidal category. For example, we write (C,⊗) for a monoidal category
(C,⊗, I, α, ρ, λ) if the unit object, the associator and the unitor are appropriately
recovered from (C,⊗).
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Remark 3.2. (Coherence) The pentagon relation ensures that for any pair of
orderings of applications of tensor functors on A1 ⊗ · · · ⊗ An are cannonically
identified by associators.

Definition 3.3. For monoidal categories (C,⊗, I, α, ρ, λ) and (C′,⊗′, I ′, α′, ρ′, λ′),
a strict monoidal functor (C,⊗) → (C′,⊗′) is a functor F : C → C′ such that
compatible with all other structures of monoidal categories, that is,

⊗′ ◦(F × F ) = F ◦ ⊗, F (I) = I ′, α′ ◦ (F × F × F ) = F ◦ α
ρ′ ◦ (F × F ) = F ◦ ρ, λ′ ◦ (F × F ) = F ◦ λ′.

A strict monoidal functor is called self-equivalence if self-equivalence as a func-
tor. A monoidal functor is a functor F : C → C′ which is strict monoidal up to
strict monoidal self-equivalence functors.

Definition 3.4. Symmetric monoidal category is a tuple (C,⊗, I, α, ρ, λ, σ) such
that

(i) (C,⊗, I, α, ρ, λ) is a monoidal category,

(ii) σ called commutator is a natural isomorphism ⊗ ◦ Σ → ⊗, where Σ :
C×C → C×C is the swapping isomorphism of the two components (object-
wisely, it can be written as σ(A,B) : (A⊗B) ≃ (B ⊗A) for each tuple of
objects (A,B) of C), such that

(iii) σ is involutive, that is, (σ ◦ Σ) ◦ σ = id⊗,

(iv) σ and α satisfies the hexagon relation, the commutativity of the diagram

A⊗ (B ⊗ C)

(A⊗B)⊗ C A⊗ (C ⊗B)

(B ⊗A)⊗ C (A⊗ C)⊗B

B ⊗ (A⊗ C)

id⊗σ(B,C)

σ(A,B)⊗id

α(A,B,C)

α(B,A,C)

α(A,C,B)

σ(A⊗C,B)

and

(v) ρ and λ are identified by the commutator σ, that is, the diagram

A⊗ I I ⊗A

A

σ(A,I)

λ
ρ

is commutative for any object A of C.
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Example 3.5. The tuple (C,×, ∗) of a category C, the product × as the prod-
uct functor and the final object ∗ as the unit object is a symmetric monoidal
category, with the natural transformations made from universal morphisms as
an appropriate associator, unitors and a commutator. Dually, the tuple (C,⊔, ∅)
of a category C and the coproduct ⊔ and the initial object ∅ is also a symmetric
monoidal category.

Example 3.6. For a commutative ring R, the tuple (ModR,⊗R, R) of a cate-
gory of ModR and the tensor product ⊗R as the product functor is a symmetric
monoidal category, with other structures induced from universal property of
tensor product.

Definition 3.7. A monoidal structure (C,⊗) on an abelian category C is called
exact if the functors −⊗A and A⊗− are exact for any object A of C.

Example 3.8. For a k-group scheme G, we write repk(G) for the category of
finite dimensional representations of G. The tuple (repk(G),⊗k, k) is an exact
symmetric monoidal category.

Remark 3.9. (Coherence) The hexagon relation ensures that any permutation
of factor orderings are realized canonically by σ and α. We sometimes write the
identification by α, σ, or abbreviate the ordering of taking product as A⊗B⊗C
and identify the products.

Definition 3.10. For an abelian category A, the K0-group is K0(A) is the
abelian group defined by

K0(A) :=
⊕

V ∈objclass(C)

Z[V ]

/(
[V ]− [V ′]− [V ′′]

for exact 0 → V ′ → V → V ′′ → 0

)
,

where objclass(A) is the set of isomorphism classes of objects of A.
If an abelian category A has exact monoidal structure ⊗, the K0-group has

a natural ring structure with the multiplication [V ] · [W ] := [V ⊗W ]. The ring
K0(A) is called Green ring of A.

The image of the map

objclass(A) ∋ V 7→ [V ] ∈ K0(A)

is closed under the addition, and the multiplication if defined. The image is
denoted by K+

0 (A) and called effective semigroup or Green semiring of A.

Example 3.11. For any monoid S, any S-graded algebra on A is called lax
monoidal functor S → A, the monoidal functor with the compatibility up to
the natural transformations.

Example 3.12. The Green ring of the category of finite dimensional vector
space vect(k) is isomorphic to Z. With the monoidal structure defined by the
tensor operation, the Green semiring is isomorphic to the semiring of nonnega-
tive integers N, indeed the isomorphism is given by

K+
0 (vect(k)) ∋ [V ] 7→ dimV ∈ N.
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Example 3.13. The Green ring of repk(Gm) is isomorphic to the Laurent
polynomial ring Z[q, q−1]. For any integer n, let kn be the one-dimensional
representation of Gm which are defined as t · v := tnv. Then the isomorphism
is given by

K+
0 (repk(Gm)) ∋ [kn] 7→ qn ∈ Z[q].

Remark 3.14. Any exact functor F : A → B induces the morphism F∗ :
K0(A) → K0(B) and F∗(K

+
0 (A)) ⊂ K+

0 (B). If F is monoidal for exact monoidal
structures of A and B, then F∗ (resp. F∗|K+

0 (A)) is a homomorphism of ring

(resp. semiring) with respect to the products induced from the monoidal struc-
tures.

3.2 Green Ring of SL2

We briefly review some fundamental results of the representation theory of SL2

used to consider the moduli space of dynamical system. The contents in this
subsection is on [Got23a, Section 4].

On the vector space of binary n-forms Vn := H0(P1,O(n)) =
{∑n

i=0 anx
d−i
0 xi1

}
,

the natural GL2-action is defined by the transformation

γ · f(x0, x1) := f(γ · (x0, x1)).

.
We fix a homomorphism of group scheme c : Gm → SL2 as

c : Gm(k) = k× ∋ t 7→
(
t 0

0 t−1

)
∈ SL2(k).

Proposition 3.15. The followings are true:

(i) The functor of the morphism of induced representation c∗ : repk(SL2) →
repk(Gm) is exact.

(ii) Any object of repk(SL2) is semisimple (i.e. direct sum of irreducible ob-
jects) and the irreducible objects are {Vn | n ∈ N}.

(iii) The morphism c∗ between Green semirings induced by c is injective. In
fact, under the isomorphism K0(repk(Gm)) ≃ Z[q], we have

c∗([Vn]) =
qn − q−n

q − q−1
.

3.3 Hilbert Series

We recall that a monoid is a set S with associative binary operator µS : S×S →
S and a unit e ∈ S.

Definition 3.16. A monoid (S, µS) is convolutive if µ−1
S (s) is finite for any s

in S.
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Example 3.17. (i) Any finitely generated commutative monoid with finite
invertible elements is a convolutive monoid.

(ii) The positive integers with the multiplication is a convolutive monoid. This
is generated by the prime numbers and not finitely generated.

In commutative case, here we note some examples of non-convolutive monoid:

(i) Any monoid with infinite invertible elements, for instance (Z,+), is not
convolutive.

(ii) The positive rational numbers with the addition is not convolutive.

Definition 3.18. For any convolutive monoid S and a ring R, the formal series
ring R[[S]] is the ring defined on Map(S,R) by the pointwise addition and the
convolution product.

In the formal series ring R[[S]], we write ts for the characteristic function of
s ∈ S.

Definition 3.19. Let S be a convolutive semigroup and A be an abelian cate-
gory.

An S-graded object of A is an S-family of objects of A. For an S-graded
object A := (As)s∈S of A, the Hilbert series of A is the series

hA(t) :=
∑
s∈S

[As]t
s ∈ K0(A)[[S]].

We use Hilbert series for graded algebras and graded modules on monoidal
abelian category.

Definition 3.20. Let A be a monoidal category and S be a monoid. An S-
graded algebra on A is an S-graded object A = (As)s∈S with the multiplication
morphisms

µs,t : As ⊗At → As·t for any s, t ∈ S,

such that the diagram

As ⊗ (At ⊗Au) As ⊗At·u

(As ⊗At)⊗Au

As·t ⊗Au As·t·u

id⊗µt,u

µs,t·u

α(As,At,Au)

µs,t⊗id

µs·t,u

is commutative for any s, t, u ∈ S. If A is symmetric monoidal and µs,t =
µt,s ◦ σ(As, At) for any s, t ∈ S, A is said to be commutative.

For an S-set P and an S-graded algebra A = (As)s∈S on A, P -graded
module of A is a P -graded object (Mp)p∈P with the actions

µs,p : As ⊗Mp →Ms·p for any s ∈ S and p ∈ P

10



such that

As ⊗ (At ⊗Mp) As ⊗Mt·p

(As ⊗At)⊗Mp

As·t ⊗Mp Ms·t·p

id⊗µt,p

µs,t·p

α(As,At,Mp)

µs,t⊗id

µs·t,p

is commutative for any s, t ∈ S and p ∈ P .

Example 3.21. (Tensor Product) Let A be symmetric monoidal. For an S-
graded algebraA and a T -graded algebraB both onA, A⊗B := (As ⊗Bt)(s,t)∈S×T

is an S × T -graded algebra under the multiplication

(As ⊗Bt)⊗ (As′ ⊗Bt′)
α,σ−−→ (As ⊗As′)⊗ (Bt ⊗Bt′)

µs,s′⊗µt,t′−−−−−−−→ As·s′ ⊗Bt·t′ .

Example 3.22. Let X be a proper algebraic variety on a field k. For a convo-
lutive submonoid S of the monoid of effective Cartier divisors on X, the partial
Cox ring

H0(OX(S)) :=
(
H0(X,OX(D))

)
D∈S

is an S-graded algebra on vec(k).
For any coherent sheaf E on X, the Hilbert series of E with respect to S is

hE,S(t) :=
∑
D∈S

dimH0(X, E(D)) · tD.

Definition 3.23. Let ϕ : S → T be a morphism of monoid. For an S-graded
algebra A and T -graded algebra B both on A, a morphism f : A→ B of degree
ϕ is a family of morphisms (fs : As → Bϕ(s))s∈S such that

As ⊗As′ Bϕ(s) ⊗Bϕ(s′)

As·s′ Bϕ(s),ϕ(s′)

fs⊗fs′

µs,s′ µϕ(s),ϕ(s′)

fs·s′

is commutative for any s, s′ ∈ S.

Example 3.24. (Restriction) Let A be an S-graded algebra and ϕ : T → S be
a morphism of monoid. Then, A|ϕ := (Aϕ(t))t∈T is a T -graded algebra. A|ϕ has
a natural morphism A|ϕ → A of degree ϕ.

