
Title Non-invertible symmetry in 4-dimensional Z_2
lattice gauge theory

Author(s) 小出, 真嵩

Citation 大阪大学, 2024, 博士論文

Version Type VoR

URL https://doi.org/10.18910/96383

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Doctoral Thesis

Non-invertible symmetry in 4-dimensional Z2
lattice gauge theory

Masataka Koide
Department of Physics, Osaka University



Acknowledgement

First and foremost, I would like to express my sincere gratitude to Prof. Satochi Yamaguchi for his
tremendous support and guidance. He has supported my research activities and provided me with a great
deal of knowledge and deep insights. Without his guidance, I have not been able to complete this thesis.
Second, I am deeply grateful to my collaborator, Yuta Nagoya. I had many discussions with him and learned
many things through them. I also greatly appreciate the helpful comments on my doctoral dissertation and
presentation by Prof. Tetsuya Onogi, Prof. Tatsuma Nishioka, Prof. Satoshi Yukawa and Prof. Hidenori
Fukaya.

I am also grateful to the faculty members of Particle Physics Theory group of Osaka University, Prof.
Shinya Kanemura, Prof. Ryosuke Sato, Prof. Minoru Tanaka, Prof. Norihiro Iizuka, Prof. Kei Yagyu, Prof.
Yutaka Hosotani and the secretaries, Ms. Kazumi Asano and Ms. Akiko Takao. I would like to thank to all
members of my laboratory.

Finally, I would like to express my deepest gratitude to my family for warm support and encouragements.

2



Abstract

Symmetry is one of the crucial tools in the non-perturbative analysis in quantum field theory. In the last
decade, generalized symmetry, which considers topological defects as symmetries, has been actively studied.
One of the generalizations of the symmetry is the non-invertible symmetry described by topological defects
without group structure. Non-invertible symmetry has been actively studied in two dimensions, but the theory
in higher dimensions has been less well understood than in two dimensions due to a lack of concrete examples.
In particular, 3-dimensional non-invertible symmetry defects had not been found in 4-dimensional theories.
We consider a 4-dimensional Z2 pure lattice gauge theory to construct 3-dimensional non-invertible defects.
The theory has 1-form Z2 global symmetry and Kramers-Wannier-Wegner (KWW) duality. We construct
3-dimensional topological defects on the 4-dimensional lattice gauge theory by applying the Aasen-Mong-
Fendley approach, which constructs a non-invertible topological defect from the duality in the 2-dimensional
Ising model. We show that these defects are non-invertible. We also construct 2-dimensional topological
defects corresponding to the 1-form Z2 global symmetry and a topological junction connecting the non-
invertible symmetry and the 1-form symmetry. We determined the relationship between defects with different
topologies and the expectation value of the non-invertible symmetry defects in several configurations.

We also consider theories with boundaries and in particular define three types of boundary conditions in
our setup. We considered the conditions for the non-invertible symmetry to have edges on those boundaries.
We then find edges of non-invertible defects that can be moved topologically on the boundary. The boundary
conditions change on both sides of the edge of the topological defect. We obtained ratios between partition
functions with different boundary conditions by topologically deforming the non-invertible defects ending
on the boundary. This result provides a restriction on the renormalization group flow.
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Chapter 1

Introduction

Symmetry is an essential tool in the non-perturbative analysis of quantum field theory and plays a central
role in understanding phenomena such as anomalies and spontaneous symmetry breaking. In particular, non-
perturbative analysis based on the ’t Hooft anomaly, an obstruction in the gauging of the global symmetry,
has been actively studied in recent years.

In the past decade, the notion of topological defects as generalized symmetries [1] has been actively stud-
ied. A topological defect is defined on a nonlocal surface and refers to an operator that can change its shape
topologically without affecting its expectation value. According to generalized symmetry, conventional or-
dinary symmetry is expressed as an invertible topological defect defined on (𝑑 − 1)-dimensions when the
dimension of spacetime is 𝑑. Those defects then act on the charged operators according to their symmetry
transformations. Invertibility implies the existence of a topological defect that produces the inverse transfor-
mation. Furthermore, in higher-form symmetry, topological defects defined on a surface of dimension lower
than (𝑑 − 1) are considered as symmetries. In non-invertible symmetry, topological defects without invert-
ible transformations are also treated as symmetries. Other examples of generalized symmetries are higher
group symmetries that are algebraic by combining higher-form symmetries of different orders, and subsys-
tem symmetries such that they are topological only in a particular direction in spacetime. These notions of
generalized symmetries, coupled with analyses provide a deeper understanding of field theory.

This paper focuses specifically on non-invertible symmetry. Although non-invertible symmetry is a re-
cently named concept based on the notion of generalized symmetry, the study of non-invertible topological
operators has existed in the background for some time. In particular, there had been extensive research on
the 2-dimensional theory[2–23]. However, at the time we started our research, there were few concrete ex-
amples and applications in higher dimensions [24–33], and in particular, non-invertible symmetry defined
on a 3-dimensional surface in 4-dimensional spacetime was considered an open question, whether it even
existed.

We focused on duality as the key to finding non-invertible symmetries defined on 3-dimensional surfaces
in 4 dimensions. A duality means that there is more than one theory describing one phenomenon. When
there is a duality relationship with oneself, such duality is called self duality. When there is duality, we
can obtain physical quantities in two different calculations according to each theory, and those calculations
give the same quantity. Therefore, we expect the existence of topological defects corresponding to duality
transformations that change these descriptions. And if the duality is self-dual, then the topological defect
can be regarded as a topological defect defined on one theory. Moreover, since this defect is placed at the
boundary between dual theories, it is defined on a 3-dimensional surface in 4-dimensional spacetime. In
fact, in the 2-dimensional Ising model, a non-invertible topological defect was constructed by Aasen-Mong-
Fendley (AMF) [34, 35] based on Kramers-Wannier (KW) duality [36, 37]. Therefore, we have turned our
attention to the 4-dimensional Z2 pure lattice gauge theory[38]. In this model, there exists Kramers-Wannier-
Wegner (KWW) duality [39], which is generalization of the KW duality. We applied the AMF approach [34]
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to this theory and actually constructed a topological defect. And we proved that the defects are non-invertible
defects[40]. This KWW duality defect is the first concrete example of a 3-dimensional non-invertible defect
in 4-dimensional spacetime.

KW duality and its generalization, KWW duality, are dualities associated with gauging global symmetry.
And now those duality defects are understood as one of the topological defects that arise when gauging a
part of spacetime on a self-dual theory[41, 42]. Another way to produce non-invertible symmetries has
been found to gauge higher-form symmetries only on a surface, rather than on the whole of spacetime [43].
These methods have led to the discovery of many non-invertible symmetries of higher dimensions, and their
applications as well as methods for finding symmetries are now being actively discussed [41–57]. Lecture
notes and reviews on generalized symmetry include the following [58–67].

In this thesis, we describe our work [68] as one of the applications of non-invertible symmetry in higher
dimensions. We restrict the renormalization group flow by using duality defects. It is known that in 2-
dimensional conformal field theory (CFT), the conformal anomaly decreases monotonically along the renor-
malization group flow. The property is called the c-theorem [69]. A similar statement is known as the
a-theorem in four dimensions[70–73]. A similar statement is also expected in conformal field theories with
boundary [74–77]; The hemisphere partition function with a given conformal boundary condition is mono-
tonically decreasing in two and three dimensions and monotonically increasing in four dimensions along the
renormalization group flow. This statement is proved in two [78, 79], three [80], and four dimensions [81].

Since duality defects are three-dimensional defects, their edge is the interface between two boundary
conditions. We construct an edge that can move topologically on the boundary. We then show that the duality
defect can be replaced by a c-number if no operator is inserted in the 𝑆3 region bounded by the spacetime
boundary and the bulk duality defect with a topology of 𝐷2, respectively. The boundary condition after the
transformation is the boundary condition that originally extended outside of 𝑆3. With this we obtained the
ratio between the hemisphere partition functions of the 4-dimensional Z2 lattice gauge theory with different
boundary conditions. From this result and the g-theorem, we restrict the renormalization group flow.

In chapter 2, we begin with a discussion of ordinary symmetry and introduce the concept of generalized
symmetry. In chapter 3, we consider the 2-dimensional Ising model and confirm that invertible topological
defects can be constructed by the AMF approach. In chapter 4, we construct non-invertible topological de-
fects based on KWW duality in 4-dimensional Z2 pure lattice gauge theory. We also construct topological
defects corresponding to 1-form symmetry and study their algebraic structure. In chapter 5, we consider
topological connections of KWW duality defects to the boundary of spacetime. Using KWW duality de-
fects with edges at the boundary, we compute the ratio between hemisphere partition functions for different
boundary conditions. Using the results, we impose restrictions on the renormalization group flow.

This thesis is based on the following works [40, 68].
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Chapter 2

Symmetry and Topological defect

The goal of this chapter is to rewrite and extend the notion of symmetry in terms of topological defects. In
particular, we investigate higher-form symmetries as a generalization of symmetries.

2.1 Ordinary symmetry

In this section, we discuss the usual symmetries. First, we derive the Ward-Takahashi identity(WT identity) of
the continuous symmetry. Then we check the local action of the symmetry. Next, we introduce topological
defects called symmetry defects in order to apply the local action to more general symmetries, including
discrete symmetries. We also confirm that these symmetry defects can be understood as the configuration of
flat background gauge fields.

2.1.1 Review of ordinary continuous symmetry

We treat a 𝑑-dimensional Euclidean theory. The coordinates are (𝑥1, · · · , 𝑥𝑑−1, 𝑥𝑑 = 𝜏), where the 𝜏 is
imaginary time. Let 𝜙(𝑥) be a field and the Lagrangian density of the theory be L(𝜙, 𝜕𝜙). The action is
denoted by

𝑆[𝜙] =
∫

𝑑𝑑𝑥L(𝜙, 𝜕𝜙). (2.1.1)

We often state that the theory has symmetry when the action is invariant under field transformations 𝜙 → 𝜙′.
When the theory has continuous symmetry with group 𝐺, we can find conserved currents. We consider

a continuous symmetry and an infinitesimal global symmetry transformation

𝜙(𝑥) → 𝜙′(𝑥) = 𝜙(𝑥) + 𝜖𝛿𝜙(𝑥), (2.1.2)

where 𝜖 is an infinitesimal constant parameter. Then the variation of the Lagrangian 𝛿L ≡ L(𝜙′, 𝜕𝜙′) −
L(𝜙, 𝜕𝜙) can be expressed by total derivative because the action is invariant under symmetry transformation,

𝛿L = 𝜖𝜕𝜇𝐾
𝜇 (𝑥). (2.1.3)

Next, we promote the parameter 𝜖 of the transformation from constant to coordinate-dependent,

𝜙(𝑥) → 𝜙′(𝑥) = 𝜙(𝑥) + 𝜖 (𝑥)𝛿𝜙(𝑥). (2.1.4)
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This transformation is no longer a global transformation, and the action changes under the transformation.
the variation of the action is

𝛿𝑆 ≡ 𝑆[𝜙′] − 𝑆[𝜙]

=
∫

𝑑𝑑𝑥𝜖 (𝑥)𝜕𝜇 𝑗 𝜇 (𝑥)
(
𝑗 𝜇 ≡ − 𝜕L

𝜕𝜕𝜇𝜙
𝛿𝜙(𝑥) + 𝐾𝜇 (𝑥)

)
. (2.1.5)

This variation is generally nonzero. However, if the configuration of the field 𝜙(𝑥) satisfies the equation of
motion (EOM), the action is invariant under arbitrary variations. And since the parameter 𝜖 (𝑥) is an arbitrary
function, we obtain the following conservation law,

𝜕𝜇 𝑗
𝜇 (𝑥) = 0 (EOM). (2.1.6)

This conserved current 𝑗 𝜇 (𝑥) is called the Noether current.
We obtain a conserved charge 𝑄(Σ𝜏) from this current.

𝑄(Σ𝜏) = −𝑖
∫
Σ𝜏

𝑑𝑑−1𝑥 𝑗𝑑 (𝑥1, · · · , 𝑥𝑑−1, 𝜏). (2.1.7)

where the Σ𝜏 is the time-constant surface at time 𝜏. We have defined the 𝑑th component of the euclidean
current 𝑗𝑑 = 𝑖 𝑗0, where the 𝑗0 is the zeroth component of the Lorentzian current. this definition (2.1.7)
consistent with the usual definition in Lorentzian formalism. 𝑄(Σ𝜏) is conserved under time translation,

𝑑

𝑑𝜏
𝑄(Σ𝜏) = 0. (2.1.8)

We can use this current to consider local actions of the symmetry on the field. To confirm this, let us
derive the Ward-Takahashi identity (WT-identity) in path-integral formalism. Let 𝑍 be the partition function
of the theory and define the correlation function of a generic product of fields · · · as

⟨· · ·⟩ ≡ 1
𝑍

∫
D𝜙 · · · 𝑒−𝑆 [𝜙] . (2.1.9)

We consider a 𝑛-point function of the field 𝜙 and transform it as follows.

⟨𝜙(𝑥1) · · · 𝜙(𝑥𝑛)⟩ =
1
𝑍

∫
D𝜙𝜙(𝑥1) · · · 𝜙(𝑥𝑛)𝑒−𝑆 [𝜙]

=
1
𝑍

∫
D𝜙′𝜙′(𝑥1) · · · 𝜙′(𝑥𝑛)𝑒−𝑆 [𝜙

′]

=
1
𝑍

∫
D𝜙

{
𝑛∏
𝑖=1

(𝜙(𝑥𝑖) + 𝜖𝛿𝜙(𝑥𝑖))
}
(1 − 𝛿𝑆)𝑒−𝑆 [𝜙] (2.1.10)

In the second equality, the variables are redefined from the field𝜙(𝑥) to the 𝜙′(𝑥) = 𝜙(𝑥) + 𝜖 (𝑥)𝛿𝜙(𝑥).
The third equality, we assumes that the measure is invariant D𝜙 = D𝜙′. Using Eq.(2.1.5), we obtain the
following equation.∫

𝑑𝑑𝑦𝜖 (𝑦)
{〈
𝜕𝜇 𝑗

𝜇 (𝑦)𝜙(𝑥1) · · · 𝜙(𝑥𝑛)
〉
−

𝑛∑
𝑖=1

𝛿𝑑 (𝑥𝑖 − 𝑦) ⟨𝜙(𝑥1) · · · 𝛿𝜙(𝑥𝑖) · · · 𝜙(𝑥𝑛)⟩
}
= 0. (2.1.11)

Since 𝜖 (𝑥) is an arbitrary function, we can conclude that the contents of braces are zero. Thus we obtain the
WT identity. 〈

𝜕𝜇 𝑗
𝜇 (𝑦)𝜙(𝑥1) · · · 𝜙(𝑥𝑛)

〉
=

𝑛∑
𝑖=1

𝛿𝑑 (𝑥𝑖 − 𝑦) ⟨𝜙(𝑥1) · · · 𝛿𝜙(𝑥𝑖) · · · 𝜙(𝑥𝑛)⟩ (2.1.12)
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When 𝑦 ≠ 𝑥1, · · · , 𝑥𝑛, the right-hand side of the above equation is zero, so the conservation law 𝜕𝜇 𝑗
𝜇 = 0

holds in any correlation function. When 𝑦 = 𝑥𝑖 (𝑖 = 1, · · · , 𝑁), the right-hand side has a contact term
proportional to 𝛿𝜙(𝑥𝑖). The WT identity indicates how symmetry transformations act locally.

Let us show how the symmetry transformation acts locally in terms of the conserved charge and the
unitary operators. First, we redefine conserved charges on curved surface by

𝑄(𝑀) = −𝑖
∫
𝑀
𝑑𝑆𝜇 𝑗

𝜇 (𝑥). (2.1.13)

Given that 𝑀 = Σ𝜏 , this definition is consistent with the usual definition (2.1.7). This defects are topological.
In other words, its value does not change even if the supported surface 𝑀 is continuously deformed into other
surfaces 𝑀 ′. We can prove this using conservation laws.

𝑄(𝑀) −𝑄(𝑀 ′) = −𝑖
∫
𝑀∪�̄� ′

𝑑𝑆𝜇 𝑗
𝜇 (𝑥)

= −𝑖
∫
𝐷
𝑑𝑑𝑥𝜕𝜇 𝑗

𝜇 (𝑥) = 0. (2.1.14)

We denote by �̄� the inverse oriented surface of the oriented surface 𝑀 . The 𝐷 is the 𝑑-dimensional space
with boundary 𝜕𝐷 = 𝑀 ∪ �̄� ′. We also define the unitary operator𝑈𝑔(𝑀) on the surface with a appropriate
parameter 𝛼 as follows,

𝑈𝑔(𝑀) ≡ 𝑒𝑖𝛼𝑄 (𝑀 ) , (𝑔 = 𝑒𝑖𝛼 ∈ 𝐺,𝐺 : group). (2.1.15)

The unitary defects are topological too.
Consider the WT identity with one inserted field. Integrating the WT identity over a region 𝐷 with

boundary 𝜕𝐷 = 𝑀 where only 𝜙(𝑥1) is inserted , we can describe how the symmetry transformation acts
locally, in terms of the conserved charge 𝑄(𝑀).

𝑖 ⟨𝑄(𝑀)𝜙(𝑥1) · · ·⟩ =
∫
𝐷
𝑑𝑑𝑦𝛿𝑑 (𝑥 − 𝑦) ⟨𝛿𝜙(𝑥1) · · ·⟩ .

= ⟨𝛿𝜙(𝑥1) · · ·⟩ . (2.1.16)

It is represented as in Figure 2.1. This shows that conserved charge defects only act on the fields existing

Figure 2.1: Illustration of the partial action of a conserved charge 𝑄(𝑀). The blue line represents the
conserved charge 𝑄(𝑀) defined on a (𝑑 − 1)-dimensional surface 𝑀 . Only the field 𝜙(𝑥1) is inserted in
the interior region of the surface 𝑀 , and the conserved charge 𝑄(𝑀) acts only on 𝜙(𝑥1).

inside the defects.
Conserved charges cause infinitesimal transformations. Finite transformations can be described by uni-

tary operators. Let 𝐺 be the group structure of the symmetry. Then, by a transformation with respect to the
element 𝑔 ∈ 𝐺, we assume that the field transforms 𝜙(𝑥) → 𝜙𝑔(𝑥). Finite transformations can be reproduced
by repeating infinitesimal transformations, we derive from (2.1.16) that〈

𝑈𝑔(𝑀)𝜙(𝑥1) · · ·
〉
= ⟨𝜙𝑔(𝑥1) · · ·⟩ . (2.1.17)
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Figure 2.2: Illustration of the partial action of a unitary operator 𝑈𝑔 (𝑀). The red line represents the
conserved charge 𝑈𝑔 (𝑀) defined on a (𝑑 − 1)-dimensional surface 𝑀 . Only the field 𝜙(𝑥1) is inserted
in the interior region of the surface 𝑀 , and the conserved charge𝑈𝑔 (𝑀) acts only on 𝜙(𝑥1).

It is represented as in Figure 2.2. The unitary defects only act on the fields existing inside the defects too.
As we have seen, when the theory has continuous symmetries, we can construct the current. We obtain

a conserved charge 𝑄(Σ𝜏) and the unitary operators from this current. Using these, we can compute the
local action of the symmetries. However, for discrete symmetries where there is no current, it is not possible
to compute the local action by the same method. In the next subsection, we attempt to describe the local
action of more general symmetries, including discrete symmetries, by defining unitary operators without via
currents.

2.1.2 Topological defects and local action

In this section, we introduce the notion of the topological defects in order to consider their local action even
for symmetries without currents, such as discrete symmetries.

First we define a field transformation 𝜙 → 𝜙𝑔;𝐷 that applies a global transformation only on the 𝑑-
dimensional subspace 𝐷 with boundary 𝜕𝐷 = 𝑀 ,

𝜙(𝑥) → 𝜙𝑔;𝐷 (𝑥) =
{
𝜙𝑔(𝑥) (𝑥 ∈ 𝐷)
𝜙(𝑥) (𝑥 ∉ 𝐷)

. (2.1.18)

Consider the variation of the action associated with this transformation. This transformation does not trans-
form the field outside of region D, so there is no contribution to the variation from outside of region D.
Also, this transformation performs a global transformation on the field inside the region 𝐷. However, the
internal action is also invariant from symmetry up to surface term. Therefore the variation can be written as
an integral over the boundary 𝜕𝐷 = 𝑀 . We denote the variant of the action by

𝛿𝑔𝑆(𝑀) ≡ 𝑆[𝜙𝑔;𝐷] − 𝑆[𝜙] . (2.1.19)

For later use, we derive some properties about the variation. The entire space is written as 𝑋 . The global
transformation for the entire space 𝜙𝑔;𝑋 = 𝜙𝑔 can be reproduced by simultaneously performing partial global
transformations 𝜙𝑔;𝐷 and 𝜙𝑔;𝑋\𝐷 . Then, by symmetry 𝑆[𝜙𝑔] = 𝑆[𝜙], we find that the variations of transfor-
mations 𝜙𝑔;𝐷 and 𝜙𝑔;𝑋\𝐷 cancel each other. this is expressed as

𝛿𝑔𝑆(𝑀) = −𝛿𝑔𝑆(�̄�). (2.1.20)

Note the orientation of the boundary defined by the region to be transformed. If we repeatedly apply mutually
inverse partial global transformations 𝜙𝑔;𝐷 and 𝜙𝑔−1;𝐷 to the region𝐷, the field does not change and the action
is invariant. From this we obtain

𝛿𝑔𝑆(𝑀) = −𝛿𝑔−1𝑆(𝑀). (2.1.21)

Using this variation, we define the symmetry defect𝑈𝑔(𝑀) supprted by 𝑀 as〈
𝑈𝑔(𝑀) · · ·

〉
=

1
𝑍

∫
D𝜙𝑒−𝛿𝑆𝑔−1 (𝑀 ) · · · 𝑒−𝑆 [𝜙] . (2.1.22)
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By replacing the label 𝜙 of the integral variable of the correlation function with the partially global trans-
formed field 𝜙𝑔;𝐷 , we obtain the correlation function with the symmetry defect inserted. The insertion of the
defect is done as follows.

