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1 Introduction

The AdS/CFT correspondence [4] plays an extremely important role since it gives a

nonperturbative definition of quantum gravity in terms of dual field theory. Through

this, we can deepen our understanding of the emergent anti-de Sitter (AdS) spacetime

bulk physics. Similarly, we are naturally motivated to establish the holographic

framework for de Sitter (dS) spacetime. This is because the holographic principle has

originally developed independently of the concrete structure or solution of spacetime

[5, 6]. dS spacetime is a good model of our current universe and describes well the

features of the accelerating expansion of the universe. Therefore understanding de

Sitter’s holographic principle will lead to a better understanding of the structure of

quantum theory in our universe.

However, the holographic principle in dS spacetime is not as clearly understood

as in AdS. Since AdS and dS spacetime are connected by an analytic connection,

it seems that the dual field theories are connected by a similar analytic connection

[7–9]. In this case, the holographic screen on which the field theory is considered

would be the spacelike surface. However the field theory on the space-like sur-

face has an imaginary central charge and has no time, thus its physical meaning

is not much clear. Another proposal was made by Susskind [3], where the claim

is that the two-dimensional dS spacetime reproduced in the framework of Jackiw-

Teitelboim(JT) gravity is equivalent to the double-scaled Sachdev-Ye-Kitaev (SYK)

model with q ∼
√
N , where q specifies the size of the interaction terms in the Hamil-

tonian schematically as H ∼ ψq and N is the number of flavors of fermions in the

high temperature [10, 11] . Using the static patch holography [12], the holographic

screen is placed on the stretched horizon which is close to the dS horizon. Some re-

sults on this model can be found in [13–17]. Before discussing Susskind’s argument,

we will briefly comment on two important quantities developed recently: out-of-time

ordered correlator (OTOC) and complexity.

OTOC is one of the good indicators to show whether a theory is chaotic or

not and is a correlation function that is not aligned in time order. It is related to

the commutator of operators and describes how much the influence of one operator

is likely to affect distant operators. In particular, in the holographic setting, this

corresponds to considering a black hole geometry with a small energy inserted as a

perturbation from the boundary, which induces a shock wave geometry due to the

exponential blue shift near the horizon. This shock wave destroys the entanglement

structure of the thermo-field double state and shows the characteristic behavior of

chaos [18]. In this way, a black hole exhibits a very large chaotic nature [19], which

turns out to satisfy the so-called MSS bound [20]. This in turn implies that a field

theory that has gravitational dual must show the similar maximally chaotic nature

of a black hole. For example, the SYK model reproduces this MSS bound in its
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low temperature limit [21, 22]. This is one of the reasons why the SYK model is

extremely useful for understanding two-dimensional gravity.

Complexity for a state |ψ〉 on the field theory side is originally the minimum

number of gates required to achieve that state |ψ〉 from a reference state [23]. A geo-

metric definition of complexity as the length of shortest geodesics on the (Riemann)

manifold of unitary operators has been introduced in [24] for quantum systems with

a finite number of degrees of freedom. In the holographic setting, it reflects the

geometrical structure of the bulk spacetime, especially it captures the feature of the

late time t-linear growth of the Einstein-Rosen bridge wormholes [25, 26].

There are various proposal for holographic complexity, called complexity = action

(CA) [27, 28], CV2.0 [29], complexity = volume (CV) [30] respectively. These cor-

respond to the full gravitational action of the Wheeler-DeWitt (WdW) patch (CA),

the spacetime volume of the WdW patch (CV2.0), or the volume of codimension-one

extremal surfaces (CV). Qualitative nature of all these proposals at late time match

in many situations1, and recently, it has been pointed out in [40, 41] that an infinite

class of such observables can exist which might correspond to some arbitrariness of

the choice of gates in the field theory complexity definition.

Holographic complexity for AdS in JT gravity and in two-dimensional dilaton-

gravity theories has been investigated in [33–38, 42]. Semi-classical corrections give a

volume that saturates at late times [43–45]. In recent years, holographic complexity

calculations have also been performed in hybrid spacetimes interpolating between

AdS and dS [39, 46], for general-dimensional dS spacetime in Einstein gravity [47],

and for two-dimensional dS spacetime in JT gravity [39]. See [26, 48, 49] as good

reviews. Applications of the geometric approach to free quantum field theories have

been studied in [50–53]. Extensions of complexity to CFTs have been addressed in

[54–61].

Now let us return Susskind’s hyperfast conjecture [3]. This claim consists mainly

of the following two conjectures. First, if we consider the stretched horizon as a holo-

graphic screen, then the behavior of OTOC, i.e., scrambling, should be hyperfast in

the sense that there is no logS factor for scrambling time2. Second, the growth rates

of complexity must also exhibit a hyperfast behavior. This is naturally understood

from the fact that dS spacetime well reflects the properties of the expanding universe.

In [3, 47], as we approach a critical time τ = τ∞ on the stretched horizon clock, the

1Jackiw-Teitelboim (JT) gravity [31, 32] is one of the exception where CV and CA can behave

differently [33–38] due to dilaton. This is because the JT vacuum is characterized by both the dilaton

and metric and the dilaton gives the difference. See for recent works on JT gravity complexity on

dS [1, 39].
2If the position at which the operator is inserted is just above the stretched horizon which is

very close to the cosmological horizon, the behavior of the OTOC is very different from the one of

the chaotic system due to the disappearance of warping factor. Clearly, the behavior of the OTOC

depends on where one inserts the operator in dS.
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complexity of dS spacetime behaves as follows,

lim
τ→τ∞

CV →∞, lim
τ→τ∞

dCV
dτ
→∞. (1.1)

Thus, the divergence of complexity itself as well as its growth rate can be seen as an

evidence of the hyperfast property of dS complexity.

On the other hand, two-dimensional JT gravity [31, 32] has been actively studied

in recent years. JT gravity in AdS background, which is an effective low-energy the-

ory for near-extremal Reissner-Nordström black holes in four dimensions, has deep

connections with the SYK [21, 62] and the random matrix theory [63]. The reason

for our interest in JT gravity arises from its simplicity and analytic tractability, as

well as from the hope that it may be regarded as a solvable toy model for higher-

dimensional quantum gravity. Given this, it is quite natural to investigate JT gravity

in the dS background too.

In this thesis, we focus on holographic complexity for dS spacetime. Then, first

of all, the hyperfast property, as Susskind says, is formulated properly on the bulk

side. This is also the work of [47]. Then, in the case of the two-dimensional de Sitter

spacetime in JT gravity specifically focused by Susskind, we give a good definition

of complexity. This is the author’s work [1].

As far as we are aware of, complexity computations in JT dS2 have been done

only using the CV conjecture. One surprising fact in this regard is that holographic

volume complexity in dS2 has been found to be upper-bounded by an O(1) value at

early times [39, 47], prior to a sudden infinite jump at a critical time [47]. However, at

first sight, this result might cause confusion from the following perspective. Contrary

to the late time linear growth of the wormhole volume behind the event horizon of

an AdS black hole [25, 26], the dS space beyond the cosmological horizon of the

static patch increases exponentially in time [3]. This exponential expansion of dS

is one of the reasons why Susskind originally conjectured the growth of holographic

complexity in dS to be “hyperfast” [3]. In light of this, one might ask why holographic

complexity for dS2 does not keep growing as for AdS black holes.

One simple answer to this question is that in two dimensions there is only one

spacelike direction and no “volume”. For instance, in four-dimensional gravity, the

black hole horizon is a two-sphere S2, whereas in two dimensions it is just a point.

The lack of spatial dimensions prevents the metric from reading the characteristics of

the expanding dS space. Does this mean that the features of the expanding universe

disappear in two dimensions? No, because there is a dilaton.

To gain a better grasp on this point, recall that in the original CA papers [27, 28]

for AdS spacetime in Einstein gravity

S =
1

16πG

∫ √
−g (R− 2Λ) , (1.2)
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it is pointed out that CA is related to CV as

C ∼ V

G`
∼ W

G`2
, (1.3)

where ` is the curvature radius of the background spacetime, G is Newton’s con-

stant and V,W is the space and spacetime volume of the WDW patch, respectively.

Schematically, these are related by

W ∼ ` V . (1.4)

In JT gravity, there is a crucial difference due to the dilaton. In this case, one can

never get the action in the so-called “Einstein-frame”, rather one always has the

“string-frame” form of the action:

S =
1

16πG

∫ √
−g φ (R− 2Λ) + · · · , (1.5)

where φ is the dilaton. Even after Weyl transformation-like field redefinition

gµν → Ω(φ)gµν , (1.6)

one can never get rid of φ in front of the Ricci scalar in the action. Therefore, in JT

gravity the relation between action complexity and volume complexity is not given

by eq. (1.3), but it is rather corrected by the presence of the dilaton as

C ∼ φbW

G`2
, (1.7)

where φb is the boundary value of the dilaton. This is reminiscent of the proposal in

[33], where the effective Newton’s constant is employed for volume complexity in AdS

to manifest the expected late-time linear growth. The dilaton dependence is more

significant in dS spacetime. Indeed, since the dilaton diverges at the spacelike future

infinity behind the cosmological horizon, it renders action complexity divergent as

well. On the other hand, in AdS spacetime the dilaton remains finite but the volume

grows linearly in time. The point is that both φb and W matter in JT gravity.

This is consistent with dimensional reduction. In two-dimensional dS, volume

complexity is upper bounded at early times, but in higher dimensions, it diverges due

to the large expansion of the sphere in the transverse spatial directions. However,

after compactification, the growing radius of this transverse spatial sphere reduces

to the dilaton in JT gravity. The dilaton is crucial to properly capture the increase

in holographic complexity.

Another subtle issue with volume complexity is that in two-dimensional grav-

ity there is no preferred “frame”, as we have discussed. We should emphasize that

physics must be invariant under the field-redefinition of eq. (1.6) because fields are

– 5 –



not directly observable. Despite the on-shell action being invariant under field-

redefinition, the solution apparently changes. Since in JT gravity, both the dilaton

and the metric characterize the solution, it is strange that complexity is defined by

the volume, which picks up only the information contained in the metric. In this

regard, it is natural to take action complexity as a starting point to understand the

effect of the dilaton in JT gravity.

Next, we digress a little and treat in this thesis the de Sitter spacetime complexity

for the higher dimensional case. One quantity of high interest in complexity is the

response to perturbations. In particular, the switchback effect in the AdS/CFT case

is a good example. Therefore, we will focus on the hyperfast nature of dS complexity,

and we study how the small perturbation influences this. In dS bulk, a shock wave

is induced by a small and early perturbation. Our goal is to investigate how the

property of the hyperfast nature is affected by the shock waves. This is the author’s

work [2]. See also a very good work done with the same interest as ours [64].

Specifically, we estimate the critical time, at which complexity diverges, based

on both the WdW patch and CV proposal. Our WdW patch calculations are for

dS3, but CV calculations are in dSd+1. Regarding dS3 WdW patch, since the critical

times in both CA and CV2.0 are when the WdW patch reaches the point which has

infinite radius (See figure 20) [47], studying the effect of shock waves on WdW patch

enables us to evaluate the critical time shift by shock waves in both CA and CV2.0

holographic complexity. We also study the critical time shift in CV conjecture, and

we confirm that both WdW patch and CV calculation give exactly the same answer3.

Regarding the WdW patch of dS, the main contribution of the divergence at

the critical time τ → τ∞ is the volume divergence at the radius r which becomes

large. In both CV2.0 and CA, this means that we only need to examine the depth

to which the most future tip of the WdW patch is reached. Interestingly, we find

that for dS3 complexity, the critical time τ∞ delays, i.e., τ∞ becomes always greater

after the insertion of the shock waves, which satisfies averaged null energy condition.

However, the result is opposite in the case of AdS, where critical time4 becomes

faster, i.e., τ∞ becomes lesser after that shock wave perturbation. In the AdS case,

this is reflected in the fact that shock waves make the wormholes longer [18]. In

some sense, in the dS case, the effects of shock waves are opposite compared with

the AdS case, therefore traveling between the north pole to the south pole becomes

3Because qualitative behavior near the critical time τ → τ∞ in all CA, CV2.0, CV conjecture

are very similar in general dimensions [47], and furthermore, in both CA and CV2.0, the critical

times are when the WdW patch touches the r =∞, we expect our conclusion should hold in general

dimensions.
4Although AdS complexity does not exhibit hyperfast growth, nevertheless we can still define

the “critical time” as when the ‘tip’ of WdW patch reaches r = 0 of the black hole. See figure 18

and 19.
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easier. This can be regarded as “time advance” [65].

The reader might think it a little bit strange that hyperfast is delayed by per-

turbation in de Sitter spacetime since generically complexity grows under a pertur-

bation. However, in the bulk dS viewpoint, this is very natural. dS spacetime is

a spacetime where cosmological constant dominates. However, shock wave makes

the universe “radiation/matter dominance”, instead of cosmological constant dom-

inance. The universe no more exponentially expands if the cosmological constant

does not dominate, and thus, the nature of hyperfast can be destroyed by inserting

a small perturbation in the past. This is essentially the reason why the critical time

τ∞ becomes greater in the dS case. Before we go on, we comment on the related lit-

erature. The effects of shock waves were studied in relation to quantum information.

Especially on the BTZ black hole background, it was studied in [18, 30, 66–68]. On

dS background, it was studied in [69–71]. Especially in [69], the effect of a single

shock wave in dS spacetime and OTOC was studied, which stimulated us.

Organization of this thesis

Section 2 reviews the basics of de Sitter spacetime, which is the setting for

the discussion in this thesis. We also consider its relation to the Double Scaled

SYK(DSSYK) proposed by Susskind in [3]. This DSSYK argument is not so impor-

tant for this thesis, but it is important as a background, so we will consider it here.

In addition, a rudimentary review of AdS/CFT is provided as a supplement.

In Section 3, we define complexity and review the basics of its conjecture about

bulk dual, volume of /(action value in) codimension region. In particular, we will

consider the basics in the case of AdS spacetime.

In Section 4, we consider the complexity of de Sitter spacetime in two-dimensional

JT gravity theory. First, by adopting CA (Complexity = Action) and computing

the on-shell values of action in WdW(Wheeler-de Witt) patch, we show that the

de Sitter spacetime exhibits the behavior called “hyperfast”. In this section, we

derive the two-dimensional JT gravity theory as a dimensional reduction from the

three-dimensional Einstein gravity theory and calculate the action complexity.

In Section 5, based on the results of Section 4, we discuss the volume complexity

in the two-dimensional JT gravity theory. In particular, we point out that, in the

case of two-dimensional JT gravity, the conventional volume complexity is not a

well-defined quantity due to the Weyl invariance of action, and consider redefining

the volume complexity in the two-dimensional JT gravity theory.

In Sections 6 and 7 we will look at the response of hyperfast property of de

Sitter spacetime to shockwave. In particular, this corresponds, in holography, to

a perturbation to the corresponding quantum theory, a situation which is in the

context of the switchback effect. Finally, as a consequence of the perturbation we

see a delay of hyperfast.

Finally, a light summary concludes this thesis.
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2 de Sitter/ DSSYK dual

2.1 (Anti-)de Sitter spacetime

de Sitter (dS) spacetime is the maximally symmetric solution of the Einstein equation

with a positive cosmological constant. The dS spacetime in (d + 1) dimensions has

the following positive cosmological constant

Λ =
d(d− 1)

2L2
dS

. (2.1)

where LdS is cosmological length. A more advanced approach to the definition for

de Sitter spacetime is to view it as a hyperboloid

−(X0)2 + (X1)2 + · · · (Xd+1)2 = L2
dS (2.2)

embedded in a one-dimensional higher Minkowski spacetime R1,d+1

ds2 = −(dX0)2 + (dX1)2 + · · ·+ (dXd+1)2 (2.3)

We consider many coordinates satisfy the above equation. A good example is global

coordinates (τ, zi) where we set the following.

X0 = LdS sinh(τ/LdS), X i = LdSzi cosh(τ/LdS) (2.4)

zi are coordinates constraind on the unit sphere,
∑

i z
2
i = 1. Then we have

ds2
d+1 = −dτ 2 + L2

dS cosh2(τ/LdS)dΩ2
d (2.5)

Now τ is proper time and this metric shows that the radius of Sd increases as τ

increases. There is another good coordinate, static patch (t, r, zi) defined as

X0 =
√
L2

dS − r2 sinh(t/LdS), (2.6)

X1 =
√
L2

dS − r2 cosh(t/LdS), (2.7)

X i = rzi (2.8)

where zi is coordinate on the unit sphere. In this coordinate, the metric becomes

ds2
d+1 = −(1− r2/LdS)dt2 +

dr2

1− r2/LdS

+ r2dΩ2
d−1 (2.9)

The global coordinate covers the entire region in de Sitter spacetime, while the static

patch only partially covers it. Specifically, in the static patch, there is a region that

is causally disconnected from the expansion properties of de Sitter spacetime. It can

be seen at first glance as a usual black hole, and the boundary r = LdS is generally

called as a cosmological horizon.
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r
=

0r
=

0

r =∞

r =∞

Figure 1: Penrose diagram for de Sitter spacetime in global coordinate. The blue

dotted line is cosmological horizon. If a static patch describes dS spacetime, only a

right or left Rindler patch can be described.

With the appropriate conformal transformations, the de Sitter spacetime in

global coordinates can be rewritten into a Penrose diagram showing its global struc-

ture. Specifically, the diagram is shown in Figure 1. However, in the two-dimensional

case, the Penrose diagram is further stretched horizontally by a factor of two, which

is peculiar. The static patch can also be written as a region of the Penrose diagram.

It will look like a Rindler patch, just like a usual black hole.

In addition, there may be Schwarzschild black holes in de Sitter spacetime (SdS).

In such a case the metric is as follows (in LdS = 1 units).

ds2 = −
(

1− 2M

rd−2
− r2

)
dt2 +

dr2

1− 2M
rd−2 − r2

+ r2dΩ2
d−1 (2.10)

On the other hand, we introduce an Anti-de Sitter(AdS) spacetime, which is in a sense

the opposite of de Sitter spacetime. It is a spacetime with a negative cosmological

constant

Λ = −d(d− 1)

2R2
. (2.11)

of the opposite sign to de Sitter, where R is called AdS scale. In this case, as in dS,

it can also be defined as a region

−(X0)2 − (Xd+1)2 + (X1)2 + · · ·+ (Xd)2 = −R2, (2.12)

embedded in a one-dimensional higher Minkowski spacetime R2,d

ds2 = −(dX0)2 − (dXd+1)2 + (dX1)2 + · · ·+ (dXd)2. (2.13)
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In this case, too, there are several useful coordinate systems. A good example is

global coordinates (t̃, ρ, zi) where we set the following.

X0 = R cosh ρ cos t̃, Xd+1 = R cosh ρ sin t̃, X i = Rzi sinh ρ, (2.14)

where zi are coordinates constraind on the unit sphere,
∑

i z
2
i = 1. Then we have

ds2

R2
= − cosh2 ρdt̃2 + dρ2 + sinh2 ρdΩ2

d−1. (2.15)

Or if we adopt r̃ = sinh ρ,

ds2

R2
= −(r̃2 + 1)dt̃2 +

dr̃2

r̃2 + 1
+ r̃2ρdΩ2

d−1. (2.16)

Another important coordinate system is the Poincaré coordinate. The definition is

X0 =
Rr

2

(
x2
i − t2 +

1

r2
+ 1

)
, (2.17)

Xd+1 = Rrt, (2.18)

X i = Rtxi (i = 1, · · · , d− 1), (2.19)

Xd =
Rr

2

(
x2
i − t2 +

1

r2
− 1

)
. (2.20)

In this coordinate, the metric becomes

ds2

R2
= r2(−dt2 + d~x2

d−1) +
dr2

r2
. (2.21)

In particular, the following metric with z = 1/r is also used.

ds2

R2
=
−dt2 + dz2 + d~x2

d−1

z2
. (2.22)

Some important properties of coordinates should be mentioned here. First, global

coordinate is a coordinate system that can describe the entire AdS spacetime. On

the other hand, the Poincaré coordinate system can only describe a part of it. See

Figure 2. Secondly, there is a boundary in the AdS spacetime. In global coordinates,

it is ρ → ∞ (r̃ → ∞) surface, while in Poincare they are r → ∞ (z → 0) surface.

What is important in this case is the spacetime structure of the boundary. This is

closely related to the kind of spacetime on which the dual field theory is defined in

the context of AdS/CFT. In the case of global coordinates, the boundary is R×Sd−1,

excluding the conformal factor. In the case of Poincaré coordinates the boundary is

simply isomorphic to the Minkowski spacetime R1,d−1.
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0

π

−π

z = 0

z < 0

z > 0

z
=
∞

z
=
−∞

t

ρ̃ = −∞ ρ̃ =∞

Figure 2: Penrose diagram for AdS spacetime.

2.2 DSSYK

In this section, we deal with the case where we consider the double-scaled limit SYK

model where the p-point interaction is taken to be about p ∼ O(
√
N). In particular,

it is expected that in this limit the theory may have some properties that we would

like it to have as a dual theory of de Sitter spacetime. We will touch on them lightly

in the next subsection. Starting from the conventional SYK model

H =
∑

i1i2···ip

jCi1i2···iqψi1ψi2 · · ·ψip . (2.23)

Usually jCi1i2···iq is a random coupling constant with the following distribution.

〈jCi1i2···ip〉 = 0 (2.24)

〈jC 2
i1i2···ip〉 =

J2(p− 1)!

Np−1
=

2p−1

p

J 2(p− 1)!

Np−1
(2.25)

In DSSYK, consider a scale change to χ =
√

2ψ.