Example 3.25. (Contraction) Let A be an S-graded algebra and ϕ : S → T
be a morphism of monoid such that ϕ−1(t) is finite for any T . Then, Aϕ :=(⊕

s∈ϕ−1(t)As

)
t∈T

is a T -graded algebra. Aϕ has a natural morphism A→ Aϕ

of degree ϕ.
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Example 3.26. Let W1 and W2 be any representation in repk(G). Then the
symmetric tensor algebras S(Wi) = (SymnWi)n∈N(i = 1, 2) are an N-graded
algebra on repk(G). By the tensor product, we obtain N2-graded algebra
(SymnW1⊗SymmW2)(n,m)∈N2 . For the morphism π : N2 → N, (n,m) 7→ n+m,
the contraction

(S(W1)⊗ S(W2))
π =

( ⊕
m1+m2=n

Symm1 W1 ⊗ Symm2 W2

)
n

is naturally identified with S(W1 ⊕ W2). In this case, the Hilbert series of
S(W1)⊗ S(W2) is given by

h(t1, t2) = hS(W1)(t1) · hS(W2)(t2) where t1 := t(1,0) and t2 := t(0,1),

and the Hilbert series of (S(W1 ⊕W2))
π is given by h(t, t).

3.4 Covariant Ring

Proposition 3.27. Let A be a T -graded algebra and C an S-graded coalgebra
both on a monoidal abelian category A. Then,

⟨C,A⟩ := (HomA(Cs, At))s∈S,t∈T

is an S×T -graded algebra on the category Ab under the multiplication defined
by

HomA(Cs, At)⊗HomA(Cs′ , At′) → HomA(Cs ⊗ Cs′ , At ⊗At′)

h7→µt,t′◦h◦µs,s′−−−−−−−−−−→ HomA(Cs·s′ , At·t′).

IfA is B-enriched, then HomA(Cs, At) is S×T -graded algebra on B. Moreover, if
M andN are an T ′-gradedA-module and an S′-graded C-comodule respectively,

⟨N,M⟩ := (HomA(Ns,Mt))s∈S′,t∈T ′

is an S′ × T ′-graded ⟨C,A⟩-module.

Proof. We show the latter assertion, ⟨N,M⟩ is an S′×T ′-graded ⟨C,A⟩-module.
For any

(f, f ′, f ′′) ∈ HomA(Cs, At)×HomA(Cs′ , At′)×HomA(Ns′′ ,Mt′′),

we have

(µt,t′ ◦ (f ⊗ f ′) ◦ µs,s′)⊗ f ′′ = (µt,t′ ⊗ id) ◦ (f ⊗ f ′ ⊗ f ′′) ◦ (µs,s′ ⊗ id) and

f ⊗ (µt′,t′′ ◦ (f ′ ⊗ f ′′) ◦ µs′,s′′) = (id⊗µt′,t′′) ◦ (f ⊗ f ′ ⊗ f ′′) ◦ (id⊗µs′,s′′).

Therefore, the compatibility of the action is reduced to the compatibility of the
A-module M and the C-comodule N . The associativity of ⟨C,A⟩ is similar.
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Example 3.28. The unit object I of any symmetric monoidal category A is a
coalgebra by the inverse of the unitor I → I ⊗ I. The algebra ⟨I, A⟩ is the unit
object part of the algebra A. Since the trivial representation k ∈ repk(G) is the
monoidal unit on repk(G), therefore k is an algebra on repk(G).

Example 3.29. In repk(G), the dual A∨ of an S-graded algebra A = (As)s∈S

is an S-graded coalgebra. If As is irreducible representation for each s in S, then
we obtain algebraic structure of A∨

s -parts of any graded algebra B. If moreover
any part of the algebra B is semisimple, then we have A⊗B ≃ ⟨A∨, B⟩.

3.5 Volume of Algebra and Rational Field of Projective
Variety

To evaluate degrees of multiplier maps, we need to evaluate the degree of a
rational map to its image. In [Got23a], the moduli space Dynd,e of dynamical
systems is given by the projective scheme Proj I(Vd⊗Ve) of the naturally graded
invariant ring I(Vd ⊗ Ve) := k[Vd ⊗ Ve]

SL2 . Here we have a problem that the
graded ring is not fully generated by linear terms. Moreover, full generator
(secondary invariants) and relations (syzygies) are not known for generic cases
([Oli17]). Furthermore, we only have little information about multiplier maps.
So we use an evaluation only using Hilbert series. We use a trivial evaluation
(Proposition 3.34), maybe well-known for experts.

Definition 3.30. The Gelfand-Kirillov dimension of an N-graded algebra A =
(An)n∈N on vect(k) is defined by

lim sup
n→∞

logn dimAn.

For an N-graded algebra of the Gelfand-Kirillov dimension d, the volume of A
is defined by

Vol(A) := lim
t→1

(1− t)dhA(t).

In this subsection, by a graded k-algebra we call a commutative N-graded al-
gebra over vect(k) of the Gelfand-Kirillov dimension d. In this case, the Gelfand-
Kirillov dimension is equal to the Krull dimension of the commutative algebra
A =

⊕
n∈NAn.

Remark 3.31. In [DK15], the degree of A is used instead of the volume of A.
We choose the word “the volume of A” to avoid confusing with the extension
degree of algebras.

We fix a graded k-algebra A :=
⊕∞

i=0Ai which is an integral domain. We
also fix a sub-graded k-algebra B of A. For any graded k-algebra C, we write
KP (C) for the rational function field K(ProjC). We have

KP (A) =

∞⋃
i=0

{
ai
a′i

∣∣∣∣ ai ∈ Ai, a
′
i ∈ Ai \ {0}

}
.
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We assume that KP (A) is a finite extension of KP (B) and write D for the
degree of extension.

Proposition 3.32. There exists a KP (B)-basis of KP (A) of the following
form: {

ai
bi

∣∣∣∣ i = 1, 2, . . . , D, bi ∈ Bni
, ai ∈ Ani

}
.

Proof. We write K for the field KP (B). Let {ai

a′
i
| i = 1, 2, . . . , D, ai, a

′
i ∈ Ani

}
be a K-basis of KP (A). If Bni

= 0 we replace (ai, a
′
i) by (aai, aa

′
i) for a ∈ A of

sufficiently large degree, and then we can assume Bni ̸= 0 and take bi ∈ Ani\{0}.
We have

K

(
a1
b1
,
a′1
b1
, . . . ,

aD
bD

,
a′D
bD

)
= KP (A)

and each ai

bi
or

a′
i

bi
is integral over K. Therefore, for sufficiently large N ,{
ae11 · · · aeDD a

′e′1
1 · · · a′e

′
D

D

b
e1+e′1
1 · · · beD+e′D

D

∣∣∣∣∣∑
i

ei +
∑
i

e′i ≤ N

}

is a generator of KP (A) as a K-vector space.

By reducing to a common denominator, we obtain the following.

Corollary 3.33. There exists a KP (B)-basis of KP (A) which is the form{
ai
b0

∣∣∣∣ i = 1, 2, . . . , D, b0 ∈ Bn, ai ∈ An

}
.

We use the following evaluation for extension degrees of rational function
fields.

Proposition 3.34. We have

Vol(A)

Vol(B)
≥ [KP (A) : KP (B)].

Proof. Let {ai

b0
| i = 1, 2, . . . , D, b0 ∈ Bm, ai ∈ Am} be a KP (B)-basis of

KP (A) given by Corollary 3.33. Then, the morphism

B⊕D ∋ (bi) 7→
D∑
i=1

aibi ∈ A

is injective. Thus, we have dimAm+n ≥ D dimBm for an arbitrary m. From
the definition of volume, we have an asymptotic formula

dimBm =
Vol(B)md−1

(d− 1)!
+ o(md−1)(m→ ∞)
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and the similar formula for A. By substituting this asymptotic forms, we obtain

Vol(A)(m+ n)d−1

(d− 1)!
+ o((m+ n)d−1) ≥ D

Vol(B)md−1

(d− 1)!
+ o(md−1)(m→ ∞).

This implies that
Vol(A) ≥ DVol(B).

4 Discriminant-Resultant

4.1 Grassmannian Algebra

Let Un be the vector space with the basis {e1, . . . , en}.

Definition 4.1. The Grassmannian algebra of a vector space V is the invariant
ring

Gn(V ) := k[Un ⊗ V ]SL(Un).

For a finite set S, we denote G(S) for the Grassmannian algebra G(kS) of kS.

We denote the element ei⊗v ∈ Un⊗V by vi. For any indexed vector vi ∈ V ,
we write vi,j for (vi)j = ej ⊗ vi ∈ Un ⊗ V .

Proposition 4.2. (“Fundamental theorem of invariant theory” [Ful97]) Let V
be a vector space. Then the Grassmannian algebra Gn(V ) is generated by the
invariants

det(vi,j)i,j=1,...n(v1, . . . , vn ∈ V ).

In particular, the Grassmannian algebra G(S) is generated by

[s1, . . . , sn] := det(si,j)i,j=1,...n

for n-tuples (s1, . . . , sn) of distinct elements of S.
The relations among the generators are given by the sign relations

[sσ(1), . . . , sσ(n)] = sgnσ · [s1, . . . , sn] (σ ∈ Sn)

the Plückker relations

n+1∑
i=1

(−1)i[s1, . . . , si−1, si+1, . . . , sn+1][si, t1, . . . , tn−1].

In this case, elements of S are sometimes called symbols.

Remark 4.3. Grassmannian algebra is the coordinate ring of the affine cone
of the Grassmannian space, the moduli space of the linear subspaces of a fixed
vector space.
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Example 4.4. For n = 2, the Grassmannian algebra G(S) is generated by the
brackets {[α, β] | α, β ∈ S} and the relations among the bracket symbols are
generated by the anti-commutation relations [α, β] = −[β, α] and the Plücker
relations

[α, β][γ, δ] + [α, γ][δ, β] + [α, δ][β, γ] = 0 (2)

for any symbols α, β, γ, and δ.

4.2 Cayley’s symbol

Let V =
⊕m

i=1 Vni be an SL2-representation. We introduce a method to generate
the invariant ring k[V ]SL2 from the Grassmannian algebra G2(S) of

∑m
i=1 ni

symbols. In this subsection, we fix the set of symbols as S = SV := {αi,j | 1 ≤
i ≤ m, 1 ≤ j ≤ ni}. On the set of symbols, we define the function

i : S ∋ αi,j 7→ i ∈ {1, . . . ,m}

and the symmetric group SV preserving i, which is

SV := {σ : S → S | σ is bijective and i ◦σ = i}.

Proposition 4.5. Let V and W be SL2-representations, W → k[V ] an SL2-
morphism. Then it induces an SL2-equivariant morphism k[W ] → k[V ] of alge-
bra.