⟨𝜙(𝑥1) · · · 𝜙(𝑥𝑛)⟩ =
1
𝑍

∫
D𝜙𝜙(𝑥1) · · · 𝜙(𝑥𝑛)𝑒−𝑆 [𝜙]

=
1
𝑍

∫
D𝜙𝑔;𝐷𝜙𝑔;𝐷 (𝑥1) · · · 𝜙𝑔;𝐷 (𝑥𝑛)𝑒−𝑆 [𝜙

𝑔;𝐷 ]

=
1
𝑍

∫
D𝜙𝜙𝑔;𝐷 (𝑥1) · · · 𝜙𝑔;𝐷 (𝑥𝑛)𝑒−𝛿𝑆 (𝑀 )𝑒−𝑆 [𝜙]

=
〈
𝑈𝑔−1 (𝑀)𝜙𝑔;𝐷 (𝑥1) · · · 𝜙𝑔;𝐷 (𝑥𝑛)

〉
. (2.1.23)

In the third equality, we assumed that the measure is invariant under label replacement. This is shown in
Figure 2.3. This is WT-identity using the unitary operator (2.1.17) obtained in the previous section. In other

Figure 2.3: Insertion of a symmetry defect𝑈𝑔−1 (𝑀 ) . The red line represents the symmetry defect𝑈𝑔−1 (𝑀 ) .
The region bounded by the curved surface 𝑀 is 𝐷, and only the field 𝜙(𝑥1) is inserted on it. In the first
equality, the integral variable is changed from 𝜙 to 𝜙𝑔;𝐷 and the variation of the action is regarded as the
symmetry defect𝑈𝑔−1 (𝑀 ) . The second equality uses the fact that 𝜙𝑔;𝐷 is only transformed on 𝐷.

words, the symmetry defect is a unitary operator. The symmetry defects are defined from the variation of
the action associated with the partial global transformation not via the current. Therefore, this WT-identity
is valid for discrete symmetries. By using symmetry defects, we can act locally on discrete symmetries.

Unitary operators are guaranteed to be topological by the conservation laws of the current. Based on the
definition of symmetry defects, let us show that symmetry defects are topological. That is, the value does not
change under continuous deformations that do not cross the charged operator. We can understand this by the
fact that we can freely take the region 𝐷 in which we perform the partial global transformation 𝜙𝑔−1;𝐷 used
to replace the label. Even if the region 𝐷 is replaced by another region 𝐷 ′ with boudary 𝑀 ′ that contains
only the same operator inside, the transformation of the operator is the same. Therefore, the defects can be
topologically deformed as in Figure 2.4.〈

𝑈𝑔(𝑀) · · ·
〉
=

〈
𝑈𝑔(𝑀 ′) · · ·

〉
. (2.1.24)

Thus, when a relational expression holds within any correlation function, we omit the bracket and shorthand
it as follows,

𝑈𝑔(𝑀) = 𝑈𝑔(𝑀 ′). (2.1.25)

Next, we describe the fusion operation for symmetry defects. Let 𝐷𝑖 (𝑖 = 1, 2) be a region with boundary
𝜕𝐷𝑖 = 𝑀𝑖 . Prepare two symmetry defects 𝑈𝑔1 (𝑀1) and 𝑈𝑔2 (𝑀2). And let 𝐷 be a region with boundary
𝜕𝐷 = 𝑀1 ∪ �̄�2. We assume that no field is inserted in this 𝐷. Let us now superimpose the symmetry defect

9



Figure 2.4: Topological nature of symmetry defects. The red lines represent the unitary defects. The
value of the correlation function with symmetry defects does not change when the shape of the symmetry
defect is continuously deformed, as long as it does not cross the charged operator.

𝑈𝑔1 (𝑀1) on 𝑈𝑔2 (𝑀2) by moving it over 𝐷. The resulting defect causes the same transformation as if we
had performed the partial global transformations 𝜙𝑔−1

2 ;𝐷2 and 𝜙𝑔−1
1 ;𝐷2 successively, that is 𝜙 (𝑔1𝑔2)−1;𝐷2 , on the

operator on the region 𝐷2. Therefore we obtain the following defect relation.

𝑈𝑔1 (𝑀1)𝑈𝑔2 (𝑀2) = 𝑈𝑔1𝑔2 (𝑀2). (2.1.26)

It is represented as in Fig 2.5 By this relation we notice that the symmetry defect has a group structure. The

Figure 2.5: Fusion of symmetry defects. The red lines represent the unitary defects. When two symmetry
defects are superimposed on each other, one other symmetry defect is produced.

identity defect 1(𝑀) is obtained from a identity transformation.

⟨1(𝑀) · · ·⟩ = 1
𝑍

∫
D𝜙 · · · 𝑒−𝑆 [𝜙] . (2.1.27)

From Eq.(2.1.20),(2.1.21), the variation 𝛿𝑔𝑆(𝑀) satisfies 𝛿𝑔𝑆(𝑀) = 𝛿𝑔−1𝑆(�̄�), we can obtain the inverse
element by reversing the orientation of the symmetry defect.

𝑈𝑔(𝑀) = 𝑈𝑔−1 (�̄�). (2.1.28)

A illustrated case can be seen in Figure 2.6.

Figure 2.6: The red lines represent the unitary defects. The red arrows represent the orientation of the
surfaces. Reversing the orientation of the surface where the symmetry defect is supported produces an
inverse symmetry defect.

Using the WT identity, invertibility can be expressed as the fact that a closed invertible topological defect
is 1 when there is no internal charged operator as shown in Figure 2.7.
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Figure 2.7: The red lines represent the unitary defects.

2.1.3 Symmetry defects and Background gauge field

Next, we introduce the background gauge field 𝐵 and consider symmetry defects from another perspective.
For simplicity, we consider a theory 𝑆[𝜙, 𝐵] with continuous 𝐺 gauge symmetry. Assume that when 𝐵 = 0,
this theory 𝑆[𝜙, 𝐵 = 0] becomes the theory 𝑆[𝜙] with global symmetry 𝐺 as we have been considering. The
partition function is

𝑍 [𝐵] =
∫

D𝜙𝑒−𝑆 [𝜙,𝐵] . (2.1.29)

Since gauge invariance, the partition function 𝑍 [𝐵] is invariant even if the background gauge field 𝐵 is
replaced by the gauge transformed field 𝐵′,

𝑍 [𝐵] = 𝑍 [𝐵′] . (2.1.30)

We consider the theory 𝑍 [𝐵 = 0] and transform the field 𝜙 → 𝜙𝑔;𝐷 by a gauge transformation. then we
denote the gauge-transformed background gauge field by 𝐵𝑔;𝐷 . Since the transformation 𝜙 → 𝜙𝑔;𝐷 is global
inside and outside 𝐷, the 𝐵𝑔;𝐷 is localized on the boundary 𝑀 = 𝜕𝐷. And the background gauge field 𝐵𝑔;𝐷
is flat because of 𝐵 = 0. By gauge symmetry, the partition function is invariant.

𝑍 [𝐵𝑔,𝐷] = 𝑍 [𝐵 = 0] . (2.1.31)

On the other hand, we can interpret the gauge transformation as the changing the label of the variable from 𝜙
to 𝜙𝑔;𝐷 in the correlation function. It is inserting the symmetry defect. Therefore we can regard the symmetry
defect𝑈𝑔(𝑀) as the configuration of the localized flat gauge fields 𝐵𝑔−1;𝐷 .

Conversely, we can interpret the configuration of the flat gauge field as the configuration of the symmetry
defects. Given the flat gauge field, we can gauge transformations so that locally the gauge field is zero. Then
we can generally get the configuration of the localized flat gauge field with the junction as in Figure2.8.
Therefore we can interpret this gauge field as the symmetry defects with the junction. Since we can move

Figure 2.8: The localization of non-zero gauge field regions by gauge transformation. In red region,
the gauge field is non-zero, while in gray regions, the gauge field is zero. In the figure on the right, the
non-zero gauge field is localized on the red (𝑑−1)-dimensional surface. The intersection of the red lines
represents a junction of (𝑑 − 1)-dimensional surfaces.

the junction of the gauge field by the gauge transformation, the junction of the defects is topological unless
crossing the symmetry defects.
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2.1.4 Example:2-dimensional Ising model

In this subsection, we review the construction of symmetry defects in the 2-dimensional Ising model. We
also check the relationship between symmetry defects and background gauge fields.

We denote the link with sites 𝑖, 𝑗 at its boundaries by ⟨𝑖 𝑗⟩ and assign the site variables𝑈𝑖 = (−1)𝑎𝑖 = ±1
to the site 𝑖. Consider following the interaction on the link 𝑙 = ⟨𝑖 𝑗⟩,

𝐾 (−1)𝑎𝑖+𝑎 𝑗 , (2.1.32)

where 𝐾 is a positive constant parameter. We denote the plaquette with sites 𝑖, 𝑗 , 𝑘, 𝑙 on its boundary by
⟨𝑖 𝑗 𝑘𝑙⟩. We define the partition function of the Ising model as

𝑍Ising(𝐾) =
∑
{𝑎}

exp

(
𝐾

∑
𝑙:link

(−1) (𝑎𝑖+𝑎 𝑗 )
)
, (2.1.33)

where the sum
∑

{𝑎} means the summation of the all configuration of the variables 𝑎.
The Ising model has Z2 spin flip symmetry. In fact, considering the spin flip 𝑎𝑖 → 𝑎𝑖 + 1 (mod 2), the

interaction term is invariant.
We construct the symmetry defects associated with this spin flip symmetry. Let �̃� is a set of the sites

and consider the following partial global transformation,

𝑎𝑖 → 𝑎−1;𝐷
𝑖 =

{
𝑎𝑖 + 1 (mod 2) (𝑖 ∈ �̃�)
𝑎𝑖 (𝑖 ∉ �̃�)

. (2.1.34)

We also define the set �̃� as the set of links ⟨𝑖 𝑗⟩ such that only one of the sites 𝑖 and 𝑗 belongs to �̃�. By
performing this transformation, the interaction of the link ⟨𝑖 𝑗⟩ changes as follow,

𝐾 (−1)𝑎𝑖+𝑎 𝑗 →=

{
−𝐾 (−1)𝑎𝑖+𝑎 𝑗 (⟨𝑖 𝑗⟩ ∈ �̃�)
𝐾 (−1)𝑎𝑖+𝑎 𝑗 (⟨𝑖 𝑗⟩ ∉ �̃�)

. (2.1.35)

In other words, only the interactions of the links on the �̃� contribute the variation of the action.
We check where this symmetry defect exist. For this reason, we define the dual lattice putting dual sites

at the center of the all plaquette in the original lattice. We define the dual plaquette �̃� as a plaquette in dual
lattice with site 𝑖 in original lattice at its center. We define the dual link ⟨̃𝑖 𝑗⟩ in dual lattice with original
plaquette ⟨𝑖 𝑗⟩ orthogonal to its center. And we define the sets 𝐷 and 𝑀 as follows

𝐷 ≡ {̃𝑖 | 𝑖 ∈ �̃�}, (2.1.36)

𝑀 ≡ {⟨̃𝑖 𝑗⟩| ⟨𝑖 𝑗⟩ ∈ �̃�}. (2.1.37)

The sets �̃�, �̃� , 𝐷, and 𝑀 are represented as in Figure 2.9. The transformation 𝑎−1;𝐷 act only the site on the
2-dimensional region 𝐷. Therefore the Z2 symmetry defect 𝜂(𝑀) is defined on the boundary 𝑀 .

Next we check the correspondence between symmetry defect and background gauge field. We introduce
the background gauge field 𝐵𝑖 𝑗 on the link ⟨𝑖 𝑗⟩. The interaction of the link ⟨𝑖 𝑗⟩ is modified as follows

𝐾 (−1)𝑎𝑖+𝑎 𝑗+𝐵𝑖 𝑗 . (2.1.38)

By the gauge transformation, the site variable and the background gauge field are changed as follow,

𝑎𝑖 → 𝑎′𝑖 = 𝑎𝑖 + 𝜆𝑖 (mod 2), (2.1.39)
𝐵𝑖 𝑗 → 𝐵′

𝑖 𝑗 = 𝐵𝑖 𝑗 + 𝜆𝑖 + 𝜆 𝑗 (mod 2), (2.1.40)

where the 𝜆𝑖 = 0, 1 is a parameter of the gaugetransformation. Consider a gauge transformation that the
parameter 𝜆𝑖 = 1 only if the site 𝑖 belong to 𝐷. Then the gauge field 𝐵𝑖 𝑗 changes only if the link ⟨𝑖 𝑗⟩
belong to �̃� . When we consider gauge transformation from the background gauge field 𝐵 = 0 to 𝐵′, the
configuration 𝐵′ is localized on 𝑀 and flat, that is the 𝐵′ satisfy the 𝐵𝑖 𝑗 + 𝐵 𝑗𝑘 + 𝐵𝑘𝑙 + 𝐵𝑙𝑖 = 0 (mod2).
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Figure 2.9: Ising model defined on a 2-dimensional square lattice. Spin variables are assigned on the
black dots. In the left figure, the dots with blue rings belong to �̃�. The red links belong to �̃� at this
time. In the right figure, the blue dots and links represent dual sites and dual links, respectively. The
blue plaquettes belong to 𝐷. The red dual links belong to 𝑀 and are part of a symmetry defect.

2.1.5 The notion of generalized symmetry

In this section, by introducing the symmetry defects, we can calculate the local action of the symmetry
containing the discrete symmetry. We now summarize the properties of the symmetry defects treated in this
section.

1. symmetry defects are topological.

2. symmetry defects are (𝑑 − 1)-dimensional (codimension-1).

3. symmetry defects have group structure.

The codimension-(𝑑 − 𝑝) means the number of dimensions 𝑑 of the theory minus the dimension 𝑝 of the
defect. The first property is important and useful because it is related to the conservation law. For example,
the topological defects can act on local or nonlocal operators such as the WT identity. So we can consider
selection rules associated with the defects. For this reason we consider extending the notion of symmetry by
forgetting the second or third property. In other words, we consider the existence of topological defects in the
theory as the theory have symmetry. This notion is called generalized symmetry. In particular, symmetries
corresponding to topological defects that are not (𝑑 − 1)-dimensional are called higher-form symmetries.
If the symmetry defects does not have a group structure, there is generally not an inversed element. So
symmetries with topological defects that do not have group structure are called non-invertible symmetries.

2.2 Higher-form symmetry

In this section, we consider the 𝑝-form symmetry. The 𝑝-form symmetry defects are topological and has
group structure 𝐺. But these defects are codimension-(𝑝 + 1). The symmetry treated in the previous section
is called 0-form symmetry in this perspective.

When the theory has 𝑝-form symmetry with group 𝐺 (𝑝) , we can consider 𝑝-form symmetry defects
𝑈𝑔(𝑀) on the 𝑑 − 𝑝 − 1 dimensional surface 𝑀 ,

𝑈𝑔(𝑀) (𝑔 ∈ 𝐺 (𝑝) ). (2.2.1)

This defects are topological. In other words, Let 𝑀1 and 𝑀2 be two 𝑑 − 𝑝 − 1 dimensional surfaces with
the same topology. We can topologically deform the defect 𝑈𝑔(𝑀1) from 𝑀1 to 𝑀2 without changing the
value,

𝑈𝑔(𝑀1) = 𝑈𝑔(𝑀2). (2.2.2)
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Figure 2.10: Topological nature of 𝑝-form symmetry defects. The red lines represent the 𝑝-form unitary
defects. The value of the correlation function with 𝑝-form symmetry defects does not change when the
shape of the symmetry defect is continuously deformed, as long as it does not cross the charged operator.

This is shown in Figure 2.10
We show the 𝑝(> 0)-form symmetry group 𝐺 (𝑝) is Abelian. Place 𝑈𝑔1 (𝑀1) and 𝑈𝑔2 (𝑀2). There exists

more than one 𝑑− 𝑝 dimensional manifold with boundary 𝑀1∪ �̄�2. Therefore by the topological deforming,
we can exchange the positions of 𝑈𝑔1 (𝑀1) and 𝑈𝑔2 (𝑀2) without crossing each other. So the 𝑝(> 0)-form
symmetry group 𝐺 (𝑝) is Abelian.

As with 0-form symmetry, we can fuse the two 𝑝-form symmetry defects as follows,

𝑈𝑔1 (𝑀1)𝑈𝑔2 (𝑀2) = 𝑈𝑔1𝑔2 (𝑀2). (2.2.3)

By this fusion operation, the 𝑝-form symmetry defects have the group structure 𝐺 (𝑝) .
Next we consider the action of the 𝑝-form symmetry defects on the charged operators. In the case of

0-form symmetry, the symmetry defects act on local operators. This is because the configuration of local
charged operators is topologically distinct inside and outside the symmetry defect. In fact, consider the 0-
form symmetry defect𝑈 (𝑀) on the boundary of the region 𝐷, (𝜕𝐷 = 𝑀). If there are no local operators on
the region 𝐷, we can remove the defects. But there exist local operators on 𝐷, we can not remove the defects
without acting on these. but 𝑝(> 0)-form symmetry defects is codimension-(𝑝 + 1) and does not bisect
space. In any case, we can remove 𝑝-form symmetry defects without crossing local operators. In general, a
𝑝-form symmetry only acts on the operators of dimension 𝑞 > 𝑝. In this paper, we only consider the case of
𝑞 = 𝑝. The 𝑝-form symmetry defect𝑈𝑔(𝑀) act on the charged operator𝑊 (𝐶) on the 𝑝-dimensional surface
𝐶 as follow,

𝑈𝑔(𝑀)𝑊 (𝐶) = 𝑅(𝑔)𝑊 (𝐶), (2.2.4)

where the 𝑀 and 𝐶 are linked in spacetime as in Fig 2.11 and the 𝑅 is representation of the 𝑔.

Figure 2.11: Action of p-form symmetry defects. The red circle represents a 𝑝-form symmetry defect
𝑈𝑔 (𝑀) on the 𝑑 − 𝑝 − 1-dimensional surface 𝑀 . The black line represents a charged operator𝑊 (𝐶) on
the 𝑝 dimensional surface 𝐶. The 𝑝-form symmetry defect 𝑈𝑔 (𝑀) acts by linking to a charge operator
𝑊 (𝐶)
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2.2.1 Example:4-dimensional Z2 lattice gauge theory

In this subsection, we consider 4-dimensional Z2 lattice gauge theory and 1-form Z2 symmetry defect. We
consider a 4-dimensional hyper cubic lattice system. Let us denote the plaquette consisting the sites 𝑖, 𝑗 , 𝑘, 𝑙
on its boundary by ⟨𝑖 𝑗 𝑘𝑙⟩. We assign the link variable 𝑎𝑖 𝑗 = 0, 1 to the link ⟨𝑖 𝑗⟩ and interaction

𝐾 (−1)𝑎𝑖 𝑗+𝑎 𝑗𝑘+𝑎𝑘𝑙+𝑎𝑙𝑖 (2.2.5)

to the plaquette ⟨𝑖 𝑗 𝑘𝑙⟩. the 𝐾 is a positive constant parameter.
The partition function of the 4-dimensional Z2 lattice gauge theory is

𝑍 =
∑
{𝑎}

exp


∑

plaquette
⟨𝑖 𝑗𝑘𝑙⟩

𝐾 (−1)𝑎𝑖 𝑗+𝑎 𝑗𝑘+𝑎𝑘𝑙+𝑎𝑙𝑖

. (2.2.6)

This theory is invariant under the following gauge transformation.

𝑎𝑖 𝑗 → 𝑎′𝑖 𝑗 = 𝑎𝑖 𝑗 + 𝜆𝑖 + 𝜆 𝑗 (mod 2), (𝜆𝑖 = 0, 1, 𝑖 : site), (2.2.7)

where the 𝜆𝑖 = 0, 1 is a parameter of a gauge transformation.
We consider a set of links �̃� containing up to two links for each plaquette. And we define the boundary

�̃� of �̃� as the set of plaquettes where only one of the links that constitute it belong to the set �̃�. As an
analogy to the 0-form partial global transformation, we consider a partial 1-form global transformation as
follow,

𝑎𝑖 𝑗 → 𝑎−1;𝐷
𝑖 𝑗 ≡

{
𝑎𝑖 𝑗 + 1 (mod 2) (𝑥 ∈ �̃�)
𝑎𝑖 𝑗 (𝑥 ∉ �̃�)

. (2.2.8)

Let us calculate the variation of the action. By performing this transformation, the interaction of the plaquette
⟨𝑖 𝑗 𝑘𝑙⟩ changes as follow,

𝐾 (−1)𝑎𝑖 𝑗+𝑎 𝑗𝑘+𝑎𝑘𝑙+𝑎𝑙𝑖 →
{
−𝐾 (−1)𝑎𝑖 𝑗+𝑎 𝑗𝑘+𝑎𝑘𝑙+𝑎𝑙𝑖 (⟨𝑖 𝑗 𝑘𝑙⟩ ∈ �̃�)
𝐾 (−1)𝑎𝑖 𝑗+𝑎 𝑗𝑘+𝑎𝑘𝑙+𝑎𝑙𝑖 (⟨𝑖 𝑗 𝑘𝑙⟩ ∉ �̃�)

. (2.2.9)

In other words, only the plaquettes belonging to �̃� contributes to the variation of the action.
Using this variation, we can construct a symmetry defect. Let’s check where this symmetry defect exists.

We can construct the dual lattice putting dual sites at the center of the all hypercubes in original lattice
system. Then in dual lattice, we define a dual cube ⟨̃𝑖 𝑗⟩ consisting of eight dual sites, with original link ⟨𝑖 𝑗⟩
orthogonal to its center. Similarly, we define a dual plaquette �⟨𝑖 𝑗 𝑘𝑙⟩ in dual lattice with original plaquette
⟨𝑖 𝑗 𝑘𝑙⟩ orthogonal to its center. The sets 𝐷 and 𝑀 are defined as follow

𝐷 ≡ {⟨̃𝑖 𝑗⟩| ⟨𝑖 𝑗⟩ ∈ �̃�}, (2.2.10)

𝑀 ≡ {�⟨𝑖 𝑗 𝑘𝑙⟩| ⟨𝑖 𝑗 𝑘𝑙⟩ ∈ �̃�}. (2.2.11)

The projection of the sets �̃�, �̃� , 𝐷, and 𝑀 in 2 dimensions is Figure 2.12. Figure 2.13 shows the sets 𝐷 and
𝑀 projected in three dimensions. the set 𝑀 constitute the 2-dimensional surface without boundary. We can
consider a symmetry defect𝑈−1(𝑀) to exist on 𝑀 .

Next we consider the action of 1-form Z2 symmetry defect on a charged operator. The charge operator
is a Wilson loop

𝑊 (𝐶) =
∏
𝑙∈𝐶

(−1)𝑎𝑙 , (2.2.12)
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Figure 2.12: Schematic illustration of 4-dimensional lattices. In the left figure, the blue lines represent
links belonging to �̃� and the red squares represent plaquettes belonging to �̃� . In the right figure, the blue
lines bordered in black represent dual cubes to the blue links in the left figure. These dual cubes belong
to 𝐷. The red dots represent plaquettes dual to the red plaquette in the left figure, and these belong to
𝑀 . In this figure, 𝑀 and �̃� appear to be unconnected, but in actual 4-dimensional lattice, it is connected
and has no boundary.

