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Chapter 1

Introduction

1.1 Purpose of the Study

Since the experimental synthesis of graphene in 2004 [1], extensive research has

been conducted on various two-dimensional materials [2, 3]. One particularly

notable focus in recent years has been on composite two-dimensional materials

[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23], such as moiré su-

perlattices like twisted bilayer graphene (TBG). When two-dimensional materials

are stacked with a slight twist, it creates a solid-state system with a substantially

large periodic structure, recognized as a moiré pattern. The moiré periodicity,

which varies depending on the twist angle, gives rise to unique properties that

are never observed in individual atomic layers. For exapmle, a twisted bilayer

graphene (TBG) stacked with a so-called magic angle about 1 degree was shown

to exhibit superconductivity and correlated insulating phases [12, 13, 17, 16].

The exploration of moiré materials were also extended to various two-dimensional

materials, such as hexagonal boron-nitride (hBN) and transition metal dichalco-

genides.

Recent advancements in experiments have enabled the creation of three-

layered structures from various two-dimensional materials [24, 25, 26, 27, 28,

29, 30, 31]. In contrast to bilayer systems, a three-layer system is characterized
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CHAPTER 1. INTRODUCTION

by two twist angles, resulting in double moiré structure. The two moiré patterns

are typically not aligned, exhibiting a quasi-periodicity referred to as a moire-of-

moiré pattern. Describing the physical properties arising from the dual periodic

structures is a challenging problem, since the conventional band theories based on

the periodicity do not apply to these systems. Hence, a new approach is needed

to characterize the quasi-periodic properties of two-dimensional systems.

This study explores the energy spectrum and topological gap labeling in

quasi-periodic double moiré systems. As a representative example, we calculate

the electronic band structure of hBN/graphene/hBN trilayer system as a func-

tion of twist angles [32, 33]. We find that the energy spectrum exhibits a fractal

pattern with multiple mini-gaps that continuously change with the twist angle.

Moreover, each mini-gap is found to be characterized by a unique set of topolog-

ical integers, which are associated with multiple Brillouin zones arising from the

multiple periodicity. Finally we extend our analysis to general two-dimensional

quasi-periodic systems, and establish that the numbers characterizing energy gaps

can are regarded as topological invariant of four-dimensional quantum Hall e↵ect,

by a formal mapping to higher dimensional systems.

The thesis is organized as follows. In the rest of this chapter, we review the

previous works on moiré two-dimensional materials and quasi-crystalline systems

with double periodicity. Chapter 2 provides a theoretical basis to describe elec-

tronic structures of graphene, hBN, and a graphene/hBN single-moiré system.

In chapter 3, we introduce methodologies of calculation of hBN/graphene/hBN

trilayer system by commensurate approximant method. Then we show the typi-

cal band structures of the trilayer system, and the twist-angle dependence of the

electric spectrum. We identify characteristic integers for each band gap, which

corresponds to quasi-Brillouin zones. In chapter 4, we describe the topological

nature of the characteristic integers by considering adiabatic charge pumping and

four-dimensional quantum Hall e↵ect. The formulation shows the integers can be

expressed as second Chern numbers. Finally, we conclude this thesis in chapter 5.
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1.2. MOIRÉ STACKING OF TWO-DIMENSIONAL MATERIALS

1.2 Moiré stacking of two-dimensional materials

Since the successful isolation of graphene [1], extensive research has been con-

ducted on a variety of two-dimensional (2D) materials. Graphene is an atomic-

layer material where carbon atoms are arranged in a honeycomb lattice, exhibiting

high charge mobility arising from the Dirac-particle nature of electrons. Addition-

ally, various types of two-dimensional materials, such as hexagonal boron nitride

(hBN) [34] and transition metal dichalcogenides (TMDCs), were also intensively

investigated. These two-dimensional materials exhibit properties distinct from

their bulk (3D) counterparts, showcasing unique characteristics.

Figure 1.1: Twist angle dependence of the energy bands in twisted bilayer

graphene [9].

In recent years, there has been active investigation into moiré 2D materi-

als, which are created by stacking 2D materials in an incommensurate manner.

In these materials, a rotational misalignment and/or lattice mismatch between

stacked materials give rise to a moiré interference pattern, leading to various

physical phenomena depending on the twist angle between the layers. In the case

9



CHAPTER 1. INTRODUCTION

of twisted bilayer graphene [19, 4, 5, 6, 7, 18, 19, 21, 22, 23], for instance, it

was experimentally shown that the system with a specific stacking angle led to

a superconducting state [8, 9, 10, 11, 12, 14, 15, 16, 17]. This striking example

demonstrated that the moiré superlattice e↵ect not only modulates the original

physical properties, but also gives rise to novel emergent phenomena that were in-

accessible in monolayer graphene. Following this discovery, various moiré systems

comprised of diverse 2D materials have been extensively investigated to uncover

novel properties not present in the individual monolayers.

Figure 1.2: The moiré unit-cells and the band structures of twisted bilayer

graphene in di↵erent twist angles [23].

1.2.1 Twisted bilayer graphene

When two graphene layers are stacked on top of each other, the interlayer twist

angle ✓ assumes a pivotal role in determining the electronic structures. This con-

figuration of twisted bilayer graphene (TBG) inherently embodies a quasiperiodic

nature, arising from the mutual irrationality in lattice periods between the indi-

vidual graphene layers. Nevertheless, for relatively small values of ✓ (less than

approximately 10�), the low-energy physics is primarily governed by the long-

10



1.2. MOIRÉ STACKING OF TWO-DIMENSIONAL MATERIALS

Figure 1.3: TBG shows superconductivity in magic angle [12]

range moiré interference pattern, and the electronic properties can be e↵ectively

described through the moiré e↵ective theory [4, 5, 6, 22, 23]. In essence, this ef-

fective theory approximates TBG as a translationally symmetric system, with the

moiré period dominating its behavior. The observed phenomena in the low-angle

regime, encompassing the formation of flat bands [8, 9, 12, 13, 14, 15, 16, 17] and

the manifestation of the Hofstadter butterfly under the influence of a magnetic

field [10, 35, 36], can be well explained within the framework of the moiré e↵ective

theory.

Conversely, in TBG characterized by a large ✓, the moiré period is compa-

rable to the atomic length scale, yielding a quasiperiodic behavior. Particularly,

when ✓ = 30�, the superposed hexagonal lattices transform into a 12-fold rota-

tionally symmetric quasicrystalline lattice in absense of translational symmetry,

as initially elucidated by Stampfli [38]. Recently, TBG with an accurately con-

trolled rotation angle of 30� has been experimentally realized in epitaxially grown

samples on the SiC surface, and its electronic spectrum has been measured. Fur-

thermore, similar TBGs have been fabricated on the Ni surface using a transfer

method. Additionally, another stack of atomic layers rotated by 30� has been suc-
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CHAPTER 1. INTRODUCTION

Figure 1.4: 12-fold rotationally symmetric quasicrystalline lattice in 30� twist-

stacked graphene layers [37].

cessfully achieved by depositing graphene on top of the BN layer and the MoSe2

bilayer system. In the realm of such quasicrystalline TBG (QC-TBG), the afore-

mentioned moiré e↵ective theory proves inadequate, as its primary postulate that

the moiré pattern governs the system no longer holds valid. There have been sev-

eral theoretical attempts to describe the electronic structure of the 30� TBG by

unconventional approach beyond the Bloch framework [39, 40, 37, 41, 42].

1.2.2 Graphene/hBN heterostructures

Another representative example of the moiré superlattices is a compose system

formed by stacking graphene on top of hBN [34, 43, 44, 45, 46, 47, 48, 49, 50,

51, 34, 52, 17, 49, 48, 53, 54, 55, 56, 57, 58, 59]. Although sharing a common

structural arrangement, hBN di↵ers from graphene in a placement of distinct

boron and nitrogen atoms on A and B sublattices, leading to the introduction of

an insulating energy gap in its electronic structure. Even in a non-rotated stack-
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1.2. MOIRÉ STACKING OF TWO-DIMENSIONAL MATERIALS

ing, graphene/hBN system has an moiré pattern attributed to a 1.8% lattice

mismatch. The electronic structure of graphene-hBN bilayer is primarily dom-

inated by graphene’s low-energy spectrum, since the wide energy gap of hBN.

However, the superlattice potential significantly reshapes graphene’s Dirac cone,

resulting in the emergence of the primary gap in the charge neutral point as well

as mini-Dirac bands in the electron and hole sides [51]. The intricate mini-band

structure of the system can be described by an e↵ective continuum model, akin

to the method employed for TBG [43, 44, 45, 46, 47].

(a) (b)

Figure 1.5: (a) The atomically crystalline of a graphene layer and a hBN layer

by no-twisted stacking. (b) The energy band structure of graphene/hBN bilayer

system [47].

When a magnetic field weaves its influence into the multilayer fabric boasting

an incommensurate moiré pattern, the energy spectrum metamorphoses into a

self-similar fractal structure referred to as the Hofstadter butterfly [60]. The

complicated spectral structure arises from the interplay between Bragg’s reflection

within the periodic potential and the cyclotron motion induced by the magnetic

field. It is noteworthy that the fractal gap structure and the associated quantum

Hall e↵ect have been first observed within the graphene-hBN moiré structure

[50, 48].
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CHAPTER 1. INTRODUCTION

1.3 Moiré trilayer systems

In addition to basic moiré bilayer systems, attention has also directed towards

trilayer configurations [24, 25, 26, 27, 30, 31, 28, 29]. Twisted trilayer graphene

(TTG) [61, 62, 63, 64, 65, 66, 67], akin to its bilayer counterpart TBG, exhibits

the remarkable phenomenon of superconductivity at the magic angle, where an

intricate interplay of three Dirac cones adds an additional complexity in the phe-

nomena. Moreover, the exploration of trilayer systems extends to heterostruc-

tures comprising di↵erent 2D materials. In particular, trilayer assemblies hBN-

graphene-hBN layers exhibit a complicated minigap structures distinct from its

bilayer counterpart [24, 25, 26, 27, 28, 29, 68].

Central to these trilayer systems is the concept of dual moiré patterns. The

independent twist angles between upper and lower bilayers give rise to distinc-

tive moiré superlattices, giving rise to an inherent incommensurability, which is

rarely encountered in conventional crystal structures [25, 26]. This departure

from the familiar periodicity is a hallmark of quasi-periodic systems, reminis-

cent of the intricacies found in quasicrystals [69, 70, 71, 72, 73] and cold-atom

setups [74, 75, 76, 77]. However, the theoretical analysis of such quasi-periodic

structures presents an intriguing challenge [30, 31, 68, 78, 61, 65, 67]. The tra-

ditional band theories, built on the foundation of periodicity, struggle to provide

insight into the electronic properties of these systems. The lack of system-wide

periodicity results in the collapse of the Brillouin zone, rendering conventional

band predictions ine↵ective. In light of these complexities, the comprehending

the properties of quasi-periodic 2D material systems demands the evolution of

theoretical frameworks.

14



1.3. MOIRÉ TRILAYER SYSTEMS

(b) (c)

!!
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"#"
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hBN

Graphene

hBN

(a)

Figure 1.6: (a) Incommensurate moiré structure in trilayer system. (b) The

atomic model of hBN/graphene/hBN trilayer system. Top and bottom hBN

layers are stacked with twist angles ✓↵ and ✓
� from middle graphene layer. (c)

Top and bottom moiré patterns. The moiré superlattice vector is depending on

the twist angle, and the moiré angle � increases as the twist angle increases.
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CHAPTER 1. INTRODUCTION

1.4 1D Quasi-crystalline and Hofstadter’s but-

terfly

As mentioned above, trilayer moiré systems generally exhibit a quasi-periodic

dual-moiré structure with no overall periodicity [79, 80, 81, 82, 83, 84, 85, 86].

In one-dimension (1D), a similar issue of dual period has long been studied as a

fundamental problem, and and it holds significant implications when considering

the two-dimensional quasi-periodic moiré systems discussed in this thesis. In this

subsection, we will provide a brief overview of the 1D double-period problem

[87, 74, 88, 89, 90, 91, 71, 92, 93, 94, 95, 96].

Let us consider the simplest one-dimensional periodic system as shown in

Fig. 1.7, which is a 1D tight-binding lattice with lattice constant a, under a peri-

odic potential of period �. The periodic potential at site i is explicitly expressed

as Vi = V cos(2⇡↵i + �), where ↵ = �/a and � is a phase factor. When ↵, or

the ratio of the periodic potential to the lattice constant is irrational, the two

periodicities become incommensurate, and the overall system is quasi-periodic.

……

!

λ

Figure 1.7: An image of one-dimensional double periodicity problem with lattice

spaceing a and periodic potential with period �.

We define the reciprocal vectors corresponding to the individual periods as

G1 = 2⇡/a and G2 = 2⇡/�. In a single-period system, band gaps occur at

positions corresponding to integer multiples of the only reciprocal vectors G, i.e.,

16



1.4. 1D QUASI-CRYSTALLINE AND HOFSTADTER’S BUTTERFLY

the electron density below the gap is quantized as ne = mG/(2⇡) (m:integer)

as shown in 1.8(b) and (c). In a doubly-periodic system, similarly, energy gaps

occurs at the electron density of ne = (m1G1 + m2G2)/(2⇡), where m1,m2 are

integers. When this ratio ↵ = �/a is varied, the spectrum reveals a fractal-like

spectrum known as Hofstadter’s butterfly as shown in Fig. 1.9 [87]. There, each

single energy gap is labelled by integers m1 and m2.

En
er
gy

Wavenumber Wavenumber Wavenumber Wavenumber

(a) Free electron (b) Potential !! (c) Potential !" (d) Double Potential

!!!"
2!"

3!"
2!!

3!!
$"!" +$!!!

Figure 1.8: From left to right: (a) Free electrons, (b) Solely possessing a periodic

potential with a period of a1, (c) Similarly, with only a period of a2, and (d)

When both periods are simultaneously considered.

(a) (b)

Figure 1.9: (a) Hofstadter’s butterfly calculated by original problem [60]. (b) The

similar plot of (a) calculated by one-dimensional double periodicities problem [87].

