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Chapter 1. General Introduction

1.1 Introduction to Single-Molecule Measurement

Single-molecule measurement offers a unique approach to delve into the distinctive
characteristics of individual molecules, steering away from the conventional practice of
averaging data from ensembles. This technique allows for the examination of the unique
properties of individual molecules, departing from traditional ensemble averaging methods.
The junction of a molecule with a metal electrode measures the molecule electrically and

provides insight into charge transport at the single-molecule level.!”

An early stage of research using single-molecule measurement is the field of molecular

electronics, which applies individual molecules to study electronic devices such as

4,10 11,12

transistors*!?, switches!"!2, and diodes'*"'®. Moreover, the application of this experimental
technique provides an opportunity to explore the chemical and physical phenomena at the
single-molecule level. The field of single-molecule measurement is expected to lead to
significant discoveries across various fields and play a pivotal role in the advancement of

science and technology.

The proposal of electrically measuring individual molecules originated in 1974 with A.
Aviram and M. A. Ratner, who attempted to construct a rectifier utilizing a single molecule.!”
Since the introduction of this concept, efforts have been made to develop new techniques to
measure individual molecules, and today there are many different ways to measure a single
molecule. Among these various measurement methods, the break junction approach is most

commonly used for connecting individual molecules to metal electrodes.

Break junction refers to a device comprising two metal wires separated by a nanometer-scale
gap. There are several platforms for break junction, with Mechanically Controllable Break
Junction (MCBJ) and Scanning Tunneling Microscope-Break Junction (STM-BJ) approaches

being the most widely utilized. The following sections describe these two break junction
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platforms.

1.1.1 Mechanically Controllable Break Junction (MCBJ)

The MCBIJ method, initially devised by J. Moreland, J. W. Ekin in 19858, and improved by
C. Muller, et al. in 1992!'%2°, offers mechanically-stable electrodes with an adjustable gap. This
enables the characterization of single-molecules using uncontaminated atomic nanoelectrodes.
MCBJ is one of the most prominent platforms for molecular measurements and can be used to
investigate the conducting properties, interactions, and charge transport of molecules. MCBJ
is a technique used to precisely manipulate nano-gap by mechanically breaking metal wire
bridges, typically composed of materials such as gold or platinum. Figure 1a shows an MCBJ
system in its initial state, with a piezoelectrically driven push rod underneath the substrate. As
in Figure 1b, when the push rod moves upward, the substrate, anchored in place by the counter
supports, undergoes a three-point bend. As the substrate bends increasingly, the metal wire
bridge gradually stretches until it eventually breaks, forming a nano-gap. The newly formed
nano-gap electrodes are clean, and the nano-gap distance between the electrodes can be
controlled by further bending or relaxing the substrate. The distance between the nano-gap
electrodes is precisely controlled by the piezo element. The tips of both electrodes can be
connected by molecules in the solution to form a molecular junction. This molecular junction
is typically formed by the interaction of the molecule's linker groups with the metal electrode.
In molecular conductance measurements, the inherent conductance of a molecule is traced by
repeatedly forming and breaking molecular junctions. There is also a method for measuring the

conductance when molecules freely diffusing in the solution are captured within the nano-gap.

1.1.2 Scanning Tunneling Microscope-Break Junction (STM-BJ)

STM-BJ is a technique that utilizes the nano-space-forming capabilities of a break junction
along with a scanning tunneling microscope (STM) to measure the conductance properties of
single molecules. The technique, shown in Figure 1.1c, was first reported by Xu and Tao in

2003 and has been in continuous use since then, playing an important role in the field of single-



molecule measurement.?!

In STM-BIJ experiments, the STM tip is precisely controlled on the metal substrate at the
angstrom level to form a metal nanocontact. Then, the tip is inserted until only a short chain of
gold atoms remains. During this process, the conductance of the gold contact formed between
the tip and the metal substrate exhibits a stepwise decrease at integer multiples of Go (=2¢*/h)
as the tip moves away from the substrate. If the metal contact is broken in the presence of
molecules in solution, the molecules can fill the gap between the tip and the substrate. The
formation of a stable molecular junction between the tip and the substrate results in the
observation of characteristic conductance. Conversely, in the absence of molecules in the
solution, no characteristic conductance is observed. This behavior underscores the sensitivity

and specificity of the STM-BJ technique in detecting molecular interactions within nanoscale

gaps.
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Figure 1.1 Schematics of MCBJ and STM-BIJ systems. (a), (b) illustrate MCBJ, and (c)
illustrate STM-BJ. (a) The initial state of the MCBIJ system, where the pushing rod is at the
origin and there is no bending of the substrate. (b) The substrate is bent due to three-point
bending caused by the elevation of the pushrod. The nano-wire is broken and a nano-gap is

formed.



1.2 Investigation of Chemical/Physical Phenomena

In the preceding section, the potential of single-molecule measurements and the
experimental techniques were explored. Single-molecule measurement is a technique utilizing
metal nano-gap electrodes to measure individual molecules and analyze their electrical
conductance.!® This section describes the chemical and physical process investigated by
single-molecule measurements. The observation and understanding of molecular behavior at
the single-molecule level contribute significantly to the exploration of chemical, physical
events at the nanoscale, with these measurements playing a key role.???” This section covers

the importance of single-molecule measurements with an introduction to some studies.

A. C. Aragones, et al. reported that electrostatic effects can influence chemical reactions.
This study provided experimental evidence demonstrating the acceleration of chemical reaction
in the presence of electric fields.?® During experiments with STM-BJ, the accelerated formation
of carbon-carbon bonds under the influence of an electric field was confirmed in the Diels-
Alder reaction. These findings hold the potential to open avenues for innovative approaches to
chemical catalysis. C. Yang, et al. reported identifying the actual mechanism among the two
anticipated mechanisms for the Suzuki-Miyaura cross-coupling reaction using a high-
resolution single-molecule detection platform.?® The study employed the platform to elucidate
the entire reaction pathway, providing detailed insights. By detecting the electrical signals
associated with oxidative addition/ligand exchange and metal transfer, the researchers clarified
the metal exchange mechanism. This was accomplished using a single-molecule Pd catalyst
integrated on a nano-gap graphene point electrode. Additionally, the study determined the

kinetic constants for each step and the overall catalytic time scale.

Additionally, single-molecule measurement experiments employing a variety of molecules
have provided insights into diverse physical events within molecules. M. Taniguchi, et al. used
a naphthalenedithiol to investigate changes in the conductance of molecular junctions based on
molecular symmetry.’® The 1,4-symmetric molecular junction, in comparison to its 2,7-
symmetric counterpart, exhibited conductance 110 times higher, offering a detailed theoretical
and experimental understanding of the impact of molecular symmetry on conductance. These
findings showed the potential to design high-conductance molecular systems through the

control of molecular symmetry.



The deep understanding of chemical and physical events through single-molecule
measurements has shown the potential of measurements at the molecular scale in exploring
new science and technology. The field of single-molecule measurement is expected to provide

new insights in various fields such as medicine and biology.

1.3 Application to Bio-Molecular Analysis

In addition to the research areas discussed in Section 1.2, several other significant fields have
been explored using single-molecule measurements. Outstandingly among various fields, the
analysis of biomolecules receives notable attention. Single-molecule measurements enable
direct detection of molecules, obviating the need for sample processing and allowing for simple
and rapid analysis. Moreover, theoretically capable of detecting a molecule, it possesses the
potential for analysis at extremely low concentrations. Using the advantages of single-molecule

measurements, diverse analytical methods for biomolecules, including RNA/DNA*'"3, amino
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acids®’, peptides®”-®, proteins , neurotransmitters*’, sugars®.

Polymerase chain reaction (PCR) is a molecular biology technique for replicating and
amplifying desired portions of DNA. It is currently the most widely used technique for DNA
sequencing, but it requires DNA amplification, which is inherently time-consuming and
expensive. The ultimate method of DNA/RNA sequencing is to read each nucleotide group
from a single piece of DNA/RNA and analyze the sequence simultaneously. The
conceptualization of these technologies began in 2008 with a theoretical proposal by Di Ventra
group for DNA/RNA sequencing via single-molecule measurements.***® Figure 1.2 represents
their proposed concept of direct DNA/RNA sequencing. The principle of this sequencing
technique is that when DNA is passed between appropriately spaced electrodes, each nucleotide
generates a unique current signal due to the unique chemical structure of the base. Therefore,
by passing DNA between electrodes and analyzing the current generated over time, its
sequence can be determined. Following the theoretical confirmation of the feasibility of single-
molecule DNA/RNA sequencing, there has been a significant increase in research interest

focused on analyzing DNA/RNA at the single-molecule level.

H. Tanaka and T. Kawai accomplished a breakthrough in DNA sequencing on a copper



surface utilizing a Scanning Tunneling Microscope (STM).*’

By employing an oblique pulse-
injection method to deposit molecules onto the surface, they overcame challenges associated
with preparing samples of long-chain DNA molecules. The study revealed a distinct electronic
state of guanine bases, enabling the sequencing of individual guanines. Through high-
resolution scanning tunneling microscope imaging and spectroscopy, the researchers identified
the 'electronic fingerprint' of guanine bases in the DNA molecule, demonstrating the possibility
of sequencing individual guanine bases in real long-chain DNA molecules. This work

represents a significant advancement beyond the mere visualization of DNA and showcases the

potential to distinguish and sequence individual DNA nucleobases.

T. Ohshiro, et al. reported a groundbreaking single-molecule electro-randomized sequencing
of DNA and RNA, employing tunneling current and randomized sequencing.** As shown in
Figure 1.3, individual DNA bases in aqueous solution were measured and analyzed by MCBJ.
This approach facilitated the identification of different combinations of DNA oligomers,
yielding conductance-time profiles. These profiles were then employed to distinguish the base
molecules within each oligomeric configuration, enabling the resequencing of various DNA
oligomers and miRNAs, as reported. These studies represent significant strides in DNA/RNA

sequencing techniques at the single-molecule level.

Single-molecule measurements can directly measure a target molecule without additional
sample processing steps. This advantage facilitates faster and more sensitive analysis and
detection of various molecules. Given its high potential for biomolecular analysis, single-
molecule level biomolecular analysis has been applied across a diverse range of biomolecule
families, including proteins/peptides, amino acids, neurotransmitters, and more. In the pursuit
of developing peptide sequencing techniques, T. Ohshiro, et al. conducted measurements and
discrimination of amino acids.’” As Figure 1.4 shows, this study attempted to discriminate
between amino acid molecules using the current properties of duration and conductance. This
data indicates that while some amino acids are discriminable, accurate discrimination is not

easy due to similarities in current properties.

The overlap in current properties originates from the similarity in electronic structure, and
these molecules may possess similar molecular structures. Therefore, in the field of single-

molecule measurement, discriminating between molecules with similar current properties
6



poses a significant challenge. Since histogram-based analysis methods only provide statistical
conductance information, molecular discrimination becomes difficult when histograms overlap.
In particular, currents from single-molecule measurements have large variations, so histogram-
based analysis may not be an appropriate method for molecular discrimination. To overcome
these limitations and improve the accuracy of molecular discrimination, a machine learning-
based approach has been applied to analyze individual current pulses through single-molecule
measurements. The upcoming section will cover the utilization of machine learning. In the

following section, the application of machine learning is discussed in detail.