Figure 2.13: Schematic illustration of the 4-dimensional lattices. In this figure, the vertical direction is
projected to have 2-dimensional degrees of freedom. The black links and dots form the original lattice.
Blue dots and blue links form the dual lattice. The blue and red vertical lines represent dual plaquettes,
and the blue diagonal lines form a dual-pair link. The blue surface represents the 3-dimensional region
𝐷 consisting of dual cubes. The red line represents the 2-dimensional surface 𝑀 of the boundary of 𝐷.

16



where the 𝐶 is the set of links that form a closed loop. The transformation 𝑎−1;𝐷 flip only the variable 𝑎𝑙
of the link 𝑙 crossing across 𝐷, this means that the link 𝑙 belong to the �̃�. For simplicity, let us assume that
there is only one link in the set 𝐶 that crosses 𝑀 . The following WT-like identity holds:

⟨𝑈−1(𝑀)𝑊 (𝐶)⟩ = − ⟨𝑊 (𝐶)⟩ . (2.2.13)

2.3 Non-invertible symmetry

All the symmetry defects we have considered so far have a group structure. That is, the operation of the
group is reproduced by fusion.

𝑈𝑔1 ×𝑈𝑔2 = 𝑈𝑔1𝑔2 (𝑔1, 𝑔2 ∈ 𝐺). (2.3.1)

This operation satisfies associativity.

(𝑈𝑔1 ×𝑈𝑔2) ×𝑈𝑔3 = 𝑈𝑔1 × (𝑈𝑔2 ×𝑈𝑔3) (𝑔1, 𝑔2, 𝑔3 ∈ 𝐺). (2.3.2)

There exists an identity defect 1. And in particular, for any defect there exists its inverse defect. For any
defect𝑈𝑔, there exists an inverse defect𝑈−1

𝑔 = 𝑈𝑔−1 , and they generated the identity defect by fusion.

𝑈𝑔 ×𝑈𝑔−1 = 1 (𝑔, 𝑔−1 ∈ 𝐺). (2.3.3)

Topological defects that have this invertible property are called invertible defects.
On the other hand, general topological defects do not necessarily have an inverse defect. These defects

is called non-invertible defects. Specific examples of non-invertible symmetry and defect are discussed in
the following chapters.
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Chapter 3

Ising model and Kramers-Wannier duality

The purpose of this section is to introduce one of the approaches to constructing non-invertible topological
defects, the Aasen-Mong-Fendley’ approach. The 2-dimensional Ising model is dual to the gauged theory.
This duality is called KW duality. Aasen-Mong-Fendley showed that non-invertible topological defects can
be constructed as an interface between those dual theories.

In this section, we first verify that KW duality holds. We define defects on the Ising model introducing the
dual lattice and impose conditions for these defects to be topological. In particular, we confirm the existence
of solutions for non-invertible defects that induce KW duality transformations (KW duality defects). We also
investigate the fusion of KW defects and spin-flip Z2 symmetry defects.

3.1 Kramers-Wannier duality

In this section, we explain and verify the Kramers-Wannier duality. To provide a detailed explanation of this
duality, we will specifically define the model. We consider a 2-dimensional square lattice system of 𝑁𝑠 sites
with periodic boundary condition. We assign the labels 𝑖, 𝑗 to the sites and the variable 𝑎𝑖 = 0, 1 to the site
𝑖. We define the partition function of 2-dimensional Ising model 𝑍Ising as

𝑍Ising(𝐾) =
∑
{𝑎}

exp
©«𝐾

∑
link

𝑙 = ⟨𝑖 𝑗 ⟩

(−1) (𝑎𝑖+𝑎 𝑗 )
ª®®®¬ (3.1.1)

=
∑
{𝑎}

∏
link

𝑙 = ⟨𝑖 𝑗 ⟩

exp
(
𝐾 (−1) (𝑎𝑖+𝑎 𝑗 )

)
, (3.1.2)

where the sum
∑

{𝑎} means the summation of the all configuration of the variables 𝑎, the𝐾 is positive constant
parameter.

This theory has a 0-form global Z2 symmetry

𝑎𝑖 → 𝑎′𝑖 = 𝑎𝑖 + 1 (mod 2), (3.1.3)

exp
(
𝐾 (−1) (𝑎

′
𝑖+𝑎′𝑗 )

)
= exp

(
𝐾 (−1) (𝑎𝑖+𝑎 𝑗 )

)
. (3.1.4)

We consider gauging this symmetry. The original Ising model 𝑍Ising(𝐾) is not invariant by the 0-form gauge
Z2 transformation,

𝑎𝑖 → 𝑎′𝑖 = 𝑎𝑖 + 𝜆𝑖 (mod 2), (3.1.5)
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where the 𝜆𝑖 = 0, 1 is the parameter of the gauge transformation. To absorb this change, we introduce the
gauge field 𝑏𝑙 on the link 𝑙. We define the gauge transformation of a gauge field 𝑏𝑙, associated with the gauge
transformation of a site, by

𝑏𝑙 → 𝑏′𝑙 = 𝑏𝑙 + 𝜆𝑖1 (𝑙) + 𝜆𝑖2 (𝑙) , (3.1.6)

where the 𝑖1(𝑙), 𝑖2(𝑙) are the sites in the link 𝑙. Then, to make the partition function invariant under the gauge
transformation, the Boltzmann weights are rewritten as in

exp
(
𝐾 (−1) (𝑎𝑖1 (𝑙)+𝑎𝑖2 (𝑙)+𝑏𝑙)

)
. (3.1.7)

We also introduce the action of the gauge field as

1
2

∑
𝑐𝑝=0,1

𝑒𝜋𝑖𝑐𝑝 (𝑏𝑙1 (𝑝)+𝑏𝑙2 (𝑝)+𝑏𝑙3 (𝑝)+𝑏𝑙4 (𝑝) ) , (3.1.8)

where 𝑝 is a plaquette consisting of four links 𝑙1(𝑝), 𝑙2(𝑝), 𝑙3(𝑝), 𝑙4(𝑝). This action takes the weak coupling
limit for the usual Wilson’s plaquette action. Two spin configurations connected by a gauge transformation
imply the same configuration. Therefore, to count these correctly, assign a weight of 1/2 for each site. Then,
we define the partition function of the Z2 symmetry gauged 2-dimensional ising model 𝑍Ising/Z2 (𝐾) as

𝑍Ising/Z2 (𝐾) =
∑
{𝑎}

∑
{𝑏}

∑
{𝑐 }

1
22𝑁𝑠

exp ©«𝐾
∑
𝑙:link

(−1) (𝑎𝑖1 (𝑙)+𝑎𝑖2 (𝑙)+𝑏𝑙) + 𝑖𝜋
∑

𝑝:plaquette
𝑐𝑝 (𝑏𝑙1 (𝑝) + 𝑏𝑙2 (𝑝) + 𝑏𝑙3 (𝑝) + 𝑏𝑙4 (𝑝) )

ª®¬. (3.1.9)

Also, by choosing a gauge constraint of 𝑎𝑖 = 0, we obtain the following partition function,

𝑍Ising/Z2 (𝐾) =
∑
{𝑏}

∑
{𝑐 }

1
2𝑁𝑠

exp ©«𝐾
∑
𝑙:link

(−1)𝑏𝑙 + 𝑖𝜋
∑

𝑝:plaquette
𝑐𝑝 (𝑏𝑙1 (𝑝) + 𝑏𝑙2 (𝑝) + 𝑏𝑙3 (𝑝) + 𝑏𝑙4 (𝑝) )

ª®¬. (3.1.10)

The Kramers-Wannier duality is a relationship between 2-dimensional Ising model 𝑍Ising(𝐾) and Z2
symmetry gauged 2-dimensional Ising model. Let 𝑍Ising/Z2 (𝐾) be the partition function of the Z2 symmetry
gauged 2-dimensional Ising model. Then the Kramers-Wannier duality is the relation as follow,

1
(sinh 2𝐾)𝑁𝑠/2

𝑍Ising(𝐾) =
1

(sinh 2�̃�)𝑁𝑠/2
𝑍Ising/Z2 (�̃�), (3.1.11)

sinh 2𝐾 sinh 2�̃� = 1. (3.1.12)

We deform Eq. (2.1.33) to prove the Kramers-Wannier duality Eq. (3.1.11). First, we define the dual
constant parameters �̃� as

tanh �̃� = 𝑒−2𝐾 . (3.1.13)
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This equation satisfies Eq. (3.1.12).

sinh 2𝐾 =
1
2

(
𝑒2𝐾 − 𝑒−2𝐾

)
=

1
2

(
1

tanh �̃�
− tanh �̃�

)
=

1
2

(
cosh2 �̃� − sinh2 �̃�

sinh �̃� cosh �̃�

)
=

1
sinh 2�̃�

. (3.1.14)

From Eq. (3.1.13), we obtain the relation,

𝑒𝐾 (−1)𝑎 =
cosh �̃� (tanh �̃�)𝑎
√

cosh �̃� sinh �̃�

=
2 cosh �̃� (tanh �̃�)𝑎

√
2 sinh 2�̃�

=
1

√
2 sinh 2�̃�

∑
𝑏=0,1

exp
{
�̃� (−1)𝑏 + 𝑖𝜋𝑎𝑏

}
(𝑎 = 0, 1). (3.1.15)

We substitute this equation for Eq. (2.1.33).

𝑍Ising(𝐾) =
1

(2 sinh 2�̃�)𝑁𝑙/2

∑
{𝑎}

∏
𝑙:link

( ∑
𝑏𝑙=0,1

exp
(
𝐾 (−1)𝑏𝑙 + 𝑖𝜋(𝑎𝑖1 (𝑙) + 𝑎𝑖2 (𝑙) )𝑏𝑙

))
=

1
2𝑁𝑠 (sinh 2�̃�)𝑁𝑠

∑
{𝑎}

∑
{𝑏}

(
exp

(∑
𝑙:link

(𝐾 (−1)𝑏𝑙 + 𝑖𝜋(𝑎𝑖1 (𝑙) + 𝑎𝑖2 (𝑙) )𝑏𝑙)
))
, (3.1.16)

where 𝑁𝑙 = 2𝑁𝑠 is the number of the link in this square lattice. We convert the sum for the link variable 𝑏𝑙
taken in the second term of the exponential power to a sum for each site variable 𝑎𝑖 . Since each site has four
links connected to it, we can transform thia equation as in

𝑍Ising(𝐾) =
1

2𝑁𝑠 (sinh 2�̃�)𝑁𝑠∑
{𝑎}

∑
{𝑏}

exp

(∑
𝑙:link

𝐾 (−1)𝑏𝑙 + 𝑖𝜋
∑
𝑖:site

𝑎𝑖 (𝑏𝑙1 (𝑖) + 𝑏𝑙2 (𝑖) + 𝑏𝑙3 (𝑖) + 𝑏𝑙4 (𝑖) )
)
. (3.1.17)

Now prepare a lattice of links that are orthogonal to the midpoint of each link in the original lattice. At this
time, the site on the original lattice becomes the plaquette of the new lattice. Therefore, we redefine site
variable 𝑎𝑖 in the original lattice as a plaquette variable 𝑐𝑖 in the new lattice. It also defines the link variables
�̃�𝑙 in the new lattice by the link variables 𝑏𝑙 the original lattice, which are in an orthogonal relationship to
each other. Thus we prove the Kramers-Wannier duality Eq. (3.1.11).

Let’s focus on when 𝐾 = �̃� = 𝐾𝑐 is satisfied. Substituting this equation for (3.1.12), we find that
𝐾𝑐 = 1

2 log
(
1 +

√
2
)
. This parameter 𝐾𝑐 indicates the critical point. In this case, Kramers-Wannier duality

Eq. (3.1.11) becomes as

𝑍Ising(𝐾𝑐) = 𝑍Ising/Z2 (𝐾𝑐). (3.1.18)

This kind of relationship is called self-duality.
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3.2 Dual lattice

To construct duality defects, we introduce two types of lattices , as illustrated in Figure(3.1). To provide

Figure 3.1: Illustration of a 2-dimensional lattice in the AMF approach. Black dots represent active sites
to which spin variables are assigned. Blue dots represent inactive sites with no spin variable assigned.
Each square composed by four dotted lines contains two active sites and two inactive sites. This square
is called the Boltzmann plaquette.

a more detailed description, we introduce a two-dimensional coordinate system, denoted as (𝑥1, 𝑥2) in R2.
Points with Λ have coordinates consisting of even integers, defined as Λ := {(𝑥1, 𝑥2) |𝑥1, 𝑥2 ∈ 2Z}. Con-
versely, for Λ̂, the coordinates are formed by odd integers, expressed as Λ̂ := {(𝑥1, 𝑥2) |𝑥1, 𝑥2 ∈ 2Z + 1}.

We assign the site variables 𝑈𝑖 = (−1)𝑎𝑖 = ±1 to the sites in Λ, while we do not assign site variables to
the sites in Λ̂ For this reason, we refer to the lattice Λ, to which the site variables are assigned, as the active
lattice. We label the sites on the lattice Λ as active sites. On the other hand, the lattice Λ̂ is referred to as the
inactive lattice. We label the sites on the lattice Λ as inactive sites. We assign the weights 𝑠 to the inactive
sites. The specific value of this weight is determined later. We also use the term Boltzmann plaquette for the
smallest square formed by this lattice.

Let 𝑎𝑖 = 0, 1(𝑖 = 1, 2) be the site variables assigned to the two closest sites to each other in active lattice.
We define the Boltzmann weight of the Ising model as

𝑊 (𝑎1, 𝑎2) = exp
(
𝐾 (−1) (𝑎1+𝑎2)

)
. (3.2.1)

There is one-to-one correspondence between two closest sites to each other in active lattice and the Boltzmann
plaquette containing these sites. So, we can consider the basic unit of this lattice system as a plaquette.

We define the partition function of the Ising model as

𝑍Ising(𝐾) =
∑
{𝑎}

©«
∏

inactive
sites

𝑠
ª®®¬ exp ©«𝐾

∑
𝑝:plaquette

(−1) (𝑎𝑖1 (𝑝)+𝑎𝑖2 (𝑝) )ª®¬. (3.2.2)

Besides the constant normalization
∏
𝑠, it is identical to the partition function (2.1.33).

3.3 KW duality defect in 2-dimensional Ising model

In this section, we construct the KW duality defects, Z2 symmetry defects and junctions among them follow-
ing Aasen-Mong-Fendley’s approach ([34]). We impose on a defect or junction equations that a topological
defect must satisfy. We determine the weights by solving their equations. We also show that the duality
defects are non-invertible symmetry.
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3.3.1 Kramers-Wannier duality defect

In this subsection, we discuss the duality defects in the 2-dimensional Ising model. Duality defects are
line operators and are placed at the boundary of the two regions associated with KW duality. Let’s review
the discussion in Sec.3.1. In the KW duality, the sites of the original Ising model lattice are reinterpreted as
plaquettes of the gauged Ising model lattice and vice versa. Using the terms active lattice and inactive lattice,
this correspondence is expressed by the relationship between active sites and inactive sites. Therefore, we
define duality defects on the lattice to swap active and inactive sites, as in Figure3.2. The building block of

Figure 3.2: Illustration of duality defects on two-dimensional lattice in the AMF approach. Black and
blue dots represent active and inactive sites, respectively. The green parallelograms containing two active
and two inactive sites each represent building blocks of duality defects. Duality defects are placed at the
boundaries of mutually dual theories and swap active and inactive sites.

the duality defects is a parallelogram with 2 active sites in Figure3.2. Since the building block contains two
active sites 𝑖, 𝑗 , we assign weight 𝐷 (𝑎𝑖 , 𝑎 𝑗) to the building block.

Since the duality transformation only changes the description of the theory and does not change the
observables, we expect the existence of topological operators on the transformation. In the following, we
describe the commutation relations necessary for the duality defects to be topological, and we construct a
topological duality defect by solving its equations.

In our setup, the Boltzmann plaquettes fill the lattice. Therefore, let us focus on a single Boltzmann
plaquette and consider commutation relations. On a single Boltzmann plaquette, it is possible to consider
two kinds of commutation relations, topological deformations of defects, as represented in Figure3.33.4.
These are represented as equations

Figure 3.3: One of the duality de-
fect commutation relations. Black and
blue dots represent active and inactive
sites, respectively. The green parallelo-
grams represent the building blocks of
the duality defects. This equality im-
poses that a duality defect can be topo-
logically deformed from two building
blocks to two building blocks.

Figure 3.4: One of the duality defect
commutation relations. Black and blue
dots represent active and inactive sites,
respectively. The green quadrangles
represent the building blocks of the du-
ality defects. This equality imposes
that a duality defect consisting of three
building blocks can be topologically
deformed into a duality defect consist-
ing of one building block, and vice
versa.
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∑
𝑚=0,1

𝑊 (𝑎, 𝑚)𝐷 (𝑏, 𝑚)𝐷 (𝑐, 𝑚)𝑠3 = 𝑊 (𝑏, 𝑐)𝐷 (𝑏, 𝑎)𝐷 (𝑐, 𝑎)𝑠4, (3.3.1)∑
𝑚=0,1

𝑊 (𝑎, 𝑚)𝐷 (𝑎, 𝑏)𝐷 (𝑎, 𝑚)𝐷 (𝑐, 𝑚)𝑠4 = 𝑊 (𝑎, 𝑐)𝐷 (𝑏, 𝑐)𝑠3. (3.3.2)

If these equations hold on a single Boltzmann plaquette, the whole defect becomes topological by repeating
the deformation on each Boltzmann plaquette.

We determine the values 𝐷 (𝑎𝑖 , 𝑎 𝑗), 𝑠, 𝐾 by solving these defect commutation relations. In a physically
sensible solution, these values satisfy

𝐷 (𝑎, �̃�) ≠ 0, 𝑠 > 0, 𝐾 ∈ R, 𝐾 ≠ 0. (3.3.3)

There is a unique physically sensible solution up to the sign of 𝐷 (𝑎, �̃�). The solution is

𝐷 (𝑎, �̃�) = 1
√

2
(−1)𝑎�̃�, (3.3.4)

𝑠 =
√

2, (3.3.5)

𝐾 = 𝐾𝑐 = −1
2

log
(
−1 +

√
2
)
, 𝑊 (𝑎𝑖 , 𝑎 𝑗) = exp

(
𝐾 (−1) (𝑎𝑖+𝑎 𝑗 )

)
. (3.3.6)

Note that the value of 𝐾 is determined by the critical value 𝐾𝑐 . The sign ambiguity of 𝐷 (𝑎𝑖 , 𝑎 𝑗) does not
affect the observables, at least locally. We discuss a bit more on this sign ambiguity in Sec.6

We prove that this KW duality is a non-invertible symmetry. We consider a defect configuration that
doubles all four links of a single plaquette. At this time, the defect forms a closed manifold 𝑆1, as shown
in Figure3.5. Substituting and calculating each weight, we find that this coordination is proportional to the

Figure 3.5: Calculation of 𝑆1 expectation value of duality defect. Black and blue dots represent active and
inactive sites, respectively. The green quadrangles represent the building blocks of the duality defects.
In the left figure, the duality defects are placed on each link that constitutes the Boltzmann plaquette, and
the duality defects have an 𝑆1 topology. This coordination is equal to

√
2 times that of the Boltzmann

packet without duality defects.

Boltzmann plaquette where no defect is placed, as shown in∑
𝑚1,𝑚2=0,1

𝑊 (𝑚1, 𝑚2)𝐷 (𝑎, 𝑚1)𝐷 (𝑎, 𝑚2)𝐷 (𝑏, 𝑚1)𝐷 (𝑏, 𝑚2)𝑠4 =
√

2𝑊 (𝑎, 𝑏)𝑠2. (3.3.7)

In the case of a symmetry defect placed on a closed manifold with no operator inserted inside, the weight is
the same as the empty configuration. Therefore, we conclude that the KW duality defects are non-invertible
topological defects.

3.3.2 Z2 symmetry defects in the 2d Ising model

The Ising model has Z2 spin flip symmetry. Next we construct the Z2 symmetry defects on the our setup.
The defects are line operators. Since the Z2 symmetry is a spin-flipping symmetry, we consider a line defects
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Figure 3.6: Illustration of a Z2 symmetry defect on two-dimensional lattice in the AMF approach. Black
and blue dots represent active and inactive sites, respectively. The red parallelograms containing two
active and two inactive sites each represent building blocks of Z2 symmetry defects.

that doubles active sites to active sites and inactive sites to inactive sites, as in Fig 3.6. The building block
of the symmetry defects is a parallelogram in Figure3.6. Since the building block contains two active sites
𝑖, 𝑗 , we assign weight 𝑍 (𝑎𝑖 , 𝑎 𝑗) to the building block.

As in the case of the KW duality defects, we focus on a single Boltzmann plaquette and consider defect
commutation relations. In the single Boltzmann plaquette we can consider three kinds of defect commutation
relations for symmetry defects, as Figure3.7,3.8,3.9. There are represented as equations

Figure 3.7: One of the Z2 symmetry
defect commutation relations. Black
and blue dots represent active and in-
active sites, respectively. The red quad-
rangles represent the building blocks of
the Z2 symmetry defects. This equal-
ity imposes that a Z2 symmetry de-
fect consisting of three building blocks
can be topologically deformed into a
Z2 symmetry defect consisting of one
building block, and vice versa.

Figure 3.8: One of the Z2 symmetry
defect commutation relations. Black
and blue dots represent active and inac-
tive sites, respectively. The red paral-
lelograms represent the building blocks
of the Z2 symmetry defects. This
equality imposes that a Z2 symmetry
defect can be topologically deformed
from two building blocks to another
two building blocks.

∑
𝑚=0,1

𝑊 (𝑏, 𝑚)𝑍 (𝑎, 𝑏)𝑍 (𝑐, 𝑚)𝑍 (𝑐, 𝑚)𝑠4 = 𝑊 (𝑎, 𝑏)𝑍 (𝑎, 𝑏)𝑠3, (3.3.8)∑
𝑚=0,1

𝑊 (𝑏, 𝑚)𝑍 (𝑎, 𝑚)2𝑠4 =
∑
𝑚=0,1

𝑊 (𝑎, 𝑚)𝑍 (𝑏, 𝑚)2𝑠4, (3.3.9)

𝑊 (𝑎, 𝑐)𝑍 (𝑎, 𝑏)𝑍 (𝑐, 𝑑)𝑠3 = 𝑊 (𝑏, 𝑑)𝑍 (𝑎, 𝑏)𝑍 (𝑐, 𝑑)𝑠3. (3.3.10)

Eq.(3.3.10) is a identity. We determine the weights 𝑍 (𝑎, 𝑏) by solving these equations. Since we want to
consider models for which duality defects can be defined, we impose condition

𝑠 =
√

2, 𝐾 = 𝐾𝑐 = −1
2

log
(
−1 +

√
2
)
. (3.3.11)
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Figure 3.9: One of the Z2 symmetry defect commutation relations. Black and blue dots represent active
and inactive sites, respectively. The red parallelograms represent the building blocks of the Z2 symme-
try defects. This equality imposes that a Z2 symmetry defect can be topologically deformed from two
building blocks to another two building blocks.

