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1. H-separable extensions

K. Hirata introduced the notion of a type of the separable extension recently
in [7], which we shall call H-separable extension in this paper.

Let A2T be rings with the common identity element. Then we say that A
is an H-separable extension of T" if AQpA is isomorphic to a direct summand
of a finite direct sum of the copies of A as two sided A-module. Such an
extnesion is necessarily a separable extension i.e., \A\<@®,AQ®rA, by Th. 2.2
[7]. Let ADT be an H-separable extension, V,(T)={AEA|yr=\y for all
y&TY}, and C be the center of A. Then, AQrA= Hom (V,(T), A) and V,(T")
is a finitely generated projective generator as C-module (see §2 [7]). Now we
give some characterizations of H-separable extension and H-separable algebra.
We assume all rings have units and all subrings have the same 1.

Theorem 1.1. Let ADT be rings with the common 1. Then ADT is an
H-separable extension if and only if the map n: AQrA—Hom¢ (A, A) such that
2(x@y)(d)=xdy is an isomorphism and A is a finitely generated projective C-module,
where C is the center of A and A=V \(T).

Proof. The ‘only if’ part have been proved in [7]. So we need only to
prove the converse. Since A is a finitely generated projective C-module, the
map @:AQc Hom ,«(A, AQrA)—Hom ,«(Hom. (A, A), AQrA) such that
p(dQf)(h)=f(h(d)) is an isomorphism. On the other hand, we see
Hom ,«{A®A, A)=A by the mapf—f(1). Since the map 7:AQrA—
Hom (A, A) is an isomorphism, the map

Jr:Hom jo(AQrA, A)Qc Hom (A, AQrA)—Hom ,(AQrA, AQrA)

such that Y(fQg)=gof is an isomorphism. This means \AQrA, <P
af fn‘_, @A),. Hence A is an H-separable extension of T'.

Proposition 1.1 Let A be an algebra over a commutative ring R and C its
center. Then, A is an H-separable R-algebra if and only if A is separable over C
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and CQ rC=C by the map @ such that p(xQy)=xy.

Proof. Let A be an H-separable R-algebra. Then, by Th. 2.1 and Th. 2.3
[3] A is separable over C, and the map 7¢:A®cA—Hom (A, A) such that
7c(xQy)(N)=xNy is an isomorphism. On the other hand, we have the isomor-
phism 7z :A®rA—Hom (A, A) with 7x(x®y)(\)=xry by Prop. 1.1.
Therefore, AQ A is isomorphic to AQcA by the map 7. ong(xQRY)=(*RY).
Then, since C is a C-direct summand of A, it follows CQ rC=C. Conversely,
assume A is separable over C and CQrC=C. Then AQrA=(ARL)Rr
(CRAN)=AR(CRrC)QA=ARLRX)A=AR:A. On the other hand,
since A is separable over C, A=V,(R) is a finitely generated projective C-
module and Hom ((V,(R), A)=Hom (A, A)=ARQR A=ARQrA. Hence A is
H-separable over R by Prop. 1.1.

ExampLE. Let R be a commutative ring and S a multiplicatively closed
subset of R which does not contain 0. Then Rg, the ring of quatients of R with
respect to S, enjoys the condition Rg® pRs==Rg, since 7/sQ1=r[sQs[s=s[sQr/s
=1Qr/s for every s€ Sand r€R. Thereforc, every central separable Rg-algebra
is an H-separable algebra over R but not a central separable R-algebra whenever
S contains non unit elements.

Proposition 1.2. If A is an H-separable extension of T such that T is a left
(or right) T-direct summand of A, then V \(V \(T"))=T".

Proof. Since A is H-separable over T',the map 7 : AQrA—Hom (A, A)
such that 7»(x®y)(d)=xdy is an isomorphism. Let x&V,(V,(T')). Then
x®1)(d)=xd=dx=n(1Qx) foralldEA. Hence x®1=1®x. Then itis easy
to show that ¥ T, since T is a left (or right) I'-direct summand of A.

Corollary 1.1. An R-algebra A is central separable over R if and only if A
is H-separable over R and R is an R-direct summand of A.

Proposition 1.3. Let A be an H-separable extension of T' and B a subring of
A which contains T and is a B-T-direct summand of A as left B and right T module.
Then the map 15 : BQrA—Hom p(A, A), where D=V (B) and A=V ("), such
that ng(x@y)(d)=xdy is an isomorphism and A is a finitely generated projective
left D-module, and V \(V \(B))=B.