Figure 1.2 Schematic illustration of sequencing for DNA (or RNA) passing through nano-gap
electrodes. The colors of each DNA strand represent the four nucleotides, and the color does
not signify a specific molecule. As the DNA passes between the nano-gap electrodes, a current
is generated by each nucleotide in the DNA. Each nucleotide exhibits distinct electrical
characteristics based on its specific chemical structure. Therefore, by analyzing the current over

time, DNA/RNA can be sequenced.
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Figure 1.3 Conductance histograms for the four deoxynucleotides of DNA, each containing
1000 maximum current values for the signal of every measured molecule. The blue, red, purple,
and green lines represent the single-molecule conductance of dGMP, dAMP, dCMP, and dTMP,
respectively. The color code of each line corresponds to the Gaussian fit of the histogram.
Figure reprinted from “Single-Molecule Electrical Random Resequencing of DNA and RNA”
by T. Ohshiro, ef al., 2012, Article, 2(1), 501, Copyright 2012 by Springer Nature.
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Figure 1.4 The two-dimensional scatter plot of conductance and duration from single-molecule
measurements of amino acids diffusing in solution. Each data point represents Aspartic acid
(D), leucine (L), histidine (H), proline (P), glutamic acid (E), isoleucine (I), lysine (K), cysteine
(C), methionine (M). Figure reprinted from “Detection of post-translational modifications in
single peptides using electron tunnelling currents” by T. Ohshiro, et al., 2014, Letters, 9(10),
835-840, Copyright 2014 by Springer Nature, and used with permission.



1.4 Application of Machine Learning

In the field of single-molecule measurement, histograms have traditionally been used as the
primary tool for analyzing measured data and determining the conductance of molecules.
However, as discussed in the preceding section, single-molecule currents exhibit significant
variability, posing challenges when attempting to discriminate between molecules. The
experiments in this thesis, molecules of different orientations are measured as they diffuse
freely in solution, without chemically bonding to nano-gap electrodes, thereby introducing
even greater variability into the data. Figure 1.4 in the previous section shows single-molecule
measurement data depicting various orientations of an amino acid molecule diffusing freely in
solution, with error bars on each data point representing the variability in single-molecule
conductance. This means discriminating between different molecules becomes challenging
when their current properties overlap. While it may be possible, in some instances, to
discriminate based solely on conductance-time data if the molecules exhibit clear differences
in current characteristics, molecules of high discrimination importance often share similar

current characteristics due to structural similarities.

The application of machine learning has been proposed as an alternative to address the
limitations associated with traditional analysis methods. Traditional analysis methods, such as
the histogram and maximum current and duration scatter plot in the previous section, do not
include detailed information about individual current pulses. Recent advances in machine
learning have highlighted its potential applications in various fields such as chemistry and
nanoscience.*® ! Machine learning has also been applied to the field of single-molecule
measurements, where it has proven effective in analyzing the current properties of single
molecules.***°?>? For instance, Y. Komoto, et al. conducted measurements on three
neurotransmitter molecules and applied machine learning to analyze individual current signals
for discriminating the target molecules.** Figure 1.5a schematically illustrates the measurement
of molecules using nano-gap electrodes. Figure 1.5b displays the structures of the three
molecules, while Figure 1.5¢ presents the confusion matrix representing the discrimination
accuracy of these molecules. In the confusion matrix, the true sample axis pertains to the target
sample actually measured, and the predicted sample axis reflects the degree of prediction for

each target molecule by machine learning. This study underscores that the discrimination

9



accuracy of molecules can be significantly enhanced by employing machine learning for

multidimensional analysis of individual single-molecule current data.

The approach of analyzing individual single-molecule current signals through machine
learning, capable of handling multidimensional data, represents a novel strategy for
discriminating molecules that prove challenging for traditional analysis methods. This method
marks a substantial milestone in the advancement of molecular discrimination technology and

is expected to broaden the applicability of single-molecule measurements.
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Figure 1.5 Machine learning discrimination results from single-molecule measurement data of
three molecules. (a) Schematic of single-molecule measurement. (b) Three target molecules.
(c) Confusion matrix showing discrimination results. True sample axis refers to the actual
measured sample, Predicted sample axis refers to the molecules predicted by machine learning.
DA, NE, and 5-HT stand for dopamine, norepinephrine, and serotonin, respectively. Figure
reprinted from “time-resolved neurotransmitter detection in mouse brain tissue using an
artificial intelligence-nanogap” by Y. Komoto, ef al., 2020, Article, /0(1), 11244, Copyright
2020 by Springer Nature.
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1.5 To broaden the Application Scope of Single-Molecule Measurement

In the previous sections, the various scientific discoveries and potential applications of single-
molecule measurements across a wide range of fields were discussed. A notable aspect is the
enhancement of the potential of single-molecule measurements due to the application of
machine learning. In the case of molecular discrimination, machine learning classifiers are
trained on measurement data of pure target molecules and then applied to the analysis of actual
samples. Therefore, the improvement of single-molecule discrimination accuracy is strongly
required for the practical application of molecular discrimination. Many molecules that are
important to discriminate have similar molecular and electronic structures, resulting in similar
current properties, making discrimination difficult. To address these issues, my main goal in
this thesis is to develop a novel approach to improve the discrimination accuracy of molecules
that are difficult to discriminate by conventional methods due to their similarity in molecular
structure. I will also present and experimentally validate an innovative approach to apply
single-molecule measurement-based molecular discrimination methods to a wider range of

molecules.

In this thesis, I propose two approaches to improve molecular discrimination accuracy. The
first approach involves modifying nano-gap electrodes with molecules. By utilizing suitable
modifying molecules, it is anticipated to interact with the target molecules, inducing a change
in its current properties. These interaction differences can be a factor in effectively improving
molecular discrimination accuracy. The second approach induces behavioral differences in
target molecules through changes in chemical environment. Molecules with similar current
properties under normal conditions may exhibit different behaviors under chemical
environment changes, which can improve the accuracy of molecular discrimination. These
experiments are also expected to provide insight into the unique properties of single-molecules
by observing differences in molecular behavior in response to changes in the chemical warfare
environment. As a result, these two methodologies will lay the foundation for new approaches

that can significantly improve the discrimination accuracy of various molecule.

In addition, I propose a new analytical method that can further broaden the application of
single-molecule measurements. Considering the practical application of single-molecule

measurement for the detection of specific molecules, it is probably not easy to prepare and train
11



pure solutions for all molecules in a sample. Therefore, the development of a method that can
discriminate molecules directly in a mixed sample may represent a major advance in the field
of single-molecule measurement. These advances in molecular discrimination approaches are
expected to greatly accelerate the adoption of single-molecule measurements in a variety of

applications.
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Chapter 2. Fundamentals

The advancement of single-molecule measurement techniques has led to a profound
exploration of chemical and physical processes at the molecular level, contributing
significantly to gaining innovative scientific insights across various fields. While electron
transport through molecules between nano-gap electrodes is easily conceivable, a precise
understanding of this phenomenon remains unclear. Nevertheless, previous research has
proposed models and established some concepts and techniques to elucidate charge transport
through molecules. Additionally, this study applies machine learning to analyze single-
molecule measurement data, departing from traditional histogram-based methods. This chapter
delves into the models elucidating the movement of electrons through single molecules and

provides details about the machine learning algorithms employed in this research.

2.1 Models for Describing Transmission through Molecule

The tunneling phenomenon is a quantum mechanical effect wherein quantum particles, such
as electrons, can traverse barriers even at low energies, defying classical mechanics' prediction
of their inability to pass through. In classical mechanics, it is considered impossible for a
particle to surpass a barrier with higher energy than the particle itself. However, in the
microscopic realm governed by quantum mechanics, particles like electrons exhibit tunneling
through barriers, a phenomenon attributed to the wave nature of matter. The probability of
transmission through tunneling can significantly vary based on conditions such as the height
and width of the barrier and the mass of the particle. This study focuses on single-molecules,

presenting a model to elucidate electron transport through individual molecules.

In 1957, R. Landauer proposed a formula for transmission in cases where the size of system
becomes sufficiently small, necessitating the consideration of the wave nature of electrons.
According to Landauer, determining the conductance in a system involves identifying the
intrinsic modes through which current flows, calculating transmission values, and aggregating

their contributions. This process is mathematically summarized by the Landauer formula as

13



follows.

N
2e
= 72 n Equation 2.1
n=1

Where electrical conductance (G) signifies the overall capacity for electrical conduction,
while e%/h represents the quantum unit of conductance determined by the electron charge (e)
and the Planck constant (h). T, refers to the transmission of an individual transition mode. In
this context, Go=2¢*h represents the fundamental unit for quantifying conductance,
emphasizing the quantum nature of electrons and playing a crucial role in explaining the
behavior of electrons in extremely small systems. The Landauer formula underscores the
quantum characteristics of electrons in minimized systems through the introduction of this

foundational conductance unit, Go.

As elucidated by the Landauer formula, electron transmission in highly restricted spaces
delves into the realm of quantum mechanics. Specifically, the phenomenon of electrons
tunneling through potential energy barriers in quantum mechanics exerts a substantial influence
on conductance, akin to the conceptualization of electrons effectively penetrating energy
barriers. A pivotal feature of the Landauer formula is its depiction of conductance (G) through
transmission rates (7,). Transmission rate is construed as the probability of electron
transmission in a specific transition mode. Consequently, electron transmission in small spaces
involves tunneling through various transition modes, with each mode's transmission rate
contributing to the overall conductance. These quantum mechanical attributes play a critical
role in determining the comprehensive characteristics of electron transmission. Notably, the
structure of the system, potential energy barriers, and molecular-level intricacies affect the
tunneling probability of electrons. When a molecule is introduced between metal nano-gap
electrodes, the transmission of electrons can be assessed using the Breit-Wigner formula.®! This
formula is intended to model the efficiency of the electron transmission process at specific
energy levels.

4T TR
[E—Eo)?+[I,+IR]?

T(E) = Equation 2.2

Where " denotes the coupling strength between the molecule and the metal, while ; and
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represent the coupling interactions with the left and right electrodes, respectively. E represents
the energy of the tunneling electron, and Eo indicates the energy level of the molecular orbital.
According to the Breit-Wigner formula, the transport of electrons through the molecule is
influenced by the alignment of molecular conduction orbitals interacting with the electrodes
through coupling constants /1. and /. In simple terms, the Breit-Wigner formula suggests that
charge transport through a molecule is more efficient when the energy levels of the molecular
orbitals closely match the Fermi energy and when the bond between the molecule and the
electrode is stronger. Figure 2.1 shows a model of the energy level of an electrode at zero bias.
When a bias voltage is applied, the anode moves energy downward and the cathode moves
energy upward. Then, the potential difference between the two electrodes allows current to
flow. The Breit-Wigner curve between the two electrodes represents the molecular orbital level
and indicates the probability of electron transport through the molecule. As the conduction band
levels of the molecule approach the Fermi level of the electrode, transmission becomes
dominant, and the transmission probability correlates with the area under the curve. This region
symmetrically envelops the Fermi energy level, with its breadth modulated by the applied bias
voltage. The Breit-Wigner formula underscores that the transmission efficiency in a single-
molecule system is not a fixed value but can vary based on factors such as the molecular

structure, the strength of coupling between the molecule and electrodes, and the applied voltage.