Importantly, this doubly-periodic 1D system can be entirely correlated with

17



CHAPTER 1. INTRODUCTION

a two-dimensional lattice with a perpendicular magnetic field. Let us consider

a two-dimensional tight-binding square lattice with period a subjected to a per-

pendicular magnetic field B. Let � = Ba
2
/(h/e) be the number of magnetic flux

quanta penetrating a unit cell. It can be shown that the tight-binding Schrod̈inger

equation of the 2D system can be reduced to a 1D tight-binding equation with

a periodic potential �2ty cos(2⇡�i + ky). By substituting ↵ ! � and � ! �ky,

a complete correspondence can be established with the one-dimensional bilayer

periodic system. Therefore the energy spectrum of the 2D system also becomes

a Hofstadter butterfly of Fig. 1.9.

……

…

…

!

Figure 1.10: An image of the Hofstadter’s problem as a two-dimensional square

lattice in vertical magnetic field.

When the Fermi energy lies in an any of the fractal gaps, the Hall conductivity

is integer-quantized as �xy =
P

n Cn(�e
2
/h) where Cn is the first Chern number

(integer) for the n-th band, defined by [97, 98, 88, 84]

Cn =
1

2⇡

Z

BZ

d
2k

✓
@An,y

@kx
� @An,x

@ky

◆
, (1.1)

Here An(k) = ihn,k|@k|n,ki is the Berry connection and |n,ki is the eigenstate

of the n-th band at the Bloch wave number k. This quantity remains constant

during any continuous deformations that do not close the band gap. Interestingly,

there exists a mathematical proof establishing the equivalence between the integer

m2 in the earlier expression ne = (m1G1+m2G2)/(2⇡) and the first Chern number

Cn.
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1.4. 1D QUASI-CRYSTALLINE AND HOFSTADTER’S BUTTERFLY

In this manner, the one-dimensional double-periodic structure can be mapped

onto the problem of a two-dimensional lattice in a magnetic field, via the corre-

spondence between the first Chern number and the integer quantizing electron

density. In this thesis, we address the doubly-periodic problem in two-dimensions

by examining twisted trilayer systems featuring two independent moiré patterns.

We will show that the energy gaps are labeled a set of integers in a similar manner

to the Hofstadter butterfly. Furthermore, these individual integers can be written

as second Chern numbers, which quantizes the electro-magnetic response in the

four-dimensional system. This is parallel to a 1D system, where the gap-labeling

integer is written as a first Chern number, which corresponds to the 2D quantum

Hall e↵ect.
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Chapter 2

Theoretical Backgrounds

This chapter explains how to formulate e↵ective continuum models for the lattice-

mismatched bilayer system exemplified by twisted bilayer graphene (TBG) and

graphene-hexagonal boron nitride (G-hBN) bilayer. We begin by establishing the

tight-binding Hamiltonian for the monolayer graphene and then present a general

formula of the e↵ective continuum model for dual atomic lattices. Subsequently,

we apply this general form to specific examples, TBG and G-hBN bilayers.

2.1 Electronic Properties of Graphene Layer(s)

In this section, we derive the Hamiltonian of graphene based on the tight-binding

model [99] and present the characteristic band structure. Graphene includes four

valence electrons, with three of them forming covalent bonds within a honey-

comb lattice. The remaining electron arises from the 2pz orbital and behaves

as itinerant electron. This itinerant electron exhibits characteristics resembling

a massless Dirac fermion [2, 3], which consequently gives rise to the distinctive

electronic state of graphene.

This itinerant electron in the graphene is well-described by the tight-binding

model of pz orbital on a honeycomb lattice as illustrated in Fig. 2.1(a). The

21



CHAPTER 2. THEORETICAL BACKGROUNDS

(a) (b)

A

B

Figure 2.1: (a) The lattice structure of graphene and (b) the Brillouin zone of

graphene.

lattice vectors are defined as

a1 = a (1, 0) , a2 = a

 
1

2
,

p
3

2

!
, (2.1)

where a ⇡ 0.246 nm represents the lattice constant of graphene [see Fig. 2.1(a)].

The honeycomb lattice has two sublattices named A and B sites, indicated by

black and white dots in Fig. 2.1(a). In addition, three vectors define the relative

positions of nearest-neighbor atoms:

⌧1 = a

✓
0,

1p
3

◆
, ⌧2 = a

✓
�1

2
,

1

2
p
3

◆
, ⌧3 = a

✓
1

2
,

1

2
p
3

◆
. (2.2)

This enables us to express the positions RA and RB of the A and B sites as

follows:

RA = n1a1 + n2a2

RB = RA � ⌧1, (2.3)

where n1 and n2 are integers.

For the honeycomb lattice, the first Brilloiuin zone (BZ) is spanned by the

22



2.1. ELECTRONIC PROPERTIES OF GRAPHENE LAYER(S)

reciprocal lattice vectors defined as:

a⇤
1 =

2⇡

a

✓
1,

1p
3

◆
, a⇤

2 =
2⇡

a

✓
0,

2p
3

◆
. (2.4)

The corners of the BZ, K� and K+ indicated in Fig. 2.1(b) are expressed as:

K� =
2⇡

a

✓
�2

3
, 0

◆
, K+ =

2⇡

a

✓
2

3
, 0

◆
. (2.5)

Note that the relation between K± and the ⌧ vectors is given by:

3X

l=1

e
iK±·⌧l = 0,

3X

l=1

e
iK±·⌧l⌧l =

p
3

2
a(±i, 1). (2.6)

Using the basis of the atomic orbit located at position R as |Ri, we can

express the tight-binding wave function of the electron in graphene as:

| (r)i =
X

RA

cA(RA) |RAi+
X

RB

cB(RB) |RBi . (2.7)

The Schrödinger equation for the wave function Eq. (2.7) is described by

H

X

RX

cX(RX) |RXi = E

X

RX

cX(RX) |RXi , (2.8)

where X = A,B. The tight-binding Hamiltonian can be expressed as:

H =
X

R,R0

|Ri hR|H |R0i hR0| . (2.9)

In this case, the positions of the nearest-neighbor atoms are described by Eq. (2.2).

If we consider only nearest-neighbor hoppings as:

hRA|H |RBi = �t, (RA = RB + ⌧l; l = 1, 2, 3) (2.10)

where t represents the transfer integral, the Hamiltonian for graphene can be

expressed as:

H = �t

3X

l=1

X

RA=RB+⌧l

(|RAi hRB|+ |RBi hRA|). (2.11)
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CHAPTER 2. THEORETICAL BACKGROUNDS

The Hamiltonian given in Eq. (2.11) and Schrd̈inger eqauation (2.8) lead to the

following set of equations:

�t

3X

l=1

cB(RA � ⌧l) = EcA(RA)

�t

3X

l=1

cA(RB � ⌧l) = EcB(RB). (2.12)

Applying Bloch theorem, we rewrite the wave function as:

cA(RA) = e
ik·RAfA

cB(RB) = e
ik·RBfB. (2.13)

By substituting Eq (2.13) into Eq. (2.12), we obtain the eigenvalue equation in

the momentum space,

0

@ 0 h(k)

h(k)⇤ 0

1

A

0

@ fA

fB

1

A = E

0

@ fA

fB

1

A , (2.14)

where h(k) is given by

h(k) = �t

3X

l=1

e
�ik·⌧l . (2.15)

The eigenenergy E is obtained by diagonalizing Eq. (2.14) as

E±(k) = ±|h(k)|. (2.16)

Taking the origin of k at K± and expanding h(k+K±) up to liner in k, we have

h(K± + k) ⇡ �t

3X

l=1

e
�iK±·⌧l(1� ik · ⌧l) = ~v(±kx + iky), (2.17)

where we use Eq. (2.6) and define the velocity

v =

p
3

2

at

~ (2.18)

Therefore, the e↵ective Hamiltonian of graphene leads to

HG(k) = v(±�xkx + �yky). (2.19)
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2.2. INTERLAYER COUPLING BETWEEN LATTICE MISMATCHED
LAYERS

by using Pauli matrices �x and �y acting on the basis of A and B sites. Clearly

the eigen energy is approximated as

E±(K+ + k) = E±(K� + k) ⇡ ±~vk, (2.20)

Remarkably, this indicate that graphene exhibits a linear dispersion relation with

its crossing point located at K±, known as the Dirac cone and v corresponds to

its band velocity.

2.2 Interlayer coupling between lattice mismatched

layers

To formulate the e↵ective continuum model of lattice mismatched bilayers, which

is a main target of the present study, we introduce their interlayer coupling. We

define a pair of the lattice vectors a1 and a2 for layer 1, and another pair ã1

and ã2 for layer 2. The reciprocal lattice vectors Gi and G̃i are defined for

layers 1 and 2 by ai ·Gj,= ãi · G̃j = 2⇡�ij. The unit cell areas are denoted by

S = |a1 ⇥ a2| and S̃ = |ã1 ⇥ ã2|. Due to the generalized Umklapp process [100],

electron coupling occurs only under the condition:

k +G = k̃ + G̃, (2.21)

where G = m1G1 +m2G2 and G̃ = m̃1G̃1 + m̃2G̃2. This implies that the Bloch

state �(1)
k of layer 1 can be expressed as a summation of ei(k+G) over reciprocal

lattice vectors G, and the Bloch state �
(2)

k̃
of layer 2 can be expressed as a

summation of ei(k̃+G̃) over reciprocal lattice vectors G̃. The Hamiltonian of the

entire system can be constructed using the Fourier components of G and G̃.

Consequently, the matrix elements h�(2)

k̃
|H |�(1)

k i exist only under the conditions

specified in Eq. (2.21).

The positions of the atoms can be expressed as follows, where X = A,B and
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X̃ = Ã, B̃:

RX = n1a1 + n2a2 + ⌧X

RX̃ = ñ1ã1 + ñ2ã2 + ⌧X̃ . (2.22)

Here, ni and ñi are integers, and ⌧X and ⌧X̃ represent the positions of the sub-

lattices within the unit cells. When we set the interlayer distance to d, we can

express ⌧X · ez = 0 and ⌧X̃ · ez = d. We define the atomic state of sublattice X

at the RX as |RXi ⌘ �X(r�RX) and we assume the transfer integral from RX

to RX̃ as �TX̃X(RX̃ � RX). Consequently, the interlayer Hamiltonian can be

written as:

U = �
X

X,X̃

TX̃X(RX̃ �RX) |RX̃i hRX |+ h.c. (2.23)

In cases where the period of the moiré superlattice is significantly larger, and a

larger number of lattice points are included in the unit cell of the entire system,

the Hamiltonian in the real basis becomes excessively complex since every pair of

lattice points from layers 1 and 2 is required. On the other hand, the interlayer

interaction can be clearly expressed in momentum space. We define the Bloch

basis as follows:

|k, Xi = 1p
N

X

RX

e
ik·RX |RXi

|k̃, X̃i = 1p
Ñ

X

RX̃

e
ik̃·RX̃ |RX̃i . (2.24)

Here, k and k̃ are two-dimensional Bloch vectors, and N and Ñ are the numbers

of atoms in the area of the whole system Stot.

In general, when layers 1 and 2 are incommensurate, we assume the existence

of a finite area Stot = NS = Ñ S̃, and normalize the wavefunctions accordingly.

By substituting Eq. (2.24) into Eq. (2.23), we obtain the matrix elements of

interlayer interaction in the Bloch basis as follows:

UX̃X(k̃,k) ⌘ hk̃, X̃|U |k, Xi

= �
X

G,G̃

tX̃X(k +G)e�iG·⌧X+iG̃·⌧X̃�k+G,k̃+G̃ (2.25)
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These elements are non-zero only in Eq. (2.21). Here, we define the Fourier

transform of the transfer integral t(q) as:

tX̃X(q) =
1p
SS̃

Z
TX̃X(r + zX̃Xez)e

�iq·r
d
2
r. (2.26)

Here, zX̃Xez = (⌧X̃ � ⌧X) · ez, and the integral is taken over the entire plane on

which r can vary. The quantity tX̃X(q) rapidly diminishes for large q, so we need

not calculate the large summation in Eq. (2.25).

2.3 Twisted bilayer graphene

We consider twisted bilayer graphene (TBG), where one graphene layer is stacked

upon another graphene layer with a twisted angle ✓ and interlayer distance d. We

define the lattice vectors a1 and a2 in layer 1 as shown in Eq. (2.1), while the

lattice vectors of layer 2 can be expressed as ãi = Ra, where R is a rotation

matrix with an angle of ✓. The reciprocal lattice vectors G1 and G2 in layer 1

are defined as given in Eq. (2.4), while the reciprocal lattice vectors in layer 2 are

defined as G̃i = RGi. The atomic positions are described as follows:

RX = n1a1 + n2a2 + ⌧X

RX̃ = ñ1ã1 + ñ2ã2 + ⌧X̃ . (2.27)

Here, X = A,B corresponds to atoms in layer 1, while X̃ = Ã, B̃ refers to atoms

in layer 2. The specific expressions for the position vectors are as follows:

⌧A = 0

⌧B = (a1 � 2a2)/3

⌧Ã = dez + ⌧0

⌧B̃ = dez + ⌧0 + (a1 � 2a2)/3. (2.28)

In this context, we have defined the origin to be at the position of atom A, and

⌧0 represents the intralayer vector denoting the relative positional transformation

within layer 2.
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(a) (b)

Figure 2.2: (a) The lattice vectors in ✓ = 15° and (b) Brillouin zone in ✓ = 15°.