Proof. The morphism of commutative algebra is defined from the universality
of symmetric polynomial algebra. SL2-equivariance is obvious.

Let π∨
n : V ∨

n → (U⊗n
2 )∨ be the dual of the defining morphism of the sym-

metric quotient Vn = Symn U2. For each nonnegative integer n, there is non-
cannonical isomorphism V ∨

n ≃ Vn ([Got23a, Proposition 4.5, Remark 4.6]). We
fix an injective morphism

ιn : Vn ≃ V ∨
n

π∨
n−−→ (U⊗n

2 )∨ ≃ U⊗n
2

defined from the non-cannonical isomorphisms of dual representations.

Corollary 4.6. The morphism

In : k[Vn] → k[U⊕n
2 ], Vn

ιn−→ U⊗n
2 ≃ k[U⊕n

2 ](1,1,...,1)

of algebra is SL2-equivariant and injective.

Proof. It is enough to show that the images of a basis of V ∨
n are algebraically

independent in k[(U⊕n
2 )∨]. It is obvious from the definition of π∨

n .

Corollary 4.7. The morphism IV :=
⊕m

i=1 ιni induces an SL2-equivariant
injective morphism of algebra

IV : k[V ] → k[U2 ⊗ kS], k[V ] ≃
m⊗
i=1

k[Vni ]
Ini−−→

m⊗
i=1

k[U⊕n
2 ] ≃ k[U2 ⊗ kS].
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Moreover, σ is a morphism of an Nm-graded algebra to an NSV -graded algebra on
rep(SL2) of degree the homomorphism −◦ i : Map({1, . . . ,m},N) → Map(S,N).

Proposition 4.8. Let d ∈ Nm be a sequence of nonnegative integers. Then we
have

IV (k[V ]SL2

d
) = k[U2 ⊗ kS]SV ×SL2

i(d)
= G2(kS)

SV

i(d)
.

Proof. The second equality is obvious from the definition of the Grassmannian
algebra. For a G-representation V and H-representation W , we have (V ⊗
W )G×H ≃ V G ⊗WH . Therefore it is enough to show the case of V = Vn. This
case is the fundamental theorem of the symmetric polynomial.

Combining this Proposition with the structure of Grassmannian algebra
(Proposition 4.2), we obtain the following.

Corollary 4.9. Any SL2-invariant can be written by bracket polynomials of
symbols and any equation among SL2-invariants are induced from the Plückker
relation.

Lemma 4.10. (Laurent Phenomena of Cluster Algebra) Let S be a finite set
of symbols and assume that #S ≥ 3. Let P be a convex n-gon on a plane with
vertices indexed by the elements of S. Let T be a triangulation of P , DT the
n−3 diagonals of P defining the triangulation T and ET the 2n−3 line segments
of the edges of the triangles consists T , that is, ET = {edges of P}∪DT . Then,
we have the following:

(i) The Plücker relations leads the natural inclusion

k[ET ] ⊂ G(S) ⊂ k[ET , D
−1
T ]. (3)

(ii) Let α = δ0, δ1, . . . , β = δk and γ be distinct symbols in S. Then we have

[α, β] =

k−1∑
i=0

[γ, α][γ, β][δi, δi+1]

[γ, δi][γ, δi+1]
.

Proof. (i) See [FZ03]. (ii) This is obvious from (2) and [α, β] = −[β, α].

4.3 Poisson Formula

Theorem 4.11. We have DR2,2 = f20 and

DRn,r =
∑

I⊔J=[n],
|I|=r

 ∏
j∈J

i∈[n]\{j}

[αi, αj ] ·
∏
i∈I

k∈[n−2]

[βk, αi]

 (4)

except (n, r) = (2, 2), where [m] := {1, 2, . . . ,m}.
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Proof. We show the assertion by an induction on n. The base cases are the
cases r = 0 of discriminants, the cases r = n of resultants and the cases (n, r) =
(2, 1), (3, 2). The cases r = 0 and r = n are already introduced. The cases
(n, r) = (2, 1), (3, 2) are shown by the direct computations.

We assume that (4) holds true for DRn−1,r for any r. Firstly, we consider
the case that fn and fn−2 have a common linear factor h = (px + qy). In
this case, the assertion is obtained by direct computations on the both hand of
the equation (4), as the following. We put fn−1 and fn−3 as fn = fn−1 · h and
fn−2 = fn−3 ·h respectively. Then, properties of resultant admits us to compute
the resultant with fn and any polynomial F as

res(fn, F ) = res(fn−1h, F )

= res(fn−1, F ) · res(h, F )
= res(fn−1, F mod fn−1) · res(h, F mod h).

We apply this for F = x∂xfn + txyfn−2. Here, we have

x∂xfn + txyfn−2 = x∂x(hfn−1) + txyhfn−3

= x((∂xh) · fn−1 + h(∂xfn−1)) + txyhfn−3

=

{
h(x∂xfn−1 + txyfn−3) mod fn−1

x(∂xh) · fn−1 mod h.

Therefore, we obtain

res(fn, x∂xfn + txyfn−2) = res(fn−1, h(x∂xfn−1 + txyfn−3)) · res(h, x(∂xh) · fn−1)

= res(h, x(∂xh)) · res(h, fn−1) · res(fn−1, h)

· res(fn−1, x∂xfn−1 + txyfn−3)

=(−1)n−1pq · res(h, fn−1)
2 · res(fn−1, x∂xfn−1 + txyfn−3).

We write fn =
∑n

i=0 aix
iyn−i and fn−1 =

∑n−1
i=0 a

′
ix

iyn−1−i. Then fn = fn−1 ·h
leads to a0 = pa′0 and an = qa′n−1. Therefore, we have

n∑
r=0

DRn,rt
r = res(fn, x∂xfn + txyfn−2)/(a0an)

= (−1)n−1pq · res(h, fn−1)
2 · res(fn−1, x∂xfn−1 + txyfn−3)/(a0an)

= (−1)n−1 res(h, fn−1)
2 · res(fn−1, x∂xfn−1 + txyfn−3)/(a

′
0a

′
n−1)

= (−1)n−1 res(h, fn−1)
2 ·

n−1∑
r=0

DRn−1,rt
r.

Therefore, we obtain

DRn,r = (−1)n−1 res(h, fn−1)
2 ·DRn−1,r.
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On the RHS of (4), we have αn = βn−2 = h and [αn, βn−2] = 0 from the
assumption. Thus, we have

(the RHS of (4)) =
∑

I⊔J=[n],
#I=r
n̸∈I

 ∏
j∈J

i∈[n]\{j}

[αi, αj ] ·
∏
i∈I

k∈[n−2]

[βk, αi]

 . (5)

For each term in (5), we have n ∈ J . We put J ′ := J \ {n}, then we have∏
j∈J

i∈[n]\{j}

[αi, αj ] =
∏
j∈J′

i∈[n−1]\{j}

[αi, αj ] ·
∏
j∈J′

[αn, αj ] ·
∏

i∈[n−1]

[αi, αn] and

∏
i∈I

k∈[n−2]

[βk, αi] =
∏
i∈I

k∈[n−3]

[βk, αi] ·
∏
i∈I

[βn−2, αi].

Here we have

∏
j∈J′

[αn, αj ] ·
∏

i∈[n−1]

[αi, αn] ·
∏
i∈I

[βn−2, αi] = (−1)n−1

 ∏
i∈[n−1]

[αi, h]
2


in any term, thus

(5) = (−1)n−1

 ∏
i∈[n−1]

[αi, h]
2

 ·
∑

I⊔J′=[n−1],
#I=r

 ∏
j∈J′

i∈[n]\{j}

[αi, αj ] ·
∏
i∈I

k∈[n−3]

[βk, αi]


= (−1)n−1 res(fn−1, h)

2 ·DRn−1,r.

Therefore, the assertion is true if fn and fn−2 have a common linear factor. Since
the pair fn and fn−2 have a common linear factor if and only if res(fn, fn−2) = 0,
and the fact that resultant is an irreducible polynomial (see [GKZ94]), we have

DRn,r −
∑

I⊔J=[n],
|I|=r

 ∏
j∈J

i∈[n]\{j}

[αi, αj ] ·
∏
i∈I

k∈[n−2]

[βk, αi]

 = g · res(fn, fn−2) (6)

for some polynomial g. As a polynomial of coefficients of fn−2, all terms on
the LHS of (6) is homogeneous of degree r and res(fn, fn−2) is of degree n.
Therefore, we have g = 0 for r ≤ n− 1. This completes the induction.

4.4 Holomorphic Lefschetz Vanishing

We show Theorem 1.3 by a direct computation using Theorem 1.2.
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Corollary 4.12. We have DRn,1 = 0.

Proof. We show the assertion by the induction on n. By a direct computation,
we have DR2,1 = 0. We assume DRn−1,r = 0. By Theorem 1.2, we have

n−1∑
l=1

∏
j∈[n−1]\{l}
i∈[n−1]\{j}

[αi, αj ] ·
∏

k∈[n−3]

[βk, αl] = 0.

We transpose this as∏
j∈[n−1]\{n−1}
i∈[n−1]\{j}

[αi, αj ] ·
∏

k∈[n−3]

[βk, αn−1] = −
n−2∑
l=1

∏
j∈[n−1]\{l}
i∈[n−1]\{j}

[αi, αj ] ·
∏

k∈[n−3]

[βk, αl].

(7)
Again by Theorem 1.2, we have

DRn,1 =

n∑
l=1

∏
j∈[n]\{l}
i∈[n]\{j}

[αi, αj ] ·
∏

k∈[n−2]

[βk, αl]. (8)

We note that, for any 1 ≤ l ≤ n− 1,∏
j∈[n]\{l}
i∈[n]\{j}

[αi, αj ] =
∏

j∈[n−1]\{l}
i∈[n−1]\{j}

[αi, αj ] ·
∏

i∈[n−1]

[αi, αn] ·
∏

j∈[n−1]\{l}

[αn, αj ]

=

∏
i∈[n−1]

(
−[αn, αi]

2
)

[αn, αl]
·

∏
j∈[n−1]\{l}
i∈[n−1]\{j}

[αi, αj ].

