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Chapter 1

Introduction

1.1 Purpose of study

Moiré materials, created by stacking two-dimensional materials with lattice mis-
match, have attracted attention as a platform of the novel physical phenomena.
Twisted bilayer graphene (TBG), a fundamental example of moiré materials com-
posed of two grahene layers [Fig. 1.1(a) and (b)], exhibits diverse physical phe-
nomena that vary dramatically depending on the twisting angle. Particularly, at
the magic angle (6 ~ 1.05°), the emergent flat band [1] leads to various quantum
phases including superconductivity, anomalous quantum Hall effect and corre-
lated insulating phases [2, 3,4, 5,6, 7,8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20].
In addition to TBG, moiré systems constructed from a range of two-dimensional
materials — such as graphene, hexagonal boron nitride (hBN), and transition
metal dichalcogenides (TMDs) — have been extensively studied and also remain
subjects of ongoing investigation.

Research on moiré materials extends beyond bilayer systems to encompass
multi-layer systems as well. Generally, twisted multilayer systems composed of
more than two layers are characterized by multiple moiré patterns which generally
mismatch with each other. As a consequence, the system exhibits a quasi-periodic
nature which cannot be treated by the Bloch formalism. The twisted trilayer
graphene (TTG) is a representative example of such a multilayer moiré system
[21, 22, 23, 24, 25, 26]. A recent experimental study found superconductivity [27]
in the quasi-periodic TTG.

Generally, twisted moiré systems are under a strong influence of lattice relax-
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ation. In TBG, for instance, an in-plane lattice relaxation forms commensurate
AB (Bernal)-stacking domains [28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42|, and it significantly modifies the electronic band structure.[37, 38, 42].
Lattice relaxation occurs also in others moiré materials such as twisted TMDs
[38] and graphene/hBN [43], and plays essential roles in the electronic properties.
(35, 44, 45, 46] Previous theoretical studies concerning lattice relaxation effects
have predominantly focused on moiré bilayer systems. However, the moiré tri-
layers and multilayers are unexplored in this regard, mainly due to the difficulty
to treat the interference of multiple moiré patterns with vast length scale. In the
first part of this thesis, we develop an effective continuum theory to analyze the
lattice relaxation and its effect on twisted trilayer graphene with various rotation
angle combinations. We will show that the relaxed lattice structure generally
forms a patchwork of moiré domains where two moiré patterns are distorted to

become locally commensurate, giving rise to topological electronic states.

In the second part of the thesis, we address another important question about
non-periodic moiré pattern, which originates from random disorder. In most the-
oretical analyses on twisted 2D materials, the moiré pattern is usually supposed
to be a perfectly regular and periodic. However, in the real sample, it is ran-
domly distorted due to the lattice disorder giving rise to non-periodicity. Here
we consider TBG with disordrered moiré pattern as the simplest example, and

study the moiré disorder effect on the electronic structure.

The thesis is organized as follows. In the rest of this chapter, we will review
the previous works on the moiré materials and and the lattice relaxation effects.
Chapter 2 provides a theoretical basis to describe the electronic band structure
and the lattice relaxation on TBG. In Chapter 3, we extend the theoretical meth-
ods to TTG, and study the lattice relaxation and its effect on the electronic
properties. In Chapter 4, we study TBG with moiré disorder, and we show the
effect on the flat band of magic-angle TBG. We conclude the thesis in Chapter

5.



(d) Lattice relaxation  (e) Moiré disorder

Figure 1.1: (a) The schematic figure of twisted bilayer graphene (TBG) with twist
angle 8 where Green and orange sheets represent the bottom and top graphene
layer respectively. (b) The moiré pattern of TBG where black dots are the each
carbon atoms, and red arrow indicates the moiré period. We can see the sparse
and dense regions of atoms appear periodically. (c-e) The schematic figures of
moiré pattern of TBG for (e) rigid, (d) with lattice relaxation and (e) with random
moiré disorder. Here, yellow region represents the structure of the sparse region of
atoms in (b), and blue region corresponds the dense region of atoms. In the case
of (d) lattice relaxation, blue region is expanded while yellow region is shrink. On
the other hand, in the case of (e) moiré disorder, we see that the moiré pattern
is distorted non-periodically.



