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Chapter 1

Introduction

1.1 Purpose of study

Moiré materials, created by stacking two-dimensional materials with lattice mis-
match, have attracted attention as a platform of the novel physical phenomena.
Twisted bilayer graphene (TBG), a fundamental example of moiré materials com-
posed of two grahene layers [Fig. 1.1(a) and (b)], exhibits diverse physical phe-
nomena that vary dramatically depending on the twisting angle. Particularly, at
the magic angle (6 ~ 1.05°), the emergent flat band [1] leads to various quantum
phases including superconductivity, anomalous quantum Hall effect and corre-
lated insulating phases [2, 3,4, 5,6, 7,8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20].
In addition to TBG, moiré systems constructed from a range of two-dimensional
materials — such as graphene, hexagonal boron nitride (hBN), and transition
metal dichalcogenides (TMDs) — have been extensively studied and also remain
subjects of ongoing investigation.

Research on moiré materials extends beyond bilayer systems to encompass
multi-layer systems as well. Generally, twisted multilayer systems composed of
more than two layers are characterized by multiple moiré patterns which generally
mismatch with each other. As a consequence, the system exhibits a quasi-periodic
nature which cannot be treated by the Bloch formalism. The twisted trilayer
graphene (TTG) is a representative example of such a multilayer moiré system
[21, 22, 23, 24, 25, 26]. A recent experimental study found superconductivity [27]
in the quasi-periodic TTG.

Generally, twisted moiré systems are under a strong influence of lattice relax-
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ation. In TBG, for instance, an in-plane lattice relaxation forms commensurate
AB (Bernal)-stacking domains [28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42|, and it significantly modifies the electronic band structure.[37, 38, 42].
Lattice relaxation occurs also in others moiré materials such as twisted TMDs
[38] and graphene/hBN [43], and plays essential roles in the electronic properties.
(35, 44, 45, 46] Previous theoretical studies concerning lattice relaxation effects
have predominantly focused on moiré bilayer systems. However, the moiré tri-
layers and multilayers are unexplored in this regard, mainly due to the difficulty
to treat the interference of multiple moiré patterns with vast length scale. In the
first part of this thesis, we develop an effective continuum theory to analyze the
lattice relaxation and its effect on twisted trilayer graphene with various rotation
angle combinations. We will show that the relaxed lattice structure generally
forms a patchwork of moiré domains where two moiré patterns are distorted to

become locally commensurate, giving rise to topological electronic states.

In the second part of the thesis, we address another important question about
non-periodic moiré pattern, which originates from random disorder. In most the-
oretical analyses on twisted 2D materials, the moiré pattern is usually supposed
to be a perfectly regular and periodic. However, in the real sample, it is ran-
domly distorted due to the lattice disorder giving rise to non-periodicity. Here
we consider TBG with disordrered moiré pattern as the simplest example, and

study the moiré disorder effect on the electronic structure.

The thesis is organized as follows. In the rest of this chapter, we will review
the previous works on the moiré materials and and the lattice relaxation effects.
Chapter 2 provides a theoretical basis to describe the electronic band structure
and the lattice relaxation on TBG. In Chapter 3, we extend the theoretical meth-
ods to TTG, and study the lattice relaxation and its effect on the electronic
properties. In Chapter 4, we study TBG with moiré disorder, and we show the
effect on the flat band of magic-angle TBG. We conclude the thesis in Chapter

5.



(d) Lattice relaxation  (e) Moiré disorder

Figure 1.1: (a) The schematic figure of twisted bilayer graphene (TBG) with twist
angle 8 where Green and orange sheets represent the bottom and top graphene
layer respectively. (b) The moiré pattern of TBG where black dots are the each
carbon atoms, and red arrow indicates the moiré period. We can see the sparse
and dense regions of atoms appear periodically. (c-e) The schematic figures of
moiré pattern of TBG for (e) rigid, (d) with lattice relaxation and (e) with random
moiré disorder. Here, yellow region represents the structure of the sparse region of
atoms in (b), and blue region corresponds the dense region of atoms. In the case
of (d) lattice relaxation, blue region is expanded while yellow region is shrink. On
the other hand, in the case of (e) moiré disorder, we see that the moiré pattern
is distorted non-periodically.



1.2 Moiré materials

Moiré materials, formed by the stacking of two-dimensional materials, have been
the focus of extensive research in recent years. In these systems a long-range moiré
pattern resulting from lattice mismatch profoundly influences their electronic
properties. There are a wide variety of moiré materials arising from a choice of
two-dimensional materials and twist angles. The previous studies have unveiled
numerous remarkable phenomena that have never been observed in individual 2D
materials. [3, 4, 11, 15, 18, 19, 20, 2, 3, 5, 6, 7, 8, 11, 14, 15, 16, 17, 18, 19, 20, 10,
12,9, 13, 14]. In the following, we briefly introduce the representative graphene-

based moiré systems, which are closely related to the topic of this thesis.

1.2.1 Twisted bilayer graphene

Twisted bilayer graphene (TBG), the simplest example of a moiré system, is
created by stacking two monolayer graphene layers with relative twist angle
[Fig. 1.1(a)]. The period of the moiré pattern increases as the twist angle de-
creases. The electronic properties of TBG dramatically depend on the twist
angle. At a specific twist angle called the magic angle, it exhibits the gen-
eration of flat bands as a result of the moiré superlattice effect as shown in
Fig. 1.2(a). Owing to the flat band, TBG shows a variety of correlated quan-
tum phases like superconductivity[3, 4, 11, 15, 18, 19, 20], correlated insulator
state[2, 3, 5, 6, 7, 8, 11, 14, 15, 16, 17, 18, 19, 20], strange metal[10, 12] and
even ferromagnetic state[9, 13, 14]. Figure 1.2(b) shows the measurement of the
resistance of the TBG with magic angle given by the experiment[3], where we
see a superconductivity dome enclosed by white dash line in the phase space of
electronic density and temperature.

The electronic structure of TBG can theoretically be computed using density
functional theory [47, 48, 49, 50, 51] and tight binding model[52, 53, 48, 49, 51].

However, handling TBG with small twist angles (8 <~ 1°) using these atom-based

10
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Figure 1.2: (a) The energy band structure of magic angle TBG calculated by [57].
We observe the flat band appears around zero energy. (b) The color map of the
resistance Ry masured with sweeping the temperature 7 and carrier density n.
It shows Mott insulator phase around n =~ —1.3 x 102 ¢cm?, and Superconducting
phase surrounded by white dashed line.

methods is challenging due to the vast number of atoms within the moiré unit
cell. This complexity is significantly reduced by the continuum model [54, 55, 1,
56, 57, 42], which effectively averages the atomic degrees of freedom to capture

the long-range moiré scale.

1.2.2 Twisted trilayer graphene

In addition to the extensive study of twisted bilayers in the past decade, the scope
of investigation has extended to encompass multilayer systems including three or
more layers. Particular attention has recently been directed towards twisted
trilayer graphene (TTG), which consists of three graphene layers arranged in a
specific rotational configuration [58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
70, 71, 72, 73, 74, 21, 24, 22, 23, 75, 76, 77, 27, 78, 79, 80, 81]. The system is
characterized by twist angles 812 and 63, which represent the relative rotation
of layer 2 to 1, and 3 to 2, respectively, as shown in Fig. 1.3(a).

The special case of §'2 = —6?3 is called the mirror symmetric TTG [59, 60,
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61, 62, 63, 64, 65, 66, 67, 68, 69, 72, 71, 73, 74, 70|, where layer 1 and layer 3
are aligned precisely, leading to a single moiré periodicity [Fig. 1.3(b)]. The band
structure of symmetric TTG has the Dirac band like monolayer graphene and
moiré band like twisted bilayer graphene [60]. Recent transport measurements
observed correlated insulator phases and superconductivity in mirror-symmetric
TTGs [70, 71, 72, 73, 74].

Beyond the symmetric case, TTG offers a vast parameter space that remains
largely unexplored. In general TTGs with 812 # —0%3, the system has two different
moiré patterns originating from the interference of layer 1 and 2 and that of layer
2 and 3 [58, 24, 22, 23, 75, 76, 77, 27, 78, 79, 21, 80, 81, 82|, as illustrated in
Fig. 1.3(a). These two periodicities are generally incommensurate, giving rise
to a quasi-crystalline nature in the system [83, 84, 27]. When the two moiré
periods are close but slightly different, in particular, an interference of competing
moiré structures generate a super-long range moiré-of-moiré pattern [21, 22, 23,
24]. Similar situation occurs also in composite multilayer systems consisting of
graphene and hexagonal boron nitride [85, 86, 87, 83, 89, 90, 91, 92, 93, 94, 95, 96].
Previous researches investigated the electronic properties of general TTGs with
various angle pairs by using several theoretical approaches [58, 79, 76, 77, 27, 23,
24, 78, 80, 81]. Recent experimental study also reported superconductivity in

some asymmetric TTGs [27].

1.3 Lattice distortion in moiré materials

1.3.1 Lattice relaxation

Most of the theoretical research on the twisted moiré materials assume that the
individual 2D layers are rigid, keeping the original lattice structures. In a real
system, however, the lattice spontaneously distorts to the energetically stable
structure . In the case of TBG, it has been demonstrated that the lattice relax-

ation leads to a creation of the locally commensurate domains with so-called AB
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912 — _923

Figure 1.3: (a) The lattice structure of general twisted trilayer graphene (TTG).
The left is the schematic figure of stacking structure of TTG where green, black
and orange sheets indicate the monolayer graphene of layer 1, 2 and 3. In the
right figure of the moiré pattern of TTG, we observe that the moiré 12 (between
layer 1 and layer 2) and moiré 23 (between layer 2 and layer 3) have different
pattern, and moiré-of-moiré pattern appears from the interference between moiré
12 and moiré 23. (b) The similar figure of (a) for mirror symmetric TTG.
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and BA stacking [28, 32, 33, 34, 36, 37]. We will explain the detailed concept
in the following. Figure 1.4 illustrates the lattice structure of TBG composed of
rigid honeycomb lattices. We can see that the local structure at any particular
position approximates a non-twist bilayer graphene configuration with a certain
lateral shift, such as AA, AB and BA stacking as shown in the right. Here AA
stack represents the structure that two honeycomb lattice completely overlap,
and AB(BA) stack is the lattice structure where A(B) site of bottom layer and
B(A) site of top layer vertically align. In non-rotated bilayer graphene, AB and
BA stack (graphite structure) are the most energitically stable while AA is the
most unstable [28, 97, 98]. In TBG, therefore, the graphene lattice simultaneously
distorts to increase the AB/BA stacking[32, 33, 36, 34, 37].

Such a lattice relaxation of TBG has been theoretically studied by using DFT
[32], molecular dynamics [33], various DFT-based effective methods [36, 34], and
also by an effective continuum approach [37]. The coninuum model in Ref. [37]
treats graphene layer as a continuum elastic membrane smearing carbon atoms.
This approach significantly reduces the computational burden compared to earlier
simulations that explicitly handled individual carbon atoms. The top row of
Fig. 1.5 presents the lattice relaxation of TBG that calculated by Ref. [37]. Here
the local stacking structure is depicted through the contour plot of the local
stacking energy. We observe that the triangular domain structure of AB/BA

stack becomes more remarkable for smaller twist angles.

The effect of the lattice relaxation is also investigated in other moiré bilayers.
In graphene/hBN bilayer, for instance, the moiré pattern exhibits hexagonal do-
mains [See Fig. 1.6(b)] unlike trigonal pattern in TBG. This occurs because in
hBN, a boron and a nitrogen atom occupy A and B sublattices, respectively, giv-
ing different interlayer coupling energies in AB and BA stacking with graphene.
The lattice relaxation expands only the most stable AB region, creating hexago-
nal domains. TMD moire systems can show both trigonal and hexagonal domains

depending on the theirs stacking arrangements [Fig. 1.6(d) and (f)], parallel (P)
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Figure 1.4: Lattice structure of TBG, where green and orange honeycomb repre-
sent the graphene lattice of bottom and top layer. Due to the lattice mismatch,
local lattice structure of TBG varies between AA; AB and BA stacking illustrated
in right column.

and anti-parallel (AP) stack. Here P stack illustrated on Fig. 1.6(c) constructed
from the two monolayer TMD with relative twist near 0°, where while AP stack
is given by the twist around 180° as shown in Fig. 1.6(e). In monolayer TMD,
sublattice A and B are occupied by a metal atom and a chalcogen atom, respec-
tively. In the P stack, AB and BA stack configurations give distinct structures
and hence different interlayer coupling energies as in graphene/hBN, resulting in
the hexagonal deomains. In the AP stack, on the other hand, AB and BA give
identical structures related by the space inversion, leading to triangular domains

as in TBQG.
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Figure 1.5: Moiré patterns (top) and energy band structures (bottom) with lattice
relaxation at twist angle (left) 8 = 2.65°, (middle) 1.05° and (right) 0.817° given
by [37]. In the top figure of moiré pattern, blight and dark regions are AA and
AB/BA stacking respectively. We see that the AB/BA domain construction is
dominant for the lower twist angle TBG. In bottom figures, black and red lines
represent the energy band of relaxed and non-relaxed TBG.
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Graphene/hBN

A’ (nitrogen)
7 A (carbon)
~ - (boron)
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Figure 1.6: (a) Schematic figure of graphene/hBN. The local lattice structure

of its moiré varies AA’, AB’ and BA’ illustrated the right figures. (b) Relaxed
moiré pattern of graphene/hBN (G/hBN) at 6 = 0° given by [43]. (c,e) The
schematic figures of twsited bilayer MoS2 for parallel and anti-parallel stack.
The right figures show the local stacking structure in the theirs moiré, where top
and bottom show the plane view and the cross-section of each stacking. (d,f)
Relaxed moiré patterns of twisted TMDs (tTMDs) at 8 = 0.1° for parallel and
anti-parallel stack. These figures are calculated by [38].
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1.3.2 Electronic structure under lattice relaxation

The lattice relaxation is also reflected in the electronic properties of moiré sys-
tems. The band structure of the relaxed TBG was theoretically studied in various
methods [37, 39, 99, 57, 100]. The bottom row of Fig. 1.5 represents the band
structure of TBG with various twist angles calculted in Ref. [37], where the black
and red lines show the results for relaxed and non-relaxed TBG respectively.
We see that the band structure is more strongly modulated by the relaxation in
smaller twist angles. In the case of 6 = 1.05°, particularly, the energy gap arises
between the central and the secondary bands, leaving the flat band isolated.

Recently the effect of the lattice relaxation in general moiré systems was
integrated into the electronic continuum band model [101, 42, 102], enabling
more efficient simulations with significantly reduced numerical costs compared to
atomic models. In TBG, the effect of the lattice relaxation on the continuum band
model manifests in two ways: firstly, the lattice strain within each layer induces
an effective vector potential in the Dirac Hamiltonian of monolayer graphene
[103, 104, 105], and secondly, the interlayer sliding singificantly modulates the
moiré interlayer matrix elements [57, 100, 106, 102].