E
=~ Er
L ))!-’_’_’_/ ED
."/’//’
Electrode Electrode

Figure 2.1 Energy level (E£) model for describing the Breit-Wigner formula in single-molecule
measurements. The symbols are based on the Breit-Wigner formula (Equation 2.2). Ej
represents the energy level of conduction orbital, Er represents Fermi level of metal electrode,

I"represents the coupling strength between molecular and electrodes.
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2.2 Machine Learning Algorithms for Classification

The integration of nanotechnology and data science has facilitated an in-depth
comprehension of molecular behavior through precise electrical measurements at the single-
molecule level, coupled with meticulous data analysis. In this research, individual molecules
in solution underwent electrical measurements as they traversed between gold nano-gap
electrodes. The resulting data underwent analysis employing machine learning techniques to
discern between distinctive current signals. The machine learning classifier was trained using
features, numerical attributes extracted from the current characteristics of a molecule based on
user-defined criteria, and subsequently utilized the training data for classification on new data.
This chapter delves into the discussion of the Random Forest and XGBoost algorithms applied
in this study.

2.2.1 Random Forest

1.2 Known as an

Random Forest was initially proposed by L. Breiman and A. Cutler in 200
ensemble learning method, Random Forest generates multiple decision trees, combining them
to reduce overfitting and create a stable predictive model. Each decision tree is created using
different subsets of data and randomly selected features. While each tree operates
independently, Random Forest performs predictions collectively, leveraging their combination
for enhanced predictive capabilities. This contributes to improving model stability and

effectively overcoming overfitting issues.

In Random Forest, the GINI index is employed to partition the data. When a single node is
split, it may not distinctly separate all data based on the node's conditions. The degree of non-
separation at this node is referred to as impurity. The increase in impurity at each node in the
decision tree results in less purity, potentially leading to overfitting to the training data and a
decrease in predictive performance on new data. In Random Forest, the GINI index represented
by Equation 2.3 is used for data partitioning. This GINI index serves as a metric to measure

impurity in each node's data split.
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n
GINIindex = 1= ) (p)* =1 - [P, + P.2] Equation 2.3
i=1

where P+ represents the probability of a positive class, and P. signifies the probability of a
negative class. Random Forest splits the nodes of each tree in a way that minimizes the GINI
index, aiming to form a robust predictive model by combining the predictions of each tree.
Each tree is constructed using a combination of bootstrapped sampling and random feature
selection, fostering the creation of diverse trees. Bootstrapped sampling, which allows for the
selection of data with replacement, ensures that each tree employs a distinct subset of data.
Random feature selection involves considering only a subset of features at each node,
encouraging each tree to focus on different features and thereby increasing diversity. These
elements secure diversity in each tree, enhancing the model's predictive performance and

addressing overfitting effectively.

Random Forest employs a combination of bootstrapped sampling and random feature
selection to form diverse trees. The predictions of all generated decision trees are then
aggregated, utilizing a majority voting approach. The Random Forest algorithm illustrated in
Figure 2.2 showcases robust predictive performance and stability, making it widely applicable
in various fields, particularly excelling in handling high-dimensional data and diverse features.
The effectiveness of Random Forest in high-dimensional data can be attributed to its flexible

variable selection in such datasets, where numerous features may be present.

Firstly, Random Forest exhibits flexibility in variable selection in high-dimensional data.
Randomly selecting features during the construction of each decision tree allows the algorithm
to focus on different features for each tree. This concentration on diverse features aids in
emphasizing important characteristics while disregarding unnecessary ones, thereby enhancing
the model's performance. Secondly, Random Forest enhances diversity using bootstrapped
sampling and random feature selection. Bootstrapped sampling ensures that each tree operates
on a different subset of data, contributing to increased model diversity. Random feature
selection, considering only a subset of features at each node, aids in forming decision trees that
account for various features. These features enable Random Forest to effectively capture

diverse and intricate interactions present in high-dimensional data, resulting in stable and
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robust performance.

Random Forest proves to be an excellent choice for handling high-dimensional data and
diverse features. In this study, given the transformation of measured individual single-molecule
current pulses into a 13-dimensional feature space, Random Forest was adopted as an algorithm

capable of managing high-dimensional data.

ree 2
[Gassc ] Gt ]

Figure 2.2 The illustration of Random Forest Algorithm.

2.2.2 XGBoost

XGBoost, short for Extreme Gradient Boosting, is a powerful machine learning algorithm
widely employed in recent data science applications. XGBoost was introduced by T. Chen in
2016 and is part of the family of gradient-boosted decision trees (ensembles), offering enhanced
performance and speed via a sequential decision tree-based machine learning approach.® It
offers parallel tree boosting capabilities and can be applied to various machine learning
problems such as regression, classification, and ranking. Particularly well-suited for large
datasets and complex prediction tasks, XGBoost is frequently utilized due to its accuracy and

execution speed.

18



Key features of XGBoost include the Gradient Boosting technique and a regularization
approach. Boosting is an ensemble learning technique that combines weak learners to create a
strong learner. Weak learners are either randomly selected or weighted based on the errors of
previous learners. Boosting involves sequentially training multiple weak learners, allowing
each model to correct the errors of the previous model. Among boosting techniques, Gradient
Boosting utilizes Gradient information, meaning each model is trained using Gradient
information related to the errors of the previous model. This helps the model reduce the

prediction errors of the previous model, enhancing predictive capabilities.

One crucial fundamental concept used in XGBoost is CART (Classification and Regression
Trees). CART is a tree-based learning algorithm for solving classification and regression
problems. It constructs a tree using a recursive split approach based on features at each node,
and the resulting tree is used to predict classes at each leaf node. XGBoost leverages CART as
the foundation to form a robust predictive model. XGBoost trains the model by optimizing the
objective function, represented by Equation 2.x. This objective function comprises a loss
function and a regularization term, enhancing the model's predictive ability and preventing

overfitting.

n k
0bj(8) = > 190 + ) A(f) Equation 2.4
i k=1

Where y is the model's predicted value, y is the model's true value, Q is the regularization
term, and fx is each individual tree. In XGBoost, the objective function (6) consists of a function
that calculates the loss between the actual values and the model's predictions for each individual
data point i, along with a regularization term imposing complexity on each individual tree.
Consequently, through the objective function, XGBoost prevents overfitting and enables more

generalized predictions. Figure 2.3 illustrates a schematic representation of XGBoost.

Particularly, XGBoost exhibits excellent performance in high-dimensional data analysis,
attributed to several aspects. Firstly, it demonstrates flexibility in variable selection. In high-
dimensional data, numerous features may be present. XGBoost calculates the importance of

each feature when constructing each tree, focusing on significant features to form the tree. This
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enables the model to ignore unnecessary features, reducing complexity. Secondly, the objective
function of XGBoost includes a regularization term controlling the complexity of each tree,
preventing an excessive reliance on specific features. This regularization is particularly
beneficial for enhancing the generalization performance of the model in high-dimensional data.
Thirdly, XGBoost possesses the robustness of Gradient Boosting. Each tree is trained to correct
the prediction errors of the previous tree, allowing XGBoost to capture complex patterns or
interactions prevalent in high-dimensional data. Lastly, XGBoost allows parallel processing
and optimization, efficiently operating on large datasets, especially suited for handling
substantial processing in high-dimensional data. These features collectively empower

XGBoost to demonstrate outstanding predictive performance in high-dimensional data.
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Figure 2.3 The illustration of XGBoost Algorithm.

2.2.3 F-measure in Machine Learning Classification

The F-measure, or F-score, is a crucial metric employed in evaluating the performance of
machine learning models. It is calculated as the harmonic mean of precision and recall,
providing an overall assessment of the model's performance, particularly valuable in scenarios

with imbalanced class distributions. Precision represents the proportion of instances predicted
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as positive by the model that are indeed positive and is calculated by the formula below.

True Positives

Precision = — — Equation 2.5
True Positives + False Positives 1

Precision measures the accuracy of predictions for all classes, but it may not be an appropriate
evaluation metric in cases of severe class imbalance. Recall, as expressed by the formula below,

represents the proportion of actual positives that the model accurately predicts as positive..

Recall True Positives 5 tion 2.6
ecall = uation 2.
True Positives + False Negatives quatt

A high recall implies that the model effectively detects true positives without missing them.
However, as recall increases, precision may decrease, illustrating a tradeoff relationship with
precision, which represents the proportion of accurately predicted positives. This suggests the
difficulty of simultaneously improving precision and recall. Elevating precision enhances the
ratio of correctly predicted positive samples but increases the number of missed positive
samples, leading to reduced recall. Conversely, increasing recall identifies more positive

instances but can result in decreased precision.

Due to the trade-off relationship between precision and recall, evaluating performance with a
single metric can be challenging. To address this challenge, the F-measure is introduced. The
F-measure, calculated as the harmonic mean of precision and recall, serves as an evaluation

metric providing a balanced assessment between the two metrics and i1s computed as follows.

Precision * Recall )
F — measure = 2 — Equation 2.7
Precision + Recall

The F-measure provides a comprehensive evaluation of the predictive capability of the
positive class, assessing how well the model identifies and accurately predicts positive samples.
In essence, the F-measure is a valuable metric that goes beyond accuracy, enabling a more

holistic understanding of the model's predictive capabilities.
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Chapter 3. Methods

In this study, gold nano-gap electrodes formed through MCBJ were utilized for the electrical
measurement of single molecules. Subsequently, the obtained data were employed to train a
machine learning classifier, enabling the prediction of the mixing ratio of compounds. This
chapter covers the fabrication process of the nano-gap device, formation of the nano-gap,
measurement process of single molecules, and the data analysis procedure utilizing machine

learning.

3.1 Fabrication of Nano-gap Device

In this study, MCBJs were used as a platform to form nano-gap electrodes and measure single
molecules. To form nano-gap electrodes using the MCBJ system, a flexible substrate-based
device with metal nano-wires is required. The nano-gap device used in this study was fabricated

via micro/nano fabrication.

This section describes the fabrication process of the MCBJ nano-gap device used in this study.
Figure 3.1 shows a schematic of the fabrication process of the nano-gap device. First, polyimide
is spin-coated as an insulating layer on a flexible Si substrate with a thickness of about 100 um
and baked. Then, the electrodes of the MCBJ measurement device, the connecting pad of the
nano-gap device, and other relatively large-sized electrodes are formed using photolithography
on the polyimide. At this time, the center part of the nano-gap device was not lithographed. The
next step was to form tens of nanometer-wide gold nanowire in the center of the substrate using
electron beam lithography. Then, SiO2 was deposited using chemical vapor deposition to
passivate the exposed areas of the gold electrode for low-noise tunnelling current
measurements for single-molecule detection in an electrolyte solution using insulator-protected
nanoelectrodes.’*%° Figure 3.2 shows the actual fabricated nano-gap device and the SEM image

of the sensing part in the center.

