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Chapter 1

Introduction

1.1 Purpose of the Study

Since the experimental synthesis of graphene in 2004 [1], extensive research has
been conducted on various two-dimensional materials [2, 3]. One particularly
notable focus in recent years has been on composite two-dimensional materials
[4,5,6,7,8,9,10, 11,12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23|, such as moiré su-
perlattices like twisted bilayer graphene (TBG). When two-dimensional materials
are stacked with a slight twist, it creates a solid-state system with a substantially
large periodic structure, recognized as a moiré pattern. The moiré periodicity,
which varies depending on the twist angle, gives rise to unique properties that
are never observed in individual atomic layers. For exapmle, a twisted bilayer
graphene (TBG) stacked with a so-called magic angle about 1 degree was shown
to exhibit superconductivity and correlated insulating phases [12, 13, 17, 16].
The exploration of moiré materials were also extended to various two-dimensional
materials, such as hexagonal boron-nitride (hBN) and transition metal dichalco-
genides.

Recent advancements in experiments have enabled the creation of three-
layered structures from various two-dimensional materials [24, 25, 26, 27, 28,

29, 30, 31]. In contrast to bilayer systems, a three-layer system is characterized
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by two twist angles, resulting in double moiré structure. The two moiré patterns
are typically not aligned, exhibiting a quasi-periodicity referred to as a moire-of-
moiré pattern. Describing the physical properties arising from the dual periodic
structures is a challenging problem, since the conventional band theories based on
the periodicity do not apply to these systems. Hence, a new approach is needed

to characterize the quasi-periodic properties of two-dimensional systems.

This study explores the energy spectrum and topological gap labeling in
quasi-periodic double moiré systems. As a representative example, we calculate
the electronic band structure of hBN/graphene/hBN trilayer system as a func-
tion of twist angles [32, 33]. We find that the energy spectrum exhibits a fractal
pattern with multiple mini-gaps that continuously change with the twist angle.
Moreover, each mini-gap is found to be characterized by a unique set of topolog-
ical integers, which are associated with multiple Brillouin zones arising from the
multiple periodicity. Finally we extend our analysis to general two-dimensional
quasi-periodic systems, and establish that the numbers characterizing energy gaps
can are regarded as topological invariant of four-dimensional quantum Hall effect,

by a formal mapping to higher dimensional systems.

The thesis is organized as follows. In the rest of this chapter, we review the
previous works on moiré two-dimensional materials and quasi-crystalline systems
with double periodicity. Chapter 2 provides a theoretical basis to describe elec-
tronic structures of graphene, hBN, and a graphene/hBN single-moiré system.
In chapter 3, we introduce methodologies of calculation of hBN/graphene/hBN
trilayer system by commensurate approximant method. Then we show the typi-
cal band structures of the trilayer system, and the twist-angle dependence of the
electric spectrum. We identify characteristic integers for each band gap, which
corresponds to quasi-Brillouin zones. In chapter 4, we describe the topological
nature of the characteristic integers by considering adiabatic charge pumping and
four-dimensional quantum Hall effect. The formulation shows the integers can be

expressed as second Chern numbers. Finally, we conclude this thesis in chapter 5.



1.2. MOIRE STACKING OF TWO-DIMENSIONAL MATERIALS

1.2 Moiré stacking of two-dimensional materials

Since the successful isolation of graphene [1], extensive research has been con-
ducted on a variety of two-dimensional (2D) materials. Graphene is an atomic-
layer material where carbon atoms are arranged in a honeycomb lattice, exhibiting
high charge mobility arising from the Dirac-particle nature of electrons. Addition-
ally, various types of two-dimensional materials, such as hexagonal boron nitride
(hBN) [34] and transition metal dichalcogenides (TMDCs), were also intensively
investigated. These two-dimensional materials exhibit properties distinct from

their bulk (3D) counterparts, showcasing unique characteristics.

0 =0.5°

-1000 0 1000-200 O 200 -50 O 50
E[meV]
Figure 1.1: Twist angle dependence of the energy bands in twisted bilayer

graphene [9].

In recent years, there has been active investigation into moiré 2D materi-
als, which are created by stacking 2D materials in an incommensurate manner.
In these materials, a rotational misalignment and/or lattice mismatch between
stacked materials give rise to a moiré interference pattern, leading to various

physical phenomena depending on the twist angle between the layers. In the case
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of twisted bilayer graphene [19, 4, 5, 6, 7, 18, 19, 21, 22, 23], for instance, it
was experimentally shown that the system with a specific stacking angle led to
a superconducting state [8, 9, 10, 11, 12, 14, 15, 16, 17]. This striking example
demonstrated that the moiré superlattice effect not only modulates the original
physical properties, but also gives rise to novel emergent phenomena that were in-
accessible in monolayer graphene. Following this discovery, various moiré systems
comprised of diverse 2D materials have been extensively investigated to uncover

novel properties not present in the individual monolayers.

(a) 6=9.43° (b) 6 =3.89° (d) 6=1.47°
S ; 3

1
e

Energy (eV)

Figure 1.2: The moiré unit-cells and the band structures of twisted bilayer

graphene in different twist angles [23].

1.2.1 Twisted bilayer graphene

When two graphene layers are stacked on top of each other, the interlayer twist
angle 6 assumes a pivotal role in determining the electronic structures. This con-
figuration of twisted bilayer graphene (TBG) inherently embodies a quasiperiodic
nature, arising from the mutual irrationality in lattice periods between the indi-
vidual graphene layers. Nevertheless, for relatively small values of 6 (less than

approximately 10°), the low-energy physics is primarily governed by the long-

10
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Figure 1.3: TBG shows superconductivity in magic angle [12]

range moiré interference pattern, and the electronic properties can be effectively
described through the moiré effective theory [4, 5, 6, 22, 23]. In essence, this ef-
fective theory approximates TBG as a translationally symmetric system, with the
moiré period dominating its behavior. The observed phenomena in the low-angle
regime, encompassing the formation of flat bands [8, 9, 12, 13, 14, 15, 16, 17] and
the manifestation of the Hofstadter butterfly under the influence of a magnetic
field [10, 35, 36], can be well explained within the framework of the moiré effective

theory.

Conversely, in TBG characterized by a large 6, the moiré period is compa-
rable to the atomic length scale, yielding a quasiperiodic behavior. Particularly,
when 6 = 30°, the superposed hexagonal lattices transform into a 12-fold rota-
tionally symmetric quasicrystalline lattice in absense of translational symmetry,
as initially elucidated by Stampfli [38]. Recently, TBG with an accurately con-
trolled rotation angle of 30° has been experimentally realized in epitaxially grown
samples on the SiC surface, and its electronic spectrum has been measured. Fur-
thermore, similar TBGs have been fabricated on the Ni surface using a transfer

method. Additionally, another stack of atomic layers rotated by 30° has been suc-

11
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Figure 1.4: 12-fold rotationally symmetric quasicrystalline lattice in 30° twist-

stacked graphene layers [37].

cessfully achieved by depositing graphene on top of the BN layer and the MoSe2
bilayer system. In the realm of such quasicrystalline TBG (QC-TBG), the afore-
mentioned moiré effective theory proves inadequate, as its primary postulate that
the moiré pattern governs the system no longer holds valid. There have been sev-
eral theoretical attempts to describe the electronic structure of the 30° TBG by

unconventional approach beyond the Bloch framework [39, 40, 37, 41, 42].

1.2.2 Graphene/hBN heterostructures

Another representative example of the moiré superlattices is a compose system
formed by stacking graphene on top of hBN [34, 43, 44, 45, 46, 47, 48, 49, 50,
51, 34, 52, 17, 49, 48, 53, 54, 55, 56, 57, 58, 59]. Although sharing a common
structural arrangement, hBN differs from graphene in a placement of distinct
boron and nitrogen atoms on A and B sublattices, leading to the introduction of

an insulating energy gap in its electronic structure. Even in a non-rotated stack-

12
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ing, graphene/hBN system has an moiré pattern attributed to a 1.8% lattice
mismatch. The electronic structure of graphene-hBN bilayer is primarily dom-
inated by graphene’s low-energy spectrum, since the wide energy gap of hBN.
However, the superlattice potential significantly reshapes graphene’s Dirac cone,
resulting in the emergence of the primary gap in the charge neutral point as well
as mini-Dirac bands in the electron and hole sides [51]. The intricate mini-band
structure of the system can be described by an effective continuum model, akin

to the method employed for TBG [43, 44, 45, 46, 47].
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(a) (b)

Figure 1.5: (a) The atomically crystalline of a graphene layer and a hBN layer
by no-twisted stacking. (b) The energy band structure of graphene/hBN bilayer

system [47].

When a magnetic field weaves its influence into the multilayer fabric boasting
an incommensurate moiré pattern, the energy spectrum metamorphoses into a
self-similar fractal structure referred to as the Hofstadter butterfly [60]. The
complicated spectral structure arises from the interplay between Bragg’s reflection
within the periodic potential and the cyclotron motion induced by the magnetic
field. Tt is noteworthy that the fractal gap structure and the associated quantum
Hall effect have been first observed within the graphene-hBN moiré structure

(50, 48].

13
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1.3 Moiré trilayer systems

In addition to basic moiré bilayer systems, attention has also directed towards
trilayer configurations [24, 25, 26, 27, 30, 31, 28, 29]. Twisted trilayer graphene
(TTG) [61, 62, 63, 64, 65, 66, 67], akin to its bilayer counterpart TBG, exhibits
the remarkable phenomenon of superconductivity at the magic angle, where an
intricate interplay of three Dirac cones adds an additional complexity in the phe-
nomena. Moreover, the exploration of trilayer systems extends to heterostruc-
tures comprising different 2D materials. In particular, trilayer assemblies hBN-
graphene-hBN layers exhibit a complicated minigap structures distinct from its

bilayer counterpart [24, 25, 26, 27, 28, 29, 68].

Central to these trilayer systems is the concept of dual moiré patterns. The
independent twist angles between upper and lower bilayers give rise to distinc-
tive moiré superlattices, giving rise to an inherent incommensurability, which is
rarely encountered in conventional crystal structures [25, 26]. This departure
from the familiar periodicity is a hallmark of quasi-periodic systems, reminis-
cent of the intricacies found in quasicrystals [69, 70, 71, 72, 73] and cold-atom
setups [74, 75, 76, 77]. However, the theoretical analysis of such quasi-periodic
structures presents an intriguing challenge [30, 31, 68, 78, 61, 65, 67]. The tra-
ditional band theories, built on the foundation of periodicity, struggle to provide
insight into the electronic properties of these systems. The lack of system-wide
periodicity results in the collapse of the Brillouin zone, rendering conventional
band predictions ineffective. In light of these complexities, the comprehending
the properties of quasi-periodic 2D material systems demands the evolution of

theoretical frameworks.

14
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Figure 1.6: (a) Incommensurate moiré structure in trilayer system. (b) The
atomic model of hBN/graphene/hBN trilayer system. Top and bottom hBN
layers are stacked with twist angles 6% and 6° from middle graphene layer. (c)
Top and bottom moiré patterns. The moiré superlattice vector is depending on

the twist angle, and the moiré angle ¢ increases as the twist angle increases.

15
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1.4 1D Quasi-crystalline and Hofstadter’s but-
terfly

As mentioned above, trilayer moiré systems generally exhibit a quasi-periodic
dual-moiré structure with no overall periodicity [79, 80, 81, 82, 83, 84, 85, 86.
In one-dimension (1D), a similar issue of dual period has long been studied as a
fundamental problem, and and it holds significant implications when considering
the two-dimensional quasi-periodic moiré systems discussed in this thesis. In this
subsection, we will provide a brief overview of the 1D double-period problem
(87, 74, 88, 89, 90, 91, 71, 92, 93, 94, 95, 96].

Let us consider the simplest one-dimensional periodic system as shown in
Fig. 1.7, which is a 1D tight-binding lattice with lattice constant a, under a peri-
odic potential of period A. The periodic potential at site ¢ is explicitly expressed
as V; = Vcos(2rai + §), where @ = A/a and § is a phase factor. When «, or
the ratio of the periodic potential to the lattice constant is irrational, the two

periodicities become incommensurate, and the overall system is quasi-periodic.

Q
C

Figure 1.7: An image of one-dimensional double periodicity problem with lattice

spaceing a and periodic potential with period A.