HDS = 2−p/2
∑

i1i2···ip

jCi1i2···ipχi1χi2 · · ·χip ≡
∑

i1i2···ip

Ji1i2···ipχi1χi2 · · ·χip (2.26)

In this way, Ji1i2···ip is a random coupling constant with the following distribution.

〈J2
i1i2···ip〉 = 2−p〈jC 2

i1i2···ip〉 =
J2(p− 1)!

2pNp−1
=
J 2(p− 1)!

2pNp−1
(2.27)
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This can also be described as

〈J2
i1i2···ip〉 =

NJ 2

2p2
NCp

=
NJ 2

2p2 N !
p!(N−p)!

' NJ 2(p− 1)!

2p N !
(N−p)!

=
J 2(p− 1)!

2pNp−1
(2.28)

The following convention is also used from here.

〈J2
i1i2···ip〉 =

J2

NCp
, J =

J√
λ

(2.29)

where λ is

λ =
2p2

N
(2.30)

Under this, let us take the following Double Scaling limit.

N →∞, p→∞, q ≡ e−λ = e−
2p2

N = fixed. (2.31)

This theory can also be treated by the method of GΣ, but the following methods

are also known in [72] as a chord diagram method. First, consider the partition

function. This corresponds to considering moment mk such that

〈Z〉J ≡ 〈Tr e−βH〉J =
∞∑
k=0

(−β)k

k!
mk, mk = 〈Tr Hk〉J (2.32)

We take J = 1 as in the convention of Berkooz et al. This is restored by dimensional

analysis at the end. The dimension is Energy. Here, in the words of the Chord

diagram, we can express

mk =
∑

chord diagrams

q# intersections (2.33)

Figure 3: An example which contributes to k = 8 moment m8

A chord diagram is a line drawn by writing several points on a circle and pairing

two of each of them, as shown in Figure 3. To calculate mk, we consider k dots. Each
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dot represents one Hamiltonian ∼ Jψp. Each line also represents an ensemble of

random couplings in the Hamiltonian. Each intersection point corresponds to a sign

change that appears when the fermions are interchanged, and in the double scaled

limit this yields a factor of q = e−λ. Furthermore, Berkooz et al. cut this diagram at

an appropriate point and define a chord Hilbert space and tried to understand the

moment as a certain amplitude there. As a result, they obtained

〈Z〉J =

∫ π

0

dθ

2π
µ(θ)e−βE(θ) (2.34)

where E(θ) is a Hamiltonian on chord Hilbert space, a number understood as an

energy eigenvalue in DSSYK, and can be written in terms of the parameter θ which

can be regarded as an angle as follows.

E(θ) = − 2 cos θ√
1− q

, (2.35)

µ(θ) = (q, e±2iθ; q)∞ (2.36)

where (a)q denotes q-Pochhammer symbol. When J is restored, the energy levels are

E(θ) = −2J cos θ√
1− q

= − 2J cos θ√
λ(1− q)

(2.37)

Berkooz et al. also calculated the two-point, four-point functions and OTOC for

the following operators using the chord diagram.

MA = ipA/2
∑

1≤i1≤···≤ipA≤N

J
(A)
i1···ipA

ψi1 · · ·ψipA (2.38)

where J
(A)
i1···ipA

is independent random coupling which has the same variance as (2.29).

From this result, the following diagrammatic rule for the n-point correlation function

can be given.
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Diagrammic rule� �
The correlation function can be calculated according to the following rules.

1. Draw a thermal circle with period β = T−1.

2. Imprint on the thermal circle the position of Euclidean time at which the

quantity M to be calculated, such as a correlation function, is inserted, and draw

a chord diagram. The thermal circle is then divided by these insertions into line

segments of length ∆τi. Each of them is labeled θi. Labels are equal if there is

no other operator insertion before or after the pairing on the Chord diagram ofM .

3. For each line segment, apply the following.

e∆τ ·E(θ) = e
∆τ · −2 cos θ√

λ(1−q) (2.39)

4. Apply the following to the boundary between θ1 and θ2√
(q̃2
A; q)∞

(q̃Aei(±θ1±θ2); q)∞
(2.40)

where q̃A = e−
2p·pA
N .

5. The intersection of the Chord is marked with R (Complex function. See [72]).

6. Apply the integral with respect to every θ.∫
dθ

2π
µ(θ) =

∫
dθ

2π
(q; q)∞(e2iθ; q)∞(e−2iθ; q)∞ (2.41)

� �
As an example, let us consider two-point function of fermion chain M of length

p′. By using the above diagrammatic rule, we can obtain

〈TrMe−β2HMe−β1H〉J =

∫ 2∏
j=1

{
dθj
2π

(q, e±2iθj ; q)∞e
βj ·E(θj)

}
(q̃2; q)∞

(q̃ei(±θ1±θ2); q)∞
(2.42)

where q̃ = e−
2p·p′
N .

Density

The probability of giving the energy E(θ) is, from the above discussion, obtained as

ρ(θ)dθ =
1

2π
(q, e±2iθ; q)∞dθ (2.43)

ρ(E)dE =

√
1− q

4π sin θ
(q, e±2iθ; q)∞dE (2.44)
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By introducing, Jacobi’s ϑ function defined by

ϑ1(z, q) = i

∞∑
n=−∞

(−1)neiz(n−
1
2)q

1
2(n− 1

2)
2

, (2.45)

we see that

ρ(θ) =
sin θ

πq1/8
ϑ1(2θ, q) (2.46)

ρ(E) = ρ0ϑ1(2θ(E), q), ρ0 =

√
1− q

2πq1/8
(2.47)

Triple Scaling Limit

For λ → 0, we see that the theory becomes Schwarzian dominated, as in ordinary

SYK. Specifically, by applying the limit of λ→ 0, we find that

ρ(E) ∝ e−
2π2

λ e−
2
λ(θ−π2 )

2

sinh

(
2πθ

λ

)
sinh

(
2π(π − θ)

λ

)
(2.48)

More concretely, we can look at the behavior of the O(1) energy region in λ → 0

with fixed E limit. At this time θ → π/2, and using this we see that it is Gaussian,

as the following.

ρ(E) ∼ e−
E2

2 , E =
−2√
λ

(
θ − π

2

)
(2.49)

The triple scaling limit is an important limit, specifically it is argued that λ → 0

and focusing only on the low energy part of the spectrum reproduces the usual JT

gravity/SYK dual (NAdS/NCFT)[73]. In order to see the duality with de Sitter

spacetime, one has to focus on the whole spectrum without zooming the spectrum

to the low energy part.

2.3 Review of AdS/CFT

The next subsection is a review of the proposal by Susskind to adopt DSSYK as a

dual of de Sitter spacetime. Before that, a light review of AdS/CFT will be given

first as a comparison, followed by a description of dS/DSSYK. This subsection refers

mainly to good reviews and lectures [77–83].

AdS/CFT correspondence

AdS/CFT is the current gold standard of quantum gravity theory and one of the

excellent achievements of string theory [4]. In most formal form, the correspondence

is as follows.

Large N and large λ = g2
YMN limit of four dimensional N = 4 SU(N) Super-

Yang Mills theory is dual to Type IIB SUGRA on AdS5 × S5.
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where N = 4 SYM side has zero β-function and becomes Conformal Field The-

ory(CFT). This holds in quantum theory. Therefore, this correspondence is called

AdS/CFT correspondence. First, I would like to comment on the symmetry of both

theories. 5-dimensional AdS has SO(2, 4) symmetry, which can be understood as

an embedding of R2,4. This is the symmetry of the unit ball in R6 applied to the

case of R2,4. On the other hand, it is known that the conformal symmetry of the

4-dimensional CFT can also be expressed by SO(2, 4). From this point of view, this

duality seem natural. Also, the symmetry (SO(6)) that S5 has on the gravity theory

side corresponds to SO(6) ' SU(4), which is a symmetry that appropriately replaces

the four supersymmetries in the N = 4 SYM. On the AdS side, sphere exists in the

form of product. However, if the configuration of the field we will consider is even

with respect to this sphere, the contribution in this direction can be neglected. Also,

from the holographic principle, etc., CFT seems to live in the AdS boundary. (More

specifically, the radial direction of the AdS spacetime corresponds to the energy scale

of the theory. The AdS boundary corresponds to the physics on the UV energy scale,

and the physics there has the physical meaning that the theory is UV complete =

theory on a fixed point). Therefore, it can be regarded simply as a correspondence

between 5-dimensional AdS spacetime and 4-dimensional CFT. Indeed, this is suf-

ficient for the calculation of correlation functions. Extending the statement to a

general dimension, it is possible to state in the following simple version.

Large N and strong coupling limit of CFTd on the AdS boundary is dual

to semiclassical theory on AdSd+1.

In the following, we will give a brief review.

AdS/CFT - From string theory

AdS/CFT is obtained from string theory as follows. First, it is obtained by super-

posing many (N � 1) plane-like objects of (3 + 1)-dimensions, called D3-branes.

Brane sets the boundary conditions for the open strings and the edges of the open

strings are fixed on the brane. This situation with a large number of branes on flat

spacetime can be interpreted physically in two ways.

I. A curved spacetime without branes. Branes are very heavy objects and bend

flat space-time. Superstring theory is formulated with (9+1)-dimensional spacetime

as the target space, and the distortion of spacetime when N D3-branes are placed

on top of each other is known as black 3-brane spacetime, and is shown below [84].

ds2 = H−1/2(−dt2 + d~x2
3) +H1/2(dr2 + r2dΩ2

5), (2.50)

H = 1 +
R4

r4
, R = (4πgsN)1/4ls. (2.51)

where ls is the string length scale, gs is the string coupling constant and gYM is the

coupling constants of the corresponding gauge theory. This will be explained later.

II. SU(N) gauge theory on D3 branes. The ends of the open strings are fixed
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to branes, but if there are N branes, the ends of the open strings can be written

as N × N matrices, depending on which of the N branes each of them is attached

to. From this it is known that low-energy excitations of branes can be described by

the SU(N) gauge theory. In particular, a theory with N D3-branes collected can be

described as a N = 4 Super-Yang Mills theory in low-energy.

In description II, when the low-energy limit is not taken, there is an interaction

between the degrees of freedom of gauge theory and gravity. Here we want to see the

correspondence between gauge theory alone and gravity theory, so we must consider

taking this coupling to zero. This corresponds to focusing on the spacetime near the

black hole in the I picture. By taking the near horizon limit r/R→ 0,

ds2 =
r2

R2
dxµdxµ +

R2

r2
dr2 +R2dΩ2

5 (2.52)

and this is AdS5 × S5. The relation between the parameters is given by

l2sR ∼
l2s
R2
∼ λ−1/2, GNR4 = N−2. (2.53)

where R is scalar curvature and λ = g2
YMN is ’t Hooft coupling. Here, the relation

g2
YM ∼ gs is used. This is roughly obtained by writing the amplitude of the four-point

function of the gauge field in open string terms. See Figure 4.

From the above relation of parameters, by taking N � 1, we can neglect the

correction of GN to the curvature of spacetime, i.e., the quantum gravity correction.

Furthermore, by taking λ � 1, we can neglect the string length scale with respect

to the curvature of spacetime. By taking these limits, the theory of gravity can be

described in a semiclassical approximation.

AdS/CFT - correlation function

In the following, we will consider the most basic correspondence of AdS/CFT to

the matching of correlation functions. For simplicity, consider the scalar operator

O. And specifically, we consider the following GKP-Witten correspondence [85, 86].

First, if we want to calculate the correlation function on the CFT side, consider the

following generating function.

ZCFT(φs) =

〈
exp

[
−
∫
ddx φs(x)O(x)

]〉
CFT

(2.54)

Specifically using this, for example, a two-point function can be calculated as follows

〈O(x)O(y) =
δ2ZCFT(φs)

δφs(x)δφs(y)

∣∣∣∣
φs=0

. (2.55)

Here, on the right-hand side, we have taken φs = 0 at the end, after doing a variation.

The above is a calculation from CFT side, but how can this be multiplied when

considering the correspondence with AdS? The answer is

ZCFT(φs) = e−Sscalar in AdS
∣∣
φbdy→φs

(2.56)
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Figure 4: Conceptual diagram of the relationship between gYM and gs.

(upper) : Considering the upper left diagram contributing to the four-point ampli-

tude of Aµ in pure Yang-Mills theory, it is of order g2
YM. Moreover, in string theory

terms, this is scattering of open strings, corresponding to a diagram with open string

connecting open strings.

(lower) : Let us consider the square of this amplitude. This corresponds to the

pasting together of the diagram of the open string and corresponds to the 4-point

amplitude of closed strings. Since this corresponds to g2
s as the order, g2

YM ∼ gs can

be roughly deduced.

This is equivalent to calculating the on-shell scalar action on the gravity side, finding

the profile of the scalar field solved under the boundary condition that φ→ φs near

the AdS boundary. In general, this relation is systematically obtained from string

theory. In the theory on brane, it is possible to derive the interaction between open

strings, which are essentially gauge fields, and closed strings, which are gravitational

fields. Specifically, coupled to the scalar field φ, one of the degrees of freedom in

the theory of gravity, is O = TrF 2, glueball. φ is the dilaton value for string cou-

pling, specifically eφ ∼ gs ∼ g2
YM. Thus, in gauge theory terms this corresponds to

effectively changing the Yang Mills coupling gYM. As one further comment, when

solving for the equation of motion of the bulk scalar field, regularity inside the AdS

spacetime is also imposed along with φ → φs near the boundary. This determines

the scalar profile to be unique.

In the following we will see that the correlation function of CFT is reproduced
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in the calculations on the gravity side. Starting from the scalar field in bulk side,

S =

∫
dd+1x

√
−g(∂µφ∂

µφ+m2φ2) (2.57)

= Rd−1

∫
dzddx

1

zd−1

(
(∂zφ)2 + k2φ2 +

m2R2

z2
φ2

)
(2.58)

where we adopt Poincaré coordinate (2.22) as AdS coordinate and k is momentum

in direction x.. Therefore the equation of motion becomes

∂2
zφ− (d− 1)

1

z
∂zφ−

(
m2R2

z2
+ k2

)
φ = 0. (2.59)

It is possible to solve this equation exactly, but for simplicity let us focus on AdS

boundary z � 0. By taking φ ' z∆ as the solution ansaz, we obtain

∆(∆− 1)− (d− 1)∆−m2R2 = 0 → ∆± =
1

2

(
d±
√
d2 + 4m2R2

)
. (2.60)

→ φ ' φsz
∆− + z∆+(A(x) + · · · ) (2.61)

It is important to note that ∆+ > 0, ∆− < 0 (suppose m2 > 0). Therefore,

the first item blows up near the boundary (Non-Normalizable mode). On the other

hand, the second term converges (Normalizable mode). This means that the first

term is uncontrollable on the gravity theory side, which corresponds to the source

term in field theory terms. From the above deductions, the coefficient of the non-

normalizable mode is identified as φs. More generally, the general solution can be

written as

φ(z, ~x) =

∫
bdy

dd~y K∆+(z, ~x, ~y)φs(~y), K∆(z, ~x, ~y) = C

(
z

z2 + (~x− ~y)

)∆

(2.62)

where C is the appropriate normalization factor. First, when ~x − ~y 6= 0, K∆ → 0

is understood under the limit z → 0. Only when ~x − ~y = 0 does the limit of

z → 0 diverge, and specifically considering the integral of ~x we understand K∆ →
zd−∆δd(~x− ~y). Hence, φ → zd−∆+φs(~x) = z∆−φs(~x) under the limit of z → 0. This

is consistent with (2.61). By considering this profile up to next leading term, this

becomes

φ(z, ~x) ∼ φs(~x)z∆− + z∆+

∫
bdy

dd~y
φs(~y)

(~x− ~y)2∆+
≡ φs(~x)z∆− + A(x)z∆+ . (2.63)

Next, let us substitute this into the scalar field action and calculate the on-shell

action. Integrating scalar field action in AdS spacetime by parts,

S = Rd−1

∫
bdy

ddx
1

zd−1
(φ∂zφ) +Rd−1

∫
dzdx (EOM) (2.64)
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Since we consider the on-shell action here, we have (EOM) = 0. Therefore, only the

first term needs to be considered. Substituting (2.63) here,

S ∼
∫

bdy

ddx
1

zd−1
(φs(x)zd−∆+)(A(x)∂zz

∆+) ∝
∫

bdy

ddx φs(x)A(x) (2.65)

=

∫
bdy

ddx

∫
bdy

dd~y
φs(x)φs(~y)

(~x− ~y)2∆+
(2.66)

where the term which is proportional to φ2
s is absorbed by renormalization. Note

that all calculations up to now have been done in the bulk side. To recap what

we have done, we have solved the equation of motion for the scalar field inside the

bulk. However, we have imposed the boundary condition φs on the AdS boundary

and also imposed regularity inside the AdS. This allows the solution to be obtained

specifically as a function of φs as in (2.63). This is again substituted into the bulk

scalar action to obtain the on-shell action. Since we have now substituted the on-

shell bulk profile, we have used the fact that the part of action which is proportional

to the equation of motion of the bulk vanishes and changed it to an integral only

on the boundary. And the main claim is that Z[φs] ∼ e−S defined using this is the

generating function of the CFT. Therefore, we obtain

ZCFT[φs] = exp

[∫
bdy

ddx

∫
bdy

dd~y
φs(x)φs(~y)

(~x− ~y)2∆+

]
(2.67)

as the CFT generating function. From this we obtain the CFT correlator as

〈O(x)O(y)〉 =
1

(~x− ~y)2∆+
, ∆+ =

1

2

(
d+
√
d2 + 4m2R2

)
(2.68)

This has become a well-known formula for the operator’s two-point function with

conformal dimension ∆+ in CFT. Since ∆ is determined by the mass m of the scalar

field, there is a one-to-one relationship between the scalar field inside the bulk and

the conformal dimension ∆+ of the CFT.

In the above, we considered the case where the bulk is strictly AdS spacetime, but

we can also adopt the AdS black hole as the bulk. In this case, the condition of

regularity inside the AdS spacetime corresponds to a different boundary condition,

namely that the field is absorbed into the black hole, leaving the in-going mode of

the field at the black hole horizon. As a reference to the mass spectrum of glueballs

obtained using AdS/CFT, see [87–90].

AdS/CFT - Entanglement Entropy

Entanglement Entropy is a quantity naturally defined in field theory, and is specifi-

cally defined as follows. First, we start by dividing the spatial domain defined by the

field theory into two (or more) parts. For example, in the case of a (1+1)-dimensional

theory, the spatial direction is one-dimensional, so it can be taken, for example, as an
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appropriate interval of length L, or as a half line of infinite length. Or, if we consider

a system of two electron spins, then we can consider one electron spin as A and the

other as B. Mathematically speaking, the Hilbert space Htot can be decomposed

into the direct product of the Hilbert spaces HA and HB corresponding to system A

and B as follows:

HA = HA ⊗HB (2.69)

Secondly, we define the reduced density matrix ρA by taking Tr with respect to

HB of the density matrix ρtot of the whole system as follows.

ρA = TrHB [ρtot]. (2.70)

In general, however, even if the whole system is in a pure state, ρA traced with

respect to B is in general a mixed state. In this case, Entanglement Entropy can be

expressed as a von Neumann Entropy for the density matrix ρA restricted to A in

this setting

SA = −TrHA [ρA log ρA]. (2.71)

From now on, Entanglement Entropy is sometimes referred to as von Neumann En-

tropy when it is obvious. If the original system is in a pure state, the von Neumann

Entropy for the whole system is zero. However, by taking Tr for a subsystem, the

information of B is lost and the degree of loss is calculated as the deviation from the

pure state in the form of SA. Let us now calculate the Entanglement Entropy as a

system consisting of electron spin. We will consider a pure state in which the wave

function of the whole system is given by

|Ψ〉 = cos θ|0〉A|1〉B + sin θ|1〉A|0〉B (2.72)

If we calculate ρA for this state, we obtain

ρA = TrHB |Ψ〉〈Ψ| = cos2 θ|0〉A〈0|A + sin2 θ|1〉A〈1|A (2.73)

Thus, Entanglement Entropy is given by

SA = − cos2 θ log cos2 θ − sin2 θ log sin2 θ (2.74)

SA is maximized at cos2 = 1
2
, an example of which is

|Ψ〉 =
1√
2

(|0〉A|1〉B − |1〉A|0〉B) (2.75)

In this case, if the spin of A is up (down), the spin of B is down (up), so the cor-

relation between A and B becomes large. Such a phenomenon peculiar to quantum
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mechanics is generally called quantum entanglement, and it is a phenomenon that

does not exist in classical mechanics, as can be seen from the fact that it is caused

by the superposition of quantum states. The entanglement entropy is a quantita-

tive measure of how much correlation exists in the quantum entanglement. In this

case, the entanglement entropy is log 2. On the other hand, if θ = 0, we can write

|Ψ〉 = |0〉A|1〉B as a direct product, and there is no correlation between spin A and

B. In fact, it is easy to see that the entanglement entropy is 0 in this case. When

the whole system is in a pure state, the entanglement entropy generally represents

the strength of the quantum entanglement. However, when the whole system is a

mixed state, entanglement entropy includes not only quantum entanglement but also

classical correlations. For example, when SA is calculated for a many-body quantum

system at finite temperature, the contribution of thermodynamic Entropy is also

included.

Also, in general, when there is a system in a mixed state, the entire system can

be made a pure state by introducing an auxiliary system and appropriately having

entanglement with its degrees of freedom. The original mixed state is obtained by

tracing out the auxiliary system. In general, this operation of making the whole sys-

tem into a pure state by introducing auxiliary systems is called purification, which

will be important in the next topic (TFD state).