In particular, the term of l = n− 1 in the RHS of (8) have the LHS of (7) as a
factor. By substituting it, we obtain∏
j∈[n]\{n−1}
i∈[n]\{j}

[αi, αj ] ·
∏

k∈[n−2]

[βk, αn−1]

=

∏
i∈[n−1]

(
−[αn, αi]

2
)

[αn, αn−1]
·

∏
j∈[n−1]\{n−1}
i∈[n−1]\{j}

[αi, αj ] ·
∏

k∈[n−2]

[βk, αn−1]

=

∏
i∈[n−1]

(
−[αn, αi]

2
)

[αn, αn−1]
·

−
n−2∑
l=1

∏
j∈[n−1]\{l}
i∈[n−1]\{j}

[αi, αj ] ·
∏

k∈[n−3]

[βk, αl]

 · [βn−2, αn−1]

=

−
n−2∑
l=1

[αn, αl]

[αn, αn−1]

∏
j∈[n]\{l}
i∈[n]\{j}

[αi, αj ] ·
∏

k∈[n−3]

[βk, αl]

 · [βn−2, αn−1]. (9)
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By the similar substitution for the term of l = n in the RHS of (8), we obtain∏
j∈[n]\{n}
i∈[n]\{j}

[αi, αj ] ·
∏

k∈[n−2]

[βk, αn−1]

=

−
n−2∑
l=1

[αn−1, αl]

[αn−1, αn]

∏
j∈[n]\{l}
i∈[n]\{j}

[αi, αj ] ·
∏

k∈[n−3]

[βk, αl]

 · [βn−2, αn]. (10)

By the Plücker relation (2), we have

[αn, αl][βn−2, αn−1]

[αn, αn−1]
+

[αn−1, αl][βn−2, αn]

[αn−1, αn]
= [βn−2, αl]

for each 1 ≤ l ≤ n− 2. Therefore, we have

(9) + (10) = −
n−2∑
l=1

∏
j∈[n]\{l}
i∈[n]\{j}

[αi, αj ] ·
∏

k∈[n−3]

[βk, αl] · [βn−2, αl],

this shows that DRn,1 = 0.

4.5 Algebraic independence

To show Theorem 4.19, we use the polygon whose vertices are marked by
the symbols α1, . . . , αn, β1, . . . , βn−2 counter-clockwise, and the triangulation
T given by drawing all diagonals through βn−2. We put

Ai := [βn−2, αi] (i = 1, . . . , n)

Bi := [βn−2, βi] (i = 1, . . . , n− 3)

Ci :=

{
[αi, αi+1]

[αn, β1]

(i = 1, . . . , n− 1)

(i = n)

Di := [βi, βi+1] (i = 1, . . . , n− 4).

The Laurent polynomial ring corresponding to the triangulation T is

L := k[Ai, Bi, Ci, Di, A
−1
2 , . . . , A−1

n , B−1
1 , . . . , B−1

n−4].

By Lemma 4.10 (i), we regard G({αi, βi}) as a subring of L.
Our strategy is to fix a monomial ordering on L and see the leading mono-

mials of DRn,r. For a Laurent polynomial f ∈ L and a monomial ordering ⪯
on L, we write the leading monomial of f with respect to the ordering ⪯ by
lm⪯(f).

Proposition 4.13. Let⪯ be a monomial ordering and {fs}s∈S be a finite family
of Laurent polynomials in L. If there is a polynomial fs such that lm⪯(fs) ≻
lm⪯(fs′) for any other s′ ∈ S, then we have lm⪯(

∑
s∈S fs) = lm⪯(fs).

21



Definition 4.14. A subset S of L is said to be multiplicatively independent if
the map ⊕

s∈S

Z ∋ (as)s∈S 7→
∏
s∈S
as ̸=0

sas ∈ L

is injective.

Corollary 4.15. A family of Laurent polynomials {fs}s∈S are algebraically
independent if there exists a monomial ordering ⪯ on L such that lm⪯(fs) are
multiplicatively independent.

We fix the monomial ordering ⪯ on L as the lexicographic order, where the
variables are sorted as

(A1, . . . , An, B1, . . . , Bn−3, C1, . . . , Cn, D1, . . . , Dn−4)

from maximal to minimal. To show Theorem 4.19, we see the degree of Ai’s
and Ci’s on lm⪯(DRn,r).

Lemma 4.16. We have

lm⪯([αi, αj ]) = AiA
−1
j−1Cj−1 (i < j) and

lm⪯([αi, βk]) =


AiA

−1
n Cn (k = 1)

AiB
−1
k−1Dk−1 (2 ≤ k ≤ n− 3)

Ai (k = n− 2).

Proof. The assertion is obvious from Lemma 4.10 (ii).

Lemma 4.17. Let l ∈ [n] and I ⊂ [n]. We put J := [n] \ I and r := #I. Then,
we have

degAl
lm⪯

 ∏
j∈J

i∈[n]\{j}

[αi, αj ] ·
∏
i∈I

k∈[n−2]

[βk, αi]


=

{
n− 2 (l ∈ I)

n− l (l ∈ J)
−

{
0 (l + 1 ∈ I)

l (l + 1 ∈ J)
+

{
n− r − 2 ·#(J ∩ [l]) (l ≤ n− 1)

−r (l = n).
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Proof. For convenience, we put B0 := An and D0 := Cn. Then we have

lm⪯

 ∏
j∈J

i∈[n]\{j}

[αi, αj ] ·
∏
i∈I

k∈[n−2]

[βk, αi]


=

∏
j∈J

i∈[n]\{j}

lm⪯([αi, αj ]) ·
∏
i∈I

k∈[n−2]

lm⪯([βk, αi])

=
∏
j∈J

j−1∏
i=1

lm⪯([αi, αj ]) ·
n∏

i=j+1

lm⪯([αi, αj ])

 ·
∏
i∈I

k∈[n−3]

AiB
−1
k−1Dk−1 ·

∏
i∈I

Ai

=
∏
j∈J

j−1∏
i=1

AiA
−1
j−1Cj−1 ·

n∏
i=j+1

AjA
−1
i−1Ci−1

 ·

 ∏
k∈[n−3]

B−1
k−1Dk−1

r

·
∏
i∈I

An−2
i .

(11)

Here, the first factor is

∏
j∈J

j−1∏
i=1

AiA
−1
j−1Cj−1 ·

n∏
i=j+1

AjA
−1
i−1Ci−1


=
∏
j∈J

(A−1
j−1Cj−1)

j−1An−j
j

j−1∏
i=1

Ai ·
n∏

i=j+1

A−1
i−1Ci−1

 .

The degree of Al in this factor is given by

degAl

∏
j∈J

(A−1
j−1Cj−1)

j−1An−j
j

j−1∏
i=1

Ai ·
n∏

i=j+1

A−1
i−1Ci−1


=

{
n− l (l ∈ J)

0 (l ∈ I)
−

{
l (l + 1 ∈ J)

0 (l + 1 ∈ I)
+ degAl

∏
j∈J

j−1∏
i=1

Ai ·
n−1∏
i=j

A−1
i

=

{
n− l (l ∈ J)

0 (l ∈ I)
−

{
l (l + 1 ∈ J)

0 (l + 1 ∈ I)
+

{
#(J ∩ [n] \ [l])−#(J ∩ [l]) (l ≤ n− 1)

0 (l = n)

Since we put B0 = An, the degree of Al on the remaining factor is

degAl

 ∏
k∈[n−3]

B−1
k−1Dk−1

r

·
∏
i∈I

An−2
i =

{
−r (l = n)

0 (l ≤ n− 1)
+

{
n− 2 (l ∈ I)

0 (l ∈ J).

By summing up these degrees, we obtain the assertion.
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To apply Corollary 4.15 for discriminant-resultants, we use the expression of
Theorem 1.2. We firstly show that only the term of I = [r] in the RHS of (1)
gives the maximal leading monomial in the terms of DRn,r.

Lemma 4.18. For any integer r = 0 or 2 ≤ r ≤ n, we have

lm⪯(DRn,r) = lm⪯

 ∏
j∈[n]\[r]
i∈[n]\{j}

[αi, αj ] ·
∏
i∈[r]

k∈[n−2]

[βk, αi]

 .

Proof. Since the monomial ordering ⪯ is the lexicographic order, it is enough
to show the following claim for 1 ≤ l ≤ r − 1.

(Cr,l) In the terms of the RHS of (1) corresponding to the sets I such that
I ⊃ [l − 1], the degree of Al on their leading monomials is maximal if
l, l + 1 ∈ I.

By applying Lemma 4.17 for the case I ⊃ [l − 1] and r ≤ l, we obtain

degAl
lm⪯

 ∏
j∈J

i∈[n]\{j}

[αi, αj ] ·
∏
i∈I

k∈[n−2]

[βk, αi]


= 2n− r − 2−

{
0 (l ∈ I)

l (l ∈ J)
−

{
0 (l + 1 ∈ I)

l (l + 1 ∈ J).

This shows the claim (Cr,l).

Theorem 4.19. (Theorem 1.4) The discriminant-resultants

{DRn,r | r = 0, 2, 3, . . . , n}

are algebraically independent.

Proof. The assertion is obvious for n = 2, so we assume n ≥ 3. By Corollary
4.15, it is sufficient to show that the matrix

P := (degX lm⪯(DRn,r)) r=0,2,...,n,
X:variable of L

is of full rank. By Lemma 4.18 and (11),

lm⪯(DRn,r) = lm⪯

 ∏
j∈J

i∈[n]\{j}

[αi, αj ] ·
∏
i∈I

k∈[n−2]

[βk, αi]


=

n∏
j=r+1

j−1∏
i=1

AiA
−1
j−1Cj−1 ·

n∏
i=j+1

AjA
−1
i−1Ci−1

 ·

(
n−3∏
k=1

B−1
k−1Dk−1

)r

·
r∏

i=1

An−2
i .

(12)
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Using (12), we compute

cr,l := degCl
lm⪯(DRn,r) =


0 (l ≤ r − 1)

2l − r (r ≤ l ≤ n− 1)

r (l = n)

and

a′r,l := degAl
lm⪯(DRn,r)− degCl

lm⪯(DRn,r)

=degAl

n∏
j=r+1

j−1∏
i=1

Ai ·
n∏

i=j+1

Aj

 ·
r∏

i=1

An−2
i

=

{
2n− r − 2 (l ≤ r)

2n− 2l (r + 1 ≤ l ≤ n).

Thus, we have

a′r,2 − a′r,3 =

{
2 (r ≤ 2)

0 (r ≥ 3).

Therefore, for the vectors

vr := (a′r,2 − a′r,3 − cr,2, cr,2, . . . , cr,n−1)

for r = 0, 2, 3, . . . , n, the matrix

(v0, v2, v3, . . . , vn)

is triangular with the diagonal entries (−2, 2, 3, . . . , n). Thus, the matrix P is
of full rank. This is what we wanted to show.

5 Moduli Spaces of Dynamical Systems of Cor-
respondence

In this section, we review results about moduli spaces of dynamical systems of
correspondence in [Got23a].

5.1 Geometric invariant theory

In this subsection, we briefly introduce results in geometric invariant theory
used in [Got23a].