We define the reciprocal vectors corresponding to the individual periods as
G1 = 2r/a and Go = 27w/A. In a single-period system, band gaps occur at

positions corresponding to integer multiples of the only reciprocal vectors G, i.e.,

16
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the electron density below the gap is quantized as n, = mG/(2m) (m:integer)
as shown in 1.8(b) and (c). In a doubly-periodic system, similarly, energy gaps
occurs at the electron density of n, = (m1Gy + maGs)/(27), where mq, mo are
integers. When this ratio & = A/a is varied, the spectrum reveals a fractal-like
spectrum known as Hofstadter’s butterfly as shown in Fig. 1.9 [87]. There, each

single energy gap is labelled by integers m; and msy.

(a) Free electron (b) Potential G, (c) Potential G, (d) Double Potential
mmem W)
\ml G'l + mp G'z/
o 1361 \ /
S \ y \ /
E |26 \ /
1| 201 \ /' A ’
\ y \ /
\ G, / Gy E Y
U \/ -'l._.ﬂ'-
Wavenumber Wavenumber Wavenumber Wavenumber

Figure 1.8: From left to right: (a) Free electrons, (b) Solely possessing a periodic
potential with a period of a4, (¢) Similarly, with only a period of ay, and (d)

When both periods are simultaneously considered.

(@) (b)

4

E/t

Figure 1.9: (a) Hofstadter’s butterfly calculated by original problem [60]. (b) The

similar plot of (a) calculated by one-dimensional double periodicities problem [87].

Importantly, this doubly-periodic 1D system can be entirely correlated with

17
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a two-dimensional lattice with a perpendicular magnetic field. Let us consider
a two-dimensional tight-binding square lattice with period a subjected to a per-
pendicular magnetic field B. Let ¢ = Ba*/(h/e) be the number of magnetic flux
quanta penetrating a unit cell. It can be shown that the tight-binding Schro&inger
equation of the 2D system can be reduced to a 1D tight-binding equation with
a periodic potential —2t, cos(2m¢i + k). By substituting « — ¢ and 6 — —k,,
a complete correspondence can be established with the one-dimensional bilayer
periodic system. Therefore the energy spectrum of the 2D system also becomes

a Hofstadter butterfly of Fig. 1.9.

Figure 1.10: An image of the Hofstadter’s problem as a two-dimensional square

lattice in vertical magnetic field.

When the Fermi energy lies in an any of the fractal gaps, the Hall conductivity
is integer-quantized as o, = > Cy,(—€?/h) where C,, is the first Chern number
(integer) for the n-th band, defined by [97, 98, 88, 84|

1 oy [OAny  O0An.
—— b ’ 1.1
Cn 27 Bzd k( Ok, Ok, )’ (11)

Here A, (k) = i(n, k|Ok|n, k) is the Berry connection and |n, k) is the eigenstate
of the n-th band at the Bloch wave number k. This quantity remains constant
during any continuous deformations that do not close the band gap. Interestingly,
there exists a mathematical proof establishing the equivalence between the integer
ms in the earlier expression n, = (m;G1+m2G2)/(27) and the first Chern number

Ch.

18
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In this manner, the one-dimensional double-periodic structure can be mapped
onto the problem of a two-dimensional lattice in a magnetic field, via the corre-
spondence between the first Chern number and the integer quantizing electron
density. In this thesis, we address the doubly-periodic problem in two-dimensions
by examining twisted trilayer systems featuring two independent moiré patterns.
We will show that the energy gaps are labeled a set of integers in a similar manner
to the Hofstadter butterfly. Furthermore, these individual integers can be written
as second Chern numbers, which quantizes the electro-magnetic response in the
four-dimensional system. This is parallel to a 1D system, where the gap-labeling

integer is written as a first Chern number, which corresponds to the 2D quantum

Hall effect.

19
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Chapter 2

Theoretical Backgrounds

This chapter explains how to formulate effective continuum models for the lattice-
mismatched bilayer system exemplified by twisted bilayer graphene (TBG) and
graphene-hexagonal boron nitride (G-hBN) bilayer. We begin by establishing the
tight-binding Hamiltonian for the monolayer graphene and then present a general
formula of the effective continuum model for dual atomic lattices. Subsequently,

we apply this general form to specific examples, TBG and G-hBN bilayers.

2.1 Electronic Properties of Graphene Layer(s)

In this section, we derive the Hamiltonian of graphene based on the tight-binding
model [99] and present the characteristic band structure. Graphene includes four
valence electrons, with three of them forming covalent bonds within a honey-
comb lattice. The remaining electron arises from the 2p, orbital and behaves
as itinerant electron. This itinerant electron exhibits characteristics resembling
a massless Dirac fermion [2, 3|, which consequently gives rise to the distinctive

electronic state of graphene.

This itinerant electron in the graphene is well-described by the tight-binding

model of p, orbital on a honeycomb lattice as illustrated in Fig. 2.1(a). The

21



CHAPTER 2. THEORETICAL BACKGROUNDS

Figure 2.1: (a) The lattice structure of graphene and (b) the Brillouin zone of

graphene.

lattice vectors are defined as

a; =a(l,0), @za(%,?) : (2.1)

where a ~ 0.246 nm represents the lattice constant of graphene [see Fig. 2.1(a)].
The honeycomb lattice has two sublattices named A and B sites, indicated by

black and white dots in Fig. 2.1(a). In addition, three vectors define the relative

positions of nearest-neighbor atoms:

a0k mea( bl mee(bk)e e

This enables us to express the positions R4 and Rp of the A and B sites as

follows:

RA = NnN1aq + NoQ-

RB = RA — T1, (23)

where nq, and ny are integers.

For the honeycomb lattice, the first Brilloiuin zone (BZ) is spanned by the

22



2.1. ELECTRONIC PROPERTIES OF GRAPHENE LAYER(S)

reciprocal lattice vectors defined as:

-2 (1), s-Z(0 ). e

The corners of the BZ, K— and K+ indicated in Fig. 2.1(b) are expressed as:

2 2 2 (2
k-7 (-20) ko720 e

Note that the relation between Ky and the 7 vectors is given by:

3
>R =0,
=1
3
’ 3
ZelKi’”Tl = ga(:l:i, 1). (2.6)
=1

Using the basis of the atomic orbit located at position R as |R), we can

express the tight-binding wave function of the electron in graphene as:
[0(r)) = ca(Ra) [Ra) + Y cs(Rp) |Rp) . (2.7)

RA RB
The Schrodinger equation for the wave function Eq. (2.7) is described by
HY cx(Rx)|Rx) =E) cx(Rx)|Rx), (2.8)
RX RX

where X = A, B. The tight-binding Hamiltonian can be expressed as:

H=>)_|R)(RH|R)(R| (2.9)
R.R’

In this case, the positions of the nearest-neighbor atoms are described by Eq. (2.2).

If we consider only nearest-neighbor hoppings as:
(R4|H|Rg)=—-t, (RaA=Rp+m; [=1,2,3) (2.10)

where t represents the transfer integral, the Hamiltonian for graphene can be

expressed as:

H=-t> Y (Ra)(Rs|+|Rs) (Ral). (2.11)

=1 Ry=Rp+T1;

23



CHAPTER 2. THEORETICAL BACKGROUNDS

The Hamiltonian given in Eq. (2.11) and Schrdinger eqauation (2.8) lead to the

following set of equations:
3
~t cp(Ra—m) = Eca(R,)
1=1

3
—thA(RB —7) = Ecg(Rp). (2.12)
1=1
Applying Bloch theorem, we rewrite the wave function as:

CA(RA) — eik~RAfA

CB(RB) = €ik’RBfB. (213)

By substituting Eq (2.13) into Eq. (2.12), we obtain the eigenvalue equation in

the momentum space,

0 hik) Ty Zp( ), (2.14)

h(k) 0 5 f5
where h(k) is given by
h(k)=—t» e *m (2.15)
The eigenenergy F is obtained by diagonalizing Eq. (2.14) as
EL(k) = x|h(k)|. (2.16)
Taking the origin of k at K. and expanding h(k + K+) up to liner in k, we have
3
WK +k)~—tYy e (1 —ik - 7) = ho(tk, +ik,), (2.17)
I=1
where we use Eq. (2.6) and define the velocity
\/§ at
— Voo 2.1
V= (2.18)

Therefore, the effective Hamiltonian of graphene leads to

Hg (k) = v(xozk, + oyky). (2.19)

24



2.2. INTERLAYER COUPLING BETWEEN LATTICE MISMATCHED
LAYERS

by using Pauli matrices o, and o, acting on the basis of A and B sites. Clearly

the eigen energy is approximated as
Ei(K+ + k) = Ei(K_ + k?) ~ :thl)k}, (220)

Remarkably, this indicate that graphene exhibits a linear dispersion relation with
its crossing point located at K, known as the Dirac cone and v corresponds to

its band velocity.

2.2 Interlayer coupling between lattice mismatched

layers

To formulate the effective continuum model of lattice mismatched bilayers, which
is a main target of the present study, we introduce their interlayer coupling. We
define a pair of the lattice vectors a; and as for layer 1, and another pair a;
and ay for layer 2. The reciprocal lattice vectors G; and éz are defined for
layers 1 and 2 by a, - G;,= a; - Gj = 2md;5. The unit cell areas are denoted by
S = |ay x ay] and S = |a@; X @s|. Due to the generalized Umklapp process [100],

electron coupling occurs only under the condition:
k+G=k+G, (2.21)

where G = m G + moG45 and G = m1é1 + mgég. This implies that the Bloch
state ¢§j) of layer 1 can be expressed as a summation of ¢!*+G) over reciprocal
lattice vectors G, and the Bloch state gzﬁg) of layer 2 can be expressed as a
summation of ¢'®+&) over reciprocal lattice vectors G. The Hamiltonian of the
entire system can be constructed using the Fourier components of G and G.
Consequently, the matrix elements <¢§~f)] H \(bfj)> exist only under the conditions

specified in Eq. (2.21).

The positions of the atoms can be expressed as follows, where X = A, B and

25
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X =AB:
RX =n1aq + NoA- + TX
RX = ﬁldl -+ ﬁQdQ -+ Tx- (222)

Here, n; and n; are integers, and Tx and 73 represent the positions of the sub-
lattices within the unit cells. When we set the interlayer distance to d, we can
express Ty - e, = 0 and 74 - e, = d. We define the atomic state of sublattice X
at the Rx as |[Rx) = ¢x(r — Ry) and we assume the transfer integral from Ry
to Ry as =Ty (Ry — Rx). Consequently, the interlayer Hamiltonian can be

written as:

—) T¢x(Rg — Ry)|Rg) (Rx| + h.c. (2.23)

In cases where the period of the moiré superlattice is significantly larger, and a
larger number of lattice points are included in the unit cell of the entire system,
the Hamiltonian in the real basis becomes excessively complex since every pair of
lattice points from layers 1 and 2 is required. On the other hand, the interlayer
interaction can be clearly expressed in momentum space. We define the Bloch

basis as follows:

1 ik
|k, X) = ﬁzeka |Rx)

Ik, X) = R |Rg) (2.24)

%
Here, k and k are two-dimensional Bloch vectors, and N and N are the numbers
of atoms in the area of the whole system Si.

In general, when layers 1 and 2 are incommensurate, we assume the existence
of a finite area Syt = NS = NS , and normalize the wavefunctions accordingly.
By substituting Eq. (2.24) into Eq. (2.23), we obtain the matrix elements of

interlayer interaction in the Bloch basis as follows:
Usy(k, k) = (k, X|U |k, X)

= - Zt (k+ G)e GTxHETRS (2.25)
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2.3. TWISTED BILAYER GRAPHENE

These elements are non-zero only in Eq. (2.21). Here, we define the Fourier

transform of the transfer integral ¢(q) as:

1 ig-r

Here, 2z ve, = (T — Tx) - €., and the integral is taken over the entire plane on
which 7 can vary. The quantity ¢ (q) rapidly diminishes for large g, so we need

not calculate the large summation in Eq. (2.25).

2.3 Twisted bilayer graphene

We consider twisted bilayer graphene (TBG), where one graphene layer is stacked
upon another graphene layer with a twisted angle # and interlayer distance d. We
define the lattice vectors a; and as in layer 1 as shown in Eq. (2.1), while the
lattice vectors of layer 2 can be expressed as a; = Ra, where R is a rotation
matrix with an angle of #. The reciprocal lattice vectors G; and G5 in layer 1
are defined as given in Eq. (2.4), while the reciprocal lattice vectors in layer 2 are

defined as C:‘l = RG;. The atomic positions are described as follows:

RX =ni1aq + NoQ- + TX
RX = ﬁldl -+ ﬁzdg -+ Tx- (227)

Here, X = A, B corresponds to atoms in layer 1, while X = A, B refers to atoms

in layer 2. The specific expressions for the position vectors are as follows:

T; =de, + T

TB = dez + T0 + (Cl,l — 20,2)/3 (228)

In this context, we have defined the origin to be at the position of atom A, and
Ty represents the intralayer vector denoting the relative positional transformation

within layer 2.
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Figure 2.2: (a) The lattice vectors in @ = 15° and (b) Brillouin zone in 6 = 15°.