As a generalization of field theory, the density matrix can be defined in field

theory as well, so it is simply more difficult to compute. However, when focusing

entanglement entropy in a vacuum state, the wavefunction method of path integral

can be used. In particular, we use the following method called Replica trick. First,

we calculate TrHAρ
n
A) (hereafter abbreviated as TrρnA) and obtain the following.

SA = lim
n→1

[
− ∂

∂n
TrρnA

]
= lim

n→1

[
− ∂

∂n
log(TrρnA)

]
(2.76)

This can be obtained from the straightforward calculations

SA = − lim
n→1

nTrρnA log ρA
TrρnA

= −TrρA log ρA (2.77)

Although n is usually a natural number, in the following calculation we will make

an analytic continuation with respect to n and then differentiate n. Now we will

calculate TrρnA concretely. It is convenient to use the concept of path integrals in

field theory. First, we rotate the time coordinate t of the field theory by Wick and

rewrite it as x0 = it and x0. If we write φ for the fields appearing in the theory,

the field is a function of x0 and other spatial coordinates xi (i = 1, 2, · · · , d). For

simplicity, we will consider a d = 1 theory, i.e., a two-dimensional field theory. In this

field theory in Euclidean signature, the partition function Z for the whole spacetime
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is given by the following path integral.

Z =

∫
Dφ e−S[φ]. (2.78)

Let us consider a state |Ψ〉 on t = 0. Then, the density matrix is given by

ρtot = |Ψ〉〈Ψ| (2.79)

To compute entanglement entropy, we consider the matrix element of the reduced

density matrix

[ρA]φAφ′A = 〈φA|Ψ〉〈Ψ|φ′A〉 (2.80)

where |φA〉 and |φ′A〉are states on subsystem A (t = 0). If we rewrite this by using a

complete set of subsystem B,

[ρA]φAφ′A =
∑
φB

〈φAφB|Ψ〉〈Ψ|φ′AφB〉 (2.81)

To compute 〈φAφB|Ψ〉, we have to translate this in language of Path integral

Ψ[φ0] = 〈φ0|Ψ〉 =
1√
Z

∫ φ(0)=φ0

t=−∞

∏
−∞<x0<0

∏
x1

Dφ(x0, x1)e−S[φ(x0,x1)]δ[φ(0, x1)− φ0(x1)].

(2.82)

Thus the matrix element of the reduced density matrix is given by∑
φB

〈φAφB|Ψ〉〈Ψ|φ′AφB〉 (2.83)

=
1

Z

∫ ∏
−∞<x0<0

∏
x1

Dφ(x0, x1)e−S[φ(x0,x1)]
∏
x1∈A

δ[φ(−0, x1)− φA(x1)]δ[φ(+0, x1)− φ′A(x1)].

(2.84)

This expression is equivalent to performing path integration in Euclidean space under

the boundary conditions φ(−0, x1) = φA(x1), φ(+0, x1) = φ′A(x1). We can multiply

this by n and take Tr, so

TrρnA =

(
n∏
j=1

∫
Dφj

)
〈φ1|ρA|φ2〉〈φ2|ρA|φ3〉 · · · 〈φn|ρA|φ1〉 = (Z)−n

∫
Σn

Dφe−S[φ]

(2.85)

where Σn is n sheets glued in region B.

We will actually compute the Entanglement Entorpy using the Replica trick.

For simplicity, we consider only the case of a two-dimensional complex scalar CFT.
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We consider subsystemA as the single interval x ∈ [u, v]. There are n sheets, and

we denote by φk (k = 0, 1, · · · , n − 1) the field which you have in each sheet. k is

the subscript that distinguishes the sheets. Then we can write down the boundary

conditions to fields φk (k = 0, 1, · · · , n− 1) as the following:

φk
(
e2πi(w − u)

)
= φk+1(w − u), φk

(
e2πi(w − v)

)
= φk−1(w − v) (2.86)

However, we redefine the boundary conditions to new fields φ̃k = 1√
n

∑n−1
l=0 e

−2πilk/nφl,

φ̃k
(
e2πi(w − u)

)
= e2πilk/nφ̃k(w − u), φ̃k

(
e2πi(w − v)

)
= e−2πilk/nφ̃k(w − v) (2.87)

This follows the previous boundary conditions. In fact,

φ̃k
(
e2πi(w − u)

)
=

1√
n

n−1∑
l=0

e−2πilk/nφl
(
e2πi(w − u)

)
=

1√
n

n−1∑
l=0

e−2πilk/nφl+1(w − u)

=
1√
n

n∑
l=1

e−2πi(l−1)k/nφl(w − u) = e2πik/n 1√
n

n∑
l=1

e−2πilk/nφl(w − u) = e2πik/nφ̃k(w − u)

(2.88)

where we use the Replica symmetry φn = φ0. In order to actually perform the Replica

method, we define the Twist operator as follows. In free field theory, the Lagrangian

is quadratic in φ and has no interaction, but when rewritten in φ̃, it is also quadratic

and has no interaction. Thus, there are n free fields in either case. Then we can

conclude this system is equivalent to the n-sheets with two twist operators σk and

σ−k. Twist operator σk is an operator which induces the left-hand side of boundary

conditions on the field φ. Thus, TrAρA is given by

TrρnA =
n−1∏
k=0

〈σk(u)σ−k(v)〉 ∝
n−1∏
k=0

1

(v − u)2(hk+h̄k)
(2.89)

where (hk, h̄k) is conformal dimension of twist operators and it is

hk = h̄k = − k2

2n2
+

k

2n
(2.90)

Taking the summation of hk given in this way over k, we get

n−1∑
k=0

hk =
c

24
(n− 1/n) (2.91)

where c is the central charge. Then we get

TrρnA ∝ l−2
∑

(hk+h̄k) = l−
c
6

(n−1/n). (2.92)
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where l(= v − u) is the length of subsystem A. To compute entanglement entropy,

we have to differentiate with respect to n and set n = 1. Thus we get

SA =
c

3
log

l

ε
, (2.93)

where ε is UV-cutoff. This dependence of ε is hidden as a coefficient in this form, but

it is clear from the fact that SA is zero at l = ε → 0 and from dimensional analysis

that it appears as this form.

Next, we would like to discuss how we calculate the Entanglement Entropy from

the gravity side, which can be calculated properly in the CFT side. This answer is

Ryu-Takayanagi formula,

SA ∼ min
X

Area of X

4GN

. (2.94)

X is spatial curve in bulk such that it has ∂A as the boundary (cutoff surface). We

have to search such a line which has the smallest area. Let us consider AdS3/CFT2.

We define A is interval which has the length a on time slice t = t0. AdS3 metric is

given by

ds2 =
R2

z2
(−dt2 + dz2 + dx2) (2.95)

All we have to do is to calculate the length of geodesic line X which has the edges

P and Q,

P : (t, x, z) =
(
t0,−

a

2
, ε
)
, Q : (t, x, z) =

(
t0,

a

2
, ε
)

(2.96)

where ε is cutoff. Then the geodesic line we want is semicircle connecting P and Q,

z =

√
a2

4
− x2. (2.97)

The induced metric on this semicircle is

ds2 =
R2a2dz2

z2(a2 − 4z2)
. (2.98)

Thus we can calculate the length of γA by integrating∫
γA

ds = 2×Ra
∫ a/2

ε

dz

z
√
a2 − 4z2

. (2.99)

By using Brown-Henneaux formula

c =
3R

2GN

, (2.100)
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Entanglement entropy is given by

SA =
Ra

2GN

∫ a/2

ε

dz

z
√
a2 − 4z2

=
R

2GN

log
a

ε
=
c

3
log

a

ε
, (2.101)

this corresponds to entanglement entropy from CFT2.

AdS/CFT - Thermo-field double state

As relevant to this thesis, we consider the thermo-field double state. This is an

important concept when considering two-sided black holes. See Figure 6.
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Figure 5: Penrose diagram for AdS black hole. Here, the wavy line with r = 0 cor-

responds to singularity. However, this situation varies depending on the dimension.

If we consider, for example, a 3-dimensional AdS black hole = BTZ black hole, r = 0

simply corresponds to conical singularity, since we are simply considering different

patches of 3-dimensional AdS. Furthermore, in the case of higher dimensional black

holes the Penrose diagram may not be an exact square. However, Thermo-field dou-

ble states can be discussed regardless of these details, so this is not a serious problem.

As can be seen from this Penrose diagram, this spacetime has two AdS bound-

aries. This implies that this bulk spacetime is described using two copies of the

CFT. When we consider the CFT living in the right boundary, the region inside

the bulk that can be reproduced from the theory does not include at least the left

Rindler patch. This is because from the perspective of the right boundary this is

not a causally connected region. Therefore, the theory cannot be dual to the whole

two-sided black hole by considering only one CFT. Then, how can we reproduce the

internal space-time by considering two CFTs? The answer is to entangle the two

theories properly. This is the Thermo-field double(TFD) state [91].
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We first look at one-sided theories. Let H denote the Hamiltonian of the system and

let |n〉 denote its energy eigenstate

H|n〉 = En|n〉. (2.102)

Let us consider two of these theories, denoted by the subscripts L(eft) and R(ight)

respectively. We now consider the following states using the respective systems of

Energy eigenstates {|n〉L} and {|m〉R}

|TFD〉 =
1√
Z(β)

∑
n

e−βEn/2|n〉L|n〉R. (2.103)

This is an element of the direct product of the left and right Hilbert spaces |TFD〉 ∈
HL ⊗HR. Since this is a pure state and furthermore seems to be a one-sided purifi-

cation of the theory. Specifically, consider the density matrix of this state.

ρ = |TFD〉〈TFD|. (2.104)

From this density matrix, a reduced density matrix can be calculated with one side

(left CFT) traced out.

ρR ≡ TrLρ =
1

Z(β)

∑
n,m,k

e−β(En+Em)/2
L〈k|(|n〉L|n〉R)(L〈m|R〈m|)|k〉L (2.105)

=
1

Z(β)

∑
k

e−βEk |k〉RR〈k| (2.106)

This is a simple thermal state. Therefore, if we focus only on one side of the CFTs,

we observe thermal particle of the normal black hole. If we consider the expectation

value of operator on the right CFT OR, it is equivalent to considering the thermal

expectation value of the one CFT, as follows.

〈TFD|OR|TFD〉 =
1

Z(β)
TrR(e−βHROR) (2.107)

Also, considering left CFT operator OL, the expected value of the product of those

operators 〈TFD|OROL|TFD〉 is non-zero. Importantly, no correlation at the La-

grangian level is imposed between the two CFTs. More specifically, there is no

interaction of both degrees of freedom in Lagrangian. This is a natural assumption,

corresponding to the fact that these theories are causal apart. Therefore, it is noth-

ing but the entangle between the states that generates the correlation between them.

Quantum entanglement can produce correlations non-locally (note that this is by no

means breaking the causality).

Next, consider the time evolution of this state. There are two ways to consider the

time evolution in the combined Hamiltonian, either H = HL−HR or H = HL +HR.

Simply looking at the Unitary evolution of state, we can understand the following.

|TFD(tL, tR)〉 =
1√
Z(β)

∑
n

e−βEn/2e−iEntLe−iEntR |n〉L|n〉R. (2.108)
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Here we see that the thermo-field double state does not evolve in time even with the

following development.

tL → tL + ∆t, tR → tR −∆t. (2.109)

This means TFD state does not change by Hamiltonian H = HL−HR. In two-sided

black hole, this corresponds to boost symmetry on the Penrose diagram, where the

time evolution is reversed on each of the left and right AdS boundaries. Therefore,

when looking at the time evolution of TFD, the upper and lower sides must be clearly

defined on the Penrose diagram, and both the left and right theories must be time

evolved in that direction.
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Figure 6: Two types of time evolution in AdS black hole. Black time foliation

is boost evolution, TFD does not change. TFD changes with respect to red time

foliation.

AdS/CFT - Beyond entanglement

we have understood from the above example that the entanglement entropy can

probe the geometric structure of the bulk spacetime. It was discussed that we can

probe the length of the Einstein-Rosen Bridge(ERB) in two-sided black hole by using

entanglement [92]. The ERB is classically known to increase the length linearly with

(appropriate) time L ∝ t. As a result, we find that the effects of thermalization and

scrambling saturate the entanglement entropy on a certain time scale, specifically,

the polynomial time of the maximum entropy of the system. However, even after the

scrambling time, ERB continues to increase, at least classically. A new attempt to

solve the difficulties discussed here was made in [26]. This is the rise of complexity,

but we will leave a detailed review of complexity to the next section.
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Holograhic principle

Originally, the duality between bulk gravity theory and boundary field theory, such as

AdS/CFT, was known as the holographic principle. Therefore, note that AdS/CFT

is an example of satisfying the holographic principle. The holographic principle

claims that there is a corresponding boundary theory for any spacetime other than

general AdS. This can be immediately deduced from the Bekenstein-Hawking entropy

formula.

SBH =
A

4GN

(2.110)

where A is an area of black hole horizon. It is important to note that the entropy of

a black hole is proportional to its surface area, not to its volume. This is a situation

that does not exist in general statistical mechanics. For example, let us consider a

box of volume V in 3-dimensional space divided by a lattice of a on one side and a

spin placed at each site. If each spin is simply distinguished between up and down

states, the entropy of this system is S ∼ log 2V/a
3 ∼ V

a3
log 2, which is proportional

to volume. Then, where does the specialness of black hole entropy come from? It is

a fact that black holes are only recognized in systems in which gravity is taken into

account. In addition, black holes are particularly high-energy objects in the gravity

system. Black hole appears when an object is concentrated at a single point and

an extremely large gravitational power is applied. From these circumstances, it is

possible to consider that the essential degree of freedom of quantum gravity appears

in the area of the system.

Further on, we can see the following description. It seems that the degrees of

freedom per volume are only apparent and that the degrees of freedom essentially

live on the surface area. Thus, a theory of gravity in a certain region can be replaced

by a theory with the appropriate degrees of freedom on its surface! So what are

these degrees of freedom? Are they degrees of freedom for which the effect of gravity

should be taken into account? The answer is no. The system on the surface area

can be treated simply as a field theory. Because then the entropy of the system on

the surface area will be consistent with the volume of the system = the surface area

of the gravity theory.

From the above, we can deduce that for a certain spacetime theory of gravity, an

appropriate field theory of one dimension lower corresponds [5, 6]. Most importantly,

this inference starts from the fact that the black hole entropy is proportional to the

area, not to the volume, so it is a statement that does not rely on a specific spacetime

such as AdS spacetime. Therefore, it seems that there should be a holographic dual

theory for dS spacetime as well.
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dS/DSSYK - Holograhic screen

First, we have to answer the following question: if a dual quantum theory exists for

de Sitter spacetime, on which surface should it live? Consider, for example, the case

of AdS/CFT. In that case, the CFT would reside on the boundary of AdS, its bulk

dual. The easiest way to explain why is the existence of the entanglement entropy

and Bousso bound [93].

First, as the aspect of entanglement, we consider the states properly entangled

between the left and right field theories (thermo-field doube states) and understand

the entropy of the black hole by considering the entanglement entropy between the

left and right field theories. This can be interpreted in Ryu-Takayanagi surface terms

by picking up extremal ones in the spacelike surface of the bulk. Considering the

two-sided AdS black hole, which seems to be an Einstein-Rosen-bridge, it is roughly a

hyperbolic surface, and properly contributes as the smallest surface near the horizon.

In addition, in the argument with Bousso bound, in a nutshell, the physics in the

region covered by the sphere at a certain time should be holographically describable

on the sphere. For example, in the case of AdS spacetime, the boundary with r =∞
will play this role.

If we try to apply the same logic to the de Sitter case, for example, localising the

field theory to a timelike surface with r = 0 as an analogue of the Penrose diagram

in the case of AdS spacetime causes a contradiction. In dS spacetime, the time

slice is a sphere, and if we try to adopt the surface with the smallest radius as the

Ryu-Takayanagi surface, it will always pick up r = 0, it is not possible to reproduce

the black hole entropy by the cosmological horizon. To avoid this, the holographic

screen should be placed as close as possible to the cosmological horizon, and the

prescription should be to pick up the cosmological horizon as the smallest surface

between the right and left screens. Therefore, it is appropriate to adopt Streched

horizon as the screen. See Figure 7 and [3, 74, 94].

In this case, the argument with the Bousso bound has information about which

regions of the bulk a single screen can reproduce. The region of the bulk that the

streched horizon can reproduce is a smaller radius than the streched horizon, so it is

simply the so-called Rindler patch from the streched horizon to r = 0. However, the

interior of de Sitter, especially the internal region of cosmological horizon, can be

expected to be a spacetime that emerges by entanglement as in the usual AdS/CFT

case.

2.4 dS/DSSYK conjecture

This subsection is a review of the dS/DSSYK conjecture by Susskind [15–17, 73–76].

Although this relationship is still under development and various calculations are

not very rigorous, we will discuss the progress of the current research. Incidentally,
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Figure 7: Penrose diagram for de Sitter with streched horizon. The blue dotted line

is cosmological horizon. The red curved line is streched horizon where is close to the

horizon. (In the figure, they are written slightly apart to avoid confusion.)

this subsection can be skipped because we do not proceed with the calculations in

this thesis by explicitly using this correspondence. However, all our calculations are

based on the assumption that some quantum mechanical system corresponds to de

Sitter spacetime.

dS/DSSYK - Properties of de Sitter spacetime

From the above discussion, we have decided to adopt the streched horizon as the

holographic screen and will now look at what happens in de Sitter spacetime in that

case. And it should simply be a property that a dual field theory should have. There

are two main ones here.

1. OTOC(Out-Time-Orderd-Correlator) shows fast-scrambling

2. Complexity shows a property called hyperfast

It can be deduced from de Sitter’s simple bulk argument.

First, OTOC is a quantity well known in conventional SYK and other systems, and is

an important measure of the chaotic degree of a system. In general, the behavior of

a chaotic system is exponential, and its exponent λ is called the Lyapunov exponent,

which is a very important quantity. The larger it is, the more chaotic the system

is. In general, the time for OTOC to saturate is called the scrambling time t∗. This

is the time order in which the influence of chaos spreads sufficiently. In general,

this is t∗ ∼ β logS, where β = T−1 is inverse temperature and S is the entropy of

the system. OTOC can be replaced by a calculation with a bulk dual perturbed by

shockwave [18]. The logS factor included in this scrambling time emerges from the
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distance between the screen and the black hole horizon at the bulk in the holographic

discussion. In the case of de Sitter spacetime, we can expect this logS factor to drop

out because the screen is close to the horizon. This dramatic shortening of the scram-

bling time is called fast-scrambling, and we can predict that the corresponding field

theory should also have this property.

Also, de Sitter spacetime is an expanding spacetime, which makes de Sitter

spacetime a good model for our expanding universe. Therefore, at a properly defined

time, the expansion of the volume of spacetime is beyond the scope of AdS/CFT.

This corresponds to a dramatic increase in the quantity called complexity in the

language of field theory. We call this hyperfast property.

dS/DSSYK - Properties of DSSYK

Having discussed above what happens when bulk is de Sitter, we will now con-

sider DSSYK as a specifically proposed system. Here bulk is a two-dimensional de

Sitter spacetime, formulated using JT gravity (or dimensional reduction of a three-

dimensional de Sitter spacetime). Firstly, regarding the fast-scrambling property,

this has been well investigated for some time. Starting from conventional SYK, if

we fix p/Nα and take double scale, the scrambling time changes from O(logS) to

O(1) at α = 1/2 [19, 95, 96]. This corresponds to the fact that as the number of

interacting fermions is dramatically increased, the speed at which the chaos effect

spreads increases significantly. As for complexity, Susskind himself predicts in [3].

However, there seems to be no concrete calculation in DSSYK.

dS/DSSYK - Tomperature

Let us discuss the aspects of the entropy. For example, in the case of a three-

dimensional Schwarzschild de Sitter spacetime with mass M , the metric is

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dφ2, f(r) = 1− 8GNM − r2 (2.111)

and the radius of horizon is given by r =
√

1− 8GNM � 1. Since the entropy is

determined by the area of the black hole, the black hole entropy in de Sitter spacetime

is always less than the entropy of the normal cosmological horizon. Conversely, pure

de Sitter behaves as a state with maximam entropy. Chandrasekharan, Penington,

and Witten studied von Neumann algebra in de Sitter spacetime as a study in this

direction and argued that the formal temperature must be infinite [97]. From this

point, Susskind considered that the formal high-temperature limit should be taken in

DSSYK. In fact, this does not create any contradiction. This is because the effective

temperature does not go to infinity. For example, the retarded two point function
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GR(t) = 1
2N/2

Tr(χ(t)χ(0))θ(t) is as follows under DSSYK and high temperature limit

GR(tc)
p =

(
1

cosh(pJ tc)

)2

(2.112)

where tc is rescaled time t = qtc.
5 Retarded two-point functions generally decay with

temperature scale G ∼ e−Tt. This is called thermalization. From the above, we can

determine the effective temperature (Tomperature T ) as

T = 2J (2.113)

dS/DSSYK - Semiclassical approximation

Now, even in the case of de Sitter spacetime, it is tempting to search for a parameter

region where the semiclassical approximation can be justified through a relation like

(2.53). This is also known as

1

LdS

∼ J , LdS

GN

∼ 1

λ
(2.114)

The first correspondence is derived from the requirement that the temperature of

the two-dimensional pure de Sitter spacetime and the tomperature of DSSYK be the

same, and the second equation is derived from the requirement that the deviation

from the respective maximum entropy be the same. From this, we see that if we

want to eliminate the quantum gravity correction, for example, we can take the limit

of λ→ 0.

dS/DSSYK - Developments and Some references

In connection with the above, the quantity Krylov Complexity is known. This quan-

tity is a physical quantity that describes the spread of the Operator (some also study

the spread of the state). This is expected to give an upper bound on the Lyapunov

exponent calculated from the OTOC. The Krylov Complexity in the case of DSSYK

has been calculated in [14] and fast-scrambling can indeed be observed if the time

scale is taken appropriately.