Proof. Br<@zAr implies ;BRrAr<DpAQrA < Py( S BA),. On
the other hand, Hom gg,ai(BQrA, A)=V,(T")=A, where R is the center of T.
Then, by Th. 1.2 (ii) [7] we see 75: BQrA—Hom p(A, A) is an isomorphism,
while Th. 1.2 (iii) [7] shows Hom g, r(B&rA, A)=A is a finitely generated
projective left D-module. Now we have a commutative diagram of canonical
maps
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BRrA —2 Hom p(A, A)

P
ARrA SN Hom (A, A)

where 7, 7" are monomorphisms and 7, , 7 are isomorphisms. Let x&V ,(V ,(B))
=V,(D). Then 7,(x®1) is a left D-homomorphism. Hence there exists
25N EBRQrA<PAQrA such that 7,( 235;QN;)=7,(¥®1), which implies
215,QN;=x®1. Since gBr<@zAr we see x=B by the map AQrA—A:
xQy—>xy.

Proposition 1.4. Let A, T and B be as in Prop. 1.3. Assume furthermore
that B is a separable extension of T'. Then D is a direct summand of A as two sided
D-module, and A is an H-separable extension of B.

Proof. Since B is separable over T, there exists > x;Qy;E BQB such
that >3 x;y,=1 and X bx;®@y,=>x;Qy:b for every b&B. Then, the map
f:A—D such that f(d)= >} «x,dy; (d€A) is a D-D-homomorphism such that
foi=1,, where 7 is the inclusion map. Hence, D is a D-D-direct summand of
A. Let 7 be the projection of A onto D. Then we have a B-T"-homomorphism
@' of gAr into zHom 5(A, A)r such that @'(A)=2A"oz, where A" means right
multiplication of A. Thus we have a commutative diagram

7
B® A —~ > Hom p(A, A)

’

7731 @ P
A4 1a A

where z(bQN)=b\, @(h)=h(1) and 7, is an isomorphism, and all of them are
right A and left B-maps. Since @ ongorg=1, 7y splits as B-A-map. Conse-
quently, we have AQpA<PARQp(BRrA)=AQrA. Then, since AQ A<D

Z”} DA, \AQeA <D, 2 @A,. This completes the proof.
Finally we shall give some formal properties of H-separable extensions.

Theorem 1.2. Let ADT be a ring extension. Then the following statements
are equivalent:

(a) A is an H-separable extension of T'.

(b) The map g:AQ(AQrA)*—=>(AQrA)" such that g(dRQa)=da is an
epimorphism.

(c) For every two sided A-module M, the map g:AQc M*—M?* is an iso-
morphism, where M®={me M |mx=xm for every xEQ}.

Proof. (a)=(c). Since A is H-separable over T', A is C-finitely generated
projective. Therefore we have AQ :M*=A® Hom (A, M)=~Hom ,«(Hom,
(A, A), M)=Hom ,(AQA, M)=M".



268 K. SucaNo

As (c)=>(b) is trivial, we will prove (b)=>(a).

(b)=(a). Since A=~Hom ,«(A®rA, A), we have AQ (AR rA)*=~Hom
A(A A, A)®cHom 4(A, AQrA) = (AQA) = Hom 4(A®rA, AQA).
Hence A is an H-separable extension of T (see Prop. 1.1[7]).

Proposition 1.5. Let f be a ring epimorphism from A, to A,, f(T,)=T, for
a subring T, of A,, C; the center of A;, and A;=V \[(T;) for i=1,2. If A, is an
H-separable extension of T, then A, is an H-separable extension of T, and
AQc,Cr=A,.

Proof. Let M be an arbitrary two sided A,-module. Then M becomes a
two sided A,-module by f, and M*1=M"z and MT1=M"=. Therefore we have
A, Qc,M"*2=M"2 by Theorem 1.2. Taking M=A,, we have A ®C,=A,.
Then A,Q@c,M*2=A,Q,C.@c,M*222 A, Qc,M"1=M"1=M": for any two sided
A,-module M, which means A, is an H-separable extension of T,.

Proposition 1.6. Let QD ADT be rings with the common 1. If both Q2D A
and ADT are H-separable extensions, Q2T is also an H-separable extension. If
furthermore V \(V A(T))=T and Vo(Vo(A))=A, then V(V(T))=T.

Proof. Let AQA<® SIPBA and QR,Q<B 3 Q. Then QRO

~0®R (AR AR Q<D AR AR 0= 31QR Q<D 31 Q as two sided-
module. Hence Q is H-separable over T. Assume V,(V,(T"))=T and
Vo(Va(A))=A. Since Vg(T)=Vg(A)-V,(T') by Theorem 1.2, Vy(Vy(T))
=Va(Vo(A)) N Vo(VAT))=ANVo(VAI)=VA(VA(T))=T.