In this study, single-molecules are measured in solution, so the nano-gap device needs a
22



separate device to contain the solution. As shown in figure 3.3a, a polydimethylsiloxane
(PDMS) well was fabricated and attached to the top of the chip to contain the sample solution.
The junction of the MCBJ chip and the PDMS well was then treated in O2 plasma for 10
seconds and then placed in a vacuum oven at 90°C for 60 minutes. Evaporation of the solvent
will change the concentration of the sample, so to prevent this, immediately after the sample
was injected into the PSMS well, Kapton tape was applied to seal the sample from the outside

environment, as shown in Figure 3.3b.
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Figure 3.1 Schematic of the fabrication process for MCBJ nano-gap devices. The Si substrate
is flexible and about 100 um thick. The polyimide was cured at 250°C. After each lithography,
5 nm Cr is deposited as a step prior to gold deposition. This illustration depicts the side view

of the long edge, revealing the cross-section cut from the center of the short side.
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Figure 3.2 Images and SEM image of nano-gap device for MCBJ. (a) Top image of the nano-
gap device. (b) side view image of a bent nano-gap device with a PDMS well attached. (c)
SEM image of the sensing part of the nano-gap device. The ribbon-shaped part in the center is

broken to create a nano-gap.

Figure 3.3 Images of the MCBJ device chip with PDMS well attached. (a) Top and side images.
Circled holes in the square PDMS sheet. Thickness is approximately 5 mm. (b) Solution
injected into PDMS wells and closed with Kapton tape.
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3.2 Process of Single-Molecule Measurement

Upon injection of the sample into the nano-gap device and completion of all measurement
preparations, the chip is inserted into the MCBJ measurement device for analysis. Key
components of the MCBJ measurement system comprise a PC (NI-PXIe), picoammeter
(K6487), MCBIJ box, control box, and piezo driver. In Figure 3.4, the interconnectedness and
nomenclature of these components are depicted schematically. The PC assumes overall control
responsibilities, while the control box, tethered to the PC, regulates the entire system,
encompassing the stepping motor and piezo driver. The latter is instrumental in manipulating
the nano-gap distance by actuating the pushing rod for nano-gap bending control. The
picoammeter, integrated with the control box, facilitates requisite current measurements. It
monitors current flow throughout the nano-gap system during all experimental phases, from
setup to actual data collection. With a resolution of 0.01 pA, the picoammeter can measure

currents up to 20 mA.

Principal experimental apparatus is housed within the Faraday box, the locus of all
experimental operations. Herein lies a DC power source that furnishes low-noise voltage during
data collection, alongside relays that manage system configurations across different stages.
Additionally, the Faraday box incorporates a stepping motor and a piezo motor, employed for
nano-gap chip manipulation through varying step sizes. Centrally positioned within the

Faraday cage is a jig, designed to secure the nano-gap device in place.

Figure 3.5a is an image of the device actually used in the experiment. The nano-gap device
is inserted into the jig within the Faraday box shown in figure 3.5b. Figure 3.5¢ shows the
nano-gap device inserted into the jig, and Figure 3.5d shows the jig covered. The lid of the jig
has electrodes that can contact the pads on either side of the nano-gap device. The lid also has
counter supports on either side of the lid to hold the nano-gap device in place. Figure 3.5¢
shows an image of the nano-gap device in a bent state with three-point bending by a pushing

rod.

After preparing the nano-gap device, the measurement procedure begins by inserting it into
the Faraday box. In the first step, the nano-gap formation step, the piezo controlled pushing rod

is slowly raised to a set height. As the nano-gap device is subjected to three-point bending by
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the pushing rod, the nano-wire continues to become thinner, which reduces the current value.
After repeated bending, the nano-wire mechanically breaks, causing the current value to drop
sharply, confirming the formation of a nano-gap. With these steps, one nano-gap formation is
completed, and the reproducibility of two additional nano-gap formations is checked. If the
nano-wire does not break at the initially set height, continue to observe the formation of the

nano-gap while gradually increasing the maximum height of the pushing rod.

After confirming the formation of the nano-gap, single-molecule measurement was
performed after various checks and training procedures between the pushing rod and the nano-
gap electrodes. After the nano-gap was formed, a series of training procedures were performed
to properly control the nano-gap distance by the voltage of the piezo drive. The process
involves training the cut and reconnect positions by repeatedly raising and lowering the pushing
rod. Next, we go through the cut mode to make a clean and pointed nano-gap, and finally, we
apply various types of bias voltage to see the current rise. Next, set the nano-gap distance and
measurement time to start the measurement. Figure 3.6 is a schematic diagram of the
experimental steps and current changes, including mechanical breaking of the nano-wire,

formation of a nano-gap, and current generation when a molecule passes through the nano-gap.

During the measurement, the gap distance must be kept below the set nanometer length. To
keep this constant, the piezo-controlled pushing rod must be adjusted in real time and precisely
controlled while measuring the current. The electrode-to-electrode distance is estimated using

the current equation for direct tunneling current.

I = const exp (— 4%\/mel) Equation 3.1

In this equation, h, n, w, and 1 are Planck's constant, the mass of the electron, the work function
of Au, and the separation distance, respectively. In this study, the mass of the electron, m, is
used as 9.1 x10-31 kg, and the work function of Au(111), w, is used as 5.25 eV. In this study,
the effective mass and work function of the Au(111) surface were used instead of the gold nano-
gap for ease of calculation. Here, the work function of gold in aqueous solution may be lower
than the actual one, and the widening of the inelastic gold gap immediately after the breaking
of atomic bonds after the formation of the nano-gap is not considered, so the nano-gap distance
applied in the measurement may be larger than the set value.
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Figure 3.4 A simplified schematic representation of the MCBJ device system.

Figure 3.5 Images of the MCBJ measurement system. (a) Image of set up. (b) Faraday box. (
b) MCBJ device chip inserted into the jig inside the Faraday box. (¢) Image with cover on j
ig. (c¢) Image showing the MCBIJ device chip inside the jig bent due to the pushing r
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Figure 3.6 Schematic representation of the process of a single-molecule measurement. A
sharp decrease in current when mechanically broken from a nano-wire state to a nano-gap.
The tunneling current (red line) that occurs when a molecule passes through the nano-gap

state.

3.3 Machine Learning Data Analysis

This research involves not only measuring single-molecules, but also discriminating
molecules by analyzing individual signals from single-molecules with machine learning. The
individual current signals are not labeled in advance and are extracted as features. After the
single-molecule measurements described in Section 3.2, a baseline was estimated from raw
data to extract individual current signals. In the process of extracting signals, the first step
involves estimating the baseline level, which represents the underlying trend or average
intensity of the signal. Following this, the noise level is estimated by calculating the standard
deviation of data points within a specified region of the signal, capturing its inherent variability.
The threshold of current intensity is set by multiplying the noise level by six times its value,
creating a clear distinction between the desired signal and background noise. This process

enables accurate identification and extraction of the target signal from the input data.

All extracted individual current signals were subjected to feature extraction for application
in machine learning classification. The machine learning classifiers applied were random forest
and XGBoost, as mentioned in Chapter 2, and the process described below is common to both.

As shown in Figure 3.7, in this study, individual single-molecule current signals are extracted
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by 13 factors consisting of maximum current (/p), average current (layvg.), duration (#4), and a
10-dimensional normalized current factor, resulting in a 13-dimensional feature. Here, the 10-
dimentional current factor is defined as the difference between the maximum current and the
average current in each interval, dividing the individual signal into 10 parts along the time axis.
This can be an indicator of the current variability in that bin. A larger difference between the
two in each bin may indicate that the current in that bin is fluctuating unstably. This could
indicate, for example, that a large current peak has occurred in the section during a certain time,
or conversely that a number of current values below the average current level have been
measured. This allows for a more detailed analysis of the current characteristics over the entire

time period.

The features extracted in this way are used to train and test the machine learning classifier.
Figure 3.8 shows the process of extracting features from individual signals and training and
testing a machine learning classifier. To evaluate the performance of the trained model, we used
K-fold Validation, which divides the data into multiple subsets (folds) and validates the model
using each fold as a test set once. Figure 3.9 shows 10-fold validation, where the entire data
was divided into 10 folds and evaluated. This method utilizes all of the data and allows for an

objective assessment of the model's ability to generalize.
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Figure 3.7 Single-molecule individual current pulse (Green solid line) and definitions of the
features. The blue, red, and pink solid lines represent I, 74, and /ayg., respectively. The black

dashed lines show the area of the current pulse divided into ten parts along the time axis.

29



Target A M\'L

Time

Features
(’pl td! Iavg.l
1,2,3, ..., 10)

Current

Target B

ol

%}

=

Features

Figure 3.8 A flowchart of training a machine learning classifier through training and testing.

Features includes factors such as peak current (/,), duration (z4), average current (/avg.), and 10-

dimensional normalized current for each pulse signal.
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Figure 3.9 Schematic of 10-fold cross validation. 10-fold cross validation randomly divides
the dataset into 10 equal-sized subsets. In each fold, one subset is held out as the test set, while

the remaining 9 subsets are used for training. This process is repeated 10 times, with each

subset used once for validation.
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Chapter 4. Molecular Modification of Nano-gap
Electrodes

This chapter discusses the first of several approaches to improving the discrimination
accuracy of two molecules in single-molecule measurements where the discrimination
accuracy is not high due to similarities in current characteristics. The introduction of machine
learning to analyze single-molecule measurement data has improved molecular discrimination
accuracy. However, it is not easy to discriminate molecules with high accuracy with current
data from molecules that do not have discriminating factors. Therefore, this chapter discusses

molecular modification approaches to improve molecular discrimination accuracy.

4.1 Introduction

Structurally similar molecules also have similar current properties, so molecules with similar
structures measured in a bare nano-gap show similar current characteristics, which makes it
difficult to improve single-molecule discrimination accuracy. A new approach to measurement
is needed to discriminate these molecules with high accuracy. Therefore, I proposed a method
to discriminate two molecules with similar molecular structures through molecular
modification of nano-gap electrodes. As shown in Figure 4.1a,b, the two target molecules with
similar structures to be discriminated in this study are Aspartic acid (Asp) and Leucine (Leu).
Both target molecules belong to the amino acid group, which is one of the most important
groups of molecules that make up the building blocks of life. Amino acids are used in the body
for the biosynthesis of proteins, enzymes, peptides hormones, and some neurotransmitters. In
addition to building biomaterials, amino acids are involved in many important metabolic
processes in the body. In particular, there are 20 amino acids that make up proteins/peptides,
and hundreds of metabolites. For this reason, the accurate discrimination of amino acids is

important as a means to further understand the metabolic process of living organisms.

Techniques for analyzing amino acids have evolved steadily since Gordon, ef al. first
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separated and studied protein components using distributive chromatography in 1943.%
Raman spectroscopy offers a number of analytical advantages, but unlike the constituent
nucleobases of DNA, there is no way to amplify amino acids, making analysis difficult at low
concentrations.”%° In the case of molecular imaging, the number of applicable molecules is
limited because the probe must be prepared to match the target molecule.”® T. Ohshiro, et al.
measured the conductance of single molecules of amino acids passing through the nano-gap
and analyzed their current characteristics for discrimination.’” The current signals of the
measured amino acid molecules were statistically analyzed using two characteristics,
maximum current and duration, respectively. Figure 1.4, mentioned in Chapter 1, shows the
amino acids classified from the I, #4 of several measured amino acid molecules. Some amino
acids can be discriminated by both parameters, while others are difficult to discriminate due to
the overlap of current characteristics. Despite the importance of amino acid analysis, the results
of this study suggest that it is not easy to discriminate amino acids. It also suggests the

importance of incorporating machine learning into molecular discrimination techniques.