In order to describe the dynamics of electrons, we adopt a one-orbital tight-

binding model for the pz orbitals of the atoms. Consequently, the interlayer

transfer integral TXX̃(R) becomes independent of the labels X and X̃ and can

be approximated using the Slater-Koster parameters [101]. It can be expressed

as:

�T (R) = Vpp⇡

"
1�

✓
R · ez

R

◆2
#
+ Vpp�

✓
R · ez

R

◆2

Vpp⇡ = V
0
pp⇡e

�(R�a/
p
3)/r0 , Vpp� = V

0
pp�e

�(R�d)/r0 . (2.29)

Here, a ' 0.246[nm], d ' 0.335[nm], V 0
pp⇡ ' �2.7[eV], V 0

pp� ' 0.48[eV], andr0 '

0.184a represent the graphene’s parameters. These expressions determine the

amplitude of the coupling, denoted as t(K + G), which relies on the distance

from the origin in k-space. From the given parameters, we have the following

values: t(K) ' 100[meV], t(2K) ' 1.6[meV], t(
p
7K) ' 0.062[meV] , where K =

|K| = 4⇡/3a.

When the di↵erence between the lattice vectors of the layer 1 and layer 2

is small, i.e., when the rotation angle ✓ is small, the interference of these lattice

structures gives rise to long-period móıre structures. In this case, the rotation
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matrix R approaches the unitary matrix. The reciprocal lattice vector of the

moiré superlattice is given by

When the disparity between the lattice vectors of layer 1 and layer 2 is min-

imal, specifically when the rotation angle ✓ is small, the combination of these

lattice structures gives rise to intricate moiré patterns with long periodicity. In

such instances, the rotation matrix R approximates the identity matrix. The

reciprocal lattice vector of the moiré superlattice is defined as:

GM
i = Gi � G̃i = [1�R]Gi (2.30)

The matrix elements pertaining to the interlayer hopping for the long-range waves

can be expressed as follows:

UX̃X(k +m1G
M
1 +m2G

M
2 ,k)

= tX̃X(k +m1G1 +m2G2)e
�i(m1G1+m2G2)·⌧X+i(m1G̃1+m2G̃2)·⌧X̃ . (2.31)

Here, m1 and m2 represent integers. Since the low-energy spectrum of graphene

Figure 2.3: The moiré reciprocal lattice vectors in ✓ = 15°. GM
1 is constructed

by G1 � G̃1.

is dominated by the electronic states around the Brillouin Zone corner K and K
0
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points, we consider the matrix elements of the K vectors near these. K and K
0

points at each layer are at

K⇠ = �⇠(2G1 +G2)/3

K̃⇠ = �⇠(2G̃1 + G̃2)/3 (2.32)

where ⇠ = ±1 serve as the labels for K and K
0. Presently, the electron k = K+

located at (K+) in layer 1 interacts with the electron at K+ + m1G1 + m2G2

in the layer 2, with a magnitude of t(K+ + m1G1 + m2G2). Here, t(K) '

100[meV], t(2K) ' 1.6[meV], t(
p
7K) ' 0.062[meV] and other couplings from

K points is negligibly small. When the vector k deviates slightly from K+,

the matrix elements undergo alterations. However, for our purpose, we treat

k as being in proximity to K+, disregarding this dependence. Based on the

aforementioned considerations, we derive an interlayer Hamiltonian in the vicinity

of K+.

U =

0

@ UÃA UÃB

UB̃A UB̃B

1

A

=t(K)

2

4

0

@ 1 1

1 1

1

A+

0

@ 1 !
�⇠

!
⇠ 1

1

A e
i⇠GM

1 ·r +

0

@ 1 !
⇠

!
�⇠ 1

1

A e
i⇠(GM

1 +GM
2 )·r

3

5

+t(2K)

2

4

0

@ 1 1

1 1

1

A e
i⇠(2GM

1 +GM
2 )·r +

0

@ 1 !
�⇠

!
⇠ 1

1

A e
i⇠GM

2 ·r +

0

@ 1 !
⇠

!
�⇠ 1

1

A e
�i⇠GM

2 ·r

3

5

+ · · · (2.33)

Here, r donates the intralayer position, ! = e
2⇡i/3, ⌧0 = 0. The Hamiltonian of

entire system can be expressed in the basis {A,B, Ã, B̃} as follows:

U
(⇠)
e↵ =

0

@ H1 U
†

U H2

1

A . (2.34)

Where H1, H2 represent the intralayer Hamilotonian for layer 1 and layer 2, re-
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spectively:

H1 ' �~v(k �K⇠) · (⇠�x, �y)

H2 ' �~v
h
R

�1(k � K̃⇠)
i
· (⇠�x, �y). (2.35)

Here, we have employed the Pauli matrices �x,�y and the band velocity of

graphene, denoted by v.

2.4 Graphene/hBN heterostructure

Hexagonal boron nitride (hBN) exhibits a honeycomb lattice structure similar to

graphene, where nitrogen atoms occupy the A sites and boron atoms occupy the

B sites. The low energy electronic states of hBN is described by the tight binding

model of pz orbital of boron and nitrogen atoms, incorporating onsite potentials

[102]

VB = 3.34[eV], VN = �1.40[eV]. (2.36)

relative to those of graphene (where VG = 0). Importantly, the lattice constant

of hBN (ahBN ' 0.2504 [nm]) di↵ers from that of graphene (a ' 0.246 [nm]). For

our analysis, we assume perfect flatness for both graphene and hBN, a constant

interlayer distance dG�hBN ' 0.322[nm], and a twist angle ✓ between the two

layers.

The lattice vectors of graphene are defined according to Eq. (2.1), while those

of hBN are given by

ãi = MRai, (2.37)

where R represents a rotation matrix with an angle ✓, and M denotes isotropic

expansion expressed by the identity matrix I. The di↵erence in lattice constants,

1 + " = ahBN/a ' 1.018, is incorporated as M = (1 + ")I. Reciprocal lattice

vectors of graphene and hBN, denoted as Gi and G̃i respectively, are defined by

the condition ai · Gj = ãi · G̃j = 2⇡�ij. When the twist angle is small, moiré
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superlattice vectors can be defined as

GM
i = (I �M

�1
R)Gi (2.38)

and the moiré period can be obtained as

LM =
2⇡

|GM
i |

=
1 + "p

"2 + 2(1 + ")(1� cos ✓)
a (2.39)

which evaluates to LM ' 13.8[nm] at ✓ = 0°.

In the case of a su�ciently small twist angle ✓ that results in a moiré period

significantly longer than the atomic scale, the low-energy electronic state can be

described by e↵ective continuum model. The Hamiltonian for the entire system

is expressed as a 4⇥ 4 matrix:

HG�hBN =

0

@ HG U
†

U HhBN

1

A , (2.40)

where the basis consists of graphene’s A and B sites, as well as hBN’s Ã and B̃

sites {A,B, Ã, B̃}. Here, HhBN represents the Hamiltonian of the hBN monolayer.

By neglecting kinetic terms and considering only onsite potentials, we obtain an

approximate expression for the hBN Hamiltonian:

HhBN '

0

@ VB 0

0 VN

1

A . (2.41)

The interlayer coupling is obtained from the general form Eq. (2.25),

U = u0

2

4

0

@1 1

1 1

1

A+

0

@ 1 !
�⇠

!
⇠ 1

1

A e
i⇠GM

1 ·r +

0

@ 1 !
⇠

!
�⇠ 1

1

A e
i⇠(GM

1 +GM
2 )·r

3

5 (2.42)

where GM
i represents the moiré reciprocal lattice vectors of graphene/hBN and

u0 = t(K) ' 150[meV]. Since the hBN states are energetically far from the low

energy spectrum of graphene, these e↵ect is incorporated by the second-order

perturbation,

H
(red)
G�hBN = HG + U

†(�HhBN)
�1
U

⌘ HG + VhBN (2.43)
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Here, the term VhBN can be expressed as:

VhBN ⌘ U
†(�HhBN)

�1
U

= V0

0

@1 0

0 1

1

A+

(
V1e

i⇠ 

"0

@1 !
�⇠

1 !
�⇠

1

A e
i⇠GM

1 ·r

+

0

@ 1 !
⇠

!
⇠
!
�⇠

1

A e
i⇠GM

2 ·r +

0

@ 1 1

!
�⇠

!
�⇠

1

A e
i⇠GM

3 ·r

#
+ h.c.

)
, (2.44)

where

V0 = �3u2
0

✓
1

VN
+

1

VB

◆
, V1e

i = �u
2
0

✓
1

VN
+ !

1

VB

◆
,

GM
3 = �GM

1 �GM
2 . (2.45)
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Chapter 3

hBN/Graphene/hBN

In order to compute the trilayer system characterized by a double moiré struc-

ture, we employed a commensurate approximation. Typically, the periods of the

double moiré pattern are incommensurate; however, numerous nearly commensu-

rate points exist where the two moiré patterns closely approach each other. We

treated these points as the exact periods of the trilayer system, thereby yielding

the Hamiltonian in a finite-dimensional space.

Within this chapter, we elucidate the methodology for acquiring the commen-

surate approximants and corresponding Hamiltonians. Subsequently, we present

the outcomes of numerical computations, revealing a fractal energy gap behavior.

We then explore the principles governing these fractal energy gaps and deduce

six characteristic integers by leveraging six unit volumes, accounting for the pe-

riodicity redundancies. Lastly, we engage in a discourse pertaining to one of the

interpretations of these six integers, specifically related to quasi-Brillouin zones.

3.1 Commensurate approximation

We consider a trilayer system composed of hBN/graphene/hBN, where the top

hBN layer (indexed by � = ↵) has a twist angle of ✓↵, and the bottom hBN

layer (indexed by � = �) has a twist angle of ✓�. Graphene and hBN share
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a honeycomb structure with slightly di↵erent lattice constants: approximately

a ⇡ 0.246 nm for graphene and ahBN ⇡ 0.2504 nm for hBN [103]. In our notation,

A and B represent the sublattices of graphene, while ✓↵ and ✓
� represent the

nitrogen and boron sites of the �-th hBN layer, respectively. The geometry is

defined such that ✓� = 0 corresponds to the alignment of the AB bond and the

A
�
B
� bond, which are parallel to each other. The lattice vectors of graphene are

denoted as a1 = a(1, 0) and a2 = a(1/2,
p
3/2), while those of the �-th hBN layer

are given by [47, 100]

a�i = MR(✓�)ai (i = 1, 2), (3.1)

where R(✓�) represents a two-dimensional rotation matrix with an angle ✓�, and

M = (1 + ")1 corresponds to an isotropic expansion factor of 1 + " = ahBN/a ⇡

1.018. In the following discussion, we assume that the twist angles ✓↵ and ✓� are

su�ciently small (a few degrees or less) so that the moiré superperiod greatly

exceeds the atomic lattice constant a. The primitive lattice vectors of the moiré

superlattice for the �-th layer are defined as

L�
i = [1�R(✓�)�1

M
�1]�1ai (i = 1, 2). (3.2)

and the corresponding reciprocal lattice vectors are given by

G�
i = [1�M

�1
R(✓�)]a⇤

i (i = 1, 2), (3.3)

where a⇤
i represents the reciprocal lattice vectors for graphene, satisfying ai ·a⇤

j =

2⇡�ij. The moiré superlattice period is determined by

|L�
1 | = |L�

2 | =
1 + "p

"2 + 2(1 + ")(1� cos ✓�)
a (3.4)

where " is the expansion factor.

The moiré rotation angle, denoted as the relative angle between L�
i and ai,

is expressed as

�
� = arctan

✓
� sin ✓�

1 + "� cos ✓�

◆
. (3.5)

Fig. 3.1 presents the plots of (a) the moiré superlattice period L and (b) the moiré

rotation angle � as functions of the twist angle ✓. The super period L exhibits a
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Figure 3.1: (a) Moiré period L [Eq. (3.4)] and (b) the moiré rotation angle �

[Eq. (3.5)] as functions of the twist angle ✓

value of 13.8 nm at ✓ = 0�, decreasing with increasing ✓. The rotation angle � is

zero at ✓ = 0� and rapidly increases in the negative direction as ✓ increases. For

simplicity, the subscripts are redefined as follows:

(G1,G2,G3,G4) = (G↵
1 ,G

↵
2 ,G

�
1 ,G

�
2 ). (3.6)

In general, the two moiré superlattices are incommensurate, indicating the ab-

sence of a unit cell in the trilayer system as a whole. However, for any pair of

twist angles (✓↵, ✓�), there exist lattice points from the two moiré patterns that

happen to be in close proximity to each other. This situation can be expressed

as

p1L
↵
1 + p2L

↵
2 = p3L

�
1 + p4L

�
2 + �L, (3.7)

where pi (for i = 1, 2, 3, 4) are integers, and �L represents the di↵erence.

When �L is significantly smaller than the moiré periods, the electronic struc-

ture of the incommensurate system can be approximated by an exactly commen-
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surate system, neglecting �L. This approximation is achieved by making slight

deformations (rotations, expansions, or contractions) to the moiré patterns, caus-

ing �L to vanish.

Fig. 3.2(a) illustrates an actual example of commensurate approximant for

(✓↵, ✓�) = (0, 1.1908�), where (p1, p2, p3, p4) = (1, 1,�1, 2) and (q1, q2, q3, q4) =

(�1, 3,�3, 2). A commensurate approximant can be defined by selecting two

nearly commensurate points with integers (p1, p2, p3, p4) and (q1, q2, q3, q4). These

two points become the exact primitive lattice vectors of the commensurate ap-

proximant:

0

@ Lc
1

Lc
2

1

A =

0

@ p1 p2

q1 q2

1

A

0

@ L↵
1

L↵
2

1

A

=

0

@ p3 p4

q3 q4

1

A

0

@ L�
1

L�
2

1

A . (3.8)

Correspondingly, the reciprocal superlattice vectors Gc
1 and Gc

2 are given by:

0

@ Gc
1

Gc
2

1

A =

2

64

0

@ p1 p2

q1 q2

1

A
T
3

75

�10

@ G↵
1

G↵
2

1

A

=

2

64

0

@ p3 p4

q3 q4

1

A
T
3

75

�10

@ G�
1

G�
2

1

A , (3.9)

where T represents the transpose operation on the matrix. The relationship

between Lc
µ and Gc

µ is given by

Lc
1 =

Sc

2⇡
(Gc

2 ⇥ ez), Lc
2 = �Sc

2⇡
(Gc

1 ⇥ ez), (3.10)

where S
⇤
c = (Gc

1 ⇥ Gc
2)z = (2⇡)2/Sc represents the area of the first Brillouin

zone of the commensurate approximant, and (· · · )z denotes the z-component

perpendicular to the plane. Fig. 3.2(b) corresponds to the reciprocal lattice shown

in Fig. 3.2(a).
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Figure 3.2: (a) Super moiré unit cell and (b) the corresponding reciprocal lattice of

the commensurate approximant for (✓↵, ✓�) = (0, 1.1908�), where (n↵1 , n
↵
2 ) = (1, 1)

and (n�1 , n
�
2 ) = (�1, 3).