In addition, there is a discussion of two-point functions. In [98, 99], two DSSYK

systems (left and right in Penrose diagram in de Sitter spacetime) are prepared and

gauge invariant operators are constructed by gauging both of them with appropriate

energy constraints. They then construct their two point functions entirely from the

knowledge (Diagrammic rule from chord diagram) of DSSYK and show that they can

be reproduced from the equation of motion of the complex scalar field on de Sitter

5The justification and meaning of taking time in this way is discussed in [15, 16]. Simply, it

seems that this scaling is necessary if one wants to describe the cosmic scale of de Sitter spacetime

and to take the double-scaled limit well on this time scale. But in any case, it is not so important

for this thesis, so I will not discuss it any further.
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spacetime. However, in this discussion, we consider the parameter region λ → 0

where the semiclassical description is valid. Other properties, e.g. the existence of

the maximum entropy, type II1 von Neumann algebra is also discussed [100].

As mentioned above, this conjecture is now in the process of being gradually

confirmed. We consider in this context to develop our knowledge of the de Sitter

spacetime complexity. It is not a question of whether or not we actually adopt

DSSYK as the dual of de Sitter spacetime in the subsequent calculations. What

matters is that there exists a corresponding field theory and that the dual theory

lives on a streched horizon.

3 Holographic Complexity

In the history of the holographic principle, a number of physical quantities probing

the bulk have been considered. One great example is the Entanglement Entropy.

In this context, Ryu-Takayanagi (RT) prescription relates entanglement entropy in

a CFT to the area of extremal codimension-two bulk surfaces anchored at the AdS

boundary [101–103]. However, in terms of the dual theory in AdS, entanglement

entropy does not suffice [92] to capture the growth of the Einstein-Rosen bridge inside

a black hole, which continues even after the thermalization time. The appropriate

dual quantity to be considered is quantum complexity, which keeps growing for an

exponentially large time [25, 26].

3.1 Basics of Complexity

Definition and basic properties

Computational complexity is a quantity originally formulated in the field of computa-

tional science. It is the “effort” it takes to obtain the state of the system (classically,

this is n-bit). More specifically, it is the computational effort required to achieve the

desired state, starting from a simple state.

First, let us consider the classical example. The classical state is represented by

n-bit(e.g. 0101100 · · · ). In this case, there are 2n different states. We take 0000 · · ·
or 111111 · · · as a simple state. It’s possible to include the equivalence Z2 for all

n-bit flips. Anyway, we define a simple state. In addition, we consider an operation

that flips one of the bits (0 ↔ 1) as a possible operation in unit time. In this case,

the time to reach the most laborious state (maximum complexity) is Cmax ∼ n/2.

The maximum entropy of the system is also Smax = log 2n = n log 2 and is an order of

n. Also, the physical evolution to a state with maximum entropy is thermalization,

which generally saturates in polynomial time of the system size n. Thus, classically,

the time at which these are headed is not much different. However, things change

drastically in quantum theory.
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In quantum theory, an n-bit is generally described by the following quantum state

|Ψ〉 =
2n∑
i=1

αi|i〉 (3.1)

where |i〉 denotes all possible 2n states from 0000 · · · to 111111 · · · . Thus, in this

case, 2n complex numbers αi correspond to the classical bits mentioned earlier. In

this case, the typical maximum complexity is Cmax ∼ 2n ∼ en. Incidentally, as

a basic operation, we cannot adopt here only the operation of changing the state

of one qubit. It is necessary to have an operation that generates an entanglement

between two qubits. This is formulated in quantum information as quantum gates.

However, even in this case, the maximum entropy is scaled by Smax ∼ n log 2 as is

well known. Of course, this is typically achieved after only thermalization time (or

scrambling time).

Furthermore, it should be noted that there is also a time scale called recurrence

time. This is the time scale from the initial condition to the time when the system

evolves and returns to the original initial condition. Since it depends approximately

on the degrees of freedom and the number of possible states, it can be estimated to

be on the scale of trec ∼ en classically and trec ∼ ee
n

in quantum theory.

Another extremely important property of typical chaotic theory is that it keeps

increasing with respect to time until saturation.

dC
dt

= TS (3.2)

where T is the temperature and S is entropy. This is proved by the geometry

formulation of Nielsen and collaborators [24, 104]. This is also a formulation of

complexity for continuous Hamiltonian deformations, moving away from the discrete

definition of complexity. Specifically, we consider the change of state by k gates.

|Ψ(k)〉 = U(k)|Ψ(0)〉 (3.3)

where U(k) is an element of SU(2n) (Now dimension of this Hilbert space is 2n).

And they properly introduced the inner product in this SU(N) space and properly

introduced the notion of distance. As a result, the equation of evolution from the

origin (the unit matrix I) in SU(N) as

dU(s)

ds
= −ih(s)U(s) (3.4)

U(s) = P exp

[
−i
∫ s

0

h(s′)ds′
]

(3.5)

where s ∼ time is parameter on the line connecting I and U(s) and h(s) is generator

(hamiltonian with respect to s ∼ time). It’s possible to define the complexity as the
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length of the shortest of all paths that reproduce U(s). This definition is continuous

and allows us to describe the actual time evolution of the black hole, etc. In [104],

they showed that “if Hamiltonian is relatively easy, then the Hamiltonian h(s) on

SU(N) is independent of s and U(s) can be written as follows.

U(s) = e−ihs (3.6)

and becomes shortest path before the saturation.” Therefore, in this case, the com-

plexity is simply proportional to s. Since this is time along the path, in this case

complexity is proportional to time. In SU(2) geometry, the distance from the unit

matrix I is linearly increasing with time. After the saturation, we can find paths

shorter than this.

These two properties: 1. entanglement entropy continues to increase beyond the

typical time scale of saturation. 2. its evolution is proportional to time. From the

above two properties, Susskind considered that these properties probe the long linear

growth of the ERB [26]. In the following, we present the more general case of bulk

dual beyond ERB. Several correspondences are proposed. Complexity calculated in

terms of holography in this way is also called holographic complexity.

Holographic complexity

There are two definitions of complexity, strictly speaking, one for operator and the

other for state, but when we consider holographic complexity, we mainly consider

state complexity. In this case, complexity C(|ψ〉) for the target state |ψ〉 is the min-

imum number of elementary gates required to build that state from a reference one.

We can consider the case where the target state |ψ〉 is an entangled state of two

boundary theories, that live on the left and right boundaries. Given the target state

|ψ〉, which is a function of both the left and right boundary time tl, tr, then Σ is

a codimension one bulk Cauchy surface anchored at the boundary state tl and tr.

There are three main holographic proposals that are dual to holographic complexity

C[|ψ〉].

CA (Complexity=Action)

This is the gravitational bulk action IWdW of the Wheeler-de Witt (WdW) patch of

bulk causal diamond of Cauchy slice Σ,

CA(Σ) =
IWdW

π
(3.7)

The WdW patch is given by a causal region (diamond-shaped region) inside the

bulk, whose edge is anchored to the boundary time slice. In the case of de Sitter, it

is anchored to the time slice defined on the streched horizon. See Figure 8.
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Figure 8: Penrose diagram for dS spacetime showing the WDW patch (red region).

CV2.0

This conjecture is similar to CA, but the difference is in CV2.0. The holographic

Complexity is the space-time volume of the WdW patch

CW (Σ) =
VWdW

GN`2
bulk

(3.8)

instead of the action. In pure dS and pure AdS case, Lagrangian density is constant

and proportional to `−2
bulk, therefore both CA and CV2.0 behave in similar ways6.

Here `bulk is the length scale set by the cosmological constant.

CV (Complexity=Volume)

In this conjecture, the Complexity is evaluated by the maximal volume of codimen-

sion one surface Σ,

CV = max

[
V (Σ)

GN`bulk

]
(3.9)

The maximization should be conducted under the condition that the boundary time

tl and tr are fixed.

3.2 Holographic Complexity in AdS

The most famous holographic calculation of complexity is probing Einstein-Rosen

bridge. As mentioned earlier, the Einstein-Rosen bridge continues to grow infinitely

6Precisely speaking, the behavior is generally different because of the boundary terms. However,

the critical time τ∞ given in (3.15) is determined by the WdW patch in both CA and CV2.0, as

examined by [47].
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long [25, 26]. Let us look at this. This calculation has been done in many places,

but is most educational, for example in the case of 2D JT gravity. We can calculate

the renormalized length of Einstein-Rosen bridge as the following.

Lren(t) = 2 log

(
2 cosh

t

2

)
+ · · · (3.10)

where · · · means small correction in large Rb (IR cutoff in AdS bulk). In the late

time, this becomes ∼ t, linear growth. On the other hand, it is known that the

computational complexity (on the field theory side) generally increases linearly.

Switch back effect

In addition, we will briefly mention the switchback effect [48, 105], which is relevant

for our purposes in this thesis. This considers the behaviour of complexity when

perturbations are added on the field theory side. In AdS/CFT a two-sided black hole

is supposed to emerge with appropriate entanglement on the CFT side. Specifically,

it’s described as Thermofield-double state |TFD〉 ∈ HL ⊗HR.

|TFD〉 =
∑
n

e−
βEn
2 |En〉L|En〉R (3.11)

When perturbations are mixed in −tw(early time, tw > 0), we can write perturbed

state as

W (−tw)|TFD〉 = U(tw)WU †(tw)|TFD〉 (3.12)

where U is the usual Unitary operator. This corresponds to the operation of going

back in time by tw, inserting an operator and finally advancing time by tw. If the

operator to be inserted is the unit operator 1, they all cancel each other. That is, the

developments of time-reversal and time-forward exactly cancel each other. However,

if the inserted operator is not 1, they generally do not cancel each other, since it can

happen that the developments on the way there and on the way back are completely

different. Thus naively, the complexity of the precursor is 2Ktw.

However, until scrambling comes, it is not possible to distinguish whether the

inserted operator is 1 or not. Therefore, U and U † cancel each other until scrambling

time, but after that they do not cancel each other because they are completely

different developments in chaotic systems. Therefore, it is possible to consider that

the increase in complexity is delayed by the scrambling time. Therefore, the actual

value is 2K(t− t∗). This is called the switchback effect.

In bulk side, let us consider AdS spacetime with shockwave at the time −tw in

the theory of boundary. If the inserted energy is E, the shockwave gains energy by

the gravitational potential and reaches the following energy scale by reaching t = 0.

E

M
e

2πtw
β (3.13)
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where M is the mass of the black hole. This becomes O(1) from the time order

t∗ ∼ β
2π

log M
E

. where E is the energy of a single particle being thermalized by the

black hole, E ∼ TH and

t∗ ∼
β

2π
logS (3.14)

Thus, we can see that this energy changes significantly after t∗. Shockwaves inserted

after t∗ do not acquire the gravitational potential well and do not cause significant

changes in complexity(U and U † cancel). Shockwaves inserted before t∗ will result

in a significant change in geometry. See for example [18, 106, 107].

3.3 Holographic Complexity in dS

Using all three (CA, CV2.0, CV) methods, the complexity calculations in general

dSd+1 (d ≥ 2) were made in [47]. As a result, they found that complexity and its

growth rate diverge when a certain critical time τ∞ is reached, no matter which

conjecture is followed,

lim
τ→τ∞

C → ∞, lim
τ→τ∞

dC
dτ
→∞. (3.15)

This is typical hyperfast behavior in dSd+1 (d ≥ 2). The main contribution to this

divergence is rf reaches infinity, where rf is the radius of the conical point at the

most future tip of the WdW patch. In other words, the fact that the radius r = rf
at the top vertex of the diamond-shaped-WdW patch diverges causes the volume of

Sd−1 to diverge, and as a result, causes the complexity diverges. In the case of CV,

r = rturn diverges, which we will define later but rturn is the radius of most future tip

in Σ slice. See Figure 20 and 23.

In particular, let us look at the time dependence of the WdW patch. Note here

that the holographic screen is on the stretched horizon r = ρ `, which is close to the

cosmological horizon. Here r = ` is the cosmological horizon for pure dS and ρ is

a parameter for the stretched horizon, i.e., 0 < ρ < 1 and ρ → 1. We choose the

boundary time increases upward on both the left and right stretched horizons such

that tR = −tL ∝ τ on the stretched horizon. As τ increase, the radius r at the top

vertex of the diamond-shaped-WdW patch also increases. Then at some finite time,

rf will eventually reach infinity, and then, at the moment of arrival, the volume of

the WdW patch also grows rapidly and diverges in dSd+1 (d ≥ 2). Therefore, the

critical time can be estimated as the time when rf =∞.

4 CA in JT gravity

In this section, we calculate the action complexity of the de Sitter spacetime consid-

ered in the two-dimensional JT gravity theory and show that it satisfies the hyperfast
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property. Specifically, we define the Action of JT gravity in de Sitter spacetime as

a dimensional reduction of 3-dimensional Einstein gravity. We consider reduction

from three dimensions, partly because of Susskind’s Motivation and partly because

we will later reconsider the dual of two-dimensional complexity in terms of reduc-

tion in three dimensions. The divergence of the concrete complexity comes from the

dilaton value.

4.1 Setup

According to the CA conjecture, the complexity of a state with a holographic realiza-

tion is proportional to the full gravitational action of the Wheeler-DeWitt (WDW)

patch:

CA =
IWDW

π
. (4.1)

We compute action complexity in Jackiw-Teitelboim (JT) gravity, whose bulk action

is

IJT =
1

8G

∫
W
d2x
√
−g

(
φR + L−2 U (φ)

)
+

1

4G

∫
∂W

dy
√
−hφbK , (4.2)

with φ the dilaton and φb its value at the boundary ∂W . The dilaton potential is

U(φ) = 2φ for anti-de Sitter (AdS) spacetime and U(φ) = −2φ for de Sitter (dS)

spacetime. The boundary term represents the Gibbons-Hawking-York (GHY) action

[108, 109], where K = hµνKµν is the trace of the extrinsic curvature. The latter is

defined as Kµν = hρµh
σ
ν∇ρnσ, with nσ the outward-directed normal to ∂W .

The equations of motion for the dilaton and the metric are

R = −U
′(φ)

L2
, (4.3)

0 = ∇a∇bφ− gab∇2φ+
gab
2L2

U(φ). (4.4)

In this paper, we work in dS spacetime, so we choose

U(φ) = −2φ . (4.5)

With this choice, the equations of motion are solved by the following metric and

dilaton

ds2 = −f(r)dt2 +
dr2

f(r)
, φ =

r

L
, (4.6)

where the blackening factor f(r) is

f(r) = 1− r2

L2
. (4.7)

In the following, we focus on the portion of spacetime with 0 ≤ r <∞ (for the reason

we shall explain at the beginning of subsection 4.2). Therefore, the position of the

cosmological horizon is rh = L. It is convenient to introduce the tortoise coordinate

r∗(r) =

∫ r dr̂

f(r̂)
. (4.8)
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Taking as a boundary condition r∗(0) = 0, we get

r∗(r) =
L

2
log

∣∣∣∣r + L

r − L

∣∣∣∣ . (4.9)

The Eddington-Finkelstein (EF) coordinates are given by

v = t+ r∗(r) , u = t− r∗(r) . (4.10)

To describe the whole of spacetime, we need to consider two copies of EF coordinates,

one for the right (R) and one for the left (L) side of the Penrose diagram, see figure

9. Note that uR is constant along null rays falling into the cosmological horizon,

whereas vR is constant along outgoing null rays. The reverse behavior applies to the

EF coordinates for the left side of the Penrose diagram.

r
=

0r
=

0 r
=
L r

=
L

r =∞

r =∞

vR uR

uL vL

t
t

Figure 9: Penrose diagram for dS spacetime. The time coordinate t runs upwards

on the right and downwards on the left. Coordinate axes for the EF coordinates on

the right and the left are shown in red.

4.2 Action manual and dimensional reduction

Action complexity is obtained by evaluating the full gravitational action of the WDW

patch as in eq. (4.1). The question of which action should be considered is non-trivial

since the full JT gravity action of the relevant spacetime region is not just given by

IJT in eq. (4.2). In fact, there are several additional boundary contributions. In

order to determine the right action, we exploit the fact that the dS JT gravity action

in two dimensions can be obtained by dimensional reduction from three-dimensional

pure dS, starting from the Einstein-Hilbert (EH) action plus boundary terms [110].7

We employ this procedure to explicitly compute action complexity in dS2.

7The dimensional reduction allows us to circumvent the study of the variational problem in JT

gravity, leading to the same result for the full gravitational action.
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Before we proceed, we point out that there are two ways to obtain dS2 JT gravity

from dimensional reduction. One is half reduction from pure dS3 [110] and the other

is full reduction from Schwarzschild-dSd (d ≥ 4) in the near-Nariai limit [111, 112]

(see [110, 113, 114] as well). For our analysis, we use half reduction from pure dS3,

which automatically reduces to the r ≥ 0 range. The dS2 spacetime obtained from

Schwarzschild-dSd (d ≥ 4) in the near-Nariai limit also includes r < 0 and a horizon

at negative r. In this limit, we are zooming in on the very tiny region near the

black hole and cosmological horizons, and the r-negative horizon corresponds to the

original black hole one. Since our main interest is holographic complexity beyond

the cosmological horizon, rather than black hole complexity, we focus on r > 0.

For this purpose, half reduction from three-dimensional pure dS is enough. In three

dimensions, the full gravitational action is [115]

Itot = IEHGHY + Inull + Ijoint + Ict ,

IEHGHY ≡
1

16πG(3)

∫
W̃
d3X

√
−g(3)

(
R(3) − 2Λ(3)

)
+

1

8πG(3)

∫
∂W̃

d2Y
√
−h(3) K(3) ,

Inull ≡
1

8πG(3)

∫
B̃
dS dλ

√
γ k , Ijoint ≡

1

8πG(3)

∫
J̃
dθ
√
γ ã ,

Ict ≡
1

8πG(3)

∫
B̃
dS dλ

√
γΘ log

∣∣∣L̃Θ
∣∣∣ .

(4.11)

The term IEHGHY contains the EH and the GHY actions, the latter coming from

spacelike and timelike codimension-one boundaries. Contributions from codimension-

one null surfaces B̃ are given by Inull [115, 116]. In Ijoint, we have the contributions

from codimension-two joints J̃ [115, 117] at the intersection between codimension-

one surfaces. Finally, Ict is a counterterm for null boundaries B̃ [115] which ensures

invariance of the full action under reparameterization of null normals. In what fol-

lows, we analyze each term separately and we apply dimensional reduction to deter-

mine the right action for holographic complexity in dS2 JT gravity.

The EH-GHY action in three dimensions with positive cosmological constant

reads

IEHGHY =
1

16πG(3)

∫
W̃
d3X

√
−g(3)

(
R(3) − 2Λ(3)

)
+

1

8πG(3)

∫
∂W̃

d2Y
√
−h(3)K(3) ,

(4.12)

where

Λ(3) =
1

L2
(3)

. (4.13)

This admits a three-dimensional dS spacetime solution

ds2
(3) = g(3)MNdX

MdXN = −f(r)dt2 +
dr2

f(r)
+ r2dθ2 , f(r) = 1− r2

L2
(3)

. (4.14)
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In the GHY boundary term in eq. (4.12), h(3) is the determinant of the induced

metric on ∂W̃ and K(3) denotes the trace of the extrinsic curvature.

We now introduce the metric ansatz

ds2
(3) = g(2)µνdx

µdxν + L2
(3)φ

2(x)dθ2 , (4.15)

where we have expressed XM = (t, r, θ) = (xµ, θ) with M = 0, 1, 2 and µ = 0, 1. As

in eq. (4.6), we consider a solution for the dilaton φ(x) depending just on the radial

coordinate: φ = φ(r). From the metric ansatz (4.15), we get [110]

R(3) = R(2) −
2

φ
�(2)φ ,

K(3) = K(2) +
1

φ
nµ∇(2)µφ ,√

−g(3) = L(3) φ
√
−g(2) ,

(4.16)

with nµ the normal vector to the two-dimensional boundary ∂W̃ . Plugging into

eq. (4.12), we obtain

IJT =
L(3)

8G(3)

∫
W
d2x
√
−g(2)

[
φ
(
R(2) − 2Λ(3)

)
− 2�(2)φ

]
+

L(3)

4G(3)

∫
∂W

dy
√
−h(2)

(
φK(2) + nµ∇(2)µφ

)
,

(4.17)

where W and ∂W are the manifolds endowed with metric g(2)µν and h(2)µν , respec-

tively. Defining G ≡ G(2) = G(3)/L(3) and L ≡ L(3), we recognize the JT gravity

action IJT in eq. (4.2) with some additional terms. Three comments regarding the

EH-GHY contributions are in order:

• According to the CA conjecture, we must evaluate the full gravitational action

of the WDW patch. Such a spacetime region, which we denote by W , is

bounded by null codimension-one surfaces. Since there are neither timelike nor

spacelike boundaries, the GHY term in eq. (4.17) vanishes.