Similar lattice relaxation and the resulting band modulation are anticipated
in multilayer moiré systems more than bilayer. However, to date, the study in
this area remains largely unexplored. The primary challenge stems from the vast
length scale of TTG, caused by the interference between two moiré patterns,
resulting in a substantial number of atoms within the relevant scale. In this
thesis, we solve this problem for the first time by extending the continuum model
in Ref. [37] to multilayer moiré systems. We will show that the three-layer system
exhibits a multi-scale lattice relaxation and moiré-of-moiré patchwork structure,
which are never observed in bilayer systems. We also calculate the electronic
structure of TTG incorporating the lattice relaxation. We will find that moiré-of-
moiré patchwork structure gives rise to a network of one-dimensional topological

electronic states localized on the boundary of domains.
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1.3.3 Moiré disorder

In addition to the regular lattice relaxation within the moiré periodicity, real
samples of moiré materials exhibit non-uniform lattice distortion, which includes
local tensile and variance of the twist angle [6, 7, 8, 5, 107, 108, 109, 110, 111,
40, 112, 113, 114, 115, 116, 117, 118, 96, 119]. Figure 1.7(a) displays a moiré
structure experimentally observed in a low-angle TBG sample [111], where blight
spots indicate the AA stacking. We can see a non-uniform moiré pattern due to
uniaxial stain in the sample. In other experiments, twist angle disorder which
varying twist angle in real space, also observed [113][Fig. 1.7(b)]

The disorder within the moiré pattern is anticipated to significantly impact
the electronic properties. Theoretically, calculating the electronic structure un-
der such moiré disorder presents a challenge due to the necessity of considering
numerous moiré periods, each involving a vast number of atoms, to comprehen-
sively capture the entire disordered pattern. In previous works, the effect of
the twist angle disorder in TBG was investigated using various theoretical ap-
proaches, such as a real-space domain model composed of regions with different
twist angles [120], transmission calculations through one-dimensional variation of
twist angle [121, 122, 123], and a Landau-Ginzburg theory to study the interplay
between electron-electron interactions and disorder [124]. However, the influence
of the long-range two-dimensional disorder as observed in real systems has not
yet been investigated theoretically.

In this thesis we apply the effective continuum formulation in Ref. [42] to
the TBG with moiré disorder. To simulate a non-periodic moiré disorder, we
take a super unit cell composed of a number of moiré periods, and introduce the
structural disorder within the period of the super cell. We will calculate the local
density states, and discuss the fate of the flat band under the moiré disorder in

detail.

19



(a) (b) e

Figure 1.7: (a) Moiré pattern of the real sample of TBG observed by
experiment[111], where blight spot represents AA stack. (b) Twist angle disorder
in the sample of TBG obseved by experiment[113], where color plot represents
the local twist angle.
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Chapter 2

Theoretical background

Here, we introduce the basic theory for twisted bilayer graphene. We first ex-
plain the geometry of lattice structure of TBG. Second, we present a continuum
method to treat the lattice relaxation by considering the total energy change in
the presence of the distortion, By using the formula, we obtain the optimized
atomic structure of TBG. In the third section, we introduce an electronic con-
tinuum band model of monolayer graphene and TBG. First, we introduce the
Dirac Hamiltonian of monolayer graphnene. After that, we derive the contin-
uum Hamiltonian for the intrinsic TBG with rigid honeycomb lattices, and then

extend it to TBG with lattice distortion.

2.1 Geometry of moiré pattern of TBG

First, we define the geometry of monolayer graphene. We take the xy-plane paral-
lel to graphene layer and the z axis as the perpendicular direction for graphene. In
this thesis, we define the lattice vector of monolayer graphene without rotation as
ai =a(1,0) and as = a(1/2,V3/2), where a = 0.246 nm is the lattice constant of
monolayer graphene illustrated in Fig. 2.1(a). We also define the nearest-neighbor
site vector as 7; = R (%’T(] - 1)) (a/V3)(0,1) for j = 1,2,3, where R(6) is the rota-
tion matrix. The reciprocal lattice vector is given by by = (47/V3a)(V3/2,-1/2)
and by = (47/V3a)(0,1). We define the K and K’ valley, which are two indepen-

dent corners of Brilluoin zone (BZ) of monolayer graphene, as

4 4r
K=-——(1,0), K =+—(1,0), 2.1
- (1,0) - (1,0) (2.1

21



Figure 2.1: (a) Lattice structure of monolayer graphene. Black dots represent
the carbon atoms and gray rhombus is the unit cell. Black and green arrows
are the lattice vector a; and the nearest-neighbor vectors 7; respectively. (b)
Brillouin zone of monolayer graphene, where the arrows indicate the reciprocal
lattice vector. we define two independent Dirac points as K and K’ as illustrated
in figure.

like in Fig. 2.1(b). As we show later, monolayer graphene has the linear band

dispersion called the Dirac band around these corners.

From here on, we introduce the geometry of moiré structure [125]. We consider
two monolayer graphenes stacked with relative twist angle §. Here we assume that
layer 1 and layer 2 are rotated ¥6/2, respectively, so the lattice vector of layer
[(=1,2) are given by aﬁ.l) = R(F60/2)a; where F is for [ = 1 and 2, respectively.

Likewise, the reciprocal lattice vectors of layer [ are b;l) = R(F6/2)b;.

The atomic structure of TBG is not exactly periodic in general because the
periodicities of the two layers are generally incommensruate. However, in some
special twist angles, the atomic lattices of the two layers happen to commensurate,
and the entire system becomes periodic. This is called a commensurate TBG. In
such a case, we can express the period L®°™) in terms of integers n, m, n’ and m’
as

1 (atom) _ nagl) +ma;1) _ n,agm +m’a§2). (2.2)

In TBG, we can write n’ = m and m’ = n in a proper choice of the lattice vectors

22



aV and al.(Q). Thus Eq. (2.2) become as

1

Latom) — nagl) + maél) = magz) + naéz). (2.3)
By solving this equation, the twist angle 6 (i.e. the angle between afl) and al@))

can be obtained as a function of m and n as,

1m2+n2+4mn]. (2.4)

O(n,m =cos ' |=
(n, m) [2 m? +n2 +mn

The 60° rotation of L™ also gives a lattice vector because of Cg, rotational
symmetry. Fig. 2.2(a) and (c¢) show the commensurate lattice structure of TBG
for 6 = 13.2° and 7.34°, where green and orange dots are the carbon atoms of
bottom and top layer respectively, and black rhombus is the commensurate moiré
unit cell. (b) and (d) of Fig. 2.2 show first BZ of bottom (green dotted) and top
(orange) layer in the k-space. Gray honeycomb is the moiré BZ, and we labeled

the high symmetric points in BZ as I, M, K and K illustrated in right figure of

(b).

When twist angle is small enough (6 < 10°), the mismatch of the lattice
periods of the rotated layers gives rise to a long-period moiré pattern. In this
low-angle regime, the spatial period of the moiré pattern serves as an effective
period and the electronic properties can be treated by a usual Bloch system, even
when the system is not exactly periodic in the atomic scale. The moiré super
period is estimated as follows. We take the origin as the rotation center, then
we can define the interlayer atomic shift §g(r) as the difference of the two atoms
after the rotation,

5o(r) = [R(—0/2) — R(+6/2)] r. (2.5)

When the interlayer atomic shift dg(L;) at r = L; coincides with a lattice vector

of monolayer graphene without rotation a; (i = 1, 2), the system has the moiré
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period of L;. Here, we assume that the condition ég(L;) = a;, it lead to,
L;=[R(=60/2) — R(+0/2)] ' a; = L x R(-x/2)a; (2.6)

for i = 1,2, where L is the lattice constant of the moiré pattern written by

a

The reciprocal lattice vectors of moiré lattice satisfying G, - L; = 276;;, are given
as

Gi=[R(-6/2) - R(+6/2)]b=b" - b (2.8)

For a commensurate TBG, the exact period L®°™ in Eq. (2.2) and the moiré
period L in Eq. (2.7) are simply related by L®*°™ = |m —n|L. Figure 2.3 shows
the moiré lattice structure of TBGs with 6 = 13.2°, 11.0° and 9.43°. Here green
and orange dots represent the carbon atoms of bottom and top layer, and red
and blue rhombuses indicate the incommensurate and commensurate moiré unit

cell.

2.2 Continuum method for lattice relaxation

In this section, we introduce a continuum method to obtain the stable lattice
structure of TBG allowing the lattice distortion [37]. We express the total energy
as a functional of the position-dependent displacement vector, which expresses
the atomic shift at the position r. We then derive the Euler-Lagrange equation
to minimize the total energy. Here, we assume that the distortion of X (=A or

B) atom in layer [ is the continuum function sg)

as the real space r, and ignore
the dependence of the sublattice si\l) = sg) =50,

First, we express the total energy of TBG as the summation of the binding

energy (inter-layer term) and the elastic energy (intra-layer term). The local
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Figure 2.2: (a) Lattice structure of TBG at § = 13.2°, (n,m) = (1, 2), where green
and orange dots represent the carbon atoms, and black rhombus is the moiré unit
cell. (b) The schematic figure of k-space of TBG with same angle of (a), where
green and orange hexagon is the BZ of monolayer graphene for layer 1 and 2
respectively. Small gray hexagon are the moiré BZ, and we label the symmetric
point as I', M, K and K’ as shown right figure of (b). (c-d) The similar figure of
(a) and (b) for TBG at 6 = 7.34°, (n,m) = (4,5).
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Figure 2.3: Lattice structure of TBG at (left) 6 = 13.2°, (middle) 11.0° and
(right) 9.43°, where green and orange dots represent the carbon atoms, and red

and blue rhombus indicate the incommensurate and commensurate moiré unit
cell[125].
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atomic shift between the both layer at r is given by
8(r) = 8o(r) +sP(r) — sV (r). (2.9)

Here 6¢(r) is the interlayer atomic shift without lattice deformation which is given
as Eq. (2.5). When the moiré period L is much larger than the lattice constant of
graphene a, the local stacking structure can be regarded similar to the nonrotated
bilayer graphene with the relative shift by é depending on the position smoothly.
We define the nonrotated bilayer graphene’s interlayer local binding energy per
area as V[0]. In the simplest approximation, it can be expressed as a cosine

function as

3
V6] = Z 2Vj cos [b; - 8] , (2.10)
j=1

where by = —b1 — by. In TBG, 6 is not constant but it smoothly varying as a
function of the position r. Then the total interlayer binding energy of TBG Up

1s written as

w:/&wwm]

3
= / d2rZ 2Vp cos [Gj r+b; - (s -sWy, (2.11)
j=1

where G3 = -G 1-G2, and we used Eq. (2.9), (2.10) and the relation b;-6p = G;-r.

The elastic energy of TBG is written in a standard form [103, 126] as

U 21/
E = =
l=12

where 1 = 3.25 eV/A? and u = 9.57 eV /A? are graphene’s Lamé factors[127, 35],

2 2 2
(u+2) (50 +510) +ﬂ{(sgg_s;9) e (s) }]d (2.12)

and sf]l.) = (ﬁis;l) + 8jsl.(l)) /2 is the strain tensor. The relaxed lattice structure
can be obtained by minimizing the total energy U = Ug + Up as a function of
s (1 =1,2). We introduce s* = s + (1) and rewirite U as a function of s*. To

obtain the relaxed lattice structure, we solve the Eular-Lagrange equations for s*
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as

d (au) oU 2.13)

dr\asz) ~ ast’
where u = x,y and [ = 1,2. The left-hand side is 0 because U does not depend

on the §* and ¢. Since the binding energy Up is the function only for s~ not s*,

+

the equation that come from s_, |

terms gives s* = 0. While the equation of s,

terms are given as

1 d%s; 52S; 1 (0%s; 0%
5(/l+u) =+ +—,u( =+ x)

ox2  axy | 27\ ox2 " ay2
3
+ ) 2Vosin[Gy-r+b;-s™(r)] bjy=0 (2.14)
j=1
%57 925 0%sT  0%sT
0 (W“ axjf)*%“(a?y* ayzy)
3
+ ) 2Vosin [Gj-r+by-sT(r)] by =0 (2.15)
j=1

where b; , is p(= x,y) component of b;, and we used following relations,

oUp

3
8s; = —/ er; 2V sin [Gj ‘r+b;- s_(r)] bjus (2.16)

and
oUg _ 1 2 0, (0
m ——5/(1 r [(,u+/l)8’u (sxx +syy)
u

+u {i(?# (s,(CQ - syy)) +0; (s)(cl) + sy))}] ) (2.17)

Here, we rewrite the elastic potential term by using the integration by parts. The

integrated term of the integration by part is 0 because the displacement vector

()

s,,” is a periodic function for the moiré period. Then the elastic potential term is
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written as

2
1 2 () () ), (D
U = -5 lgl / d°r [(u+/1) (Sx Ox + 5y ‘9y) (sxx "‘Syy)

+u {(s§’>ax - sy)@y (s)(ci) - syy)) + (s)(cl)ﬁy + sy)(?x) (s,(cl) + sﬁl))}] . (2.18)

We define the Fourier components s, and qu (j=1,2,3) as

s (r) = Z s;eiq" (2.19)
q

sin[Gj-r+b;-s7] =) flelr (2.20)
q

where ¢ = m1G1+maG2 are vectors of the reciprocal lattice. In the Fourier form,

Eq. (2.14) are written as

3
s¢= ) AVofiK;'b;, (2.21)
Jj=1

where

. (A+2m)q? +puqg?  (A+pqxq
R, = ron B (2.22)

(A+w)geqy  pgi+(A+2u)qg;

Equations (2.19), (2.20) and (2.21) are self-consistent equation. To obtain the
optimized lattice structure, we solve this self-consistent equation with the Fourier

component of the displacement vector s, as the variable.

Figure 2.4 shows (a) binding energy of TBG with (left) 6 = 2.65, (middle) 1.05°
and (right) 0.547°, where yellow region corresponds to the AA stack while blue
region corresponds to the AB/BA stack. We can see that the lattice relaxation
constructs the AB/BA domains and it’s remarkable for smaller angle. Fig. 2.4(b)
represents the displacement vector s™(r) for same angles of (a), where the color
plot corresponds to the norm of displacement vector |s~| and the arrows indicate

the direction of s~ at each position.
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(a) Binding energy
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b) Displacement vecoter

(

= 2.65°, (midlle)
where yellow and blue regions correspond to AA and

The plot of the displacement vector of TBG with same angle

Figure 2.4: (a) The color plot of binding energy of TBG at 6

1.05° and (right

) 0.547°,

AB/BA stack. (b)

for (a). Here color plot represents the norm of the displacement vector and arrows
show the direction of such vectors at each position. Blue rhombus is the moiré

unit cell in all figures.
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2.3 Continuum Hamiltonian for the electronic

band

In this section, we introduce the effective continuum Hamiltonian for electrons
in monolayer graphenes and TBGs for both cases with and without lattice re-
laxation. We derive them from the tight binding model with the Slater-Koster

formula[128]. In this thesis, we use the Slater-Koster formula

2 2
~T(r) = Vppr |1 - (%) +Vipor (rTTZ) , (2.23)
|r| = ao r|—d
Vopr = Vo €XD (— ) Vope = Ve xp - 5 (2.24)

as the hooping function T(r) for intra and inter layer hooping. we assume the
hooping depends on only the distance |r|. ag = a/V3 is the distance of nearest
neigboher atoms and d = 0.335 nm is the distance between two layer. Vpp, = —=2.7
eV is the hooping integral between nearest neighbor atoms of monolayer graphene
and Vppe = 0.48 meV is the hooping integral between two layer atoms when these
are vertically aligned. d¢ represents the decay length of the hooping integral.