Definition 5.1. ([MFK94, Definition 1.6]) Let G be a reductive group scheme
and X be a scheme with G-action σ : G × X → X. For an invertible sheaf L
over X, an isomorphism ϕ : σ∗L ≃ p∗2L is said to be G-linearization if ϕ satisfies

p∗23ϕ ◦ (idG ×σ)∗ϕ = (µ× idX)∗ϕ (on G×G×X).
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Remark 5.2. If L is very ample and G is affine, then G-linearization is de-
scribed as theG(O(X))-action on L(X) compatible with σ. Moreover, H0(X,L)
is a rational G(k)-representation.

Remark 5.3. For a G-linearization ϕ of an invertible sheaf L over a normal
scheme X, ϕn : σ∗Ln ≃ p∗2Ln is a G-linearization of Ln.

Remark 5.4. ([MFK94, Proposition 1.4]) If there exists no surjective homo-
morphism G → Gm of group schemes and X ×k k̄ is normal, G-linearization ϕ
of an invertible sheaf L is unique if exists.

Definition 5.5. ([MFK94, Definition 1.7]) Let G be a reductive group, X an
algebraic variety with G-action and P a geometric point of X.

(i) P is said to be pre-stable if the stabilizer group of P is finite and there
exists a G-stable affine open neighborhood of P .

Moreover, we suppose that L be an ample invertible sheaf over X with G-
linearization.

(ii) P is said to be L-semistable if for some positive integer n > 0, there exists
f ∈ H0(X,Ln)G such that f(P ) ̸= 0 and Xf is affine.

(iii) P is said to be (proper) L-stable if P is L-semistable and pre-stable.

The set of pre-stable (resp. L-semistable, L-stable) geometric points is the
set of geometric points of an open subscheme of X called pre-stable (resp. L-
semistable, L-stable) locus. We denote the loci by Xs(Pre) (resp. Xss(L),
Xs(L)).

Theorem 5.6. [MFK94, p.40] Let G be a reductive group scheme, X be a
projective G-scheme with G-action and L be an ample line bundle over X with
G-linearization. Then the rational map induced from the inclusion of invariant
ring

X = Proj
⊕
i∈N

H0(Li) 99K Y := Proj
⊕
i∈N

H0(Li)G

is a categorical quotient morphism on the semistable locus Xss(L) → Xss(L)�
G = Y .

5.2 Definition of Moduli Spaces

In this subsection, we define moduli spaces of correspondences over the projec-
tive line along [Got23a].

For any symbol x, we define the projective space Pn
x to [x0, x1, . . . , xn] be

the ordered basis of H0(Pn
x ,O(1)) and we abbreviate this ordered basis by [x]

or x. Throughout this section, we fix a pair (d, e) of positive integers such that
(d, e) ̸= (1, 1). Let

Corrd,e := P(H0(P1
x × P1

y,O(d, e)))

26



be the projective space which parameterize the correspondences of degree (d, e)
on P1

x × P1
y. Then we can write

H0(O(d, e)) =

fa([x], [y]) :=
∑

0≤i≤d
0≤j≤e

aijx
d−i
0 xi1y

e−j
0 yj1

∣∣∣∣∣∣∣∣ aij ∈ k


for any field k. Any k-point of Corrd,e is given by the linear span of the tuple
of coefficients

[a] := [aij : 0 ≤ i ≤ d, 0 ≤ j ≤ e, aij ∈ k].

Remark 5.7. We note that the degree of correspondence is sometimes defined
as the degree of projection, as in [Sch17]. For instance, the first degree is given
by the degree of the first projection

Γf = Γx,y = V+(fa([x], [y])) → Px

is e, because f has e roots for a fixed [a] and [x]. In this manner we have degree
(d, e) correspondence as a morphism.

We define the Aut(P1) = PGL2-action on Corrd,e to keep the polynomial
fa([x], [y]) to be invariant. Since the diagonal action of SL2 on P1 × P1 yields

H0(P1 × P1,O(d, e)) ≃ H0(P1,O(d))⊗H0(P1,O(e)) = Vd ⊗ Ve,

we have

H0(Corrd,e,O(1)) = (Vd ⊗ Ve)
∨ and thus Corrd,e = Proj k[(Vd ⊗ Ve)

∨].

Under the (non-canonical) isomorphism (Vd⊗Ve)∨ ≃ Vd⊗Ve, we regard Corrd,e =
Proj k[Vd ⊗ Ve] with respect to the SL2-action.

Definition 5.8. The moduli space of the dynamical system of correspondences
of degree (d, e) is Dynd,e := Proj k[Vd ⊗ Ve]

SL2 .

By Theorem 5.6, the rational map induced from the inclusion of the invariant
ring

Corrd,e = Proj k[Vd ⊗ Ve] 99K Dynd,e = Proj
⊕
i∈N

k[Vd ⊗ Ve]
SL2

is a categorical quotient morphism Corrssd,e → Dynd,e = Corrssd,e �SL2 on the
semistable locus Corrssd,e = Corrssd,e(O(1)). A geometric characterisation of the
semistable locus and the stable locus is one of the main result of [Got23a].

Theorem 5.9. ([Got23a, Theorem 1.1]) The point of Corrd,e which represents
a correspondence C is a stable point (resp. a semistable point) if and only if C
has no point of multiplicity ≥ d+e

2 (resp. of multiplicity > d+e
2 ) on the diagonal

of P1 × P1.
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5.3 Some Covariant Cycles

In this subsection, we introduce some closed subschemes on Corrd,e ×(P1)m,
which are covariant with respect to the diagonal action of PGL2. We first
define the diagonal graph, which is given as the divisor of degree (0, 1, 1),

∆x,y := Corrd,e ×∆P1
id×ι−−−→ Corrd,e ×P1

x × P1
y.

The universal graph, the scheme Γ which gives the correspondences indicated
by the Corrd,e, is the hypersurface

Γx,y := V+(fa(x, y)) ⊂ Corrd,e ×P1
x × P1

y

of degree (1, d, e). From these schemes, we can define some objects which ap-
pears in the theory of dynamical system. We firstly note that the composition
of self-correspondences Ca = V+(fa(x, y)) and Da = V+(ga(x, y)) over Pn

a is
given by

Ca ◦Da = V+(resz(f(x, z), g(z, y))).

From the Sylvester formula, if Ca and Da are of degree (n, d, e) and (n′, d′, e′)
respectively, then the composition has the degree (nd′ + n′e, dd′, ee′).

The n-th iteration ΨnΓ of the graph is defined by

Ψ0Γx,y = ∆x,y,ΨnΓ := Ψn−1Γ ◦ Γ.

The n-th iteration graph ΨnΓ is an hypersurface of degree (d
n−en

d−e , dn, en) in

Corrd,e ×P1
x × P1

y.
Critical loci are also defined. We remark that for correspondences, critical

points and critical values are exist in both direction. From the implicit function
theorem, an x-critical point (y-critical value) (ξ, η) of a correspondence defined
by fa = fa([x], [y]) = 0 is a solution of the equations fa([x], [y]) = 0 and
∂xfa([x], [y]) = 0 for any derivative operator ∂x := g0([x])∂x0

+ g1([x])∂x1
. This

system of equations are reduced to the equations

∂x0
fa = ∂x1

fa = 0

since (x0∂x0+x1∂x1)fa = d·fa. We can obtain the y-coordinates of the x-critical
points (y-critical values) by a computation of the discriminant,

xCrity := V+(∆[x](fa([x], [y]))).

From the definition of discriminant, this gives a hypersurface

xCrity ⊂ Corrd,e ×P1
y

of degree (2d − 2, 2de − 2e). The hypersurface of x-coordinates of x-critical
points is given by

xCritx := V+(res[y](∂x0
f, ∂x1

f)) ⊂ Corrd,e ×P1
x
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and the degree is (2e, 2de− 2e). The hypersurfaces yCritx ⊂ Corrd,e ×P1
y of x-

critical values and y-critical values yCrity ⊂ Corrd,e ×P1
x of degree respectively

(2e−2, 2de−2d) and (2d, 2de−2d) are also defined by swapping the coordinates
x and y in the definitions.

The hypersurface of periodic points Pern of period n is given by

Pern := V+(Ψn(f)(z, z)) ⊂ Corrd,e ×P1
z.

We can regard Pern as ΨnΓx,y|∆x,y
under the isomorphism ∆x,y ≃ Corrd,e ×P1

z.

From the degree of ΨnΓ, the degree of Pern is (d
n−en

d−e , dn + en).
We remark that the cycle of periodic points Pern includes the cycles of fixed

points, and moreover the cycles Perm for m|n. We define the scheme Per∗n of
periodic points of formal period n by extracting the periodic points of shorter
periods. More explicitly, we define effective divisors Per∗n inductively as

Per∗1 := Per1,Per
∗
n := Pern −

∑
m<n,m|n

Per∗m .

Let νn(x) be the family of polynomials, asymptotically defined by

ν1(x) = x, νn(x) = xn −
∑

m<n,m|n

νm(x).

In a closed form, νn is written by using the Möbius function µ,

νn(x) =
∑
m|n

µ (n/m)xn.

Then the degree of Per∗n is given by(
νn(d)− νn(e)

d− e
, νn(d) + νn(e)

)
.

We write Π∗
nf(z) for a defining form of the divisor Per∗n.

Remark 5.10. We have νn(1) = 0 for n > 1. For the cases only considering
rational maps, νn(d) + νn(1) is sometimes used instead of νn(d) (for instance,
νn(d) in [Sil07, Remark 4.3] and Nn(d) in [DM06, Chapter 4]).

5.4 Degrees of Linear Systems of Multiplier Maps

Proposition 5.11. If the multiplier map

λn,(d,e) : Corrd,e 99K Corrdn,en 99K Pdn+en

is well-defined, then it is given by a linear system of degree

2(dn + en − 1)
dn − en

d− e
.
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Moreover, in this case, we can define the multiplier map of the periodic orbits
of period n,

λ◦n,(d,e) : Corrd,e 99K P(νn(d)+νn(e))/n

and it is given by a linear system of degree at most

2((dn − 1)νn(d)− (en − 1)νn(e))

n(d− e)
.

Proof. By [Got23a, Section 7] and the Sylvester formula, the degree of fixed
point multiplier map is 2(d + e − 1). Since the morphism Ψn : Corrd,e 99K
Corrdn,en is given by a linear system of degree dn−en

d−e , we obtain the first asser-
tion. Moreover, the morphism λn := λn,(d,e) is given by

λn([f ]) = λ1,(d,e)([Ψnf ])

=

 ∏
z:Ψnf(z,z)=0

(∂xΨnf(z, z)dx+ ∂yΨnf(z, z)dy)

 ∈ P(DN ), (13)

where N = degz Ψnf(z, z) = dn + en. The well-definedness of λn implies that
the factors of (13) are not zero. Therefore, we can define λ•n([f ]) as

λ•n([f ]) :=

 ∏
z:Π∗

nf(z)=0

(∂xΨnf(z, z)dx+ ∂yΨnf(z, z)dy)

 ∈ P(DM ), (14)

where M = degz Π
∗
nf(z) = νn(d) + νn(e). By [Got23a, Remark 7.6], we can

write this multiplier map as

λ•n([f ]) = [resz (Π
∗
nf(z), ∂xΨnf(z, z)dx+ ∂yΨnf(z, z)dy)]

=
[
resz

(
Π∗

nf(z), dzΨnf(z, z)dz0 + z0z1Ω
1Ψnf(z)dz1

)
/An,0An,1

]
,
(15)

where An,0 and An,1 are the coefficients of respectively zM0 and zM1 of Π∗
nf(z).