In order to describe the dynamics of electrons, we adopt a one-orbital tight-
binding model for the p, orbitals of the atoms. Consequently, the interlayer
transfer integral T (R) becomes independent of the labels X and X and can

be approximated using the Slater-Koster parameters [101]. It can be expressed

as:
R- €, 2 R- € 2
_T(R) = ‘/;)Ihr 1-— ( R ) + V;)pa (T)
Vopr = Vg™ VD00, Vo = Vom0, (2:29)

Here, a ~ 0.246[nm],d ~ 0.335[nm|, V) =~ —2.7[eV], V)  ~ 0.48[eV], andr ~
0.184a represent the graphene’s parameters. These expressions determine the
amplitude of the coupling, denoted as t(K + G), which relies on the distance
from the origin in k-space. From the given parameters, we have the following
values: t(K) ~ 100[meV], t(2K) ~ 1.6[meV], t(v/7TK) ~ 0.062[meV] , where K =
|K| = 47/3a.

When the difference between the lattice vectors of the layer 1 and layer 2

is small, i.e., when the rotation angle # is small, the interference of these lattice

structures gives rise to long-period moire structures. In this case, the rotation
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2.3. TWISTED BILAYER GRAPHENE

matrix R approaches the unitary matrix. The reciprocal lattice vector of the
moiré superlattice is given by

When the disparity between the lattice vectors of layer 1 and layer 2 is min-
imal, specifically when the rotation angle 6 is small, the combination of these
lattice structures gives rise to intricate moiré patterns with long periodicity. In
such instances, the rotation matrix R approximates the identity matrix. The

reciprocal lattice vector of the moiré superlattice is defined as:

GM =G, -G, =[1-R]|G; (2.30)

(]

The matrix elements pertaining to the interlayer hopping for the long-range waves

can be expressed as follows:

Ugx(k+miGY +myGY k)

= tXX (k + mlGl + mQGg)e—i(m1G1+m2G2)~Tx+i(m1G~1+m2(§2)-TX. (231)

Here, m; and ms represent integers. Since the low-energy spectrum of graphene

Figure 2.3: The moiré reciprocal lattice vectors in 8 = 15°. G is constructed

by G1 — él.

is dominated by the electronic states around the Brillouin Zone corner K and K’
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CHAPTER 2. THEORETICAL BACKGROUNDS

points, we consider the matrix elements of the K vectors near these. K and K’

points at each layer are at

K. =-£{(2G,+ G>»)/3

K. =—£2G, + G,)/3 (2.32)

where £ = £1 serve as the labels for K and K’. Presently, the electron k = K,
located at (K) in layer 1 interacts with the electron at K, + miG1 + myG,
in the layer 2, with a magnitude of t(K, + m1G; + msGs). Here, t(K) ~
100[meV],t(2K) ~ 1.6[meV],t(v/7TK) ~ 0.062[meV] and other couplings from
K points is negligibly small. When the vector k deviates slightly from K,
the matrix elements undergo alterations. However, for our purpose, we treat
k as being in proximity to K, disregarding this dependence. Based on the

aforementioned considerations, we derive an interlayer Hamiltonian in the vicinity

OfK+.
Ui, Ui
U — AA AB
Usa Upp
—¢
L [P ) [N e [ ) eariane
11 Wt o1 we 1
11 i€ (2GM +G). 1 (,u_f EGM. 1 wf —ieGM
+t(2K) e R etTE T+ e T
1 1 wé 1 w1
4. (2.33)

2mi/3

Here, r donates the intralayer position, w = e , To = 0. The Hamiltonian of

entire system can be expressed in the basis {A, B, A B } as follows:

H U
vl = Ul i (2.34)
2

Where H;, H, represent the intralayer Hamilotonian for layer 1 and layer 2, re-
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spectively:

Hy ~ —hw(k — Kg) - (£04,0y)

Hy ~ —fw [R*I(k . Kg)] (€0w, ). (2.35)

Here, we have employed the Pauli matrices o,,0, and the band velocity of

graphene, denoted by v.

2.4 Graphene/hBN heterostructure

Hexagonal boron nitride (hBN) exhibits a honeycomb lattice structure similar to
graphene, where nitrogen atoms occupy the A sites and boron atoms occupy the
B sites. The low energy electronic states of hBN is described by the tight binding
model of p, orbital of boron and nitrogen atoms, incorporating onsite potentials

102]
Vi = 3.34[eV], Vi = —1.40[eV]. (2.36)

relative to those of graphene (where Vo = 0). Importantly, the lattice constant
of hBN (appn ~ 0.2504 [nm]) differs from that of graphene (a ~ 0.246 [nm]). For
our analysis, we assume perfect flatness for both graphene and hBN, a constant
interlayer distance dg_ppy ~ 0.322[nm], and a twist angle 6 between the two
layers.
The lattice vectors of graphene are defined according to Eq. (2.1), while those
of hBN are given by
a; = M Ra;, (2.37)

where R represents a rotation matrix with an angle 6, and M denotes isotropic
expansion expressed by the identity matrix I. The difference in lattice constants,
1+ ¢ = appn/a ~ 1.018, is incorporated as M = (1 + €)I. Reciprocal lattice
vectors of graphene and hBN, denoted as G; and G; respectively, are defined by

the condition a; - G; = a; - éj = 27d;;. When the twist angle is small, moiré
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superlattice vectors can be defined as
GY =(I-M'RG,; (2.38)

and the moiré period can be obtained as

2m 1+e
= a
IGM| /24 2(1 +¢)(1 — cosh)
which evaluates to Ly, ~ 13.8[nm] at 6 = 0°.

L = (2.39)

In the case of a sufficiently small twist angle 6 that results in a moiré period
significantly longer than the atomic scale, the low-energy electronic state can be
described by effective continuum model. The Hamiltonian for the entire system

is expressed as a 4 x 4 matrix:

Hg Ut
Ho_ 1Ny = , (240)
U Hupn

where the basis consists of graphene’s A and B sites, as well as hBN’s A and B
sites {A, B, A, B}. Here, Hygy represents the Hamiltonian of the hBN monolayer.
By neglecting kinetic terms and considering only onsite potentials, we obtain an

approximate expression for the hBN Hamiltonian:

8 0
HhBN ~ . (241)

0 W

The interlayer coupling is obtained from the general form Eq. (2.25),

11 1 ws A 1w
U=uyg + G 4
1 1 ws 1 w1

EGIHG T (2.42)

where GM represents the moiré reciprocal lattice vectors of graphene/hBN and
uy = t(K) ~ 150[meV]. Since the hBN states are energetically far from the low
energy spectrum of graphene, these effect is incorporated by the second-order

perturbation,

HED = He + UT(—Hypy)™'U

= Hg + Vin (2.43)
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Here, the term Vjgn can be expressed as:

Vien = U'(—Hupy) 'U

—£
_ +{Vlei5¢ P e
0 1 1 w
1 CUE . GA/[ 1 ; G]VI
; GGy G| fe b (2.44)
wf w_f w_g w_g
where
1 1 ~ 1 1
Vo=—3ud (o + | Vie = —ug | o= +wis )
0 Uy (VN-I—VB) 1€ Uy VN—I—WVB
GY =-GY - GY. (2.45)

33



CHAPTER 2. THEORETICAL BACKGROUNDS

34



Chapter 3

hBN /Graphene/hBN

In order to compute the trilayer system characterized by a double moiré struc-
ture, we employed a commensurate approximation. Typically, the periods of the
double moiré pattern are incommensurate; however, numerous nearly commensu-
rate points exist where the two moiré patterns closely approach each other. We
treated these points as the exact periods of the trilayer system, thereby yielding
the Hamiltonian in a finite-dimensional space.

Within this chapter, we elucidate the methodology for acquiring the commen-
surate approximants and corresponding Hamiltonians. Subsequently, we present
the outcomes of numerical computations, revealing a fractal energy gap behavior.
We then explore the principles governing these fractal energy gaps and deduce
six characteristic integers by leveraging six unit volumes, accounting for the pe-
riodicity redundancies. Lastly, we engage in a discourse pertaining to one of the

interpretations of these six integers, specifically related to quasi-Brillouin zones.

3.1 Commensurate approximation

We consider a trilayer system composed of hBN/graphene/hBN, where the top
hBN layer (indexed by A = «) has a twist angle of %, and the bottom hBN
layer (indexed by A = ) has a twist angle of #°. Graphene and hBN share
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CHAPTER 3. HBN/GRAPHENE/HBN

a honeycomb structure with slightly different lattice constants: approximately
a ~ 0.246 nm for graphene and appy ~ 0.2504 nm for hBN [103]. In our notation,
A and B represent the sublattices of graphene, while 8% and 6° represent the
nitrogen and boron sites of the A-th hBN layer, respectively. The geometry is
defined such that * = 0 corresponds to the alignment of the AB bond and the
A*B?* bond, which are parallel to each other. The lattice vectors of graphene are
denoted as a; = a(1,0) and ay = a(1/2,/3/2), while those of the A-th hBN layer
are given by [47, 100]

a)=MR(0Y)a; (i=1,2), (3.1)

where R(0*) represents a two-dimensional rotation matrix with an angle §*, and
M = (1 + €)1 corresponds to an isotropic expansion factor of 1+ ¢ = aypn/a =~
1.018. In the following discussion, we assume that the twist angles % and 6° are
sufficiently small (a few degrees or less) so that the moiré superperiod greatly
exceeds the atomic lattice constant a. The primitive lattice vectors of the moiré

superlattice for the A-th layer are defined as

L)=[1-ROMN'M Y a; (i=1,2). (3.2)

and the corresponding reciprocal lattice vectors are given by
G =[1- M7'R(Va] (i=12), (3.3)

where a; represents the reciprocal lattice vectors for graphene, satistying a;-aj =
27d;;. The moiré superlattice period is determined by

l1+e¢
2 — »
VeE2+2(1+e)(1 — cosf?)

LY] = |L3] = (3.4)

where ¢ is the expansion factor.
The moiré rotation angle, denoted as the relative angle between L? and a;,

is expressed as

— <in
- sin ‘ .
o arctan FR— (3.5)

Fig. 3.1 presents the plots of (a) the moiré superlattice period L and (b) the moiré

rotation angle ¢ as functions of the twist angle 6. The super period L exhibits a
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Figure 3.1: (a) Moiré period L [Eq. (3.4)] and (b) the moiré rotation angle ¢
[Eq. (3.5)] as functions of the twist angle 6

value of 13.8 nm at § = 0°, decreasing with increasing 6. The rotation angle ¢ is
zero at # = 0° and rapidly increases in the negative direction as # increases. For

simplicity, the subscripts are redefined as follows:
(G1,Gs,Gs,Gy) = (G}, G5, G, Gy). (3.6)

In general, the two moiré superlattices are incommensurate, indicating the ab-
sence of a unit cell in the trilayer system as a whole. However, for any pair of
twist angles (0%, 67), there exist lattice points from the two moiré patterns that
happen to be in close proximity to each other. This situation can be expressed
as
p LS + p L = psLi + paLiy + AL, (3.7)
where p; (for i = 1,2,3,4) are integers, and AL represents the difference.
When AL is significantly smaller than the moiré periods, the electronic struc-

ture of the incommensurate system can be approximated by an exactly commen-
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surate system, neglecting AL. This approximation is achieved by making slight
deformations (rotations, expansions, or contractions) to the moiré patterns, caus-
ing AL to vanish.

Fig. 3.2(a) illustrates an actual example of commensurate approximant for
(62,0°) = (0,1.1908°), where (p1,p2,p3,p4) = (1,1,—1,2) and (q1,q2, g3, qs) =
(—1,3,-3,2). A commensurate approximant can be defined by selecting two
nearly commensurate points with integers (p1, p2, p3, p4) and (q1, g2, ¢3, q4). These
two points become the exact primitive lattice vectors of the commensurate ap-

proximant:

L B P11 P2 L$
L§ a1 Q2 L§
;
P3P L
- [ "l (3.8)
g3 g4 Lg

Correspondingly, the reciprocal superlattice vectors G and G are given by:

— T_ _1

Gi o P1 P2 G?