Subsequently, we examine two series of hBN/graphene/hBN trilayer systems:

I : (✓↵, ✓�) = (0, ✓); 0  ✓  2°

II : (✓↵, ✓�) = (✓,�✓); 0  ✓  2° (3.11)

For each series, we determine a range of (✓↵, ✓�) values that fulfill the condition

where �L is bellow 1% of |p1L↵
1 + p2L↵

2 | and p1, p2  nmax, with pmax = 12 and

17 for series I and II, respectively.

3.2 Hamilotonian

Since hBN possesses a wide energy bandgap precisely at the Dirac point of

graphene, the low-energy spectrum of the hBN/graphene/hBN system is pri-

marily governed by the presence of Dirac cones originating from graphene. By

straightforwardly extending the Hamiltonian of the bilayer graphene-hBN sys-

tem, we can deduce the Hamiltonian of the trilayer continuum [43, 44, 45, 46, 47,

48, 49, 50, 51]. This Hamiltonian can be expressed in a matrix form of dimensions
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6⇥ 6:

He↵ =

0

BBB@

HG U
↵†

U
�†

U
↵

HhBN 0

U
� 0 HhBN

1

CCCA
. (3.12)

This matrix operates on the basis of {A,B,A
↵
, B

↵
, A

�
, B

�}. The HG, a 2 ⇥ 2

matrix, represents the Hamiltonian of graphene and can be approximated as

follows:

HG ⇡ �~vk · �⇠. (3.13)

In this equation, ⇠ = ±1 corresponds to the valley index of graphene and relates

to the wave vector K⇠ = �⇠(2a⇤
1 + a⇤

2)/3. The relative wave number from the

K⇠ point is denoted by k, while �⇠ = (⇠�x, �y) represents the Pauli matrices

�x and �y. The HhBN in the second and third diagonal blocks symbolizes the

Hamiltonian of monolayer hBN. In this context, we adopt an approximation that

solely accounts for the on-site potential as: [43, 47]

HhBN ⇡

0

@VN 0

0 VB

1

A . (3.14)

The o↵ diagonal matrix U
� is the interlayer Hamiltonians of the twist angle

✓
�, which is given by [47]

U
� = t0

"0

@1 1

1 1

1

A+

0

@ 1 !
�⇠

!
⇠ 1

1

A e
i⇠G�

1 ·(r�r�
0 )

+

0

@ 1 !
⇠

!
�⇠ 1

1

A e
i⇠(G�

1+G�
2 )·(r�r�

0 )

#
, (3.15)

where t0 ⇡ 150meV is the interlayer coupling energy, and r�0 is the origin of the

moiré pattern of layer �, which can be changed by sliding the hBN layer relative

to graphene [84].

The low-energy e↵ective Hamiltonian for graphene can be derived by em-

ploying second-order perturbation theory to eliminate the hBN bases. It can be
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explicitly expressed as:

H
(e↵)
G = HG + V

↵
hBN + V

�
hBN, (3.16)

Here, the quantities V �
hBN are defined as follows:

V
�
hBN ⌘ U

�†(�HhBN)
�1
U
�

= V0

0

@1 0

0 1

1

A+

(
V1e

i⇠ 

"0

@1 !
�⇠

1 !
�⇠

1

A e
i⇠G�

1 ·(r�r�
0 )

+

0

@ 1 !
⇠

!
⇠
!
�⇠

1

A e
i⇠G�

2 ·(r�r�
0 ) +

0

@ 1 1

!
�⇠

!
�⇠

1

A e
i⇠G�

3 ·(r�r�
0 )

#
+ h.c.

)
, (3.17)

with

V0 = �3t20

✓
1

VN
+

1

VB

◆
, (3.18)

V1e
i = �t

2
0

✓
1

VN
+ !

1

VB

◆
. (3.19)

Additionally, we have G�
3 = �G�

1 � G�
2 , with the approximate values V0 ⇡

29meV, V1 ⇡ 21meV, and  ⇡ �0.29(rad) [47].

By utilizing the e↵ective Hamiltonian described in Eq. (3.12), we proceed

to compute the band structure of the approximate commensurate systems intro-

duced in the preceding section. The set of wavevectors that undergo hybridiza-

tion due to the commensurate double moiré pattern is expressed as qm1,m2 =

k +m1Gc
1 +m2Gc

2, where m1 and m2 denote integers, and k represents a resid-

ual wavevector confined within the first Brillouin zone of the super-moiré (com-

mensurate approximant) spanned by Gc
1 and Gc

2. To construct the Hamiltonian

matrix within the graphene bases, {|qm1,m2 , Ai, |qm1,m2 , Bi}, we impose a k-space

cut-o↵ such that |qm1,m2 | < qc, which corresponds to approximately 0.54 eV for

✓
� = 0�. Ultimately, the band diagram is acquired by plotting the eigenvalues of

the Hamiltonian matrix as a function of k.
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Figure 3.3: Band structure of (✓↵, ✓�) = (0°, 1.1908°). Panel (d) exhibits the

energy band of the complete double moiré potential, depicted along the symmet-

rical path of the super moiré Brillouin zone illustrated in (e), accompanied by

the corresponding density of states (DOS) on the right-hand side. To facilitate

comparison, we also present the energy bands of (a) intrinsic graphene without

any moiré potentials, (b) solely the top moiré potential, and (c) solely the bottom

moiré potential, all plotted along the same trajectory. The first-order gaps arising

from the top (bottom) moiré potential are represented by the color red (blue),

while the double-moiré gaps are indicated in green. The dashed blue curve in

panel (d) represents the position of the first-order gap associated with the bot-

tom moiré potential, which, in reality, remains unopened.

3.3 Results

3.3.1 Electronic spectrum

Illustrating a representative example, we present the band structure of the com-

mensurate approximant with (✓↵, ✓�) = (0, 1.1908�), as depicted in Fig. 3.2. For

convenience, we set the origins of the moiré potentials, r↵0 and bmr
�
0 , to zero.

Fig. 3.3(d) shows the energy band plotted along the symmetric line of the super

moiré Brillouin zone. For comparison, we also provide the band structures for (a)

intrinsic graphene without any moiré potential, (b) solely the top moiré potential
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(� = ↵), (c) solely the bottom moiré potential (� = �), all depicted along the

same path. In all panels, the energy origin (vertical axis) is set at the Dirac point

of graphene. In the case of single moiré systems illustrated in Fig. 3.3(b) and (c),

the most prominent gap in the valence band (red/blue regions) corresponds to

the first-order moiré gap, representing the electron density of one electron (per

valley and per spin) per moiré unit cell. Conversely, in the double moiré system,

we observe a sequence of higher-order gaps (green) arising from the coexistence

of di↵erent moiré periods.

In order to investigate the twist-angle dependence of the electronic spectrum,

we conduct band calculations for all the systems in series I and II, as defined in

Eq. (3.11). For commensurate systems, the band structure is influenced by the

relative translation of the moiré potentials, denoted as �r0 = r↵0 �r�0 . The mag-

nitude of this dependence is generally more pronounced in systems with smaller

LSM (super-moiré size), and it diminishes rapidly as LSM increases. To obtain

averaged results, we compute the density of states (DOS) by averaging over 25

grid points of �r0 for systems with LSM < 50 nm. For systems with larger LSM,

we simply set �r0 to zero, as the dependence on �r0 is negligible.

Fig. 3.4(a) illustrates the color map presenting the density of states (DOS)

computed for series I, characterized by the twist angles (✓↵, ✓�) = (0, ✓�). The

map shows the DOS variation with respect to ✓� and energy. Notably, brighter

colors indicate higher DOS values, while the dark blue color represents the ex-

istence of a gap. The upper part of the figure comprises an array of bars rep-

resenting the di↵erent ✓� values within series I. The specific case of (✓↵, ✓�) =

(0, 1.1908�), as examined in Fig. 3.3, is labeled as (ii).

Fig. 3.4(c) showcases the lower segment of (a), delineating the highlighted red

and blue curves that represent the first-order gaps of the single moiré potentials

� = ↵ and �, respectively. Additionally, notable higher-order gaps are demar-

cated by green curves. In Fig. 3.4(b), we observe the corresponding energy gap

map with the vertical axis converted to electron density. The size of the black
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Figure 3.4: (a) Color-coded representation of the density of states (DOS) for

series I [(✓↵, ✓�) = (0, ✓�)], plotted as a function of ✓� and energy. The upper

portion of the figure displays an array of bars corresponding to the listed values

of ✓�. (c) The lower portion of (a) highlights the first-order gaps of the single

moiré patterns � = ↵ and � with red and blue curves, respectively, while the

green curves mark higher-order gaps. (b) The accompanying map depicts the

energy gaps, where the vertical axis is converted to electron density and the size

of black dots represents the gap width.

44



3.3. RESULTS

En
er

gy
 [e

V]

0.0

0.2

0.4

-0.2

-0.4
0.0 0.5 1.0 1.5 2.0

Twist angle !!= − !"[°]

C
ar

rie
r d

en
si

ty
 [n

m
-2

]

0.00

-0.01

-0.02

0.0 0.5 1.0 1.5 2.0

Twist angle !!= − !"[°]

(b)

(c)

(a)
60 90 120300

-0.4

En
er

gy
 [e

V]

60 90 120300

-0.2

(3,-2,-4,2,-2,3)

(3,-4,-2,-2,-4,3)
(1,-1,-2,1,-1,1)

(-1,0,0,0,0,-1)
(6,-8,-4,-4,-8,6)

(1,-2,-1,-1,-2,1)

(-4,2,4,-2,2,-4)

(-4,4,2,2,4,-4)

(-1,0,1,-1,0,-1)

(6,-4,-8,4,-4,6)

0.0

DOS [nm-2eV-1]

0 0.2 0.40 0.1 0.2 0.3 0.4

(-1,1,1,0,1,-1)

(3,-2,-4,2,-2,3)

(-1,0,0,0,0,-1) (6,-8,-4,-4,-8,6) (2,-3,-1,-2,-3,2)

(1,-2,-1,-1,-2,1)

(-4,2,4,-2,2,-4)

(-1,0,1,-1,0,-1)

(6,-4,-8,4,-4,6)

(-1,1,1,0,1,-1)

2 meV
5 meV

10 meV

(2,-3,-1,-2,-3,2)

(3,-4,-2,-2,-4,3)

(-4,4,2,2,4,-4)

(1,-1,-2,1,-1,1)

Figure 3.5: Plots similar to Fig. 3.4 are shown for series II [(✓↵, ✓�) = (✓,�✓)].

The numbers at the top (0, 30, · · · , 120) indicate the relative angle between the

two moiré patterns, �� � �
↵.
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dots in this representation signifies the width of the respective gaps. These plots

demonstrate the continuous variation of the spectrum as a function of the twist

angle, irrespective of the fact that adjacent approximants in the series exhibit

distinct super moiré periods and, consequently, di↵erent numbers of minibands.

Fig. 3.4(c) shows the lower part of (a), wherein the red and blue curves

highlight the first-order gaps associated with the single moiré potentials � =

↵ and �, respectively. Additionally, typical higher-order gaps are denoted by

green curves. Fig. 3.4(b) corresponds to the map of energy gaps, where the

vertical axis is transformed into electron density. The size of the black dots

in this representation represents the width of the respective gaps. These plots

demonstrate the continuous variation of the spectrum as a function of the twist

angle, even in the presence of adjacent approximants with distinct super moiré

periods and, consequently, di↵erent numbers of minibands.

Fig. 3.5 exhibits similar plots for the series II, plotted against ✓↵ = �✓�.

The numbers at the top (0, 30, · · · , 120) indicate �� � �
↵, which corresponds

to the relative angle between the two moiré patterns. For ✓↵ ⇡ 0.5972° and

✓
↵ ⇡ 1.8377°, the relative angles of the two moiré patterns are 60� and 120�, re-

spectively, resulting in complete overlap of the two moiré periods. Consequently,

there is a relatively small number of subbands due to this double-period coinci-

dence. However, as we move away from these angles, we observe the emergence

of numerous tiny levels, reminiscent of Landau levels in a magnetic field.

The red dashed curve in Figs. 3.5(b) and (c) represents the positions of the

first-order gaps for the two moiré patterns, which precisely match due to the

condition |✓↵| = |✓�|. Interestingly, throughout the figure, the first-order gap

closes along the dashed line, leaving behind a small region with finite density of

states (DOS). The reason for the absence of the first-order gap will be elucidated

in the subsequent section.
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3.3.2 Topological invariants for band gaps

The microgap structure observed in Fig. 3.4 and 3.5 bears a resemblance to

the Hofstadter butterfly [60], which represents the energy spectrum of a two-

dimensional periodic lattice subjected to a magnetic field. In essence, the Hofs-

tadter system can be regarded as a one-dimensional Hamiltonian with a double

period [104, 105], where a fractal minigap structure emerges as the relative po-

sitions of the two periods are altered. Each minigap is characterized by a pair

of integers, denoted as p and q, whereby the electron density below the gap is

given by the expression ne = (pG↵ + qG
�)/(2⇡), with G

↵ and G
� representing

the wavenumbers associated with the two periods. In the context of the hBN/-

graphene/hBN system at hand, we encounter a two-dimensional analog of the

aforementioned scenario, wherein the double period is specified by (G↵
1 ,G

↵
2 ) and

(G�
1 ,G

�
2 ). Notably, as we shall demonstrate subsequently, all the observed gaps

depicted in Figures 3.4 and 3.5 can be distinctly characterized by six topological

integers that are associated with specific regions in the k-space.