As mentioned in Chapter 2, single-molecule conductance is related to the superposition of
molecular orbitals. Therefore, chemical modification of nano-gap electrodes with appropriate
molecules can optimize the molecular orbitals and thus improve the level of current. In a study
to understand electron transport from one molecule to another, T. Nishino, et al. reported that
hydrogen bonding by two -COOHs conducts electrons better than covalent ¢ bonds.”! Based
on these findings, I proposed to modify mercaptoacetic acid (MAA) molecules on nano-gap
electrodes as a way to discriminate two target molecules with high accuracy, and to
discriminate molecules that were not discriminated by conventional methods through machine
learning-based time series analysis. As shown in Figure 4.1c, the MAA molecule has a -SH
group and a -COOH group. The -SH group interacts strongly with the nano-gap electrodes
made of Au.”>7® If MAA is successfully bonded to the tips of both electrodes, these MAA -
modified nano-gap electrodes are converted into electrodes with both tips composed of -COOH.
Using this concept, it is expected to be possible to detect quantum tunneling enhancement

through intermolecular hydrogen bonding interactions via -COOH groups.
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Figure 4.1 Molecular structures of the target molecule and the modified molecule. (a) L-
aspartic acid. (b) L-leucine. (¢) Mercaptoacetic acid. The light green caption shows the carboxy

group of each molecule.

4.2 Methods

In this study, I compared the measurement results of two target molecules on bare gold nano-
gap electrodes and the newly proposed molecularly modified nano-gap electrodes in this study.
The two target molecules L-aspartic acid (Tokyo Chemical Industry Co., Ltd, Japan), L-leucine
(Kanto chemical Co., Inc., Japan), and the modified molecule Mercaptoacetic acid (FUJIFILM
Wako Pure Chemical Co., Japan) were used without any purification process using Milli-Q
water as solvent. For the determination of pure target samples, an aqueous solution sample of
1 mM of each target chemical species was used. In this case, the pH of the pure solution of Asp
and Leu at 1 mM concentration was 3.7 and 6.1, respectively. For all measurements where the
nanogap electrode was modified with MAA, a 20 uM aqueous solution of MAA was used as
the solvent. For the measurement of the Asp:Leu=3:1 mixture, a solution containing 750 uM
of Asp and 250 uM of Leu was used, and for the measurement of the Asp:Leu=1:3 mixture, a

solution containing 250 uM of Asp and 750 uM of Leu was used.

Each sample solution was prepared and used immediately prior to the measurement. A
PDMS well about 5-6 mm thick was attached to the nano-gap device to contain the sample
solution in the sensing part of the nano-gap device. Then, 15 pL of each sample solution was
injected into the PDMS well, and Kapton tape was applied to prevent evaporation of the
solution. The nano-gap device was inserted into the MCBJ measurement device and the nano-
wire was mechanically broken to form a nano-gap as described in Chapter 3. The gap distances
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of the nano-gap electrodes used for the measurements were set to 0.56 and 0.54 nm.
Measurements were set to run for 5 minutes each at each gap distance and then repeated. Prior
to all measurement steps, a blank solution was measured, excluding the target molecule. After
completion of all measurement steps, the device was cleaned by injecting ethanol into the

PDMS wells several times.

4.3 Results
4.3.1 Measurements with Bare Nano-Gap Electrodes

Pure Asp and Leu samples were measured using bare nano-gap electrodes. Before all
measurements, the nano-gap device was filled with Milli-Q water as a blank measurement.
Figure 4.2 illustrates the results of the blank measurement, presenting a current histogram and
a current-duration 2D histogram. Both datasets indicate minimal current generation in Milli-Q
water. Figure 4.3 depicts an idealized representation of two target molecules passing between
gold nano-gap electrodes. However, in reality, they traverse the nano-gap electrodes in different
orientations. As discussed in Chapter 3, the actual nano-gap distance is expected to be wider
than the set value. Therefore, it is crucial to establish the appropriate nano-gap distance before
the measurement. Starting from 0.66 nm, the approximate length of the target molecule, and
gradually decreasing the setting by 0.02 nm, the frequency of signal generation by the molecule
was considered. If the nano-gap distance becomes too small, the level of tunneling current
between the gold nano-gap electrodes increases, and the single-molecule current is masked by
noise. The goal of this study is to measure as many signals from different orientations of the
molecules as possible and discriminate them through machine learning analysis. Therefore, the
optimized nano-gap distance was set to obtain signals of sufficient quality for this analysis and

to acquire many signals per unit time, with values set at 0.56 nm and 0.54 nm.

Figure 4.4 display selected three individual single-current pulses of Asp and Leu measured
with bare nano-gap electrodes. The single-molecule signals generated by both target molecules
exhibited akin current levels, and the overall shape of the signals did not possess distinctive
features for discerning between the two molecules. The single-molecule currents measured in

this study were numerous, and statistical analysis was employed to scrutinize the current
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characteristics, given the diversity of currents originating from various molecular orientations.
Figures 4.6a, b represent /, histograms of single-molecule current signals for Asp and Leu,
respectively. The current histograms for both target molecules are highly comparable. The 7,
averages for Asp and Leu both showed a level of 19 pA, indicating that distinguishing between
the two molecules based on 7, levels alone is not feasible. Figures 4.7a, b illustrate the current-
duration 2D histogram. Both histograms suggest that distinguishing between the two molecules
based solely on factors of current and duration is not clear. The measurement results of target
molecules on bare nano-gap electrodes align with expectations, as the similarity in molecular
structures did not exhibit sufficient differences in electron transport characteristics to

distinguish between the current characteristics of the two molecules.

(@) (b)

=
o
o

Occurrence
Current / pA

50 100 5 10
Current / pA Duration time / ms

Figure 4.2 Measurement results in blank solutions(Milli-Q water). (a) Histogram of current
measured from Milli-Q water. Frequency histogram of individual pulses according to the

intensity of the current. (b) Histogram of current intensity by duration of current pulse.

Figure 4.3 Measurement results in blank solutions(Milli-Q water). (a) Histogram of current
measured from Milli-Q water. Frequency histogram of individual pulses according to the

intensity of the current. (b) Histogram of current intensity by duration of current pulse.
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Figure 4.4 Individual current pulses measured in bare nano-gap electrodes. (a) Asp. (b) Leu.

(a), (b) each represent three separate signals.
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Figure 4.5 Histogram of the maximum current (/,) measured in the MAA modified nano-gap.
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Figure 4.6 2-D Histograms of the current magnitude versus the duration of the current pulse.
(a) Asp, (b) Leu.
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4.3.2 Measurements with MAA modified Nano-Gap Electrodes

In this section, the results of measuring Asp and Leu molecules by modifying MAA
molecules on nano-gap electrodes are discussed. As assumed in Section 4.1, the current level
can be enhanced if the MAA-modified gold nano-gap electrodes are capable of hydrogen
bonding interactions with the target molecules. MAA molecules have -SH groups that interact
strongly with the Au electrodes and -COOH groups that can interact with target molecules via
hydrogen bonding. Therefore, it was expected that Asp and Leu would interact with the -COOH
group of MAA on both sides to different degrees when the molecule passes through the MAA
modified nano-gap electrodes, as shown in Figure 4.7. Since the Asp molecule has -COOH
groups on both terminals, it is expected to interact hydrogen bonding with both MAA modified
nano-gap electrodes through the -COOH groups. The leu molecule, on the other hand, has a -
COOH group on only one terminal, so it can only interact with one side. Therefore, for Asp, an
enhancement of the current level due to hydrogen bonding interactions on both sides is

expected.

Figure 4.8 shows the individual single-molecule signals of Asp and Leu measured on MAA-
modified electrodes. Comparing these results to the case of bare nano-gap electrodes, the effect
of MAA modification is clearly observed. In particular, the current pulses of Asp measured on
MAA-modified nano-gap electrodes often exhibit a rectangular shape, unlike those in the other
measurements. The 7, histogram in Figure 4.9 indicates that the current Asp level is higher than
Leu. Compared to the measurements on the bare nano-gap electrodes, where the average of the
I, for both molecules was 19 nA, the average current for Asp increased to 23 pA and for Leu

decreased to 16 pA.

As mentioned in Chapter 2, conductance of single-molecule depends on two competitive
effects of tunneling distance and coupling strength between molecule and electrodes. The
longer the tunneling distance offers the lower the single-molecule conductance.””*® Higher
bonding energy leads to higher single-molecule conductance.®! Asp molecule can form two
stronger H-bond on both sides, whereas Leu can only form a stronger H-bonding via -COOH
groups on either side. Additionally, te DFT calculations shown in Figure 4.10 explain that the
interaction between -NH> and -COOH is weaker than the hydrogen bond between the two -

COOH groups. Therefore, for Asp, interaction with the two -COOHs of both MA As results in
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current enhancement. This explains the stable current pulses shown in Figure 4.8a, where
measurements on MAA-modified electrodes show that the current level of the single-molecule
electrical signal of Asp is higher than that measured on bare nano-gap electrodes. The single-

molecule current signals of Leu had relatively low current levels, but showed greater variability.

In addition to the interaction of MAA with Asp and Leu, we further investigated the effect
of the dimer of MAA-MAA. Figure 4.11 shows the results of our investigation of MAA-MAA
dimer formation. This is a measurement of a sample containing only MAA as a blank
measurement for the measurement of the target molecule containing MAA. The three data in
Figure 4.11 show that the measurement in MAA solution resulted in very few current pulses
being observed. In principle, MAA-MAA dimers can form, but the incidence is very low due
to the measurement conditions. The MCBJ instrument uses current feedback to control the gap
distance. If a stable MAA dimer forms on the Au electrode, the base current is enhanced.
Therefore, when MAA-MAA dimers are formed, the current feedback causes the electrode to

contract. Therefore, even if dimers are formed, little current signal is observed.

The current pulses of Asp and Leu measured in the MAA modified nano-gap shown in
Figures 4.8 and 4.9 show differences in the stability of the current signal and the current level.
In the case of Asp, there are many current pulses with a rectangular shape, which indicates the
stability of the current signal. To statistically analyze the signal stability of the measured current
pulses, I normalized the current pulses in each measurement with 7, equal to 1. The four data
in Figure 4.12 show 2D histograms of the normalized current-duration of all current pulses of
Asp and Leu measured on bare nano-gap electrodes and MAA modified electrodes. The data
to the right of each histogram shows the distribution of the normalized currents. Unlike the
other three cases, only Asp measured at the MAA modified electrode shows a narrow
distribution of current levels. The normalized average current values in the histogram are 0.84
and 0.80 for Asp and Leu, respectively, for the bare nano-gap. For MAA modified nano-gap
electrodes, Asp and Leu are 0.90 and 0.82, respectively, with Asp showing the largest
normalized current among the four measurements. The higher and narrower distribution of
normalized currents indicates that the Asp molecule has a stable conductance with relatively

little variability as it moves between the MA A modified nano-gap electrodes.