• With the metric ansatz in eq. (4.15), the three-dimensional dS spacetime solu-

tion in eq. (4.14) comes down to the two-dimensional dS solution with linear

dilaton given in eqs. (4.6) and (4.7). On-shell we have

R(2) = 2Λ(3) =
2

L2
(3)

, (4.18)

so the bulk contribution IJT in eq. (4.17) reduces to

Ibulk = − 1

4G(2)

∫
W
d2x
√
−g(2) �(2)φ . (4.19)
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Even though we refer to this expression as two-dimensional “bulk” action, Ibulk

is in fact a boundary term since it comprises a total divergence.8

• We can integrate the term �(2)φ getting a codimension-one contribution for

the null boundaries of the WDW patch distinct from Inull in eq. (4.11):

Ibulk = − 1

4G(2)

∫
B̃
dλ kµ∇(2)µφ = − 1

4G(2)

∫
B̃
dλ ∂λφ , (4.20)

where kµ is the null normal to B̃, see [34] for an analog analysis in AdS2 JT

gravity. As we will see, this term yields nonzero contribution and is important

to get consistency with the three-dimensional CA result.

Besides the bulk term, the full gravitational action of the WDW patch contains

boundary terms for null codimension-one surfaces and joint terms for codimension-

two surfaces at the intersection of null bounding surfaces, which we consider next.

The contribution from null boundaries has been originally studied in [115, 116].

In three-dimensional spacetime it is

Inull =
1

8πG(3)

∫
B̃
dS dλ

√
γ k , (4.21)

where λ is a parameter running along the null geodesics generating the surface B̃,

S is the transverse spatial direction to such generators, and γ is the determinant of

the induced metric in the S direction. The constant κ is defined by the geodesic

equation

k̃M∇(3)M k̃
N = κ k̃N , (4.22)

with k̃M = dXM (λ)
dλ

the null generator. In other words, κ measures the failure of λ to

be an affine parameter. Consequently, we can set κ = 0 by a wise parameterization

choice, getting rid of the Inull contribution.

At the intersection between bounding codimension-one surfaces, where the bound-

ary is non-smooth, the joint term comes into play. The joint contributions involv-

ing just timelike and spacelike intersecting surfaces have been investigated in [117],

while joints involving at least one null boundary have been studied in [115]. In

our computation we will meet only joints involving two null boundaries, which in

three-dimensional spacetime are given by

Ijoint =
1

8πG(3)

∫
J̃
dθ
√
γ ã ,

√
γ =
√
g(3)θθ , ã = sign(joint)× log

∣∣∣∣∣ k̃1 · k̃2

2

∣∣∣∣∣
J̃

,

(4.23)

8As it will be clear later, at late times all contributions to the full action have the same divergence

structure. Therefore, by neglecting Ibulk the qualitative behavior of action complexity at late times

does not change.
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where k̃1, k̃2 denote the one-forms normal to null boundaries, which are taken to be

outward-directed from the spacetime region of interest. The sign of the joint term is

fixed by the following rule. Choosing either of the two null boundaries intersecting

at the joint, the sign of the corresponding contribution (4.23) is positive if the bulk

region W is at the future (past) of the segment and the joint itself is located at the

past (future) edge of the selected segment. In the remaining configurations, the joint

term has a negative sign [115].

Applying the dimensional reduction, we obtain

Ijoint =
1

4G(2)

∑
J

φ(rJ ) aJ , aJ = sign(joint)× log

∣∣∣∣k1 · k2

2

∣∣∣∣
J

. (4.24)

Here r = rJ is the radial position of the joint, and we consider one-forms k1, k2

normal to one-dimensional boundaries. By spherical symmetry of the dS3 geometry,

we trivially have k̃i = ki and k̃Mi = (kµi , 0), with i = 1, 2.

The joint contributions in eq. (4.24) are affected by the arbitrariness of choosing

the normalization of null normals k1,k2. Such ambiguity can be partially removed

by requiring that ki · ∂t = ±α at the spacetime boundary [118–120], with ∂t the

timelike Killing vector in the boundary theory and α a positive constant. Still, the

constant α can be arbitrarily chosen. For the gravitational action to be invariant

under the reparameterization of null generators, a counterterm must be added for

each null boundary [115]. In three-dimensional spacetime, the counterterm has the

following form

Ict =
1

8πG(3)

∫
B̃
dS dλ

√
γΘ log

∣∣∣L̃Θ
∣∣∣ , (4.25)

where L̃ is an arbitrary length scale. In the above expression, Θ is the expansion

of null geodesics given by Θ = ∂λ log
√
γ. An explicit calculation with the metric

ansatz (4.15) leads to

Θ = ∂λ log
√
g(3)θθ = ∂λ log φ =

∂λφ

φ
. (4.26)

Therefore, in JT gravity the counterterm reads

Ict =
1

4G(2)

∫
B
dλ ∂λφ log

∣∣∣L̃ ∂λ log φ
∣∣∣ . (4.27)

Summarizing, the full gravitational action for holographic complexity in dS2 JT

is given by
IJTdS2 = Ibulk + Ijoint + Ict

= − 1

4G(2)

∫
B̃
dλ ∂λφ+

1

4G(2)

∑
J

φ(rJ ) aJ

+
1

4G(2)

∫
B
dλ ∂λφ log

∣∣∣L̃ ∂λ log φ
∣∣∣ .

(4.28)
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The lesson we learn from the dimensional reduction analysis is that the effects

of the dilaton, which explicitly appears in all terms of the full action (4.28), are

important for the evaluation of holographic complexity. This is consistent with the

discussion in the introduction. Note that in JT gravity the value of dilaton varies,

and as a result, one has an effective Newton “constant”

1

G(2) eff

≡ φ

G(2)

. (4.29)

We recall that in two dimensions there is no “area” for a black hole horizon, but

instead, there is a dilaton. The dilaton plays the role of area. In fact, in d(≥ 3)-

dimensional dS spacetime, the orthogonal Sd−2 area grows to infinity near the future

spacelike infinity, and by dimensional reduction the size factor of the Sd−2 area

becomes the dilaton. Since the divergence of complexity in higher-dimensional dS

is associated with the growth of the orthogonal Sd−2 area [47], without taking into

account the dilaton one cannot see the divergence of complexity in two-dimensional

dS spacetime in JT gravity.

4.3 Action evaluation

We now move to the explicit computation of the full gravitational action, mainly

following [47]. To ease the notation, we set L(3) ≡ L. First, we introduce the

stretched horizons for both the left and the right sides of the Penrose diagram.

These are r-constant surfaces described by

rst = ρL , 0 < ρ < 1 , (4.30)

where the limit ρ ∼ 1 is intended. We then attach the WDW patch to the two

stretched horizons, and we define the anchoring times as tL and tR for the left and

the right horizons, respectively. It is not restrictive to focus on the symmetric case

tR = −tL. For convenience, we define a dimensionless time as tR = L τ . We focus on

the case where the tip of the WDW patch does not meet the future spacelike infinity

at r =∞.

For the right side of the geometry, the future boundary of the WDW patch is

at constant uR, whereas the past boundary is at constant vR. From eq. (4.10), the

defining equations are

uFR = tR − r∗(rst) = L τ − L

2
log

(
1 + ρ

1− ρ

)
,

vPR = tR + r∗(rst) = L τ +
L

2
log

(
1 + ρ

1− ρ

)
.

(4.31)

Let us denote by r = r± the position of the future and past tip of the WDW patch,

respectively. By symmetry, both tips are located on the vertical axis in the middle
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Figure 10: Penrose diagram for dS spacetime showing the WDW patch (red region).

The stretched horizons at r = ρL are represented by red curves.

of the Penrose diagram, which is described by t = 0. So, evaluating uFR defined in

eq. (4.31) at the future tip, from eq. (4.10) we get

L τ − L

2
log

(
1 + ρ

1− ρ

)
= −L

2
log

(
r+ + L

r+ − L

)
, (4.32)

which leads to
r+

L
=

cosh τ − ρ sinh τ

ρ cosh τ − sinh τ
. (4.33)

Similarly, computing vPR defined in eq. (4.31) at the past tip we obtain

L τ +
L

2
log

(
1 + ρ

1− ρ

)
=
L

2
log

r− + L

r− − L
, (4.34)

from which
r−
L

=
cosh τ + ρ sinh τ

ρ cosh τ + sinh τ
. (4.35)

The time τ = τ∞ at which the future tip meets the future spacelike infinity r → ∞
can be obtained by eq. (4.33) as

τ∞ = tanh−1 ρ . (4.36)

We can thus rewrite eqs. (4.32) and (4.34) as

τ∞ − τ = tanh−1

(
L

r+

)
, τ + τ∞ = tanh−1

(
L

r−

)
, (4.37)

or equivalently

r± = L coth (τ∞ ∓ τ) . (4.38)
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Since we are interested in how complexity grows as τ approaches τ∞, we focus on

τ ≤ τ∞. We now evaluate the gravitational action in eq. (4.28) term by term.

Explicit computation of the boundary term in eq. (4.20) gives

Ibulk =
φ

2G(2)

∣∣∣∣r+
ρL

+
φ

2G(2)

∣∣∣∣r−
ρL

=
1

G(2)

(
r+ + r− − 2ρL

2L

)
=

1

G(2)

ρ (1− ρ2) cosh2 τ

1− (1− ρ2) cosh2 τ
,

(4.39)

where in the last step eqs. (4.33) and (4.35) has been used.

We now move to the boundary terms. The null normals k = kµdx
µ to the four

codimension-one boundaries of the WDW patch are

kFR = α duR = α

(
dt− dr

f(r)

)
,

kPR = −β dvR = β

(
−dt− dr

f(r)

)
,

kFL = −α′ dvL = α′
(
−dt− dr

f(r)

)
,

kPL = β′ duL = β′
(
dt− dr

f(r)

)
,

(4.40)

where α, β, α′, β′ are positive arbitrary constants and F (P) stands for future (past),

see figure 10. This choice corresponds to an affine parameterization of null normals,

thus the boundary term (4.21) for null surfaces vanishes. To compute the four joint

terms in eq. (4.24) we need

a+ = + log

∣∣∣∣kFR · kFL2

∣∣∣∣
r=r+

= log

∣∣∣∣ αα′f(r+)

∣∣∣∣ ,
a− = + log

∣∣∣∣kPR · kPL2

∣∣∣∣
r=r−

= log

∣∣∣∣ ββ′f(r−)

∣∣∣∣ ,
ast,R = − log

∣∣∣∣kFR · kPR2

∣∣∣∣
r=rst

= − log

∣∣∣∣ αβ

f(ρL)

∣∣∣∣ ,
ast,L = − log

∣∣∣∣kFL · kPL2

∣∣∣∣
r=rst

= − log

∣∣∣∣ α′β′f(ρL)

∣∣∣∣ .
(4.41)

Then, the total joint contribution is

Ijoint = I+ + I− + Ist,R + Ist,L

=
1

4G(2)L

(
r+ log

αα′L2

r2
+ − L2

+ r− log
ββ′L2

r2
− − L2

− ρL log
αβα′β′

(1− ρ2)2

)
.

(4.42)

Finally, we have to calculate the counterterm for null boundaries given by eq.

(4.27). We start from the FR boundary. The null vector orthogonal to this surface
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is

kµFR = gµνkFRν = −α
(

1

f(r)
, 1

)
. (4.43)

By definition, the null vector is kµ = ∂λx
µ =

(
ṫ, ṙ
)
, where the dot denotes a derivative

with respect to the affine parameter λ. We thus conclude that ṙ = −α, implying

that r = −αλ is an affine parameter too which increases when λ decreases. Putting

all together, we get

Ict,FR =
1

4G(2)L

∫ ρL

r+

dr log
L̃ α

r

=
1

4G(2)L

(
ρL− r+ + ρL log

(
L̃ α

ρL

)
− r+ log

(
L̃ α

r+

))
.

(4.44)

By symmetry, the contribution on the future left boundary is simply Ict,FL = Ict,FR (α→ α′).

Similarly, the counterterm for the right past boundary is

Ict,PR =
1

4G(2)L

∫ ρL

r−

dr log
L̃ β

r

=
1

4G(2)L

(
ρL− r− + ρL log

(
L̃ β

ρL

)
− r− log

(
L̃ β

r−

))
,

(4.45)

and the contribution from the past left boundary is Ict,PL = Ict,PR (β → β′). So, the
total counterterm reads

Ict = Ict,FR + Ict,FL + Ict,PR + Ict,PL

=
1

4G(2)L

(
4ρL− 2r+ − 2r− + ρL log

(
L̃4αβα′β′

ρ4L4

)
− r+ log

(
L̃2αα′

r2+

)
− r− log

(
L̃2ββ′

r2−

))
.

(4.46)

Note that the terms containing the arbitrary constants α, β, α′, β′ cancel the corre-
sponding terms in the joint contribution (4.42). In details,

Ijoint + Ict =
1

2G(2)L

2ρL− r+ − r− + r+ log
r+L

L̃
√
r2+ − L2

+ r− log
r−L

L̃
√
r2− − L2

− ρL log
ρ2L2

L̃2 (1− ρ2)


=

1

2G(2)L

(
L coth (τ∞ − τ)

(
log

(
L cosh (τ∞ − τ)

L̃

)
− 1

)
+ (τ → −τ)

−2L tanh (τ∞)

(
log

(
L sinh (τ∞)

L̃

)
− 1

))
,

(4.47)

where in the second equality eqs. (4.36) and (4.38) have been used.
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Summing up eqs. (4.39) and (4.47), we finally get the action complexity

CA =
IJTdS2

π
=
Ibulk + Ijoint + Ict

π

=
1

2πG(2)

(
2ρ (1− ρ2) cosh2 τ

1− (1− ρ2) cosh2 τ
− 2 tanh (τ∞)

(
log

(
L sinh (τ∞)

L̃

)
− 1

)
+ coth (τ∞ − τ)

(
log

(
L cosh (τ∞ − τ)

L̃

)
− 1

)
+ (τ → −τ)

)
,

(4.48)

which matches the dS3 result found in [47], with G(2) = G(3)/L.

Some comments are in order:

• The CA given by eq. (4.48) diverges at the critical time

cosh2 τ∞ =
1

1− ρ2
, (4.49)

which is exactly eq. (4.36). In the limit τ → τ∞, both r+ and CA diverge at

the leading order. In particular,

r+ =
L

(τ∞ − τ)
+ (subleading) as τ → τ∞ , (4.50)

where we have used eq. (4.33), and

CA =
1

πG(2)

1√
2− ρ2

1

(τ − τ∞)
∝ r+

G(2)

+ (subleading) as τ → τ∞ . (4.51)

Therefore, the late-time behavior of CA is

CA ∼
φ

G(2)

≡ 1

G(2) eff

. (4.52)

As discussed in the introduction, this is exactly what we expect in JT gravity.

• As first pointed out in [3], in d ≥ 3 dimensions volume complexity diverges at

the critical time. This can be understood from the fact that maximal slices

anchored at the two stretched horizons bend upwards to the future spacelike

infinity, where local (d − 2)-spheres exponentially expand. In JT gravity, the

effect of such an exponential expansion appears in the linear dilaton. Note that

the static coordinate r behaves as time beyond the cosmological horizon r ≥ L

and it diverges at the future spacelike infinity.

• Even though τ∞ diverges in the limit ρ→ 1, it does as

ρ ≡ 1− ε , τ∞ =
1

2
log

2

ε
+O(ε) . (4.53)

So, the τ∞ dependence on the stretched horizon parameter ε is very mild [3, 47].

• Without taking into account the dilaton, volume complexity in dS2 remains

finite due to the lack of a local exponentially expanding (d− 2)-sphere in two

dimensions [39, 47].
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5 Geodesics, Volume and Weyl dependence

In this section, we point out that volume is not a well-defined quantity in JT gravity,

focusing on the intrinsic properties of JT gravity theory, and discussing the superi-

ority of action complexity over volume complexity.

5.1 Volume complexity in dS2

First, we discuss the complexity of the two-dimensional de Sitter spacetime.

5.2 Weyl field redefinition

In this section, we discuss volume complexity and its subtleties. Before we proceed,

we review the basic point.

The most general two-dimensional dilaton gravity bulk action up to two deriva-

tives can be written in the form

S =
1

8G

∫
W
d2x
√
−g̃
(
U1(Φ)R̃ + U2(Φ)g̃µν∇̃µΦ∇̃νΦ + L−2U3(Φ)

)
. (5.1)

We can perform a Weyl field redefinition

g̃µν = e2ω gµν , ∇µω = − U2(Φ)

2U ′1(Φ)
∇µΦ , (5.2)

to get rid of the kinetic term. Then, by doing a simple field redefinition φ = U1(Φ),

we can remove U1 as well. Note that this Weyl field redefinition does not change the

coefficient of the
√
−g̃R̃ terms and we are left with just one function of φ which is

related to U3 as U(φ) = U3(Φ). Therefore, a general dilation gravity system can be

brought to the form

S =
1

8G

∫
d2x
√
−g
(
φR + L−2U(φ)

)
, (5.3)

which admits the two-dimensional dS solution with linear dilaton in eq. (4.6).

Note that even though the intermediate Weyl transformation done above is just

a field redefinition, and hence should not affect physical quantities, it has significant

influence in the context of the CV conjecture, since the volume changes by Weyl

transformation. In this section, we study the effects of Weyl transformations on the

CV conjecture. To evaluate volume complexity, it is convenient to use the metric

ansatz

ds2 = −f(r)dt2 +
dr2

f(r)
. (5.4)

In fact, by starting with the dS2 solution in eq. (4.6) and by applying the Weyl

transformation-like field redefinition

gµν ≡ Ω(φ)ĝµν , (5.5)
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one can always put the metric in the form of eq. (5.4) by a coordinate change, as

we will show soon. Here we always assume Ω(φ) is regular. In what follows, we set

L = 1 for convenience. The L scale can always be recovered by dimensional analysis.

Since φ = r, we have Ω(φ) = Ω(r). Starting from f(r) = 1 − r2, the Weyl-

transformed metric is given by

ds2 = Ω(r)

(
−f(r)dt2 +

dr2

f(r)

)
= −Ω(r)f(r)dt2 +

Ω2(r)dr2

Ω(r)f(r)
. (5.6)

Defining the coordinate r̃ in terms of r as

r̃(r) =

∫ r

Ω(r̂)dr̂ , (5.7)

the line element can be written as

ds2 = −f̃(r̃)dt2 +
dr̃2

f̃(r̃)
, f̃(r̃) = Ω(r(r̃))f(r(r̃)) . (5.8)

One can check that the temperature of the solution remains unchanged upon Weyl

transformation-like field redefinition because t is unmodified. In this way, we can

always make the metric in the form eq. (5.4). However, note that the dilaton is no

more linear in terms of the new radial coordinate r̃

φ = r(r̃) . (5.9)

In the end, this is just a field-redefinition, so physics should not be modified. Since the

vacuum of JT gravity is characterized by both the metric and the dilaton, reasonable

physical quantities should be determined by taking into account both. While the on-

shell action is invariant under such field-redefinitions, the volume is not, because it

is determined by the metric only. In other words, action complexity is invariant, but

the volume (precisely, geodesic length) changes, as we will see explicitly.

Given the metric ansatz in eq. (5.4), we now present the procedure to compute the

length of geodesic following the approach of [39, 47]. As in the action computation,

we focus on the portion of spacetime with 0 ≤ r <∞.

In EF coordinates (4.10), the line element on the right side of the Penrose dia-

gram covered by (vR, r) or (uR, r) coordinates is

ds2 = −f(r)dv2
R + 2dvRdr = −f(r)du2

R − 2duRdr . (5.10)

The length of geodesics in this geometry reads

V =

∫
ds
√
−fv̇2

R + 2v̇Rṙ =

∫
ds
√
−fu̇2

R − 2u̇Rṙ , (5.11)
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where the dot denotes the derivative with respect to the geodesic parameter s. Since

the geodesic is spacelike, we can always choose a parameterization such that the

integrand in eq. (5.11) is unity:

− fv̇2
R + 2v̇Rṙ = 1 → ṙ =

1 + fv̇2
R

2v̇R
,

− fu̇2
R − 2u̇Rṙ = 1 → ṙ = −1 + fu̇2

R

2u̇R
.

(5.12)

The equations of motion obtained from eq. (5.11) by varying uR, vR lead to the

conserved quantity

P =
δV

δv̇R
= −fv̇R + ṙ =

1− fv̇2
R

2v̇R
,

P =
δV

δu̇R
= −fu̇R − ṙ =

1− fu̇2
R

2u̇R
.

(5.13)

We can thus express u̇R, v̇R, and ṙ in terms of the conserved quantity P as

ṙ± = ±
√
f + P 2 , u̇R± =

−P − ṙ±
f

, v̇R± =
−P + ṙ±

f
. (5.14)

The sign ± in the above equation indicates whether the parameter s increases or

decreases along the direction of increasing r. There is a turning point where f(rt) +

P 2 = 0. We consider geodesics anchored at the left and right stretched horizons

r = rst, defined in eq. (4.30). We take by convention the parameter s to increase

from the left stretched horizon to the right one. In the chosen gauge, the volume is

given by

V (P ) =

∫
ds = 2

∫ rt

rst

dr

ṙ+

= 2

∫ rt

rst

dr√
f(r) + P 2

, (5.15)

where by symmetry we integrate over the left half of the geodesic and we introduce a

multiplicative factor of 2. The dependence of volume on the stretched horizon time

tR = −tL = τ is encoded in the conserved quantity P . For P > 0, geodesics explore

the region beyond the future cosmological horizon [39, 47]. In this case, the right

portion of geodesics is fully covered by the EF coordinate uR, while the left portion is

fully described by vL, see figure 9. The time dependence of P can thus be computed

by

uR(rst)− uR(rt) =

∫ rst

rt

u̇R−
ṙ−

dr =

∫ rt

rst

T (P, r) dr , (5.16)

vL(rt)− vL(rst) =

∫ rt

rst

v̇L+

ṙ+

dr =

∫ rt

rst

T (P, r) dr , (5.17)

where

T (P, r) ≡
√
f(r) + P 2 − P

f(r)
√
f(r) + P 2

. (5.18)
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Summing up eqs. (5.16) and (5.17) and using the definition of the EF coordinates,

we end up with

τ(P ) = r∗(rst)− r∗t +

∫ rt

rst

T (P, r)dr = −
∫ rt

rst

P

f(r)
√
f(r) + P 2

dr , (5.19)

where we have defined r∗t ≡ r∗(rt). Note that the case P < 0 corresponds to a

time-reflection τ → −τ .