Let us consider a general situation where the two moire patterns are incom-

mensurate. In this context, we can establish four distinct unit areas by combining

the four independent reciprocal lattice vectors, denoted as {G1,G2,G3,G4} =

{G↵
1 ,G

↵
2 ,G

�
1 ,G

�
2}. These unit areas, depicted in Fig. 3.6, can be defined as

follows:

S
⇤
ij = (Gi ⇥Gj)z, Sij = (2⇡)2/S⇤

ij, (3.20)

Here the notation (· · · )z indicates the z-component that is perpendicular to the

plane. It should be noted that this component may assume negative values de-

pending on the relative angles between the two vectors. Specifically, S⇤
12 and S

⇤
34

represent the Brillouin-zone areas of the individual moiré patterns for � = ↵ and

� respectively, while the remaining terms correspond to cross terms that combine

the reciprocal vectors of the di↵erent moiré patterns.

The areas Sij’s can be regarded as the projection of faces of four-dimensional
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Figure 3.6: Independent unit area elements {S⇤
12, S

⇤
13, S

⇤
14, S

⇤
23, S

⇤
24, S

⇤
34} obtained

by cross product of the reciprocal lattice vectors {G1,G2,G3,G4} in hBN/-

graphene/hBN double-moiré system [Eq. (3.20)].

hypercube onto the physical 2D plane, which is analogous to the general argument

of the quasicrystal [106].

In a conventional periodic 2D system with primitive reciprocal lattice vectors

G1 and G2, the electronic spectrum is separated into Bloch subbands, each of

which accomodates the electron density |G1⇥G2|/(2⇡)2. In a doubly-periodic 2D

system, in contrast, the areas S
⇤
ij all serve as units of the spectrum separation.

More specifically, we find that the electron density (per spin and valley) from

the Dirac point to any gap in the hBN/graphene/hBN system can be uniquely

expressed with six integers ⌫12, ⌫13, ⌫14, ⌫23, ⌫24, ⌫34 as

ne =
1

(2⇡)2

X

hi,ji

⌫ijS
⇤
ij =

X

hi,ji

⌫ij

Sij
. (3.21)

These integers ⌫ij are topological invariants i.e., they never changes as long as

the gap survives in a continuous change of the moire pattern.

Fig. 3.4(c) shows the values of ⌫ij determined for significant gaps in case I.
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Fig. 3.4(b) represents the same plot, but with the electron density ne as the verti-

cal axis, where the black dots indicate spectral gaps with their sizes representing

the gap width. In the case of commensurate systems, the integers ⌫12, ·, ⌫34 can

be determined from the commensurate approximants as follows.

When the S
⇤
ij’s have a greatest common divisor Sc = (Gc

1 ⇥Gc
2)z, they can

be expressed as S
⇤
ij = sijS

⇤
c using integers sij. The electron density ne is also

quantized in units of S
⇤
c/(2⇡)

2, and each band gap is characterized by an in-

teger r = ne/[S⇤
c/(2⇡)

2], which is the number of occupied subbands counted

from the Dirac point. Thus Eq. (3.21) becomes the Diophantine equation r =
P

hi,ji ⌫ij(piqj � pjqi). For each gap in Fig. 3.4(c), we have the Diophantine equa-

tions as many as the number of the data points (i.e., the di↵erent systems), and

the (⌫12, ⌫13, ⌫14, ⌫23, ⌫24, ⌫34) is obtained as a unique solution of the set of equa-

tions. Here note that the area
P

hi,ji ⌫ijS
⇤
ij is a continuous function of the twist

angle, while S
⇤
c (and thus r, sij) can only be defined for commensurate systems

and it discontinuously changes in changing the twist angle. This result indicates

that the same (⌫12, . . . , ⌫34) are shared by infinitely many commensurate approx-

imants (with S
⇤
c ranging from 0 to infinity) which exist in a close vicinity of a

specific (✓↵, ✓�), and hence it is valid in the limit of S⇤
c ! 1, i.e., incommensurate

systems.

Figures 3.5 (b) and (c) are similar plots for the case II. Here the condition

|✓↵| = |✓�| enforces S⇤
12 = S

⇤
34, and then ⌫12 and ⌫34 becomes indeterminate. To re-

solve these two integers, we can consider an infinitesimal rotation of either the top

or bottom hBN layer. Interestingly, it emerges that ⌫12 = ⌫34 for all gaps in case

II. This fact can be explicitly demonstrated as follows: Let us start with a case II

system (✓↵, ✓�) = (✓,�✓), and then consider two distinct systems: X : (✓↵, ✓�) =

(✓+ �✓,�✓) and X
0 : (✓↵, ✓�) = (✓,�✓� �✓). Remarkably, X and X

0 are identical

when the entire system is rotated by 180� with respect to an in-plane axis. Con-

sequently, they exhibit exactly the same energy spectrum. However, the same

energy gap is labeled by di↵erent sets of integers, denoted as ⌫ij and ⌫ij 0 for X
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Figure 3.7: Band structure of a one-dimensional Hamiltonian H = �@2/@x2 +

2V0 cosGx with V0 = 0, 5, 10. The black solid lines represent the band dispersion

"nk in the extended zone scheme, and the size of blue points indicates the spectral

weight projected onto the plain wave, denoted as A(q, ").

and X
0 respectively, such that

P
hi,ji ⌫ijS

⇤
ij =

P
hi,ji ⌫ij

0
S
⇤
ij
0. By interchanging the

layers � = ↵, � during the 180� rotation process, the unit areas of X and X
0 be-

come related as (S⇤
12, S

⇤
13, S

⇤
14, S

⇤
23, S

⇤
24, S

⇤
34) = (S⇤

34
0
, S

⇤
13

0
, S

⇤
14

0
, S

⇤
23

0
, S

⇤
24

0
, S

⇤
12

0). Con-

sequently, the condition (⌫12, ⌫13, ⌫14, ⌫23, ⌫24, ⌫34) = (⌫340, ⌫130, ⌫140, ⌫230, ⌫240, ⌫120)

arises. In the limit of �✓ ! 0 and the gap persists, we obtain ⌫ij = ⌫ij
0, leading us

to the conclusion that ⌫12 = ⌫34. The constraint ⌫12 = ⌫34 provides an explana-

tion as to why the first-order gaps of individual moiré potentials, (±1, 0, 0, 0, 0, 0)

and (0, 0, 0, 0, 0,±1) cannot open in Fig. 3.5(b).

The interdependence among the six unit areas S⇤
12, · · · , S⇤

34 can be disrupted

through the uniform distortion of either the top or bottom hBN layer, resulting in

the breaking of its 180� symmetry. If we expand the parameter space to include

these distorted systems, we would require six topological integers (⌫12, · · · , ⌫34) to

characterize the minigaps, where the electron density is expressed as
P

hi,ji ⌫ijS
⇤
ij.

This scenario is analogous to the situation observed in series II, where ⌫12 and

⌫34 can be di↵erentiated by violating the condition S
⇤
12 = S

⇤
34.
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Figure 3.8: (a) The quasi-Brillouin zones are shown for (✓↵, ✓�) = (0°, 1.1908°),

with di↵erent colored thick lines corresponding to the four indicated gaps in (c).

The thin lines represent the Bragg planes associated with di↵erent reciprocal

lattice vectors. For instance, the red lines denote the perpendicular bisector of

G↵
1 and its 60n� rotation. (b) The quasi-Brillouin zone is illustrated for the gap

(2, 2, 0, 2, 2, 1), where x and x
0 represent a pair of boundary segments connected

by the moiré potential. (c) The band structure along the path from X to Y , as

shown in (a) is calculated for (0°, 1.1908°) with the moiré potentials reduced by a

factor ⌘ (0  ⌘  1). The solid black lines represent the band dispersion plotted

in the extended zone scheme, and the blue dots represent the spectral weight

A(q, "). The bottom panels depict the same plot without the band lines.
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3.4 Quasi-Brillouin Zone

Actually, the area
P

hi,ji ⌫ijS
⇤
ij can be attributed to a specific region within the

momentum space, commonly referred to as the quasi-Brillouin zone. In a conven-

tional periodic two-dimensional system defined by G1 and G2, the Brillouin zones

(indexed by n = 1, 2, 3 · · · ) are delineated by a series of distinct regions enclosed

by the Bragg planes, which are the perpendicular bisectors of the reciprocalvec-

tors n1G1 + n2G2 [107]. Notably, each Brillouin zone possesses an identical area

of |G1 ⇥G2|. Consequently, the carrier density beneath any gap is quantized to

an integer multiple of this area.

In a doubly-periodic two-dimensional system, analogously, we can establish

the concept of a quasi-Brillouin zone as an enclosed region delineated by the Bragg

planes associated with composite reciprocal vectors pG↵
1 + qG↵

2 + rG�
1 + sG�

2 .

This notion of quasi-Brillouin zones has been employed in the study of conven-

tional three-dimensional quasicrystals, such as Al-Mn alloys, to elucidate the

presence of pseudogaps and system stability [70]. In the case of incommensu-

rate systems, where the reciprocal space is filled by an infinite number of Bragg

planes, the systematic definition of quasi-Brillouin zones, as observed in periodic

systems, becomes elusive. Nevertheless, we propose that each individual gap in

the spectrum can be associated with a distinct geometric shape, whose area cor-

responds to
P

hi,ji ⌫ijS
⇤
ij. These shapes may include simple hexagons defined by

single reciprocal vectors, as explored in previous studies [26, 30, 31]. However,

more generally, they can manifest as non-convex polygons comprising multiple

segments derived from di↵erent Bragg planes, as depicted in Fig. 3.8(a).

The configuration of the quasi-Brillouin zone associated with a particular

gap can be precisely determined by considering the projection of plane waves

onto the zero potential limit. To illustrate this scheme, let us consider a simple

one-dimensional Hamiltonian with a single periodic potential of the form H =

�@2/@x2 + 2V0 cosGx, where G = 2⇡. The eigenenergies and eigenfunctions are
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denoted as "nk and | nki, respectively, where n represents the band index and k is

the Bloch wavenumber confined to the first Brillouin zone (�⇡  k  ⇡). Fig. 3.7

displays the calculated band structures for di↵erent potential amplitudes V0 =

0, 5, 10. The solid black lines depict the band dispersion "nk plotted within the

extended zone scheme, while the size of the superimposed blue dots corresponds

to the spectral weight projected onto the plane wave. This projection is given by

the expression

A(q, ") =
X

n,k

|hq| nki|2�("� "nk), (3.22)

where |qi = e
iqx represents the plane wave with�1 < q < 1, and the summation

over k extends across over the first Brillouin zone. The pink regions indicate

the positions of the first and second energy gaps. As the potential amplitude V0

decreases, the gaps become narrower, and the spectral weight gradually converges

to a simple parabolic form " = q
2. In the limit of V0 ! 0, we can pinpoint the

specific points on the parabola where the energy gaps emerge within infinitesimal

V0 (indicated by red circles). Remarkably, these points precisely delineate the

boundaries of the Brillouin zone.

The same approach is applicable to the double-period system. In our hBN/-

graphene/hBN system, we define the spectral weight as follows:

A(q, ") =
X

↵

X

X

|hq, X| ↵i|2�("� "↵), (3.23)

where "↵ and | ↵i denote the eigenenergy and eigenstates of the system, respec-

tively. Additionally |q, Xi represents the plain wave basis associated with the

sublattice X = A,B of the monolayer graphene. For instance, we consider the

commensurate approximant corresponding to (✓↵, ✓�) = (0°, 1.1908°), as depicted

in Figs. 3.2 and 3.3. We compute the eigenstates of the Hamiltonian given by

Eq. (3.12) by varying the moiré potentials (V ↵
hBN, V

�
hBN) with a reduction factor

⌘ (0  ⌘  1). In Fig. 3.8(c), the band structures are illustrated for di↵erent val-

ues of ⌘ ranging from 0 to 1 along a path from X (the graphene’s Dirac point) to

a specific point Y shown in Fig. 3.8(a). The solid black lines represent the band
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CHAPTER 3. HBN/GRAPHENE/HBN

dispersion plotted in the extended zone scheme, while the blue dots represent

the spectral weight A(q, "). At ⌘ = 0, the system exhibits the graphene’s Dirac

cone. By tracking the gap openings in the spectral weight as ⌘ decreases from 1

to 0, we can accurately identify the points where gaps emerge, analogous to the

one-dimensional case.

In Fig. 3.8(c), we examine four gaps characterized by distinct indices (⌫12, ..., ⌫34).

The (�1, 0, 0, 0, 0, 0) is the first-order gap of the moiré potential � = ↵, and others

are double-moire gaps caused by the coexistence of the two moiré patterns. As

we approach the limit ⌘ ! 0, we identify the wave numbers P1, · · · , P4 at which

these gaps open. By repeating this process for paths in various directions, we ul-

timately obtain the quasi Brillouin zone on the (kx, ky) plane, represented by the

trajectories of P1, · · · , P4. These trajectories are depicted as thick colored lines in

Fig. 3.8(a). The figures comprising the quasi Brillouin zone consist of segments

of the Bragg planes, illustrated as thin lines. The first-order gap (�1, 0, 0, 0, 0, 0)

yields a regular hexagon, which corresponds to the first Brillouin zone of the moiré

potential with � = ↵. The double-moire gap (�1,�1, 0,�1,�1,�1) also results

in a hexagonal shape, albeit smaller in size, representing the first Brillouin zone

associated with a small reciprocal lattice vectors G2↵ + G1�. In contrast, the

gaps (2, 2, 0, 2, 2, 1) and (�4,�2, 0,�2,�2,�2) manifest as intricate, flower-like

structures composed of multiple segments of Bragg lines. In all cases, the area

of these figures is precisely equivalent to
P

hi,ji ⌫ijS
⇤
ij. Analogous to the conven-

tional Brillouin zone in periodic systems, the quasi Brillouin zone is also a closed

object, wherein each side of the boundary seamlessly connects to the other side.

Consequently, crossing the boundary will never lead one outside of the region.

The quasi Brillouin zone undergoes continuous transformations as the twist

angle varies, irrespective of the unit cell size of the commensurate approximants.