G5 @ Q@ G¢
- T: _1

&

P3 P4 G
= o (3.9)
q3 Q4 G§

where T represents the transpose operation on the matrix. The relationship

between LY and G, is given by

c SC C c SC c
Ll = %(GQ X €Z>, L2 = _%(Gl X ez), (310)

where S¥ = (G$ x GS), = (27)?/S,. represents the area of the first Brillouin
zone of the commensurate approximant, and (---), denotes the z-component
perpendicular to the plane. Fig. 3.2(b) corresponds to the reciprocal lattice shown

in Fig. 3.2(a).
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Figure 3.2: (a) Super moiré unit cell and (b) the corresponding reciprocal lattice of
the commensurate approximant for (6%, 6%) = (0,1.1908°), where (n¢,ng) = (1,1)
and (nf,n'g) = (_]—a3>

Subsequently, we examine two series of hBN /graphene/hBN trilayer systems:

I: (6%,0°) =(0,0); 0<9<2°

I: (0%,0°) = (0, —0); 0<H<2 (3.11)

For each series, we determine a range of (6%, 6”) values that fulfill the condition
where AL is bellow 1% of |py Ly 4+ po LS| and p1, ps < Nax, With ppax = 12 and

17 for series I and II, respectively.

3.2 Hamilotonian

Since hBN possesses a wide energy bandgap precisely at the Dirac point of
graphene, the low-energy spectrum of the hBN/graphene/hBN system is pri-
marily governed by the presence of Dirac cones originating from graphene. By
straightforwardly extending the Hamiltonian of the bilayer graphene-hBN sys-
tem, we can deduce the Hamiltonian of the trilayer continuum [43, 44, 45, 46, 47,

48,49, 50, 51]. This Hamiltonian can be expressed in a matrix form of dimensions
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6 X 6:
Hg yot et

Heg = | U* Hypn 0 . (3.12)

Ub 0  Hppn
This matrix operates on the basis of {A, B, A%, B®, A®, B°}. The Hg, a 2 x 2
matrix, represents the Hamiltonian of graphene and can be approximated as

follows:
Hg ~ —hvk - o¢. (3.13)

In this equation, & = £1 corresponds to the valley index of graphene and relates
to the wave vector K¢ = —&£(2aj + a3)/3. The relative wave number from the
K, point is denoted by k, while o¢ = ({0,,0,) represents the Pauli matrices
o, and o,. The Hyppyx in the second and third diagonal blocks symbolizes the
Hamiltonian of monolayer hBN. In this context, we adopt an approximation that

solely accounts for the on-site potential as: [43, 47]

W 0
HhBN ~ . (314)

0 Vs

The off diagonal matrix U” is the interlayer Hamiltonians of the twist angle

6>, which is given by [47]

—£
U* =t S P I PR
11 W1
1wt .
o 1 H(GIHGR) (r=r) | (3.15)
.

where ty &~ 150 meV is the interlayer coupling energy, and 7} is the origin of the
moiré pattern of layer A\, which can be changed by sliding the hBN layer relative
to graphene [84].

The low-energy effective Hamiltonian for graphene can be derived by em-

ploying second-order perturbation theory to eliminate the hBN bases. It can be
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explicitly expressed as:
H((}eﬁ) = Ha + Vipy + Vh%N? (3.16)
Here, the quantities V)3 are defined as follows:

Viby = UM(=Hpn) U

—£
() {vleiw <) ecreny
01 1 wt
1 wg . A A 1 1 : A A
+ ei6Ga-(r=ro) 1. G (=o)L he p, (3.17)
wt wt w ¢ wt
with
1 1
Vo=-3t | — + — 3.18
o= (). 3.15)
Vie = —t2 S +wi (3.19)
"\ W/ '
Additionally, we have G3 = —G} — G35, with the approximate values V =~

29meV, V; = 21meV, and ¢ ~ —0.29(rad) [47].

By utilizing the effective Hamiltonian described in Eq. (3.12), we proceed
to compute the band structure of the approximate commensurate systems intro-
duced in the preceding section. The set of wavevectors that undergo hybridiza-
tion due to the commensurate double moiré pattern is expressed as g, m, =
k 4+ miG{ + m2GS, where m; and ms denote integers, and k represents a resid-
ual wavevector confined within the first Brillouin zone of the super-moiré (com-
mensurate approximant) spanned by G§ and G§. To construct the Hamiltonian
matrix within the graphene bases, {|@m, ms, A), |@m,,m., B) }, we impose a k-space
cut-off such that gy, m,| < ¢c, which corresponds to approximately 0.54 eV for
9% = 0°. Ultimately, the band diagram is acquired by plotting the eigenvalues of

the Hamiltonian matrix as a function of k.
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(a) Graphene (b) Top moiré (c) Bottom moiré (d) Double moiré (e) Super moiré BZ
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Figure 3.3: Band structure of (6%,0°) = (0°,1.1908°). Panel (d) exhibits the
energy band of the complete double moiré potential, depicted along the symmet-
rical path of the super moiré Brillouin zone illustrated in (e), accompanied by
the corresponding density of states (DOS) on the right-hand side. To facilitate
comparison, we also present the energy bands of (a) intrinsic graphene without
any moiré potentials, (b) solely the top moiré potential, and (c) solely the bottom
moiré potential, all plotted along the same trajectory. The first-order gaps arising
from the top (bottom) moiré potential are represented by the color red (blue),
while the double-moiré gaps are indicated in green. The dashed blue curve in
panel (d) represents the position of the first-order gap associated with the bot-

tom moiré potential, which, in reality, remains unopened.

3.3 Results

3.3.1 Electronic spectrum

[lustrating a representative example, we present the band structure of the com-
mensurate approximant with (8%, 6°) = (0,1.1908°), as depicted in Fig. 3.2. For
convenience, we set the origins of the moiré potentials, r§ and bmrg , to zero.
Fig. 3.3(d) shows the energy band plotted along the symmetric line of the super
moiré Brillouin zone. For comparison, we also provide the band structures for (a)

intrinsic graphene without any moiré potential, (b) solely the top moiré potential
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(A = a), (c) solely the bottom moiré potential (A = ), all depicted along the
same path. In all panels, the energy origin (vertical axis) is set at the Dirac point
of graphene. In the case of single moiré systems illustrated in Fig. 3.3(b) and (c),
the most prominent gap in the valence band (red/blue regions) corresponds to
the first-order moiré gap, representing the electron density of one electron (per
valley and per spin) per moiré unit cell. Conversely, in the double moiré system,
we observe a sequence of higher-order gaps (green) arising from the coexistence

of different moiré periods.

In order to investigate the twist-angle dependence of the electronic spectrum,
we conduct band calculations for all the systems in series I and II, as defined in
Eq. (3.11). For commensurate systems, the band structure is influenced by the
relative translation of the moiré potentials, denoted as Ary = r§ — rg . The mag-
nitude of this dependence is generally more pronounced in systems with smaller
Lgsy (super-moiré size), and it diminishes rapidly as Lgy increases. To obtain
averaged results, we compute the density of states (DOS) by averaging over 25
grid points of Ary for systems with Lgy < 50 nm. For systems with larger Lgyr,

we simply set Arg to zero, as the dependence on Ar, is negligible.

Fig. 3.4(a) illustrates the color map presenting the density of states (DOS)
computed for series I, characterized by the twist angles (6%,6°) = (0,0°). The
map shows the DOS variation with respect to #° and energy. Notably, brighter
colors indicate higher DOS values, while the dark blue color represents the ex-
istence of a gap. The upper part of the figure comprises an array of bars rep-
resenting the different 67 values within series I. The specific case of (9%,6°) =

(0,1.1908°), as examined in Fig. 3.3, is labeled as (ii).

Fig. 3.4(c) showcases the lower segment of (a), delineating the highlighted red
and blue curves that represent the first-order gaps of the single moiré potentials
A = « and f, respectively. Additionally, notable higher-order gaps are demar-
cated by green curves. In Fig. 3.4(b), we observe the corresponding energy gap

map with the vertical axis converted to electron density. The size of the black
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Figure 3.4: (a) Color-coded representation of the density of states (DOS) for

series 1 [(6%,0°) = (0,07)], plotted as a function of #° and energy. The upper

portion of the figure displays an array of bars corresponding to the listed values

of #°. (c) The lower portion of (a) highlights the first-order gaps of the single

moiré patterns A = « and f with red and blue curves, respectively, while the

green curves mark higher-order gaps. (b) The accompanying map depicts the

energy gaps, where the vertical axis is converted to electron density and the size

of black dots represents the gap width.
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Figure 3.5: Plots similar to Fig. 3.4 are shown for series I [(#,6°) = (0, —0)].

The numbers at the top (0, 30, ---, 120) indicate the relative angle between the

two moiré patterns, ¢° — ¢°.
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dots in this representation signifies the width of the respective gaps. These plots
demonstrate the continuous variation of the spectrum as a function of the twist
angle, irrespective of the fact that adjacent approximants in the series exhibit

distinct super moiré periods and, consequently, different numbers of minibands.

Fig. 3.4(c) shows the lower part of (a), wherein the red and blue curves
highlight the first-order gaps associated with the single moiré potentials A =
a and [, respectively. Additionally, typical higher-order gaps are denoted by
green curves. Fig. 3.4(b) corresponds to the map of energy gaps, where the
vertical axis is transformed into electron density. The size of the black dots
in this representation represents the width of the respective gaps. These plots
demonstrate the continuous variation of the spectrum as a function of the twist
angle, even in the presence of adjacent approximants with distinct super moiré

periods and, consequently, different numbers of minibands.

Fig. 3.5 exhibits similar plots for the series II, plotted against ¢ = —@°.
The numbers at the top (0, 30, ---, 120) indicate ¢° — ¢, which corresponds
to the relative angle between the two moiré patterns. For 6% =~ 0.5972° and

= 1.8377°, the relative angles of the two moiré patterns are 60° and 120°, re-
spectively, resulting in complete overlap of the two moiré periods. Consequently,
there is a relatively small number of subbands due to this double-period coinci-
dence. However, as we move away from these angles, we observe the emergence

of numerous tiny levels, reminiscent of Landau levels in a magnetic field.

The red dashed curve in Figs. 3.5(b) and (c) represents the positions of the
first-order gaps for the two moiré patterns, which precisely match due to the
condition || = |#°|. Interestingly, throughout the figure, the first-order gap
closes along the dashed line, leaving behind a small region with finite density of
states (DOS). The reason for the absence of the first-order gap will be elucidated

in the subsequent section.
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3.3.2 Topological invariants for band gaps

The microgap structure observed in Fig. 3.4 and 3.5 bears a resemblance to
the Hofstadter butterfly [60], which represents the energy spectrum of a two-
dimensional periodic lattice subjected to a magnetic field. In essence, the Hofs-
tadter system can be regarded as a one-dimensional Hamiltonian with a double
period [104, 105], where a fractal minigap structure emerges as the relative po-
sitions of the two periods are altered. Each minigap is characterized by a pair
of integers, denoted as p and ¢, whereby the electron density below the gap is
given by the expression n, = (pG* + ¢G®)/(2r), with G and G” representing
the wavenumbers associated with the two periods. In the context of the hBN/-
graphene/hBN system at hand, we encounter a two-dimensional analog of the
aforementioned scenario, wherein the double period is specified by (G, G$) and
(Gf , GQ’B ). Notably, as we shall demonstrate subsequently, all the observed gaps
depicted in Figures 3.4 and 3.5 can be distinctly characterized by siz topological
integers that are associated with specific regions in the k-space.

Let us consider a general situation where the two moire patterns are incom-
mensurate. In this context, we can establish four distinct unit areas by combining
the four independent reciprocal lattice vectors, denoted as {G1, G2, Gs, G4} =
{GY,G3,GY,GY}. These unit areas, depicted in Fig. 3.6, can be defined as

follows:

S =(Gix Gj)., Sy =(2m)*/S] (3.20)

YR

Here the notation (---), indicates the z-component that is perpendicular to the
plane. It should be noted that this component may assume negative values de-
pending on the relative angles between the two vectors. Specifically, S}, and S5,
represent the Brillouin-zone areas of the individual moiré patterns for A = a and
[ respectively, while the remaining terms correspond to cross terms that combine
the reciprocal vectors of the different moiré patterns.