1.2 Moiré materials

Moiré materials, formed by the stacking of two-dimensional materials, have been
the focus of extensive research in recent years. In these systems a long-range moiré
pattern resulting from lattice mismatch profoundly influences their electronic
properties. There are a wide variety of moiré materials arising from a choice of
two-dimensional materials and twist angles. The previous studies have unveiled
numerous remarkable phenomena that have never been observed in individual 2D
materials. [3, 4, 11, 15, 18, 19, 20, 2, 3, 5, 6, 7, 8, 11, 14, 15, 16, 17, 18, 19, 20, 10,
12,9, 13, 14]. In the following, we briefly introduce the representative graphene-

based moiré systems, which are closely related to the topic of this thesis.

1.2.1 Twisted bilayer graphene

Twisted bilayer graphene (TBG), the simplest example of a moiré system, is
created by stacking two monolayer graphene layers with relative twist angle
[Fig. 1.1(a)]. The period of the moiré pattern increases as the twist angle de-
creases. The electronic properties of TBG dramatically depend on the twist
angle. At a specific twist angle called the magic angle, it exhibits the gen-
eration of flat bands as a result of the moiré superlattice effect as shown in
Fig. 1.2(a). Owing to the flat band, TBG shows a variety of correlated quan-
tum phases like superconductivity[3, 4, 11, 15, 18, 19, 20], correlated insulator
state[2, 3, 5, 6, 7, 8, 11, 14, 15, 16, 17, 18, 19, 20], strange metal[10, 12] and
even ferromagnetic state[9, 13, 14]. Figure 1.2(b) shows the measurement of the
resistance of the TBG with magic angle given by the experiment[3], where we
see a superconductivity dome enclosed by white dash line in the phase space of
electronic density and temperature.

The electronic structure of TBG can theoretically be computed using density
functional theory [47, 48, 49, 50, 51] and tight binding model[52, 53, 48, 49, 51].

However, handling TBG with small twist angles (8 <~ 1°) using these atom-based

10
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Figure 1.2: (a) The energy band structure of magic angle TBG calculated by [57].
We observe the flat band appears around zero energy. (b) The color map of the
resistance Ry masured with sweeping the temperature 7 and carrier density n.
It shows Mott insulator phase around n =~ —1.3 x 102 ¢cm?, and Superconducting
phase surrounded by white dashed line.

methods is challenging due to the vast number of atoms within the moiré unit
cell. This complexity is significantly reduced by the continuum model [54, 55, 1,
56, 57, 42], which effectively averages the atomic degrees of freedom to capture

the long-range moiré scale.

1.2.2 Twisted trilayer graphene

In addition to the extensive study of twisted bilayers in the past decade, the scope
of investigation has extended to encompass multilayer systems including three or
more layers. Particular attention has recently been directed towards twisted
trilayer graphene (TTG), which consists of three graphene layers arranged in a
specific rotational configuration [58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
70, 71, 72, 73, 74, 21, 24, 22, 23, 75, 76, 77, 27, 78, 79, 80, 81]. The system is
characterized by twist angles 812 and 63, which represent the relative rotation
of layer 2 to 1, and 3 to 2, respectively, as shown in Fig. 1.3(a).

The special case of §'2 = —6?3 is called the mirror symmetric TTG [59, 60,
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61, 62, 63, 64, 65, 66, 67, 68, 69, 72, 71, 73, 74, 70|, where layer 1 and layer 3
are aligned precisely, leading to a single moiré periodicity [Fig. 1.3(b)]. The band
structure of symmetric TTG has the Dirac band like monolayer graphene and
moiré band like twisted bilayer graphene [60]. Recent transport measurements
observed correlated insulator phases and superconductivity in mirror-symmetric
TTGs [70, 71, 72, 73, 74].