In a physically sensible solution, the weights satisfies condition,

𝑍 (𝑎𝑖 , 𝑎 𝑗) ≠ 0. (3.3.12)

Then we find the two solutions up to sign

𝑍 (𝑎𝑖 , 𝑎 𝑗) = 2−
1
4 (1 − 𝛿𝑎𝑖 ,𝑎 𝑗 ), (3.3.13)

𝑍 (𝑎𝑖 , 𝑎 𝑗) = 2−
1
4 𝛿𝑎𝑖 ,𝑎 𝑗 . (3.3.14)

The solution (3.3.13) means that the spins of the two active sites connected by the defects are different.
Therefore, this solution is the Z2 symmetry defects. On the other hand, the solution (3.3.14) means that
the spins of the two active sites connected by the defects are same. this solution corresponds to the trivial
defects. We again define 𝑍 (𝑎, 𝑏) as the weights of the basic unit of the Z2 symmetry defects and 𝑇 (𝑎, 𝑏) as
the weights of the basic unit of the trivial defects.

These topological defects are invertible. The weight of the Boltzmann plaquette with these defects placed
on each link is equal to the weight of the empty Boltzmann plaquette.∑

𝑚1,𝑚2=0,1
𝑊 (𝑚1, 𝑚2)𝑍 (𝑎, 𝑚1)2𝑍 (𝑏, 𝑚2)2𝑠4 = 𝑊 (𝑎, 𝑏)𝑠2. (3.3.15)∑

𝑚1,𝑚2=0,1
𝑊 (𝑚1, 𝑚2)𝑇 (𝑎, 𝑚1)2𝑇 (𝑏, 𝑚2)2𝑠4 = 𝑊 (𝑎, 𝑏)𝑠2. (3.3.16)

3.3.3 topological defect junction

We can consider the fusion of topological defects by smoothly deforming and superimposing defects. By
fusion, junctions can arise where multiple topological line operators intersect at a single point. A junction
that can move freely as long as it does not intersect with other defects is said to be topological. In this section,
we construct the topological trivalent junctions, intersected with three defects, on the our setup.

We want to construct topological trivalent junctions. To do so, we need to impose commutation relations
on the junction that must be satisfied in order for the junction to be topological. Now, we consider the three
topological line defects 𝑅, 𝐺, 𝐵 and their junction as shown in the left figure in Figure 3.10. As shown in
the right figure in Figure 3.10, when these defects are defined by doubling the site on the lattice, as in the
KW defect, Z2 symmetry defects, the junction can then be represented by a triangle on this lattice as shown
in Figure 3.11. in Figure 3.11, the 𝛼, 𝛽, 𝛾 are labels of the sites. If the site 𝛼 is an active site, then the spin
variable 𝑈 (𝑎𝛼) = (−1)𝑎𝛼 (𝑎𝛼 = 0, 1) is assigned to that site as a weight, and if it is an inactive site, then 𝑠
is assigned as a weight.

Next, we check what commutation relations are imposed on the junction in order to move the junction
freely. We consider the movement of a junction as in Figure 3.12. The top two figures in Figure 3.12 represent
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Figure 3.10: Illustration of three topological lines intersecting at a single junction. Left: red, blue, and
green lines represent topological lines. Each line intersects at a single junction. Right: Illustration of
topological lines on the lattice in the AMF approach. The colored quadrangles represent building blocks
with topological defects. The triangles consisting of red, green, and blue edges represent the junctions
of those topological lines.

Figure 3.11: Junction of three topological lines 𝑅, 𝐺, 𝐵. Red, green and blue edges are connected to
topological lines 𝑅, 𝐺, and 𝐵, respectively. White vertices 𝛼, 𝛽, and 𝛾 represent the sites of the lattice
in the AMF approach.

the movement of the junction on the continuous theory. The bottom three figures in Figure 3.12 represent
how the move is represented on the lattice. The deformation on the lattice is a two-step process. The first
deformation uses the commutation relations for the topological defects 𝑅. In the second step, assuming the
junction is topological, we move the junction to the right down. By this deformation, we get the following
equation as the commutation relations imposed for a junction to be topological.

, (3.3.17)

where the sum
∑

{𝛾 } means adding up for all possible weights of the site 𝛾. By the deformation, the site 𝛾
disappears from the lattice, so the sum

∑
{𝛾 } is necessary. Thus, we find a general junction commutation

relation.
Now we consider the junctions when the KW defects are placed as topological defect 𝐺, 𝐵 and the Z2

symmetry defects as 𝑅. From Eq.(3.3.17), we obtain the two commutation relations imposed on these junc-
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Figure 3.12: Illustration of moving a junction topologically. The top row shows a conceptual illustration
of topological line deformation and moving the junction, while the bottom row shows the actual defor-
mation in the lattice in the AMF approach. In the first arrow of the bottom row, the defect is deformed
using the defect commutation relation from two building blocks to another two building blocks for the
blue defect. In the second arrow, the junction is moved to the lower right site by imposing Eq. (3.3.17).
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tions,

, (3.3.18)

. (3.3.19)

Then, there are two kinds of junction and we define these weights as 𝐽𝐾𝐾𝑍 (𝑎) and 𝐽𝐾𝐾𝑍 (𝑎𝑖 , 𝑎 𝑗), respec-
tively, as follows.

𝐽𝐾𝐾𝑍 (𝑎) = , 𝐽𝐾𝐾𝑍 (𝑎𝑖 , 𝑎 𝑗) = . (3.3.20)

Using these weights 𝐽𝐾𝐾𝑍 (𝑎), 𝐽𝐾𝐾𝑍 (𝑎𝑖 , 𝑎 𝑗), the Eq.(3.3.18), (3.3.19) are expressed in the formulas as equa-
tions ∑

𝑚

𝐽𝐾𝐾𝑍 (𝑎, 𝑚)𝐷 (𝑚, 𝑏)𝑍 (𝑎, 𝑚)𝑠3 = 𝐷 (𝑎, 𝑏)𝐽𝐾𝐾𝑍 (𝑏)𝑠3, (3.3.21)

𝐽𝐾𝐾𝑍 (𝑎)𝐷 (𝑎, 𝑏)𝑍 (𝑏, 𝑐)𝑠3 = 𝐷 (𝑎, 𝑏)𝐽𝐾𝐾𝑍 (𝑏, 𝑐)𝑠2. (3.3.22)

By solving these equations we determined the solution up to overall factor 𝐽. The solution is as follows.

𝐽𝐾𝐾𝑍 (𝑎) = = (−1)𝑎𝐽, 𝐽𝐾𝐾𝑍 (𝑎𝑖 , 𝑎 𝑗) = = 2
1
4 (1 − 𝛿𝑎𝑖 ,𝑎 𝑗 )𝐽. (3.3.23)

To obtain the overall factor, we use the fact that the 𝑆1 expectation value of the duality defects is
√

2. As
shown in left figure in Figure 3.13, consider a loop of the duality defects that contains no other operators
inside and two Z2 symmetry defects that have the endpoints in the loop. Shrinking the loop of the duality
defects to a point yields the 𝑆1 expectation value

√
2 times the symmetry defects, as shown in Figure 3.13.

This is represented on the lattice as shown in Eq.(3.3.24).

Figure 3.13: Illustration of replacing the loop of the duality defect, where two Z2 symmetry defects are
connected, by

√
2 times one Z2 symmetry defect. the red lines represent the Z2 symmetry defects. the

green circle represents the duality defect. It is assumed that no operator is inserted in the loop.

28



(3.3.24)

Since the outside of the dotted circle is not changed by the deformations of the defects, we only need to
consider the single Boltzmann plaquette, the inside of the blue dotted line. The Eq.(3.3.24) are expressed in
the formulas as equations∑

𝑚1,𝑚2

𝑊 (𝑚1, 𝑚2)𝐷 (𝑎, 𝑚1)𝐷 (𝑎, 𝑚2)𝐷 (𝑏, 𝑚1)𝐷 (𝑏, 𝑚2)𝐽𝐾𝐾𝑍 (𝑚1)𝐽𝐾𝐾𝑍 (𝑚1)𝑠6

=
√

2
∑
𝑚

𝑊 (𝑚, 𝑏)𝑍 (𝑚, 𝑎)2𝑠4. (3.3.25)

We determine 𝐽 = 2− 1
4 by solving Eq. (3.3.25). Now we obtain the weights of junctions. These solutions are

as follows.

𝐽𝐾𝐾𝑍 (𝑎) = = 2−
1
4 (−1)𝑎, 𝐽𝐾𝐾𝑍 (𝑎𝑖 , 𝑎 𝑗) = = (1 − 𝛿𝑎𝑖 ,𝑎 𝑗 ). (3.3.26)

In the same way, we can also determine the weights of the junctions when the KW defects are placed as
topological defects 𝐺, 𝐵 and the trivial defects as 𝑅. Defining their weights as 𝐽𝐾𝐾𝑇 (𝑎), 𝐽𝐾𝐾𝑇 (𝑎𝑖 , 𝑎 𝑗), the
values are

𝐽𝐾𝐾𝑇 (𝑎) = = 2−
1
4 , 𝐽𝐾𝐾𝑇 (𝑎𝑖 , 𝑎 𝑗) = = 𝛿𝑎𝑖 ,𝑎 𝑗 . (3.3.27)

3.3.4 Crossing relation

In the previous subsection, we have constructed the topological junctions. In this subsection, we use that
junctions to represent a crossing relation, which are relations between different kinds of defects. We derive
from them expectation values of the defects and fusion rules for defects on the 2-dimensional Ising model.

The first example of crossing relation is that Z2 symmetry defects connecting endpoints to duality defects
can be removed if those endpoints are connected on the duality defects. It is shown schematically in Figure
3.14. On the lattice, it is represented by the concrete example shown in Figure 3.15. The crossing relation in
this concrete example is as in Eq. (3.3.28). We can verify this equation.∑

𝑚1,𝑚2

𝑊 (𝑚1, 𝑚2)𝐷 (𝑚1, 𝑏)𝑍 (𝑎, 𝑚1)𝑍 (𝑐, 𝑚2)2𝐽𝐾𝐾𝑍 (𝑎, 𝑚1)𝐽𝐾𝐾𝑍 (𝑏)𝑠5 = 𝑊 (𝑎, 𝑐)𝐷 (𝑎, 𝑐)𝑠3. (3.3.28)

Next, we consider a partial fusion of duality defects and Z2 symmetry defects. When Z2 symmetry
defects are fused parallel to the duality defects, the fused Z2 symmetry defects are absorbed into the duality
defects. It is shown schematically in Figure 3.16. A concrete example on the lattice is Figure 3.17, which is
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Figure 3.14: Z2 symmetry defects connected to duality defects absorb into duality defects and disappear.
The green and red lines represent the duality and Z2 symmetry defects, respectively. It is assumed that
no operator is inserted in the region surrounded by each.

Figure 3.15: Configuration of defects topologically equal to the left in Figure 3.14 in the AMF approach
lattice. Black and blue dots represent active and inactive sites, respectively. The green quadrangle rep-
resents the building block of the duality symmetry defects. The red quadrangles represent the building
blocks of the Z2 symmetry defects.

Figure 3.16: Illustration of a Z2 symmetry defect partially absorbed into a duality defect. The green and
red lines represent the duality and Z2 symmetry defects, respectively.

Figure 3.17: Illustration of the a crossing relation of Figure 3.16 on the lattice of the AMF approach.
Black and blue dots represent active and inactive sites, respectively. The green quadrangle represents
the building block of the duality symmetry defects. The red quadrangles represent the building blocks
of the Z2 symmetry defects.
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represented by Eq. (3.3.29). We can confirm that this equation holds.

𝑊 (𝑎, 𝑐)𝐷 (𝑎, 𝑏)𝑍 (𝑐, 𝑑)𝑠4 =
∑
𝑚

𝑊 (𝑚, 𝑑)𝐷 (𝑏, 𝑚)𝑍 (𝑎, 𝑚)𝑍 (𝑐, 𝑑)𝐽𝐾𝐾𝑍 (𝑎, 𝑚)𝐽𝐾𝐾𝑍 (𝑏)𝑠5. (3.3.29)

The above two crossing relations mean that the duality defects can absorb Z2 symmetry defects. If we
fuse those defects that are actually parallel in the theory with periodic boundary conditions, we see that the
Z2 symmetry defect removes, as shown in Figure 3.18. The first equality in Figure 3.18 follows from Eq.
(3.3.29). The middle equality follows from periodic boundary condition. The last equality follows from Eq.
(3.3.28). The formula for the interaction of two parallel defects is called the fusion rule. Let 𝐷 denote the

Figure 3.18: Z2 symmetry defects absorb into duality defects and disappear. The square represents the
spacetime in which the Ising model is defined. The top and bottom of the space satisfy periodic boundary
conditions. The green and red lines represent the duality and Z2 symmetry defects, respectively.

duality defect line and 𝜂 denote the Z2 symmetry defect line. The fusion rule of these defects is expressed in

𝐷 × 𝜂 = 𝐷. (3.3.30)

We consider the partial fusion of two parallel duality defect lines. When we partially fuse the duality
defects with each other, we obtain a trivial defect and a Z2 symmetry defect. It is shown schematically in
Figure 3.14. This crossing relation can also be reproduced on the lattice as in Figure 3.20. Figure 3.20 is

Figure 3.19: Illustration of a crossing relation of duality defects. The green and red lines represent the
duality and Z2 symmetry defects, respectively.

represented by Eq. (3.3.31).

𝑊 (𝑏.𝑑)𝐷 (𝑎, 𝑏)𝐷 (𝑐, 𝑑)𝑠4 =
1
√

2
{
∑
𝑚

𝑊 (𝑐, 𝑚)𝐷 (𝑏, 𝑐)𝐷 (𝑚, 𝑑)𝑍 (𝑎, 𝑚)𝐽𝐾𝐾𝑍 (𝑏)𝐽𝐾𝐾𝑍 (𝑎, 𝑚)𝑠5

+
∑
𝑚

𝑊 (𝑐, 𝑚)𝐷 (𝑏, 𝑐)𝐷 (𝑚, 𝑑)𝑇 (𝑎, 𝑚)𝐽𝐾𝐾𝑇 (𝑏)𝐽𝐾𝐾𝑇 (𝑎, 𝑚)𝑠5}. (3.3.31)
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Figure 3.20: Illustration of a crossing relation Figure 3.19. Black and blue dots represent active and
inactive sites, respectively. The green and red quadrangles represent the building blocks of the duality
defects and the duality defects, respectively. The dotted quadrangle with the black dots 𝑎 and 𝑚 is the
building block of the trivial defect.

We consider the procedure shown in Figure 3.21 on the Ising model with periodic boundary conditions.
From this crossing relation, We obtain the fusion rule of duality defect lines 𝐷.

𝐷 × 𝐷 = 1 + 𝜂. (3.3.32)

The last equality follows from the fact that the quantum dimension of the duality defects is
√

2.

Figure 3.21: The two duality defects fuse to form a trivial defect and a Z2 symmetry defect. The square
represents the spacetime in which the Ising model is defined. The top and bottom of the space satisfy
periodic boundary conditions. The green and red lines represent the duality and Z2 symmetry defects,
respectively.

The duality defects are placed at the boundary of the Ising model and the gauged Ising model, which
are associated with KW duality. Let us confirm this using the fusion rule. This is shown in Figure 3.22
using defects. We prepare an Ising model with periodic boundary conditions. The theory supported in this
region is defined as 𝐴. In the first equality, we place the duality defects on the space using the fact that the
quantum dimension of the duality defects is

√
2. Let 𝐵 be the theory supported in the region where theory

𝐴 is supported and in the region connected across the duality defect. The second identity follows from the
periodic boundary conditions. The third equality used the partial fusion of the duality defects. The last
equality also uses the fact that the quantum dimension is

√
2. Finally, we find that theory 𝐴 can be obtained

from adding up all the topologically different configurations of the Z2 symmetry defects on theory 𝐵. This
means that theory 𝐴 can be obtained by gauging the Z2 symmetry of theory 𝐵.

We consider the crossing relation between two duality defects lines and Z2 symmetry defects lines con-
nected by a single junction, such as the left side of Figure 3.23, and defects with Z2 symmetry defects whose
endpoints are located at those duality defects, such as the right side of Figure 3.23. This crossing relation is
expressed on the lattice as in Fig 3.24 and in Eq. (3.3.33).
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Figure 3.22: The square represents a torus spacetime whose top and bottom, left and right satisfies
periodic boundary conditions. Theories defined in the white region and theories defined in the gray
region are KW dual. The white region theory is obtained by adding up the Z2 symmetry defects in all
topologically different configurations on the gray region theory. This means that the white region theory
is obtained by gauging the gray region theory with Z2 symmetry.

Figure 3.23: Illustration of one of the crossing relation. The green and red lines represent the duality
and Z2 symmetry defects, respectively.

Figure 3.24: Illustration of the a crossing relation of Figure 3.23 on the lattice of the AMF approach.
Black and blue dots represent active and inactive sites, respectively. The green quadrangle represents
the building block of the duality symmetry defects. The red quadrangles represent the building blocks
of the Z2 symmetry defects.
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𝑊 (𝑐, 𝑑)𝐷 (𝑎, 𝑑)𝐷 (𝑏, 𝑐)𝐽𝐾𝐾𝑍 (𝑎, 𝑏)𝑠4

= −
∑
𝑚1,𝑚2

𝑊 (𝑚1, 𝑚2)𝐷 (𝑎, 𝑚1)𝐷 (𝑏, 𝑚2)𝑍 (𝑚1, 𝑑)𝑍 (𝑚2, 𝑐)𝐽𝐾𝐾𝑍 (𝑎, 𝑏)𝐽𝐾𝐾𝑍 (𝑚1, 𝑑)𝐽𝐾𝐾𝑍 (𝑚2, 𝑐)𝑠5.

(3.3.33)

By crossing relation represented in Figures 3.14, 3.23, we can show that the expected value of defects
containing tadpole graph created by duality defects and Z2 symmetry defects is zero, as in Figure 3.25. In

Figure 3.25: Defects containing duality defect loops to which one Z2 symmetry defect is connected will
have a value of zero. In the first equality, we use relation in Figure 3.23 to generate a Z2 symmetry defect.
In the second equality, we use relation in 3.14 to absorb the Z2 symmetry defect into the bottom of the
duality defect loop.

the first equality in Figure 3.25, we use crossing relation in Figure 3.23 to generate Z2 symmetry defects
inside the loop of duality defects. In the second equality, we used crossing relation in Figure 3.14 to absorb
Z2 defects inside the loop into the bottom part of the duality defects.
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Chapter 4

KWW defect in 4-dimensional lattice gauge
theory

In this chapter, we explain KWW duality defects and 1-form Z2 symmetry defects in the 4-dimensional Z2
lattice gauge theory based on [40].

4.1 Kramers-Wannier-Wegner duality

In this section, We confirm that this theory has the KW-like duality, it is Kramers-Wannier-Wegner duality.
We consider 4-dimensional square lattice system with periodic boundary condition. The number of site,

link, plaquette, cube in this lattice are denoted by 𝑁𝑠, 𝑁𝑙, 𝑁𝑝, 𝑁𝑐 , respectively. Then, their numbers are
related to the following,

𝑁𝑙 = 𝑁𝑐 = 4𝑁𝑠, (4.1.1)
𝑁𝑝 = 6𝑁𝑠 . (4.1.2)

We denote the link consisting with sites 𝑖1, 𝑖2 by ⟨𝑖1𝑖2⟩, the cube with plaquettes 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6 on
boundary by ⟨𝑝1𝑝2𝑝3𝑝4𝑝5𝑝6⟩ respectively. And we denote the plaquette with links 𝑙1, 𝑙2 𝑙3, 𝑙4 on boundary
by ⟨𝑙1𝑙2𝑙3𝑙4⟩ We assign the link variable 𝑎𝑙 = 0, 1 to the link 𝑙. The partition function of this model is

𝑍T =
∑
{𝑎}

exp


∑

plaquette
⟨𝑙1𝑙2𝑙3𝑙4 ⟩

𝐾 (−1)𝑎𝑙1+𝑎𝑙2+𝑎𝑙3+𝑎𝑙4

. (4.1.3)

As studied in Subsec. 2.2.1, this theory has 1-form Z(1)2 global symmetry. Let us define the partition
function of the 1-form Z(1)2 gauged lattice gauge theory 𝑍T/Z(1)2

. In Sec. 3.1, we obtained the 0-form Z2

gauged Ising model by adding the background 1-form flat gauge field 𝑏𝑙 and summing up all configuration
of 𝑏𝑙. As an analogy to this, by adding the background 2-form flat gauge field 𝑏𝑝 on plaquette and summing
up all configuration of it, we obtain the 1-form Z(1)2 gauged lattice gauge theory 𝑍T/Z(1)2

. First, we assign the
2-form gauge field 𝑏𝑝 = 0, 1 on the plaquette 𝑝. This 2-form gauge field 𝑏𝑝 couple with link variable 𝑎𝑙 on
a plaquette 𝑝 = ⟨𝑙1𝑙2𝑙3𝑙4⟩ as follow,

exp
{
𝐾 (−1)𝑎𝑙1+𝑎𝑙2+𝑎𝑙3+𝑎𝑙4+𝑏𝑝

}
. (4.1.4)
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To make the 2-form gauge field 𝑏𝑝 flat, we also introduce following action on the cube 𝛾 = ⟨𝑝1𝑝2𝑝3𝑝4𝑝5𝑝6⟩,

1
2

∑
𝑐𝛾=0,1

exp
{
𝑖𝜋𝑐𝛾 (𝑏𝑝1 + 𝑏𝑝2 + 𝑏𝑝3 + 𝑏𝑝4 + 𝑏𝑝5 + 𝑏𝑝6)

}
. (4.1.5)

Then, these action is invariant by 1-form gauge transformation,

𝑎𝑙 → 𝑎𝑙 + 𝜆𝑙 (𝜆𝑙 = 0, 1), (4.1.6)
𝑏𝑙1𝑙2𝑙3𝑙4 → 𝑏𝑙1𝑙2𝑙3𝑙4 + 𝛿𝜆𝑙1𝑙2𝑙3𝑙4

≡ 𝑏𝑙1𝑙2𝑙3𝑙4 + 𝜆𝑙1 + 𝜆𝑙2 + 𝜆𝑙3 + 𝜆𝑙4 . (4.1.7)

Pay attention to the calculation of the gauge volume. the parameter 𝛿𝜆𝑙1𝑙2𝑙3𝑙4 is invariant by the 0-form gauge
transformation,

𝜆𝑙=⟨𝑖 𝑗 ⟩ → 𝜆𝑙=⟨𝑖 𝑗 ⟩ + 𝜇𝑖 + 𝜇 𝑗 (𝜇𝑖 , 𝜇 𝑗 = 0, 1, 𝑖, 𝑗 : site), (4.1.8)
𝛿𝜆𝑙1𝑙2𝑙3𝑙4 → 𝛿𝜆′𝑙1𝑙2𝑙3𝑙4 = 𝛿𝜆𝑙1𝑙2𝑙3𝑙4 . (4.1.9)

So, if we count 2 gauge degrees of freedom for each link, that includes 2 overcounts for each site. Therefore
the correct gauge volume is

2𝑁𝑙

2𝑁𝑠
. (4.1.10)

The partition function of the 1-form Z(1)2 gauged lattice gauge theory 𝑍T/Z(1)2
is

𝑍T/Z(1)2
=

2𝑁𝑠

2𝑁𝑙2𝑁𝑐

∑
{𝑎}{𝑏}{𝑐 }

exp


∑

plaquette
𝑝 = ⟨𝑙1𝑙2𝑙3𝑙4 ⟩

𝐾 (−1)𝑎𝑙1+𝑎𝑙2+𝑎𝑙3+𝑎𝑙4+𝑏𝑝


× exp

𝑖𝜋
∑
cube

𝛾 = ⟨𝑝1𝑝2𝑝3𝑝4𝑝5𝑝6 ⟩

𝑐𝛾 (𝑏𝑝1 + 𝑏𝑝2 + 𝑏𝑝3 + 𝑏𝑝4 + 𝑏𝑝5 + 𝑏𝑝6)
. (4.1.11)

Since the configurations connected by the gauge transformation are physically the same, we perform a gauge
fixing 𝑎𝑙 = 0 and sum up {𝑎}.