As we have seen, the metric resulting from Weyl field-redefinition is given by

eq. (5.6). So, eqs. (5.15) and (5.19) still hold true, provided that we replace r, f(r)→
r̃, f̃(r̃) given by eqs. (5.7) and (5.8). Therefore, after the Weyl field-redefinition, the

volume and the stretched horizon time are given by

V (P ) = 2

∫ r̃t

r̃st

dr̃√
f̃(r̃) + P 2

= 2

∫ rt

rst

Ω(r)√
Ω(r)f(r) + P 2

dr , (5.20)

τ(P ) = r̃∗(r̃st)− r̃∗t +

∫ r̃t

r̃st

T̃ (P, r̃)dr̃ = −
∫ rt

rst

P

f(r)
√

Ω(r)f(r) + P 2
dr , (5.21)

where r̃t is the turning point obtained by

f̃(r̃t) + P 2 = 0 , (5.22)

and r̃∗ is the tortoise coordinate defined by

r̃∗(r̃) =

∫ r̃ dr̂

f̃(r̂)
. (5.23)

To illustrate the Weyl dependence of the volume, we consider Ω(φ) = Ω(r) of the

form

Ω(φ) = φw = rw , (5.24)

so that we get

r̃ =
rw+1

w + 1
. (5.25)

By choosing a few specific values of w, we now show in detail how the volume in dS

spacetime changes as we change w.

· w = 0

We consider the dS blackening factor given by eq. (4.7) with L = 1. Thus, the

cosmological horizon is at r = 1. The stretched horizon is specified by the location

where the dilaton takes the fixed value

φst = rst = ρ . (5.26)

– 54 –



The turning point of the geodesic elongating between the right and left stretched

horizons is

rt =
√

1 + P 2 . (5.27)

The volume and the boundary time can be computed explicitly and are given by

V (P ) = 2

∫ √1+P 2

ρ

dr√
f(r) + P 2

= π − 2 arctan

[
ρ√

P 2 + 1− ρ2

]
,

τ(P ) = −
∫ √1+P 2

ρ

P

f(r)
√
f(r) + P 2

dr = arctanh

[
Pρ√

P 2 + 1− ρ2

]
, (5.28)

as found in [47]. If we set ρ = 0, geodesics stretch between the poles of dS spacetime.

In this case, we get V (P ) = π and τ(P ) = 0, which is consistent with the result of [39].

· w = 2

For the case w = 2, we have

r̃ =
r3

3
, (5.29)

so the blackening factor becomes

f̃(r̃) = (3r̃)2/3(1− (3r̃)2/3) . (5.30)

The turning point in terms of the original coordinate r is given by

rt =
1√
2

√
1 +
√

1 + 4P 2 . (5.31)

Since the Weyl transformation only changes the metric, and not the dilaton, the

location of the stretched horizon is still given by eq. (4.30). The expressions for the

volume and the boundary time are given by

V (P ) = 2

∫ r̃t

r̃st

dr̃√
f̃(r̃) + P 2

= 2

∫ rt

ρ

r2√
r2(1− r2) + P 2

dr ,

τ(P ) = −
∫ r̃t

r̃st

P

f̃(r̃)
√
f̃(r̃) + P 2

dr̃ = −
∫ rt

ρ

P

(1− r2)
√
r2(1− r2) + P 2

dr . (5.32)

In order to compare the cases w = 0, 2 described above, in figure 11 we present some

plots of the volume as a function of time on the stretched horizon.

Remarkably, for w = 2 the volume diverges at the critical time, qualitatively

matching the behavior of action complexity. Below, we consider refined volume for

complexity.
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Figure 11: Plot of V (τ) for fixed values of w. As τ → τ∞, the refined volume

behaves differently depending on w. The w = 0 result is bounded by π. Instead, the

refined volume for w = 2 diverges, due to the additional Weyl (dilaton) contribution

from the point near the future infinity. We set ρ = 0.7 and τ∞ = arctanh(ρ) = 0.88.

5.3 Refined volume for complexity

As we have seen, despite a field redefinition should not influence physics, volume

complexity is clearly modified by this kind of transformation. Moreover, there is a

discrepancy between volume complexity and action complexity in JT gravity. In this

subsection, we look for a Weyl factor of the form in eq. (5.24) with an appropriate

parameter w for which the transformed volume complexity behaves qualitatively as

action complexity. We refer to the volume with this specific choice of w as refined

volume.

This can be easily done as follows. We recall that the action complexity we

computed in section 4 is obtained by dimensional reduction from dS3. Therefore,

action complexity in dS2 JT gravity is essentially the same as in dS3 Einstein gravity.

For Einstein gravity in dSd+1, both CV and CA conjectures are studied in detail in

[47], where the authors have found

V ∼
∫ rt

ρ

dr
(r/L)2(d−1)√

P 2 + f(r) (r/L)2(d−1)
, τ ∼

∫ rt

ρ

dr

L

−P
f(r)

√
P 2 + f(r) (r/L)2(d−1)

,

(5.33)

see eq. (5.9) and (5.11) in [47]. In dSd+1 (d ≥ 2), both volume and action complexity

grow as rd−2
+ . Therefore, a direct comparison of the above result with our eqs. (5.20)
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and (5.21) for dS3 determines

Ω(φ) = φ2 . (5.34)

With this choice, corresponding to w = 2 in eq. (5.24), the refined volume matches

volume complexity in Einstein gravity dS3, which reduces to JT gravity dS2. In

this way, in JT gravity one can define the Weyl transformed refined volume which

behaves as action complexity.9

We end this section by pointing out that, in a similar spirit as the refined vol-

ume we have discussed, modifications of the CV conjecture in non-Einstein gravity

theories with higher derivative terms have been proposed in [121–124].

6 BTZ/dS spacetime with shock waves

In this section, we review the spacetime metric when a shockwave is inserted as a

preparation for the next section, which examines the response of hyperfast properties

to shockwaves. To understand the effects of shock waves, we will study the geometry

of AdS and dS in single shock wave case and double shock waves case. There are

two ways that we consider for our analysis.

• Method 1

Finding a shock wave geometry on the horizon through the Einstein equation

One way is considering a shock wave on the horizon, which is induced by the

delta-function stress tensor. Einstein equation determines the resultant back-

reacted metric of the shock wave, and the effect of the shock wave is restricted

only on the shock wave, i.e., horizon. Even though the metric is unchanged by

the shock wave except on the horizon, in this case, the two metric coordinates,

one above and the other below the shock wave, are connected by a simple

translational constant shift on the horizon.

• Method 2

Cutting and connecting different solutions

Another way is preparing the two different geometry, and cutting them at a

null surface but that null surface is not necessarily the horizon, and connecting

the two geometry at the null surface. In this case, the stress tensor is not

simply a delta functional. Although it is proportional to a delta function, its

magnitude is a function of the radial coordinate. The difference of coordinates

at the connecting null surface is not as simple as above Method 1. However, in

certain limits, one can see the consistency with the Method 1.

9More generally, to get the volume complexity result of conventional JT gravity to match with

the corresponding result of Einstein gravity in dSd+1, the Weyl factor should be taken to be Ω(φ) =

φ2(d−1).
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Hence we will analyze shock waves following these two methods for the BTZ case

and dS case respectively. We will also check the consistency between Method 1 and

2 as well.

6.1 BTZ spacetime

We first consider the case of BTZ with shock waves.

The BTZ black hole metric is

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dφ2, (6.1)

f(r) =
r2 −R2

`2
, (6.2)

where f(r) is blackening factor and ` is AdS-radius. R is the horizon radius which

is related to the BTZ black hole mass M as

R2 = 8GNM`2 . (6.3)

Let us rewrite this in Kruskal coordinates defined by

UR = −e−
R
`2

(tR−r∗), VR = e
R
`2

(tR+r∗), (6.4)

where r∗(r) is a tortoise coordinate,

r∗(r) =

∫
dr

f(r)
=

`2

2R
log

∣∣∣∣r −Rr +R

∣∣∣∣ . (6.5)

The subscript R in tR indicates that this definition only covers the right Rindler

patch. At the black hole horizon r → R, r∗(r) → −∞. To describe the black

hole patch, the left patch, and the white hole patch, we need to perform analytic

continuation for t in eq. (6.4) as

t→ t+
iβ

4
, t→ t+

iβ

2
, t→ t+

3iβ

4
, where β =

2π`2

R
(6.6)

respectively. In this coordinate, the BTZ metric is

ds2 =
−4`2dUdV

(1 + UV )2
+R2

(
1− UV
1 + UV

)2

dφ2 , (6.7)

and the black hole horizon is U = 0 or V = 0.

One can define the null coordinates (u, v) as follows.

uR = t− r∗, vR = t+ r∗ . (6.8)

Again, R stands for the right patch. On the left patch, we can define

uL = t− r∗, vL = t+ r∗ , (6.9)
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where on the left, t goes backward. Unlike (U, V ) coordinates, these (uR, vR) null

coordinates are not defined smoothly beyond the horizon and thus cover only the

right patch in Figure 12. Note that on the right boundary, r∗ = 0 and uR = vR = t

ranges from −∞ to ∞.

The ingoing Eddington-Finkelstein coordinates are

ds2 = −f(r)dv2
R + 2dvRdr + r2dφ2 (6.10)

where (vR, r) coordinates cover the right and black hole patch. See figure 12.

Figure 12: Penrose diagram of single shock wave on BTZ geometry. Here we

consider the case where a single shock wave is inserted at t = −tw on the right or

left boundary. The horizons are R and R̃ before and after the shock wave passes

through. Here before and after are for the right (left) boundary time, tR = −tw
(tL = −tw) for the left (right) figure. On this geometry, a geodesic jump at the

shock wave. For example, a blue geodesic starting from the left boundary intersects

a shock wave at r = rs, but it emerges from the same r = rs but different U , because

r is continuously connected to the other geometry but U is not.

6.1.1 Single shock wave

We would now like to study the BTZ black hole metric with a single shock wave. As

we mentioned, we study the shock wave geometry based on two ways;

Method 1

Suppose a shock wave is launched along V = 0. Then we want to find the solution

of the Einstein Equation with the following stress tensor,

TV V =
α

4πGN

δ(V ) , (6.11)
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where α > 0 due to the averaged null energy condition (ANEC). The resultant metric

is as follows

ds2 =
−4`2dUdV

(1 + UV )2
+ 4`2αδ(V )dV 2 +R2

(
1− UV
1 + UV

)2

dφ2. (6.12)

Clearly, this metric is the same as eq. (6.7) except V = 0. It is convenient to rewrite

this metric as follows.

ds2 =
−4`2dUdV

(1 + (U + αθ(V ))V )2
+R2

(
1− (U + αθ(V ))V

1 + (U + αθ(V ))V

)2

dφ2 (6.13)

Setting U → U − αθ(V ) (where θ(V ) is step function), eq. (6.13) becomes (6.12),

therefore they are equivalent. However written the metric as eq. (6.13), the spacetime

structure becomes clearer. The spacetime is divided into two parts by the shock wave

which is on the horizon V = 0. The metric is unmodified by the shock wave at V > 0

and V < 0, namely if V = 0 is avoided, there is no effect of the shock wave. However,

at V = 0, U coordinate is shifted by the amount of α > 0. See Figure 13 for the

Penrose diagram. These two black holes have the same mass, and this corresponds

to inducing a time delay on the horizon. As a result, the distance between the left

boundary to the right boundary becomes longer by the shock wave [18] as butterfly

effects.

Figure 13: Penrose diagram of BTZ geometry with single shock wave which is

inserted on the horizon. The red line represents a shock wave. In this case, a time

delay of α > 0 is generated. This can be interpreted as a simple constant shift only

when the shock wave is as close as possible to the horizon.

Method 2

The second way is preparing the black hole geometry with different masses. In this

case, the shock wave is not necessary on the horizon. For example, we can consider

the case that a shock wave is released at the time −tw from the right/left boundary.

More concretely, we consider the situation where the mass of the BTZ black hole is

modified from M to M + E by the insertion of a shock wave. This has a natural
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interpretation that the mass has increased due to the insertion of a shock wave. Each

black hole is described by (U, V ) and (Ũ , Ṽ ) coordinates respectively. See figure 12.

In this case, the shock wave trajectory can be described in UV coordinates as

V = ±e−
Rtw
`2 , Ṽ = ±e−

R̃tw
`2 (6.14)

where we take the positive sign for the situation in the left figure in figure 12, and

the negative sign for the one in the right figure. In the uv coordinate system, it is

given as a constant surface where

vR(L) = v0 ≡ −tw . (6.15)

The (U, V ) and (Ũ , Ṽ ) coordinates are connected at this shock wave trajectory, and

r must be continuous there such that the metric is C0. The smoothness of r at the

shock wave trajectory requires

R
1− UV
1 + UV

= R̃
1− Ũ Ṽ
1 + Ũ Ṽ

(6.16)

where V and Ṽ are given by eq. (6.14) and

R2 = 8GNM`2 , R̃2 = 8GN (M + E) `2. (6.17)

Thus, the metric is C0 and it can also be written in the Vaidya metric as

ds2 = − 1

`2
(r2 −R2θ(v0 − v)− R̃2θ(v − v0))dv2 + 2dvdr + r2dφ2 (6.18)

= − 1

`2
(r2 −R2 − 8GNE`

2θ(v − v0))dv2 + 2dvdr + r2dφ2 (6.19)

Here v means vR (v = vL) in the left (right) figure 12. This is the solution of the

Einstein equation under the following stress tensor.

Tvv =
E

2πr
δ(v − v0) . (6.20)

The ANEC requires E > 0. This shock wave has some strange properties since it is

induced by the stress tensor whose magnitude depends on r. However, as we will see

below, this is consistent with Method 1 in certain limits.

Consistency check

We now check the consistency that the metric obtained with Method 2 matches the

one obtained with Method 1, i.e., the shock wave geometry eq. (6.13) in a certain

limit.

As described earlier, in Method 2, the shock wave propagates not necessarily on

the horizon. To see the consistency with the metric obtained in Method 1, we need to

take the limit large tw so that the shock wave approaches the horizon. Furthermore,
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in Method 1, the geometry is unmodified except for the horizon. This implies that E

must be small.

Thus we are led to the following double scaling limit,

tw →∞ ,
E

M
→ 0 , where

E

M
e
R
`2
tw = fixed . (6.21)

Under this double scaling limit, using eq. (6.14), (6.16) and (6.17), we can obtain

the relationship between U and Ũ , which turns out

Ũ = U ± α, α =
E

4M
e
R
`2
tw > 0 . (6.22)

Here +(−) is for the left (right) figure 12. This corresponds to the extreme case

where the shock wave is localized on the horizon and R̃→ R. This is simply a black

hole geometry with the same mass connected by constant shift translation obtained

in Method 1.

Note that in the case where the shock wave is inserted on the left boundary at

tL = −tw, the region where the tilde coordinates are defined is the exact opposite

of the case where the shock wave is inserted on the right boundary at tR = −tw,

as shown in figure 12. Then U and Ũ are switched and eq. (6.22) is exactly what

we obtained in the metric eq. (6.13). In this way, the shock wave geometry inserted

at time −tw from the right/left boundary gives essentially the same shift between

different coordinates U and Ũ under the double scaling limit eq. (6.21).

The stress tensor eq. (6.20) is also consistent with eq. (6.11). To see this, we

have

TV V =

(
dv

dV

)2

Tvv(v) ,
dV

dv
=
R

`2
e
R
`2
v (6.23)

and in the double scaling limit v = v0 = −tw → −∞, r → R and

δ(v − v0) =

(
dv

dV

)−1

δ(V − e−
R
`2
tw)→

(
dv

dV

)−1

δ(V ) (6.24)

thus, starting from eq. (6.20),

TV V =

(
dv

dV

)2
E

2πr
δ(v − v0)

→
(
dv

dV

)
E

2πR
δ(V ) =

E

16GNπM
e
R
`2
twδ(V ) =

α

4πGN

δ(V ) . (6.25)

we obtain eq. (6.11).
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6.1.2 Double shock waves

Next, we consider the case where two shock waves are inserted. We will describe the

metric based on the two previous methods.

Method 1

First, we consider the case where two shock waves pass over two horizons. i.e., V = 0

and U = 0, where the following stress tensors are inserted,

TV V =
α

4πGN

δ(V ) , TUU =
α

4πGN

δ(U) . (6.26)

Just like the single shock wave case, we can find the following solution

ds2 =
−4`2dUdV

(1 + UV )2
+ 4`2αδ(U)dU2 + 4`2αδ(V )dV 2 +R2

(
1− UV
1 + UV

)2

dφ2. (6.27)

However, this is a solution only in the leading order of α, neglecting O(α2). On the

other hand, the single shock wave solution eq. (6.12) is an exact solution. Therefore

we assume α is small enough to justify this perturbative solution in α.

At constant U(6= 0) surface, (or constant V (6= 0) surface), this geometry is a

solution with a single shock wave at V = 0 (or U = 0). Therefore, if we leave aside

the points where the shock waves intersect, we will see a shift of coordinates on each

shock wave, as seen in the single shock wave solution.

Method 2

Next, let us consider the method connecting two black hole geometries with different

masses. The same continuity condition for r as a single shock wave case must be

imposed across shock waves.

However, a nontrivial additional condition is required at the point where shock

waves intersect each other, which is Dray-’t Hooft-Redmount (DTR) condition [125–

127]. DTR condition is the consequence of the C0 property of metric at the inter-

section point of delta-functional shock waves. Suppose dividing the spacetime into

4 regions at the intersection of shock waves, a(bove), b(elow), r(ight), and l(eft) of

the intersection in the Penrose diagram, then the blackening factor for fa, fb, fr, fl
must satisfy

fa(rc)fb(rc) = fl(rc)fr(rc) (6.28)

at the shock wave intersection radius r = rc.

Let us consider this condition more concretely. Suppose that the below part of

the Penrose diagram divided by shock waves is a black hole geometry with mass

M − E and that the left and right parts are mass M as a result of inserting energy

E. See Figure the left figure in figure 14.

The DTR condition (6.28) at the intersection radius r = rc becomes

(r2
c − 8GN`

2Mt)(r
2
c − 8GN`

2(M − E)) = (r2
c − 8GN`

2M)2 (6.29)
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Figure 14: BTZ space-time divided by two shock waves (red solid lines). For

simplicity, we consider the insertion of double shock waves in such a way that the

Penrose diagram is left-right symmetrical. There is a choice to be made as to which

boundary to insert the shock wave from t = −tw. In the left figure, one shock wave

is inserted at the right boundary time tR = −tw. Another shock wave reaches the

left boundary at tL = +tw. In the right figure, the situation is the other way around;

one shock wave reaches the right boundary at tR = +tw, and one shock wave is

inserted at tL = −tw on the left boundary. Shock waves divide the spacetime into

four distinguished region as a(bove), b(elow), l(eft), r(ight), and their masses are

Mt, M − E, M and M respectively in the left figure. Two shock waves intersect at

r = rc.

which determines the relation between Mt and rc as

Mt = M + E +
8GN`

2E2

8GN(M − E)`2 − r2
c

(6.30)

In the right figure 14, simply the role of above and below patches is flipped.

Consistency check

The left/right patch and the below patch have masses M and M − E, respectively

in the left figure 14. This mass difference is the same as the single shock wave case.

Therefore, the continuity of r across the shock wave reproduces the constant shift of

α given in (6.22) in the double scaling limit eq. (6.21).

Next, let us look at the relationship between the left (or right) and the above

patch in the left figure 14. In the double scaling limit eq. (6.21),

r2
c → R2 = 8GN`

2M , GNE → 0 , (6.31)

then, the denominator of the last term in (6.30) becomes zero and we need careful

analysis in that limit.
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To understand Mt in detail, let us first determine rc as a function of tw. Since

both shock waves are inserted at t = tw on the left and right boundary, we have

U = V = ±e−
Rtw
`2 (6.32)

at the intersection r = rc. Here again, the positive and negative signs represent the

case in the left and right figures of figure 14, respectively.

Therefore, we have

UV = e−2Rtw/`2 = e2Rr∗(rc)/`2 =
R− rc
R + rc

(6.33)

which determines tw dependence of rc as

rc = R tanh
R

`2
tw (6.34)

From this, Mt in (6.30) becomes

Mt = M + E +
E2 cosh2 R

`2
tw

M − E cosh2 R
`2
tw
. (6.35)

Let us consider the double scaling limit (6.21). which is E/M → 0 with tw →∞
where α is fixed. In this limit

M � E cosh2 R

`2
tw (6.36)

and therefore Mt becomes

Mt →M (6.37)

Therefore, the effects of the shock waves are restricted only on the horizon U = 0

and V = 0 in the double scaling limit (6.21) which is consistent with the metric

eq. (6.27).

6.2 de Sitter spacetime

We now consider the case of dS. The method is the same as for the BTZ case.

However, the results are different in a very interesting way.