Amino acids are known to exhibit a wide range of single-molecule conductance due to
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ionization in aqueous solution, and the 7, histograms show the variability of these measured
currents well*>%2, Here, I assumed that the hydrogen bonding between Asp and MAA via the -
COOH group imparted a well-defined structure to the amino acid, which contributed to the
fluctuations in the current levels of the Asp molecule measured at the MAA-modified nano-
gap electrodes. It is important to note here that this study was conducted in aqueous solution
for ease and potential use in molecular detection. In general, H,O, a polar protonated solvent,
inhibits hydrogen bonding. For example, CH3COOH is known to form dimers by hydrogen
bonding in the gas phase and in crystals, but not in aqueous solution.®*** In previous studies, it
has been reported that the single-molecule conductance through DNA base pairs in H20 is less
than that of other non-protonated solvents®>, but in this study, single-molecule currents occur
only when the target is positioned on the electrode or when the modified molecule is positioned
on the electrode. Thus, the target molecule interacts with the electrode even when its structure
is not in its most stable state. Other previous study has reported hydrogen bonding in aqueous
solution environments.®¢ In this study, the -COOH groups were shown to interact with each
other and form transient H-bonds when Asp approached the -COOH groups of MAA as it
passed through the gap of MAA-modified nano-gap electrodes. These results suggest that,
unlike in the case of ensemble measurements, it is possible to observe localized minimum

energy states that single-molecule measurements cannot reliably capture.

(a) N OH-Q (b) AN OH-O
-8  0---HO N .S O 3
oo e ey O
OH---0 OH
MAA Asp MAA MAA Leu MAA

Figure 4.7 Schematic representation of Asp and Leu as they pass through an MAA-modified
nano-gap. (a) Asp interacts with both MAAs via -COOH on both sides. (b) Leu interacts with
the MAA with only one -COOH on each side.
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Figure 4.8 Individual current pulses measured in the MAA modified nano-gap. (a) Asp, (b)

Leu.
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Figure 4.9 Histogram of the maximum current (/,) measured in the MAA modified nano-gap.

(a) Asp, (b) Leu.

Figure 4.10 Schematic of calculated Leu and MAA hydrogen bonding (a) -COOH in Leu and
-COOH in MAA. (b) -NH> in Leu and -COOH in MAA. DFT calculation method is B3LYP/6-
31G(d,p) . Gaussian 09 were used. Optimization provided COOH-COOH bonding (a) and NH»-
COOH structures (b) as shown in Fig. S6. The bonding energy is 83 kJ/mol and 64 kJ/mol for
(a) and (b), respectively.
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Figure 4.11 Results in MAA solution measurement. (a) Current profile of MCBJ measurement
in MAA solution. (b), (c) Histograms analyzing the currents measured from 20 uM MAA
solution. (a) Frequency histogram of individual pulses according to the intensity of the current.

(b) Histogram of current intensity by duration of current pulse.

(@)

‘g 1 (b)‘g 1 High

0.5 0.5

N I ©

g g

= = Low

200_2.55 z°00_2.5 5
Time / ms Time / ms

€) = 4 (d) =z

5 5

@) @)

EO'S §0.5

® ®

£ 0 £ 0

2 0 25 5 2 0 25 5
Time / ms Time / ms

Figure 4.12 Histograms of normalized current and time for Asp and Leu at bare Au and MAA-
modified nano-gap. The histograms present the results for (a) Asp at bare electrode, (b) Asp at
MAA-modified electrode, (c) Leu at bare electrode, and (d) Leu at MAA-modified electrode.

The right-hand side of each histogram shows a histogram of normalized current intensity.
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4.3.3 Molecular Discrimination with Machine Learning

In the previous section, I measured Asp and Leu in two environments: bare nano-gap and
MAA modified nano-gap electrodes, and observed and analyzed the current characteristics of
each. Unlike the case of bare nano-gap, Asp and Leu measured in MAA modified nano-gap
electrodes showed differences in current characteristics. As mentioned in Chapter 3, the
measured data is used to train machine learning and discriminate molecules. The trained
classifier predicts the proportions of the mixture from the measured data of a sample of the

mixture.

In this study, the XGBoost machine learning classifier was used for molecular discrimination
to classify the single-molecule currents of pure Asp and Leu samples measured on bare nano-
gap electrodes and MAA modified nano-gap electrodes. Figure 4.13 shows the process of
training the machine learning classifier. Here, 2,680 current pulses of each Asp,Leu measured
on bare nano-gap electrodes and 1,180 current pulses each on MAA modified nano-gap
electrodes were trained and tested by the classifier. As described in Chapter 3, the features used
were maximum current (/p), average current (lavg.), duration (#4), and 10-D normalized current

factor, and training and testing were performed with 10-fold validation.

Figure 4.14 is a confusion matrix showing the results of machine learning classification of
single-molecule current data of pure Asp and Leu samples measured on bare nano-gap
electrodes. The prediction accuracies for Asp and Leu were 0.59 and 0.51, respectively. This
result shows that machine learning discrimination of Asp and Leu is not accurate because their
signal characteristics are similar. Therefore, the measurement method using a bare nano-gap
electrode is not a suitable method for discriminating Asp and Leu. Figure 4.15 shows the
machine learning classification results of Asp, Leu measured on MAA modified nano-gap
electrodes. For MA A modified nano-gap electrodes, the accuracy of Asp and Leu was 0.80 and
0.78, respectively. As Figure 4.16 shows, if the discrimination accuracy using one signal is 0.77,
the accuracy of statistical analysis using 13 signals is more than 99%. The modification of the
nano-gap electrodes by MAA resulted in high accuracy classification of the single-molecule
signals of Asp and Leu, which could not be distinguished by the measurement of bare nano-

gap electrodes.
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To verify that the method is effective in practice, the current signals obtained from single-
molecule measurements of mixed solutions of Asp and Leu were analyzed to predict the mixing
ratio. Two mixture solutions were used for validation: Asp:Leu=3:1 (750 uM: 250 uM) and
Asp:Leu=1:3 (250 uM: 750 uM). The machine learning classifier was trained with the
measured results of the mixture solutions on both bare and MA A modified nano-gap electrodes.
After training, the single-molecule currents of the mixed solutions were discriminated
individually, as shown in Figure 4.17. The mixing ratio is expressed as the fraction of the total
signal that is counted as the predicted molecule. Figure 4.18 shows the predicted mixing ratio
of a mixed solution measured on bare nano-gap electrodes based on training results from pure
target samples measured on bare nano-gap electrodes. For Asp:Leu=3:1, Asp:Leu=0.52:0.48

was predicted, and for Asp:Leu=1:3, Asp:Leu=0.49:0.51 was predicted.

For the bare nano-gap electrodes, the two amino acids were not correctly classified in the
mixed solution, as was the signal classification for the pure target solution. On the other hand,
as shown in Figure 4.22, predicting the mixture ratio from the measured data on the MAA
modified nano-gap electrodes predicted a ratio of 0.75:0.25 for Asp:Leu=3:1 and 0.23:0.77 for
Asp:Leu=1:3. Figure 4.23 shows the current profile of Asp:Leu=1:3 measured on MAA
modified nano-gap electrodes. The red and blue peaks represent the current pulses predicted
by Asp and Leu, respectively, while the gray color indicates that neither is predicted. In
summary, these results show that in single-molecule measurements using nano-gap electrodes
modified with MAA molecules, hydrogen bonding can affect the single-molecule conductance

properties.

/‘| Training ||Test

Machine
Learning

: \‘I Training || Test

Figure 4.13 Training and prediction process for machine learning classifier using single-
molecule individual current pulses.
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Figure 4.14 Confusion matrix of molecular prediction from a machine learning classifier
trained on Asp and Leu single molecule current signals measured at bare nano-gap electrode.
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Figure 4.15 Confusion matrix of Asp and Leu predictions measured with MA A-modified nano-

gap. The F-measure is 0.79.
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Figure 4.16 Correlation between the accurate predictability by majority vote and the number
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Figure 4.17 Flowchart of machine learning analysis for mixing-ratio prediction
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Figure 4.18 The predicted mixing ratios of Asp and Leu mixtures measured with bare nano-

gap electrode. The upper row shows Asp:Leu=3:1 and the lower row shows Asp:Leu=1:3.

%_ Asp:Leu
e 31
®

w

% Asp:Leu
= 13

Asp Leu
Predicted Class

Figure 4.19 Prediction result of the mixing ratio of solutions from the ratio of mixtures Asp:Leu

=1:3 (upper) and Asp:Leu = 1:3 (bottom). (c) Current profile measured in Asp:Leu=1:3 solution.

The red, blue and gray signals represent Asp, Leu and invalid signals respectively.
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4.5 Conclusion

For The results of this study demonstrate that the convergence of measurement methods to
modify molecules suitable for nano-gap electrodes and machine learning-based data analysis
is an effective way to discriminate between molecules with similar structures. Asp with two -
COOH groups on both terminals showed a stable and high level of single-molecule current due
to the hydrogen bonding interaction with MAA bound to the nano-gap electrodes. On the other
hand, Leu, which has a -COOH group on only one terminal, can only hydrogen bond with
MAA on one side. For this reason, Leu could not fully interact with both MAA molecules,
which eventually led to an increase in the tunneling distance, which was lower than that

measured in bare nano-gap electrodes.

This study demonstrated that differences in molecular behavior under certain conditions can
be exploited to improve the discrimination accuracy of molecules. Interestingly, the interaction
effect between the -COOH groups of MAA and Asp was observed even in aqueous solutions,
where hydrogen bonding is typically known to be disrupted. This suggests that
localized/transient interactions due to hydrogen bonding between molecules in aqueous
solution can be monitored by single-molecule measurements. Subtle changes in single-
molecule current behavior were detected and used to distinguish between two amino acids that
were barely distinguishable by conventional methods and machine learning analysis. This
concept is expected to enable the analysis of a wide variety of molecules in the future and is an
important concept for the development of protein/peptide sequencing technology based on

single-molecule measurements.
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Chapter 5. Molecular Discrimination through
Chemical Environment Changes

In Chapter 4, a novel approach to improving molecular discrimination accuracy by
modifying nano-gap electrodes with appropriate molecules was discussed. Although this
approach improved the accuracy of molecular discrimination, it can only be applied when there
is a clear chemical difference between the target molecules, and appropriate modification
molecules are required. Therefore, the application of molecular modification methods may be
limited. Considering this limitation, I focused on the difference in behavioral changes of
molecules due to changes in chemical environment. Molecules show behavioral changes due
to changes in chemical environment. However, under the same chemical environment change,
molecules will exhibit different behavioral changes. In this chapter, I propose an approach to
molecular discrimination through differences in the behavior of single-molecules. This
approach will also provide an opportunity to explore how changes in the chemical environment

affect the behavior of molecules.

5.1 Introduction

One of the factors that determines the current properties of a molecule is its electronic
structure, which is derived from its molecular structure. The structure of a molecule can be
changed by changes in the chemical environment. For example, protonation/deprotonation of
functional groups or intramolecular reactions due to changes in pH can cause changes in
molecular behavior. Changes in the current properties of molecules due to
protonation/deprotonation of functional groups by changes in pH have been reported by

previous studies.