Here we take 0¢g = 0.184a as that the next nearest neighbor hooping are 0.1V}p,.

2.3.1 Monolayer graphene

Here, we introduce the Hamiltonian of monolayer graphene Hg without rotation.
The electronic state around Fermi energy for monolayer graphene is mainly occu-
pied by the p, orbit of carbons. The tight binding model constructed by the p,
orbits is a good approximation. We define (r||Rx) = ¢x(r — Rx ;) as the atomic
state of the sublattice X at Rx. By using Eq. (2.23) as the hooping integral, tight

binding Hamiltonian of monolayer graphene is given by

H=- Z T (Rx — Ry) |Rx) (Rx| + h.c.. (2.25)
X, X’
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We define the Blach basis of the wave function of the p, orbit for each sublattice

X =A,B as
N

1 .
Oy (k,r) = = D ek Reigy(r - Ry.). (2.26)
i=1

N is the number of the unit cell in the system and i is the index of the unit cell.

Ry ; is the position of sublattice X in the ith unit cell which is given as
RX’,' =n;a1 +m;as + Ty, (2.27)

where n;, m; are the integers, and T4 = 0,73 = 71. The wave function of the

electron is expressed as the linear combination of the above Bloch basis,

W (k,r) = Z ¢, xPx(k,r). (2.28)
X

The coefficient ¢ ; x satisfies the relation )y gl/;f x¥jx =1 and j is the index for

the eigenenergy. Using this wave function, the Hamiltonian is expanded as
Hy;=E;jSy; =~ E;, (2.29)

where we define that E; = <1//j|H|¢/j> and 1,//; = (Yja¥jp). H and S are the

2 X 2 matrix defined as follows,
Hyx = (@x/|H |®Px), Syx=(Px||Px). (2.30)

Here we used the fact that the S matrix becomes the identify matrix I around
low energy region. We only consider the on-site energy and the nearest-neighbor

hooping and we assume that all unit cell gives similar contribution, each matrix
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element of Hamiltonian are written as follows,

Lo
Hxx = N ; (Rx;|H |Rx,;) = ex (2.31)
LA
HAB = N Z Z elk'ﬂ <RA,i| 7‘( |RA,i - Tl> = ’)’Of(k), (2'32)
i=1 =1

where we define the nearest-neighbor hooping integral yg as
Y0 = (Rad| H |Rai = 7) =T(I7]). (2.33)
We define the phase part of Hamiltonian as

flk)y= ) ek, (2.34)

NIE

Jj=1

The matrix element Hpa is given by replacing fx to f; because the difference
between B atom to A atom are —7; (j = 1,2,3). Both sublattice A and B are
carbon atoms, which are equivalent when the lattice is rigid. This is understood
from the Co, symmetry of monolayer Graphene. In short, we can take the origin
of the energy axis satisfied e4 = eg = 0 because these on-site terms give the energy
constant for both basis. Finally, the Hamiltonian as the matrix form is written

as follows,

0
Hg = vofic | (2.35)

yofy 0

To take the local energy band structure near K¢(= K, = K,K_ = K'), we
expand this hamiltonian around K. Since in the expansion to the 1st order of
|k|, fx is written

fe = =V3a(éky - iky) /2, (2.36)
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the effective Hamiltonian of monolayer graphene is expressed as

Hc,g = —hVFk O (2.37)

for the Ke¢-valley. Here v = V3ayg/2 is the Dirac velocity, and o = (€0, oy) is
the Pauli matrix. We note that the minus sign in the front of v is came from
the sign of Vpe and Vpp, in the Slater-Koster formula Eq. (2.23) we used in this

thesis. The eigenvalues of the Hamiltonian are given as

E. = +hvr|k]. (2.38)

It shows that the monolayer graphene has the liner Dirac dispersion around Kg-

valley.

Strained lattice

We introduce the effective Hamiltonian of strained monolayer graphene by fol-
lowing the paper[103]. After the strain, the position Ry; of the atom originally
at Rx,; moves to

Rx;= Ry, +s(Rx,), (2.39)

where we define the displacement vector s(Ryx;) that gives the shift of atom
at Rx,; by the strain. On the strained lattice, the vector between the nearest

neighbor atoms is modified as

T — T (2.40)
= Tj +65; (2.41)
= [l + &E] 7, (2.42)
where
P , (2.43)
Oysy  Oysy
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and 0s;; = s(Ra;+7;) —s(Ra;) Here We assume that the strain varies smoothly
for the atomic scale, in short, we only take liner order of d,s,. By this chance
of the distance, the hooping parameter and the phase of Hamiltonian 2.35 is also

modulated as follows,

3
fi = fu= ) ek, (2.44)
j=1
Yo — Yo =T(|7]). (2.45)
Since |1; +0s; ;| = |7 + Tj'é."’j + 0O (|6s;.;]%), by assuming |6s; ;| < 1, the hooping
j J J 7] J J
parameter is rewritten as
T(] _ Byo
T + 6Si,j|) =vY0 — WTJ . (S(RAJ' + Tj) - S(RAJ')) (246)
j
Byo
~ vy — 20 ST 2.47
with
|71 9o
= 2.48
pe-t (2.45)
The Hamiltonian is rewritten as
- 0 Yofk
Hg = 3 . (2.49)
Yofy 0

As we mentioned, we assume that the strain varies smoothly for the atomic scale.
On this assumption, we can expand the Hamiltonian to the 1st order of |k| and

d,s around K¢ as follows,

He.¢(k) = —hv [(12 + &)} (k + %A)] o, (2.50)
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where the A is the strain-induced vector potential that is given by [103, 104, 105]

A = g%@ Sxx = Syy (2 51)
4 ev ~2yy

vo = 2.7 eV is the nearest neighbor transfer energy of intrinsic graphene and

B = 3.14, and s;; = (0;5; + 0;s:) /2.

2.3.2 Rigid TBG

Next, we derive the Hamiltonian of the rigid TBG before the relaxed TBG. When
twist angle is small, as Fig. 2.2(d) shows, two Dirac points K" and K’ are
well separated for the scale of moiré BZ. So, the two valleys are not coupled to
each other in this case. For this reason, the Hamiltonian of each valley is block
diagonalized. And more, since the moiré BZ of TBG is smaller enough than the
graphene’s BZ, only the local band structure for each valley affects the low-energy
region around the Fermi surface. We can use the effective Dirac Hamiltonian that
is expanded as the 1st order of wave number as each graphene’s Hamiltonian.
We use the basis (wgl) , wg), 1//1(42), 1//%2)) for each degree of freedom, sublattice
and layer to construct Hamiltonian, here we remove the index of the valley & for

simple notation. the Hamiltonian of TBG for K¢ valley is

1) i
HY U
G,
H® = d o (2.52)
U Hg,

Here, the diagonal part Hg)g

[ =1,2 that is given by Eq. (2.37)

is the monolayer graphene Hamiltonian of layer

HY, = ~hy [R ($6/2) (k - Kéﬁ”)] s (2.53)

The rotation matrix R(¥6/2) comes from that each layer is rotated with ¥6/2.

The sublattice vectors of each layer is written as TJ(.Z) = R(F60)7; due to the relative
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rotation. R(¥6/2) appears from the expansion of the hamiltonian Eq. (2.35) by

this sublattice vectors.

U is the 2 X 2 matrix giving the interlayer moiré coupling between two layers.

In the following, we derive this term as the continuum model[l, 56, 125].

The position of atom in layer I(= 1, 2) is given as
RY =nma’ + mal’ + 7, (2.54)

where X = A, B is the label of the sublattice, n;,m; (I = 1,2) are integers, and
T)((l) is the position of the sublattice X in the unit cell of monolayer graphene of
layer I. We assume that the distance of two graphene layers is d, so we define
‘r)((l) e, =0, T)((Q) - e, = d, here e, is the unit vector along the z axis. As the
previous section, we use the notation <r|R(l)) = </)(l)(r—RX’,~), where ¢§§)(r—Rx,,-)
is the wave function of X sublattice atom at Rx; of layer /. As we mentioned on

Eq. (2.52), we assume that the hooping function depends on only the distance

between the atoms. Then the interlayer moiré coupling is written as follows,

U=- Z Z T(R-R')|R") (R| +h.c.. (2.55)
ReR) R’eR)

The Bloch wave function of each layer and sublattice can be defined as

Ik, X, 1) = Z RIR) (2.56)

ReR"
where N; is the number of atom of layer [ in the total system having the area Siot.
Generally, two periods of both layers do not correspond each other in the atomic
scale. However, we assume that Siot = N1.S1 = NoSa, where S; = |a(l) (l)l is the

area of unit cell for layer [. By using this wave function, the operator (2.55) is
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expanded as follows,

Uxx21(k’, k)

(K, X'",2|U |k, X, 1) (2.57)

1 M M ’ ’
= - T(R — R’)eF R-KR (2.58)
e 2

ReR’ R'eR.)

We define the Fourier transform of the interlayer moiré hooping as

1 .
1(q) = / PrT(r + zxxiez)e 7. (2.59)
S159 ’

It is integrated for total area of the system Siot. zx/x.1 = (‘r(l,) - T)((l,)) -e; is the z
component of the different of T vectors. From Eq. (2.57) and (2.59), the matrix

element of the interlayer moiré coupling is given by

)il (2)

L (1),
Uxrxo1 (K k) = — Z 1k +g)e 87 T TS e, (2.60)

8.8

where we assume that Ny = No = N, and we use

Z i(k—K'=g)-R _ ilk—k'~g")tx Z Sk—k'~g'.g- (2.61)
ReR! &

The summation of g and g’ in the Eq. (2.60) are taken for all reciprocal lattice
vectors of each layer. Since tx x(q) decays for enough large |g|, we can take finite

terms of Eq. (2.60) in the numerical calculation.

As we mentioned, for small twist angles, two valley of TBG are decoupled. So
here, we consider the interlayer moiré coupling U around K valley. From equation
(2.60), two wave vectors of each layer have a finite matrix element when these
satisfy

k+g=k'+g". (2.62)

Here we ignore the k dependence of Eq. (2.60). we take all k” that can be coupled

with £ = KD, and apply to all k points in Burilloun zone. This approximation is
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valid only when the moiré BZ is sufficiently smaller than graphene BZ, in short,
the twist angle is small enough. The figure 2.5 shows the k points which can
couple with KV, Blue, triangle and white are k points with the norm |K|,|2K|
and |V7K| from T. Since the Fourier form ry x(q) rapidly decay for large |q|, we
take only the largest terms of the summation in Eq. (2.60) that correspond to

blue points in Fig. 2.5. The interlayer moiré coupling is given by

el(G13G2) (2.63)

where w = exp(i27/3), ug = txx(K)(X’,X = A, B). we calculated this at the
wave points,, Similarly, the coupling term K’ valley is calculated. Finally, the

interlayer moiré coupling is given by
U = ug | My + MaeC17 4 Myl (G1+G2)r (2.64)
for K¢ valley, where we define the matrixes

11 1 w? 1 w*
M, = , My = , Ms3=
11 w1 w? u

For the analytic calculation, the Hamiltonian applied the unitary transforma-

tion is useful. We consider the unitary transformation (wzl),wg),gbf),wg))’ =

(1) (1) (2 2
UG, o, 0P, 0P) where

2.
0 ein)-r (2.65)

is the unitary 4 X 4 matrix for K¢-valley. This transformation takes a different
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gauge for each layer. The Hamiltonian is written as

_ - [R(-6/2)k] - o U’
HO =ulHOU: = ) ., (2.66)
U v [R(+6/2) k] - o
where
3 .
U= Z uoM ;€91 (2.67)
j=1

and we define

1=K - K,

q;=R(2n/3)q1 (j=2,3).

Figure 2.6 represents the band structure calculated from Eq. (2.52) and (2.64).
We use the parameters fiv/a = 2.1435 eV, ug = 110 eV. We included the k points
that are in the circle with radius 4|G1| as the basis of the Hamiltonian, and we

take the path shown in Fig. 2.2(b) as a red line.

2.3.3 Distorted lattice

From here on, we consider the distorted TBG, and drive the continuum Hamiltonian[42].

()

Here, we also assume that the distortion of lattice is continuum function sy

as

the real space r.

On the basis (wil), g), 1,115‘2), 1/12,2)), the Hamiltonian of distorted TBG for K¢

valley is written as

7(1)
AL U
. G.
A% =] 9 o | (2.68)
U Hg)

The diagonal term I:Ig)g is the strained graphene Hamiltonian of layer [ = 1,2
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Figure 2.5: (a) Brillouin zones of bottom (green) and top (orange) graphene in
the extended zone scheme. Each symbols (filled circle, triangle and open circle)
represent the position of K1) + G for several G, here different symbols have
a different distance from the origin of k-space. (b) Corresponding position of
symbols of (a) around the K point of top layer K(2).
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Figure 2.6: Energy band structure of rigid TBG at 6 = 2.65°, (midlle) 1.05° and
(right) 0.547°, where black and red lines represent energy band of K and K’-valley
respecticelly.
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around K valley [Eq. (2.50)]s
HY, =~y [R (76/2) (k -k + %A(”)] .o, (2.69)

where A is the strain-induced vector potential that is given by Eq. (2.51).

Next, we consider the off-diagonal term U of Eq. (2.68). It’s given by the

matrix element of the interlayer moiré coupling

U=-3 3 T(R+s{P®R) - R -sPR) R +5s2R)) (R+5L(R)+hc.
ReR R’<R)
(2.70)

expanded by the Bloch basis under the lattice distortion |k, X, ). We define it as

1 .
XDy = — > ok ‘R+s§(l)(R)>, (2.71)
RERxl

where k is a two-dimensional Bloch wave vector, and N = §/Sy is the number of

graphene’s unit cells per layer in the total system area S. The interlayer matrix

element between the Bloch basis is written as

(K, X',2|U |k, X, 1)
1 . 17 ’
-y 2y 2 T (RS0 - R (R)
ReR\ R'eRY)

1 Sod
= _L Sod /d3pz<p>

"N (27)3
» Z oi(k=p)-R=ip-s X1 (R) Z ik =p)RAipsX P ®) (979
ReR R’eR)
We replace sg(l)(R) and sgf,)(R’) with its Fourier transform in Eq. (2.23) and

expand the exponential functions such as exp(ip - sqeiq'R) in a Taylor series as

(o)

. 1 .
exp (ip : Sqelq'R) =3 Z(ip - sq)"e"0 . (2.73)
n!
n=0
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Then we can take the summation over the lattice points by using

Z NZ i(g+p-e) Ty 5p”g, (2.74)

ReRY

where p|| is the xy component of the vector p, and the summation of g is taken
over all the recprocal lattice vectors g = mlbgl) + I’I’Lng). Using these, we get a

formula

(k',X',2|U |k, X,1)

r.(2)

(”1 1. —1g1' )4ig't e
- Z Z Z (nl na,. )(Q) 5k+g+n1q1+n2q2+ k' +g’ }’qul n2q2+ .9

g,8’ ni.nz,. n1 n2

(2.75)

where g = mlbgl) + mgbél) and g’ = m’lb?) +m2b(2), n,n, = 0,1,2,..., Q =

k+g+niqi+nsqs+... and

(” M . AYN!
(n11 nj )(Q) - _ﬂ_/ dp:t(Q)e pado

PR ¢ VI e P OB DR ke
[_lg 'SX»ql] [_lg qu2]

I’l1! I’lg!