Beyond the symmetric case, TTG offers a vast parameter space that remains
largely unexplored. In general TTGs with 812 # —0%3, the system has two different
moiré patterns originating from the interference of layer 1 and 2 and that of layer
2 and 3 [58, 24, 22, 23, 75, 76, 77, 27, 78, 79, 21, 80, 81, 82|, as illustrated in
Fig. 1.3(a). These two periodicities are generally incommensurate, giving rise
to a quasi-crystalline nature in the system [83, 84, 27]. When the two moiré
periods are close but slightly different, in particular, an interference of competing
moiré structures generate a super-long range moiré-of-moiré pattern [21, 22, 23,
24]. Similar situation occurs also in composite multilayer systems consisting of
graphene and hexagonal boron nitride [85, 86, 87, 83, 89, 90, 91, 92, 93, 94, 95, 96].
Previous researches investigated the electronic properties of general TTGs with
various angle pairs by using several theoretical approaches [58, 79, 76, 77, 27, 23,
24, 78, 80, 81]. Recent experimental study also reported superconductivity in

some asymmetric TTGs [27].

1.3 Lattice distortion in moiré materials

1.3.1 Lattice relaxation

Most of the theoretical research on the twisted moiré materials assume that the
individual 2D layers are rigid, keeping the original lattice structures. In a real
system, however, the lattice spontaneously distorts to the energetically stable
structure . In the case of TBG, it has been demonstrated that the lattice relax-

ation leads to a creation of the locally commensurate domains with so-called AB
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912 — _923

Figure 1.3: (a) The lattice structure of general twisted trilayer graphene (TTG).
The left is the schematic figure of stacking structure of TTG where green, black
and orange sheets indicate the monolayer graphene of layer 1, 2 and 3. In the
right figure of the moiré pattern of TTG, we observe that the moiré 12 (between
layer 1 and layer 2) and moiré 23 (between layer 2 and layer 3) have different
pattern, and moiré-of-moiré pattern appears from the interference between moiré
12 and moiré 23. (b) The similar figure of (a) for mirror symmetric TTG.
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and BA stacking [28, 32, 33, 34, 36, 37]. We will explain the detailed concept
in the following. Figure 1.4 illustrates the lattice structure of TBG composed of
rigid honeycomb lattices. We can see that the local structure at any particular
position approximates a non-twist bilayer graphene configuration with a certain
lateral shift, such as AA, AB and BA stacking as shown in the right. Here AA
stack represents the structure that two honeycomb lattice completely overlap,
and AB(BA) stack is the lattice structure where A(B) site of bottom layer and
B(A) site of top layer vertically align. In non-rotated bilayer graphene, AB and
BA stack (graphite structure) are the most energitically stable while AA is the
most unstable [28, 97, 98]. In TBG, therefore, the graphene lattice simultaneously
distorts to increase the AB/BA stacking[32, 33, 36, 34, 37].

Such a lattice relaxation of TBG has been theoretically studied by using DFT
[32], molecular dynamics [33], various DFT-based effective methods [36, 34], and
also by an effective continuum approach [37]. The coninuum model in Ref. [37]
treats graphene layer as a continuum elastic membrane smearing carbon atoms.
This approach significantly reduces the computational burden compared to earlier
simulations that explicitly handled individual carbon atoms. The top row of
Fig. 1.5 presents the lattice relaxation of TBG that calculated by Ref. [37]. Here
the local stacking structure is depicted through the contour plot of the local
stacking energy. We observe that the triangular domain structure of AB/BA

stack becomes more remarkable for smaller twist angles.

The effect of the lattice relaxation is also investigated in other moiré bilayers.
In graphene/hBN bilayer, for instance, the moiré pattern exhibits hexagonal do-
mains [See Fig. 1.6(b)] unlike trigonal pattern in TBG. This occurs because in
hBN, a boron and a nitrogen atom occupy A and B sublattices, respectively, giv-
ing different interlayer coupling energies in AB and BA stacking with graphene.
The lattice relaxation expands only the most stable AB region, creating hexago-
nal domains. TMD moire systems can show both trigonal and hexagonal domains

depending on the theirs stacking arrangements [Fig. 1.6(d) and (f)], parallel (P)
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Figure 1.4: Lattice structure of TBG, where green and orange honeycomb repre-
sent the graphene lattice of bottom and top layer. Due to the lattice mismatch,
local lattice structure of TBG varies between AA; AB and BA stacking illustrated
in right column.