F. Chen, et al. observed differences in the behavior of chemical linker groups, -NH> and -

COOH groups, due to changes in pH condition.®! Figure 5.1 shows the conductance histograms
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of diamine butane and dicarboxylic acid butane molecules measured at different pH
environment, respectively. Diamine butane showed a characteristic conductance peak with the
highest number of counts at pH 13, while the pH 10 condition showed fewer counts than pH
13. This is a result of the increasing proportion of -NH3" as the pH decreases from 13 to 10.
For pH 1, no characteristic peak was observed, which is interpreted to be due to the fact that
the nitrogen atom of -NH3", which is dominant at pH 1, does not have a lone pair and therefore
cannot interact with the electrode. On the other hand, dicarboxylic acid butane showed a
different behavior: dicarboxylic acid butane exhibited the highest characteristic conductance
count at pH 13, and a lower level at pH 5. On the other hand, unlike diamine butane,
dicarboxylic acid butane showed a peak at pH 1. This is because the oxygen atoms of -COOH
have lone pairs, which allows it to interact with the electrode. Based on the results of this study,
molecules with different types of functional groups are expected to show different behavioral

changes in response to changes in the chemical environment.

A neurotransmitter, dopamine (DA) and its precursor L-DOPA were chosen as target
molecules in this study. Neurotransmitters are essential for maintaining brain function and
regulating emotions, and are strongly associated with many psychiatric and behavioral
disorders. Detecting and monitoring neurotransmitters is therefore critical to understanding and
treating many brain-related diseases. In particular, among DA-induced diseases, Parkinson's
disease is the second most common psychiatric disorder after Alzheimer's disease, and is
reported to affect more than 10 million people worldwide. The cause of Parkinson's disease is
not yet clearly understood, but it is believed to be caused by a lack of DA in the brain.’” % DA
is unable to cross the Blood-Brain Barrier (BBB) into the brain. Therefore, patients with

Parkinson's disease are prescribed L-DOPA, a precursor of DA that can cross the BBB.

L-DOPA is a common treatment for Parkinson's disease because it effectively increases DA
levels in the brain.”®®' However, over time, the short half-life of L-DOPA leads to DA loss,
which prevents sustained symptomatic relief. However, high doses of L-DOPA used to
compensate for DA loss can lead to side effects such as dyskinesia, hypotension, and
psychosis.”? Therefore, it is important to continuously monitor L-DOPA and DA to ensure

effective dosing of L-DOPA and assessment of the patient's condition.

Several analytical methods for simultaneous monitoring of L-DOPA and DA have been
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developed in the various areas of electrophoresis®™®°, spectrophotometry’®®® and

99-108 " Electrochemical methods are the preferred platform for the

electrochemical detection
detection of catecholamines, but distinguishing between the two molecules in solutions
containing both DA and L-DOPA has been an issue in the field for decades. As the biosynthetic
pathway in Figure 5.2 illustrates, the two molecules have similar chemical structures, which

makes them difficult to discriminate due to their shared electrochemical oxidation potential.

Single-molecule measurements can detect small changes in the behavior of individual
molecules. In addition, the application of machine learning to single-molecule current data
analysis has greatly enhanced its potential for molecular discrimination.**#>>2-% In this study,
I propose a novel approach to molecular discrimination using single-molecule measurements.
The method exploits differences in the current behavior of molecules due to pH changes to
induce changes in the current properties of the molecules. Machine learning techniques are

then used to effectively discriminate between two molecules.
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Figure 5.1 Conductance histograms of diamine butane and dicarboxylic-acid butane. (a)
Diamine butane measured at pH 1 (green), 10 (red), and 13 (blue). (b) Dicarboxylic-acid butane
measured at pH 1 (green), 5 (red), and 13 (blue). Figure adapted from “Effect of Anchoring
Groups on Single-Molecule Conductance: Comparative Study of Thiol-, Amine-, and
Carboxylic-Acid-Terminated Molecules” by F. Chen, et al., 2006, Article, 7128(49), 15874-
15881, Copyright 2006 by ACS Publications, and used with permission.
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Figure 5.2 The metabolism pathway of dopamine (DA). L-DOPA is a precursor to dopamine.

5.2 Methods

The goal of this study is to measure two target molecules that are difficult to discriminate
under neutral conditions and observe the difference in their behavior under acidic conditions.

Therefore, the two target molecules were measured under different acidic conditions.

First, the MCBJ was used to measure each target molecule in neutral and acidic conditions.
The target molecules L-DOPA (Sigma-Aldrich) and dopamine hydrochloride (Sigma-Aldrich)
were used without purification. The two solvents used for the measurements were pH 7.6 Milli-
Q water and pH 3, 0.001 M HCI aqueous solution. L-DOPA and DA were dissolved in both
solvents at a concentration of 10 uM, so that a total of four solutions were used for each

measurement.

After the measurement of the pure target solution was completed, two mixture solutions of
different mixing ratios were prepared and measured. The two mixtures utilized solutions with

the target solution dissolved in aqueous solutions of pH 7.6 Milli-Q water and 0.001 M HCl in
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the ratios of DA:L-DOPA=3:1 and DA:L-DOPA=1:3, respectively. Among the ratios of the
mixture solutions, 1 means 250 uM and 3 means 750 uM, and four sets of solutions were used

for the measurement of this mixture.

To prevent evaporation of the solvent during the measurement, nano-gap device equipped
with a PDMS well in solution was used, as described in Chapter 3. The PDMS wells were filled
with 12 pL of the sample solution, and Kapton tape was attached to the top of the PDMS wells
to prevent evaporation. The nano-gap distances set in the measurement were 0.58, 0.56, and
0.54 nm, and the bias voltage was 100 mV. The same machine learning algorithm used in

Chapter 4, XGBoost, was applied to analyze the measurement data.

5.3 Results
5.3.1 Measurements under Neutral Conditions

Figure 5.3 shows the maximum current (/) histograms and 2D histograms of current-
duration for L-DOPA and DA molecules measured at pH 7.6. The histograms of the two
molecules show similar current levels, and the 2D histograms also show no differences to
discriminate between the two target molecules. For a numerical comparison of the current
values of the two molecules, the average value of I, was analyzed, which was 19.5 pA for L-
DOPA and 19.1 pA for DA. The analyzed data shows that the current properties of the two

molecules are similar at pH 7.6, which suggests the possibility of similar electronic structures.

After analyzing the current properties through histograms, the current data from the two
molecules were discriminated using XGBoost. The confusion matrix in Figure 5.4 shows the
discrimination results of the two molecules, and the machine learning classifier discriminated
DA with 53% accuracy and L-DOPA with 56% accuracy. These accuracies mean that the two
molecules are almost indistinguishable from each other. As described in Chapter 3, the machine
learning classifier has a good ability to discriminate between different current properties
because it analyzes the current pulses of individual molecules based on the factors of maximum
current (/p), average current (/avg.), duration (#4), and 10-D normalized current. Therefore, the

low discrimination results suggest a significant similarity in the current properties of the two
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molecules measured at pH 7.6.

In the next step, the mixture ratio was predicted from the measured data of the mixture
solutions using the machine learning classifier from the previous step. The ratios for the two
mixed solutions were DA:L-DOPA=3:1 and DA:L-DOPA=1:3, respectively. The individual
current signals measured in each mixed solution are predicted by the classifier as one target
molecule. Therefore, the total ratio of the individual mixture measurement data predicted by
each target molecule represents the mixture ratio of the sample. Figure 5.5 shows the results of
the mixture ratio prediction for a mixture solution. The predicted mixing ratio for each solution
was 39:61 for DA:L-DOPA=3:1 and 51:39 for DA:L-DOPA=1:3. The predicted mixing ratio

was significantly different from the actual mixing ratio of the solution.

As a result, the single-molecule discrimination results at pH 7.6 indicate that the current
properties of the two molecules are very similar and that they are difficult to discriminate. This

shows that pH 7.6 is not an appropriate condition for discriminating between the two molecules.
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Figure 5.3 Histograms of maximum current (/) and 2D histograms of current-duration for two
target molecules measured in pure solution at pH 7.6. (a), (b) show the case of L-DOPA, (c¢),
(d) show the case of DA.

53



1.00

% DA{ 0.53 0.47 0.75

=

: 0.50

Q

ELDOPA- 0.44 0.56 0.25
0.00

DA  LDOPA
Predicted Class

Figure 5.4 Discrimination results at pH 7.6 measured on pure solutions of L-DOPA (LD) and
dopamine (DA).
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Figure 5.5 Mixing ratio prediction results for a mixture of L-DOPA (LD) and dopamine (DA)
measured at pH 7.6.

5.3.2 Measurements under Acidic Conditions

In this section, the single-molecule measurements of DA and L-DOPA in acidic conditions
are compared to the measurements in neutral conditions in the previous section. Figure 5.6
shows the maximum current (/p) histograms and 2D histograms of current-duration for L-
DOPA and DA molecules measured at pH 3. The histograms show that the current properties
at pH 3 are different from those at pH 7.6. Unlike pH 7.6, the /, histogram shows a clear
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increase in current level for L-DOPA at pH 3. On the other hand, for DA, the current level
seems to decrease at pH 3. Analyzing the average I, levels at pH 3, we found 29 pA for L-
DOPA and 16 pA for dopamine. Compared to the results at pH 7.6, there is an increase in
current for L-DOPA and a decrease in current for DA. This suggests that the behavior of DA
and L-DOPA is clearly different under acidic conditions. In particular, the large increase in

current level for L-DOPA is noteworthy.

Figure 5.7 shows the discrimination results of the two molecules using XGBoost. DA and
L-DOPA showed 81% and 86% accuracy, respectively, which is a significant improvement
compared to the discrimination results at pH 7.6. The high accuracy of molecular
discrimination at pH 3 indicates that the difference in current behavior between the two
molecules is clear. From the mixed solution measurement data at pH 3 shown in Figure 5.8,
the predicted mixing ratio was 82:18 for DA:L-DOPA=3:1 and 33:67 for DA:L-DOPA=1:3.
Although the predicted mixing ratio is slightly different from the actual mixing ratio of the
solution, it shows a high prediction accuracy compared to the case of pH 7.6. As a result, it
indicates that the discrimination of DA and L-DOPA is more favorable in the pH 3 condition
compared to the pH 7.6 condition.
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Figure 5.6 Histograms of maximum current (Ip) and 2D histograms of current-duration for two
target molecules measured in pure solution at pH 3. (a), (b) show the case of L-DOPA, (c), (d)
show the case of DA.
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Figure 5.7 Discrimination results at pH 3 measured on pure solutions of L-DOPA (LD) and
dopamine (DA).
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Figure 5.8 Mixing ratio prediction results for a mixture of L-DOPA (LD) and dopamine (DA)
measured at pH 7.6.