) [+1Q’ @ ]"'1 [+1Q’ @ ]”'2“. -

n! no!

=X

here Q' = Q+p.e;. In the above formula, ¢; is the two dimensional wave numbers
in which ugpq has finite Fourier amplitude. Similar to the rigid case, Eq. (2.75)

means the Bloch state of layer 1 and layer 2 are coupled when

k+g+niqi+naqa+...= k' +g' - n'lql - n'2q2 +...(= Q) (2.77)

The amplitude of coupling is given by I ( "y )(Q)

(n1,n2,.

From here on, we assume that the distortion has only in-plane component, in
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(0 _

short, s, = 0. On this assumption, Eq. (2.76) is replaced as

IRV, RSO e PP C VI
i) Q)——tH(Q,do)[ iQ nsjq] |-ie sy |

(n1,n2,...

I’ZQ!

n n-

[+1Q s(z) ] ' [+1Q sX, qz] ’

X 1 ' (2.78)
ny! no!

where

dy [ ,
f||(Q;Z)=ﬁ/ dp t(Q + p.e;)e’=*

1

ArT(r + ze,)e ¢ (2.79)
So

is the two dimensional Fourier transform of T'(r) on a plane parallel to xy at fixed
height z. In the absence of the lattice distortion (i.e. sg(l) =0), the above formula

exactly matches Eq. (2.59).

Eq. (2.75) is the general formula of the matrix element of the interlayer cou-
pling. From here on, we apply it to the twisted bilayer graphene. We also assume
that the displacement vector does not depend on the degree of the sublattice
sg) = sg) = s, We also assume that the moiré period is large enough similar

to the rigid case. Then we can use the same approximation which takes only the

largest terms at k = K¢, K¢+ b1, K¢+ b1+ bs. The matrix element is written as

3
PR ~ (n N/
<k ’ X ’ 2| U |k’ X’ 1> = Z Z Z (nll n; )(Q]) [ ]X/X 6k’ k+6k ; (n1+n1)q1+(n2+n2)q2+ )

j=1 ni,n2,... n1 n2,...
(2.80)
where 0k (= g — g’) is given by
(5k1 =0, 5k2 =§G1, 5k3=§(Gl+G2), (2.81)
and we define
2r . .
01=K:, Q;=R ?(1—1) 01 (j=279). (2.82)
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The matrix M; are defined at (2.65). In the real space representation, Eq. (2.80)

is simply written as

~ 1 . ,
k', X', 2|U |k, X, 1) = 5 / Are** Ty (1), (2.83)
where
~ 3 .
U(r) = - Z M 4 [Qjido+ s (r)] exp [iQ; - s™(r) +i0k; - 1] . (2.84)
j=1

Specially, when sél) =0, Eq. (2.84) becomes

U(r) = ug 23: M/exp [iQ; - s~ (r) +i0k; - r]. (2.85)
j=1

The black like of figure 2.7 represents the band structure calculated from
Eq. (2.68), and red line is band structure of non-relaxed for the comparison. We
use the parameters fiv/a = 2.1435 eV, ug = 110 eV. We included the k points that
are in the circle with radius 4|G1| as the basis of the Hamiltonian, and we take
the path shown in Fig. 2.2(b) as a red line. For the band calculation of relaxed
TBG, we use the displacement vector s that is given by the self-consistent
equation (2.21) for each angle. We see that the lattice relaxation modulates the
band structure, specially at 8 = 1.05°, it gives the gap between the flat band and
secondary bands. Since lattice relaxation is more dominant in the smaller angle,

the effect of lattice relaxation is more pronounced at smaller angles.
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Figure 2.7: Energy band structure of rigid TBG at 6 = 2.65°, (midlle) 1.05° and
(right) 0.547°, where black and red lines represent energy band of relaxed and
non-relaxed TBG respecticelly.
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Chapter 3

Multi-scale lattice relaxation in

twisted trilayer graphene

In this chapter, we study the lattice relaxation and the electronic band struc-
ture in non-symmetric twisted trilayer graphenes (TTGs). We find that there are
two distinct length-scale relaxations in the moiré-of-moiré and moiré scales, which
give rise to a formation of a patchwork of super-moiré domains as schematically
shown in Fig. 3.1. In theses domains, the first moiré pattern given by layer 1 and
2 (moiré 12) and the second pattern by layer 2 and 3 (moiré 23) are deformed to

become commensurate.

The atomic configuration inside the domain exhibits a distinct contrast be-
tween chiral and alternating stacks, which are determined by the relative signs
of the two twist angles. For chiral stack, band calculation reveals that the spec-
trum has an energy window more than 50 meV wide with low density of state,
where highly one-dimensional electron bands are sparsely distributed. The wave
function of the one-dimensional bands is sharply localized at the boundary be-
tween the super-moiré domains. By calculating the Chern number of the local
band structure of the commensurate domains, the one-dimensional state is shown
to be a topological boundary state between distinct Chern insulators. On the
other hand, the alternating TTG exhibits a coexistence of the flat bands and a
monolayer-like Dirac cone, and it is attributed to the formation of moiré-of-moiré

domains equivalent to the mirror-symmetric twisted trilayer graphene.
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(a) Chiral twist af stack (b) Alternating twist

Figure 3.1: Schematic illustration of the moiré-of-moiré domain structures in
(a) chiral TTG and (b) alternating TTG with close twist angles. Right figures
represent relative arrangements of two moiré patterns within the domains, where
blue and red dots indicate AA stacking of moiré 12 (between layer 1 and 2) and
of moiré 23 (between layer 2 and 3), respectively (See also Fig. 3.2).

3.1 Model

3.1.1 Geometry of TTG

We define a TTG by stacking three graphene layers labeled by [ = 1,2 and
3, with relative twist angles 812 (layer 1 to 2) and 6% (layer 2 to 3).  The
configuration is schematically depicted in Fig. 3.2(a) and (b), for the chiral case
(6'2 . 9% > 0) and the alternating case (6'2 - 6% < 0), respectively. ~ The
primitive lattice vectors of layer [ are defined by al.(l) = R(6)a; where a1 = a(1,0)
and as = a(1/2,V3/2) are the lattice vectors of unrotated monolayer graphene,
a = 0.246 nm is the graphene’s lattice constant. R is the rotation matrix, and ()
is the absolute twist angle of layer [ given by () = —g12, 62 = (0 and 63 = §23.
Accordingly, the primitive reciprocal lattice vectors become bl@ = R(6V)b; where
b1 = (2n/a)(1,-1/¥3) and by = (27/a)(0, 2/V3) are the reciprocal lattice vectors
without rotation. The Dirac points of graphene layer [ are intrinsically located
at the corners of Brillouin zone (BZ), Kél) ==¢ (2b§l) + bg)) /3 where & = +1 is

the valley index.

In this thesis, we consider TTGs with small twist angles (|82|, 16?3 < 10°).
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Then the system is governed by two competing moiré patterns, one from the
layer 1 and 2 and the other from layer 2 and 3. The reciprocal lattice vectors for
these moiré patterns are given by Gf.l' = bl@ - b;l’) where (1,1") = (1,2) or (2, 3).
The moiré lattice vectors can be obtained from Gll.l/ . Li.l' = 2r6;j, and explicitly

written as

112 = ;R _012/9

L 24in (612/2) (=67/2) 1

LB=- 2 pe®)9 ’ (3.1)
L7 24in (923/2) 1) '

and lel' = R(60°)Llll/. The moiré lattice constant is given by L!" = |Llll/| = |Ll21'| =

a/|2sin (8" /2)].

When absolute twist angles are close (|§'2| ~ [6?3|), an interference between
the two moiré patterns gives rise to a higher order structure called a moiré-of-
moiré pattern as shown in Fig. 3.2. Here the upper and lower rows correspond to
the chiral and alternating structures, respectively. For the chiral twist, the left
panel [Fig. 3.2(a)] illustrates the overlapped moiré patterns where blue and red
dots represent the AA spots of moiré 12 and 23, respectively. The local struc-
ture can be viewed as a pair of non-twisted moiré superlattices with a relative
translation, as illustrated in Fig. 3.2(b). Here shaded and empty triangles repre-
sent AB, and BA stacking regions of individual moiré patterns, respectively. By
defining AB and BA points (the centers of triangles) by @ and g, respectively, the
local stacking configuration of the two moiré patterns is labeled by a@, @B and
Ba. Figure 3.2(c) depicts the local structure in the atomic scale. Here A; and
B; represent the graphene’s sublattice in layer [. We define the sublattice C; as
the center of the hexagon in the honeycomb lattice. For instance, BAC-stacking

represents By, A2 and C3 are vertically aligned.

The lower panels [Figs. 3.2(d), (e) and (f)] are the corresponding figures for the

alternate twist. The key difference from the chiral case lies in the 180° rotation

48



of the moiré 23 (red lattice) due to the opposing sign of 623. This results in the
flipping of the positions of AB and BA. Consequently, the local atomic structure
(shown in the rightmost panels) differs between the chiral and alternating struc-
tures, even though the relative arrangement of AA spots is identical. We define
AB and BA points in the inverted moiré 23 pattern by B’ and @’, respectively,
and label the local structure in the alternating TTG by aa’, ¢’ and Ba’, as in
Fig. 3.2(e).

3.1.2 Commensurate TTGs

Generally the two moiré patterns in a TTG are not commensurate, and the spatial
period of moiré-of-moiré pattern is infinite. However, there are special angle sets
(612, 623) where the two patterns happen to have a finite common period. In such
a case, we can express the moiré-of-moiré primitive lattice vectors Ly and Lo in

terms of integers n, m,n’” and m’ as

_ 12 12 _ 7723 ry 23

Ly = R(60°) L. (3.2)

The moiré-of-moiré reciprocal lattice vectors are given by the condition G;-L; =
276;;.  The corresponding twist angles are obtained by solving Egs. (3.1) and

(3.2) for variables 6'? and 6?3, as
02 = 9(n,m,n’,m"), 0> =-0',m’,n,m), (3.3)
where
O(n,m,n’,m’") =

V3{m ©2n’ +m’) — (2n +m) m’}
(2n+m) (20’ +m’) + 3mm’ + (21" + m’)? + 3m’2’

2 tan ™! (3.4)
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Figure 3.2: (a) Schematics of moiré-of-moiré pattern of chiral TTG, where blue

and red dots represent AA stacking points of moiré 12 (between layer 1 and 2)

and of moiré 23 (between layer 2 and 3), respectively. The insert panel illustrates
the stacking structure of a chiral TTG, where green, black and orange represent

Local atomic structures at specific

points in (b), where A; and B; are the graphene’s sublattice in layer [. The lower
panels [(d), (e) and (f)] are the corresponding figures for the alternate TTG.

)

in (a), where circles, filled triangles, and empty triangles indicate AA, AB, and
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Figure 3.3: (a) Two-dimensional map of (8'2,6%3) of TTGs considered in
this thesis. The color code represents the ratio of the two moiré periods,
min (L'2/L%, L% /L'?). Diagonal dashed lines indicate 8'2 = +623, and a horizon-
tal dashed line represents twisted monolayer-bilayer graphene (tMBG). (Right)
Moiré-of-moiré patterns without lattice relaxation of (b) chiral TTGs (C1, C2
and C3) and (c) alternating TTGs (A1, A2 and A3). Blue and red dots indicate
the AA spot of moiré 12 (between layer 1 and 2) and moiré 23 (between layer
2 and 3) respectively, and gray area represents the moiré-of-moiré unit cell. All
scale bars indicate 20 nm.
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(912’ 023) (I’l, m, I’l', m/) L12/L23
Cl| (1.79°,1.58°) | (2,7,2,6) 0.88
C2| (2.64°,2.45°) | (7,7,7,6) 0.93
C3 | (1.54°,0.64°) (7,5,3,2) 0.42
AL [ (1.48°,-1.18%) | (5,0,—4,0)* | 0.80
A2 | (1.42°,-1.22°) | (7,0,-6,0)* | 0.86
A3 | (1.47°,-0.62°) | (7,12,-3,-5) | 0.42

Table 3.1: Definition of commensurate chiral TTGs (C1, C2, C3) and commen-
surate alternating TTGs (Al, A2, A3) considered in this thesis. The asterisk
(*) symbol for A1l and A2 indicates the use of the approximation of Eq. (3.5) to
obtain the commensurate structures.

The spatial period of the super-moiré pattern is given by L = L™Vn2 + m2 + nm =

L3Nn2 + m”2 + n'm’.

In alternating TTGs with 8'2 ~ —623, the relative angle between two moiré
lattice vectors nearly vanishes, resulting in an extremely large commensurate
moiré-of-moiré unit cell. To treat such cases, we neglect the tiny misorientation
of the moiré lattice vectors L}Z and L?z)’, while retaining their norms. In this

approximation, the moiré-of-moiré commensurate period is expressed as

Ly =nL{>=n'L¥, Ls=R(60°)Ly, (3.5)

instead of Eq.(3.2). Note that Eq. (3.3) does not apply to this approximate
commensurate structure.

In this thesis, we consider commensurate chiral TTGs, C1, C2 and C3, and
commensurate alternating TTGs, Al, A2 and A3, defined in Table 3.1. We
employ the exact commensurate formulas Eqs. (3.2) and (3.3) for C1, C2, C3,
and A3, while we utilize the approximate formula, Eq. (3.5) for A1l and A2. Figure
3.3(a) maps (012, 6%3) of these systems in two-dimensional space, where the color
code represents the ratio of the two moiré periods, min (L*2/L?3, L?3/L'?). The
moiré-of-moiré structures of these TTGs without lattice relaxation are illustrated
in Fig. 3.3(b) and (c), respectively.