Fig. 3.9 illustrates this behavior for a slightly di↵erent angle (✓↵, ✓�) = (0, 1.2967�)

[(iii) in Fig. 3.4]. In this case, the super moiré unit area of the system is approx-

imately ten times larger than that of Fig. 3.8(c), resulting in a higher density
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of band lines due to the band folding into the smaller Brillouin zone. However,

when observing the spectral weight (blue dots), we observe a similar structure to

Fig. 3.8(c), with the exception that the gap (�1,�1, 0,�1,�1,�1) is not fully

open. Nonetheless, in the limit of ⌘ ! 0, the gaps close at the Bragg planes with

the same indices. Consequently, we obtain a quasi Brillouin zone shape that is

nearly identical to that shown in Fig. 3.10(iii). In Fig. 3.9, numerous additional

band lines overlap but contribute minimally to the spectral weight. As a result,

they are disregarded in the determination of the zone boundary. This approach

di↵ers from one that sorts all eigenvalues in energy and tracks the same level

index in the limit of zero potential [69], which is influenced by all overlapping

band lines.

In Fig. 3.10, we present the continuous evolution of the quasi Brillouin zones

as a function of the twist angle from (i) to (v) (corresponding to the labels

in Fig. 3.4). The figures exhibit continuous changes regardless of the abrupt

variations in the precise period of the approximants. The areas of these figures

consistently equal
P

hi,ji ⌫ijS
⇤
ij.
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Figure 3.9: Plot resembling Fig. 3.8(c) computed for (✓↵, ✓�) = (0°, 1.2967°).
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Figure 3.10: Quasi Brillouin zones akin to Fig. 3.8(a) calculated for five distinct

angles. The indices (i) to (v) correspond to the labels in Fig. 3.4.
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Chapter 4

Twisted quasicrystal

In the preceding chapter, we elucidated the fractal energy bands within the hB-

N/graphene/hBN doubly periodic system, wherein we discerned characteristic

integers nestled within the band gaps. Within this chapter, we expound upon

the physical significance of these integers as the Chern number, utilizing a gener-

alized plane wave model. We employed a dual-plane wave potential with a twist,

and we present the results of numerical computations that mirror the fractal

band gaps akin to those in the prior chapter. Within these fractal band gaps, one

encounters characteristic integers that correspond to the dimensions of the quasi-

Brillouin zone. Subsequently, we demonstrate how these integers can be derived

through the contemplation of adiabatic charge pumping. Finally, we articulate

the formulation of the four-dimensional quantum Hall e↵ect, thereby establishing

an unequivocal equivalence between these characteristic integers and the second

Chern number.
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CHAPTER 4. TWISTED QUASICRYSTAL

4.1 Zone quantum numbers

4.1.1 General formulation

We consider a doubly-periodic 2D Hamiltonian given by

H =
p2

2m
+ V

↵(r) + V
�(r). (4.1)

Here, V �(r) (� = ↵, �) represents a periodic potential defined as

V
�(r) =

X

m1,m2

V
�
m1,m2

e
i(m1b�1+m2b�2 )·r, (4.2)

where b�1 , b
�
2 are the reciprocal lattice vectors, previously denoted as G�

1 ,G
�
2 . The

real-space lattice vectors are denoted as a�1 ,a
�
2 , satisfying a�µ ·b�⌫ = 2⇡�µ⌫ , serving

a similar role to L�
1 ,L

�
2 . For simplicity, we fix the labels of the four reciprocal

lattice vectors as

(b1,b2,b3,b4) = (b↵1 ,b
↵
2 ,b

�
1 ,b

�
2 ). (4.3)

We propose that in the presence of an energy gap in the spectrum, the electron

density below the gap is quantized as

ne =
1

(2⇡)2

X

hi,ji

⌫ijS
⇤
ij =

X

hi,ji

⌫ij

Sij
. (4.4)

Here, ⌫ij (with i, j = 1, 2, 3, 4) are zone quantum numbers that characterize the

gap, and hi, ji represents a pair of distinct indices. S⇤
ij and Sij are defined as

S
⇤
ij = (bi ⇥ bj)z, Sij = (2⇡)2/S⇤

ij, (4.5)

where (· · · )z denotes the z-component perpendicular to the plane. S⇤
ij represents

the momentum space area spanned by two distinct reciprocal lattice vectors cho-

sen from b1, b2, b3, b4, while Sij corresponds to its real-space counterpart. We

have six independent areas S⇤
12, S

⇤
13, S

⇤
14, S

⇤
23, S

⇤
24, S

⇤
34 as illustrated in Fig. 4.1(a),

and we have S
⇤
ji = �S

⇤
ij and S

⇤
ii = 0 from the definition. Accordingly, we have
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4.1. ZONE QUANTUM NUMBERS

six zone quantum numbers ⌫12, ⌫13, ⌫14, ⌫23, ⌫24, ⌫34, and we define ⌫ji = �⌫ij and

⌫ii = 0 for consistency. The areas S⇤
ij can be considered as the projection of faces

of four-dimensional hypercube onto the physical 2D plane.

The Sij represents the area of the parallelogram formed by the wave surfaces

of eibi·r and e
ibj ·r, as shown in Fig. 4.1(b). For later convenience, we define the

lattice vectors

aij
1 =

Sij

2⇡
(bj ⇥ ez), a

ij
2 = �Sij

2⇡
(bi ⇥ ez), (4.6)

where ez donates the unit vector perpendicular to the 2D plane. The vector

set (aij
1 ,a

ij
2 ) serves as the primitive lattice vectors corresponding to (bij1 , b

ij
2 ) ⌘

(bi, bj) in momentum space. It spans the unit cell Sij = (aij
1 ⇥aij

2 )z as illustrated

in Fig. 4.1(b). The lattice vectors of the potential ↵ and � are given by a↵µ = a12
µ

and a�µ = a34
µ , respectively.

4.1.2 Example: Twisted triangular potentials

In the previous chapter [32], we confirmed the validity of Eq. (3.21) in a double-

moiré system consisting of graphene enclosed between hexagonal boron nitride

layers. While considering the intrinsic 120° rotational symmetry, we discovered

that it is unnecessary to consider a complete set of six independent integers.

However, by introducing a slight deformation to break the symmetry, we can

obtain six integers. In the subsequent sections, we will provide a comprehensive

analysis of the six distinct integers within the framework of the double-period

system described by Eq. (4.1) and involving a twisted double triangular potential.

The twisted double triangular potential is defined as follows:

V
�(r) = 2V0

3X

µ=1

cos[b�µ · (r � r�0 )]. (4.7)
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Figure 4.1: (a) Unit areas in momentum space, denoted by S
⇤
ij = (bi ⇥ bj)z. (b)

Unit areas in real space, represented by Sij, along with the corresponding lattice

vectors aij
1 and aij

2 . The grid lines in red (blue) depict the wave surfaces of eib1·r

and e
ib2·r (eib3·r and e

ib4·r).
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Here, r�0 represents the origin of the potential for configuration �. The reciprocal

vectors for � = ↵ are given by:

b↵1 =
2⇡

a

0

@ 1

�1/
p
3

1

A , b↵2 =
2⇡

a

0

@ 0

2/
p
3

1

A ,

b↵3 = �b↵1 � b↵2 . (4.8)

For � = �, these vectors are defined as follows:

b�µ = R(✓) b↵µ. (4.9)

Here, R(✓) represents a 2D rotation matrix with an angle ✓. The corresponding

primitive lattice vectors are given by:

a↵1 = a

0

@1

0

1

A , a↵2 = a

0

@ 1/2
p
3/2

1

A ,

a�µ = R(✓) a↵µ. (4.10)

Fig. 4.2 illustrates the potential profile for (a) a single potential, (b) a double

potential with ✓ = 7� and (c) ✓ = 30�. Throughout the following discussion, we

will consider the potential amplitude, which remains identical in both ↵ and �,

as V0 = 0.213"0, where "0 = ~2/(2ma
2).

In general, the potentials denoted as ↵ and � lack a shared period, resulting in

the absence of global translational symmetry within the system. In this analysis,

we determine the energy spectrum using commensurate approximants. These

approximants are derived by introducing slight deformations to the periodicity

of either ↵ or �, thereby creating a finite super unit cell with an area denoted as

Sc. A series of commensurate approximants is prepared to mimic the continuous

rotation of the twist angle between the two potentials. Subsequently, the energy

bands and the density of states (DOS) are calculated for all systems. For each

approximant, the DOS is averaged over the relative translation �r0 = r↵0 � r�0

to yield a continuous spectrum as a function of the twist angle.
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Fig. 4.3(a) illustrates the density map of the density of states (DOS) as a

function of ✓ and energy. In this representation, a brighter color corresponds to

a larger DOS, while the dark blue region indicates the presence of a gap. This

density map is similar to the plots shown in Fig. 3.4 and Fig. 3.5. The upper

section of the figure displays an array of bars that represent the commensurate

approximants considered in the calculation. On the other hand, Fig. 4.3(b) is a

corresponding plot in which the vertical axis is converted to the electron density.

In this plot, dots are used to indicate energy gaps, and the size of the dots reflects

the width of the corresponding gap.

The zone quantum numbers ⌫ij corresponding to each energy gap can be

determined through the following procedure. In a commensurate approximant,

the momentum space areas S
⇤
ij share a greatest common divisor S

⇤
c = (2⇡)2/Sc

and can be expressed as S
⇤
ij = sijS

⇤
c where sij are integers. Additionally, the

electron density below a given band gap is quantized as ne = [Sc
/(2⇡)2]r, where

the integer r represents the number of occupied Bloch subbands. Consequently,

Eq. (3.21) transforms into a Diophantine equation r =
P

hi,ji ⌫ijsij. By consider-

ing more than six commensurate approximants that share the same energy gap,

we obtain a system of Diophantine equations, with the number of equations equal

to the number of approximants. Through this process, we ultimately determine

the integers ⌫ij as a unique solution. It is important to note that the original

double triangular potential, as described by Eq. (4.7), imposes constraints on

the S
⇤
ij values, such as S

⇤
12 = S

⇤
34 and S

⇤
13 = S

⇤
24, due to its high spatial sym-

metry. These constraints hinder the complete identification of ⌫ij. However, by

including systems with slightly broken symmetry within the set of commensurate

approximants, this issue is resolved.

At the bottom of Fig. 4.3, we present the zone quantum numbers (⌫12, ⌫13,

⌫14, ⌫23, ⌫24, ⌫34) that have been identified for several significant gaps labeled in

Fig. 4.3(a) and (b). In the low twist angle regime, the series Mn represents the
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moiré gaps, which can be expressed as follows:

Mn = n(1, 0,�1, 1, 0, 1). (4.11)

In this region, the system is governed by a long-range moiré pattern, as observed

in Fig. 4.2(b). The discrete levels separated by Mn can be interpreted as the

Bloch subbands of the moiré superlattice. The reciprocal lattice vectors for the

moiré period are given by:

GM
1 = b1 � b3, GM

2 = b2 � b4. (4.12)

The area of the moiré Brillouin zone is determined by:

S
⇤
M = (GM

1 ⇥GM
2 )z = S

⇤
12 � S

⇤
14 + S

⇤
23 + S

⇤
34, (4.13)

which corresponds to the values (1, 0,�1, 1, 0, 1). Eq. (4.11) reveals that the

momentum space area is quantized by S
⇤
M. In the large angle region (✓ � 1�),

the system deviates from the long-wavelength picture, and a single periodicity

is no longer su�cient to e↵ectively describe it. At ✓ = 30�, in particular, the

system exhibits quasicrystalline behavior with 12-fold rotational symmetry [38,

39, 40, 37, 41, 42], as depicted in Fig. 4.2(c). It is observed that the zone quantum

numbers consistently follow the form:

Qm,n = (m,n, 2n,�n, n,m). (4.14)

he corresponding electronic density, as given by Eq. (3.21), is expressed as ne =

(
p
3m + 3n)/a2, indicating the existence of two distinct units,

p
3/a2 and 3/a2,

to quantify the electronic spectrum.

The constraint imposed on the zone quantum numbers, as given by Eq. (4.14),

can be elucidated through the following explanation. By defining b0i (i = 1, 2, 3, 4)

as the 30� rotation of bi, we establish the relation (b01, b
0
2, b

0
3, b

0
4) = (b3, b4, b1 +

b2,�b1). Consequently, the associated areas S
⇤
ij
0 = (b0i ⇥ b0j)z can be expressed

in terms of the original areas, such as S
⇤
12

0 = S
⇤
34, S

⇤
13

0 = �S
⇤
13 � S

⇤
23, among
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Figure 4.2: Contour plots illustrating: (a) a solitary triangular potential, (b) the

configuration of twisted double triangular potentials at ✓ = 7�, and (c) the case

of ✓ = 30�. [Refer to Eq. (4.7).]

others. When the system exhibits invariance under the 30� rotation, we expect

the equation
P

hi,ji ⌫ijS
⇤
ij =

P
hi,ji ⌫ijS

⇤
ij
0 to hold, with identical values of ⌫ij.

By utilizing the relationship between S
⇤
ij
0 and S

⇤
ij, we derive constraints for ⌫ij,

ultimately leading to the emergence of Eq. (4.14). In Fig. 4.3, the other gaps are

designated as A,B,C, . . . . We observe that the zone quantum numbers for these

gaps consistently follow the form of (m,n, r, n � r, n,m). This behavior can be

explained by the coexistence of the 120� rotational symmetry, which necessitates

the form (m,n, r, n�r, n,m
0), and the reflection symmetry with respect to the in-

plane axis between b1 and b3, which requires (m,n, r, n�r, n
0
,m). The constraints

imposed on the zone quantum numbers are verified through a similar reasoning

as in the case of the 12-fold symmetry.