Proposition 1.7. Let A;, T'; be algebras over a commutative ring R for

i=1,2. If A; is an H-separable extention of T'; for i=1, 2, A,QrA, is an H-
separable extension of Im (T',Q gT,).

Proof. Since (A, ®@rA,) r,err (A @rAz)=(A, @r,A;) Qr(A, QrA,), if

A @A <O 2 DA, and A, @r,A <D 3 DA, (M@ AR (A RpA)< B
:‘j DA, QrA,. This comptetes the proof.

2. Semisimple extensions

Again let ADT be rings with common 1 in this section. We say that A is
a left semisimple extension over T" if every left A-module is (A, T')-projective,
and that A is a weak left semisimple extension over I" if every finitely generated
A-module is (A, T")-projective. An algebra over a commutative ring R is said
to be a left semisimple algebra over R if it is a weak left semisimple extension
over R-1. In the previous paper [6] we showed.
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Lemma 2.1. (Prop. 1.6 [6]). Let A be a left semisimple extension over T'.
If A is left T' -projective or right T'-flat, then I. gl. dim A< gl. dim T. If a
weak left semisimple extension A of T is right T-flat, we have also I gl. dim A
<lgldmT.

Lemma 2.2. If a ring A is left projective over its subring T', and if T is T-
T-isomorphic to TV a two sided T-direct summand of A, l. gl.dim A=1.gl. &imT.

Proof. Let pAp=rI't@®rAr’ as two sided I'-module and | be an arbitrary
left ideal of T'. Since AI=T"IPA'T=IPA'l as left I'-module, A/Al=T/ID
A'[|A’L as left T-module. Suppose 1. gl. dim A<#n. Then dim ,A/AI<n. As
A is T-projective, dim pA/AI=dim ,A/Al  Since A/Al=T/IPA’|A'],
dim pA/Al=max (dim I'/l, dim ;A’/AT)=dim T'/I. Thus we see 1. dim I'/I
<n for every left ideal [ of . Since 1. gl. dim I'=sup 1. dim I'/l where [
runs over all left ideals of T, 1. gl. dimT'<<n. Hence 1. gl. dim I'< 1. gl. dim A.

Combining Lemma 2.1 and Lemma 2.2, we have

Proposition 2.1. If ADT be a left semisimple extension such that T is T-T'-
isomorphic to a two sided T-direct summand of A and A is left T-projective, then
L gl dim A=I. gl. &im T".

Theorem 2.1. If an R-algebra A is a finitely generated R-projective and
left semisimple R-algebra, l. gl. dim A=I. gl. dim R|a, where a is the annihilator
of A in R. Consequently, when A is (two sided) semisimple over R, I. gl. dim A
=r. gl. dim A.

Proof. If A is R-finitely generated projective, A is R/a-finitely generated
projective, and A is an R/a-generator. Hence R/a<@®A as R/a-module. Since
A is R/a-projective, it is R/a-flat. Therefore, the proof is straightforward by
Lemma 2.1 and Lemma 2.2,

Remark. Th. 2.1 shows that if A is a central separable R-algebra, 1. gl. dim
A=r. gl. dim A==gl. dim R. Th. 2.1 induces the well known fact that 1. gl. dim
A=0 if and only if r. gl. dim A=0 in case R is a field or a semisimple ring.
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Added in proof. K. Hirata kindly advised me that Proposition 1.1 can be
stated in noncommutative case as follows.

Theorem 1.3'. Let ADT be an H-separable extension. Then A is H-
separable extension of T'=V \(V,(T")). If T'" is left and right T'-direct summands
of A, then A is H-separable over T if and only if A is H-separable over T'' and
I'QeI=I".

Proof. If A is H-separable over T', we have a commutative diagram

A®rA —2—> A@mA

’

n n
Hom (A, A)

where 7 is an isomorphism and @(x®y)=x®y is an epimorphism. Hence @
is an isomorphism, and A is an H-separable extension of I'". 'The rest of the
proof is same as Theorem 1.1.

The next is a corollary to Theorem 1.1.

Corollary 1.2. Let A be a faithful R-algebra. Then A is a central separable
R-algebra, if and only if A is H-separable over R and a finitely generated R-module.

Proof. The ‘only if’ part is clear, so we need only to prove the converse.
Let C be the center of A. Since A is H-separable over R, C<@®A. Hence C
is a finitely generated R-module, as A is R-finitely generated. Since CQ xC=C
by Theorem 1.1, C/mCQrmC/mC=C/mC for every maximal ideal m of R.
Therefore we have C/mC=R/m, and C=R-+mC for every maximal ideal m of
R. Hence C=R, and A is central separable over R.