We show the schematics of Brillouin zone (BZ) of a chiral TTG for a commen-
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Figure 3.4: (a) Brillouin zone of chiral TTG for a commensurate case of
(912,923) = (13.2°,8.61°) and (n,m,n’,m’) = (1,2,1,1). Green, black and or-
ange hexagons represent the first Brillouin zone of graphene layer 1, 2, and 3,
respectively. Blue and red hexagons represent the BZ for the moiré patterns
given by [ = 1,2 and that by [ = 2, 3, respectively. (b) Magnified plot near Kfrl),
where gray hexagons are the BZs of the moiré-of-moiré pattern. (c¢) The moiré
BZ’s (blue and red hexagons) aligned at the shared center indicated by a black
dot. The moiré-of-moiré BZ (a gray hexagon) is identified by drawing a hexagon
with its side connecting the nearest corner points of the moire BZ’s.

surate case of (6'%,6%%) = (13.2°,8.61°) and (n,m,n’,m’) = (1,2,1,1) in Fig. 3.4.
Here green, black and orange hexagons represent the first BZ of layer 1, 2, and 3,
respectively. Blue and red hexagons represent the BZ for the first moiré patterns
given by [ = 1,2 and the second pattern given by [ = 2, 3, respectively. Finally,
the gray hexagon in Fig. 3.4(b) is the BZ of the moiré-of-moiré pattern. It is
identified by aligning the moire BZ’s (blue and red hexagons) at the shared cen-
ter as in Fig. 3.4(c), and drawing a hexagon with its side connecting the nearest
corner points of the two moire BZ’s. This procedure is analogous to deriving
the moire BZ from the two graphene’s BZs. In the commensurate setting, the
moiré-of-moiré BZ can be consistently tiled over the whole graphene’s BZ. We
label the corner points of the moiré-of-moiré BZ by « and «’, the midpoint of a

side by u and the center by y as in Fig. 3.4(b).

3.1.3 Continuum method for multi-scale lattice relaxation

We adopt a continuum approximation [37, 129, 43] to describe the lattice relax-
ation on TTG. Let sV (Ry) be the displacement vector of sublattice X = A, or B

at a two-dimensional position Ry of layer [ = 1,2, 3. Here we consider a long-rage
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lattice relaxation which has much longer scales than graphene’s lattice constant.
The displacement vectors can then be expressed by continuous functions in real
space as s (R4) = sV (Rp) = s (r). We ignore the out-of-plane component of
the displacement vector in this model, as it does not much contribute to the com-
mensurate domain formation. The optimized lattice structure can be obtained
by minimizing the total energy U = Ug + Ullf + UIQ;’, where Ug is the elastic energy
and U g’ is the interlayer binding energy between layers / and I”. We assume that
U}SQ and U1233 are given by the interlayer interaction energy of the twisted bilayer
graphene [37], and neglect a remote interaction between layer 1 and 3. The Ug
and U g/ can be expressed as functionals of the displacement field sV (r). We solve

the Buler-Lagrange equation to obtain the optimized s (r) self-consistently.

The elastic energy of strained TTG is written in a standard form [103, 126]

as

3
1 2
UE:Z§/ () (s +5)

=1

" {(s;gg ~sl) 44 (sy;)Q}] &r, (3.6)

similar to Eq. 2.12 in TBG. The interlayer binding energy of adjacent layers
(I,I') = (1,2),(2,3) is given by [37]

3
Ul = / d2rz 2V cos [G?/ “r+b;- (s(l') - s(l))] ; (3.7)
j=1

where Gél' =-G" - GI". We take Vj = 0.160 eV/nm?[28, 97].

We introduce

w=sb 452 45O

u=s 252 456

y=sb O, (3.8)
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and rewrite U as a functional of w,u and v. Here w represents an overall transla-
tion of three layers, while u and v are relative slidings which are mirror-even and
odd, respectively, with respect to the middle layer. In the subsequent analysis,
we fix w to zero and focus solely on u and v, as w does not alter the interlayer
registration and therefore does not impact the formation of moiré domains. The

Euler-Lagrange equation is written as

I%u+6VOZgl{sin[G}2-r—bj-(u+v)/2]

Jj=1
+sm[G§3-r+b,~-(u—v)/z]}bjzo (3.9)
kv+2V023:{sin [G}Q.r—bj.(uw)/z]
J=1
_sin [633 r+b; (u—v)/z]}b,-:o, (3.10)

where

X A+2u) 02 + uo? A+ ) 0,0
r'e (A+2u) 7 + oy (A+p) Oc0y . (3.11)
(A + ) 6,0, (A +2u) 07 + pud?

We assume s®’s (so u and v) are periodic in the original moiré-of-moiré

period, and define the Fourier components as

u(r)= Z uge'S’, v(r)= Z vge'dT, (3.12)

G G

where G = m1G1 + maGy are the moiré-of-moiré reciprocal lattice vectors. We

also introduce fg; b

sin [G]l2 F = bj . (u + V)/2] Z f12 iG- r’

G

sin[G§3-r+b u—v)/z] > r&eor. (3.13)
G
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Eq. (3.9) is then written as

e

ug = -6Vo y 162 + &) K5'bs.
J=1
3

ve = =2V ) (f&4 - 1&5) KG'bs, (3.14)
j=1

where K¢ is defined by Eq. 2.22.

We obtain the optimized ug and vg by solving Egs. (3.13) and (3.14) in
an iterative manner. In the calculation, we only consider a finite number of
the Fourier components in |G| < 3 max (|n|, |m|, |n’|, |m’|), which are sufficient to
describe the lattice relaxation in the systems considered. For the case of C2, this
cutoff gives 231 Fourier components of wave vector. It should be noted that the
components of G = 0 cannot be determined by this scheme, since Kg becomes 0
in Eq. (3.14). Here we treat sg)zo as parameters, and perform the above iteration
for different parameter choices. We finally choose the solution having the lowest
total energy. The dependence on G = 0 component arises because the moiré-
of-moiré structure depends on a relative translation of the two moiré patterns,
and hence it cannot be eliminated by a shift of the origin unlike twisted bilayer

graphene. Practically, it is sufficient to consider only the lateral sliding of layer

3 with other two layers fixed.

3.1.4 Continuum Hamiltonian with lattice relaxation

We compute the band structure of the TTGs by using an electronic continuum
model [130, 1, 131, 132, 125, 56] that incorporates lattice relaxation [42]. The

effective Hamiltonian for valley & is written as

Hi (k) Uy
HO=| Uy Hy(k) UL, | (3.15)
Usy  Hs(k),
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The matrix works on a six-component wave function (1,//1(41), wg), 1//1(42), 1//1(32), wf), 1//%3)),
where wg) represents the envelope function of sublattice X(= A, B) on layer
I(= 1,2,3). The Hj(k) is the 2 x 2 Hamiltonian of monolayer graphene and

U is the interlayer coupling matrix, in the presence of the lattice distortion.

The H;(k) is Dirac Hamiltonian of distorted graphene [Eq. (2.50)] given by
-1
H(k) = v [R (9”)) (k -k + %A(”)] .o, (3.16)

where v is the graphene’s band velocity, o = (£0%, oy) and oy, oy are the Pauli
matrices in the sublattice space (A, B). We change the notation for simplicity.
We take fiv/a = 2.14 eV [57]. The AW is the strain-induced vector potential that
is given by Eq. (2.51).

By following Eq. (2.85), [the interlayer coupling matrix Us; and Usy are given

by
3 6k 1) i ( ) <z>)
Up =y Ut et (3.17)
=1
where we defined
okl =0, okl =£GY, okl =¢(Gl +GY), (3.18)
Q1 :Kg, QQ :K§+§b1, Q3 :K§+f(b1+b2), (319)
and
u u u ww™¢
Uy = , Uy= ,
u u w' wte u
u w wtt
Us = . (3.20)
wWw™¢ u

The parameters u = 79.7 meV and u’ = 95.7 meV are interlayer coupling strength

between AA/BB and AB/BA stack region, respectively. The difference be-
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tween u and u’ effectively arise from the in-plane lattice relaxation and from
the out-of-plane corrugation effect [57, 42]. We assume that the lattice re-
laxation of z-direction occurs on the moiré scale, and it’s similar to TBG. In
the band calculation, we take Fourier components within the radius of |G| <
2max (|n|, |m|, |n’|,|m’|) as the basis of Hamiltonian. For C2 case, this cutoff
gives the 12642 x 12642 Hamiltonian. We neglect remote interlayer hoppings

between layer 1 and 3.

3.2 Chiral TTGs

3.2.1 Multi-scale lattice relaxation

We study the lattice relaxation in the TTGs of C1(1.79°,1.58°), C2(2.64°,2.45°)
and C3(1.54°,0.64°) by using the method described in Sec. 3.1.3. Figure 3.5
summarizes the optimized moiré structures for the three systems. In each row,
the left panel shows the moiré pattern 12 (given by layer 1 and 2), and the
middle panel shows moiré pattern 23 (by layer 2 and 3) after the relaxation.

Here the color represents the local interlayer binding energy UL’

5 » Where bright

and dark regions correspond to the AA stack and AB/BA stack respectively. Tiny
magenta dots indicate the original AA stack points without lattice relaxation for
reference. In the right-most panel, we overlap the two moiré structures in a single
diagram, where blue and red points represent the AA stack of the moiré 12 and
23 respectively. A rhombus in each panel represents the moiré-of-moiré unit cell,
and all scale bars indicate 20 nm.

We first consider C1 and C2 which have relatively close twist angles (812, §23).
In the rightmost panels of Fig. 3.5 (a) and (b), we see that locally-commensurate
B and Ba domains (indicated by triangles) are formed. In these domains, the
lattice relaxation equalizes the two moiré periods which were initially different,
to achieve a commensurate structure. The formation of locally-commensurate

domains is more clearly seen in Fig. 3.6, which plots the distribution of the total
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Figure 3.6: Density plot of the total interlayer binding energy U};Z + U1233 in non-
relaxed (left) and relaxed (right) TTG of C2. The black rhombus indicates the
moiré-of-moiré unit cell, and the red triangles in right panel indicate emergent
aB/Ba domains.

interlayer binding energy Uj*+U2 in non-relaxed (left) and relaxed (right) cases.

At the same time, we also have the lattice relaxation in a smaller scale as in
twisted bilayer graphene, which shrinks AA regions and expands AB/BA regions
in each of two moiré patterns. Therefore we have the relaxations in the moiré-
of-moiré scale (@B/Ba domains) and in moiré scale (AB/BA domains) at the
same time. The following questions naturally arise: (i) What distribution of
displacement vectors lead to the multi-scale lattice relaxation? and (ii) Why does
such a structure exhibit energetic preference? These questions can be answered
by examining the obtained lattice displacement as follows.

Figure 3.7(a) shows the distribution of the displacement vector s (r) on layer
1, 2 and 3 for the case of C1. The middle row, Fig. 3.7(b), plots a coarse-grained
component §)(r), which is calculated by averaging s)(r) over a scale of moiré
unit cell around the point r. The bottom row [Fig.3.7(c)] displays magnified
plots of s (r) — sV (r) (i.e., the local component with the coarse-grained part
subtracted) within the region enclosed by a dashed square in Fig.3.7(a).

In Fig. 3.7(b), we clearly see that §(!) and §® rotate counter-clockwise around

the center of the @8 and Ba domains, while §? rotates in the clockwise direc-
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(¢) s() —5(r) (Moiré-scale component) 0 005 0.0

Figure 3.7: Distribution of the displacement vector in each layer of C1:(6'2, 623) =
(1.79°,1.58°). (a) Original non-averaged distribution sV(r)(I = 1,2,3). (b)
Coarse-grained component §(r). (c) Moiré-scale component sV (r) — s (r) in
aregion indicated by the white square in the top panel. Black arrows represent the
displacement vector, and color indicates its norm. Red arc arrows schematically
show the direction of rotation in moiré-of-moiré scale. In (a) and (b), the white
rhombus represents a moiré-of-moiré unit cell, while in (c¢) the blue rhombus
represents a moiré unit cell.
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Figure 3.8: Relocation of BZ corners in the C1 system under the lattice relax-
ation. The panels depict: (a) the original non-distorted configuration, (b) the
configuration with rotation included, and (c) with expansion and shrinkage taken
into account. Green, black and orange line are the BZ of layer 1, 2 and 3, and
gray arrows indicate the direction of rotation and expansion/shrink.

tion. This behavior is closely linked to @B8/Ba domain formation, and it can be
comprehended by examining the problem in the k-space. Figure 3.7 depicts the
relocation of BZ corners of layer 1, 2 and 3 in the C1 system under the lattice
relaxation. The panel (a) is for the original non-distorted configuration. We de-
fine q%2 = KJEQ) - Kfrl) and q%g = KJES) - KJEQ), where Kil) is the BZ corner of layer /
near ¢ = + valley. The vectors q}Q and q%g are associated with the periods of the
moiré pattern 12 and that of 23, respectively. When these vectors are equal, two

moiré periods completely match.

The lattice displacement in Fig. 3.7(b) works precisely to align the two vectors.
In the case of C1, the angle between layer 1 and 2 is larger than the angle between
layer 2 and 3 (912 > 923), so the layer 2 rotates clockwise, and the layer 1 and
layer 3 rotate counter-clockwise to achieve 2 = 823 [Fig. 3.7(b)]. There is still
a tiny angle difference between q}Q and q%?’. This can be eliminated by slightly
expanding BZs layer 1 and 3, and shrinking BZ of layer 2, to finally obtain the
perfect matching [Fig. 3.7(c)]. In the real space, this corresponds to a shrink of
layer 1 and 3 and an expansion of layer 2. These changes are actually observed
in Fig. 3.7(a), where the vector fields rotate around the center of the af/Ba

domain.  In the final structure of Fig. 3.7(c), the moiré 12 and the moiré 23
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become perfectly commensurate. In terms of the reciprocal lattice vectors of
the graphene layers, this situation is described as a singular condition that the

reciprocal lattice vectors add up to zero, or bfl) - 2bf2) + b;g) =0(i=1,2) [82].

To understand the energetic stability of @8/Ba domains, we examine the local
moiré-scale lattice relaxation. Let us first consider the twisted bilayer graphene,
which has only a single moiré pattern. There the lattice relaxation takes place
such that AB/BA stack region expands and AA stack region shrinks [37]. This
is realized by a local interlayer rotation around AA and AB/BA stack points.
Around AB/BA, specifically, the layer 1 and 2 oppositely rotate to reduce the
local twist angle. The AB/BA region is then enlarged, because the length scale
of the moiré pattern is enlarged in decreasing the twist angle. In AA spots, on
the contrary, the layer 1 and 2 rotate to increase the local twist angle to shrink

the AA region.

The same deformation occurs also in TTG, where all three layers undergo
relaxation to expand AB/BA domain in each of the two moiré patterns. However,
as the middle layer [ = 2 is shared by the two interference patterns, there can be
a frustration such that, for instance, a local movement of the layer 2 leads to the
expansion of the AB region in one moiré pattern while causing its contraction
in the other. Therefore, the relative displacement of the two moiré superlattices
should be determined in such a way that the middle-layer distortion can lower

the total energies of the two moiré patterns at the same time.

Figure 3.9(a) is the schematic figure to illustrate the favorable local rotation
of the middle layer, for the moiré 12 (between [ = 1,2) and moiré 23 (between
[ =2,3). The orange and green arc arrows correspond to clockwise and counter-
clockwise directions, respectively. Here we notice that the direction of rotation
is opposite for moiré 12 and moiré 23, since layer 1 and layer 3 are originally
twisted in opposite directions with respect to layer 2. When AA stack points of
moiré 12 and moiré 23 are aligned (aa stacking), the rotation direction of layer

2 is completely frustrated as shown in Fig. 3.9(b), and therefore @a stacking is
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(a)
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o\

(b) aa stack (c) ap stack

Figure 3.9: (a) Schematic figure of the preferred direction of the middle layer
(I = 2), for the moiré 12 (between [ = 1, 2) and moiré 23 (between [ = 2, 3). Orange
and green arc arrows correspond to clockwise and counterclockwise directions,
respectively. Bottom row: Overlapped figures for (b) aa stack and (c) a@f stack.

energetically unfavorable. The optimized structure is @f stacking [Fig. 3.9(c)],

where the rotation angles coincide in two out of three regions.