𝑍T/Z(1)2
=

2𝑁𝑠

2𝑁𝑐

∑
{𝑏}{𝑐 }

exp


∑

plaquette
𝑝 = ⟨𝑙1𝑙2𝑙3𝑙4 ⟩

𝐾 (−1)𝑏𝑝


× exp

𝑖𝜋
∑
cube

𝛾 = ⟨𝑝1𝑝2𝑝3𝑝4𝑝5𝑝6 ⟩

𝑐𝛾 (𝑏𝑝1 + 𝑏𝑝2 + 𝑏𝑝3 + 𝑏𝑝4 + 𝑏𝑝5 + 𝑏𝑝6)
. (4.1.12)

The Kramers-Wannier-Wegner duality is a relationship between 𝑍T (𝐾) and 𝑍T/Z(1)2
(𝐾). Its exact rela-

tionship is the following,

1
(sinh 2𝐾)3𝑁𝑠/2

𝑍T (𝐾) =
1

(sinh 2�̃�)3𝑁𝑠/2
𝑍T/Z(1)2

(�̃�), (4.1.13)

sinh 2𝐾 sinh 2�̃� = 1. (4.1.14)
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As in the case of the Ising model, rewrite the original theory to investigate its correspondence with the
gauged theory. By using the Eq. (3.1.15), we deform the partition function 𝑍T ,

𝑍T (𝐾) =
1

(2 sinh 2�̃�)𝑁𝑝/2

∑
{𝑎}{𝑏}

∏
plaquette

𝑝 = ⟨𝑙1𝑙2𝑙3𝑙4 ⟩

exp
{
�̃� (−1)𝑏𝑝

}
× exp

{
𝑖𝜋(𝑎𝑙1 + 𝑎𝑙2 + 𝑎𝑙3 + 𝑎𝑙4)𝑏𝑝

}
. (4.1.15)

The term (𝑎𝑙1 +𝑎𝑙2 +𝑎𝑙3 +𝑎𝑙4)𝑏𝑝 focuses on the plaquette 𝑝 = ⟨𝑙1𝑙2𝑙3𝑙4⟩ and describes the interaction between
the link variables and the plaquette variables. Rewrite this term in a form that focuses on each link. In a 4-
dimensional square lattice, each link is located on the boundary of 6 different plaquettes. We denote the
plaquette with link 𝑙 on the boundary by 𝑝(𝑙). Then the partition function is rewritten as follows.

𝑍T (𝐾) =
1

(2 sinh 2�̃�)𝑁𝑝/2

∑
{𝑎}{𝑏}

exp

�̃�
∑

plaquette
𝑝

(−1)𝑏𝑝


× exp

𝑖𝜋
∑
link
𝑙

𝑎𝑙 (𝑏𝑝1 (𝑙) + 𝑏𝑝2 (𝑙) + 𝑏𝑝3 (𝑙) + 𝑏𝑝4 (𝑙) + 𝑏𝑝5 (𝑙) + 𝑏𝑝6 (𝑙) )
.

(4.1.16)

We introduce a dual lattice by placing dual sites in the center of the hypercube of the lattice and dual
links between re-adjacent dual sites. By periodic boundary conditions, this dual lattice has the number of
sites, the number of links, the number of plaquettes, and the number of cubes equal to that of the original
lattice. At this time, the links and plaquettes of the original lattice are orthogonal to the cubes and plaquettes
of the dual lattice and at their centers, respectively We denote a label of dual cube orthogonal to a original
link 𝑙 by 𝑙, and a label of dual plaquette orthogonal to a original plaquette 𝑝 by 𝑝. And we define the dual
cube variable 𝑐𝑙 on the dual cube 𝑙 by the original link variable 𝑎𝑙 = 0, 1 and the dual plaquette variable �̃� �̃�
on dual plaquette 𝑝 by the original plaquette variable 𝑏𝑝 = 0, 1. If an original link 𝑙 is placed on a boundary
of an original plaquette 𝑝 = 𝑝(𝑙), the dual cube 𝑙 have the dual plaquette on the boundary. If a dual plaquette
𝑝 placed on a boundary of a tilde cube 𝑙, we denote the plaquette by 𝑝 = 𝑝(𝑙). In term of the dual lattice,
the partition function is written by

𝑍T (𝐾) =
1

(2 sinh 2�̃�)𝑁𝑝/2

∑
{�̃�}{�̃�}

exp

�̃�
∑

plaquette
�̃�

(−1) �̃� �̃�


× exp

𝑖𝜋
∑
cube
𝑙

�̃�𝑙 (�̃� �̃�1 (𝑙) + �̃� �̃�2 (𝑙) + �̃� �̃�2 (𝑙) + �̃� �̃�4 (𝑙) + �̃� �̃�5 (𝑙) + �̃� �̃�6 (𝑙) )
.

(4.1.17)

Since 𝑁𝑝/2 = 3𝑁𝑠 = 𝑁𝑙 − 𝑁𝑠 follows from Eq. (4.1.2), we have proved KWW duality (4.1.13).
Similar to the 2-dimensional Ising model, KWW duality is self-duality when𝐾 = 𝐾𝑐 = �̃� = −1/2 log−1 +

√
2.

𝑍T (𝐾𝑐) = 𝑍T/Z(1)2
(�̃�𝑐), (4.1.18)

In the following, the parameters are fixed to 𝐾 = 𝐾𝑐 .
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4.2 4-dimensional Z2 lattice gauge theory

In this chapter, we describe our approach to the 4-dimensional Z2 lattice gauge theory. To prepare for future
discussions on duality defect, we introduce two types of lattice, as illustrated in Figure 4.1. Our 4-dimensional
approach closely resembles the one used in 2-dimensions in [34].

Figure 4.1: A schematic illustration of lattices. Although these lattices are depicted as 2-dimensional in
this figure, the actual lattices treated in this paper are 4-dimensional ones. The black lattice consisting
of the black dots represents the lattice Λ, while the blue lattice consisting of the blue dots represents the
lattice Λ̂. These lattices are mutually dual.

To provide a more detailed description of the lattices, we introduce a 4-dimensional coordinate system,
denoted as (𝑥1, 𝑥2, 𝑥3, 𝑥4) in R4. Points within Λ have coordinates consisting of even integers, defined as
Λ := {(𝑥1, 𝑥2, 𝑥3, 𝑥4) |𝑥1, 𝑥2, 𝑥3, 𝑥4 ∈ 2Z}. Conversely, for Λ̂, the coordinates are formed by odd integers,
expressed as Λ̂ := {(𝑥1, 𝑥2, 𝑥3, 𝑥4) |𝑥1, 𝑥2, 𝑥3, 𝑥4 ∈ 2Z + 1}. We refer to the line connecting the closest pair of
points in each lattice as a link. We also use the term plaquette for the smallest square formed by these links.
However, it is important to note that we do not classify the line connecting a point on Λ with a point on Λ̂ as
a link.

We assign the link variables𝑈𝑚 = ±1 to the links in Λ, while we do not assign link variables to the links
in Λ̂. For this reason, we refer to the lattice Λ, to which the link variables are assigned, as the active lattice.
Consequently, we label the sites, links, and plaquettes on the lattice Λ as active sites, active links, and active
plaquettes respectively. On the other hand, the lattice Λ̂, where no link variables are assigned, is referred to
as the inactive lattice. In this context, we label the sites, links, and plaquettes on this lattice as inactive sites,
inactive links, and inactive plaquettes.

We can consider the basic unit of this lattice system as a 16-cell(for more details, see [82, 83]). As
depicted in Figure 4.2, this 16-cell consists of an active plaquette and an inactive plaquette that share a
common center. Within the 16-cell, there are 16 tetrahedrons, each of which contains one active link and
one inactive link. The surface of the 16-cell is homeomorphic to 𝑆3.

The active placket and 16 cells correspond one-to-one. For example, we consider an active plaque-
tte 𝑝 composed of four points at coordinates (0, 0, 0, 0), (0, 0, 0, 2), (0, 0, 2, 0), (0, 0, 2, 2) in Λ. The center
point of this plaquette is (0, 0, 1, 1). Then the inactive plaquette 𝑝 composed of four points at coordinates
(±1,±1, 1, 1) in Λ̂ shares the same center as 𝑝. There is a 16-cell that includes both 𝑝, 𝑝, and these eight
points.

This one-to-one correspondence between the 16 cells and the active plaquette makes assigning Boltzmann
weights to the active plaquette the same as assigning Boltzmann weights to the 16 cells. Let 𝑎𝑖 = 0, 1 for
(𝑖 = 1, 2, 3, 4) be the link variables for the four active links within a 16-cell. We define the Boltzmann weight
to this 16-cell as

𝑊 (𝑎1, 𝑎2, 𝑎3, 𝑎4) = exp
(
𝐾 (−1) (𝑎1+𝑎2+𝑎3+𝑎4)

)
. (4.2.1)

This definition is same as the Boltzmann weight in the Z2 gauge theory.
To define the duality defect later, we introduce the weights for active links, active sites, inactive links,

and inactive sites as 𝑠, 𝑙, 𝑠, and 𝑙, respectively. These specific value of the weights is determined in Sec.
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Figure 4.2: A stereographic projection of a 16-cell into 3 dimensions. The black plaquette represents
an active plaquette, and the blue plaquette represents an inactive plaquette. The 16-cell consists of 16
tetrahedrons, each containing one active link and one inactive link.

4.3.1.
We define the partition function of this theory as

𝑍 =
∑
{𝑎}

©«
∏
active
sites

𝑠
ª®®¬
©«
∏
active
links

𝑙
ª®®¬
©«

∏
inactive

sites

𝑠
ª®®¬
©«

∏
inactive

links

𝑙
ª®®¬
∏
𝑖∈𝐶

𝑊 (𝑎 𝑗1 (𝑖) , 𝑎 𝑗2 (𝑖) , 𝑎 𝑗3 (𝑖) , 𝑎 𝑗4 (𝑖) ), (4.2.2)

where 𝐶 is the set of all 16-cells, and 𝑗1(𝑖), 𝑗2(𝑖), 𝑗3(𝑖), and 𝑗4(𝑖) are the four active links in the 16-cell 𝑖.
𝑎 𝑗 is the link variable assigned to the active link 𝑗 . Besides the constant normalization, it is the same as the
partition function (4.1.3)

4.3 Topological defect

In this section, we explain topological defects and junctions among them in the 4-dimensional Z2 lattice
gauge theory following AMF approach [34, 35]. we introduce defects and junctions into our lattice system.
We impose the defect commutation relations of topological defects and determine their weights so that they
hold. We derive crossing relations among them. We calculate the expectation values of some configurations
of defects by using these crossing relations. In particular, we find that the defect associated to the KWW
duality is non-invertible.

4.3.1 Duality defect

In this subsection, we construct duality defects in the 4-dimensional Z2 pure gauge theory. Duality defects are
3-dimensional operators. It is then placed on the boundary of the dual theories associated with the KWW
duality. The active and inactive lattices are swapped across the duality defects, like the KW defects in a
2-dimensional Ising model. [34].

The 3-dimensional unit cell on the tessellation by regular 16-cells is a regular tetrahedron located on the
surface of those 16 cells. Therefore, we employ these tetrahedrons as the building blocks of the 3-dimensional
surface on which a duality defect is supported. The active lattice and the inactive lattice are swapped across
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Figure 4.3: Schematic illustration of the duality defect. The black dots represent the active lattice and
the blue dots represent the inactive lattice. A duality defect is located at the boundary between the two
regions. The active lattice (black dots) and the inactive lattice (blue dots) are swapped across the duality
defect. A unit cell of the duality defect is a tetrahedral prism depicted as a green parallelogram in this
figure.

the duality defect. In order to implement this property, it is convenient to double each tetrahedron on which
the duality defect is supported, and swap the active link and the inactive link (see Figure 4.3). As a result,
the building block of duality defects is a tetrahedral prism (see Figure 4.4). This is analogous to constructing
the KW duality defect in the 2-dimensional Ising model by doubling link and swap the active site and the
inactive site in [34].

Figure 4.4: The building block of duality defects in the 4-dimensional Z2 lattice gauge theory. The 3-
dimensional surface is composed of tetrahedrons each of which includes an active link and an inactive
link. A tetrahedron on which a duality defect is supported is doubled and becomes a tetrahedral prism.
An inactive link is put on the edge of a tetrahedron in this tetrahedral prism associated to the active link
on the other tetrahedron and vice versa.

the KWW duality transformation just changes the description of the theory, but not change the observ-
ables. Therefore we expect that topological duality defects exist like the KW defects in a 2-dimensional Ising
model. in order to construct such topological defects, we impose the defect commutation relations so that
the duality defect is topological, and find a solution.

Since a 16-cell is a basic unit of our lattice system, we focus on a single 16-cell and consider defect
commutation relations (see Figure 4.5). We consider a configuration of a duality defect A. Some of the 16
tetrahedrons in the focused 16-cell are filled by this defect A and the others are not. We also consider a
deformed configuration B in which the tetrahedrons on the focused 16-cell which are not filled by A is filled
and vice versa. So, A and B differ only on the focused 16-cell. For the duality defect is topological, A and
B must have the same weight if A and B have the same topology. Such an equality between two different
duality defect configurations is called a defect commutation relation.

In the defect commutation relation, it is necessary to consider coordination in which the topology of the
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Figure 4.5: A schematic illustration of a defect commutation relation. The circle represents a 16-cell and
a green line represents a duality defect. The defect commutation relation implies that the value of the
duality defect remains the same even if it is deformed without changing the topology.

defect does not change before and after the deformation. Then the topology of A and B are the same without
any ambiguity if and only if these configurations on the focused 16-cell satisfy the following conditions.

• The tetrahedrons filled in the 16-cell for both A and B are not empty.

• Both A and B configurations, restricted to the surface of the focused 16-cell, are simply connected.

• There is no ambiguity in the above condition. In other words, there is no connection in which the
duality defects are connected only by sites or links.

We provide a more detailed explanation of the defect commutation relations. Each building block of
a duality defect contains two active links. Let us take a building block and we assign the link variables
𝑎, �̃� = 0, 1 to these two active links. Then we can assign a weight 𝐷 (𝑎, �̃�) to this building block. In Sec. 4.2,
we defined the weights for both the active lattice and the inactive lattice components. Specifically, we denote
the weight of an active link as 𝑙, an active site as 𝑠, an inactive link as 𝑙, and an inactive site as 𝑙.

We explain in more detail about the notations. Let’s choose a 16 cell with no duality defects on the
surface with our system. We assign the labels 𝑚 = 1, 2, 3, 4 to the active links and the labels �̃� = 1̃, 2̃, 3̃, 4̃
to the inactive links. Then we denote the set of four active links in the 16-cell as 𝑀 = {1, 2, 3, 4} and the
set of four inactive links as �̃� = {1̃, 2̃, 3̃, 4̃}. A pair of an active link and an inactive link, denoted as (𝑚, �̃�),
can be employed to identify a tetrahedron that holds these links within the 16-cell. Let 𝑈 be the set of all
tetrahedrons

𝑈 = {(𝑚, �̃�) |𝑚 = 1, 2, 3, 4, �̃� = 1̃, 2̃, 3̃, 4̃}. (4.3.1)

The weight of this 16-cell is the Boltzmann weight 𝑊 (𝑎1, 𝑎2, 𝑎3, 𝑎4) in Eq. (4.2.1). Here, 𝑎𝑚 is the link
variable assigned to the active link 𝑚.

Next, we consider a 16-cell with duality defects on its surface in the configuration A. Let 𝐼 ⊂ 𝑈 be the
set of tetrahedrons filled by the duality defects in the configuration A. Since the duality defect is defined
by doubling the tetrahedron, we need to take into account the active links that arise from this doubling, in
addition to the set of active links 𝑀 contained within this 16-cell. These additional active links are the
counterparts of the inactive links included in tetrahedrons contained in the set 𝐼. Therefore We can use �̃�,
which originally serves as the label for an inactive link in the 16-cell, as the label for such additional active
links. Therefore, the set of all such additional active links is �̃� = {�̃�| (𝑚, �̃�) ∈ 𝐼}. Also, let �̃��̃� be the link
variable of the additional active link �̃�. By using these notations, we can denote the weight of each building
block of this duality defect located on the surface of the 16-cell as

𝐷 (𝑎𝑚, �̃��̃�), (𝑚, �̃�) ∈ 𝐼 . (4.3.2)
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Then the total weight of the 16-cell and the duality defect located on the 16-cell in the configuration A is
written as

𝑊 (𝑎1, 𝑎2, 𝑎3, 𝑎4)
∏

(𝑚,�̃�) ∈𝐼
𝐷 (𝑎𝑚, �̃��̃�). (4.3.3)

The defect commutation relations state that the weight of the configuration, A, before changing as shown
in Figure 4.5, with the defect on 𝐼, equals the weight of the configuration, B, after changing, with the defect
on the opposite area 𝐼 = 𝑈 \ 𝐼. So, it’s important to also look at the configuration B. It’s key to note that in
B, the 16-cell and its active connections are part of the area opposite the defect, where the active lattice and
inactive lattice switch places. To make it easier to compare with the weights in configuration A, we can refer
to the active links in the 16-cell post-deformation as �̃� = 1̃, 2̃, 3̃, 4̃, while the inactive links in the 16-cell are
called𝑚 = 1, 2, 3, 4. The variable for link �̃� is marked as �̃��̃� because it connects to the system’s other part just
like �̃��̃� in configuration A, if it exists. Using this label system, the Boltzmann weight for the 16-cell is shown
as𝑊 (�̃�1̃, �̃�2̃, �̃�3̃, �̃�4̃). The combined weight of the 16-cell and duality defects on the 16-cell in configuration
B is noted as

𝑊 (�̃�1̃, �̃�2̃, �̃�3̃, �̃�4̃)
∏

(𝑚,�̃�) ∈𝐼
𝐷 (𝑎𝑚, �̃��̃�). (4.3.4)

We also take into account 𝐸 = {𝑚 | (𝑚, �̃�) ∈ 𝐼}. This represents the collection of inactive links 𝑚 adjacent to
the duality defect situated on the tetrahedrons in 𝐼. Every one of these inactive links is doubled by the duality
defect, leading to a corresponding extra active link. The link variable 𝑎𝑚 for this active link𝑚 connects to the
rest of the system in a similar manner as the link variable 𝑎𝑚 in the setup A. As a result, they are considered
equivalent.

We set specific defect commutation relations as requirements for 𝐷 (𝑎, �̃�), 𝑙, 𝑠, 𝑙, 𝑠, 𝐾 .∑
𝑀\𝐸

𝑊 (𝑎1, 𝑎2, 𝑎3, 𝑎4)𝑠𝛼1 𝑙𝛽1 𝑠 �̃�1 𝑙𝛽1
∏

(𝑚,�̃�) ∈𝐼
𝐷 (𝑎𝑚, �̃��̃�) =

∑̃
𝑁 \�̃�

𝑊 (�̃�1̃, �̃�2̃, �̃�3̃, �̃�4̃)𝑠𝛼2 𝑙𝛽2 𝑠 �̃�2 𝑙𝛽2
∏

(𝑚,�̃�) ∈𝐼
𝐷 (𝑎𝑚, �̃��̃�).

(4.3.5)

In this context, the counts of active sites, active links, inactive sites, and inactive links within the configu-
ration A are represented by 𝛼1, 𝛽1, 𝛼1, and 𝛽1 respectively. Similarly, for configuration B, the numbers of
active sites, active links, inactive sites, and inactive links are indicated by 𝛼2, 𝛽2, 𝛼2, and 𝛽2 respectively.
Furthermore, the sums of

∑
𝑀\𝐸 ,

∑
�̃� \�̃� are defined by∑

𝑀\𝐸
:=

∏
𝑚∈𝑀\𝐸

∑
𝑎𝑚=0,1

,
∑̃
𝑁 \�̃�

:=
∏

�̃�∈�̃� \�̃�

∑
�̃��̃�=0,1

. (4.3.6)

In Eq. (4.3.5), on the left side we add up the link variables for the links in 𝑀 \ 𝐸 , and on the right side, the
addition is for the link variables of the links in �̃� \ �̃� . Here’s more detail about this addition. Initially, both
sides of the defect commutation relations represent the input to the partition function or correlation functions
with the defects from the 16-cell and its components on its surface. The defect commutation relations must
be fulfilled for any link variables in the active links found in other 16-cells, where a different operator might
be added. On the other side, the active links in 𝑀 \ 𝐸, �̃� \ �̃� are not part of other 16-cells. These represent
the degrees of freedom that emerge and vanish before and after the deformation. Thus, sums derived from
the partition function are applied to the link variables of such links.