The (Schwarzschild) dS spacetime [128, 129] can be written as

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dφ2, (6.38)

f(r) =
L2 − r2

`2
. (6.39)
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where ` is dS-radius. L is a parameter for the cosmological horizon, such that

L2 = `2 (for pure dS) (6.40)

L2 = (1− 8GNM)`2 (for Schwarzschild dS) (6.41)

Note that even though we call Schwarzschild dS (or SdS in short), only a cosmological

horizon exists and there is no black hole horizon in three dimensions.

Let us rewrite this in Kruskal coordinates defined by

UR = e
L
`2

(tR−r∗), VR = −e−
L
`2

(tR+r∗), (6.42)

where r∗(r) is a tortoise coordinate,

r∗(r) =

∫
dr

f(r)
=

`2

2L
log

∣∣∣∣L+ r

L− r

∣∣∣∣ . (6.43)

at the cosmological horizon r → L, r∗(r)→ +∞. Note that the sign in eq. (6.42) is

different from that of AdS in eq (6.4).

Again the subscript R in tR indicates that this definition only covers the right

static patch. We sometimes call the right static patch r = 0 a south pole and the

left static patch r = 0 a north pole. In this coordinate, the dS metric is

ds2 =
−4`2dUdV

(1− UV )2
+ L2

(
1 + UV

1− UV

)2

dφ2 (6.44)

and the cosmological horizon is U = 0 or V = 0.

It is also useful to define the null coordinates (u, v) as follows,

uR = t− r∗, vR = t+ r∗ , uL = t− r∗, vL = t+ r∗ (6.45)

Note that this definition of (u, v) is the same as that of AdS in eq. (6.8), however,

the orientations of the u and v coordinates are switched compared to the AdS case,

and so are (U, V ) coordinates. See figure 16 for the orientations of the coordinates.

Note that in the right static patch, the south pole, r = 0, corresponds to r∗ = 0, and

there, uR = vR = t ranges from −∞ to ∞.

The ingoing Eddington-Finkelstein coordinates are

ds2 = −f(r)du2
R − 2duRdr + r2dφ2. (6.46)

where (uR, r) coordinates the right static patch and future patch which is r ≥ L.

6.2.1 Single shock wave

Method 1

As is the case of BTZ, we can find the solution of the Einstein equation under the

stress tensor

TUU =
β

4πGN

δ(U) (6.47)
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where β > 0 due to ANEC. For simplicity, we are considering a 2 + 1 dimensional

solution, but the solutions in higher dimension were specifically constructed in [130–

132]. These solutions can be obtained by appropriately boosting the solution for a

point particle.

The Einstein equation with stress tensor eq. (6.47) yields

ds2 =
−4`2dUdV

(1− UV )2
− 4`2βδ(U)dU2 + L2

(
1 + UV

1− UV

)2

dφ2 (6.48)

In this metric, the effects of the shock wave are restricted only on the horizon U = 0.

It is convenient to rewrite this metric as follows.

ds2 =
−4`2dUdV

(1− U(V − βθ(U)))2
+ L2

(
1 + U(V − βθ(U))

1− U(V − βθ(U))

)2

dφ2 (6.49)

Setting V → V + βθ(U), eq. (6.49) becomes (6.48). Note that compared with the

BTZ case in eq. (6.12) and (6.13), the effect of the shock wave is exactly the opposite.

This reverse shift behaves as if it induces a time advance. However, this is causally

consistent [65, 69]. Shock wave makes the universe shrink gravitationally and allows

a causal connection between the left and right patch. See figure 15.

Figure 15: Penrose diagram of dS with single shock wave which is inserted on the

cosmological horizon. The shift is exactly the opposite compared with the BTZ case

as Figure 13. In this case, effectively a time advance of β is generated.

Method 2

Now let us see the second method by preparing Schwarzschild dS spacetime with

different masses and connecting them at the shock wave. In the case of dS, the mass

shift is nontrivial, so we will use (U, V ) for the upper part and (Ũ , Ṽ ) for the lower

part as in Penrose diagram in the left figure of figure 16. Again, in the right figure,

the role of U and Ũ is reversed. The connection condition is the same as BTZ,

making r continuous on the shock wave,

L
1 + UV

1− UV
= L̃

1 + Ũ Ṽ

1− Ũ Ṽ
(6.50)
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Thus, the metric must be C0 and it can also be written in the Vaidya metric as

ds2 = −

(
L2θ(u− u0) + L̃2θ(u0 − u)− r2

)
`2

du2 − 2dudr + r2dφ2 (6.51)

where u implies uR (uL) in the left (right) figure in Figure 16. u0 is a parameter for

the shock wave trajectory; the shock wave is on the constant surface

uR(L) = u0 = −tw (6.52)

in uv coordinates, and t = −tw is the time on the south (north) pole, i.e., right (left)

patch r = 0, and

U = ±e−
L
`2
tw , Ũ = ±e−

L̃
`2
tw (6.53)

where we take the positive (negative) sign for the case in the left (right) figure in

figure 16.

This metric is the solution of Einstein equation with the stress tensor

Tuu =
L2 − L̃2

16πGN`2r
δ(u− u0) (6.54)

Setting

L2 = `2 − 8GNM`2 , L̃2 = `2 − 8GNM̃`2 (6.55)

we obtain

Tuu =
M̃ −M

2πr
δ(u− u0) ≡ E

2πr
δ(u− u0) . (6.56)

Therefore the ANEC requires

M̃ > M ⇔ E > 0 . (6.57)

Thus, after the shock wave, the mass should decrease in the dS case. For example, if

M = 0, the L is for the dS cosmological horizon. Then M̃ > 0, where L̃ is for SdS.

Consistency check

As is the case of AdS, we also check if Method 1 and Method 2 are consistent in the

case of dS, and for that purpose, we need the following double scaling limit

GNE → 0 , tw →∞ where GNE e
L
`2
tw = fixed . (6.58)

Under the double scaling limit eq. (6.58), we can solve r-coordinate continuity con-

dition eq. (6.50) for Ũ , with (6.53) and (6.55) and we obtain β as

Ṽ = V ± β , β =
2GNE

1− 8GNM
e
Ltw
`2 =

2GNE`
2

L2
e
Ltw
`2 > 0 . (6.59)
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Figure 16: Penrose diagram of single shock wave on dS geometry. Note that our

convention of U and V orientation is switched compared with the BTZ case as Figure

12. We treat the case where a single shock wave is inserted at tR = −tw (tL = −tw)

in the south pole (north pole). The stretched horizon is drawn in the orange curve,

which is r = ρL and ρ → 1. L and L̃ are shifted by the inserted energy E. Note,

however, that the relationship is inverse compared with the BTZ case. For example,

if L is for pure dS, then L̃ is for SdS. r is again continuously connected in this case.

Again, the positive (negative) sign for the left (right) figure in figure 16. Since L

and L̃ are switched between the left and right figure, eq. (6.59) is exactly what we

obtained in the metric eq. (6.49).

The other thing to check is that the stress tensor of the Vaidya metric, which

describes the mass shift in an obvious way, does indeed match that of Method 1. One

can also check the stress tensor (6.56) matches with (6.47) in the double scaling limit

(6.58), where r → L as follows

TUU =

(
du

dU

)2

Tuu →
(
du

dU

)
E

2πL
δ(U) =

β

4πGN

δ(U) at r → L (6.60)

where β is given by (6.59). This is indeed consistent with the stress tensor in (6.47).

Before we go on to double shock waves, we summarize the results and emphasize

the difference between BTZ and dS. First of all, the shift of coordinate translation

at the shock wave in dS is the exact opposite of that in the BTZ, which allows a

time advance. In this way, it is possible to travel from the south pole to the north

pole. Second, the mass shift is also the exact opposite of the BTZ. In other words,

in the Penrose diagram, the lower part is the Schwarzschild dS spacetime which has

a larger mass compared with the upper part. For example, the lower part is the

Schwarzschild dS spacetime and the upper part can be pure de Sitter spacetime, see

the left figure 16.

6.2.2 Double shock waves

Method 1
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As in the case of AdS, we consider following stress tensors

TV V =
β

4πGN

δ(V ) , TUU =
β

4πGN

δ(U) . (6.61)

which yields the solution as follows

ds2 =
−4`2dUdV

(1− UV )2
− 4`2βδ(U)dU2 − 4`2βδ(V )dV 2 + L2

(
1 + UV

1− UV

)2

dφ2 (6.62)

Again this is the solution only in the leading order of β, neglecting O(β2). Therefore

we assume β is small. As in the BTZ case, this should be a shift solution similar to

the single shock wave case if we consider V 6= 0 or U 6= 0.

Figure 17: dS space-time divided by two shock waves (red solid lines). For sim-

plicity, we consider the insertion of symmetric double shock waves. Again there are

two choices for the shock waves, as left and right figures. On the left (right) figure,

the shock wave is inserted tR = −tw (tL = −tw). Another shock wave is determined

such that the Penrose diagram is symmetric between l(eft) and r(ight) as these two

figures. Shock waves divide the spacetime into four distinguished region as a(bove),

b(elow), l(eft), r(ight), and their masses are 0, Et, E and E respectively in the left

figure. Two shock waves intersect at r = rc.

Method 2

In the case of dS with double shock waves, we need to consider the DTR condition.

We consider the case where one shock wave is inserted from the past on the south

(or north) pole at tR = −tw (tL = −tw) in the left (right) figure in figure 17. The

other shock wave position is automatically determined so that the Penrose diagram

is symmetrical between left and right.

For simplicity, let us consider the setting of the left figure 17, and we take the

above part of the shock wave as simply pure dS, and set the mass of Schwarzschild
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de Sitter in the below part as Et, then

fa(r) = 1− r2

`2
, (6.63)

fl(r) = fr(r) = 1− 8GNE −
r2

`2
, (6.64)

fb(r) = 1− 8GNEt −
r2

`2
. (6.65)

In this case, the DTR condition becomes,(
1− r2

c

`2

)(
1− 8GNEt −

r2
c

`2

)
=

(
1− 8GNE −

r2
c

`2

)2

(6.66)

at the shock wave intersection r = rc.

In the case of the right figure 17, the a(bove) and b(elow) parts are exchanged,

but the DTR condition is the same.

Therefore in both left and right figures in figure 17, we can calculate Et

Et = 2E +
8GN`

2E2

r2
c − `2

. (6.67)

Here rc is

rc =
L̃

tanh L̃tw
`2

(6.68)

with

L̃2 = `2 (1− 8GNE) . (6.69)

This can be seen since the two shock waves intersect at

U = V = ±e−
L̃tw
`2 (6.70)

where the positive (negative) sign is for the left (right) figure in figure 17. Then at

the shock wave intersect,

UV = e−
2L̃tw
`2 = e−

2L̃r∗(rc)
`2 =

rc − L̃
rc + L̃

, (6.71)

which gives eq. (6.68).

Pluggin eq. (6.68) and (6.69) into (6.67), we obtain

Et = 2E +
8GN`

2E2

r2
c − `2

. (6.72)

Consistency check

In the double scaling limit eq. (6.58), L̃→ ` and (6.72) goes to

GNEt → 2G2
NE

2e
2tw
` =

β2

2
� 1 (6.73)

which is O(β2) and negligible, where β is given by eq. (6.59) with L = `. This is

consistent since eq. (6.62) is a solution neglecting this order.

– 71 –



7 Delay of Hyperfast

We will now study how this critical time is affected by shock waves. Even in the

absence of a shock wave, the critical time can be calculated by the time when rf
becomes infinite [3, 47]. However, the shock waves affect the critical time because

the shape of the WdW patch is modified. We are particularly interested in, by

the shock wave perturbation, how the dS complexity critical time τ∞ is modified,

especially whether τinfty becomes greater or lesser by shock waves. Our argument is

based on both the WdW patch, which is for CV2.0 and CA, and also the complexity

= volume (CV) method. We will find in both methods, the results are the same and

therefore consistent.

7.1 BTZ case

Before we proceed to the dS case, let us calculate the critical time in the BTZ case

as a warm-up.

Single shock wave

Given the boundary time tL and tR, the WdW patch extends from there. See Figure

18, where the future null boundaries of the WdW patch are drawn. The value of

U or V on each null boundary is determined by the boundary time. Note that tL
goes backward on the left boundary. However, due to the shock wave, the value of

U is not continuous. To distinguish before and after the shock wave, we use (Ũ , Ṽ )

coordinate after the shock wave and (U, V ) before the shock wave.

As Figure 18, let us define the rf as the radius where the U = constant and

V = constant null lines meet, namely the top “tip” of WdW patch where the radius

r becomes the smallest. Even in the BTZ case, we can define the “critical time”

as the boundary time when the intersection point, rf , reaches the singularity, i.e.,

rf = 0. In BTZ, this does not give a significant contribution, since the volume near

the singularity r = 0 vanishes10. However, the shape of the WdW patch will change

after this time.

Under this setting, we can write down the relationship between rf and tw, the

boundary time shock wave is inserted, and tR and tL. It is also convenient to define

rs as a radius where the shock wave and null line of fixed U from the left time tL,

intersect, denoted as point A in Figure 18.

When U = constant and V = constant null lines intersect at a certain radius r,

10Because of this, although r = 0 is a region where the semiclassical approximation inherently

breaks down, formally one can compute the critical time. More specifically, even if we introduce an

appropriate cutoff such as r > ε, the main contribution to the Complexity is the volume away from

the small r region.
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Figure 18: The future null boundaries of the WdW patch are drawn in BTZ geom-

etry. We use (Ũ , Ṽ )/(U, V ) after/before the shock wave (red line). rf is the radius

of conical point where fixed Ũ and fixed Ṽ of the null boundaries (blue line) meet.

Point A and B have the same radius r = rs, but U is shifted by the shock wave. The

“critical time” is the time at the boundary where rf → 0.

the following holds,

UV = ±e
2Rr∗(r)
`2 , (7.1)

Ũ Ṽ = ±e
2R̃r̃∗(r)
`2 (7.2)

where r̃∗(r) is a tortoise coordinate as eq. (6.5) but in terms of R̃ instead of R. For

±, we choose − if r > R and + if r < R. Eq. (7.1) is valid in (U, V ) coordinate

patch, and (7.2) is in (Ũ , Ṽ ) coordinate patch. Note that the shock wave is inserted

at tR = −tw, which is the boundary between (U, V ) and (Ũ , Ṽ ) coordinate patch.

Therefore, there are two definitions of V here, one using R and the other using R̃ as

V = e−
Rtw
`2 , Ṽ = e−

R̃tw
`2 (on the shock wave) (7.3)

Before proceeding to the evaluation of the critical time, we first confirm a con-

stant shift occurs between U and Ũ in the double scaling limit (6.21). Since U =

constant and Ũ =constant intersect with the shock wave given by eq. (7.3) at r = rs,

using (7.1) and (7.2), we have

Ũ − U = e
R̃(tw+2r̃∗(rs))

`2 − e
R(tw+2r∗(rs))

`2 (7.4)
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Substituting R̃ =
√

M+E
M

R, using the fact that in the double scaling limit (6.21),

rs → R, the right hand side of (7.4) becomes

Ũ − U = e
R̃(tw+2r̃∗(rs))

`2 − e
R(tw+2r∗(rs))

`2 → E

4M
e
Rtw
`2 = α (7.5)

which is exactly what we have seen in (6.22).

Now, let’s calculate the critical time τ∞. It must be clear from Figure 18 that the

critical time is smaller than that without a shock wave. In particular, since critical

time is zero without a shock wave, it must be negative. In order to evaluate the time

shift, using eq. (7.1) for point A and (7.2) for point B and C,

e−
RtL
`2 e−

Rtw
`2 = e

2Rr∗(rs)
`2 (point A) (7.6)

Ũe−
R̃tw
`2 = e

2R̃r̃∗(rs)
`2 (point B) (7.7)

Ũe
R̃tR
`2 = e

2R̃r̃∗(rf )
`2 (point C) (7.8)

where Ũ is the coordinate value on the null line between points B and C, and we use

U = e−
RtL
`2 , Ṽ = e

R̃tR
`2 (7.9)

as shown in figure 18.

Eq. (7.6), and the equation (7.8) divided by (7.7) yield,

tL + tw = −2r∗(rs) , (7.10)

tR + tw = 2 (r̃∗(rf )− r̃∗(rs)) (7.11)

respectively. Eliminating tw from the above and setting −tL = tR ≡ τ , we have

2τ = tR − tL = 2 (r̃∗(rf ) + r∗(rs)− r̃∗(rs)) (7.12)

Since at rf → 0, r̃∗(rf ) → 0, this leads to the following as the advanced part of

critical time.

∆τ∞ = τ∞ = r∗(rs)− r̃∗(rs) (7.13)

∆τ∞ = τ∞ because critical time without shock wave is at τ = 0.

To see τ∞ < 0, we need to evaluate the right-hand side of eq. (7.13). Since

this is the difference of tortoise coordinates for the difference between R and R̃, the

derivative r∗ with respect to R is

dr∗(R)

dR
=

`2

2R2

(
2rR

R2 − r2
+ log

(
R + r

R− r

))
> 0 (for r < R) (7.14)

Thus, we see that r∗ increases by increasing R at r = rf < R, and therefore r̃∗(rs) >

r∗(rs) and thus, ∆τ∞ is negative.
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We can also examine τ∞ < 0 in the double scaling limit (6.21). For that purpose,

we set R̃ =
√

1 + E
M
R. Furthermore, we use

rs = R tanh
R

2`2
(tw + tL) (7.15)

This can be obtained by solving (7.10) for rs. In the double scaling limit (6.21),

R2 − r2
s → 4R2e−

R
`2

(tw+tL) , (7.16)

E

M

R2

R2 − r2
s

→ E

4M
e+ R

`2
(tw+tL) = e+ R

`2
tLα . (7.17)

Thus, we obtain the following

∆τ∞ = r∗(rs)− r̃∗(rs)→ −
`2

2R
α +O(α2) < 0 . (7.18)

Thus ∆τ∞ is negative.

Double shock wave

Next, we calculate the critical time in the case where two shock waves are inserted

from both boundaries. For simplicity, we insert two shock waves in such a way that

the resultant Penrose diagram is symmetric between left and right, see figure 19.

Note that, as we did in section 6.1.2 and figure 14, there are two ways to put shock

wave in the symmetry, but this time we consider the situation as shown in figure

19 in order to perform the calculation unambiguously. Then we can use (U, V ) for

the left and right region, which is separated by double shock waves (red line in the

figure).

Again, U = constant and V = constant null lines (blue line) are determined by

the left boundary time tL and right boundary time tR. As in the single shock wave

case, there are two different coordinate descriptions for a single shock wave, such as

(7.3). However, R̃ = 8GNMt`
2 now. As in the single shock wave case, the following

conditions are derived using eq. (7.1) for points A and E, and (7.2) for points B, C,

D,

−e−
RtL
`2 e−

Rtw
`2 = −e

2Rr∗(rs)
`2 (point A) (7.19)

−Ũe−
R̃tw
`2 = −e

2R̃r̃∗(rs)
`2 (point B) (7.20)

Ũ Ṽ = e
2R̃r̃∗(rf )

`2 (point C) (7.21)

−e−
R̃tw
`2 Ṽ = −e

2R̃r̃∗(rs)
`2 (point D) (7.22)

−e−
Rtw
`2 e

RtR
`2 = −e

2Rr∗(rs)
`2 (point E) (7.23)

where Ũ is the coordinate value on the null line between point B and C, and Ṽ is

the one between C and D. Just as a single shock wave case, in the double scaling
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Figure 19: Future boundary of WdW patch in the case of a double shock wave

in AdS. Double shock waves (red line) divide the region into left, right, above, and

below. We use (U, V ) coordinates for left and right and (Ũ , Ṽ ) on the above region.

Mt in (Ũ , Ṽ ) coordinates is determined by the DTR condition.

limit (6.21), the effect of shock waves is simply the coordinate shift in U and V by

α. Again setting −tL = tR ≡ τ , and from the symmetry, Ũ = Ṽ , (7.19) and (7.23),

and (7.20) and (7.22) are the same. Therefore from (7.19),

τ − tw = 2r∗(rs), (7.24)

and from (7.20) and (7.21),

Ũ = e
2R̃r̃∗(rs)+R̃tw

`2 = e
R̃r̃∗(rf )

`2 ⇒ tw + 2r̃∗(rs) = r̃∗(rf ) . (7.25)

From these, we obtain

τ = 2r∗(rs)− 2r̃∗(rs) + r̃∗(rf ) (7.26)

Since rf → 0, r̃∗(rf )→ 0, we obtain

∆τ∞ = 2 (r∗(rs)− r̃∗(rs)) . (7.27)

This is twice as large as (7.13). Thus in the double scaling limit (6.21),

∆τ∞ = −`
2

R
α +O(α2) < 0 . (7.28)
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Let us understand this in terms of constant shift. By using formula (7.21), we

have at point C,

Ũ Ṽ = 1 (7.29)

where we take rf → 0. Using eq. (6.22)11, Ũ = U + α, and left right symmetry of

the Penrose diagram, Ṽ = Ũ . After setting −tL = tR = τ , we can solve this for τ ,

and we obtain

U = e−
RtL
`2 = 1− α ⇒ τ =

`2

R
log(1− α) = −`

2

R
α +O(α2) < 0 (7.30)

This is the same quantity as in (7.28). Here, in the last equality, we used the fact

that the solution of the shift is satisfied in the limit where α is small.

7.2 de Sitter case

Now let us discuss complexity in the dS case. As we said earlier, we consider the

stretched horizon as a holographic screen [3]. Furthermore, we consider the effects

of the shock waves which are inserted at times tL = −tw on the north pole (left

patch r = 0). In the case of dS, even without the shock wave, the critical time for

complexity divergence is nontrivial.