and anti-parallel (AP) stack. Here P stack illustrated on Fig. 1.6(c) constructed
from the two monolayer TMD with relative twist near 0°, where while AP stack
is given by the twist around 180° as shown in Fig. 1.6(e). In monolayer TMD,
sublattice A and B are occupied by a metal atom and a chalcogen atom, respec-
tively. In the P stack, AB and BA stack configurations give distinct structures
and hence different interlayer coupling energies as in graphene/hBN, resulting in
the hexagonal deomains. In the AP stack, on the other hand, AB and BA give
identical structures related by the space inversion, leading to triangular domains

as in TBQG.
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Figure 1.5: Moiré patterns (top) and energy band structures (bottom) with lattice
relaxation at twist angle (left) 8 = 2.65°, (middle) 1.05° and (right) 0.817° given
by [37]. In the top figure of moiré pattern, blight and dark regions are AA and
AB/BA stacking respectively. We see that the AB/BA domain construction is
dominant for the lower twist angle TBG. In bottom figures, black and red lines
represent the energy band of relaxed and non-relaxed TBG.
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Graphene/hBN

A’ (nitrogen)
7 A (carbon)
~ - (boron)
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AA | AB
Mo® 3
Mo
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Figure 1.6: (a) Schematic figure of graphene/hBN. The local lattice structure

of its moiré varies AA’, AB’ and BA’ illustrated the right figures. (b) Relaxed
moiré pattern of graphene/hBN (G/hBN) at 6 = 0° given by [43]. (c,e) The
schematic figures of twsited bilayer MoS2 for parallel and anti-parallel stack.
The right figures show the local stacking structure in the theirs moiré, where top
and bottom show the plane view and the cross-section of each stacking. (d,f)
Relaxed moiré patterns of twisted TMDs (tTMDs) at 8 = 0.1° for parallel and
anti-parallel stack. These figures are calculated by [38].
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1.3.2 Electronic structure under lattice relaxation

The lattice relaxation is also reflected in the electronic properties of moiré sys-
tems. The band structure of the relaxed TBG was theoretically studied in various
methods [37, 39, 99, 57, 100]. The bottom row of Fig. 1.5 represents the band
structure of TBG with various twist angles calculted in Ref. [37], where the black
and red lines show the results for relaxed and non-relaxed TBG respectively.
We see that the band structure is more strongly modulated by the relaxation in
smaller twist angles. In the case of 6 = 1.05°, particularly, the energy gap arises
between the central and the secondary bands, leaving the flat band isolated.

Recently the effect of the lattice relaxation in general moiré systems was
integrated into the electronic continuum band model [101, 42, 102], enabling
more efficient simulations with significantly reduced numerical costs compared to
atomic models. In TBG, the effect of the lattice relaxation on the continuum band
model manifests in two ways: firstly, the lattice strain within each layer induces
an effective vector potential in the Dirac Hamiltonian of monolayer graphene
[103, 104, 105], and secondly, the interlayer sliding singificantly modulates the
moiré interlayer matrix elements [57, 100, 106, 102].

Similar lattice relaxation and the resulting band modulation are anticipated
in multilayer moiré systems more than bilayer. However, to date, the study in
this area remains largely unexplored. The primary challenge stems from the vast
length scale of TTG, caused by the interference between two moiré patterns,
resulting in a substantial number of atoms within the relevant scale. In this
thesis, we solve this problem for the first time by extending the continuum model
in Ref. [37] to multilayer moiré systems. We will show that the three-layer system
exhibits a multi-scale lattice relaxation and moiré-of-moiré patchwork structure,
which are never observed in bilayer systems. We also calculate the electronic
structure of TTG incorporating the lattice relaxation. We will find that moiré-of-
moiré patchwork structure gives rise to a network of one-dimensional topological

electronic states localized on the boundary of domains.
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1.3.3 Moiré disorder