We find the values 𝐷 (𝑎, �̃�), 𝑙, 𝑠, 𝑙, 𝑠, 𝐾 by resolving these defect commutation relations. In a solution that
makes physical sense, these values fulfill

𝐷 (𝑎, �̃�) ≠ 0, 𝑙, 𝑠, 𝑙, 𝑠 > 0, 𝐾 ∈ R, 𝐾 ≠ 0. (4.3.7)
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There is a single solution that makes physical sense, except for the sign of 𝐷 (𝑎, �̃�). The solution is 1

𝐷 (𝑎, �̃�) = = (−1)𝑎�̃�, (4.3.8)

𝑙 = =
1
√

2
, 𝑠 = =

1
√

2
, (4.3.9)

𝑙 = = 1, 𝑠 = = 1, (4.3.10)

𝐾 =𝐾𝑐 = −1
2

log
(
−1 +

√
2
)
, 𝑊 (𝑎1, 𝑎2, 𝑎3, 𝑎4) = exp

(
𝐾 (−1) (𝑎1+𝑎2+𝑎3+𝑎4)

)
. (4.3.11)

We demonstrate the gauge invariance of our duality defects. A single building block is not gauge invariant
by itself. To understand this, let’s consider the gauge transformation at a site 𝑆 within a building block 𝐵.
Define 𝐿 as the active link at 𝑆 that is part of 𝐵. Also, consider 𝐿 ′ as another active link within 𝐵. Variables
𝑎 and �̃� represent the link variables for 𝐿 and 𝐿 ′, respectively. Then the weight of this building block 𝐵 is
transformed by this gauge transformation as

𝐷 (𝑎, �̃�) → 𝐷 (1 − 𝑎, �̃�) = (−1) (1−𝑎) �̃� . (4.3.12)

So, it is not gauge invariant. The entire duality defect is gauge invariant, as demonstrated below. Because
the entire duality defect lacks a boundary, there exists a unique building block that includes 𝑆 and 𝐿 ′ but
excludes 𝐿; this building block is referred to as 𝐵′. Further, let 𝑏 represent the link variable of the active
link that includes 𝑆 within 𝐵′. Then the weights of these building blocks 𝐵, 𝐵′ are transformed by the gauge
transformation at the active site 𝑆 as

𝐷 (𝑎, �̃�)𝐷 (𝑏, �̃�) → 𝐷 (1 − 𝑎, �̃�)𝐷 (1 − 𝑏, �̃�) = (−1) (1−𝑎) �̃� (−1) (1−𝑏) �̃� = (−1)𝑎�̃� (−1)𝑏�̃� = 𝐷 (𝑎, �̃�)𝐷 (𝑏, �̃�).
(4.3.13)

Therefore, the pair of building blocks 𝐵, 𝐵′ remains unchanged by this gauge transformation. Building blocks
that include the site 𝑆 are grouped into such pairs, and so remain unchanged. Those building blocks not
including 𝑆 are obviously unchanged. Hence, we can deduce that the entire duality defect is unaffected by
gauge transformation.

We now demonstrate that the duality defects created here are non-invertible. To do this, we consider the
situation where the set of filled tetrahedrons in the 16-cell for the configuration B is empty as depicted in
Figure 4.6. In the configuration A, the duality defect is present on all tetrahedrons of the 16-cell, creating
a closed manifold 𝑆3. In this case, the transformation changes the topology of the defect from 𝑆3 to empty,
hence, Eq. (4.3.5) is not required. Instead, one observes that the equation below is fulfilled by inserting our
solution (4.3.8) – (4.3.11).∑

𝑎1,𝑎2,𝑎3,𝑎4=0,1
𝑊 (𝑎1, 𝑎2, 𝑎3, 𝑎4)𝑠8𝑙8𝑠8𝑙8

∏
(𝑚,�̃�) ∈𝑈

𝐷 (𝑎𝑚, �̃��̃�) =
1
√

2
𝑊 (�̃�1̃, �̃�2̃, �̃�3̃, �̃�4̃)𝑠4𝑙4𝑠4𝑙4. (4.3.14)

For a symmetry defect placed on a closed manifold without any operator insertion inside, the weight is
identical with the empty configuration. However, for our duality defect, they are not identical, but their ratio
is 1/

√
2. Therefore, we can conclude that our duality defects are non-invertible.

1We have used Mathematica to find the solution. We have learned this method from Kantaro Ohmori’s lecture “Categorical
symmetry in 1 + 1 dimensions” (in Japanese) in CREST online workshop “Theoretical studies of topological phases of matter.” We
would like to thank him for this excellent lecture.
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Figure 4.6: A schematic illustration of Eq.(4.3.14). The circles represent the 16-cell and the green line
represents the duality defect.

4.3.2 Z2 1-form symmetry defects

In this subsection, we construct 1-form Z2 symmetry defects. As explained in Subsec. 2.2.1, these defects
are defined on 2-dimensional surfaces. The charge operator is the Wilson loop. The symmetry defect acts as
a link to the Wilson loop, flipping its sign.

Since Z2 symmetry defects are not codimension 1, their construction is somewhat different compared to
the duality defects discussed in Sec. 4.3.1, as well as the defects constructed in [34] and [35]. We examine
a 2-dimensional closed surface made of triangles, each formed by an inactive link and the midpoint of a
neighboring active link. We focus on a Z2 symmetry defect supported by this surface. To explain these Z2
symmetry defects, we deform the lattice as described below. In the Z2 symmetry defects, an inactive link and
the inactive sites are doubled. Conversely, when the midpoint of an active link lies within the Z2 symmetry
defect, the active link is doubled, but the two active sites at the ends of this active link remain undoubled.
Each triangle on this surface is doubled and becomes a triangular prism due to this deformation (see Figures
4.7, 4.8). We use this triangular prism as a building block for Z2 1-form symmetry defects.

Figure 4.7: The building block of the 1-form Z2 center symmetry defect. A black dot represents the
midpoint of an active link. A blue dot represents an inactive site and a blue line represents an inactive
link. A building block of the surface on which a 1-form Z2 symmetry defect is supported is a triangle
formed by an inactive link and the midpoint of an adjacent active link. A triangle on which aZ2 symmetry
defect is supported is doubled and becomes a triangular prism.

We assign specific weights to Z2 symmetry defect elements as outlined below. A building block contains
the midpoints of two active links. Each building block includes the midpoints of two active links, denoted by
𝑏, 𝑐 = 0, 1. Our goal is to define the 1-form Z2 symmetry defect to flip the sign of a Wilson loop. Therefore,
we assign the weight 𝑍2(𝑏, 𝑐) = 𝜎𝑥𝑏,𝑐 = (1 − 𝛿𝑏,𝑐) to each building block. We also assign a weight 𝑧 =

√
2

to each pair of doubled active links, balancing the additional weight (4.3.9) for the doubled active link. The
weights for these components are summarized below.
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Figure 4.8: The surface is made by connecting several building blocks of the 1-form Z2 symmetry defect.
A black line represents an active link. A blue dot represents an inactive site and a blue line represents an
inactive link.

𝑍2(𝑏, 𝑐) = = 𝜎𝑥𝑏,𝑐 , 𝑧 = =
√

2. (4.3.15)

Assigning the Boltzmann weight to a plaquette (or a 16-cell) with doubled active links is not entirely clear.
The assignment is based on the rules below. Each building block in a Z2 symmetry defect contains a pair of
inactive links that are doubled. In our setup, an inactive link passes through the middle of a cube. This cube
is made up of six plaquettes, and we refer to it as an ”active cube.” Furthermore, the building block for the Z2
symmetry defect defines the center point of an active link within this active cube. Let’s select such a building
block and describe the method to assign the Boltzmann weights. In this active cube, there are two plaquettes
that share this active link. Next, the Boltzmann weight for one of these two plaquettes is determined through
the use of one of the doubled active links, and the weight for the other plaquette is computed with the other
active link (refer to Figures 4.9, 4.10). It could get a bit confusing when two plaquettes inside an active cube
share a pair of doubled active links, even though the triangle made by the center of these doubled active links
and the inactive link at the center of the active cube is not included in a Z2 symmetry defect. In this situation,
the Boltzmann weights for both plaquettes are derived using one of these doubled active links. These rules
determine the Boltzmann weights for all plaquettes.

Figure 4.9: An active cube. A black
line represents an active link. A blue
dot represents the inactive link crossing
the center of the active cube.

Figure 4.10: An active cube with a
building block of a Z2 symmetry de-
fect. The inactive link and an active
link is doubled by the Z2 symmetry de-
fect. Two plaquettes that share the ac-
tive link before doubling contain the
doubled active links, one each.
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Presently, we demonstrate that these Z2 1-form symmetry defects possess topological properties. We
focus on a 16-cell, as with the duality defects. The set of active links in this 16-cell is represented as 𝑀 =
{𝑚 = 1, 2, 3, 4}, while the set of the inactive links is denoted by �̃� = {�̃� = 1̃, 2̃, 3̃, 4̃}. Let’s pick two adjacent
active links, 𝑚 = 1, 2, from the set 𝑀 . Next, we focus on the set of triangles

𝑉 = {(𝑚, �̃�) |𝑚 = 1, 2, �̃� = 1̃, 2̃, 3̃, 4̃}. (4.3.16)

These triangles form an octahedron. We examine a Z2 1-form symmetry defect made of 𝐻 ⊂ 𝑉 in the
octahedron; this configuration is referred to as B. We compare it with the deformed configuration C, where
the defect is formed by �̃� := 𝑉 \ 𝐻 within the octahedron, and the configuration outside the octahedron
remains unchanged. In order to write down the commutation relations, we also define 𝑀 ′ = {𝑚 = 1, 2} ⊂
𝑀, 𝐹𝑏 := {𝑚 | (𝑚, �̃�) ∈ �̃�} and 𝐹𝑐 := {𝑚 | (𝑚, �̃�) ∈ 𝐻}. The link variables of the active links 3, 4 are denoted
by 𝑎3, 𝑎4, respectively. The link variables of the links 𝑚 = 1, 2 are denoted by 𝑏𝑚 and 𝑐𝑚 if the link 𝑚 is
doubled. If 𝑚 = 1, 2 is not doubled, its link variable is denoted by 𝑏𝑚 in the configuration B and 𝑐𝑚 in the
configuration C. Then our Z2 symmetry defects turn out to satisfy the commutation relation∑

𝑀 ′\𝐹𝑏

𝑊 (𝑏1, 𝑏2, 𝑎3, 𝑎4)
∏

(𝑚,�̃�) ∈𝐻
𝑍2(𝑏𝑚, 𝑐𝑚) =

∑
𝑀 ′\𝐹𝑐

𝑊 (𝑐1, 𝑐2, 𝑎3, 𝑎4)
∏

(𝑚,�̃�) ∈�̃�
𝑍2(𝑏𝑚, 𝑐𝑚). (4.3.17)

Here, considering the weight of 𝑧, the weights of sites and links on each side are equal and cancel to each
other. Therefore, we have not included them in Eq. (4.3.17). The sums in Eq. (4.3.17) are defined by∑

𝑀 ′\𝐹𝑏

:=
∏

𝑚∈𝑀 ′\𝐹𝑏

∑
𝑏𝑚=0,1

, (4.3.18)∑
𝑀 ′\𝐹𝑐

:=
∏

𝑚∈𝑀 ′\𝐹𝑐

∑
𝑐𝑚=0,1

. (4.3.19)

The commutation relations (4.3.17) means that our Z2 symmetry defects are topological.
The commutation relations (4.3.17) also imply our Z2 symmetry defects are invertible defect. For in-

stance, a Z2 symmetry defect placed on the octahedron carries the same weight as an empty configuration

1∑
𝑏1,𝑏2=0

𝑊 (𝑏1, 𝑏2, 𝑎3, 𝑎4)
∏

(𝑚,�̃�) ∈𝑉
𝑍2(𝑏𝑚, 𝑐𝑚) = 𝑊 (𝑐1, 𝑐2, 𝑎3, 𝑎4). (4.3.20)

Our study leads us to determine that our Z2 symmetry defects truly correspond to the symmetry defects
associated with the 1-form Z2 center symmetry.

4.3.3 Defect junctions

We can think about a setup of defects where various types of defects encounter each other, creating junctions.
This part of the discussion focuses on such junctions and their weight.

In our model, a junction happens when a Z2 1-form symmetry defect ends on a duality defect, as shown
in Figure 4.11. These junctions are found on one-dimensional lines.

As explained in Sec. 4.3.1, duality defects are established by doubling tetrahedrons and their associated
links. A junction forms when a doubled link of the duality defect intersects with the Z2 symmetry defect.
There are two types of junctions, based on whether the shared link is an active lattice or an inactive lattice.
Each type of junction is depicted as in Figure 4.12 and 4.13. The weight assigned to a junction that shares
an inactive link is represented by 𝐽 (𝑎), using the link variable 𝑎 for the active link that matches the shared
inactive link. In the same way, if the shared link is an active link, the weight of the resulting junction is
indicated by 𝐽 (𝑏, 𝑐), where 𝑏, 𝑐 are the link variables of the shared links that are doubled by the Z2 symmetry
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Figure 4.11: A schematic illustration of junctions. The red line represents a Z2 symmetry defect, and the
green surface represents a duality defect. The intersection is actually 1-dimensional.

Figure 4.12: A schematic illustration
of a junction sharing an inactive link.
Its weight is denoted as 𝐽 (𝑎).

Figure 4.13: A schematic illustration
of a junction sharing an active link. Its
weight is denoted as 𝐽 (𝑏, 𝑐).

defect. The total weight becomes non-zero only when 𝑏 = 1 − 𝑐, a result of the Z2 symmetry defect.
Therefore, we can apply a function 𝐽 (𝑎), depending only on 𝑎, to represent the weight of this junction as
𝐽 (𝑏, 𝑐) = 𝐽 (𝑏)𝜎𝑥𝑏,𝑐 .

The weights at these junctions are set to ensure that the following junction commutation relations are
met. To describe junction commutation relations in detail, we use a diagram as illustrated in Figure 4.14. In
this illustration, every corner symbolizes a tetrahedron. Two tetrahedrons connected with a black line share
an active link, and two tetrahedrons connected with a blue line share an inactive link.

Figure 4.14: A configuration of tetrahedrons. Each vertex represents a tetrahedron. Two tetrahedrons
connected by the black line share an active link, and two tetrahedrons connected by the blue line share an
inactive link. The pairs of numbers assigned to the vertices specify the labels of the active and inactive
links that each tetrahedron contains.

First, we apply a junction commutation relation to the 𝐽 junction weights and the 𝐽 junction weights. We
examine two configurations of defects as shown in Figure 4.15, ensuring their weights are identical. This
commutation relation demands that the Z2 symmetry defect is capable of continuous transformation along
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with the duality defect, as illustrated in Figure 4.16. This commutation relation can be expressed as

𝑊 (1 − 𝑎1, 𝑎2, 𝑎3, 𝑎4)𝐷 (1 − 𝑎1, �̃�2̃)𝐷 (1 − 𝑎1, �̃�3̃)𝐷 (𝑎2, �̃�1̃)𝐷 (𝑎2, �̃�2̃)𝐷 (𝑎2, �̃�3̃)𝐽 (�̃�1̃)𝐽 (1 − 𝑎1)
= 𝑊 (𝑎1, 1 − 𝑎2, 𝑎3, 𝑎4)𝐷 (𝑎1, �̃�2̃)𝐷 (𝑎1, �̃�3̃)𝐷 (1 − 𝑎2, �̃�1̃)𝐷 (1 − 𝑎2, �̃�2̃)𝐷 (1 − 𝑎2, �̃�3̃)𝐽 (1 − 𝑎2). (4.3.21)

In this case, the constant weights are not included as they are the same for both parts. The summation arising
from the Z2 symmetry defect have already been removed.
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Figure 4.15: The configuration of Eq. (4.3.21). The green dots represent the tetrahedrons on which the
duality defect is located. The red dots represent the tetrahedrons on which the Z2 symmetry defect is
located. Here, placing a Z2 symmetry defect on a tetrahedron means placing a Z2 symmetry defect on a
triangle connecting the center of the active link with the inactive link in the tetrahedron.

Figure 4.16: A schematic illustration of junction commutation relations. The green surface represents a
duality defect and the red surface represents a Z2 symmetry defect. The junction commutation relation
requires that the Z2 defect can be deformed along with the duality defect. Junctions are located on the
intersection of the two kinds of defects.

Next, we determine the 𝐽 (𝑎, 𝑏) junction weight using junction commutation relations. We examine two
defect configurations depicted in Figure 4.17, ensuring their weights are identical. The junction commutation
relation is also a requirement that the Z2 symmetry defect can be continuously deformed along the duality
defect. This equation reads

𝑊 (1 − 𝑎1, 𝑎2, 𝑎3, 𝑎4)𝐷 (1 − 𝑎1, �̃�2̃)𝐷 (1 − 𝑎1, �̃�3̃)𝐷 (𝑎2, �̃�2̃)𝐷 (𝑎2, �̃�3̃)𝐽 (1 − 𝑎1)
= 𝑊 (𝑎1, 1 − 𝑎2, 𝑎3, 𝑎4)𝐷 (𝑎1, �̃�2̃)𝐷 (𝑎1, �̃�3̃)𝐷 (1 − 𝑎2, �̃�2̃)𝐷 (1 − 𝑎2, �̃�3̃)𝐽 (𝑎1)𝐽 (1 − 𝑎2). (4.3.22)

In this case, the constant weights are not included as they are the same for both parts. The summation arising
from the Z2 symmetry defect have already been removed.
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Figure 4.17: The configuration of Eq. (4.3.22).

We can resolve the junction commutation relations from Eq.(4.3.21) and Eq.(4.3.22), and discover a
unique solution for 𝐽 (𝑎), 𝐽 (𝑏, 𝑐). It is written as

𝐽 (𝑎) = = (−1)𝑎, (4.3.23)

𝐽 (𝑏, 𝑐) = = 𝜎𝑥𝑏,𝑐 . (4.3.24)

General junction commutation relations include equations (4.3.21) and (4.3.22). We describe these
commutation relations using the notations from Sec. 4.3.1. Let’s assume that duality defects are placed
on 𝐼 ⊂ 𝑈. We select 𝑖, 𝑗 ∈ 𝑀 = {1, 2, 3, 4} (𝑖 ≠ 𝑗) and examine two different configurations with
Z2 symmetry defects. These configurations are represented by 𝐹 = 𝑖, 𝑗 × �̃�, �̃� := 1̃, 2̃, 3̃, 4̃. We define
𝐼𝐹 = {(𝑚, �̃�) | (𝑚, �̃�) ∈ 𝐼 and 𝑚 ∈ {𝑖, 𝑗}} as the set of building blocks of the duality defect with active links
being 𝑖 or 𝑗 . Additionally, we set �̄� = 𝐹 \ 𝐼𝐹 . We require that the weight of the configuration with a Z2 defect
placed in 𝐻𝐹 ⊂ �̄� must be the same as that in �̄� \ 𝐻𝐹 . These are non-trivial relations for junction weights.
The weights (4.3.23), (4.3.24) satisfy all these commutation relations.

Let’s describe why our junctions remain unchanged under gauge transformations. The expression (4.3.24)
for weight is unaffected by gauge transformations. This happens because at an active site within this build-
ing block, it changes as 𝐽 (𝑏, 𝑐) → 𝐽 (1 − 𝑏, 1 − 𝑐) = 𝐽 (𝑏, 𝑐) due to the gauge transformation. On the
other hand, 𝐽 (𝑎) in Eq. (4.3.23) is not invariant under gauge transformation by itself, as it changes to
𝐽 (𝑎) → 𝐽 (1 − 𝑎) = −𝐽 (𝑎) due to the gauge transformation at an active site in this building block of
junctions. However a whole junction remains gauge invariant as described. Let’s concentrate on an ac-
tive site 𝑆 on a 𝐽 junction. Since this junction is a line with no boundary, there are precisely two building
blocks of junctions which include 𝑆. Let 𝑎, 𝑏 be the link variables for the two active links in these two
building blocks. By the gauge transformation at 𝑆, the weights of these two building blocks change as
𝐽 (𝑎)𝐽 (𝑏) → 𝐽 (1 − 𝑎)𝐽 (1 − 𝑏) = 𝐽 (𝑎)𝐽 (𝑏). The other part of the junction remains unchanged by this
gauge transformation. Thus, we can conclude that our junctions are gauge invariant.

4.3.4 Crossing relations and expectation values

In this subsection, we explore different crossing relationships using the defects and junctions explained so far.
For example, we derive the crossing relations between two duality defect configurations whose topologies are
different. We further deduce certain crossing relations where both duality defects and Z2 symmetry defects
emerge.

A demonstration of such relations is that Z2 symmetry defects having a boundary on the duality defect
can be eliminated if the boundary is homologically trivial on the duality defect. It is schematically illustrated

49



in Figure 4.18. One concrete configuration in the lattice is shown in Figure 4.19. It’s possible to confirm the
equation shown in Figure 4.19.∑

𝑎1,𝑏3=0,1
𝐽 (�̃�1̃)𝐽 (�̃�2̃)𝐽 (�̃�3̃)𝐽 (�̃�4̃)𝑊 (𝑎1, 𝑎2, 𝑏3, 𝑎4)𝑍2(𝑏3, 𝑐3)4𝐷 (𝑎1, �̃�1̃)𝐷 (𝑎1, �̃�2̃)𝐷 (𝑎1, �̃�3̃)𝐷 (𝑎1, �̃�4̃)

=
∑
𝑎1=0,1

𝑊 (𝑎1, 𝑎2, 𝑐3, 𝑎4)𝐷 (𝑎1, �̃�1̃)𝐷 (𝑎1, �̃�2̃)𝐷 (𝑎1, �̃�3̃)𝐷 (𝑎1, �̃�4̃).

(4.3.25)

Here, we omit the constant weights like those of links, as these weights are identical on both sides.

Figure 4.18: A schematic illustration of the crossing relations that aZ2 symmetry defects with a boundary
on the duality defect can be removed if the boundary is homologically trivial on the duality defect.
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Figure 4.19: The configuration of the left-hand side of Eq. (4.3.25).