Therefore, by the Sylvester formula, the rational map λ◦n([f ]) is given by the
linear system given by the coefficients of dzi0dz

M−i
1 of

resz
(
Π∗

nf(z), dzΨnf(z, z)dz0 + z0z1Ω
1Ψnf(z)dz1

)
/An,0An,1, (16)

and their degree is

(dn + en)
νn(d)− νn(e)

d− e
+ (νn(d) + νn(e))

dn − en

d− e
− 2

νn(d)− νn(e)

d− e
. (17)

Any periodic orbit of formal period n, of a correspondence defined by f(x, y)
is given by a tuple of points (z0, z1, . . . , zn = z0) such that f(zi, zi+1) = 0.

30



From the differential of composite functions, for the periodic points of the same
periodic orbits, the factor in (14) takes the same value, that is,

λ•n([f ]) =

 ∏
(z0,...,zn−1):

Periodic orbits of f(x,y)

(
dx+

∂yΨnf(z0, z0)

∂xΨnf(z0, z0)
dy

)n

 . (18)

This leads that the map λ•n,(d,e)([f ]) is given by an n-th power of some rational
function. Therefore, we can define λ◦n as an n-th root of some quotient of
(16).

Remark 5.12. By definition, for the Veronese embedding

ϵn : PM/n ≃ P(k[x, y]M/n) → P(k[x, y]M ) ≃ PM : f 7→ fn,

we have λ•n = ϵn ◦λ◦n. Moreover, since for any periodic orbit (z0, . . . , zn−1, zn =
z0) we have

∂yΨmnf(z0, z0)

∂xΨmnf(z0, z0)
=

(
∂yΨnf(z0, z0)

∂xΨnf(z0, z0)

)m

,

we can see that
ImΛn ≃ ImΛ•

n ≃ ImΛ◦
n,

where
Λα
n :=

∏
m:m|n

λαm for α ∈ {◦, •}.

Remark 5.13. Despite the form in (15) is given by an n-th power of some
polynomial, it is difficult to obtain more explicit form of the n-th root λ◦n. This
phenomenon happens in computing resultant by Cayley’s formula ([ESW03]).
If n = 2, Pfaffian is sometimes used to compute Cayley’s formula. Whether
analogous method exist for the second multiplier map is a problem. As we see
in (26), if we have a method to choose a specified branch of the roots, we can
compute the root directly by interpolation.

6 Degree Bound of Multiplier Map

The volumes of the invariant algebras of irreducible representations of SL2 are
classically calculated by Hilbert and the reducible cases are done in [dCCPHHS20].

6.1 Schur Polynomial

In [dCCPHHS20], Schur Polynomials are used to express the volumes of invari-
ant rings. We briefly introduce the polynomials in a form that we can instantly
give an explicit evaluation of the volumes.
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Definition 6.1. (Schur Polynomial) For a sequence of nonnegative integers (di)
of length l, the Schur polynomial s(di)(xi) of (di) is the symmetric polynomial
of l variables such that

s(di)(xi) =
det(x

j+dj−1
i )li,j=1

det(xj−1
i )li,j=1

.

Definition 6.2. For a nonincreasing sequence of nonnegative integers (di), the
Young tableau of (di) is the set of lattice points

T (di) := {(i, j) ∈ Z2 | 1 ≤ i ≤ dj}.

The set of n-semistandard tableau is the set

SSTn(di) := {f : T (di) → {1, . . . , n} | f(i, j) ≤ f(i+ 1, j), f(i, j) < f(i, j + 1)}.

Theorem 6.3. (Kostka’s Definition [Pra19, Corollary 12.5]) For a decreasing
sequence of nonnegative integers (d1, . . . , dl), we have

s(d1,...,dl,0,0,...,0)(x1, . . . , xl+k) =
∑

f∈SSTl+k(di)

∏
(i,j)∈T (di)

xf(i,j).

6.2 Evaluation

We use the following result to calculate the volume.

Theorem 6.4. ([dCCPHHS20]) Let V ∈ Repk(SL2) be a representation of SL2

and dimk V = n ≥ 5. Then the Laurent expansion of the Hilbert function of
the invariant ring I(V ) := k[V ]SL2(k) around t = 1 has the form

hI(V )(t) = (1− t)−n+3 ·
∞∑
i=0

γi(1− t)i.

Let (ai) be the positive weights of V and l be the length of the sequence. Then
we have

γ0 = gcd(2, a1, . . . , al)
s(l−3,l−3,l−3,l−4,l−5,...,2,1,0)(a1, a2, . . . , al)

s(l−1,l−2,l−3,l−4,l−5,...,2,1,0)(a1, a2, . . . , al)
.

Remark 6.5. In [dCCPHHS20], higher terms (γ1, γ2, γ3) are also computed.

Throughout this subsection, we put n := d+ e. We give a rough estimate of
γ0 for the case V = Vd ⊗ Ve of the moduli space of dynamical systems.

Lemma 6.6. We have

Vol I(Vd ⊗ Ve) ≤
gcd(n, 2)

2(n− 2)(n− 1)n
.
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Proof. We put α := (l−3, l−3, l−3, l−4, l−5, . . . , 1) and δ := (l−1, l−2, . . . , 2, 1).
Let Φk : SSTl(α) → SSTl(δ) for k = 1, 2 be the map such that for any f ∈
SSTl(α)

Φk(f)(i, j) :=



f(i, j) ((i, j) ∈ T (α))

l − 1 ((i, j) = (1, l − 2))

l ((i, j) = (2, l − 2))

l − 1 ((i, j) = (1, l − 1), k = 1)

l ((i, j) = (1, l − 1), k = 2)

.

The maps Φ1 and Φ2 are both injective and the images are disjoint. Therefore
by Theorem 6.3 we have

sδ(x1, . . . , xl) =(xl−1x
2
l + x2l−1xl)sα(x1, . . . , xl)

+ (polynomial with nonnegative coefficients). (19)

The three largest among the weights of the representation Vd⊗Ve are (n−2, n−
2, n) and other weights are smaller than n− 2. By substituting the weights into
(19), we obtain

sδ(ν, n− 2, n− 2, n) ≥ 2(n− 2)(n− 1)n · sα(ν, n− 2, n− 2, n),

where we put the sequence of positive weights smaller than n − 2 by ν. By
Theorem 6.4, we have

Vol(I(Vd ⊗ Ve)) = gcd(2, n)
sα(ν, n− 2, n− 2, n)

sδ(ν, n− 2, n− 2, n)

≤ gcd(2, n)
1

2(n− 2)(n− 1)n
.

Theorem 6.7. Let p be a prime number. If the first and the p-th multiplier
map to the image

Λ◦
p := λ◦1,(d,e) × λ◦p,(d,e) : Dynd,e 99K Λ(Dynd,e) ⊂ P(Dd+e)× P(DM )

is finite, then its degree is at most

gcd(n, 2)Nde+n−3(n− 3)!(de− 3)!

2n · (de+ n− 3)!
,

where

N := 2(d+ e− 1) +
2((dp − 1)(dp − d)− (ep − 1)(ep − e))

p(d− e)
.

Proof. We put A := I(Vd ⊗ Ve). Let L1 and Lp be the linear systems which
gives λ◦1 and λ◦p. By Proposition 5.11, we can take the linear systems in A such
that whose degrees are respectively at most

2(d+ e− 1) and
2((dp − 1)(dp − d)− (ep − 1)(ep − e))

p(d− e)
.
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By assumption and algebraic independence of discriminant-resultant [Gor15],
we can take n elements σ1, . . . , σn in L1 and dimDynd,e −(n − 1) = de − 2
elements δ1, . . . , δde−2 in Lp to be algebraically independent.

Let k[L1 ⊗ Lp] → A be the morphism of graded k-algebras defined by L1 ⊗
Lp ∋ f ⊗ g 7→ fg ∈ A and B(1,p) be its image. Then we have the degree of the
morphism Λ is the extension degree [KP (A) : KP (B(1,p))] of rational function
fields.

The graded subalgebra B(1,p) ⊃ B := k[figj | 1 ≤ i ≤ n, 1 ≤ j ≤ de− 2] of
A has the Hilbert series

hB(t) =

∞∑
i=0

(
i+ n− 1

n− 1

)(
i+ de− 3

de− 3

)
tiN .

This leads to

Vol(B) =
1

Nde+n−3
· (de+ n− 3)!

(de− 3)!(n− 1)!
.

Therefore we have

[KP (A) : KP (B(1,p))] ≤ [KP (A) : KP (B)]

≤ Vol(A)

Vol(B)

≤ gcd(n, 2)

2n(n− 1)(n− 2)
· N

de+n−3(n− 1)!(de− 3)!

(de+ n− 3)!
(20)

=
gcd(n, 2)Nde+n−3(n− 3)!(de− 3)!

2n · (de+ n− 3)!

from Proposition 3.34.

Remark 6.8. By skipping Lemma 6.6, we can use

sδ(positive weights of Vd ⊗ Ve)

sα(positive weights of Vd ⊗ Ve)
(21)

instead of 1/2n(n − 1)(n − 2) in (20). Experimentally (21) looks like of order
O(n−(4+O(1))), but this difference of orders may be very small comparing to
Nde+d+e−3.

Remark 6.9. From number of periodic orbits, and Holomorphic Lefschetz for-
mula ([Ill77], [Got23a]) for C and Ψ2C, the dimension of fiber of Λ◦

2 is at least

(d+ e− 1) +
(d2 − d) + (e2 − e)

2
− 1− (de+ d+ e− 3)

=
(d− e)2 − (d+ e) + 2

2
. (22)

In particular, the map Λ◦
2 can be generically finite to its image only if (d−e)2 ≥

d+ e− 2.
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7 Birationality of the Second Multiplier Map of
Cubic Maps

In this section, we give two proofs of the following theorem.

Theorem 7.1. The multiplier map Λ2,(1,3) is birational to its image.