The areas \S;;’s can be regarded as the projection of faces of four-dimensional
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G, Si

1 . 3 * * * * * * 3
Figure 3.6: Independent unit area elements {57, Sis, Sty Sa3, Sa4, 544} Obtained

by cross product of the reciprocal lattice vectors {Gi, Go, G3, G4} in hBN/-
graphene/hBN double-moiré system [Eq. (3.20)].

hypercube onto the physical 2D plane, which is analogous to the general argument
of the quasicrystal [106].

In a conventional periodic 2D system with primitive reciprocal lattice vectors
G, and G, the electronic spectrum is separated into Bloch subbands, each of
which accomodates the electron density |G x Gs|/(27)%. In a doubly-periodic 2D
system, in contrast, the areas Sj; all serve as units of the spectrum separation.
More specifically, we find that the electron density (per spin and valley) from
the Dirac point to any gap in the hBN/graphene/hBN system can be uniquely
expressed with siz integers vyo, 113, V14, V23, Vo4, V34 AS
! Vi

271)2 L ¥ »
(2m)* & (i) "

(3.21)

Ne =

These integers v;; are topological invariants i.e., they never changes as long as
the gap survives in a continuous change of the moire pattern.

Fig. 3.4(c) shows the values of v;; determined for significant gaps in case I.
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Fig. 3.4(b) represents the same plot, but with the electron density n. as the verti-
cal axis, where the black dots indicate spectral gaps with their sizes representing
the gap width. In the case of commensurate systems, the integers vys, -, 34 can

be determined from the commensurate approximants as follows.

When the S};’s have a greatest common divisor S. = (Gf x GY)., they can
be expressed as Sf; = s;;5, using integers s;;. The electron density n. is also
quantized in units of S¥/(27)?, and each band gap is characterized by an in-
teger r = n./[SF/(2m)?], which is the number of occupied subbands counted
from the Dirac point. Thus Eq. (3.21) becomes the Diophantine equation r =
E@’ﬂ vij(pig; — pj¢;)- For each gap in Fig. 3.4(c), we have the Diophantine equa-
tions as many as the number of the data points (i.e., the different systems), and
the (112, 13, V14, Va3, Va4, V34) 1s obtained as a unique solution of the set of equa-

by is a continuous function of the twist

tions. Here note that the area Z(%ﬁﬁ Vi S;
angle, while S} (and thus r, s;;) can only be defined for commensurate systems
and it discontinuously changes in changing the twist angle. This result indicates
that the same (112, ..., 34) are shared by infinitely many commensurate approx-
imants (with S¥ ranging from 0 to infinity) which exist in a close vicinity of a

specific (6%, 0°), and hence it is valid in the limit of S* — oo, i.e., incommensurate

systems.

Figures 3.5 (b) and (c) are similar plots for the case II. Here the condition
0%| = |6°| enforces S}, = S%,, and then v, and 34 becomes indeterminate. To re-
solve these two integers, we can consider an infinitesimal rotation of either the top
or bottom hBN layer. Interestingly, it emerges that 115 = v34 for all gaps in case
II. This fact can be explicitly demonstrated as follows: Let us start with a case II
system (6%,0°) = (6, —0), and then consider two distinct systems: X : (6%,0°) =
(0400, —0) and X' : (0%,0°) = (0, —0 — 00). Remarkably, X and X’ are identical
when the entire system is rotated by 180° with respect to an in-plane axis. Con-
sequently, they exhibit exactly the same energy spectrum. However, the same

energy gap is labeled by different sets of integers, denoted as v;; and v;;’ for X
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2000 2n 2x 0 2x on 0 2n
Wavenumber Wavenumber Wavenumber
Figure 3.7: Band structure of a one-dimensional Hamiltonian H = —9*/9z* +

2Vy cos G with Vy = 0,5, 10. The black solid lines represent the band dispersion
enk in the extended zone scheme, and the size of blue points indicates the spectral

weight projected onto the plain wave, denoted as A(g, ).

and X' respectively, such that >, o v3;57 = >, 5 v4;'S;;’. By interchanging the
layers A = a, 8 during the 180° rotation process, the unit areas of X and X’ be-
come related as (ST, S73, S74, 33, 534, S34) = (534", S15', 514", 535", 534/, S1o'). Con-
sequently, the condition (119, 113, V14, Vo3, Vag, V3a) = (V34,113 114", a3, 104, 12))
arises. In the limit of 46 — 0 and the gap persists, we obtain v;; = 1;;’, leading us
to the conclusion that v = v34. The constraint v;5 = v34 provides an explana-
tion as to why the first-order gaps of individual moiré potentials, (+1,0,0,0,0,0)
and (0,0,0,0,0,41) cannot open in Fig. 3.5(b).

The interdependence among the six unit areas S7,, -+ , S5, can be disrupted
through the uniform distortion of either the top or bottom hBN layer, resulting in
the breaking of its 180° symmetry. If we expand the parameter space to include
these distorted systems, we would require six topological integers (v19, - - , 34) to
characterize the minigaps, where the electron density is expressed as » w.j) Vii S5
This scenario is analogous to the situation observed in series II, where v, and

v34 can be differentiated by violating the condition S}, = S3,.
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Figure 3.8: (a) The quasi-Brillouin zones are shown for (6%,0°) = (0°,1.1908°),
with different colored thick lines corresponding to the four indicated gaps in (c).
The thin lines represent the Bragg planes associated with different reciprocal
lattice vectors. For instance, the red lines denote the perpendicular bisector of
G¢ and its 60n° rotation. (b) The quasi-Brillouin zone is illustrated for the gap
(2,2,0,2,2,1), where = and 2’ represent a pair of boundary segments connected
by the moiré potential. (¢) The band structure along the path from X to Y, as
shown in (a) is calculated for (0°,1.1908°) with the moiré potentials reduced by a
factor 7 (0 < n < 1). The solid black lines represent the band dispersion plotted
in the extended zone scheme, and the blue dots represent the spectral weight

A(q,¢). The bottom panels depict the same plot without the band lines.
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3.4 Quasi-Brillouin Zone

Actually, the area Z@’ N vijS;; can be attributed to a specific region within the
momentum space, commonly referred to as the quasi-Brillouin zone. In a conven-
tional periodic two-dimensional system defined by G; and G5, the Brillouin zones
(indexed by n = 1,2,3---) are delineated by a series of distinct regions enclosed
by the Bragg planes, which are the perpendicular bisectors of the reciprocalvec-
tors n1G1 + neGo [107]. Notably, each Brillouin zone possesses an identical area
of |G1 x G3|. Consequently, the carrier density beneath any gap is quantized to

an integer multiple of this area.

In a doubly-periodic two-dimensional system, analogously, we can establish
the concept of a quasi-Brillouin zone as an enclosed region delineated by the Bragg
planes associated with composite reciprocal vectors pG{ + ¢G5 + rGf + ng .
This notion of quasi-Brillouin zones has been employed in the study of conven-
tional three-dimensional quasicrystals, such as Al-Mn alloys, to elucidate the
presence of pseudogaps and system stability [70]. In the case of incommensu-
rate systems, where the reciprocal space is filled by an infinite number of Bragg
planes, the systematic definition of quasi-Brillouin zones, as observed in periodic
systems, becomes elusive. Nevertheless, we propose that each individual gap in
the spectrum can be associated with a distinct geometric shape, whose area cor-

responds to > i) v;;S5;. These shapes may include simple hexagons defined by

i
single reciprocal vectors, as explored in previous studies [26, 30, 31]. However,
more generally, they can manifest as non-convex polygons comprising multiple

segments derived from different Bragg planes, as depicted in Fig. 3.8(a).

The configuration of the quasi-Brillouin zone associated with a particular
gap can be precisely determined by considering the projection of plane waves
onto the zero potential limit. To illustrate this scheme, let us consider a simple
one-dimensional Hamiltonian with a single periodic potential of the form H =

—0%/0x* + 2V cos Gz, where G = 2. The eigenenergies and eigenfunctions are
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denoted as e,,; and |t ), respectively, where n represents the band index and k is
the Bloch wavenumber confined to the first Brillouin zone (—7 < k < m). Fig. 3.7
displays the calculated band structures for different potential amplitudes Vy =
0,5,10. The solid black lines depict the band dispersion ¢,; plotted within the
extended zone scheme, while the size of the superimposed blue dots corresponds
to the spectral weight projected onto the plane wave. This projection is given by

the expression

Alg.e) =Y Halnr)P3(e — emr), (3.22)

where |q) = €% represents the plane wave with —oo < ¢ < 0o, and the summation
over k extends across over the first Brillouin zone. The pink regions indicate
the positions of the first and second energy gaps. As the potential amplitude V}
decreases, the gaps become narrower, and the spectral weight gradually converges
to a simple parabolic form ¢ = ¢?. In the limit of Vj — 0, we can pinpoint the
specific points on the parabola where the energy gaps emerge within infinitesimal
Vo (indicated by red circles). Remarkably, these points precisely delineate the
boundaries of the Brillouin zone.

The same approach is applicable to the double-period system. In our hBN/-

graphene/hBN system, we define the spectral weight as follows:

Alg.e) =) g X[¢a)*d(e — ca), (3.23)

where ¢, and |¢,) denote the eigenenergy and eigenstates of the system, respec-
tively. Additionally |q, X) represents the plain wave basis associated with the
sublattice X = A, B of the monolayer graphene. For instance, we consider the
commensurate approximant corresponding to (6%, 0°%) = (0°,1.1908°), as depicted
in Figs. 3.2 and 3.3. We compute the eigenstates of the Hamiltonian given by
Eq. (3.12) by varying the moiré potentials (V% VfBN) with a reduction factor
n(0 <n <1). In Fig. 3.8(c), the band structures are illustrated for different val-
ues of 1 ranging from 0 to 1 along a path from X (the graphene’s Dirac point) to

a specific point Y shown in Fig. 3.8(a). The solid black lines represent the band
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dispersion plotted in the extended zone scheme, while the blue dots represent
the spectral weight A(q,e). At n = 0, the system exhibits the graphene’s Dirac
cone. By tracking the gap openings in the spectral weight as 7 decreases from 1
to 0, we can accurately identify the points where gaps emerge, analogous to the

one-dimensional case.

In Fig. 3.8(c), we examine four gaps characterized by distinct indices (112, ..., V34).
The (—1,0,0,0,0,0) is the first-order gap of the moiré potential A = «, and others
are double-moire gaps caused by the coexistence of the two moiré patterns. As
we approach the limit n — 0, we identify the wave numbers P, --- , Py at which
these gaps open. By repeating this process for paths in various directions, we ul-
timately obtain the quasi Brillouin zone on the (k,, k) plane, represented by the
trajectories of Py, --- , Py. These trajectories are depicted as thick colored lines in
Fig. 3.8(a). The figures comprising the quasi Brillouin zone consist of segments
of the Bragg planes, illustrated as thin lines. The first-order gap (—1,0,0,0,0,0)
yields a regular hexagon, which corresponds to the first Brillouin zone of the moiré
potential with A = a. The double-moire gap (—1,—1,0,—1,—1, —1) also results
in a hexagonal shape, albeit smaller in size, representing the first Brillouin zone
associated with a small reciprocal lattice vectors G2% 4+ G'1°. In contrast, the
gaps (2,2,0,2,2,1) and (—4, —2,0, —2, —2, —2) manifest as intricate, flower-like
structures composed of multiple segments of Bragg lines. In all cases, the area
of these figures is precisely equivalent to > (i ) vijS;;. Analogous to the conven-
tional Brillouin zone in periodic systems, the quasi Brillouin zone is also a closed
object, wherein each side of the boundary seamlessly connects to the other side.

Consequently, crossing the boundary will never lead one outside of the region.

The quasi Brillouin zone undergoes continuous transformations as the twist
angle varies, irrespective of the unit cell size of the commensurate approximants.
Fig. 3.9 illustrates this behavior for a slightly different angle (8%, 6°) = (0, 1.2967°)
[(iii) in Fig. 3.4]. In this case, the super moiré unit area of the system is approx-

imately ten times larger than that of Fig. 3.8(c), resulting in a higher density
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of band lines due to the band folding into the smaller Brillouin zone. However,
when observing the spectral weight (blue dots), we observe a similar structure to
Fig. 3.8(c), with the exception that the gap (—1,—1,0,—1,—1,—1) is not fully
open. Nonetheless, in the limit of n — 0, the gaps close at the Bragg planes with
the same indices. Consequently, we obtain a quasi Brillouin zone shape that is
nearly identical to that shown in Fig. 3.10(iii). In Fig. 3.9, numerous additional
band lines overlap but contribute minimally to the spectral weight. As a result,
they are disregarded in the determination of the zone boundary. This approach
differs from one that sorts all eigenvalues in energy and tracks the same level
index in the limit of zero potential [69], which is influenced by all overlapping
band lines.