Another crucial intersection relation is the formula for the duality defect on a 3-dimensional solid torus.
We think about splitting a 16-cell into a pair of solid tori. These solid tori are referred to as 𝑉1 and 𝑉2. A
solid torus is not simple connected, and thus the topology of the duality defects changes by the deformation
as explained in Sec. 4.3.1. Therefore, it’s not necessary for the defect commutation relations to be satisfied.
Instead, we find the crossing relations of the solid torus that include Z2 defects (refer to Figure 4.20); there
is a connection between the duality defect on 𝑉1, the duality defect on 𝑉2, and the duality defect on 𝑉2 along
with the Z2 symmetry defect. Define 𝐼𝑆 as the collection of tetrahedrons in 𝑉2. First, we select one �̃� from
𝑁 = {1̃, 2̃, 3̃, 4̃}, and define 𝐼 �̃�𝑆 := {(𝑚, �̃�) | (𝑚, �̃�) ∈ 𝐼𝑆} as the set of tetrahedrons in 𝑉2 that contain �̃� . Think
about a duality defect on 𝑉2 and a Z2 symmetry defect on each tetrahedron in 𝑀 × �̃� \ 𝐼 �̃�𝑆 , 𝑀 = 1, 2, 3, 4.
Here, placing the Z2 symmetry defect on the tetrahedron refers to situating the Z2 symmetry defect within a
triangle in a way that it joins the middle of the active link to the inactive link inside the tetrahedron. Notice
that the weight of the configuration is independent of the choice �̃� because of the defect commutation relations
described in Sec. 4.3.3. For example, if the duality defect is placed on 𝑉1 as shown in the left-hand side of
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Figure 4.20: A schematic illustration of solid torus equations. The left-hand side represents a duality
defect configuration on one solid torus𝑉1. The first term of the right-hand side represents a duality defect
configuration on one solid torus 𝑉2 and the second term represents a configuration of the duality defect
on a solid torus𝑉2 with a Z2 symmetry defect on 𝐷2 whose boundary is a non-trivial cycle on the duality
defect. This is an example in which the crossing relation is not closed only within duality defects.

Figure 4.21: The configuration of Eq. (4.3.26). The left-hand side is the duality defect configuration on
𝑉1. The first term on the right-hand side is the duality defect configuration on 𝑉2, and the second term
on the right-hand side is the duality defect configuration on 𝑉2 with a Z2 symmetry defect.

Figure 4.22: A calculation of an expectation value of a duality defect on 𝑆2 × 𝑆1. In the left-hand side,
we focus on the part surrounded by the dotted circle. The duality defect in this part is 𝐷2 × 𝑆1 shaped,
and therefore we apply the solid torus equation here. In the right-hand side in the first line, the first term
is duality defect on 𝑆3. The second term is a duality defect on 𝑆3 and a Z2 symmetry defect on 𝐷2 whose
boundary is on the duality defect. By using a crossing relation in Figure 4.18, we find the second term
equal to the first term. Therefore, the expectation value of a duality defect on 𝑆2 × 𝑆1 is equal to the

√
2

times 𝑆3 expectation value. By using the relation in Figure 4.6, finally, we find the expectation value of
a duality defect on 𝑆2 × 𝑆1 is one.
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Figure 4.23: A calculation of the expectation value of a duality defect on 𝑆2 × 𝑆1 with a Z2 symmetry
defect on 𝐷2 whose boundary is a non-trivial cycle on the duality defect. In the first equality, we use
the solid torus equation in Figure 4.20. By using the relations in Figure 4.6 and 4.22, we find that the
expectation value is zero.

Figure 4.21, the configuration of the Z2 symmetry defect is shown in the second term on the right-hand side
of Figure 4.21.

Next, the crossing relation depicted in Figure 4.21 holds true. The specific equation for this is as follows.

𝑠8𝑙8𝑊 (𝑎1, 𝑎2, 𝑎3, 𝑎4)𝐷 (𝑎1, �̃�1̃)𝐷 (𝑎2, �̃�1̃)𝐷 (𝑎2, �̃�2̃)𝐷 (𝑎2, �̃�3̃)𝐷 (𝑎3, �̃�3̃)𝐷 (𝑎4, �̃�1̃)𝐷 (𝑎4, �̃�3̃)𝐷 (𝑎4, �̃�4̃)

=
1
√

2

(
𝑠8𝑙8𝑊 (�̃�1̃, �̃�2̃, �̃�3̃, �̃�4̃)𝐷 (𝑎1, �̃�2̃)𝐷 (𝑎1, �̃�3̃)𝐷 (𝑎1, �̃�4̃)𝐷 (𝑎2, �̃�4̃)𝐷 (𝑎3, �̃�1̃)𝐷 (𝑎3, �̃�2̃)𝐷 (𝑎3, �̃�4̃)𝐷 (𝑎4, �̃�2̃)

+
∑
�̃�1̃=0,1

𝑠8𝑙9𝑧𝑊 (�̃�1̃, �̃�2̃, �̃�3̃, �̃�4̃)𝐷 (𝑎1, �̃�2̃)𝐷 (𝑎1, �̃�3̃)𝐷 (𝑎1, �̃�4̃)𝐷 (𝑎2, �̃�4̃)𝐷 (𝑎3, �̃�1̃)𝐷 (𝑎3, �̃�2̃)

× 𝐷 (𝑎3, �̃�4̃)𝐷 (𝑎4, �̃�2̃)𝑍2(�̃�1̃, �̃�1̃)3𝐽 (𝑎1)𝐽 (𝑎2)𝐽 (𝑎3)𝐽 (�̃�1̃, �̃�1̃)
)
. (4.3.26)

Using the solid torus equations (4.3.26), we are able to calculate several expectation values. The first example
is the expectation value of a duality defect on 𝑆2 × 𝑆1, as illustrated in Figure 4.22. We can cut out one solid
torus from 𝑆2 × 𝑆1. We apply the solid torus equation to this solid torus. Using the connections in Figures
4.6 and 4.18, we understand that the expectation value of the duality defect on 𝑆2 × 𝑆1 is one. The second
example is an expectation value of a Z2 symmetry defect on a two-dimensional disk, which has a boundary
that is a non-trivial 𝑆1 cycle on the duality defect on 𝑆2 × 𝑆1, as depicted in Figure 4.23. We apply the solid
torus equation to the duality defect configuration on 𝑆3. Then, we find that the expectation value is zero.

Additionally, We also find the crossing relation for duality defects placed on two disconnected 3-dimensional
disks as depicted in Figure 4.24. This relation is realized in a 16-cell as illustrated in Figure 4.25. This con-
nection is described as

𝑠8𝑙6𝑊 (𝑎1, 𝑎2, 𝑎3, 𝑎4)𝐷 (𝑎1, �̃�1̃)𝐷 (𝑎3, �̃�3̃)

=
1
√

2

∑
�̃�2,�̃�4=0,1

𝑠8𝑙8𝑊 (�̃�1̃, �̃�2̃, �̃�3̃, �̃�4̃, )𝐷 (𝑎1, �̃�2̃)𝐷 (𝑎1, �̃�3̃)𝐷 (𝑎1, �̃�4̃)𝐷 (𝑎2, �̃�1̃)𝐷 (𝑎2, �̃�2̃)𝐷 (𝑎2, �̃�3̃)

× 𝐷 (𝑎2, �̃�4̃)𝐷 (𝑎3, �̃�1̃)𝐷 (𝑎3, �̃�2̃)𝐷 (𝑎3, �̃�4̃)𝐷 (𝑎4, �̃�1̃)𝐷 (𝑎4, �̃�2̃)𝐷 (𝑎4, �̃�3̃)𝐷 (𝑎4, �̃�4̃).
(4.3.27)

This relation allows us to compute the expectation values of the duality defects. An example is a duality
defect on 𝑆3. We think about two disconnected duality defects on 𝑆3. We can establish a connection between
this configuration and a 𝑆3 duality defect using Eq. (4.3.27). Consequently, the expectation value of the
duality defect on 𝑆3 is 1/

√
2. This result is consistent with the result in Eq. (4.3.14). The second example is
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Figure 4.24: A schematic illustration of the crossing relation including two disconnected disks.

Figure 4.25: The configuration of Eq. (4.3.27).

a duality defect on 𝑆1 × 𝑆2 as shown in Figure 4.26. Using the crossing relation in Figure 4.24 to 𝑆1 × 𝑆2,
we find that the 𝑆1 × 𝑆2 expectation value is one.

Figure 4.26: A calculation of an expectation value of a duality defect on 𝑆1×𝑆2. We use the commutation
relation Figure 4.24 to 𝑆1×𝑆2. Then, the 𝑆1×𝑆2 expectation value is equal to

√
2 times the 𝑆3 expectation

value. We see that the 𝑆1 × 𝑆2 expectation value is one by the relation Figure 4.6.

In a more general sense, one can compute the expectation values of the duality defect on the connected
sum by utilizing the crossing relationship depicted in Figure 4.24. Let ⟨𝑋⟩ be the expectation values of the
duality defects on a sub-manifold 𝑋 . Then the expectation value of the connected sum is provided by

⟨𝑋#𝑌⟩ =
√

2 ⟨𝑋⟩ ⟨𝑌⟩ . (4.3.28)

For example,
〈
(𝑆1 × 𝑆2)#(𝑆1 × 𝑆2)

〉
=
√

2.
We describe the action of a duality defect on a Wilson loop. When we place the duality defect around a

Wilson loop on a plaquette, the relation in Figure 4.27 is derived; a ’t Hooft loop appears on the plaquette
where the Wilson loop was placed. In this theory, a ’t Hooft loop itself cannot be defined locally within the
loop. It must be accompanied with a Z2 symmetry defect on a surface whose boundary is the loop [1]. The
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Figure 4.27: A schematic illustration of the action of a duality defect to a Wilson loop.

Figure 4.28: A schematic illustration of the general action of a duality defect to a Wilson loop.

relation in Figure 4.27 is expressed as∑
�̃�1̃,�̃�2̃,�̃�3̃,�̃�4̃=0,1

𝑊 (𝑎1, 𝑎2, 𝑎3, 𝑎4)𝑠8𝑙8(−1) �̃�1̃+�̃�2̃+�̃�3̃+�̃�4̃
∏

(𝑚,�̃�) ∈𝑈
𝐷 (𝑎𝑚, �̃��̃�) =

1
√

2
𝑊 (1 − 𝑎1, 𝑎2, 𝑎3, 𝑎4)𝑠4𝑙4.

(4.3.29)

In this equation, 𝑈 is defined as 𝑈 = {1, 2, 3, 4} × {1̃, 2̃, 3̃, 4̃}. The right-hand side 1/
√

2 represents the
expectation value of the duality defect on 𝑆3. The sum of the Z2 symmetry defect has already been evaluated.
It is most likely that more general relations in Figure 4.28 is satisfied.

54



Chapter 5

Application to g-functions

In this section, we restrict the renormalization group flow of the theory with boundary using the non-invertible
topological defects constructed in the previous section. This restriction is given by the g-theorem.

The hemisphere partition function with conformal boundary conditions is monotonically decreasing in
two and three dimensions and increasing in four dimensions, depending on the boundary renormalization
group flow. Therefore, once the size of the hemisphere partition function is known, we can place a restriction
on the renormalization group flow. In this paper, we refer to the hemisphere partition function as the g-
function.

We compare in this section the g-functions defined by different boundary conditions using non-invertible
topological defects. To begin, we first check how the boundary conditions of the theory are defined in our
setup. We then define two types of Dirichlet boundary conditions and a Neumann boundary condition.
In order to compare g-functions with different boundary conditions, we consider partition functions with
defects ending on the boundary and topologically deform the boundary of the defect. Therefore, we define a
junction of defects and boundaries that can be topologically deformed. Finally, we compare the g-functions
by considering a partition function with a defect that has an edge at the boundary and deforming the defect
in two different ways that produce different g-functions. The deviation then arises from the non-invertible
nature of the defect.

5.1 Four-dimensional Z2 lattice gauge theory with boundary and the duality
defects

5.1.1 Boundary conditions

This subsection introduces three boundary conditions. We define two Dirichlet boundary conditions and one
Neumann boundary condition on our setup. We introduce 𝑀 as a bounded spacetime.

𝑀 := {(𝑥1, 𝑥2, 𝑥3, 𝑥4) |𝑥1 ≥ 0}. (5.1.1)

In this case, the boundary of the spacetime is located at 𝑥 = 0. The boundary, a 3-dimensional lattice at
𝑥 = 0, is part of the lattice Λ introduced in Sec. 4.2. In Sec. 4.2, we restricted the lattice on the Λ to be the
active lattice, but in this section we do not fix it to define the boundary conditions.

First, we consider the case of an inactive lattice on Λ. At this time, there are no active links on the
boundary, so no restrictions are imposed on the link variables. Therefore, this boundary condition is the free
boundary condition, which we define as the Neumann boundary condition and denote by N.

We can assign arbitrary weights to sites, links, and plaquettes on the boundary. Here, for simplicity we
fix these weights to 1. Then we can define the partition function of the 4-dimensional Z2 lattice gauge theory
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with boundary condition N as follows.

𝑍N =
∑
{𝑎}

©«
∏
active
sites

𝑠
ª®®¬
©«
∏
active
links

𝑙
ª®®¬
∏
𝑖∈𝐶

𝑊 (𝑎 𝑗1 (𝑖) , 𝑎 𝑗2 (𝑖) , 𝑎 𝑗3 (𝑖) , 𝑎 𝑗4 (𝑖) ). (5.1.2)

Next we consider the boundary conditions for the case of an active lattice on Λ. In this case we can define
two different Dirichlet boundary conditions. The first one is a boundary condition that fixes the link variable
a on the boundary to zero. We denote this Dirichlet boundary condition by D. We define the weights of the
site, link, and plaquette on the boundary to be 𝑠D, 𝑙D, and 𝑊D, respectively. These values are determined
from the conditions for topological deformation of the edge of the duality defect on the boundary in next
subsection. The partition function 𝑍D with boundary condition D is as follows.

𝑍D =
∑
{𝑎}

©«
∏

bulk active
sites

𝑠
ª®®¬
©«

∏
bulk active

links

𝑙
ª®®¬
©«

∏
boundary

sites

𝑠D

ª®®®¬
©«

∏
boundary

links

𝑙D

ª®®®¬
©«

∏
boundary
plaquettes

𝑊D

ª®®®¬
∏
𝑖∈𝐶

𝑊 (𝑎 𝑗1 (𝑖) , 𝑎 𝑗2 (𝑖) , 𝑎 𝑗3 (𝑖) , 𝑎 𝑗4 (𝑖) ),

(5.1.3)

where𝐶 is the set of the active plaquettes containing at least one bulk active link, and 𝑗1(𝑖), 𝑗2(𝑖), 𝑗3(𝑖), 𝑗4(𝑖)
are active links in active plaquette 𝑖. The summation for {𝑎} is taken for all link variable configurations such
that the boundary conditions are satisfied.

The second Dirichlet boundary condition is a boundary condition that fixes all active plaquettes on the
boundary at zero. That is, any boundary plaquette satisfies 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 ≡ 0 (mod 2) for the link
variables 𝑎𝑖 (𝑖 = 1, 2, 3, 4) of the active links that comprise the plaquette. We denote this boundary condition
by D̃. Let 𝑠D̃ and 𝑙D̃ be the weights of the active sites and links on the boundary in this boundary condition,
respectively. The Boltzmann weight on the boundary is defined as 𝑊D̃𝛿

mod 2
𝑎1+𝑎2+𝑎3+𝑎4,0, since the sum of the

active link variables must satisfy 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 ≡ 0 (mod 2)=0 from the boundary condition. Here, 𝛿mod 2
𝑎,0

is defined as

𝛿mod 2
𝑎,0 :=

{
0 (𝑎 : odd)
1 (𝑎 : even)

. (5.1.4)

The partition function with boundary condition D̃ is given by

𝑍D̃ =
∑
{𝑎}

©«
∏

bulk active
sites

𝑠
ª®®¬
©«

∏
bulk active

links

𝑙
ª®®¬
©«

∏
boundary

sites

𝑠D̃

ª®®®¬
©«

∏
boundary

links

𝑙D̃

ª®®®¬
×

( ∏
𝑘∈𝐶𝐵

𝑊D̃𝛿
mod 2
𝑎 𝑗1 (𝑘)+𝑎 𝑗2 (𝑘)+𝑎 𝑗3 (𝑘)+𝑎 𝑗4 (𝑘) ,0

) ∏
𝑖∈𝐶

𝑊 (𝑎 𝑗1 (𝑖) , 𝑎 𝑗2 (𝑖) , 𝑎 𝑗3 (𝑖) , 𝑎 𝑗4 (𝑖) ). (5.1.5)

Now,𝐶𝐵 represents the set of all boundary plaquettes,𝐶 is the set of all bulk plaquettes, and 𝑗1(𝑖), 𝑗2(𝑖), 𝑗3(𝑖), 𝑗4(𝑖)
are links in the plaquette 𝑖. The summation {𝑎} is taken for all possible configurations of the link variables.

There are two kinds of basic units on the boundary. One of them is the convex hull of a plaquette on the
boundary lattice Λ and the closest link to the plaquette in the bulk in Λ̂ as in Figure 5.1. We refer to this
basic unit as quarter 16-cell. The surface of a quarter 16-cell contains six cells; four of them are tetrahedrons
and two of them are square pyramids. For example, a quarter 16-cell is the convex hull of the six points
(0, 0, 0, 0), (0, 0, 0, 2), (0, 0, 2, 0), (0, 0, 2, 2), (1,−1, 1, 1) and (1, 1, 1, 1).
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Figure 5.1: A schematic picture of a quarter 16-cell. The black plaquette represents a plaquette on the
boundary and the blue square dot represents a link in the bulk.

The other basic unit is the convex hull of a three-dimensional cube on the boundary and a site closest to
the cube in the bulk as in Figure 5.2. We refer to this basic unit as cubic cone. The surface of a cubic cone
contains seven cells; six of them are square pyramids and one of them is a cube.

We consider the commutation relation on a cubic cone in Sec. 5.1.2.

Figure 5.2: A schematic picture of a cubic cone. The black dots and lines represent sites and links on
the boundary, respectively. The blue dot represents a site in the bulk.

5.1.2 Topological defects ending on the boundary

In this subsection, we consider duality defects with edges on the boundary. As we saw in Chap. 4, since
duality defects swap active and inactive lattices, the edge of a duality defect on the boundary is expected
to be located at the interface between the Neumann N and Dirichlet boundary conditions D or D̃. We want
to consider the edge of a duality defect that can be topologically deformed on the boundary. Therefore, we
impose a ”boundary defect commutation relation” between the weights of the elements on the boundary and
the edge of the duality defect. We determine their weights in such a way that this condition is satisfied.

In addition to the tetrahedral prism constructed in Chap. 4, there is another kind of building block for
KWW duality defects that is adjacent to the boundary. That building block is a doubled square pyramid that
has a pair of active and inactive plaquette on the boundary and a pair of active and inactive sites closest to
the plaquette in a bulk as shown in Figure 5.3.

We consider two types of boundary defect commutation relations, one on cubic cone and the other on
quarter 16-cell. With this boundary defect commutation relation and the commutation relations considered
in Chap. 4, we can construct KWW duality defects that can be smoothly deformed on the boundary. Since
the boundary commutation relation on quarter 16-cell does not impose any restriction on the weights of
elements on the boundary, we consider the boundary commutation relation on cubic cone in this subsection.
The boundary commutation relation on quarter 16-cell is considered in Appendix A.1.

Consider the boundary defect commutation relation associated with cubic cone. A has six square pyra-
mids on which duality defects can be placed. The boundary defect commutation relation is the equality of
one of those configurations with another configurations that does not change the topology. In this case, the
defects have the same shape except on cubic cone, which is the one of interest. There are six equations for
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Figure 5.3: A schematic picture of a building block of KWW duality defects on a boundary. The unit
is defined on a doubled square pyramid. Each square pyramid includes a boundary plaquette and a bulk
site closest to the plaquette.

the boundary commutation relation associated with A, as shown in Figure 5.4, for the case where the edge
exists between the boundary conditions D and N, and between D̃ and N, respectively.

(a) (b) (c)

(d) (e) (f)

Figure 5.4: Schematic pictures of boundary defect commutation relations on a cubic cone. Blue lattices
represent the N boundary condition. Black lattices represent D or D̃ boundary condition. Some of square
pyramids are filled by the KWW duality defects which are represented by green surfaces.

The defect commutation relations associated with D and N boundary conditions depicted by Figures
5.4(a)–(f) are given, respectively, by

𝑊6
D𝑙

12
D 𝑠

8
D𝑝D = 𝑊5

D𝑙
12
D 𝑠

8
D𝑝

5
D, (5.1.6)

𝑊6
D𝑙

12
D 𝑠

8
D𝑝

2
D = 𝑊4

D𝑙
11
D 𝑠

8
D𝑝

4
D, (5.1.7)

𝑊6
D𝑙

12
D 𝑠

8
D𝑝

3
D = 𝑊3

D𝑙
9
D𝑠

7
D𝑝

3
D, (5.1.8)

𝑊6
D𝑙

12
D 𝑠

8
D𝑝

3
D = 𝑊3

D𝑙
10
D 𝑠

8
D𝑝

3
D, (5.1.9)

𝑊2
D𝑙

7
D𝑠

6
D𝑝

2
D = 𝑊6

D𝑙
12
D 𝑠

8
D𝑝

4
D, (5.1.10)

𝑊D𝑙
4
D𝑠

4
D𝑝D = 𝑊6

D𝑙
12
D 𝑠

8
D𝑝

5
D. (5.1.11)

Note that the Boltzmann weight of the top active plaquette in the right-hand side of Figure 5.4(a) does not
contribute to the partition function as shown in Eq. (5.1.6), since the inside of this plaquette does not belong
to D or D̃, but it belongs to N. Eqs. (5.1.6)–(5.1.11) are not independent. Sorting out these equations, we
obtain the following equation, which is equivalent to the above equation:

𝑊D = 𝑝4
D, (5.1.12)

𝑊3
D𝑙

2
D = 1, (5.1.13)

𝑊3
D𝑙

3
D𝑠D = 1. (5.1.14)
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On the other hand, the defect commutation relations associated with D̃ and N boundary conditions de-
picted by Figures 5.4(a)–(f) are given, respectively, by

𝑊6
D̃
𝑙12
D̃
𝑠8
D̃
𝑝D̃ = 𝑊5

D̃
𝑙12
D̃
𝑠8
D̃
𝑝5

D̃
, (5.1.15)

2𝑊6
D̃
𝑙12
D̃
𝑠8
D̃
𝑝2

D̃
= 𝑊4

D̃
𝑙11
D̃
𝑠8
D̃
𝑝4

D̃
, (5.1.16)

23𝑊6
D̃
𝑙12
D̃
𝑠8
D̃
𝑝3

D̃
= 𝑊3

D̃
𝑙9
D̃
𝑠7
D̃
𝑝3

D̃
, (5.1.17)

22𝑊6
D̃
𝑙12
D̃
𝑠8
D̃
𝑝3

D̃
= 𝑊3

D̃
𝑙10
D̃
𝑠8
D̃
𝑝3

D̃
, (5.1.18)
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D𝑝D = 28𝑊6

D𝑙
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D 𝑠

8
D𝑝

5
D, (5.1.20)

where, 𝛿mod 2 and summations of link variables common to both sides are omitted. The numerical coeffi-
cients 2𝑛 in Eqs. (5.1.16)–(5.1.20) are the numbers of the configurations of the link variables that satisfy the
boundary condition. Eqs. (5.1.15)–(5.1.20) are not independent. Sorting out these equations, we obtain the
following equation, which is equivalent to the above equation:

𝑊D̃ = 𝑝4
D̃
, (5.1.21)

𝑊3
D̃
𝑙2
D̃
= 1, (5.1.22)

2𝑊3
D̃
𝑙3
D̃
𝑠D̃ = 1. (5.1.23)

5.1.3 𝐷3 expectation values

Figure 5.5: Derivation of the 𝐷3 expectation value. The gray region represents the bulk on which the Z2
gauge theory lives. The black or blue vertical lines represent boundaries. The green line represents the
KWW duality defect on 𝐷3 whose edge is 𝑆2 on the boundary. The black lines represent the 𝑋 boundary
condition. The blue line inside the 𝑆2 represents the 𝑌 boundary. When no other operator is contained
inside the 𝐷3, we can replace it with 𝐷3 expectation value 𝑄(𝑋;𝑌 ).