4.1.3 Quasi Brillouin zones

The quantity
P

hi,ji ⌫ijS
⇤
ij corresponds to an area in momentum space known as

the quasi Brillouin zone (qBZ). The boundary of the qBZ for a specific gap is

defined as a collection of k-points on the original free-electron band where the

gap begins to open in the limit of an infinitesimal potential [32]. Generally, the

qBZ is a polygon composed of multiple segments corresponding to Bragg planes,
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Figure 4.3: (a) A density map illustrating the Density of States (DOS) as a

function of ✓ and energy in twisted double triangular potentials. The right panel

highlights and labels the major gaps. The upper section of the figures represents

the array of bars representing the commensurate approximants employed in the

calculation. (b) The corresponding plot with the vertical axis transformed to

represent the electron density, where the size of the dots indicates the width of

the respective gaps. The table at the bottom presents the zone quantum numbers

(⌫12, ⌫13, ⌫14, ⌫23, ⌫24, ⌫34) for the highlighted gaps.
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which are the perpendicular bisectors of the composite reciprocal lattice vectors

G = m1b1+m2b2+m3b3+m4b4. Let us consider the twisted triangular potential

considered in the previous section. The qBZ for the moiré gap Mn is found to

be the n-th Brillouin zone defined by the moiré reciprocal vectors GM
1 and GM

2

[Eq. (4.12)]. However, for general twist angles, the qBZ does not align with any

Brillouin zone of a periodic system. In the leftmost panels of Fig. 4.4(a) and (b),

we present the qBZs of the gaps Q�1, 1 and Q�3, 2, respectively, at ✓ = 30�. The

areas of these qBZs can be easily computed using the decomposition illustrated

in the right two panels. For example, the area of the qBZ for the gap Q�1,1

[Fig. 4.4(a)] is expressed as the sum of three squares, g1, g2, g3, and two hexagons,

h1, h2, given by S
(
Q�1,1) = (g1 + g2 + g3)� (h1 + h2). We have g1 = (b3 ⇥ b2)z =

�S
⇤
23, g2 = S

⇤
14 + S

⇤
24, g3 = S

⇤
13 + S

⇤
14, h1 = S

⇤
12, and h2 = S

⇤
34. Consequently, we

obtain S
⇤(Q�1,1) = �S

⇤
12 + S

⇤
13 + 2S⇤

14 � S
⇤
23 + S

⇤
24 � S

⇤
34, which agrees with the

zone quantum numbers (�1, 1, 2,�1, 1,�1) obtained in the previous section.

Similarly, the area of the quasi Brillouin zone (qBZ) for the gap Q�3,2 can

be expressed as S
⇤(Q�3,2) = p1 + p2 + p3 � 2q1 � q2, as depicted in Fig. 4.4(b).

Here, p1 corresponds to the Wigner-Seitz cell in the reciprocal lattice spanned

by b1 and b3, thus p1 = S
⇤
13. The quantities q1 (hexagon) and q2 (six triangles)

represent the first and second Brillouin zones defined by the primitive vectors

b1 � b3 and b2 � b4. Consequently, we have q1 = q2 = [(b1 � b3)⇥ (b2 � b4)]z =

S
⇤
12+S

⇤
34�S

⇤
14+S

⇤
23. Hence, the area S

⇤(Q�3, 2) yields the zone quantum numbers

(�3, 2, 4,�2, 2,�3).

At a twist angle of 30�, symmetry constraints such as g1 = g2 = g3 are

satisfied, and one might perceive that the decomposition of the qBZ area into S⇤
ij’s

is not unique. However, the area quantization with the same ⌫ij remains strictly

valid when the potential is perturbed to break the symmetry. This guarantees

the uniqueness of the decomposition.

Fig. 17 showcases the qBZs of (a) Q�1,1 and (b) Q�3,2 in the twisted tri-

angular potential with ✓ = 30�. The right two panels in each row illustrate the
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Figure 4.4: the qBZs of (a) Q�1,1 and (b) Q�3,2 in the twisted triangular potential

with ✓ = 30�. The right two panels in each row illustrate the decomposition of

the qBZ into the primitive Brillouin zones.

decomposition of the qBZ into the primitive Brillouin zones.

At 30�, we have the symmetry constraints such as g1 = g2 = g3 and one might

think the decomposition of the qBZ area into S
⇤
ij’s is not unique. However, the

area quantization with the same ⌫ij strictly holds when the potential is deformed

to break the symmetry, and this guarantees a uniqueness of the decomposition.

By using the serial notation Eq. (3.6), Eq. (3.9) can simply be written as

bi = pib
c
1 + qib

c
2. (4.15)

Accordingly, the unit areas Eq. (4.5) become

S
⇤
ij = (piqj � pjqi)S

⇤
c , (4.16)

where S
⇤
c = (bc1 ⇥ bc2)z = (2⇡)2/Sc is the area of the first Brillouin zone of the
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Γ " # $ Γ Γ " # $ Γ Γ " # $ Γ Γ " # $ Γ Γ " # $ Γ Γ " # $ Γ

Figure 4.5: Band structures of commensurate approximants (a) to (f) (speci-

fied in Table 4.1) for the twisted double triangular potential in the vicinity of

approximately 30 degrees. The path followed in the Brillouin zone is denoted

as (�, A, C,B,�) ⌘ (0, bc1/2, (b
c
1 + bc2)/2, b

c
2/2, 0). Within the gaps, the integers

indicate the number of bands located below each respective gap, denoted as r.

(a) (b) (c) (d) (e) (f)

✓ 29.4093 29.5046 29.6566 29.8417 29.9576 30.0579

p1 3 3 25 11 11 11

p2 8 8 9 4 30 30

p3 8 8 34 15 30 30

p4 3 3 �9 �4 11 11

q1 �8 �9 �27 �4 �30 �11

q2 11 34 37 15 41 15

q3 �3 9 �10 4 �11 �4

q4 11 25 37 11 41 15

r[Q�9,6] 270 483 3252 504 3762 1377

r[Q�1,1] 142 254 1710 265 1978 724

r[Q�3,2] 90 161 1084 168 1254 459

r[Q�10,6] 76 136 916 142 1060 388

r[Q14,�8] 28 50 336 52 388 142

r[Q�12,7] 24 43 290 45 336 123

Table 4.1: Twist angle ✓ and the indeces (p1, p2, p3, p4; q1, q2, q3, q4) of the com-

mensurate approximants (a) to (f). The r[Qm,n] is the number of the occupied

bands below the gap Qm,n.
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commensurate approximant. Eq. (3.21) becomes the Diophantine equation,

r =
X

hi,ji

⌫ij(piqj � pjqi), (4.17)

where r ⌘ ne/[S⇤
c/(2⇡)

2] is for the number of the bands below the gap.

In determination of the zone quantum numbers ⌫ij, we consider a series of

commensurate approximants near the target system, and solve a set of Diophan-

tine equations Eq. (4.17) for all the approximants. As an example, we show in

Fig. 4.5 the band structures of six commensurate approximants (a) to (f) for

the double triangular potential near ✓ = 30� [see, Fig. 4.3], which are specified

by (p1, p2, p3, p4; q1, q2, q3, q4) in Table 4.1. The Brillouin zone path is taken as

(�, A, C,B,�) ⌘ (0, bc1/2, (b
c
1 + bc2)/2, b

c
2/2, 0). Table 4.1 also shows the number

of the occupied bands r for some major gaps Qm,n. The six systems have very

close potential profiles and similar spectral structures, while it have completely

di↵erent sizes of the commensurate unit cells and thus di↵erent numbers of bands

below the same gap. For the largest gap Q�1,1, for instance, the number of the

bands are r = 142, 254, 1710, 265, 1978, 724 for the six systems, and accordingly

we have six independent equations of Eq. (4.17) with six unknown variables ⌫ij.

By solving the set of the equations, we find ⌫ij = (�1, 1, 2,�1, 1,�1) as a unique

solution. All other approximants sharing the same gap have the same solution of

⌫ij.

4.2 Adiabatic charge pumping

In this section, we demonstrate that the zone quantum numbers, as introduced

in the preceding section, serve as descriptors for the adiabatic charge pumping

occurring during the relative sliding of the doubly periodic potential.
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4.2.1 1D systems

Initially, we examine a one-dimensional doubly periodic Hamiltonian given by

H =
p
2

2m
+ V1(x) + V2(x), (4.18)

where Vi(x) =
P

m Vi,m, e
imbix (with i = 1, 2) represents a periodic potential

characterized by a period of ai = 2⇡/bi.

where Vi(x) =
P

m Vi,m e
imbix(i = 1, 2) is a periodic potential with the period

of ai = 2⇡/bi. Now, let us contemplate a cyclic process wherein one of the periodic

potentials, denoted as Vi(x), undergoes an adiabatic translation over the span of

its period ai, while the other remains fixed. This translated potential is elegantly

expressed as follows:

Vi

⇣
x� �i

2⇡
ai

⌘
=
X

m

Vi,m e
im(bix��i), (4.19)

In this context, an incremental increase in �i from 0 to 2⇡ corresponds to a

unitary translation of Vi(x) spanning a distance of ai.

We establish �Pi as the variation in electric polarization ensuing from a uni-

tary translation. In one spatial dimension (1D), �Pi assumes the dimension of

electronic density, defined as the quantity of electrons per unit length, multiplied

by length, rendering it dimensionless. It is imperative to observe that our defini-

tion of polarization excludes the contribution of the electric charge, represented

by �e. In this context, we posit the following proposition: In instances where

the Fermi energy resides within a band gap, the alteration in polarization per

cycle, denoted as �Pi, and the electron density situated beneath the energy gap,

denoted as ne, exhibit the following relationship:

�Pi = 2⇡
@ne

@bi
. (4.20)

Eq. (4.20) can be established through the following contemplation. Let us

engage in an adiabatic process wherein the wavenumber bi undergoes a slight

modification to bi+ �bi. As elucidated in Fig. 4.6, the corresponding alteration of
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Vi(x) at a point situated at a considerable distance from the origin (|x| � ai) can

be conceived as a parallel translation of the unchanging potential Vi(x). Taking

into account the phase factor bix � �i in Eq. (4.19), the transition from bi to

bi + �bi can be encompassed by an adjustment of �i denoted as ��i = ��bi, x.

This adjustment engenders a phase shift in the e↵ective translation at point x.

Since this procedure corresponds to n = ��i/(2⇡) cycles of a unitary translation,

the quantity of electrons traversing through the point x is expressed as n�Pi =

��Pi�bi, x/(2⇡). In light of the uninterrupted flow of electric charge, this must be

in harmony with the shift in the number of electrons within the region spanning

from 0 to x. This begets the equation ��Pi�bi, x/(2⇡) = �x�ne, culminating in

the derivation of Eq. (4.20).

In the doubly-periodic system, as defined by Eq. (4.18), each spectral gap

exhibits distinctive characteristics denoted by a pair of integers, m1 and m2.

These integers determine the electron density beneath the gap, as expressed in

the following equation:

ne =
1

2⇡
(m1b1 +m2b2) =

m1

a1
+

m2

a2
, (4.21)

Utilizing Eq. (4.20), we deduce �Pi = mi, signifying that mi electrons traverse

any given cross-section of the system. It is noteworthy that these integers, m1

and m2, correspond precisely to the first Chern numbers [97, 98, 88, 84].

4.2.2 2D systems

The same rationale applies to a doubly-periodic two-dimensional Hamiltonian,

as delineated in Eq. (4.1). We deliberate upon an adiabatic translation of the

periodic potential V � (� = ↵ or �), as specified in Eq. (4.2), by a�µ. Our objective

is to quantify the alteration in electric polarization throughout this procedure.
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sin bx

sin (b+bb)x

0 x

Figure 4.6: Schamatic picture of an adiabatic process slightly changing the

wavenumber of a 1D periodic potential. At a point far from the origin (|x| �

2⇡/b), the change can be viewed as a parallel translation of the potential.

The parallel translation of V �(r) is articulated as follows:

V
�
⇣
r � �

�
1

2⇡
a�1 �

�
�
2

2⇡
a�2

⌘

=
X

m1,m2

V
�
m1,m2

e
im1(b�1 ·r���1 )+im2(b�2 ·r���2 ) (4.22)

where we used a�µ · b�⌫ = 2⇡�µ⌫ . An increase of ��µ from 0 to 2⇡ gives a unit

translation of the potential V � by a�µ.

The situation can be systematically described by a generalized Hamitonian

H = p2
/(2m) + V with

V (r;�1, . . . ,�N) =
X

m1,...,mN

Vm1,···mN e
i
PN

i=1 mi(bi·r��i). (4.23)

The current double-period system corresponds to N = 4, where b1, . . . , b4 are

given by Eq. (3.6), and

(�1,�2,�3,�4) = (�↵1 ,�
↵
2 ,�

�
1 ,�

�
2 ). (4.24)

We contemplate a cyclic procedure in which the parameter �i corresponding to

a specific index i undergoes an adiabatic augmentation from 0 to 2⇡. When the

Fermi energy resides within a band gap, we can demonstrate that the alteration

72



4.2. ADIABATIC CHARGE PUMPING

in electric polarization throughout this process is encapsulated by the equation:

�Pi = 2⇡
@ne

@bi
, (4.25)

This equation represents the two-dimensional analogue of Eq. (4.20). Now, it is

pertinent to note that �Pi assumes the dimension of electronic density (defined

as the number of electrons per unit area) multiplied by length.

Eq. (4.25) is derived as follows. Let us contemplate the modification of the

potential V (r) when bi is transformed into bi + �bi. In a manner akin to the

one-dimensional scenario, the alteration at a point distanced significantly from

the origin (|r| � 2⇡/|bi|) is analogous to a parallel translation, denoted as ��i =

��bi · r. It is crucial to recognize the presence of the phase factor bi · r � �i

in Eq. (4.23). This induces a change in polarization at the point r given by

�Pi��i/(2⇡) = �Pi(��bi · r)/(2⇡). The quantity of electrons traversing a line

segment from r to r + dr is expressed as:

dNe = [(dr ⇥ ez) · �Pi](�bi · r)/(2⇡). (4.26)

Now, we contemplate a substantial closed trajectory denoted as C situated

within the two-dimensional plane. Let Ne represent the count of electrons en-

compassed by C. Upon altering bi to bi + �bi, we assess the modification in Ne

by conducting an integration of Eq. (4.26) along the trajectory. This yields:

�Ne =

I

C

dNe =
1

2⇡

I

C

[(dr ⇥ ez) · �Pi](�bi · r)

=
S

2⇡
�Pi · �bi (4.27)

Wherein, S represents the expanse delineated by the confines of C, and we employ

the correlation
H
C(dr ⇥ ez)µr⌫ = S�µ⌫ in the two-dimensional realm.