The mechanism of the moiré-of-moiré domain formation is summarized as
follows. At the moiré scale, the local rotation [Fig. 3.7(c)| leads to a reduction
of AA regions and an enlargement of AB regions in the moiré patterns (12 and
23), just as in twisted bilayer graphene. In contrast, a rotation in the moiré-of-
moiré scale [Fig. 3.7(b)] adjusts the periodicities of the moiré 12 and 23, achieving
local commensurability of the two patterns [Fig. 3.7(b)]. These rotations in the
different scales work cooperatively to minimize the total energy. This cooperative
mechanism is intuitively explained by the frustration picture in Fig. 3.7, which
requires the two moiré patterns to align to avoid a frustration of the rotation

direction in the moiré scale.

When the two angles 6'2 and 623 are not close to each other, @8/Ba domains
do not appear any more, but still a locally-commensurate moiré-of-moiré structure
emerges. Figure 3.5(c) shows the relaxed structure for the C3 TTG. Since the
unit areas of the two moiré patterns differ by nearly 3, we have commensurate
domains where a single red triangle includes three blue triangles. We also see
red AA points always come to the center of blue triangles. This can also be

understood in terms of the alignment of the favorable rotation angles explained
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Figure 3.10: (a,b) Electronic band structures and the density of states of K-
valley calculated for (a) C1 and (b) C2 with the lattice relaxation incorporated.
The k-space path (k —y —u —«’) is defined in Fig. 3.4. (c¢) Fermi surface of the
C2 at Ep = 117 meV (indicated by a red dotted horizontal line in (b)). Three red
arrows represent the directions of band velocities, which are parallel to the moiré
lattice vectors L1, Lo, and L3(= —Lj+ L3). (d) Distribution of the squared wave
amplitude of an eigenstate state, indicated by a red point in (c). Red rhombus
represents a moiré-of-moiré unit cell.

above.

While our study focuses on commensurate twisted TTGs in this thesis, the
domain formation in incommensurate cases can be conjectured by the intuitive
picture for the formation of locally-commensurate domains. The calculation of C3
[Fig. 3.5(c)] provides a glimpse into this scenario, where various types of locally-
commensurate domains coexist and form a mosaic pattern to fit the original moiré
period difference. Since it is a commensurate TTG, the entire domain pattern is
also periodic with a unit cell of gray rhombus, as a result of the shared common
periodicity between the moiré patterns. In contrast, in incommensurate cases,
we anticipate a similar formation of locally-commensurate domains but with a

quasi-periodic arrangement.

3.2.2 Electronic properties

Using the electronic continuum model introduced in Sec. 3.1.4, we calculate the
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band structure of TTGs in the presence of the lattice relaxation. Figure 3.10(a)
and (b) show the energy bands (near K, valley) and the corresponding density of
states (DOS) calculated for the case C1 and C2, respectively. The labels «,y, u, £’

are symmetric points of the moiré-of-moiré BZ defined in Fig. 3.4.

We immediately notice that the spectrum exhibits distinct energy windows
characterized by relatively low DOS, which span in the energy range of 20 meV
< |E| <90 meV for C1, and in 90 meV < |E| < 180 meV for C2. The windows
are sparsely filled with energy bands. Figure 3.10(c) shows the Fermi surface at
Ep =117 meV in the C2, which is indicated by horizontal red line in Fig. 3.10(b).
We see that the Fermi surface is composed of three intersecting lines arranged
with a trigonal symmetry, indicating the dispersion is nearly one-dimensional.
The band velocities of these one-dimensional bands (normal to the Fermi surface)
are oriented to the moiré-of-moiré lattice vectors Ly, Lo and L3(= —L1 + Lo).
Figure 3.10(d) plots the distribution of the squared wave amplitudes of an eigen-
state marked by a red point in Fig. 3.10(c). The wave function actually takes a
highly one-dimensional form, and it is sharply localized within the domain walls
dividing a8 and Ba regions. Each of the three Fermi surfaces corresponds to
one-dimensional states running along the domain walls in the corresponding di-
rections. The states with different directions are barely hybridized. We also have
a low-DOS region near E = 0 in the C2, while this is remnant of the graphene’s

Dirac cone and the energy bands are not one-dimensional.

The existence of one-dimensional channels on the domain walls indicates that
the afB and Ba regions are locally gapped with different topological numbers, and
associated topological boundary modes emerge between the domains, as shown in
Fig. 3.1. To verify this, we calculate the bands structures and the Chern numbers
of uniform TTG having @B/Ba stacking. The Hamiltonian of such a uniform
system can be obtained by assuming the BZ-corner arrangement in Fig. 3.7(c),

023

where q%z = q%3 = ¢g. This corresponds to a TTG where 6'2 = and the layer

2 is slightly expanded in relative to layer 1 and 3. The two moiré periods then
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Figure 3.11: Local band structure of the af (left) and Sa (right) structure with
6 = 2.54°. Black and blue numbers indicate the Chern numbers for bands and
gaps, respectively. Ky, yu, um, K}, are the labels for the common moiré BZ, where

ky and K}, are corner points, uy is the midpoint of a side and yy, is the center
of the BZ.

become identical, and we have G}Q = G?3 = Gi\/[ and q = (2G11VI + Gg/l)/?). The

Hamiltonian for this system is obtained from Eq. (3.15) as

H(k+é&q) U,

HO=|" vy  HE) U, . (3.21)
U, H(k -¢&q),
where

H(k) = ~Tvk - o, (3.22)

3 3

Up = » UiT, Usy= ) Ujeltki(rro)

J=1 j=1

ok1 =0, Sky=£GY, oky=¢ (G +GY), (3.23)

and we neglect the strain-induced vector potentials which does not affect the topo-

logical nature argued here. Here Us; and Usy differ by the parameter rg, which
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specifies the relative displacement between the two moiré patterns. The af and
Ba stackings correspond to ro = (LY + L) /3 and 2 (LY + L) /3 respectively,

where L?’[ is the common moiré lattice vector given by GlM . L?” = 2m0;;.

Here we consider uniform @B and Ba TTGs with 812 = 23 = 2.54°, which
approximate the local structures of ¢f and Ba domains in the C2. Figure 3.11
plots the energy bands in & = + valley calculated by Eq. (3.21). We observe
energy gaps in the electron and hole sides in the region 50 meV < |E| < 180 meV,
which approximately coincides with the energy window of the C2 [Fig. 3.10(b)].
Between the gaps in the electron and hole sides, we have two bands touching at
the charge neutrality point. The total Chern number for the two-band cluster is
found to be ¥1 for @B and Ba, respectively. The absolute Chern number in the
upper gap can also be calculated, and it turns out to be #1/2 for ¢f8 and Be,
respectively. This is obtained by opening mass gap (adding asymmetric energies
to A and B sublattices in all the graphene layers) to lift the band touching at the
Dirac point. Since the difference of the Chern number of the upper gap between
the @B and Ba regions is 1, we have a single edge mode (per a single valley) at
the domain boundary. This coincides with the number of the one-dimensional
modes per a single direction in the moiré-of-moiré superlattice band Fig. 3.10.
The Chern number of the valley ¢ = —1 is negative of & = +1 valley due to the
time reversal symmetry. Therefore the TTG is a quantized valley Hall insulator

when the Fermi energy is in the energy window.

The energy windows and one-dimensional domain-wall states also appear in
the C1 case [Fig. 3.10(a)], which has a smaller moiré-of-moiré period. The de-
gree of one-dimensionality is not as pronounced as in the C2 configuration, as
evidenced by the appearance of small gaps at the intersections of bands. The

hybridization tends to be greater when the moiré-of-moiré period is smaller.

Finally, the band structure in Fig. 3.10 closely resembles the marginally-
stacked twisted bilayer graphene in a strong perpendicular electric field [133,
134, 135, 136, 137, 138, 139]. There the topological one-dimensional edge states
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arise since the AB and BA regions in the moiré pattern have opposite valley
Chern numbers in the electric field. The chiral TTG realizes a similar situation
in the moiré-of-moiré scale, without the need for an applied electric field. This

923

can be achieved in any chiral TTGs where 8% and are close to each other,

such that the two moiré periods are comparable.

3.3 alternating TTGs

3.3.1 Multi-scale lattice relaxation

Alternating TTGs display distinct relaxed structures that differ entirely from
the chiral cases. Figure 3.12 shows optimized moiré structures calculated for
alternating TTGs (a) Al (8'2,623) = (1.48°,-1.18°), (b) A2 (1.42°,-1.22°) and
(c) A3 (1.47°,-0.62°), corresponding to Fig. 3.5 for chiral TTGs. In the Al
and A2, we observe a formation of commensurate aa’ domains, where AA spots
of the two moiré patterns completely overlaps [See Fig. 3.2(e)]. This is in a
sharp contrast to the chiral TTGs, where AA spots are repelled to each other,
giving rise to @B/Ba domains. The atomic structure of @@’ domain corresponds
precisely to the mirror-symmetric TTG with 82 = —9%3. In A3 case [Fig. 3.12(c)],
where the two moiré periods are not comparable, we observe a different type of
commensurate domain with the ratio of the lattice periods fixed at 2, reflecting
the original moiré-period ratio L?3/L'™ ~ 2.3. Here the AA stacking points of
the red and blue moiré lattices are vertically aligned as in @@’ domains observed
in A1l and A2.

The formation of the commensurate domains can be attributed to a specific
type of lattice distortion that differs from the chiral case. Figure 3.13 shows
the distribution of the coarse-grained displacement vector §V(r) in the Al case
(corresponding to Fig. 3.7(b) for the chiral case). We observe that the layer 1
and layer 3 rotate anti-clockwise and clockwise directions, respectively, around

aa’ domain center. In k-space, accordingly, the Brillouin zone corners of layers
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Figure 3.12: Relaxed moiré patterns in alternating TTGs, (a) Al:(6'2,62%3) =

(1.48°,-1.18°), (b) A2: (1.42°,-1.22°) and (c) A3:(1.47°
to Fig. 3.5 for the chiral TTGs.
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Figure 3.13: Distribution of the coarse-grained displacement vector §¢)(r) in
A1:(0'2,6%3) = (1.48°,-1.18°), corresponding to Fig. 3.7(b) for the C1.
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Figure 3.14: Relocation of BZ corners in the A1:(2, %) = (1.48°,—1.18°) under
the lattice relaxation. The panels depict (a) the original non-distorted configu-
ration and (b) the relaxed configuration.

1 and 3 move to overlap as shown in Fig. 3.14. This corresponds to the symmetric
TTG (02 = —6%%) where the layer 1 and layer 3 are perfectly aligned.

The stability of @a’-domain is also explained by considering moiré-scale lattice
relaxation. As discussed in Sec. 3.2.1, the graphene layers in TTG undergo
spontaneous distortion to expand the AB/BA regions for the moiré patterns
12 and 23, giving a competitive environment for the shared layer 2. Figure
3.15(a) depicts the preferred orientation of layer 2 for the two moiré patterns in
alternating TTG. In contrast to the chiral stack [Fig. 3.9], the rotation direction
is identical for both moiré patterns, since layer 1 and layer 3 are rotated in the

same direction relative to the layer 2. Consequently, there is no frustration when
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| Alternating TTG |

(a) (b) aa’ stack (c)
Moiré 12 Moiré 23

Figure 3.15: (a) Schematic figure of the preferred distorting direction of the
middle layer (I = 2) in an alternating TTG, corresponding to Fig. 3.9 for a chiral
TTG.

the moiré lattices are arranged in an @’ stack as shown in Fig. 3.15(b). In this
structure, the motion of the shared layer 2 allows for the simultaneous relaxation
of the moiré patterns 12 and 23, resulting in an energy advantage compared to
partially frustrated configurations like the a8’ stack [Fig. 3.15(c)]. The stability of
aa’ stack in nearly-symmetric TTGs was pointed out in the previous theoretical

works [60, 64, 80, 81], and it was observed in recent experiments [25, 26].

3.3.2 Electronic properties

We calculate the band structure for alternating TTGs of A1(1.48°,-1.18°), (b)A2(1.42°, -1.22°)
using the method described in Sec. 3.1. The energy band and DOS for A1 and
A2 are displayed in Figs. 3.16(a) and (b), respectively. In each figure, the right
and left panels correspond to the TTGs with and without the lattice relaxation,
respectively. Black curves represent the energy bands, and blue straight lines
indicate the intrinsic Dirac bands of layer 1 and layer 3 without the interlayer

coupling. Red dots indicate the amplitude projected onto the mirror-odd plane
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(a) A1 (612,6%3) = (1.48°,—1.18°)
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(b) A2 (6812,023) = (1.42°,—1.22°)
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Figure 3.16: Energy bands and DOS for alternating TTGs, (a) A1:(1.48°,1.18°)
and (b) A2:(1.42°,1.22°). The left and right panels in each figure show the results
without and with the lattice relaxation, respectively. Black curves represent the
energy bands, and blue straight lines indicate the intrinsic Dirac bands of layer
1 and layer 3 without the interlayer coupling. Red dots indicate the amplitude
projected onto the mirror-odd plane wave states (see the text). The path is taken
as KJ(rl) — KJ(rS) — KJ(rQ) in the extended k-space shown in the inset.
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wave states, as defined by

dd
wiol = 3 [k, X, odd)[?,
X=A,B

Ik, X, 0dd) = % (1k, X, 1) — |k, X, 3)), (3.24)

where ¥, is the eigenstates, and |k, X, [) is the plane wave at sublattice X (= A, B)
on layer [. We take the path Kil) - Kf)’) - KJ(?) on a straight line in the extended

k-space, as shown in insets of Fig. 3.16.

In the band structures with the lattice relaxation, we observe numerous flat
bands concentrated around zero energy, and these bands are surrounded by a
region where dispersive energy bands are sparsely distributed. These features

6'2 = —623), where the low-energy

coincide with the mirror-symmetric TTG (
spectrum is composed of a flat band with even parity, and a Dirac cone with
odd parity against the mirror inversion [59, 60]. We see that the red dots roughly
form a conical dispersion, and it is regarded as a remnant of the symmetric TTG’s
Dirac cone having odd parity. In the non-relaxed calculations, we notice that the
flat bands and Dirac cones are strongly hybridized, and the conical dispersion
of the red dots is not clearly resolved. These results suggest that the formation
of @@’ domains (equivalent to the mirror-symmetric TTG) supports the spectral
separation of the flat bands and the Dirac-cone like bands. Therefore, we expect
that asymmetric TTGs slightly away from the symmetric condition 62 = —623

acquire similar electronic properties to the symmetric TTG, through the moiré-

of-moiré lattice relaxation.