We consider a KWW duality defect on 𝐷3 whose edge is 𝑆2 on the boundary, as shown in Figure 5.5.
On the boundary of the spacetime, the inside of this 𝑆2 is 𝑌 boundary and the outside of it is 𝑋 boundary
where 𝑌 is N and 𝑋 is D or D̃, or vise versa by the propriety of duality defect. When this 𝐷3 contains no
other operator, it can be replaced by a topological local operator on the boundary. This topological local
operator is found to be c-number times the identity operator. This c-number is called “diskv” and is denoted
by 𝑄(𝑋;𝑌 ). In this subsection, we compute the 𝐷3 expectation values. In the following, the 𝐷3 expectation
values is determined by considering the duality defects placed in on all the square pyramids of a cubic cone,
as shown on the left side of Figure 5.6.

First, we consider 𝑄(N; D) and 𝑄(D; N). The relations of Figure 5.6 implies the following equations,

𝑊6
D𝑙

12
D 𝑠

8
D𝑝

6
D = 𝑄(N; D), (5.1.24)

𝑊6
D𝑙

12
D 𝑠

8
D𝑝

6
D𝑠 = 𝑄(D; N)𝑊6

D𝑙
12
D 𝑠

8
D. (5.1.25)
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(a) (b)

Figure 5.6: Configurations used to obtain 𝐷3 expectation values. The KWW duality defect connects the
N boundary condition with the 𝑋 boundary condition, where 𝑋 is D or D̃. In the left-hand side, all the
square pyramids on the surface of a cubic cone are filled by the KWW duality defect. On the other hand,
there is no KWW duality defect in the right-hand side. The roles of 𝑋 and N are interchanged between
(a) and (b).

Here, 𝑠 = 1√
2
. By using Eqs. (5.1.12), (5.1.13), (5.1.14), 𝑄(N; D) and𝑄(D; N) are expressed in terms of𝑊D

as

𝑄(N; D) = 𝑊
3
2
D , (5.1.26)

𝑄(D; N) = 1
√

2
𝑊

3
2
D . (5.1.27)

Consider 𝑄(N; D̃) and 𝑄(D̃; N). The relations of Figure 5.6 implies the following equations,

27𝑊6
D̃
𝑙12
D̃
𝑠8
D̃
𝑝6

D̃
= 𝑄(N; D̃), (5.1.28)

𝑊6
D̃
𝑙12
D̃
𝑠8
D̃
𝑝6

D̃
𝑠 = 𝑄(D̃; N)𝑊6

D̃
𝑙12
D̃
𝑠8
D̃
. (5.1.29)

Here, the coefficient 27 on the left side of Eq. (5.1.28) is the number of possible configurations of the boundary
link variables that satisfy the boundary condition. By using the relations (5.1.21), (5.1.22), (5.1.23), the 𝐷3

expectation values 𝑄(N; D̃), 𝑄(D̃; N) are expressed in terms of𝑊D̃ as

𝑄(N; D̃) = 1
2
𝑊

3
2
D̃
, (5.1.30)

𝑄(D̃; N) = 1
√

2
𝑊

3
2
D̃
. (5.1.31)

The above calculations show that the duality defect with 𝐷3 topology with no other operator inside can
be replaced by the 𝐷3 expectation value times the identity operator. We represent the 𝐷3 expectation values
in terms of the Boltzmann weight on the boundary.

5.1.4 Relations between g-functions

In this subsection, we find the ratio of g-functions with different boundary conditions. In the AMF approach,
it is not easy to obtain a fusion rule for the boundary and duality defects. Therefore, the ratio is obtained
using the the 𝐷3 expectation values 𝑄(𝑋;𝑌 ) obtained in the previous Subsec. 5.1.3.

We consider the Z2 lattice gauge theory on a 4-dimensional hemisphere. Next, we place a duality defect
on 𝐷3 ending on 𝑆2 on the boundary of the 4-dimensional hemisphere. The boundary conditions change
from D to N or from D̃ to N at the edge of this KWW duality defect. We denote the partition function with
this defect by ⟨𝑉⟩. This defect can be replaced by the 𝐷3 expectation value. In particular, since this spacetime
is a 4-dimensional hemisphere, as shown in the Figure 5.7, this identity can be used in two different ways.
As a result, we obtain the relation:

𝑔𝑋𝑄(𝑋;𝑌 ) = ⟨𝑉⟩ = 𝑔𝑌𝑄(𝑌 ; 𝑋), (5.1.32)
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Figure 5.7: The derivation of the relation between g-functions. The green line represents the KWW
duality defect on 𝐷3 ending on 𝑆2 on the boundary of the four-dimensional hemisphere on which the
Z2 lattice gauge theory lives. This KWW duality defect connects the boundary conditions 𝑋 and 𝑌 .The
black boundary represents the boundary condition 𝑋 , and the blue boundary represents the boundary
condition 𝑌 . We use the identity in Figure 5.5 in two different ways: the left-hand side and the right-
hand side.

where 𝑋 and 𝑌 denote the two boundary conditions connected by the duality defect. From Eq. (5.1.32) for
(𝑋,𝑌 ) = (D,N) and (𝑋,𝑌 ) = (D̃,N), we obtain the following relations,

𝑔D𝑄(D; N) = 𝑔N𝑄(N; D), (5.1.33)

𝑔D̃𝑄(D̃; N) = 𝑔N𝑄(N; D̃). (5.1.34)

Here, 𝑔D, 𝑔D̃, and 𝑔N denote the g-functions of D, D̃, and N, respectively. From these equations and the
expressions of the 𝐷3 expectation values (5.1.26), (5.1.27), (5.1.30), (5.1.31), we obtain the relations between
g-functions:

1
2
𝑔D =

1
√

2
𝑔N = 𝑔D̃. (5.1.35)

According to the 4-dimensional g-theorem, the g-function is monotonically increasing along the bound-
ary renormalization group flow. Therefore, the relation (5.1.35) implies that the boundary renormalization
group flows from D̃ to N and from N to D are prohibited.

It is not easy to obtain the fusion rules for the boundary and duality defects in the AMF approach. But
we obtain them indirectly from Eq. (5.1.35) and the 𝑆3 expectation value of the duality defect 1√

2
:

D × 𝐾 = N, N × 𝐾 = D̃, (5.1.36)

where 𝐾 is the KWW duality defect. This is also consistent with the bulk fusion rule 𝐾 ×𝐾 = 𝐶, where 𝐶 is
the codimension one condensation defect of the Z2 one-form symmetry [43, 47]; the fusion rule D × 𝐶 = D̃
derived from this bulk fusion rule and Eq. (5.1.36) agrees with the definitions of D and D̃.
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Chapter 6

Conclusion and discussion

Here we summarize this Ph.D. thesis. In chapter 2, we reviewed generalized symmetries. Traditionally,
symmetry has been considered as an invariance of the action associated with a transformation. Then, when
there exists a continuous symmetry, we can define a conservative current from Noether’s theorem and use
the current to derive the WT-identity. The WT-identity then implies locally global symmetry transforma-
tions for the field. In order to consider such local global transformations for symmetries including discrete
symmetries, we define a symmetry defect from the variation of the action of a global transformation on a
region of spacetime. Symmetry defects are topological because the region over which the global transfor-
mation is performed can be changed by replacing the labels of the integral variables. The symmetry defects
have codimension-1 and are invertible. In generalized symmetry, we consider general topological defects
as symmetries. As concrete examples, this chapter introduces, in particular, higher-form symmetries whose
codimension is not 1 and non-invertible symmetries consisting of non-invertible defects.

In chapter 3 we have considered the 2-dimensional Ising model. First, we have proved KW duality, which
implies equivalence between the Ising model in the 2-dimensional, high-temperature phase (low-temperature
phase) and the Ising model withZ2 symmetry gauged in the low-temperature phase (high-temperature phase).
Then, following the Aasen-Mong-Fendley approach, we introduced a dual lattice and a KW duality defect
placed between the KW dual theories. We imposed a commutation relation on this defect and solved it to
construct a topological defect. By calculating the expectation value of a topological defect placed on 𝑆1,
we have confirmed that the topological defect is non-invertible. We have also constructed symmetry defects
corresponding to 0-formZ2 symmetry and junctions between them and non-invertible defects, and considered
the relation between defects with different topologies.

In chapter 4, we introduced one of the results of our study, a non-invertible defect in the 4-dimensional
Z2 lattice gauge theory. This model has 1-form Z2 symmetry and KWW duality. By applying the Aasen-
Mong-Fendley approach, we have introduced a dual lattice and KWW defects placed between the KWW dual
theories. Specifically, we focus on a single 16-cell consisting of a pair of active and inactive plaquettes on our
setup, which consists of an active and inactive lattice. We defined a building block of KWW duality defects
on the tetrahedral prism, which is a doubling of the tetrahedron consisting of pairs of active and inactive
links on the surface of the 16-cell. Then, topological defects were constructed by imposing and solving
a commutation relation on the 16-cell to that defects, which implies the topological nature of the defects.
We also placed the defects on all the tetrahedrons existing on the surface of the 16-cell and calculated the
expectation value of the KWW duality defect with 𝑆3 topology. By comparing the expectation values with
the weights of the empty 16-cell, we proved that the KWW duality defects are non-invertible. We also
constructed a 1-form Z2 global symmetry defect and a topological junction connecting the non-invertible
duality defect and the 1-form symmetry defect. We also have obtained relationships between defects with
different topologies and used these relationships to calculate the expectation values of non-invertible duality
defects in several configurations.
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In chapter 5, we consider gauge theories with boundary. We defined one type of Neumann boundary con-
dition on a boundary made of inactive lattices and two types of Dirichlet boundary conditions on a boundary
made of active lattices. The KWW duality was defined to have an edge on the boundary between the Neu-
mann and Dirichlet boundary conditions due to a defect that swaps the active and inactive lattices. We also
defined the edge of the defect to be topological on the boundary. We then considered a 𝐷3 KWW duality
defect with a 𝑆2 edge on the boundary. Then, if no operator exists in the region bounded by this defect on 𝐷3

and the 𝐷3 boundary, we could replace it with the 𝑐-number, the 𝐷3 expectation value. After the replace-
ment, the boundary conditions of the theory became the boundary conditions defined outside of 𝑆2 before
the defect was replaced. This 𝐷3 expectation value depended on the boundary conditions inside the outside
of the edge of the defect before the deformation. We then considered a 𝐷3 defect in a 4-dimensional hemi-
sphere with 𝑆2 edges at the boundaries. We then replaced the defects with 𝐷3 expectation values in two ways
to obtain the ratios of the hemisphere partition function for the Neumann boundary condition to the hemi-
sphere partition function for the Dirichlet boundary condition. Then, from the results and the 𝑔-theorem, we
obtained a restriction on the renormalization group flow.

Here we consider another solution to the duality defect of the Ising model in two dimensions. We used
the solutions of 𝐷 (𝑎, �̃�) = 1/

√
2(−1)𝑎�̃� in Sec. 3.3, and these solutions with different signs are also solutions

of the defect commutation relation. One specific example is,

𝐷 (𝑎, �̃�) = − 1
√

2
(−1)𝑎�̃� . (6.0.1)

These solutions are indistinguishable if the entire defect consists of an even number of building blocks, but
if it consists of an odd number of building blocks, they differ only in the sign of the whole. For example, the
odd number of defects are composed on the projective plane.

The following solutions are also alternative solutions,

𝐷 (𝑎, �̃�) = 1
√

2
(−1) (1−𝑎) (1−�̃�) , (6.0.2)

𝐷 (𝑎, �̃�) = 1
√

2
(−1) (1−𝑎) �̃�, 𝐷 (𝑎, �̃�) = 1

√
2
(−1)𝑎 (1−�̃�) . (6.0.3)

The solution (6.0.2) satisfies𝐷 (𝑎, �̃�) = 𝐷 (�̃�, 𝑎). While the solutions (6.0.3) do not satisfy𝐷 (𝑎, �̃�) = 𝐷 (�̃�, 𝑎)
These solutions are considered to be identical if the defect does not have an edge. For example, consider
a another solution �̃� (𝑎, �̃�) = 1/

√
2(−1) (1−𝑎) �̃�. To distinguish it from the original solution 𝐷 (𝑎, �̃�) =

1/
√

2(−1)𝑎�̃�, the another solution is marked with the tilde. Assuming that the defect does not have an edge,
there is another building block �̃� (𝑏, �̃�) that contains the active site �̃�. This makes it indistinguishable from
the original solution, as in the following equation.

�̃� (𝑎, �̃�)�̃� (𝑏, �̃�) = 1
2
(−1) (1−𝑎) �̃� (−1) (1−𝑏) �̃� = 1

2
(−1)𝑎�̃� (−1)𝑏�̃� = 𝐷 (𝑎, �̃�)𝐷 (𝑏, �̃�). (6.0.4)

Next, we discuss the prospects for this study. One of the directions is to apply the AMF approach to dis-
cover more non-invertible symmetries. In this thesis, applying the AMF approach, we construct topological
defects corresponding to the KWW duality transformation. Another approach to construct KWW duality de-
fects is half space gauging. In half-space gauging, we consider gauging only for partial regions of spacetime,
as in the global transformation on partial regions performed in Chap. 2. Since the gauging is performed by
adding up the symmetry defects in all topologically different configurations, this region can be topologically
deformed. If the theory is self-dual to the gauging, the gauged region is equal to the original theory, so
the effects of the deformation remain as non-invertible topological operators at the boundaries of the region.
Thus, in half-space gauging, self duality is a necessary condition for constructing topological defects. On the
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other hand, in the AMF approach, the equality of two theories separated by a defect is set first. A topological
nature is then satisfied by imposing a defect commutation relation. Therefore, self-duality is not a necessary
condition for the construction of non-invertible topological defects. Therefore, we consider it to be a pow-
erful tool for finding non-invertible symmetries based on properties other than self-duality associated with
gauging. In fact, by the AMF approach, such defects are constructed in two and three dimensions [35, 84].
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Appendix A

appendix

A.1 Commutation relations on quarter 16-cell

We examine boundary defect commutation relations on a quarter 16-cell. A quarter 16-cell contains four
tetrahedrons and two square pyramids as three-dimensional elements. We focus on one quarter 16-cell and
consider placing building blocks of the duality defect on three-dimensional elements on it. There are four
boundary defect commutation relations of the KWW duality defect connecting boundary conditions D and
N or D̃ and N as shown in Figure A.1.

(a) (b)

(c) (d)

Figure A.1: Boundary defect commutation relations on a quarter 16-cell. Black plaquettes represent
plaquettes on the boundary with D or D̃ boundary condition and blue plaquettes represent plaquettes on
the boundary with N boundary condition. Black square dots and blue square dots represent active links
and inactive links in the bulk, respectively. Black circular dots and blue circular dots represent active
sites and inactive sites, respectively. green surfaces represent the KWW duality defects. Some of four
tetrahedrons are filled by the KWW duality defect. One square pyramid out of two is filled with KWW
defects, which are omitted in the figure.

All of these boundary defect commutation relations are satisfied for arbitrary values of the weights of
the boundary elements if we use the bulk weights obtained in Sec. 4.2. For example, the boundary defect
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commutation relations of Figure A.1c connecting D̃ and N is the following equation.∑
𝑎1,𝑎2,𝑎3,𝑎4

𝑊D̃𝛿
mod 2
𝑎1+𝑎2+𝑎3+𝑎4,0𝑝D̃𝑠

4
D̃
𝑙4
D̃
𝑠

=
∑

𝑎1,𝑎2,𝑎3,𝑎4,𝑎5

𝑊D̃𝛿
mod 2
𝑎1+𝑎2+𝑎3+𝑎4,0𝑝D̃𝑠

4
D̃
𝑙4
D̃
𝑠2𝑙1𝐷 (𝑎5, 𝑎1)𝐷 (𝑎5, 𝑎2)𝐷 (𝑎5, 𝑎3)𝐷 (𝑎5, 𝑎4). (A.1.1)

Here 𝑎1, 𝑎2, 𝑎3, 𝑎4 are boundary link variables, 𝑎5 is a bulk link variable and 𝑙 = 𝑠 = 1√
2

are weights in the
bulk. This equation is an identity with respect to𝑊D̃, 𝑝D̃, 𝑠D̃, 𝑙D̃.

66



Bibliography

[1] Davide Gaiotto, Anton Kapustin, Nathan Seiberg, and Brian Willett. Generalized Global Symmetries.
JHEP, 02:172, 2015. doi: 10.1007/JHEP02(2015)172.

[2] Erik Verlinde. Fusion rules and modular transformations in 2d conformal field theory. Nuclear Physics
B, 300:360–376, 1988. ISSN 0550-3213.

[3] Gregory W. Moore and Nathan Seiberg. Classical and Quantum Conformal Field Theory. Commun.
Math. Phys., 123:177, 1989. doi: 10.1007/BF01238857.

[4] Gregory W. Moore and Nathan Seiberg. Taming the Conformal Zoo. Phys. Lett. B, 220:422–430, 1989.
doi: 10.1016/0370-2693(89)90897-6.

[5] V. B. Petkova and J. B. Zuber. Generalized twisted partition functions. Phys. Lett. B, 504:157–164,
2001. doi: 10.1016/S0370-2693(01)00276-3.

[6] Jurgen Fuchs, Ingo Runkel, and Christoph Schweigert. TFT construction of RCFT correlators 1. Parti-
tion functions. Nucl. Phys. B, 646:353–497, 2002. doi: 10.1016/S0550-3213(02)00744-7.

[7] Jurg Frohlich, Jurgen Fuchs, Ingo Runkel, and Christoph Schweigert. Kramers-Wannier duality from
conformal defects. Phys. Rev. Lett., 93:070601, 2004. doi: 10.1103/PhysRevLett.93.070601.

[8] Nils Carqueville and Ingo Runkel. Orbifold completion of defect bicategories. Quantum Topol., 7:203,
2016. doi: 10.4171/QT/76.

[9] Ilka Brunner, Nils Carqueville, and Daniel Plencner. A quick guide to defect orbifolds. Proc. Symp.
Pure Math., 88:231–242, 2014. doi: 10.1090/pspum/088/01456.

[10] Lakshya Bhardwaj and Yuji Tachikawa. On finite symmetries and their gauging in two dimensions.
JHEP, 03:189, 2018. doi: 10.1007/JHEP03(2018)189.

[11] Chi-Ming Chang, Ying-Hsuan Lin, Shu-Heng Shao, Yifan Wang, and Xi Yin. Topological Defect
Lines and Renormalization Group Flows in Two Dimensions. JHEP, 01:026, 2019. doi: 10.1007/
JHEP01(2019)026.

[12] Daniel S. Freed and Constantin Teleman. Topological dualities in the Ising model. 5 2018.

[13] Ying-Hsuan Lin and Shu-Heng Shao. Duality Defect of the Monster CFT. J. Phys. A, 54(6):065201,
2021. doi: 10.1088/1751-8121/abd69e.

[14] Ryan Thorngren and Yifan Wang. Fusion Category Symmetry I: Anomaly In-Flow and Gapped Phases.
12 2019.

[15] Davide Gaiotto and Justin Kulp. Orbifold groupoids. JHEP, 02:132, 2021. doi: 10.1007/JHEP02(2021)
132.

67



[16] Zohar Komargodski, Kantaro Ohmori, Konstantinos Roumpedakis, and Sahand Seifnashri. Symmetries
and strings of adjoint QCD2. JHEP, 03:103, 2021. doi: 10.1007/JHEP03(2021)103.

[17] Tzu-Chen Huang and Ying-Hsuan Lin. Topological Field Theory with Haagerup Symmetry. 2 2021.

[18] Kansei Inamura. Topological field theories and symmetry protected topological phases with fusion
category symmetries. JHEP, 05:204, 2021. doi: 10.1007/JHEP05(2021)204.

[19] Ryan Thorngren and Yifan Wang. Fusion Category Symmetry II: Categoriosities at 𝑐 = 1 and Beyond.
6 2021.

[20] E. Sharpe. Topological operators, noninvertible symmetries and decomposition. 8 2021.

[21] Tzu-Chen Huang, Ying-Hsuan Lin, and Sahand Seifnashri. Construction of two-dimensional topolog-
ical field theories with non-invertible symmetries. JHEP, 12:028, 2021. doi: 10.1007/JHEP12(2021)
028.

[22] Kansei Inamura. Fermionization of fusion category symmetries in 1+1 dimensions. 6 2022.

[23] Ying-Hsuan Lin, Masaki Okada, Sahand Seifnashri, and Yuji Tachikawa. Asymptotic density of states
in 2d CFTs with non-invertible symmetries. JHEP, 03:094, 2023. doi: 10.1007/JHEP03(2023)094.

[24] Anton Kapustin and Natalia Saulina. Surface operators in 3d Topological Field Theory and 2d Rational
Conformal Field Theory. 12 2010.

[25] Wenjie Ji and Xiao-Gang Wen. Categorical symmetry and noninvertible anomaly in symmetry-
breaking and topological phase transitions. Phys. Rev. Res., 2(3):033417, 2020. doi: 10.1103/
PhysRevResearch.2.033417.

[26] Liang Kong, Tian Lan, Xiao-Gang Wen, Zhi-Hao Zhang, and Hao Zheng. Algebraic higher symmetry
and categorical symmetry – a holographic and entanglement view of symmetry. Phys. Rev. Res., 2(4):
043086, 2020. doi: 10.1103/PhysRevResearch.2.043086.

[27] Tom Rudelius and Shu-Heng Shao. Topological Operators and Completeness of Spectrum in Discrete
Gauge Theories. JHEP, 12:172, 2020. doi: 10.1007/JHEP12(2020)172.

[28] Theo Johnson-Freyd. (3+1)D topological orders with only a Z2-charged particle. 11 2020.
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