7.1 Finite field reduction

The counting of the degree of

Λ2 := λ1,(1,3) × λ2,(1,3) : Dyn1,3 → P3 × P9

to its image is done in [HT13] by the following method. First, we fix a point P ∈
λ1(Dyn1,3) and consider the inverse image l := λ−1

1 (P ). An explicit morphism

ϕP : P1 → Corr1,3 such that l is birational to the image of P1 ϕP−−→ Corr1,3
π−→

Dyn1,3 is given in [HT13]. We denote the endomorphism on P1 indicated by
the point ϕP (a) by ϕP,a. Then we will solve the equations in the two variables
a and b,

ϕ2P,a(b) = b (23)

(ϕ2P,a)
′(b) = λ (24)

ϕP,a(b) ̸= b (25)

for a given P and λ. The equations (23) and (24) are of degree 9 and 16
respectively, in variables a and b. By a MAGMA computation over a finite
field, we obtain the solutions as a 0-dimensional closed subscheme Z of degree
144 on P2. Under a base-change to the algebraically closed field, the support
of Z consists of 18 points. Six of them are non-reduced and does not satisfy
the inequality (25). Remaining 12 points satisfies (25), moreover the MAGMA
computation shows that they are reduced.

That was the computation done in [HT13]. We continue computation from
here. At first, we note that for a solution (a, b) of (23),(24) and (25), the points
(a, ϕP,a(b)) is also a solution of equation. Therefore, we obtain 6 rational maps
ϕP,a with periodic points of period two. For a value λ, the solutions are given
by explicit values of (a, b). For the 6 rational maps, we compute multipliers
of other periodic points of period 2. Then we obtain that the values of other
multipliers are mutually different, so we obtain that Λ3,2 is injective.

7.2 Direct computation with Graded-decomposition and
interpolation

In this section, we show Theorem 7.1 by computing the full formula of the
second multiplier map Λ◦

2,(1,3).
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In the computational process of the explicit expression, we use the informa-
tion that the resulting polynomials are SL2-invariant. Our algorithm (Subsec-
tion A.2) of graded-piece-wise computation is applied for limited cases, but this
method makes the computation much faster.

We use the expression of generators of the invariant ring A := I(V1 ⊗ V3) =
I(V4 ⊕ V2) given in [Wes15]. The invariant ring is given by

A ≃ k[d, i, j, a, b, c]/r,

where d, i, j, a, b, c are generators of degree respectively 2, 2, 3, 3, 4, 6 and r is the
relation

2c2 =
1

54
d3i3 − 1

9
d3j2 − 1

12
di2a2 − 1

3
ja3 + djab+

1

2
ia2b− 1

2
dib2 − b3.

Let f4(z) and f2(z) be the fundamental covariants of V4 and V2 respectively
(denoted by f and g in [Wes15] respectively). By [Got23a, Remark 7.6], the
first multiplier map λ1 is given by the linear system consists of discriminant-
resultants (named in [Got22])

σr := DR4,r(f4, f2) (r = 0, 2, 3, 4) of degree (6− r, r),

which are defined by

4∑
r=0

DR4,r(f4, f2)t
r = resz(f4, ∂zf4 + zf2t).

We put
Σ± := σ0 + σ2 ± σ3 + σ4.

By Proposition 5.11, we can have a linear system of λ◦2 of degree at most 24.
Let

L2(t) := resz(Π
∗
2f(z), dzΩ

0(Ψ2f)(z) + t · Ω1(Ψ2f)(z)).

In this case, L2(t) has a divisor Σ4
− and we can take a square root of L2(t)/Σ

4
−.

We put the square root as√
L2(t)/Σ4

− =: δ(t) =: δ0 + δ1t+ δ2t
2 + δ3t

3.

The forms δi’s are invariants in A of degree (48− 4 · 6)/2 = 12. We have

δ20 · Σ4
− = resz(Π

∗
2f(z), dzΩ

0(Ψ2f)(z))

= ∆z(Π
∗
2f(z)) · resz(Π∗

2f(z),Π
∗
1f(z))

and by a direct computation we obtain

∆z(Π
∗
2f(z)) = Σ+ · Σ2

− · ϕ2 and

resz(Π
∗
2f(z),Π

∗
1f(z)) = Σ+ · Σ2

−, where

ϕ = 2−27 · (d3 − 12d2i+ 48di2 − 64i3 + 384j2 + 288ja+ 54a2),
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so we have δ0 = ±Σ+ · ϕ. By fixing the sign to be +, we can compute δ(t) and
obtain

δ1 = −1

2
(−9σ0 + σ2 + 6σ3 + 11σ4) · ϕ, δ2, δ3 ∈ A12. (26)

Here we remark that

K2 := K(Λ2(Dyn1,3)) = k

(
σi
σj
,
δi
δj

)
⊂ KP (A).

So we start from the algebra

B1 := k[σi · ϕ(i = 0, 2, 3, 4), δ2, δ3](⊂ A)

to larger sub-graded-algebras of A with keeping the condition KP (Bi) = K2.
By seeking factorizable linear combinations of the generators of B1, we find

δ2 + ϕ(−10σ0 + σ2 + 10σ3) = Σ− · ψ,

where ψ =
1

231
(−26048i3 + 9936i2d− 884id2 + 7d3

− 102912j2 − 38784ja− 72a2 − 9600ib+ 2400db) and

(δ2 + δ3)−
1

2
(11σ0 + σ2 − 4σ3 − 9σ4)ϕ =

53

219
(Σ− +

√
2σ3)(Σ− −

√
2σ3).

Therefore, we can replace B1 by

B2 := k[σi, ϕ, ψ].

By computing the elimination ideal of generators of B2, we obtain that the only
relation among the generators is a relation of degree 60 (degree 10 polynomial
of σi, ϕ, ψ), so we can see that the Hilbert series of B2 is given by

HB2
(t) =

1− t60

(1− t6)6
.

Here we have

HA(t) =
1 + t6

(1− t2)2(1− t3)2(1− t4)
.

We recall that for any graded algebra C, C [n] :=
⊕

i≥0 Cin with degCin = i.
By a direct computation, we have

HA[6](t) =
(1 + t)(1 + 5t+ 9t2 + 4t3)

(1− t)4(1− t2)
and H

B
[6]
2
(t) =

1− t10

(1− t)6
.

By Proposition 3.34, we have

deg(Λ2) = [KP (A[6]) : KP (B
[6]
2 )] ≤ Vol(A[6])

Vol(B
[6]
2 )

=
9

5
,

this shows that deg(Λ2) = 1.
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Remark 7.2. Throughout this ad hoc proof, there are three steps completed
unexpectedly easily. The first is that there are factorizable linear combinations
including δ2 and δ3. The second is that a linear combination moreover belongs to
k[σi]12. The third is that the relation among σi, ϕ, ψ was of degree 60. Because
of this small degree (the expected degree from the Hilbert series is 108), we can
obtain the result in a few minutes by simply computing the elimination ideal.
Moreover, this degree is also the lower bound to determine the extension degree
to be 1.

A Appendix: Programs

A.1 Programs used in Subsection 7.1

The MAGMA program run in [HT13] were the following.

l0:=3;

l1:=2;

l8:=4;

lB:=-5;

R<a,B,z>:=ProjectiveSpace(GF(101),2);

function h(P,d) Q:=0;

for i:=0 to d do for j:=0 to d-i do Q:=Q+ Term(Term(P,a,i),B,j)*z^(d-i-j);

end for;

end for;

return(Q);

end function;

function f(x,y) return((((l0 - 1)*l1 + (-l0 + 1))*x^3 + ((a*l0*l1

+ (-l0 + (-a + 1)))*l8 + (((-a - 1)*l0 +1)*l1 + (2*l0 + (a - 2))))*x^2*y

+ ((-a*l0*l1 + a*l0)*l8 + (a*l0*l1 - a*l0))*x*y^2));

end function;

function g(x,y) return((((l0 - 1)*l1 + (-l0 + 1))*l8*x^2*y + (((-l0

+ (a + 1))*l1 + (a*l0 - 2*a))*l8 + (-a*l1 + ((-a + 1)*l0 +(2*a

- 1))))*x*y^2 + ((-a*l1 + a)*l8 + (a*l1 - a))*y^3));

end function;

f1:=f(f(B,1),g(B,1));

g1:=g(f(B,1),g(B,1));

F1:=f1-B*g1;

F2:=g1*Derivative(f1,B) - f1*Derivative(g1,B) - lB*g1*g1;

G1:=h(F1,9);

G2:=h(F2,16);

C:=Scheme(R,[G1,G2]);

D:=ReducedSubscheme(C);

Degree(D);

After running this computation, we firstly compute the coordinates of the points
of D.
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PointsOverSplittingField(D);

Output:

{@ (0 : 0 : 1), (0 : 4 : 1), (1 : 1 : 1), (1 : 49 : 1),

(4 : 93*$.1^7 + 44*$.1^6 + 24*$.1^5 + 23*$.1^4 + 48*$.1^3 + 26*$.1^2
+ 65*$.1 + 90 : 1), (4 : 8*$.1^7 + 57*$.1^6 + 77*$.1^5 + 78*$.1^4
+ 53*$.1^3 + 75*$.1^2 + 36*$.1 + 79 : 1), (96 : 27 : 1), (96

: 6 : 1), (18*$.1^7 + 50*$.1^6 + 68*$.1^5 + 24*$.1^4 + 59*$.1^3
+ 22*$.1^2 + 93*$.1 + 93 : 55*$.1^7 + 55*$.1^6 + 80*$.1^5 + 72*$.1^4
+ 5*$.1^3 + 89*$.1^2 + 52*$.1 + 10 : 1), (18*$.1^7 + 50*$.1^6
+ 68*$.1^5 + 24*$.1^4 + 59*$.1^3 + 22*$.1^2 + 93*$.1 + 93 : 15*$.1^7
+ 56*$.1^6 + 83*$.1^5 + 3*$.1^4 + 62*$.1^3 + 95*$.1^2 + 21*$.1
+ 80 : 1), (14*$.1^7 + 52*$.1^6 + 48*$.1^5 + 18*$.1^4 + 53*$.1^3
+ 62*$.1^2 + 42*$.1 + 50 : 70*$.1^7 + 7*$.1^6 + 3*$.1^5 + 27*$.1^4
+ 47*$.1^3 + 32*$.1^2 + 64*$.1 + 28 : 1), (14*$.1^7 + 52*$.1^6
+ 48*$.1^5 + 18*$.1^4 + 53*$.1^3 + 62*$.1^2 + 42*$.1 + 50 : 88*$.1^7
+ 85*$.1^6 + 73*$.1^5 + 50*$.1^4 + 65*$.1^3 + 59*$.1^2 + 96*$.1
+ 70 : 1), (75*$.1^7 + 95*$.1^6 + 57*$.1^5 + 100*$.1^4 + 90*$.1^3
+ 4*$.1^2 + 73*$.1 + 55 : 5*$.1^7 + 72*$.1^6 + 70*$.1^5 + 39*$.1^4
+ 32*$.1^3 + 31*$.1^2 + 74*$.1 + 26 : 1), (75*$.1^7 + 95*$.1^6
+ 57*$.1^5 + 100*$.1^4 + 90*$.1^3 + 4*$.1^2 + 73*$.1 + 55 : 86*$.1^7
+ 93*$.1^6 + 92*$.1^5 + 67*$.1^4 + 46*$.1^3 + 95*$.1^2 + 22*$.1
+ 78 : 1), (95*$.1^7 + 5*$.1^6 + 29*$.1^5 + 60*$.1^4 + 13*$.1^2
+ 95*$.1 + 87 : 66*$.1^7 + 33*$.1^6 + 62*$.1^5 + 50*$.1^4 + 83*$.1^3
+ 87*$.1^2 + 29*$.1 + 25 : 1), (95*$.1^7 + 5*$.1^6 + 29*$.1^5
+ 60*$.1^4 + 13*$.1^2 + 95*$.1 + 87 : 19*$.1^7 + 3*$.1^6 + 42*$.1^5
+ 96*$.1^4 + 64*$.1^3 + 17*$.1^2 + 46*$.1 + 2 : 1), (47 : 1

: 0), (1 : 0 : 0) @}
Finite field of size 101^8

These are the coordinates (a : b : z) of the solutions of (24) and (23) on P2, with
the homogenizing variable z. The parameters a of 12 reduced points, consisted
of 6 values as expected are the following.