In Fig. 3.10, we present the continuous evolution of the quasi Brillouin zones
as a function of the twist angle from (i) to (v) (corresponding to the labels
in Fig. 3.4). The figures exhibit continuous changes regardless of the abrupt
variations in the precise period of the approximants. The areas of these figures

consistently equal ) .d) VijSi;-
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Figure 3.9: Plot resembling Fig. 3.8(c) computed for (9%,6°) = (0°,1.2967°).

(i) (0,1.1010%) (ii) (0,1.1908°) (i) (0,1.2967°) (iv) (0,1.4625%) (v) (0,1.5516°)

e

(-1,-1,0,-1,-1,-1) (-1,0,0,0,0,0) (220221) = (-4,-2,0,-2,-2,-2)

Figure 3.10: Quasi Brillouin zones akin to Fig. 3.8(a) calculated for five distinct

angles. The indices (i) to (v) correspond to the labels in Fig. 3.4.
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Chapter 4

Twisted quasicrystal

In the preceding chapter, we elucidated the fractal energy bands within the hB-
N/graphene/hBN doubly periodic system, wherein we discerned characteristic
integers nestled within the band gaps. Within this chapter, we expound upon
the physical significance of these integers as the Chern number, utilizing a gener-
alized plane wave model. We employed a dual-plane wave potential with a twist,
and we present the results of numerical computations that mirror the fractal
band gaps akin to those in the prior chapter. Within these fractal band gaps, one
encounters characteristic integers that correspond to the dimensions of the quasi-
Brillouin zone. Subsequently, we demonstrate how these integers can be derived
through the contemplation of adiabatic charge pumping. Finally, we articulate
the formulation of the four-dimensional quantum Hall effect, thereby establishing
an unequivocal equivalence between these characteristic integers and the second

Chern number.
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4.1 Zone quantum numbers

4.1.1 General formulation

We consider a doubly-periodic 2D Hamiltonian given by

H= %+Va(r)+vﬁ(r). (4.1)

Here, V*(r) (A = «, ) represents a periodic potential defined as
Z ml,mg l m1b’\+m2b)‘) ) (42)
mi,m2
where b}, b} are the reciprocal lattice vectors, previously denoted as G7, G3. The
real-space lattice vectors are denoted as a?, a3, satisfying a, - b} = 270, serving

a similar role to L}, L. For simplicity, we fix the labels of the four reciprocal

lattice vectors as

(b1, by, by, by) = (b$,bS, b bY). (4.3)

We propose that in the presence of an energy gap in the spectrum, the electron
density below the gap is quantized as
vij
n v; = 4.4
¢ 27r Z i - Sw (4.4)
(4.4
Here, v;; (with 4, j = 1,2,3,4) are zone quantum numbers that characterize the

gap, and (7, j) represents a pair of distinct indices. Sy and S;; are defined as
Si; = (bix bj)., Sy = (2m)?/Sy;, (4.5)

where (- - ). denotes the z-component perpendicular to the plane. Sj; represents
the momentum space area spanned by two distinct reciprocal lattice vectors cho-
sen from by, bs, bs, by, while S;; corresponds to its real-space counterpart. We
have six independent areas S7y, Si3, S1y, Sags Sass Siy as illustrated in Fig. 4.1(a),

and we have 57, = —S7; and S; = 0 from the definition. Accordingly, we have
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six zone quantum numbers vig, 113, V14, Va3, Vou, V34, and we define vj; = —v;; and
vii = 0 for consistency. The areas S}; can be considered as the projection of faces

of four-dimensional hypercube onto the physical 2D plane.

The S;; represents the area of the parallelogram formed by the wave surfaces
of €™ and €7 as shown in Fig. 4.1(b). For later convenience, we define the
lattice vectors

&

:27T

o S,
(b x e.), af =52 (b x e.), (4.6)

¥
where e, donates the unit vector perpendicular to the 2D plane. The vector
set (a’,a¥) serves as the primitive lattice vectors corresponding to (b¥ b%) =
(b, b;) in momentum space. It spans the unit cell S;; = (a? x a¥), as illustrated

in Fig. 4.1(b). The lattice vectors of the potential v and 3 are given by af} = a,?

34

B —
and a, =a,

, respectively.

4.1.2 Example: Twisted triangular potentials

In the previous chapter [32], we confirmed the validity of Eq. (3.21) in a double-
moiré system consisting of graphene enclosed between hexagonal boron nitride
layers. While considering the intrinsic 120° rotational symmetry, we discovered
that it is unnecessary to consider a complete set of six independent integers.
However, by introducing a slight deformation to break the symmetry, we can
obtain six integers. In the subsequent sections, we will provide a comprehensive
analysis of the six distinct integers within the framework of the double-period
system described by Eq. (4.1) and involving a twisted double triangular potential.

The twisted double triangular potential is defined as follows:
3
VAr)=2Vp Y coslby - (r — 7). (4.7)
pn=1
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\ quy S]4 14

ar
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Figure 4.1: (a) Unit areas in momentum space, denoted by S} = (b; X b;).. (b)
Unit areas in real space, represented by S;;, along with the corresponding lattice
vectors @ and a¥. The grid lines in red (blue) depict the wave surfaces of 1"

and 27 (€37 and 4T,
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Here, 7 represents the origin of the potential for configuration A. The reciprocal

vectors for A = o are given by:

po 2T 1 b= 2r [0
@ \-1/v3 @ \2/V3
¢ = —by — bS. (4.8)

b, = R(9) b (4.9)

Here, R(0) represents a 2D rotation matrix with an angle . The corresponding

primitive lattice vectors are given by:

1 1/2
al =a , as =a ,
0 V3/2
aﬁ = R(0) a;,. (4.10)

Fig. 4.2 illustrates the potential profile for (a) a single potential, (b) a double
potential with § = 7° and (c) 6 = 30°. Throughout the following discussion, we
will consider the potential amplitude, which remains identical in both o and S,
as Vo = 0.213gg, where g9 = h?/(2ma?).

In general, the potentials denoted as o and 3 lack a shared period, resulting in
the absence of global translational symmetry within the system. In this analysis,
we determine the energy spectrum using commensurate approximants. These
approximants are derived by introducing slight deformations to the periodicity
of either v or (3, thereby creating a finite super unit cell with an area denoted as
S.. A series of commensurate approximants is prepared to mimic the continuous
rotation of the twist angle between the two potentials. Subsequently, the energy
bands and the density of states (DOS) are calculated for all systems. For each
B

approximant, the DOS is averaged over the relative translation Ary = r§ — 7,

to yield a continuous spectrum as a function of the twist angle.
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Fig. 4.3(a) illustrates the density map of the density of states (DOS) as a
function of # and energy. In this representation, a brighter color corresponds to
a larger DOS, while the dark blue region indicates the presence of a gap. This
density map is similar to the plots shown in Fig. 3.4 and Fig. 3.5. The upper
section of the figure displays an array of bars that represent the commensurate
approximants considered in the calculation. On the other hand, Fig. 4.3(b) is a
corresponding plot in which the vertical axis is converted to the electron density.
In this plot, dots are used to indicate energy gaps, and the size of the dots reflects

the width of the corresponding gap.

The zone quantum numbers v;; corresponding to each energy gap can be
determined through the following procedure. In a commensurate approximant,
the momentum space areas S}; share a greatest common divisor S = (27m)2/S.
and can be expressed as Sj; = s;;S; where s;; are integers. Additionally, the
electron density below a given band gap is quantized as n. = [S¢/(27)?]r, where
the integer r represents the number of occupied Bloch subbands. Consequently,
Eq. (3.21) transforms into a Diophantine equation r =}, ,, vi;s;;. By consider-
ing more than six commensurate approximants that share the same energy gap,
we obtain a system of Diophantine equations, with the number of equations equal
to the number of approximants. Through this process, we ultimately determine
the integers v;; as a unique solution. It is important to note that the original
double triangular potential, as described by Eq. (4.7), imposes constraints on
the S}; values, such as S7, = S3, and S7; = 53, due to its high spatial sym-
metry. These constraints hinder the complete identification of v;;. However, by
including systems with slightly broken symmetry within the set of commensurate

approximants, this issue is resolved.

At the bottom of Fig. 4.3, we present the zone quantum numbers (12, 13,
V14, Vo3, Vg, V34) that have been identified for several significant gaps labeled in

Fig. 4.3(a) and (b). In the low twist angle regime, the series M,, represents the

62



4.1. ZONE QUANTUM NUMBERS

moiré gaps, which can be expressed as follows:
M, =n(1,0,—1,1,0,1). (4.11)

In this region, the system is governed by a long-range moiré pattern, as observed
in Fig. 4.2(b). The discrete levels separated by M, can be interpreted as the
Bloch subbands of the moiré superlattice. The reciprocal lattice vectors for the

moiré period are given by:
GY=b —b;, GY'=b,—b, (4.12)
The area of the moiré Brillouin zone is determined by:
v = (GY X GY'). = Siy — 81y + S35 + 53y, (4.13)

which corresponds to the values (1,0,—1,1,0,1). Eq. (4.11) reveals that the
momentum space area is quantized by Sf;. In the large angle region (6 > 1°),
the system deviates from the long-wavelength picture, and a single periodicity
is no longer sufficient to effectively describe it. At # = 30°, in particular, the
system exhibits quasicrystalline behavior with 12-fold rotational symmetry [38,
39, 40, 37, 41, 42], as depicted in Fig. 4.2(c). It is observed that the zone quantum

numbers consistently follow the form:
Qmn = (m,n,2n, —n,n,m). (4.14)

he corresponding electronic density, as given by Eq. (3.21), is expressed as n, =
(v/3m + 3n)/a?, indicating the existence of two distinct units, v/3/a® and 3/a?,
to quantify the electronic spectrum.

The constraint imposed on the zone quantum numbers, as given by Eq. (4.14),
can be elucidated through the following explanation. By defining b'i (i = 1,2, 3,4)
as the 30° rotation of b;, we establish the relation (b), b}, b, b)) = (b3, by, by +
bz, —by). Consequently, the associated areas Sj;' = (b] x b}). can be expressed

in terms of the original areas, such as S}’ = S3,, Si3’ = —57; — 553, among
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V/Vo

(a) Single potential (b) 6 =7°
12

x/a x/a x/a

Figure 4.2: Contour plots illustrating: (a) a solitary triangular potential, (b) the
configuration of twisted double triangular potentials at § = 7°, and (c) the case

of # = 30°. [Refer to Eq. (4.7).]

others. When the system exhibits invariance under the 30° rotation, we expect
the equation >, » 3557 = > 5 vi7S;; to hold, with identical values of v;;.

By utilizing the relationship between S;;" and S},

we derive constraints for v;;,
ultimately leading to the emergence of Eq. (4.14). In Fig. 4.3, the other gaps are
designated as A, B,C,.... We observe that the zone quantum numbers for these
gaps consistently follow the form of (m,n,r,n —r,n,m). This behavior can be
explained by the coexistence of the 120° rotational symmetry, which necessitates
the form (m,n,r,n—r,n,m’), and the reflection symmetry with respect to the in-
plane axis between by and bs, which requires (m, n,r,n—r,n’, m). The constraints

imposed on the zone quantum numbers are verified through a similar reasoning

as in the case of the 12-fold symmetry.