The electronic properties of TTG can be tuned by applying a perpendicular
electric field. We can introduce the field effect to our model as H +V, where H

is the original Hamiltonian of Eq. (3.15), and V is the on-site potential term by
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Figure 3.17: Plots similar to Fig. 3.7 for A2:(1.43°, —1.28°) with the perpendicular
electric field of (a) A =50 meV and (b) 100 meV.

perpendicular electronic field,

—Aly
V= 0 : (3.25)

Al

Here A is the difference of the on-site energy and I is a 2 X 2 unit matrix, and
we simply assumed the perpendicular electric field is constant between top layer
and bottom layer. Figure 3.17 shows the energy band of the A2 with lattice
relaxation, under the perpendicular electric field A = 50 meV and 100 meV.
When the electric field is applied, we observe the Dirac band moves along the
energy axes, and eventually the Dirac point emerges out of the flat-band cluster.
We also see that the electric fields broaden the energy width of the flat band
region, and enhances a hybridization between the flat bands and the dispersive

bands.
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Chapter 4

Moiré disorder effect in twisted bi-

layer graphene

In this Chapter, we study the electronic structure of magic-angle twisted bi-
layer graphene (TBG) with disordered moiré patterns. We first consider a uniform
distortion case, and show that the the flat band is hardly broadened, but splits
into upper and lower subbands in most places. This splitting energy is almost
determined by the value of the effective vector potential induced by hoterostrain,
whereas the variation of twist angle give relatively minor effects on the electronic
structure. We explain the almost exclusive dependence on the vector potential
by a pseudo Landau level picture for the magic-angle flat band, and we obtain an
analytic expression of the splitting energy as a function of the strain amplitude.
Second, we expand above to non-uniform distortion case. We show that the local
density of states of the flat band also splits along the energy axis, and the spatial
dependence of the splitting energy depends on the local value of the effective

vector potential induced by heterostrain.

4.1 TBG with a uniform distortion

4.1.1 Atomic structure

We first consider a TBG with a uniform lattice distortion and investigate its effect

on the flat band.
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Figure 4.1: Moiré patterns of magic-angle TBG (6 = 1.05°) with random non-
uniform distortion of € = 0, 0.0006, 0.0012 and 0.0018, where the characteristic
wave length is A = 7Ly, and the super-cell size (big parallelogram) is ngy =
8. The bright region represents local AA stack and the dark region represents
AB/BA stack. The red dots are the AA spots of the non-distorted TBG for
reference.

We introduce a uniform distortion to layer [/, which is expressed by a matrix,

[ [
goo| & A (4.1)
I PN 0) ' '
Qb 4 €xy €yy

The & represents a deformation such that a carbon atom at a position r in a

non-distorted system is shifted to r + &Pr. Here e,E,lC) and e%,)

strains in x and y directions, respectively, eg) is a shear strain, and QU is a

represent normal

rotation from the original twist angle. For later arguments, we also define the

isotropic/anisotropic components of the normal strain by

1
e = 5(e £ ). (4.2)
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and the interlayer difference of each strain/rotation component as

®_ @

€r =€, —€ ",

_ D _ 2
Exy = €xy — Exy >

Q=W _-Q®?, (4.3)

In the presence of distortion, the lattice vectors change to a}l) = (14+ED)R(F0/2)a ;-
In the following, we assume the original twist angle and the distortion is suffi-

ciently small (6, Q0. el(fv) < 1), so that

a\’ ~ [R(%0/2) +EV]a;. (4.4)
Similarly, the reciprocal lattice vectors are written as

b ~ [R(%0/2) - &7 b;, (4.5)

where T is the matrix transpose.

In an intrinsic monolayer graphene, six corner points of the Brillouin zone
BZ) are given by éK; (j = 1,2,3), where & = +1 label the valley degree of
g y &8 (] y deg

freedom, and
4 2r

are equivalent points in the BZ. Corresponding vectors for the distorted TBG are

written as
l _
KJ(.) ~ [R(%60/2) - VT|K;. (4.7)

Figure 4.2 illustrates the schematics of BZ for (a) a non-distorted TBG and (b)
a distorted TBG. In each panel, blue and orange hexagons on the left represent

the first BZ of graphene layer [ = 1 and 2, respectively, where the corner points
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are given by ij(.l). We define interlayer shift of the corner points by
1 2 .
g, =K\"-K? (j=123), (4.8)

as shown in Fig. 4.2. The ¢,’s can be expressed only by the interlayer rotation

and strain components as
+
q; =3 |R(4)) +R(-¢;) : (4.9)

M _

The reciprocal lattice vectors of the moiré pattern are given by G?’[ = b]

b;m, which are also written as Gll\4 =q2—4q1, GIQVI =¢q3—¢q2. In Fig. 4.2, a green

hexagon on the right side represents the moiré Brillouin zone defined by Gi\./[’s.

4.1.2 Continuum model and Band calculation

We use the continuum model[l, 41, 42, 56, 57, 101, 125, 132, 140, 141, 142, 143,
144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156] to describe a

strained TBG. The effective Hamiltonian for valley ¢ is written as

Hi(k) U'
HE (k) = , (4.10)
U  Hy(k)
where H;(k) is the 2 X 2 Hamiltonian of distorted monolayer graphene, and U
is the interlayer coupling matrix. The Hamiltonian[Eq. (4.10)] works on the
ey (2)

four-component wave function (4, ,wg),w A ,w;f)), where lﬁg) represents the

envelope function of sublattice X (= A, B) on layer [(= 1, 2).

The H;(k) is given by [Eq. 2.50]
Hy(k) = —hv [(R (F6/2) + a<’>)_1 (k + %A(’))] o, (4.11)
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where F is for [ = 1 and 2, respectively, v is the graphene’s band velocity, o =
(€0, 0y) and oy, oy are the Pauli matrices in the sublattice space (A, B). For
simplifying, we change the notation. We take Aiv/a = 2.14 eV [57]. The AY is

the strain-induced vector potential that is given by [Eq. (2.51)]

)
AW g%'% € , (4.12)
2 ev ()

where yg = 2.7 eV is the nearest neighbor transfer energy of intrinsic graphene

and B ~ 3.14. Note that the strain-induced vector potential AY) depends only

on € and e)gly), while not on eil) or Q). This is because A® originates from

a change of the tight-binding hopping energies between carbon atoms due to a

lattice distortion, and it arises only when the hopping energies from a single

carbon atom to three neighboring atoms are inequivalent. The Q¥ (rotation)
O]

and €;’ (isotropic expansion) obviously keep the three-fold rotational symmetry

and hence do not contribute to A®.

The interlayer coupling matrix U is given by
3 .
U= U, (4.13)
j=1

The interlayer matrix U depends on the strain via ¢;’s [Eq. (4.9)].

Below we investigate the effect of lattice distortion on the energy bands using
the effective Hamiltonian, Eq. (4.10). In fact, the electronic structure is mainly
affected by the interlayer asymmetric components of the strain tensor [Eq. (4.3)]
, and in particular, the flat band is highly sensitive to e_ and €,,. To demonstrate
this, we calculate the energy bands of the magic-angle TBG (6 = 1.05°) in the
presence of asymmetric strain 8 = 8@ = §/2, where different types of strain
components Q, €, €_, €, are considered independently. Figure 4.3 shows the band
dispersion and the density of state (DOS) in individual strain components, where

black, green, red, and blue lines represent the strain amplitude (i.e., value of
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(a) Non-distorted TBG

Figure 4.2: Brillouin zones of (a) a non-distorted TBG and (b) a distorted TBG.
Blue and orange hexagons on the left represent the first Brillouin zone of graphene
layer 1 and 2 (twisted by #6/2), respectively, and red arrows are the displacement
vectors from the layer 2’s K, point to layer 1’s. A green hexagon on the right
side is the moiré Brillouin zone.
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Q, €, €, exy) of 0,0.001,0.002 and 0.004, respectively.

We clearly observe that the central flat band is particularly sensitive to e_
and €y, where a small distortion of 0.001 leads to a significant split of the flat
band about 20 meV. In contrast, €, and Q gives relatively minor effects. €, moves
the Dirac points at « and «” in the opposite directions in energy, resulting in a
smaller DOS split. Q shifts the twist angle from the magic angle and slightly
broadens the flat band. The strain-induced flat band splitting was also found
the previous work, which considered the effect of uniaxial heterostrain in TBG

[143, 6, 148, 149, 150], which corresponds to e_ and €, in our notation.

It should also be noted that the split flat bands in Fig. 4.3 are not completely
separated, but stick together at certain points near y (off the path shown in
Fig. 4.3) [143]. These Dirac points are originally located at « and «” in the non-
distorted TBG, and when a uniform distortion is applied, they move without gap
opening under the protection of the Co, T symmetry. The two Dirac points cannot

pair-annihilate because they have the same Berry phase [157].

4.1.3 Pseudo Landau Level approximation

As shown in the previous section, the flat band is split significantly by anisotropic
normal strain €. and shear strain €,,, while not much by other components.
We explain this by using the pseudo Landau level picture of TBG [152], which
describes the flat band as the Landau level (LL) under a moiré-induced fictitious
magnetic field. We apply the same formulation to the strained TBG, Eq. (4.10),

and analytically estimate the flat-band split energy.

The pseudo-LL Hamiltonian is obtained by rewriting the Hamiltonian matrix
[Eq. (4.10)] in the basis (¢%, ¢k, 75, ¢5) where g% = (¢\ +iy?)/v2, and then
expanding it in r with respect to the origin (the AA-point) upto the first order
[152]. We ignore (R (760/2) + 8(1))_1 in Eq. (4.11), which gives only higher order

effects. The detailed calculation is presented in Appendix 6.1.
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Figure 4.3: Band structure and the DOS of uniformly distorted magic-angle TBGs

with different types of strain components, €, €_, €, Q. Different colors represent

different amplitudes of strain. horizontal lines in the right panels (DOS) indicate
energies of the split levels in the pseudo Landau level picture.
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As a result, the effective Hamiltonian is written as

H, VI
Hp11, = . (4.14)
vV H.
where
e
H. = —hv (k + ﬁa(r)) .o, (4.15)
2 /7 i
ary = o-o)| 7. (4.16)
eva

X

Eq. (4.15) is essentially the Dirac Hamiltonian under a uniform magnetic field
V X (+a) = (0,0, £beg) with beg = &[4nu’/(e*va)] (0 — Q). Note that the pseudo
vector potential a(r) originates from the inter-sublattice coupling u’ in the moiré
interlayer Hamiltonian [Eq. (4.13)], and it should be distinguished from the strain-

induced vector potential A®.

The off-diagonal matrix V is given by
V= (—31u12 - %A : 0') eiFX(D), (4.17)

where I is a 2 X 2 identity matrix, u is the intra-sublattice coupling in moiré

interlayer Hamiltonian [Eq. (4.13)], and

A=Al 4@ 3Bl e (4.18)
2 ev ’
mu’ 2 2 2 2
x(r) = fﬁ [+ y%)es + (x* = yP)e_ +xyen | - (4.19)

Here A" is the strain-induced vector potential argued in the previous section.

In the absence of the off-diagonal matrix V, the eigenstates are given by the
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pseudo LLs of sector H.. For & = + valley, it is explicitly written as

0 0
©@0,m 0
|+,0,m) = s = 0,m) = , (4.20)
0 ©0,m
0 0

where ¢, (r) o e=m9 /(I3 is the Oth LL wavefunction with angular momen-
tum m expressed in the polar coordinate r = r(cos ¢, sin @), and log = m .
The Oth LLs in Eq. (4.20) have exactly opposite sublattice polarization (i.e.,
|+,0,m) on B, and |-, 0,m) on A), because the Dirac Hamiltonians H. have op-

posite pseudo magnetic fields +beg.

In the absence of distortion (A = y =0), the Oth LLs remain the zero-energy
eigenstates even we include the off-diagonal terms —3iuls [Eq. (4.17)], because I2
does not mix different sublattices. The flat band of TBG is understood by these
degenerate Oth LLs. Since the effective Hamiltonian Eq. (4.20) is based on the
linear expansion around r = 0 (the AA spot), the approximation is valid for the
LL wavefunctions with small angular momenta m’s, which are well localized to

r=0.

When we switch on the distortion terms, the Oth Landau levels are immedi-

ately hybridized by A - o in the off-diagonal matrix V, and split into E = +AE/2,

3
AE =ev|A| = §ﬁy0,/ez + €2, (4.21)

Note that the pseudo gauge potential y(r) only contributes to the phase factor

where

of the coupling matrix elements [Eq. (4.17)], giving a higher order correction
to the splitting energy (see, Appendix 6.1). Eq. (4.21) explains the exclusive
dependence of the flat band splitting on e_ and €,,. Considering (3/2)Byo =
13 eV, a distortion (e_, €y) of the order of 1073 corresponds to a split width AE ~
10 meV.
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In Fig. 4.3, horizontal red lines represent +AE/2 of Eq. (4.21), showing a
good agreement with the actual split width of the DOS. In the energy bands, the
structures at «x, ¥’ and yu; are nicely explained by this simple splitting picture.
On the other hand, the energy bands around y point is rather complicated and
cannot be captured by the same approximation. This is consistent with the fact
that the wavefunction at y is extended over the entire moiré pattern unlike those
at k, k¥ and y; concentrating on AA points [158, 159, 160, 161], and hence the
pseudo LL approximation (assuming the localization at AA point) fails. The

Dirac band touching mentioned above actually occurs near vy.

4.2 TBG with non-uniform distortion

4.2.1 Theoretical modelling

In this section, we construct a theoretical model to simulate a non-uniform distor-
tion in TBG. We consider a super moiré unit cell composed of ngy X ngy original
moiré units (ngy: integer), and assume that the lattice distortion is periodic
with the super period as illustrated in Fig. 4.1. The primitive lattice vectors for
the super unit cell are given by L]S.M = nSML}4 and the corresponding reciprocal

lattice vectors are G]S.M = Gi\./[ /nsm.

We define the in-plane displacement vector of layer [ = 1,2 as
uD(r) = Z Cg>e—u|p|/2n)2€ip-r, (4.22)
p

which represents a deformation such that a carbon atom of layer [ at a position
r is shifted to r + u”(r). Here p runs over p = mlG§M + mgGSM, and A is the
characteristic wave length of the spatial dependence of u”(r). The amplitude
CI(,Z) = (CI(,ZZC, C I(,{)y) is a two-dimensional random vector which satisfy CSZI), = Cl(,l)*

for real-valued u”(r). We assume that different components of C;,l) are totally
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uncorrelated such that

<Cl()l,)icl(’l/,)j*> — 51,1’5P,—p’5i,jcg, (423)

where () is the sampling average and Cj is a length parameter to characterize the

amplitude of the random displacement field.

The local strain tensors and the rotation angle can be expressed in terms of
ul(r) as
Dy =L (5,0 4 5.,
Eij (I’) = 5 (al-u]. +6]u ) (424)

1
QV(r) = (axu;’) - ayuff)) . (4.25)

As in the uniform case, we define eil)(r) by Eq. (4.2), and relative strain compo-
nents €. (r), €, (r), Q(r) by Eq. (4.3). We introduce the magnitude of distortion,
€, as the root mean square of the interlayer difference of the strain tensor elements

[Eq. (4.3)], or,

3C3S
e = Vileal) = lewl?) = VIQP) =/ 5~ (4.26)

where Sqv = |L§M X Lng is the area of the super moiré unit cell.