In addition to the regular lattice relaxation within the moiré periodicity, real
samples of moiré materials exhibit non-uniform lattice distortion, which includes
local tensile and variance of the twist angle [6, 7, 8, 5, 107, 108, 109, 110, 111,
40, 112, 113, 114, 115, 116, 117, 118, 96, 119]. Figure 1.7(a) displays a moiré
structure experimentally observed in a low-angle TBG sample [111], where blight
spots indicate the AA stacking. We can see a non-uniform moiré pattern due to
uniaxial stain in the sample. In other experiments, twist angle disorder which
varying twist angle in real space, also observed [113][Fig. 1.7(b)]

The disorder within the moiré pattern is anticipated to significantly impact
the electronic properties. Theoretically, calculating the electronic structure un-
der such moiré disorder presents a challenge due to the necessity of considering
numerous moiré periods, each involving a vast number of atoms, to comprehen-
sively capture the entire disordered pattern. In previous works, the effect of
the twist angle disorder in TBG was investigated using various theoretical ap-
proaches, such as a real-space domain model composed of regions with different
twist angles [120], transmission calculations through one-dimensional variation of
twist angle [121, 122, 123], and a Landau-Ginzburg theory to study the interplay
between electron-electron interactions and disorder [124]. However, the influence
of the long-range two-dimensional disorder as observed in real systems has not
yet been investigated theoretically.

In this thesis we apply the effective continuum formulation in Ref. [42] to
the TBG with moiré disorder. To simulate a non-periodic moiré disorder, we
take a super unit cell composed of a number of moiré periods, and introduce the
structural disorder within the period of the super cell. We will calculate the local
density states, and discuss the fate of the flat band under the moiré disorder in

detail.

19



(a) (b) e

Figure 1.7: (a) Moiré pattern of the real sample of TBG observed by
experiment[111], where blight spot represents AA stack. (b) Twist angle disorder
in the sample of TBG obseved by experiment[113], where color plot represents
the local twist angle.
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Chapter 2

Theoretical background

Here, we introduce the basic theory for twisted bilayer graphene. We first ex-
plain the geometry of lattice structure of TBG. Second, we present a continuum
method to treat the lattice relaxation by considering the total energy change in
the presence of the distortion, By using the formula, we obtain the optimized
atomic structure of TBG. In the third section, we introduce an electronic con-
tinuum band model of monolayer graphene and TBG. First, we introduce the
Dirac Hamiltonian of monolayer graphnene. After that, we derive the contin-
uum Hamiltonian for the intrinsic TBG with rigid honeycomb lattices, and then

extend it to TBG with lattice distortion.

2.1 Geometry of moiré pattern of TBG

First, we define the geometry of monolayer graphene. We take the xy-plane paral-
lel to graphene layer and the z axis as the perpendicular direction for graphene. In
this thesis, we define the lattice vector of monolayer graphene without rotation as
ai =a(1,0) and as = a(1/2,V3/2), where a = 0.246 nm is the lattice constant of
monolayer graphene illustrated in Fig. 2.1(a). We also define the nearest-neighbor
site vector as 7; = R (%’T(] - 1)) (a/V3)(0,1) for j = 1,2,3, where R(6) is the rota-
tion matrix. The reciprocal lattice vector is given by by = (47/V3a)(V3/2,-1/2)
and by = (47/V3a)(0,1). We define the K and K’ valley, which are two indepen-

dent corners of Brilluoin zone (BZ) of monolayer graphene, as

4 4r
K=-——(1,0), K =+—(1,0), 2.1
- (1,0) - (1,0) (2.1

21



Figure 2.1: (a) Lattice structure of monolayer graphene. Black dots represent
the carbon atoms and gray rhombus is the unit cell. Black and green arrows
are the lattice vector a; and the nearest-neighbor vectors 7; respectively. (b)
Brillouin zone of monolayer graphene, where the arrows indicate the reciprocal
lattice vector. we define two independent Dirac points as K and K’ as illustrated
in figure.

like in Fig. 2.1(b). As we show later, monolayer graphene has the linear band

dispersion called the Dirac band around these corners.