4.1.3 Quasi Brillouin zones

The quantity > ) vi;S;; corresponds to an area in momentum space known as
the quasi Brillouin zone (qBZ). The boundary of the qBZ for a specific gap is
defined as a collection of k-points on the original free-electron band where the
gap begins to open in the limit of an infinitesimal potential [32]. Generally, the

qBZ is a polygon composed of multiple segments corresponding to Bragg planes,
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Figure 4.3: (a) A density map illustrating the Density of States (DOS) as a
function of # and energy in twisted double triangular potentials. The right panel
highlights and labels the major gaps. The upper section of the figures represents
the array of bars representing the commensurate approximants employed in the
calculation. (b) The corresponding plot with the vertical axis transformed to
represent the electron density, where the size of the dots indicates the width of
the respective gaps. The table at the bottom presents the zone quantum numbers

(v12, V13, V14, Va3, Va4, V34) for the highlighted gaps.
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which are the perpendicular bisectors of the composite reciprocal lattice vectors
G = my1b; +maoby +m3zbs+myby. Let us consider the twisted triangular potential
considered in the previous section. The qBZ for the moiré gap M, is found to
be the n-th Brillouin zone defined by the moiré reciprocal vectors G} and GY!
[Eq. (4.12)]. However, for general twist angles, the qBZ does not align with any
Brillouin zone of a periodic system. In the leftmost panels of Fig. 4.4(a) and (b),
we present the qBZs of the gaps Q—1,1 and (Q—3, 2, respectively, at § = 30°. The
areas of these qBZs can be easily computed using the decomposition illustrated
in the right two panels. For example, the area of the qBZ for the gap Q)_;1
[Fig. 4.4(a)] is expressed as the sum of three squares, g1, g2, g3, and two hexagons,
hy, ha, given by S(Qfm) = (g1 + 92+ g3) — (h1 + ha). We have g; = (b3 x by). =
=555, g2 = ST, + S5, g3 = ST5 + 574, b = 57y, and hy = 53,. Consequently, we
obtain S*(Q_11) = =57, + Si3 + 257, — S35 + S5, — 534, which agrees with the
zone quantum numbers (—1,1,2, —1,1, —1) obtained in the previous section.

Similarly, the area of the quasi Brillouin zone (qBZ) for the gap )_32 can
be expressed as S*(Q_32) = p1 + p2 + p3s — 21 — ¢o, as depicted in Fig. 4.4(b).
Here, p; corresponds to the Wigner-Seitz cell in the reciprocal lattice spanned
by b; and bs, thus p; = Si;. The quantities ¢; (hexagon) and ¢, (six triangles)
represent the first and second Brillouin zones defined by the primitive vectors
b; — b3 and by — by. Consequently, we have ¢ = g2 = [(by — b3) X (by — by)], =

1o +S5,— ST, +S55. Hence, the area S*(Q—3, 2) yields the zone quantum numbers
(—3,2,4,-2,2,—3).

At a twist angle of 30°, symmetry constraints such as g; = g5 = g3 are
satisfied, and one might perceive that the decomposition of the qBZ area into S;;’s
is not unique. However, the area quantization with the same v;; remains strictly
valid when the potential is perturbed to break the symmetry. This guarantees

the uniqueness of the decomposition.

Fig. 17 showcases the qBZs of (a) —11 and (b) Q_32 in the twisted tri-

angular potential with 6 = 30°. The right two panels in each row illustrate the
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Figure 4.4: the qBZs of (a) Q_11 and (b) Q_32 in the twisted triangular potential
with # = 30°. The right two panels in each row illustrate the decomposition of

the qBZ into the primitive Brillouin zones.

decomposition of the qBZ into the primitive Brillouin zones.

At 30°, we have the symmetry constraints such as g; = ¢go = g3 and one might
think the decomposition of the gBZ area into S};’s is not unique. However, the
area quantization with the same v;; strictly holds when the potential is deformed

to break the symmetry, and this guarantees a uniqueness of the decomposition.

By using the serial notation Eq. (3.6), Eq. (3.9) can simply be written as
b, = p;bi + ¢;b5. (4.15)
Accordingly, the unit areas Eq. (4.5) become
Si = (pig; — pjai)Se, (4.16)

where S = (b x b)), = (27)%/S, is the area of the first Brillouin zone of the
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10570

o
o

Figure 4.5: Band structures of commensurate approximants (a) to (f) (speci-

fied in Table 4.1) for the twisted double triangular potential in the vicinity of

approximately 30 degrees. The path followed in the Brillouin zone is denoted

as (I A,C, B,T") = (0,b5/2, (bS + b5)/2,b5/2,0). Within the gaps, the integers

indicate the number of bands located below each respective gap, denoted as r.

(a) (b) () (d) (¢) ()
0 29.4093 29.5046 29.6566 29.8417 29.9576 30.0579
p1 3 3 25 11 11 11
P2 8 8 9 4 30 30
P3 8 8 34 15 30 30
P4 3 3 -9 —4 11 11
7 —8 -9 —27 —4 —30 —11
¢ 11 34 37 15 41 15
s -3 9 -10 4 ~11 —4
Q 11 25 37 11 41 15
r[Q-9¢] | 270 483 3252 504 3762 1377
r@Q-11] | 142 254 1710 265 1978 724
7[Q—32] 90 161 1084 168 1254 459
r[Q-106) | 76 136 916 142 1060 388
r[Qua—s) | 28 50 336 52 388 142
r[Q_127] | 24 43 290 45 336 123

Table 4.1: Twist angle 6 and the indeces (p1, p2, Ps, P4; ¢1, 42, G3, q4) of the com-

mensurate approximants (a) to (f). The r[Q,,,] is the number of the occupied

bands below the gap Q,.n-
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commensurate approximant. Eq. (3.21) becomes the Diophantine equation,

r = Z Vij(pin - iji): (4-17)
(4.4)

where r = n./[S?/(2m)?] is for the number of the bands below the gap.

In determination of the zone quantum numbers v;;, we consider a series of
commensurate approximants near the target system, and solve a set of Diophan-
tine equations Eq. (4.17) for all the approximants. As an example, we show in
Fig. 4.5 the band structures of six commensurate approximants (a) to (f) for
the double triangular potential near § = 30° [see, Fig. 4.3], which are specified
by (p1, p2, P3,P4; q1, G2, 3, q4) in Table 4.1. The Brillouin zone path is taken as
(I'VA,C, B, T') = (0,b5/2, (b5 + b5)/2,b5/2,0). Table 4.1 also shows the number
of the occupied bands 7 for some major gaps @, . The six systems have very
close potential profiles and similar spectral structures, while it have completely
different sizes of the commensurate unit cells and thus different numbers of bands
below the same gap. For the largest gap ()_; 1, for instance, the number of the
bands are r = 142,254, 1710, 265, 1978, 724 for the six systems, and accordingly
we have six independent equations of Eq. (4.17) with six unknown variables v;;.
By solving the set of the equations, we find v;; = (—1,1,2,—1,1, —1) as a unique
solution. All other approximants sharing the same gap have the same solution of

Vij.

4.2 Adiabatic charge pumping

In this section, we demonstrate that the zone quantum numbers, as introduced
in the preceding section, serve as descriptors for the adiabatic charge pumping

occurring during the relative sliding of the doubly periodic potential.
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4.2.1 1D systems

Initially, we examine a one-dimensional doubly periodic Hamiltonian given by

H:%‘I‘Vi(l’)‘f“%(l’), (4.18)

where Vi(x) = > Vi, e™® (with i = 1,2) represents a periodic potential
characterized by a period of a; = 27/b;.

where V;(z) = Y, Vim e™%®(i = 1,2) is a periodic potential with the period
of a; = 2w /b;. Now, let us contemplate a cyclic process wherein one of the periodic
potentials, denoted as V;(x), undergoes an adiabatic translation over the span of
its period a;, while the other remains fixed. This translated potential is elegantly

expressed as follows:

V(a: — —a,) Z%me biz=d:) (4.19)

In this context, an incremental increase in ¢; from 0 to 27 corresponds to a
unitary translation of V;(z) spanning a distance of a;.

We establish AP; as the variation in electric polarization ensuing from a uni-
tary translation. In one spatial dimension (1D), AP, assumes the dimension of
electronic density, defined as the quantity of electrons per unit length, multiplied
by length, rendering it dimensionless. It is imperative to observe that our defini-
tion of polarization excludes the contribution of the electric charge, represented
by —e. In this context, we posit the following proposition: In instances where
the Fermi energy resides within a band gap, the alteration in polarization per
cycle, denoted as AP;, and the electron density situated beneath the energy gap,

denoted as n., exhibit the following relationship:

on.
ob;

AP, =2r (4.20)

Eq. (4.20) can be established through the following contemplation. Let us
engage in an adiabatic process wherein the wavenumber b; undergoes a slight

modification to b; + db;. As elucidated in Fig. 4.6, the corresponding alteration of
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Vi(x) at a point situated at a considerable distance from the origin (|x| > a;) can
be conceived as a parallel translation of the unchanging potential V;(z). Taking
into account the phase factor b;x — ¢; in Eq. (4.19), the transition from b; to
b; + db; can be encompassed by an adjustment of ¢; denoted as d¢p; = —db;, x.
This adjustment engenders a phase shift in the effective translation at point z.
Since this procedure corresponds to n = d¢;/(2m) cycles of a unitary translation,
the quantity of electrons traversing through the point z is expressed as nAP; =
—AP;0b;, x/(2m). Inlight of the uninterrupted flow of electric charge, this must be
in harmony with the shift in the number of electrons within the region spanning
from 0 to z. This begets the equation —AP,0b;, x/(27) = —xdn., culminating in
the derivation of Eq. (4.20).

In the doubly-periodic system, as defined by Eq. (4.18), each spectral gap
exhibits distinctive characteristics denoted by a pair of integers, m; and ms.
These integers determine the electron density beneath the gap, as expressed in
the following equation:

1 mp | M2
Ne = — (mMyby + maoby) = — + —, 4.21
27r(11 2bs) o (4.21)
Utilizing Eq. (4.20), we deduce AP; = m;, signifying that m; electrons traverse
any given cross-section of the system. It is noteworthy that these integers, m,

and may, correspond precisely to the first Chern numbers [97, 98, 88, 84].

4.2.2 2D systems

The same rationale applies to a doubly-periodic two-dimensional Hamiltonian,
as delineated in Eq. (4.1). We deliberate upon an adiabatic translation of the
periodic potential V* (A = a or 3), as specified in Eq. (4.2), by af;. Our objective

is to quantify the alteration in electric polarization throughout this procedure.
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sin bx

AR

0 X

Figure 4.6: Schamatic picture of an adiabatic process slightly changing the
wavenumber of a 1D periodic potential. At a point far from the origin (|z| >

27/b), the change can be viewed as a parallel translation of the potential.

The parallel translation of V*(r) is articulated as follows:
¢ ¢
V(- ot - a))

_ Y v, e tir—o (4.22)

mi,m2
where we used al’) - b) = 27m0,,. An increase of ¢ﬁ from 0 to 27 gives a unit
translation of the potential V* by a;\L.

The situation can be systematically described by a generalized Hamitonian

H = p?/(2m) +V with

V(r;¢r,...,on) =
ST Vi € 2o miber =60, (4.23)
TN yenny my
The current double-period system corresponds to N = 4, where by, ..., by are

given by Eq. (3.6), and

(61, P2, b3, ba) = (65, 65, O7, P5).- (4.24)

We contemplate a cyclic procedure in which the parameter ¢; corresponding to
a specific index ¢ undergoes an adiabatic augmentation from 0 to 2. When the

Fermi energy resides within a band gap, we can demonstrate that the alteration
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in electric polarization throughout this process is encapsulated by the equation:

on
AP, = 21—, 4.25
9, (4.25)

This equation represents the two-dimensional analogue of Eq. (4.20). Now, it is
pertinent to note that AP; assumes the dimension of electronic density (defined
as the number of electrons per unit area) multiplied by length.

Eq. (4.25) is derived as follows. Let us contemplate the modification of the
potential V() when b; is transformed into b; + db;. In a manner akin to the
one-dimensional scenario, the alteration at a point distanced significantly from
the origin (|| > 27/|b;|) is analogous to a parallel translation, denoted as d¢; =
—0b; - . It is crucial to recognize the presence of the phase factor b; - r — ¢;
in Eq. (4.23). This induces a change in polarization at the point r given by
AP;i¢p;/(2m) = AP;(—0b; - 7)/(2m). The quantity of electrons traversing a line

segment from r to r + dr is expressed as:
dN, = [(dr x e,) - AP](5b; - r)/(27). (4.26)

Now, we contemplate a substantial closed trajectory denoted as C' situated
within the two-dimensional plane. Let N, represent the count of electrons en-
compassed by C'. Upon altering b; to b; + 0b;, we assess the modification in N,

by conducting an integration of Eq. (4.26) along the trajectory. This yields:

1
ON, = jQ{ dN, = — 7{ [(dr x e,) - AP;](0b; - )
c 2m Jo
S

_ 2 AP . 6b 4.
S~ AP, - b, (4.27)

Wherein, S represents the expanse delineated by the confines of C', and we employ
the correlation j;C(dr X e,)ur, = S0,, in the two-dimensional realm.
As a consequence, given that n, = N, /S, we ultimately arrive at Eq. (4.25).
In a two-dimensional doubly-periodic configuration, the electron density be-
neath an energy gap undergoes quantization, a principle rigorously established in

the preceding section. Employing Equation (4.25) in conjunction with Equation
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(3.21), we can explicitly compute the charge pumping, denoted as AP;. This

calculation yields:

1 aS;,
AP = — M
! 2 g:) Vks sz
7]

1
=5 > (b x e2), (4.28)
J

It is noteworthy that we have employed the relationship Sj; = (b; x b;) - e, =
(b; x e,) - b; in this derivation.