As a consequence, given that ne = Ne/S, we ultimately arrive at Eq. (4.25).

In a two-dimensional doubly-periodic configuration, the electron density be-

neath an energy gap undergoes quantization, a principle rigorously established in

the preceding section. Employing Equation (4.25) in conjunction with Equation
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(3.21), we can explicitly compute the charge pumping, denoted as �Pi. This

calculation yields:

�Pi =
1

2⇡

X

hk,ji

⌫kj

@S
⇤
kj

@bi

=
1

2⇡

X

j

⌫ij(bj ⇥ ez), (4.28)

It is noteworthy that we have employed the relationship S
⇤
ij = (bi ⇥ bj) · ez =

(bj ⇥ ez) · bi in this derivation.

By making use of the real space lattice vectors as expressed in Eq. (4.6), we

can reformulate Eq. (4.28) as follows:

�Pi =
X

j

⌫ij

Sij
aij
1 . (4.29)

The physical interpretation of Equation (4.29) unfolds as follows: Equation (3.21)

conveys that within each unit area Sij, ⌫ij electrons find their abode. When,

for example, �1 undergoes a transition from 0 to 2⇡ (i.e., the movement of

V
↵ by a↵1 ), the wavefront associated with b1 shifts by a single period. This

translates to displacements in the unit areas S12, S13, S14 by a12
1 ,a13

1 ,a14
1 corre-

spondingly [Refer to Fig. 4.1 (b)]. For each j = 2, 3, 4, the electron density of

⌫1j/S1j relocates by a1j
1 , culminating in a modification in polarization described

by �P1 =
P

j=2,3,4(⌫1j/S1j)a
1j
1 .

4.3 4D quantum Hall e↵ect and the second Chern

numbers

In the subsequent discussion, we elucidate the concept of adiabatic pumping,

previously expounded upon in an alternative fashion, employing the dimensional

reduction technique associated with the four-dimensional (4D) quantum Hall ef-

fect (QHE) [79, 108, 75, 109, 110, 111, 112]. We shall establish that the zone

quantum number ⌫ij precisely corresponds to the second Chern number.
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Figure 4.7: (a) Right: Three-dimensional stack of 2D free-electron systems under

in-plane magnetic field. Note that the vector B is given by B = (Byz, Bxz) =

(Bx,�By), which is not the natural expression of the magnetic field (Bx, By).

Left: the corresponding 2D system after the dimensional reduction (see the text).

The wavevector b of the sinusoidal wave is proportional to B in the left panel. (b)

Six-dimensional stack of 2D free-electron systems under in-plane magnetic field

(right) and the corresponding 2D system with four sinusoidal potentials (left).
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To illustrate this concept, we begin with the three-dimensional Quantum

Hall E↵ect (QHE) as a straightforward example. Imagine an unbounded stack

of two-dimensional free-electron systems, as depicted in Fig. 4.7(a). These sys-

tems are continuous in the x and y dimensions while discrete in the z direc-

tion, featuring a lattice spacing of az. In the context of the z dimension, we

assume nearest-neighbor tight-binding interactions denoted as tz between adja-

cent layers. We subject this system to a magnetic field characterized by Bµ⌫ =

@µA⌫�@⌫Aµ. Specifically, we consider a uniform, in-plane magnetic field denoted

as (Byz, Bzx, 0). The vector potential A is expressed as A = (0, 0, Az), where

Az = Bxzx + Byzy (it’s important to note that Bxz = �Bzx). The dynamics of

an electron are governed by the Schrödinger equation:

p2

2m
 (x, y, z)� tz

h
e
i e~Azaz (x, y, z + az)

+ e
�i e~Azaz (x, y, z � az)

i
= E (x, y, z), (4.30)

Wherein, we have p = �i~(@x, @y), representing the in-plane momentum. As the

Hamiltonian exhibits periodicity in the z dimension, we can factorize the wave-

function as  (x, y, z) =  (x, y)eikzz. Consequently, Equation (4.30) simplifies

into a two-dimensional Schrödinger equation:

p2

2m
 � 2tz cos(b · x+ �z) = E , (4.31)

Here, b = (eaz/~)(Bxz, Byz), x = (x, y), and �z = kzaz. The system now operates

in two dimensions, featuring a solitary sinusoidal potential with wave number b.

Notably, the phase factor �z corresponds to the wavenumber in the z direction.

Expanding into higher dimensions presents a straightforward progression. We

delve into the realm of a six-dimensional (6D) system, spanning (x, y, z1, z2, z3, z4)

space. This configuration maintains continuity along the x and y axes while em-

bracing discreteness along the zi, (i = 1, 2, 3, 4) dimensions. Within this intricate

framework, we introduce a uniform magnetic field, with Byi encompassing the

yzi-plane and Bix (= �Bxi) permeating the zix-plane. To describe this, we for-

mulate the vector potential A =
P4

i=1(Bxix+Byiy)ei, where ei signifies the unit
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vector aligned with the zi direction. Fig. 4.7(b) provides a schematic representa-

tion of this system. Given the Hamiltonian’s periodicity with respect to each zi,

we express the wavefunction as  (x, y, z1, z2, z3, z4) =  (x, y)ei
P

i kizi , where ki

denotes the Bloch wavenumber defined within the range ⇡/ai < ki  ⇡/ai. The

6D Schrödinger equation is reduced to (x, y) space as

p2

2m
 �

4X

i=1

2ti cos(bi · x+ �i) = E , (4.32)

where

bi =
eai

~ (Bxi, Byi), �i = kiai. (4.33)

This is tantamount to the 2D double-periodic system under investigation in this

paper. The inclusion of higher harmonic terms within bi can be achieved by

postulating additional layer hopping in the zi direction.

The electromagnetic response of the system is characterized by the second

Chern number [79, 108, 75, 109, 110, 111, 112]. Let us now turn our attention to a

commensurate approximant, wherein the periodicities of bi(i = 1, 2, 3, 4) converge

into a common super unit cell. Here, we introduce the definition of the Bloch

wavenumber (kx, ky) within the corresponding super Brillouin zone. The Bloch

Hamiltonian governing the 6D system is expressed as H(kx, ky, k1, k2, k3, k4).

Within this context, we delve into the 4D subspace kµ = (kx, ky, ki, kj) by selecting

two indices i, j from the set 1,2,3,4, while keeping the remaining two wavenum-

bers fixed. When the spectrum of 4D Hamiltonian H(kx, ky, ki, kj) is gapped, the

second Chern number for the gap is defined as [79, 108, 75, 109, 110, 111, 112],

C
(2)
ij =

1

32⇡2

Z

BZ

d
4
k ✏

µ⌫�⇢Tr[Fµ⌫F�⇢] 2 Z. (4.34)

Here BZ stands for the 4D Brillouin zone (a 4D torus), ✏µ⌫�⇢ is the antisymmetric

tensor of rank 4 and Fµ⌫ is a matrix defined by

F↵�
µ⌫ = @µA↵�

⌫ � @⌫A↵�
µ + i[Aµ,A⌫ ]

↵�
,

A↵�
µ (k) = �ih↵,k|@µ|�,ki, (4.35)
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where @µ = @/@kµ, |↵,ki is the eigenstates of the ↵-th band, and the indeces ↵

and � run over all the bands below the gap. It is alternatively expressed as [79]

C
(2)
ij = � 1

8⇡2

Z

BZ

d
4
k ✏

µ⌫�⇢Tr
h
P
@P

@kµ

@P

@k⌫
P
@P

@k�

@P

@k⇢

i
(4.36)

where P (k) =
P

↵2occ |↵,kih↵,k| is the projection operator to the eigenstates

below the gap. Note that we have six second Chern numbers depending on the

choice of i, j(i 6= j) from 1,2,3,4.

When the Fermi energy is in the gap, the electro-magnetic response of the

4D system is given by [79, 108, 75, 109, 110, 111, 112]

j
(4D)
µ =

e
3

h2
C

(2)
ij ✏

µ⌫�⇢
B⌫�E⇢, (4.37)

Here, j(4D)
µ represents the electric current density within the 4D space. Upon

the application of a weak electric field Ei to the system, the wavenumber ki

adiabatically evolves to ki+(e/~)Ai(t), where Ei = �@Ai/@t. In the context of a

cyclic process, where �i = kiai undergoes a transition from 0 to 2⇡ within a time

period T , the corresponding electric field is given by:

Ei = � h

eai

1

T
. (4.38)

In accordance with Eq. (4.37), the electric field Ei elicits an electrical current

(jx, jy)(4D) = (e3/h2)C(2)
ij (�Byj, Bxj)Ei. The corresponding two-dimensional cur-

rent density per a singular stratum is expressed as j
(2D)
µ = j

(4D)
µ aiaj, resulting

in

(jx, jy)
(2D) = � e

2⇡
C

(2)
ij (bj,y,�bj,x)

1

T
, (4.39)

utilizing Eqs. (4.33) and (4.38). The complete alteration in polarization through-

out the progression (�i : 0 ! 2⇡) is denoted as �Pi = j(2D)
T/(�e). Through

the addition of the summation over index j, we ultimately derive

�Pi = � 1

2⇡

X

j

C
(2)
ij (bj ⇥ ez). (4.40)
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It is evident that Eq. (4.40) precisely mirrors the structure of Eq. (4.28). Upon

juxtaposing the two equations, we promptly deduce

⌫ij = �C
(2)
ij , (4.41)

signifying that the zone quantum numbers coincide with the second Chern num-

bers.

By employing Eq. (4.36), we conducted a numerical evaluation of C(2)
ij for

select commensurate approximants within the context of the twisted triangular

potential series expounded in Section 4.1.2. This analysis conclusively corrobo-

rated the concordance with �⌫ij.

Inasmuch as Eq. (4.36) encompasses the integration over the Brillouin zone

of the commensurate approximant, one might surmise that C(2)
ij explicitly hinges

on the Brillouin zone dimensions (inversely related to the commensurate unit

cell dimensions), a parameter that ostensibly lacks intrinsic significance. How-

ever, in actuality, the integrand Tr[· · · ] itself exhibits proportionality to the count

of subbands residing beneath the energy gap (commensurate with the unit cell

dimensions). This proportionality e↵ectively annuls the contribution of the Bril-

louin zone integral, bestowing upon us invariant integers, which remain una↵ected

by the commensurate period.
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Chapter 5

Conclusion

In this thesis, we present comprehensive studies on the energy spectrum and and

topological gap labeling in quasi-periodic double moiré systems.

In Chapter 3, we consider the electronic band structure of hBN/graphene/hBN

trilayer system, as a representative example of the double moiré systems We cal-

culated the energy spectrum as a function of the two twist angles, by employing

the e↵ective continuum Hamiltonian method. We discovered that the energy

spectrum exhibits a fractal pattern akin to the Hofstadter’s butterfly, where an

intricate mini-gap structure continuously changes with the twist angle.

An important observation is that each mini-gap are characterized by a unique

set of six integers, which are associated with six Brillouin zones arising from the

redundant periodicities. More specifically, the electron density below any single

gap in the spectrum can be written as an integer linear combination of the six

Brillouin zone areas with the six integer coe�cients. For each gap, the six integers

remain invariant upon a continuous change of the twist angles, regardless of the

commensurability of the double moiré pattern. We also found that the associated

momentum-space area given by the six integers corresponds to a certain geomet-

ric shape which we referred to as the quasi Brillouin zone. Its snow-flake like

structure is defined by multiple Bragg planes, and it can be uniquely identified

by the spectral distribution in the zero potential limit.
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CHAPTER 5. CONCLUSION

In Chapter 4, we explore the topological origin of the gap-labeling integers in

2D quasi periodic systems. First, we demonstrated that fractal energy spectrum

as in hBN/graphene/hBN trilayer can also be seen in mre general doubly-periodic

systems, which are described by a continuum Hamiltonian with a pair of periodic

potentials. There the gaps can be characterized by six integers as well. Sub-

sequently, we considered an adiabatic charge pumping induced by the relative

sliding of the periodic potentials, and found that the pumped charge when the

Fermi energy is in a certain gap is expressed by the six gap-labeling integers

for the gap. Finally, we demonstrated a formal mapping between the adiabatic

charge pumping and 4D quantum Hall e↵ect, and found that six gap-labeling

integers are equivalent to the second Chern numbers which quantize 4D Hall ef-

fect. These topological characterization of energy gaps is generally applicable to

any quasi-periodic systems having redundant reciprocal vectors more than spa-

cial dimensions. If the system has n independent reciprocal lattice vectors in a

d-dimensional space, we have nCd di↵erent choices of the fundamental Brillouin

zones. For example, the Penrose tile has 5 reciprocal vectors in 2 dimension, thus

we have 10 fundamental Brillouin zones and zone quantum numbers.

In conclusion, the thesis established that energy gaps in quasi-periodic 2D

systems must be labelled by a set of multiple topologically-invariant integers.

The topological characterization proposed in this study can be applied to other

quasi-periodic 2D systems, such as twisted trilayer graphene [61, 62, 63, 64],

twisted bilayer graphene on hBN [113, 114, 115], 30� twisted bilayer graphene

[39, 37, 41, 42], and also twisted trilayer of transiton metal dichalcogenides.

The e↵ective continuum approach combined with the commensurate approximant

method employed in this thesis would be useful to capture the spectral features

and the gap-labeling integers in incommensurate systems, which are typically

challenging to address by the conventional atom-based methods.
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[45] M. Mucha-Kruczyński, J. Wallbank, and V. Fal’ko, “Heterostructures of bi-

layer graphene and h-bn: Interplay between misalignment, interlayer asym-

metry, and trigonal warping,” Phys. Rev. B, vol. 88, no. 20, p. 205418,

2013.

[46] J. Jung, A. Raoux, Z. Qiao, and A. H. MacDonald, “Ab initio theory of
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