From here on, we introduce the geometry of moiré structure [125]. We consider
two monolayer graphenes stacked with relative twist angle §. Here we assume that
layer 1 and layer 2 are rotated ¥6/2, respectively, so the lattice vector of layer
[(=1,2) are given by aﬁ.l) = R(F60/2)a; where F is for [ = 1 and 2, respectively.

Likewise, the reciprocal lattice vectors of layer [ are b;l) = R(F6/2)b;.

The atomic structure of TBG is not exactly periodic in general because the
periodicities of the two layers are generally incommensruate. However, in some
special twist angles, the atomic lattices of the two layers happen to commensurate,
and the entire system becomes periodic. This is called a commensurate TBG. In
such a case, we can express the period L®°™) in terms of integers n, m, n’ and m’
as

1 (atom) _ nagl) +ma;1) _ n,agm +m’a§2). (2.2)

In TBG, we can write n’ = m and m’ = n in a proper choice of the lattice vectors

22



aV and al.(Q). Thus Eq. (2.2) become as

1

Latom) — nagl) + maél) = magz) + naéz). (2.3)
By solving this equation, the twist angle 6 (i.e. the angle between afl) and al@))

can be obtained as a function of m and n as,

1m2+n2+4mn]. (2.4)

O(n,m =cos ' |=
(n, m) [2 m? +n2 +mn

The 60° rotation of L™ also gives a lattice vector because of Cg, rotational
symmetry. Fig. 2.2(a) and (c¢) show the commensurate lattice structure of TBG
for 6 = 13.2° and 7.34°, where green and orange dots are the carbon atoms of
bottom and top layer respectively, and black rhombus is the commensurate moiré
unit cell. (b) and (d) of Fig. 2.2 show first BZ of bottom (green dotted) and top
(orange) layer in the k-space. Gray honeycomb is the moiré BZ, and we labeled

the high symmetric points in BZ as I, M, K and K illustrated in right figure of

(b).

When twist angle is small enough (6 < 10°), the mismatch of the lattice
periods of the rotated layers gives rise to a long-period moiré pattern. In this
low-angle regime, the spatial period of the moiré pattern serves as an effective
period and the electronic properties can be treated by a usual Bloch system, even
when the system is not exactly periodic in the atomic scale. The moiré super
period is estimated as follows. We take the origin as the rotation center, then
we can define the interlayer atomic shift §g(r) as the difference of the two atoms
after the rotation,

5o(r) = [R(—0/2) — R(+6/2)] r. (2.5)

When the interlayer atomic shift dg(L;) at r = L; coincides with a lattice vector

of monolayer graphene without rotation a; (i = 1, 2), the system has the moiré
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period of L;. Here, we assume that the condition ég(L;) = a;, it lead to,
L;=[R(=60/2) — R(+0/2)] ' a; = L x R(-x/2)a; (2.6)

for i = 1,2, where L is the lattice constant of the moiré pattern written by

a

The reciprocal lattice vectors of moiré lattice satisfying G, - L; = 276;;, are given
as

Gi=[R(-6/2) - R(+6/2)]b=b" - b (2.8)

For a commensurate TBG, the exact period L®°™ in Eq. (2.2) and the moiré
period L in Eq. (2.7) are simply related by L®*°™ = |m —n|L. Figure 2.3 shows
the moiré lattice structure of TBGs with 6 = 13.2°, 11.0° and 9.43°. Here green
and orange dots represent the carbon atoms of bottom and top layer, and red
and blue rhombuses indicate the incommensurate and commensurate moiré unit

cell.

2.2 Continuum method for lattice relaxation

In this section, we introduce a continuum method to obtain the stable lattice
structure of TBG allowing the lattice distortion [37]. We express the total energy
as a functional of the position-dependent displacement vector, which expresses
the atomic shift at the position r. We then derive the Euler-Lagrange equation
to minimize the total energy. Here, we assume that the distortion of X (=A or

B) atom in layer [ is the continuum function sg)

as the real space r, and ignore
the dependence of the sublattice si\l) = sg) =50,

First, we express the total energy of TBG as the summation of the binding

energy (inter-layer term) and the elastic energy (intra-layer term). The local
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0 =13.2°,(n,m) = (1,2)
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Figure 2.2: (a) Lattice structure of TBG at § = 13.2°, (n,m) = (1, 2), where green
and orange dots represent the carbon atoms, and black rhombus is the moiré unit
cell. (b) The schematic figure of k-space of TBG with same angle of (a), where
green and orange hexagon is the BZ of monolayer graphene for layer 1 and 2
respectively. Small gray hexagon are the moiré BZ, and we label the symmetric
point as I', M, K and K’ as shown right figure of (b). (c-d) The similar figure of
(a) and (b) for TBG at 6 = 7.34°, (n,m) = (4,5).