As BTZ case, in dS, when U = constant and V = constant null lines intersect

at a certain radius r, the following holds

UV = ±e−
2Lr∗(r)
`2 , (7.31)

Ũ Ṽ = ±e−
2L̃r̃∗(r)
`2 (7.32)

For ±, we choose − if r < L, and + if r > L. r̃∗(r) is a tortoise coordinate as

eq. (6.43) but in terms of L̃ instead of L. Eq. (7.31) is valid in (U, V ) coordinate

patch, and (7.32) is in (Ũ , Ṽ ) coordinate patch.

No shock wave

First, let us calculate the critical time without a shock wave. The discussion in this

case is based on [47].

In figure 20, the point rf is the location where U and V are determined on the

stretched horizon. At the r = rf > L point, using eq. (7.31) we have

UV = e−
L(tL−tR+2r∗(rst)

`2 = e−
2Lr∗(rf )

`2 (7.33)

Note, however, in dS, the coefficient in front of r∗ on the right-hand side is negative.

Therefore, it follows that

−tL + tR − 2r∗(rst) = −2r∗(rf ) . (7.34)

11Note that Ũ and U are switched between the right figure 12 and 19.

– 77 –



Figure 20: The WdW patch is anchored by the time on the stretched horizon, where

tL and tR is the time on the stretched horizon r = ρ`, where ρ → 1. If this WdW

patch reaches the depth of rf , the critical time is the stretched horizon time when

rf →∞.

Setting −tL = tR = `2

L
τ and considering the pure dS case, L = `, and we obtain the

critical time τ = τ
(0)
∞ when rf →∞ as,

`τ (0)
∞ = r∗(rst)− r∗(rf →∞)→ r∗(rst) ,

τ (0)
∞ =

r∗(rst)

`
=

1

2
log

∣∣∣∣1 + ρ

1− ρ

∣∣∣∣ = Arctanhρ . (7.35)

This is the same result as in [47]. Here τ
(0)
∞ represents the critical time without shock

waves.

Single shock wave

Next, let us consider the case where a shock wave is inserted at the time tL = −tw on

the north pole. As shown in Section 6.2, in this case, the lower part of the Penrose

diagram is pure dS.

Similarly in this case, the following equation holds eq. (7.31) for point A and (7.32)

for point B and C,

−e−
tw
` V = −e−

2r∗(rs)
` (point A) (7.36)

−e−
L̃tw
`2 Ṽ = −e−

2L̃r̃∗(rs)
`2 (point B) (7.37)

e
L̃(tR−r

∗(rst))
`2 Ṽ = e−

2L̃r̃∗(rf )
`2 (point C) (7.38)

– 78 –



Figure 21: Consider the future boundary of the WdW patch in dS. If this patch

reaches the depth of rf (= point C), the critical time is the boundary time when

rf =∞. The stretched horizon is rst = ρ `, with ρ→ 1.

where Ṽ is the coordinate value on the null line between points B and C, and we

have

V = e−
tL+r∗(rst)

` (7.39)

for the coordinate value on the null line between point A.

Using eq. (7.36) and (7.37), in this case too, the shift can be understood under

the limit as follows.

Ṽ − V = e
L̃(tw−2r̃∗(rs))

`2 − e
tw−2r∗(rs)

` (7.40)

= eL̃tw/`
2 L̃− rs
L̃+ rs

− etw/` `− rs
`+ rs

(7.41)

Substituting L̃ = `
√

1− 8GNE, and taking the double scaling limit (6.58), with

rs → `, we obtain

Ṽ − V → −2GNEe
tw/` = −β (7.42)

which matches the (6.59).

The calculation of the critical time is straightforward, however, it must be clear

from the figure 20 that the critical time is greater than the one without a shock
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wave. Using eq. (7.36) with (7.39), and the eq. (7.37) divided by (7.38) become,

respectively

tL + tw + r∗(rst) = 2r∗(rs) (7.43)

tR + tw − r∗(rst) = −2r̃∗(rf ) + 2r̃∗(rs) (7.44)

Eliminating tw from the above and setting −tL = tR = `τ , and using at rf → ∞,

r̃∗(rf )→ 0, we obtain the following

`τ∞ = r∗(rst) + r̃∗(rs)− r∗(rs) (7.45)

The term r∗(rst) is the critical time without shock waves, (7.35), therefore `τ
(0)
∞ =

r∗(rst), and the delay of critical time is given by

∆τ∞ ≡ τ∞ − τ (0)
∞ =

1

`
(r̃∗(rs)− r∗(rs)) (7.46)

To understand what eq. (7.46) implies, we need to consider the difference of tor-

toise coordinate between L and L̃. In our setting rs < L = `, and L̃ = `
√

1− 8GNE.

Since

dr̃∗(rs)

dE
=
dL̃

dE
× dr̃∗(rs)

dL̃

= −
(

4`GN√
1− 8GNE

)
×−

(
`2rs

L(L2 − r2
s)

+
`2

2L2
log

L+ rs
L− rs

)
> 0 (7.47)

Therefore, the critical time becomes greater by the shock wave.

In the double scaling limit (6.58), rs → L. To analyze this carefully, using (7.43),

tL + tw + r∗(rst) = 2r∗(rs) = ` log
`+ rs
`− rs

(7.48)

⇒ rs = ` tanh
tL + tw + r∗(rst)

2`
. (7.49)

Therefore in the double scaling limit (6.58), we can derive the delay of critical time

as

∆τ∞ →
β

2
+O(β2) > 0 . (7.50)

Thus ∆τ∞ is positive, and this implies the delay of hyperfast growth for small β

perturbation.

Double shock waves

Finally, we compute the case of a dS with a double shock wave. As shown in Figure

22, we insert double shock waves and consider the critical time at which the future
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boundary of the WdW patch extended from a certain time on the stretched horizon

reach infinity, i.e., rf =∞ of the point C.

As usual, the following is satisfied,

−e−
tw
` e−

tL+r∗(rst)
` = −e−

2r∗(rs)
` (point A) (7.51)

−e−
L̃tw
`2 Ṽ = −e−

2L̃r̃∗(rs)
`2 (point B) (7.52)

Ũ Ṽ = e−
2L̃r̃∗(rf )

`2 (point C) (7.53)

−e−
L̃tw
`2 Ũ = −e−

2L̃r̃∗(rs)
`2 (point D) (7.54)

−e−
tw
` e

tR−r
∗(rst)
` = −e−

2r∗(rs)
` (point E) (7.55)

where Ṽ is the coordinate value on the null line between point B and C, and Ũ is

the one between C and D. Just as a single shock wave case, in the double scaling

limit (6.58), the effect of shock waves is simply the coordinate shift in U and V by β.

Again setting −tL = tR, and from the left-right symmetry of the Penrose diagram,

Ũ = Ṽ , (7.51) and (7.55), and (7.52) and (7.54) are the same. From eq. (7.51) -

(7.53), we obtain

Figure 22: Future boundary of WdW patch in the case of a double shock wave in

dS. The black hole mass of the below part is determined by the DTR condition.

tL + tw = 2r∗(rs)− r∗(rst) (7.56)

tw = 2r̃∗(rs)− r̃∗(rf ) (7.57)
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Setting −tL = tR ≡ `τ and using r̃∗(rf )→ 0 as rf →∞,

∆τ∞ = τ∞ −
r∗(rst)

`
=

2

`
(r̃∗(rs)− r∗(rs)) (7.58)

→ β +O(β2) > 0 . (7.59)

Thus, as in the case of AdS, the change in critical time is twice as large as a single

shock wave case. Here, we used the fact that the double shock wave solution is

satisfied in the limit where β is small.

Let us understand this result in terms of constant shift of the metric in eq. (6.49)

as BTZ case. By using formula (7.53), at r = rf →∞ we have

Ũ Ṽ → 1 , (7.60)

From (6.59) (or equivalently (7.42)),

Ṽ = V − β (7.61)

Using the left-right symmetry of the Penrose diagram, we obtain Ũ = Ṽ and

V = e−
tL+r∗(rst)

` → 1 + β ⇒ −tL
`
→ r∗(rst)

`
+ log(1 + β) . (7.62)

Setting −tL = tR = `τ , we obtain the critical time τ∞ as the right hand side of (7.62)

and therefore,

∆τ∞ = τ∞ −
r∗(rst)

`
= log(1 + β) = β +O(β2) > 0 (7.63)

This is the same quantity as in (7.58).

7.3 CV calculation

Finally, let us derive the above critical time delay based on CV calculation as well.

For that purpose, we need to calculate the volume of the extremal geodesic anchored

to a time slice on the stretched horizon. The following discussion is based on geodesic

surface prescriptions between different patches, as is worked out in [106, 107]. We

are interested in three dimensions. However, we will proceed a little in the general

dimension and finally discuss the three-dimensional case.

In the Eddington-Finkelstein coordinate, the metric for the left (right) static

patch and the future patch is written in terms of vL (uR) as

ds2 = −f(r)dv2
L + 2dvLdr + r2dΩ2

d−1

(
= −f(r)du2

R − 2duRdr + r2dΩ2
d−1

)
. (7.64)

Then the volume of the geodesic is given by

V = Ωd−1

∫
dsrd−1

√
−fv̇2

L + 2v̇Lṙ

(
= Ωd−1

∫
dsrd−1

√
−fu̇2

R − 2u̇Rṙ

)
(7.65)
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where the dot is derivative with respect to geodesic parameter s. Ωd−1 is the volume

of a unit (d − 1)-dimensional sphere. To simplify the notation, we sometimes omit

L and R in vL and uR.

The shock wave separates spacetime into several patches, as a result, different

f(r) is assigned for each spacetime patch. However, there is a conserved quantity in

each patch. If we regard (7.65) as the action, its Lagrangian is independent of v (or

u). Therefore the following P is conserved with respect to s;

P ≡ 1

Ωd−1

δV

δv̇
=

(ṙ − fv̇) rd−1√
−fv̇2 + 2v̇ṙ

,

(
P ≡ 1

Ωd−1

δV

δu̇
=

(−ṙ − fu̇) rd−1√
−fu̇2 − 2u̇ṙ

)
. (7.66)

Since (7.65) is invariant under the reparametrization for parameter s, we can always

choose a parameterization gauge such that√
−fv̇2 + 2v̇ṙ = rd−1 ,

(√
−fu̇2 − 2u̇ṙ = rd−1

)
. (7.67)

Then we have

P = ṙ − fv̇ , (P = −ṙ − fu̇) . (7.68)

Consider a geodesic line extending from the left stretched horizon to the right

stretched horizon. r extends from the left stretched horizon to a point called the

turning point r = rturn. After that, r decreases to the right boundary. r is a

continuous parameter on the shock wave due to the C0 nature of the metric and we

set r = rs at the point where the geodesic line crosses the shock wave as before.

As we have mentioned, P is conserved only within each patch. Therefore we

denote P in the patch where the cosmological horizon is L, and P̃ for L̃. Similarly

we put ,̃ for the quantity in L̃, such as f̃(r), ũ, ṽ, etc. See figure 23.

Eq. (7.67) and (7.68) give

ṙ = +
√
P 2 + r2d−2f(r) ,

(
ṙ = −

√
P 2 + r2d−2f(r)

)
, (7.69)

v̇ =
1

f(r)

(
−P +

√
P 2 + r2d−2 f(r)

)
,
(
u̇ =

1

f(r)

(
−P +

√
P 2 + r2d−2 f(r)

))
,

(7.70)

where we choose the convention that s increase starting from left stretched horizon

toward rturn. With this, the volume is given by

CV = Ωd−1

∫
dsr2(d−1)

= 2Ωd−1

∫ rs

rst

r2(d−1)√
P 2 + f(r)r2(d−1)

dr +

∫ rturn

rs

r2(d−1)√
P̃ 2 + f̃(r)r2(d−1)

dr

 . (7.71)
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Figure 23: Figure of a geodesic line. The turning point is assumed to be in the

interior of pure dS. The momentum of pure dS is assumed to be P , and that of the

SdS patch is assumed to be P̃ .

Turing point is defined as the point where the ṙ is zero,(
1− r2

turn

L̃2

)
r

2(d−1)
turn + P̃ 2 = 0 (7.72)

As is clearly seen from this equation, the turning point rturn → ∞ as P̃ → ∞.

Therefore, we will investigate P̃ → ∞ limit. In fact, in this limit, P → ∞ as well

because the effect of the shock wave in the double scaling limit (6.58) is simply a

coordinate shift12.

Using (7.69) and (7.70), the variation of u and v along the geodesic can be

calculated by the following integral

∆v =

∫
v̇

ṙ
dr =

∫
T (P, r)dr ,

(
∆u =

∫
u̇

ṙ
dr = −

∫
T (P, r)dr

)
, (7.73)

where T (P, r) is

T (P, r) =
1

f(r)
− P

f(r)
√
P 2 + f(r)r2(d−1)

. (7.74)

12Under the coordinate shift, if momentum diverges in one patch, it also diverges in another

patch as well. More formally, one can obtain the relation between P̃ and P as follows. 1) Deriving

the equation of motion for r(s) from (7.65) as r̈ = v̇2

2 ∂vf + 1
2∂r

(
r2d−2f

)
. 2) By integrating out

this equation with respect to s between r = rs − ε to rs + ε with ε→ 0, we obtain how ṙ jumps by

crossing the shock wave. 3) By furthermore using this with (7.68), (7.69) and (7.70), we obtain the

relation between P̃ and P . By taking P̃ →∞, one can see in fact that P →∞ as well.
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Consider a geodesic that leaves the left-stretched horizon and reaches the right-

stretched horizon. From the left stretched horizon to rturn, we use vL and ṽL, and

from rturn to the right stretched horizon, we use uR and uR, as

vL(rs) − vL(rst) = +

∫ rs

rst

T (P, r)dr , (7.75)

ṽL(rturn)− ṽL(rs) = +

∫ rturn

rs

T (P̃ , r)dr , (7.76)

ũR(rturn)− ũR(rs) = −
∫ rturn

rs

T (P̃ , r)dr , (7.77)

uR(rs) − uR(rst) = −
∫ rs

rst

T (P, r)dr , (7.78)

Note that vL(rs) 6= ṽL(rs) since vL jump at the shock wave13. In fact, from the

definitions of u and v in eq. (6.45), we have

∆v(rs) ≡ ṽL(rs)− vL(rs) = (ũL(rs) + 2r̃∗(rs))− (uL(rs) + 2r∗(rs))

= 2 (r̃∗(rs)− r∗(rs)) . (7.79)

Here we use the continuity of uL on the u = constant shock wave (= shock wave

propagating V direction). Similarly uR(rs) 6= ũR(rs) and

ũR(rs)− uR(rs) = (ṽR(rs)− 2r̃∗(rs))− (vR(rs)− 2r∗(rs))

= −2 (r̃∗(rs)− r∗(rs)) = −∆v(rs) . (7.80)

due to the continuity of vR on the v = constant shock wave (= shock wave propagating

U direction).

Adding (7.75) with (7.76), and (7.78) with (7.77), we have

ṽL(rturn)− vL(rst)−∆v(rs) =

∫ rs

rst

T (P, r)dr +

∫ rturn

rs

T (P̃ , r)dr , (7.81)

ũR(rturn)− uR(rst) + ∆v(rs) = −
∫ rs

rst

T (P, r)dr −
∫ rturn

rs

T (P̃ , r)dr , (7.82)

Using the definitions of u and v, we have

uR(rst)− ũR(rturn) + ṽL(rturn)− vL(rst) = tR − tL − 2r∗(rst) + 2r̃∗(rturn) (7.83)

Thus, by subtracting (7.82) from (7.81), we have

tR − tL − 2r∗(rst) + 2r̃∗(rturn)− 2∆v(rs) = 2

∫ rs

rst

T (P, r)dr + 2

∫ rturn

rs

T (P̃ , r)dr .

(7.84)

13In (6.51), we use uL which covers left and past patch, where uL does not jump but vL jumps

at the shock wave.
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As we have mentioned, in the limit where the turning point rturn → ∞, both

P and P̃ goes to infinity, then the right hand side of eq. (7.84) vanishes. This is

because T (P, r) given (7.74) vanishes as

T (P̃ , r) = O

(
r2d−2

P̃ 2

)
→ 0 (at P̃ →∞) , (7.85)

and from (7.72),

P̃ 2 = O
(

(rturn)2d
)
→∞ (at rturn →∞) , (7.86)

therefore ∫ rturn

T (P̃ , r)dr = O

(
1

rturn

)
→ 0 (at rturn →∞) . (7.87)

Finally setting tR = −tL = `τ and using r̃∗(rturn)→ 0 at rturn →∞, we have

`τ∞ = r∗(rst) + ∆v(rs) = r∗(rst) + 2 (r̃∗(rs)− r∗(rs)) (7.88)

Thus we have

`τ (0)
∞ = r∗(rst) , (7.89)

∆τ∞ = τ∞ − τ (0)
∞ =

2

`
(r̃∗(rs)− r∗(rs)) (7.90)

which is exactly the same as eq. (7.35) and (7.58). Therefore, in three dimensions,

as (7.59),

∆τ∞ > 0 (7.91)

In this way, even with the CV argument14, exactly the same conclusions can be

derived as WdW patch argument for CA/CV2.0.

8 Summary

In this doctoral thesis, two main points were discussed.

First: we have confirmed that action complexity in dS2 JT gravity, with the effect

of the dilaton properly taken into account, diverges at the finite time τ = τ∞ given

in eq. (4.36). Instead, volume complexity reaches an O(1) critical value, although

14In fact one can also show r̃∗(rs) > r∗(rs) and thus ∆τ∞ > 0 in higher dimensions as well. For

example, in 3+1 dimensions, blackening factor becomes f(r) = 1− r2

`2 −
2GNE

r ∼ 1− r2

`2 −
2GNE

` since

rs → `. Compared with the blackening factor in 2+1 dimension, this is just a formal replacement

8GNE → 2GNE/`, therefore inequality (7.47) holds as well.
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with a diverging rate as the critical time τ = τ∞ is approached. We point out

that for larger times τ , when geodesics anchored at the stretched horizon meet the

future infinity of dS2, the definition of volume complexity requires particular care.

An analysis has been done in [47], where extremal curves are replaced by piecewise

geodesics including a cutoff portion nearby the future infinity. With this prescription,

volume is divergent too, but at the edge of the two regimes, there is an infinite jump.

On the other hand, action complexity is well-defined even after the critical time

τ∞, when the WDW patch is cut off by the future infinity. The crucial difference

between volume and action complexity in two dimensions is due to the dilaton. Since

the solution of JT gravity is characterized by both the metric and the dilaton, the

effect of the latter is crucial. The dilaton naturally arises by dimensional reduction

of three-dimensional dS spacetime, which provides the “right action” in eq. (4.28).

This is because the dimensional reduction of dS3 yields dS2 with a linear dilaton,

which is the solution of JT gravity. Consistently, by evaluating the on-shell action

in eq. (4.28), we obtain the same action complexity as for dS3 [47], see eq. (4.48).

Note that all contributions in eq. (4.28) are boundary terms. This is expected since

the bulk JT gravity action vanishes on-shell. We also stress that in dS spacetime the

dilaton diverges at the future infinity. This behaviour of the dilaton is crucial for

action complexity in JT gravity to show the hyperfast growth predicted in [3].

We have observed that the CV conjecture suffers a Weyl field-redefinition issue.

A field-redefinition should not affect the physics, but volume complexity is manifestly

modified by Weyl field-redefinition. In higher dimensions, there is a preferred frame,

the Einstein frame. However, in two dimensions, since
√
gR is invariant under Weyl

transformation, there is no such preferred frame and this leads to an ambiguity in

the definition of the CV conjecture. On the contrary, the CA conjecture is free from

this problem, because the on-shell action is invariant under field-redefinition. As a

way out, we have proposed a particular gauge choice in dS2 JT gravity under which

the so-called refined volume behaves qualitatively as action complexity.

Second: we systematically study shock wave geometries and see how the shock

waves affect the WdW patch for CA/CV2.0 complexity. We study on both BTZ

and dS background, and see that the effects of shock waves are exactly opposite

signs between BTZ and dS. Especially we see that the hyperfast nature of the dS

complexity is always delayed, i.e., the critical time at which complexity diverges,

becomes always greater by shock wave perturbation which satisfies ANEC.

Our result is consistent with Gao and Wald’s theorem [65] and also the analysis

in [69]. If we compute the geodesic distance between the north and south pole with

shock wave insertion, then unlike the BTZ case where the wormhole becomes longer,

the distance becomes lesser. This reflects the point that the two-point function

between the north pole and south pole grows instead of decay before the scrambling

time ` logS [69]. This is due to the fact that de Sitter’s Penrose diagram has shrunk
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horizontally and the geodesic length has shortened.

The point that the shock waves delay the hyperfast nature might not be so sur-

prising. dS is the spacetime where the cosmological constant dominates. Once we

perturb the spacetime by the shock wave insertion in the far past, then cosmological

constant dominance can be destroyed due to the shock waves. However, considering

this to be a characteristic of dual field theory, our results suggest something very

nontrivial. This is because complexity becomes generically greater under the pertur-

bation. Therefore, the results obtained here provide a restriction to the structure of

the state of field theories for holographic dual to dS, which could be a double-scaled

limit of SYK, DSSYK∞ proposed by Susskind. Thus, a dual state like TFD in de

Sitter must have its complexity, such that the critical time at which the complexity di-

verges is delayed for perturbations that correspond to shock waves in bulk spacetime.

We wish our analysis of complexity is useful as one of these criteria and will help

us understand more about dS dual in the future.
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