Figure 4.1 show examples of distorted moiré patterns in the magic-angle
TBG(6 = 1.05°) with different values of € = 0, 0.0006, 0.0012, 0.0018, where
nsm = 8 (indicated by a big parallelogram) and A = 7Ly,. We adopted a con-
tinuous color code to express the stacking sequence [37], where the bright region
represents local AA stack and the dark region represents AB/BA stack. The red
dots are the AA spots of the non-distorted TBG for reference. It should be noted
that a small distortion in graphene lattice of the order of € is magnified to the

moiré disorder of €/6 ~ 60¢.

We calculate the energy spectrum by using an extended continuum model

incorporating non-uniform lattice distortion [42]. The Hamiltonian is given by
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Eq. (4.10), where the diagonal blocks are replaced by
Hy (k) = —hv (k + %A(l)(r)) o, (4.27)
with the local strain-induced vector potential

0
A(l)(r) — f§@ ex’(r) , (4.28)
2ev el

and the interlayer coupling U is replaced with,

U= ZS“ U, ol + Ky @ -] (4.29)
j=1
Here U; are defined in Eq. (4.13), K are the corner points of an intrinsic graphene
[Eq. (4.6)] and g are interlayer corner-point shifts [Eq. (4.8)] of non-distorted
TBG. In the diagonal matrix, we neglected the rotation matrix (R (¥60) + 8(1))_1
in Eq. (4.11), which gives a minor effect in the uniform distortion case.

While in this thesis we focus on the in-plane components of lattice displace-
ment, real TBG samples also contain out-of-plane corrugations [32, 33, 39]. The
primary effect of the corrugation is to differentiate the lattice spacing of AA-
stacking and AB-stacking regions, which is effectively incorporated by the differ-
ence between u and u’ parameters in the matrix U [57, 42|, as already mentioned.
We may also have an additional effect from non-uniform corrugation, which is

left for future work.

4.2.2 Energy spectrum and flat-band splitting

Using the model obtained above, we calculate the local density of states (LDOS)
for the magic-angle TBG (6 = 1.05°) with a randomly-generated displacement
configuration u")(r). First, we take € = 0.0004, A = 7Ly, and ngy = 12. Figure

4.4(a) illustrates the moiré structure, where the distortion is barely observed as
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Figure 4.4: (a) Moiré pattern of a disordered magic-angle TBG with € =
0.0004, A = 7TLy;. The distortion is observed as slight shifts of AA points (yellow
spots) relative to the regular red dots. (b) LDOS along line XX’ [defined by a
broken line in (a)]. (c) (Black, solid) LDOS at the points of pi, p2, ps in (a).
(Red, dashed) LDOS at the AA point of the corresponding uniform TBG with
the strain tensors fixed to the local value. (d) The spatial distribution of the
splitting energy AE, or the energy distance between the two LDOS peaks. A
hexagonal tile corresponds to a single moiré unit cell, and its color represents AE
at the center of the hexagon (the AA point). (e) A contour plot of the interlayer
difference of the strain-induced vector potential, ev |A(r)|. (f) A scattered plot
of AE and ev |A| (averaged in every moiré unit cell).

a slight shift of AA points (yellow spots) with respect to the regular red dots. In
Fig. 4.4(b), we plot the LDOS along line XX’, which is defined by a broken line in
Fig. 4.4(a). We can see that the LDOS of the flat band separates into upper and
lower parts by a splitting energy depending on the position. This is quite different
from the case of a random electrostatic potential which simply broadens the band
width. Figure 4.4(d) shows the spatial distribution of the splitting energy AE,
which is defined by the energy distance between the two LDOS peaks. Here a
hexagonal tile corresponds to a single moiré unit cell, and its color represents AE

at the center of the hexagon (the AA point).
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Actually, the local split width of the flat band is almost solely determined by

the local value of the interlayer difference of the strain-induced vector potential,

Ar)=AD ) - AP (), (4.30)

and the local splitting energy is approximately given by AE ~ ev|A(r)| as in the
uniform case [Eq. (4.18)]. To demonstrate this, we show a contour plot of ev |A(r)|
in Fig. 4.4(e). We observe a nearly perfect agreement with the distribution of AE
in Fig. 4.4(d). We also present a scattered plot of AE and ev |A| (averaged in
every moiré unit cell) in Fig. 4.4(f), where we have a high correlation coefficient
r = 0.93, and a fitted line is given by AE =~ 0.7ev|A|. The strong correlation
between the splitting width and the strain-induced vector potential is a special
property of the magic-angle flat band, as it relies on its peculiar Landau level like
wavefunction. On the other hand, the position of the satellite peaks (around +80
meV in Fig. 4.4) is totally uncorrelated with ev|A| (the correlation coefficient
about r ~ 0.1), but it is weakly correlated with the local twist angle Q (r ~ 0.5).

These results suggest that the local electronic structure in the flat band region
of non-uniform TBG is well described by a uniform Hamiltonian with the strain
tensors fixed to the local value. In Fig. 4.4(c), we plot the LDOS of the non-
uniform TBG at the points of pi, pe, p3 in Fig. 4.4(a), and the local density
of states of the corresponding uniform TBGs at AA point. Indeed, we see a
nice agreement between the two curves. We also note that the LDOS is never
completely gapped out at E = 0, in accordance with the calculation of uniformly-
strained TBGs where the two flat bands are always connected by the Dirac points.

The approximation with the local Hamiltonian is usually expected to be valid
in a long-range limit with 4 > L), but actually it works fairly well down to a
short-ranged distortion. Figure 4.5 shows the plots similar to Fig. 4.4 calculated
for different characteristic wave lengths, A = 5Ly, 3Ly, Ly. The correlation
coefficient between AE and ev |A| is found to be 0.90 at A = 3Ly, and it is still

0.73 at A = Ly;. We presume that it reflects the strongly localized feature of the
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Figure 4.5: Plots similar to Figs. 4.4(d)-(f) calculated for different characteristic
wave lengths A = 5Ly, 3Ly, L.

flat-band wavefunctions.

Figure 4.6 plots the total DOS of non-uniform TBG in different distortion
amplitudes € with A = 7Ly, For each curve, we take an overage over different
random configurations. We see that the two-level splitting feature in the LDOS
still remains as a double peak structure in the total DOS. In increasing €, the
curve is simply extended horizontally, as expected the relationship AE ~ ev|A]|.
The form of the DOS curve is roughly determined by the distribution function
D(]A]), which is plotted as broken line in Fig. 4.6 for the current model. Here

we scale the horizontal axis by E = 0.7ev|A| in accordance with Fig. 4.4(f).
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Figure 4.6: The total DOS of disordered magic-angle TBGs with different dis-
tortion amplitudes €. For each curve, we take an average over different random

configurations. Broken lines are the distribution function D(|A|) with horizontal
axis scaled by E =0.7ev|A].

By using the formula Eq. (4.21), we can roughly estimate the flat band split
energy in real TBG samples. A recent local measurement of the magic-angle
TBG [113] has shown that the local twist angle slowly varies from 6 = 1.05°
to 1.18° (amounts to Q =~ 0.001 (rad)) in a length scale of ym. The system
can be viewed as a part of a disordered moiré pattern as in Fig. 4.1, but with
a greater length scale. Here the twist angle variation Q does not stand alone,
but it is always accompanied by other strain components €, €_, €, with similar
amplitudes, because they stem from the same lattice displacement u(r). It is then
expected that the spatial variation of Q gives a relatively minor effect, while the
e_ and €, give rise to a flat band splitting just as in our simulation. If we assume
€_, €&y = 0.001, the typical value of the flat band split width on this sample is
estimated at AE ~ 10 meV by using Eq. (4.21). The result suggests that, in
realistic magic-angle TBGs with non-uniform moiré disorder, the flat band is not

actually a single band cluster but it splits by a sizable energy in most places.
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It is consistent with the STM measurements of TBGs near the magic angle
[5, 8], where a significant separation of the LDOS was observed. The local flat-
band separation may also be responsible for the pronounced Landau fan at the
charge neutral point which is commonly observed in the transport experiments
[3, 4, 11, 113], since the two separate bands are always touching as argued in
Sec. 4.1. The splitting of the flat band would affect the ground state properties
in the presence of the electron-electron interaction, since the Hilbert space of the
half-split flat band is different from the original full flat band.

While we focus on the strain effect in this calculation, the distortion of the
moiré pattern should also give rise to a non-uniform electrostatic potential via
an inhomogeneous charge distribution[158, 140, 162, 154]. We expect that the
effect is roughly captured by including a local shift of the energy in the present
calculation. At the filling factor v = 2 (i.e. half-filling of the upper flat band), for
instance, the upper LDOS peak would be aligned to the Fermi energy without
changing the local splitting width, to achieve the homogeneous electron density
of v = 2. We leave a detailed calculation including the electrostatic potential for
future works.

Our results suggest that moiré disorder should have significant effects in other
moiré systems, such as twisted trilayer graphene (TTG)[163, 60, 72, 71, 64, 73,
164, 165, 69] and twisted double bilayer graphene (TDBG)[166, 167, 168, 169,
170, 171]. Compared to TBG, these multilayer systems have greater degree of
freedom in relative lattice displacement and it may give rise to more complex
phenomena. In TTG, for instance, the interlayer displacement can be classified
by mirror reflection symmetry, where we expect that the mirror-symmetric com-
ponent splits the flat band as in TBG, while the asymmetric part contributes
to a hybridization of the flat band and the Dirac-like band, which have different
mirror eigenvalues[163, 69]. The application of the moiré disorder theory to these

multilayer moiré systems will be presented elsewhere.
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Chapter 5

Conclusion

In this thesis, we present conprehensive studies on lattice distortion and elec-
tronic structures in non-periodic moiré systems. Specifically, we investigated
trilayer moiré systems as well as disordered moiré systems, both of which pose

theoretical challenges due to their vast structural length scales.

In Chapter 3, we have presented a systematic investigation on general non-
symmetric twisted trilayer graphenes (TTGs). For various chiral and alternating
TTGs with different twist angle combinations, we employed an effective contin-
uum approach similar to twisted bilayer graphene, to obtain the optimized lattice
structure. we found that there are two distinct length-scale relaxations in the
moiré-of-moiré scale and moiré scale. This leads to a formation of a patchwork
of moiré-of-moiré domains, where the two moiré patterns become locally com-
mensurate. Specifically, the chiral TTGs prefer a shifted stacking to avoid the
overlap of AA spots in the individual moiré patterns. In contrast, the alternat-
ing TTGs exhibits a completely opposite behavior where AA spots are perfectly
overlapped. The preferred structure of moiré-of-moiré domains can be explained
by an intuitive picture based on the frustration of the lattice relaxation, where
the AA spots in the competing moiré patterns interact with each other with at-
tractive or repulsive force. This insight offers valuable guidance for estimating
the preferred domain structures in general twisted multilayers without the need

for extensive numerical calculations.

We also computed the electronic band structure of TTGs by using a continuum
band calculation method incorporating lattice relaxation effects. We found that

the chiral TTG exhibits an energy window where highly one-dimensional electron

94



bands are sparsely distributed. By calculating the Chern number of the local
band structure within the commensurate domains, we identify one-dimensional
domain boundary states as topological boundary states between distinct Chern
insulators. The alternating TTG exhibits a clear separation of the flat bands and
a monolayer-like Dirac cone, as a consequence of the formation of commensurate

domains equivalent to the symmetric TTG.

In Chapter 4, we have studied the electronic structure of the twisted bilayer
graphene with non-uniform moiré distortion. Using an extended continuum model
that incorporates nonuniform lattice distortion, we have demonstrated that the
local density of states (LDOS) within the flat band remains relatively unchanged
but splits into upper and lower subbands. We found that the flat-band splitting is
mainly caused by the local interlayer difference of anisotropic normal strain and
shear strain, while isotropic strain and rotation give relatively minor effects. The
splitting of the flat band can well be described by a pseudo landau level picture
for the magic-angle flat band, and an analytical expression of the splitting energy
is obtained. Even in cases of short-ranged distortion with a characteristic length
scale smaller than the moiré period, the alignment between the splitting energy
of the LDOS and the local strain persists. This observation highlights the highly

localized nature of the flat band wave function.

Finally, the theoretical model presented in this thesis holds significant po-
tential for applications in a wide range of moiré systems composed of various
2D materials. The complex lattice relaxation can be determined by just a small
number of parameters, such as the elastic constants and the registry-dependent
interlayer potential between neighboring layers (i.e., interlayer binding energy at
AA, AB and BA stacking), which are already known for most two-dimensional
materials. Once these parameters are determined, we can optimize the domain
structure and predict the geometric shape of the domains. Subsequently, we can
calculate the electronic structure to examine the topological properties of the

system. As a result, our theoretical scheme serves as a fundamental tool and

95



guiding principle for topological band engineering in twisted multilayers beyond
graphene bilayers. Studying super-moiré multilayer systems, which offer numer-
ous configuration possibilities, presents an opportunity to explore a new realm
beyond traditional moiré bilayers, expanding the scope of research in the field of

materials science.
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Chapter 6

Appendix

6.1 Pseudo Landau Level Hamiltonian

In this appendix, we derive the pseudo landau level Hamiltonian Eq. (4.14) by
applying the method of Ref. [152] to the disordered TBG. By defining

+ 1 ., (2
vy =Wy =) /V2 (X =A,B), (6.1)
the Hamiltonian matrix of Eq. (4.10) is written in the basis (Y, ¥ 3, ¥, ¥5) as

hy + %(U— Uy ho+ %(U+ UM

H = - ¢ , (6.2)
he=5(U+ U hy - (U= U™
where
A 4+ 42
hy = —(hvk +ev———| - o
A _ 4?2
h_ = —eV———— 0. (6.3)

In the following, we neglect the homostrain component A + A and focus on

the heterostrain part A = A — A2

Since the wavefuncton of the flat band is localized around the AA region, we

expand the interlayer coupling matrix U(r) around the AA stacking point (r = 0)
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to the linear order of r/Ly;. As a result, we have

U+UT <
5 :Zchosqj-rz?)ulg (6.4)
=1
U-U & °
i— :ZUjsmqj-rzZquj-r. (6.5)

~
1l
—

Jj=1

By using Eqgs. (6.5) and (4.9), the diagonal part of the Hamiltonian (6.2) is
written as

h+i%(U—UT):—hv ki%(a(r)+V)((r)) -0 (6.6)

where a(r) is the pseudo vector potential of Eq. (4.16) and the y(r) is the gauge
potential of Eq. (4.19). Finally, the effective Hamiltonian Eq. (4.14) is obtained

by applying a gauge transformation,

&(+) omifX 0 ¢§(+)

= 3 . (6.7)
w;(—) 0 e+1%/\( w;(—)
The coupling matrix elements in the Oth LLs are given by
(=0 VI, 0.m) = A oo FX o)
ev e
x5 A0 | Sm = 2z (o LY (F)|@om) | - (6.8)

Therefore, the gauge potential y only contributes to a higher order correction in

the Oth LL splitting.
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