0 =9.43°,(n,m) = (3.4)
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Figure 2.3: Lattice structure of TBG at (left) 6 = 13.2°, (middle) 11.0° and
(right) 9.43°, where green and orange dots represent the carbon atoms, and red

and blue rhombus indicate the incommensurate and commensurate moiré unit
cell[125].
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atomic shift between the both layer at r is given by
8(r) = 8o(r) +sP(r) — sV (r). (2.9)

Here 6¢(r) is the interlayer atomic shift without lattice deformation which is given
as Eq. (2.5). When the moiré period L is much larger than the lattice constant of
graphene a, the local stacking structure can be regarded similar to the nonrotated
bilayer graphene with the relative shift by é depending on the position smoothly.
We define the nonrotated bilayer graphene’s interlayer local binding energy per
area as V[0]. In the simplest approximation, it can be expressed as a cosine

function as

3
V6] = Z 2Vj cos [b; - 8] , (2.10)
j=1

where by = —b1 — by. In TBG, 6 is not constant but it smoothly varying as a
function of the position r. Then the total interlayer binding energy of TBG Up

1s written as

w:/&wwm]

3
= / d2rZ 2Vp cos [Gj r+b; - (s -sWy, (2.11)
j=1

where G3 = -G 1-G2, and we used Eq. (2.9), (2.10) and the relation b;-6p = G;-r.

The elastic energy of TBG is written in a standard form [103, 126] as

U 21/
E = =
l=12

where 1 = 3.25 eV/A? and u = 9.57 eV /A? are graphene’s Lamé factors[127, 35],

2 2 2
(u+2) (50 +510) +ﬂ{(sgg_s;9) e (s) }]d (2.12)

and sf]l.) = (ﬁis;l) + 8jsl.(l)) /2 is the strain tensor. The relaxed lattice structure
can be obtained by minimizing the total energy U = Ug + Up as a function of
s (1 =1,2). We introduce s* = s + (1) and rewirite U as a function of s*. To

obtain the relaxed lattice structure, we solve the Eular-Lagrange equations for s*
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as

d (au) oU 2.13)

dr\asz) ~ ast’
where u = x,y and [ = 1,2. The left-hand side is 0 because U does not depend

on the §* and ¢. Since the binding energy Up is the function only for s~ not s*,

+

the equation that come from s_, |

terms gives s* = 0. While the equation of s,

terms are given as

1 d%s; 52S; 1 (0%s; 0%
5(/l+u) =+ +—,u( =+ x)

ox2  axy | 27\ ox2 " ay2
3
+ ) 2Vosin[Gy-r+b;-s™(r)] bjy=0 (2.14)
j=1
%57 925 0%sT  0%sT
0 (W“ axjf)*%“(a?y* ayzy)
3
+ ) 2Vosin [Gj-r+by-sT(r)] by =0 (2.15)
j=1

where b; , is p(= x,y) component of b;, and we used following relations,

oUp

3
8s; = —/ er; 2V sin [Gj ‘r+b;- s_(r)] bjus (2.16)

and
oUg _ 1 2 0, (0
m ——5/(1 r [(,u+/l)8’u (sxx +syy)
u

+u {i(?# (s,(CQ - syy)) +0; (s)(cl) + sy))}] ) (2.17)

Here, we rewrite the elastic potential term by using the integration by parts. The

integrated term of the integration by part is 0 because the displacement vector

()

s,,” is a periodic function for the moiré period. Then the elastic potential term is
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written as

2
1 2 () () ), (D
U = -5 