{4,96,18*$.1^7 + 50*$.1^6 + 68*$.1^5 + 24*$.1^4 + 59*$.1^3 + 22*$.1^2
+ 93*$.1 + 93, 14*$.1^7 + 52*$.1^6 + 48*$.1^5 + 18*$.1^4 + 53*$.1^3
+ 62*$.1^2 + 42*$.1 + 50, 75*$.1^7 + 95*$.1^6 + 57*$.1^5 + 100*$.1^4
+ 90*$.1^3 + 4*$.1^2 + 73*$.1 + 55, 95*$.1^7 + 5*$.1^6 + 29*$.1^5
+ 60*$.1^4 + 13*$.1^2 + 95*$.1 + 87},

The multipliers are given by:

l0:=3;

l1:=2;

l8:=4;

lB:=-5;

F<w>:= GF(101,8);
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R<a,B,z>:=PolynomialRing(F,3);

function f(x,y)

return((((l0 - 1)*l1 + (-l0 + 1))*x^3 + ((a*l0*l1 + (-l0 + (-a

+ 1)))*l8 + (((-a - 1)*l0 +1)*l1 + (2*l0 + (a - 2))))*x^2*y +

((-a*l0*l1 + a*l0)*l8 + (a*l0*l1 - a*l0))*x*y^2));

end function;

function g(x,y)

return((((l0 - 1)*l1 + (-l0 + 1))*l8*x^2*y + (((-l0 + (a + 1))*l1

+ (a*l0 - 2*a))*l8 + (-a*l1 + ((-a + 1)*l0 +(2*a - 1))))*x*y^2

+ ((-a*l1 + a)*l8 + (a*l1 - a))*y^3));

end function;

f2:=f(f(B,1),g(B,1));

g2:=g(f(B,1),g(B,1));

F2:=f2-B*g2;

redF2:=R!(F2/(f(B,1) - B * g(B,1)));

dF2:=g2*Derivative(f2,B) - f2*Derivative(g2,B) - z*g2*g2;

function mult(c);

return(Resultant(Evaluate(redF2,a,c),Evaluate(dF2,a,c),B));

end function;

result:

> Factorization(mult(4));

[ <z + 5, 2>, <z + 50, 2>, <z + 90, 2> ]

> Factorization(mult(96));

[ <z + 5, 2>, <z + 26, 2>, <z + 66, 2> ]

> Factorization(mult(18*w^7 + 50*w^6 + 68*w^5 + 24*w^4 + 59*w^3

+ 22*w^2 + 93*w + 93));

[ <z + 5, 2>, <z + 78*w^7 + 93*w^6 + 47*w^5 + 57*w^4 + 23*w^3

+ 80*w^2 + 73*w + 52, 2>, <z + 70*w^7 + 79*w^6 + 53*w^5 + 6*w^4

+ 42*w^3 + 86*w^2 + 96*w + 53, 2> ]

> Factorization(mult(14*w^7 + 52*w^6 + 48*w^5 + 18*w^4 + 53*w^3

+ 62*w^2 + 42*w + 50));

[ <z + 5, 2>, <z + 60*w^7 + 98*w^6 + 74*w^4 + 4*w^3 + 24*w^2 +

24*w + 21, 2>, <z + 27*w^7 + 14*w^6 + 59*w^5 + 73*w^4 + 55*w^3

+ 12*w^2 + 37*w + 11, 2> ]

> Factorization(mult(75*w^7 + 95*w^6 + 57*w^5 + 100*w^4 + 90*w^3

+ 4*w^2 + 73*w + 55));

[ <z + 5, 2>, <z + 100*w^7 + 39*w^6 + 25*w^5 + 12*w^4 + 20*w^3

+ 99*w^2 + 21*w + 73, 2>, <z + 84*w^7 + 84*w^6 + 91*w^5 + 31*w^4

+ 44*w^3 + 70*w^2 + 92*w + 13, 2> ]

> Factorization(mult(95*w^7 + 5*w^6 + 29*w^5 + 60*w^4 + 13*w^2

+ 95*w + 87));

[ <z + 5, 2>, <z + 89*w^7 + 42*w^6 + 58*w^5 + 91*w^4 + 11*w^3

+ 22*w^2 + 91*w + 80, 2>, <z + 98*w^7 + 56*w^6 + 71*w^5 + 60*w^4
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+ 3*w^3 + 11*w^2 + 71*w + 81, 2> ]

This computation shows the other multipliers of period two orbits are mutually
different for the six solutions of (23).

A.2 An algorithm for Subsection 7.2

In order to make up block-decomposed interpolation matrix, we used the fol-
lowing algorithm. The program file written by SAGE[The22] is attached, or at
[Got].

Algorithm 1 Degree-wise random-sampling interpolation method (probabilis-
tic)

Require:
Algorithms to compute g1, g2, . . . , gβ and H = h(g1, . . . , gβ),
the set of monomials M =

{
yd
∣∣d ∈ {d1, . . . ,dl}

}
such that h =

∑
cdy

d (cd ∈ Qβ)
A map σ : [n] → [m] such that gi(a1xσ(1), . . . , anxσ(n)) is a monomial with
coefficient for each gi and a ∈ Qn.

Ensure: [Probably] The polynomial h(y1, . . . , yβ)

Separate M by the degree of (g(xσ))
d
into M1, . . . ,Mp

lp := max#Mi

for j from 1 to lp + l′ do
Take a random vector aj ∈ Qn

Compute H(ajxσ)
Compute gi(aj)’s and g(aj)

d

end for
for k from 1 to p do

Let Hj,k be the coefficient of the term of degree g(xσ)
d of H(ajxσ) for d

in Mk

Solve the system of linear equations Hj,k =
∑

d∈Mk
cdg(aj)

d (j =
1, . . . , lp + l′) for cd’s.

end for
h(y) =

∑
d∈M cdy

d.

In our case, we only use addition and multiplication of the polynomials
degree less than H to compute H, so the numbers of terms appears in the
computation are O(p), thus it costs O(p2tH) to compute H(ajxσ) par once.
Therefore, the computational complexity of this algorithm is O(lpp

2tH + lcpp) =
O(N(ptH + lc−1

p )). In our case lp = 70 and the constants are sufficiently small.
Moreover, we set l′ = 5 in the computation.
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A.3 Data for Subsection 7.2

Explicit formula of δ2 and δ3 are

δ2 =
−1

231 · 3
(306d5i− 2072d4i2 − 20544d3i3 + 300800d2i4 − 1691136di5

+ 3483648i6 + 96192d3j2 − 1286400d2ij2 + 10146816di2j2 − 16920576i3j2

+ 1008d3ja+ 42432d2ija+ 1430784di2ja− 4451328i3ja+ 459d3a2

+ 14316d2ia2 − 6768di2a2 − 775104i3a2 − 1836d4b+ 6624d3ib

+ 173568d2i2b− 1850880di3b+ 4672512i4b− 23887872j4 − 10616832j3a

− 156672j2a2 + 244224ja3 + 26136a4 − 589824dj2b+ 9289728ij2b

− 672768djab+ 4202496ijab− 111744da2b+ 39168ia2b+ 28800d2b2

− 460800dib2 + 1382400i2b2 − 2208d3c+ 103296d2ic− 1027584di2c

+ 2598912i3c+ 9289728j2c+ 3280896jac− 76032a2c− 230400dbc+ 921600ibc),

δ3 =
1

231 · 33
(1458d5i+ 2904d4i2 − 43072d3i3 + 2453760d2i4 − 11570688di5

+ 40310784i6 − 358464d3j2 − 10056960d2ij2 + 69424128di2j2 − 259780608i3j2

− 1296d3ja− 730944d2ija+ 12379392di2ja− 58973184i3ja+ 2187d3a2

+ 100188d2ia2 − 730224di2a2 − 1881792i3a2 − 8748d4b− 95328d3ib

+ 2674944d2i2b− 20113920di3b+ 82861056i4b+ 107495424j4 + 17915904j3a

− 3856896j2a2 − 2521728ja3 + 143748a4 + 18413568dj2b− 161243136ij2b

+ 8280576djab− 21399552ijab− 693792da2b+ 5664384ia2b+ 475200d2b2

− 12787200dib2 + 43545600i2b2 + 7776d3c+ 1173888d2ic− 7921152di2c

+ 49268736i3c− 6912000b3 − 71663616j2c− 3981312jac+ 1672704a2c

− 5529600dbc+ 49766400ibc).

The relation among σi, ϕ, ψ has 1261 terms. The data is at [Got].
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Boston, MA, 1994.

[Gor15] Igors Gorbovickis, Algebraic independence of multipliers of peri-
odic orbits in the space of rational maps of the riemann sphere,
Moscow Mathematical Journal 15 (2015), no. 1, 73–87.

[Got] Rin Gotou, Program files of “dynamical systems of correspon-
dences on the projective line ii: Number of isospectral maps”,
https://github.com/Rin-Gotou/dyn corr p1 II multiplier map.

[Got22] , Bracket polynomial expression of discriminant-
resultants as SL2-invariant, 2022.

[Got23a] , Dynamical systems of correspondences on the projective
line i: Moduli spaces and multiplier maps, Conformal Geometry
and Dynamics of the American Mathematical Society 27 (2023),
no. 08, 294–321.

[Got23b] , Dynamical systems of correspondences on the projective
line II: Degrees of multiplier maps, 2023.

43
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