By making use of the real space lattice vectors as expressed in Eq. (4.6), we
can reformulate Eq. (4.28) as follows:

AP, = %aij. (4.29)
i Y

The physical interpretation of Equation (4.29) unfolds as follows: Equation (3.21)
conveys that within each unit area Sj;, v;; electrons find their abode. When,
for example, ¢; undergoes a transition from 0 to 27 (i.e., the movement of
Ve by af), the wavefront associated with by shifts by a single period. This
translates to displacements in the unit areas Sy, Si3,S14 by al?,al? al* corre-

spondingly [Refer to Fig. 4.1 (b)]. For each j = 2,3,4, the electron density of

v1j/51; relocates by a}j , culminating in a modification in polarization described

by AP, = Zj:2,3,4(’/1j/51j)aij-

4.3 4D quantum Hall effect and the second Chern
numbers

In the subsequent discussion, we elucidate the concept of adiabatic pumping,
previously expounded upon in an alternative fashion, employing the dimensional
reduction technique associated with the four-dimensional (4D) quantum Hall ef-

fect (QHE) [79, 108, 75, 109, 110, 111, 112]. We shall establish that the zone

quantum number v;; precisely corresponds to the second Chern number.
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$a, i

(b) B; = (Bxi, By;) (i = 1,2,3,4)
B;
B,
21,22, 23, Z4 B,

y -
B b ></,
y y
J< )

x
¢ g, Az, az, Ay

Figure 4.7: (a) Right: Three-dimensional stack of 2D free-electron systems under
in-plane magnetic field. Note that the vector B is given by B = (B,., B,.) =
(B, —B,), which is not the natural expression of the magnetic field (B,, B,).
Left: the corresponding 2D system after the dimensional reduction (see the text).
The wavevector b of the sinusoidal wave is proportional to B in the left panel. (b)
Six-dimensional stack of 2D free-electron systems under in-plane magnetic field

(right) and the corresponding 2D system with four sinusoidal potentials (left).
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To illustrate this concept, we begin with the three-dimensional Quantum
Hall Effect (QHE) as a straightforward example. Imagine an unbounded stack
of two-dimensional free-electron systems, as depicted in Fig. 4.7(a). These sys-
tems are continuous in the z and y dimensions while discrete in the z direc-
tion, featuring a lattice spacing of a,. In the context of the z dimension, we
assume nearest-neighbor tight-binding interactions denoted as t, between adja-
cent layers. We subject this system to a magnetic field characterized by B, =
0, A, —0,A,. Specifically, we consider a uniform, in-plane magnetic field denoted
as (Byz, B.;,0). The vector potential A is expressed as A = (0,0, A,), where
A, = B,,x + B,y (it’s important to note that B,, = —B,,). The dynamics of
an electron are governed by the Schrédinger equation:

P>

—Vv y I _tz[i%Azaz\I] y z
5o (x,y, 2) e (z,y, 2+ a,)

+ e_i%AZ“Z\II(x, Y,z — az)] = EV(z,y, z), (4.30)

Wherein, we have p = —ih(0,, 0, ), representing the in-plane momentum. As the
Hamiltonian exhibits periodicity in the z dimension, we can factorize the wave-
function as ¥(z,y,z) = ¥(z,y)e**. Consequently, Equation (4.30) simplifies

into a two-dimensional Schrédinger equation:

2

Tt =2t cos(b- @+ 6.) = EY, (4.31)

Here, b = (ea,/h)(By:, By.), * = (z,y), and ¢, = k.a,. The system now operates
in two dimensions, featuring a solitary sinusoidal potential with wave number b.
Notably, the phase factor ¢, corresponds to the wavenumber in the z direction.
Expanding into higher dimensions presents a straightforward progression. We
delve into the realm of a six-dimensional (6D) system, spanning (z, y, 21, 22, 23, 24)
space. This configuration maintains continuity along the z and y axes while em-
bracing discreteness along the z;, (i = 1,2, 3,4) dimensions. Within this intricate
framework, we introduce a uniform magnetic field, with B,;, encompassing the
yzi-plane and By, (= —B,;) permeating the z;z-plane. To describe this, we for-

mulate the vector potential A = Z?Zl(Bm-x + Byy)e;, where e; signifies the unit
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vector aligned with the z; direction. Fig. 4.7(b) provides a schematic representa-
tion of this system. Given the Hamiltonian’s periodicity with respect to each z;,
we express the wavefunction as W(x,y, 21, 22, 23, 24) = ¥(x,y)e’ =i F%  where k;
denotes the Bloch wavenumber defined within the range w/a; < k; < 7/a;. The

6D Schrodinger equation is reduced to (x,y) space as

2 4
Yy _
SV ; 2t; cos(b; - + ¢;)1) = Ep, (4.32)
where
ea;
b, = F(Bm Byi)v O; = k;a;. (4-33)

This is tantamount to the 2D double-periodic system under investigation in this
paper. The inclusion of higher harmonic terms within b; can be achieved by
postulating additional layer hopping in the z; direction.

The electromagnetic response of the system is characterized by the second
Chern number [79, 108, 75, 109, 110, 111, 112]. Let us now turn our attention to a
commensurate approximant, wherein the periodicities of b;(i = 1,2, 3,4) converge
into a common super unit cell. Here, we introduce the definition of the Bloch
wavenumber (k,, k,) within the corresponding super Brillouin zone. The Bloch
Hamiltonian governing the 6D system is expressed as H(ky,ky, k1, ko, ks, k4).
Within this context, we delve into the 4D subspace k,, = (ky, ky, ki, k;) by selecting
two indices ¢, 7 from the set 1,2,3,4, while keeping the remaining two wavenum-
bers fixed. When the spectrum of 4D Hamiltonian H(k,, ky, ki, k;) is gapped, the
second Chern number for the gap is defined as [79, 108, 75, 109, 110, 111, 112],

2) 1

. 4 VA
ij %/Bzd k:(f'u pTI'[.ELVF,\p] - Z (434)

Here BZ stands for the 4D Brillouin zone (a 4D torus), e** is the antisymmetric

tensor of rank 4 and F,, is a matrix defined by

Fol = 0,457 — 0,457 +i[A,, A7,

A (k) = —ila, k|0,]8, k), (4.35)
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where 0, = 0/0k,, |a, k) is the eigenstates of the a-th band, and the indeces a

and [ run over all the bands below the gap. It is alternatively expressed as [79]

1
o) —— d*k "M Ty [P

£ 87T2 B7Z

oP oP 0P P
Ok, Ok, Oky Ok,

(4.36)

where P(k) = Y

acoce |0, k) (a, K| is the projection operator to the eigenstates
below the gap. Note that we have six second Chern numbers depending on the
choice of 7, j(i # j) from 1,2,3,4.

When the Fermi energy is in the gap, the electro-magnetic response of the
4D system is given by [79, 108, 75, 109, 110, 111, 112]

3
I = 5O BB, (4.37)

Here, jfle) represents the electric current density within the 4D space. Upon
the application of a weak electric field F; to the system, the wavenumber k;
adiabatically evolves to k; + (e/h)A;(t), where E; = —0A;/0t. In the context of a
cyclic process, where ¢; = k;a; undergoes a transition from 0 to 27 within a time
period T, the corresponding electric field is given by:
b1
ea; T

E;=— (4.38)

In accordance with Eq. (4.37), the electric field E; elicits an electrical current

(Jios Jy ) 4P = (e3/ hQ)Ci(]? )(=B,;, By;)E;. The corresponding two-dimensional cur-

rent density per a singular stratum is expressed as ng) = jff‘D)aiaj, resulting
in
.. € 2 1
(]x7]y>(2D) = _goi(j)(bj,w _bj,:c)fv (439)

utilizing Eqgs. (4.33) and (4.38). The complete alteration in polarization through-
out the progression (¢; : 0 — 27) is denoted as AP; = j?P)T/(—e). Through

the addition of the summation over index j, we ultimately derive

1 (2)
AP =~ qu (b; x e.). (4.40)
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It is evident that Eq. (4.40) precisely mirrors the structure of Eq. (4.28). Upon

juxtaposing the two equations, we promptly deduce
Vij = —Oz(f), (441)

signifying that the zone quantum numbers coincide with the second Chern num-
bers.

By employing Eq. (4.36), we conducted a numerical evaluation of Cl(f ) for
select commensurate approximants within the context of the twisted triangular
potential series expounded in Section 4.1.2. This analysis conclusively corrobo-
rated the concordance with —uv;;.

Inasmuch as Eq. (4.36) encompasses the integration over the Brillouin zone
of the commensurate approximant, one might surmise that C’z(]2 ) explicitly hinges
on the Brillouin zone dimensions (inversely related to the commensurate unit
cell dimensions), a parameter that ostensibly lacks intrinsic significance. How-
ever, in actuality, the integrand Tr]- - - | itself exhibits proportionality to the count
of subbands residing beneath the energy gap (commensurate with the unit cell
dimensions). This proportionality effectively annuls the contribution of the Bril-

louin zone integral, bestowing upon us invariant integers, which remain unaffected

by the commensurate period.
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Chapter 5

Conclusion

In this thesis, we present comprehensive studies on the energy spectrum and and
topological gap labeling in quasi-periodic double moiré systems.

In Chapter 3, we consider the electronic band structure of hBN /graphene/hBN
trilayer system, as a representative example of the double moiré systems We cal-
culated the energy spectrum as a function of the two twist angles, by employing
the effective continuum Hamiltonian method. We discovered that the energy
spectrum exhibits a fractal pattern akin to the Hofstadter’s butterfly, where an

intricate mini-gap structure continuously changes with the twist angle.

An important observation is that each mini-gap are characterized by a unique
set of six integers, which are associated with six Brillouin zones arising from the
redundant periodicities. More specifically, the electron density below any single
gap in the spectrum can be written as an integer linear combination of the six
Brillouin zone areas with the six integer coefficients. For each gap, the six integers
remain invariant upon a continuous change of the twist angles, regardless of the
commensurability of the double moiré pattern. We also found that the associated
momentum-space area given by the six integers corresponds to a certain geomet-
ric shape which we referred to as the quasi Brillouin zone. Its snow-flake like
structure is defined by multiple Bragg planes, and it can be uniquely identified

by the spectral distribution in the zero potential limit.
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CHAPTER 5. CONCLUSION

In Chapter 4, we explore the topological origin of the gap-labeling integers in
2D quasi periodic systems. First, we demonstrated that fractal energy spectrum
as in hBN /graphene/hBN trilayer can also be seen in mre general doubly-periodic
systems, which are described by a continuum Hamiltonian with a pair of periodic
potentials. There the gaps can be characterized by six integers as well. Sub-
sequently, we considered an adiabatic charge pumping induced by the relative
sliding of the periodic potentials, and found that the pumped charge when the
Fermi energy is in a certain gap is expressed by the six gap-labeling integers
for the gap. Finally, we demonstrated a formal mapping between the adiabatic
charge pumping and 4D quantum Hall effect, and found that six gap-labeling
integers are equivalent to the second Chern numbers which quantize 4D Hall ef-
fect. These topological characterization of energy gaps is generally applicable to
any quasi-periodic systems having redundant reciprocal vectors more than spa-
cial dimensions. If the system has n independent reciprocal lattice vectors in a
d-dimensional space, we have ,,Cy different choices of the fundamental Brillouin
zones. For example, the Penrose tile has 5 reciprocal vectors in 2 dimension, thus
we have 10 fundamental Brillouin zones and zone quantum numbers.

In conclusion, the thesis established that energy gaps in quasi-periodic 2D
systems must be labelled by a set of multiple topologically-invariant integers.
The topological characterization proposed in this study can be applied to other
quasi-periodic 2D systems, such as twisted trilayer graphene [61, 62, 63, 64],
twisted bilayer graphene on hBN [113, 114, 115], 30° twisted bilayer graphene
[39, 37, 41, 42|, and also twisted trilayer of transiton metal dichalcogenides.
The effective continuum approach combined with the commensurate approximant
method employed in this thesis would be useful to capture the spectral features
and the gap-labeling integers in incommensurate systems, which are typically

challenging to address by the conventional atom-based methods.
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