5.6 Discussion of current behavior in Acidic Condition

The results in the previous section show that acidic conditions are more appropriate for
discriminating between DA and L-DOPA than neutral conditions. At pH 3, the current level of
L-DOPA increased, while the current level of dopamine decreased. From these results, it is
expected that the change in pH affected the electronic structure of DA and L-DOPA. To further
investigate the changes in the behavior of the molecules with changes in pH, we discriminated
the same molecule at each pH condition. Figure 5.10a, ¢ shows the /, histograms of the same
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molecule at each pH. The two histograms are an overlay of the /, histograms presented in the
previous section for each pH condition. Figure 5.10b, d shows the results of discriminating L-
DOPA and DA measured at each pH from each other. The discrimination of L-DOPA shows
75% accuracy at pH 3 and 72% accuracy at pH 7.6. DA has 63% accuracy at pH 3 and 68%
accuracy at pH 7.6. This discrimination result confirms that pH changes have a significant
effect on the current behavior of DA and L-DOPA. Here, I inferred that L-DOPA has a higher
discrimination accuracy than DA because its current behavior is more sensitive to pH changes.
These results suggest that single-molecule measurements can detect changes in the behavior of

molecules in response to changes in their chemical environment.

As a next step, I explored the factors that influence the change in the current behavior of
both molecules in response to pH changes. One of the expected factors is the difference in the
behavior of -COOH and -NH> under acidic conditions, which was introduced in Section 5.1.
Except for the two -OHs on the benzene ring common to both molecules, DA has a -NH» group,
while L-DOPA has both -NH; and -COOH. Therefore, as with diamine butane in Figure 5.1a,
it is possible that the interaction of the molecule with the electrode was limited under acidic
conditions due to the influence of -NH3", resulting in a decrease in the current level. At pH 3,
L-DOPA showed a significant increase in current. As shown in Figure 5.1b, the number of
conductances generated by dicarboxylic acid butane at pH 1 is high. However, the level of
conductance was lower at pH 1. Therefore, this result is not sufficient to explain the increase

in current levels with L-DOPA.

Another factor in the expected change in current behavior is the intramolecular cyclization
reaction of L-DOPA on the gold surface at pH 3. In a study to functionalize gold nanoparticles,
N. Kalcec, ef al. reported the behavior of L-DOPA and DA on the surface of gold nanoparticles
at pH 3.1% At pH 3, L-DOPA on the surface of gold nanoparticles undergoes intramolecular
cyclization to form dopachrome. In contrast, DA stops at dopaminequinone and does not
undergo intramolecular cyclization. Figure 5.11 shows a simplified reaction mechanism for L-

DOPA and DA molecules at pH 3 proposed by N. Kalcec.

The nano-gap electrodes used for single-molecule measurements in this study are also made
of gold, which means that they may have similar surface conditions to gold nanoparticles. I

assumed that each reaction of DA and L-DOPA actually occurred on the surface of the Au nano-
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gap electrodes, and investigated the changes in current behavior of the respective reactants and
product molecules L-DOPA, DA, dopachrome, and dopaminquinone. According to the Breit-
Wigner formula described in Chapter 2, the conductance increases as the HOMO level of the

molecule approaches the Fermi level of the metal electrode.

To investigate this effect, the HOMO levels of the molecules were calculated and compared
using Density Functional Theory (DFT). The DFT calculation method used is B3LYP/6-31G(d,
p) utilizing Gaussian 09 software. Figure 5.12 shows the energy diagram of the Fermi level of
Au and the calculated HOMO level of each molecule. According to the DFT calculations, the
HOMO levels of L-DOPA and DA molecules were -8.60 eV and -8.53 eV, respectively. The
calculated HOMO levels explain the similar current properties of the two target molecules
under neutral conditions. Furthermore, the calculated HOMO levels of dopachrome and
dopaminequinone were found to be significantly different. The calculated value was -6.19 eV
for dopachrome and -9.49 eV for dopaminequinone. While dopachrome is closer to the Fermi
level of gold, dopaminequinone is further away from the Fermi level of gold. The HOMO level

calculations support the pH-dependent current properties of each molecule.

Further validation was performed to determine the current level based on the HOMO level
according to the molecular structure. The molecule used for verification is hydroxyindole-2-
carboxylic acid (HICA), which is one of the molecules similar in structure to dopachrome. DFT
calculations of HICA showed a HOMO level of -5.62 eV. I measured HICA under neutral
conditions and compared it to the current value of dopachrome. As Figure 5.12 shows,
measuring HICA under neutral conditions resulted in an /7, of 26 pA. If we were to compare
simply by HOMO level, the current level of HICA should be higher than that of dopachrome,
but in reality, there are many factors other than HOMO level that determine the conductance
of a single molecule. However, the fact that two similar molecules exhibit significantly higher
current levels, as described by the Breit-Wigner formula, emphasizes the influence of the

HOMO level of these molecules on the current level.
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Figure 5.9 Mixing ratio prediction results for a mixture of L-DOPA (LD) and dopamine (DA)

measured at pH 3. XGBoost was used as the classifier.
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Figure 5.10 A simplified reaction mechanism for L-DOPA (a) and DA (b) molecules at pH
3 near gold structure proposed by N. Kalcec.

59



Neutral Acidic Neutral

.’ ) K '5.62 eV
Dopachrome -
A -6.19 eV 5-Hydroxyindole-2-carboxylic acid
u Dopamine -

-8.53 eV
-8.60 eV

-9.49 eV

Dopaminequinone

Figure 5.11 The results of HOMO level calculations.

(b) ()

@ <
c g 102
Q ~
£ £
g o 101
© o
10°
50 100
Current / pA Duration time / ms

Figure 5.12 The results of 5-hydroxyindole-2-carboxylic acid. (a) The molecular structure

of 5-hydroxyindole-2carboxylic acid. (b) I, histogram of 5-hydroxyindole-2carboxylic acid. (¢)

2D histogram of current and duration.
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5.7 Conclusion

In this study, I proposed and validated an approach to differentiate molecules based on the
differences in their behavioral responses to chemical environments. This methodology offers a
simple yet effective means of distinguishing molecules with similar chemical structures and
characteristics. Moreover, the target molecules of this research, DA and L-DOPA, hold various
analytical and chemical implications. It is anticipated that this approach will prove beneficial
for the analysis and discrimination of other significant molecules. Furthermore, this study
demonstrates the ability to detect the impact of chemical environmental changes on molecular
behavior through single-molecule measurements. This underscores the utility of single-
molecule measurement techniques in exploring and comprehending the diversity of chemical
events. These findings accentuate the significance of research and technological advancements

at the single-molecule level across various domains.
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Chapter 6. Direct Single-Molecule Discrimination
without Pre-Training

Chapters 4 and 5 described strategies for distinguishing between two molecules with similar
structures by modifying the nano-gap in the molecules or changing the chemical environment.
The single-molecule measurement and machine learning data analysis methods described in
the previous two chapters require classifiers to be trained with measurement data from pure
target samples before analyzing real samples. However, it is difficult to apply this training
process to all target molecules. In addition, due to the transformation of molecules by chemical
equilibrium, accurate training data may not be accumulated, which can lead to errors in real
sample analysis. Therefore, this chapter proposes a new algorithmic machine learning classifier
that can immediately predict the composition of a sample without prior training. A training-
free single-molecule discrimination method will enable single-molecule measurements to

become a widely used chemical analysis tool.

6.1 Introduction

A method that can predict molecular composition by directly measuring samples containing
multiple target molecules would minimize pretreatment and sample loss. In addition, the ability
to analyze multiple targets simultaneously will significantly reduce time and cost. So far, the
target molecules for single-molecule measurement and analysis are not limited to DNA/RNA3!-

3%, but have been expanded to a variety of biomolecules such as sugars®’, amino acids'!,

3741 "and neurotransmitters*’. It has been demonstrated that this technique can

proteins/peptides
be applied not only to biomolecules but also to the analysis of various environmental molecules,

such as explosives detection!!!.

Many studies have measured a variety of single molecules, and the conductance of single
molecules has a large variation. Therefore, statistical methods have been indispensable as a
way to improve the accuracy of molecular discrimination, and conductance histograms have
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been used as a traditional and common method. However, this only provides statistical
information about single-molecule conductance. To overcome this limitation, machine learning
analysis of single-molecule measurement data has been introduced, which has improved the

discrimination accuracy of single-molecules.*>+-2->

Conventional machine learning analysis methods require training data from pure sample
solution measurements that contain only the molecule to be analyzed. However, considering
the practical application of single-molecule measurements for specific molecule detection, it is
not easy to prepare pure solutions for all expected impurity molecules in a sample. Rather, it
may be relatively easier to prepare samples with varying concentrations of the target molecule
in solutions containing various impurities. An example of such a method is the detection of a
target molecule by manipulating the environment required for its release from a biological
sample, either by promoting or inhibiting its release. This allows you to control the
concentration or measurement signal of the target molecule and obtain accurate analysis results.
Alternatively, a solution containing a reference molecule can be used to detect or measure the
target molecule. However, even if it is possible to measure a solution containing only a specific
target molecule, a machine learning classifier trained on that measurement data may not be
applicable to real samples. This is because the measurement environment of the data used as
training data may be different from the environment of the actual sample, i.e., environmental
conditions, experimental conditions, presence of impurities, efc. may affect the measurement

results, and these differences may limit the performance of the classifier.

For these reasons, the development of methods that can directly discriminate individual target
molecules in mixed samples represents an important advance in the field of single-molecule
measurement and discrimination. For example, such a method would allow for the
discrimination of each target molecule in a mixed solution, without the need for a sample
containing only a single species of target molecule. Therefore, this method has great potential
for detecting and analyzing a variety of targets in complex environments such as practical
biological samples, which will show promise for applications in a variety of fields. Therefore,
the goal of this research is to develop a method for discriminating molecules that works with
mixed solutions and does not require a single species target sample. Figure 6.1 graphically

depicts the process of the conventional method and the new method. The substances targeted
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in this study are deoxyguanosine monophosphate (dGMP) and thymidine monophosphate
(dTMP), and Figure 6.2 shows the structures of the two molecules. Both dGMP and dTMP can
be identified by single-molecule measurement and have been previously reported as target
molecules in various studies.*"***!12 In this study, the two target molecules were chosen in terms
of discrimination of single-molecule signals by a novel machine learning model rather than in
terms of the discriminability of each molecule in a mixture of the two molecules. In this study,
I developed a novel analytical method to discriminate between the molecules utilizing single-
molecule measurement data of only mixed solutions of dGMP and dTMP and compared it to

conventional methods.
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Figure 6.1 Flow chart of single-molecule classification. For single-molecule current
measurements, the sample solutions were injected into a PDMS well, and the chips were bent
with a finely controlled push bar with a piezoelectric device to form a nano-gap, after which
the current was measured. The green box represents the conventional method, while the orange
box represents the new concepts. The solid lines show the process for each individual sample,

and the dashed lines show the process for the mixture.
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Figure 6.2 The molecular structures of dGMP and dTMP.

6.2 Methods

The goal of this study is to discriminate between the two target molecules using the
conventional method and the new method, and to determine whether the new concept is
effective in molecular discrimination. Therefore, dGMP and dTMP solutions were first
prepared for the conventional method and measured by MCBJ. dGMP (Sigma-Aldrich) and
dGTP (Sigma-Aldrich) were diluted in Milli-Q water without further purification. The
concentration of each solution of dGMP and dTMP used in the measurement was 10 uM. After
measuring pure target sample solutions, mixtures of the two species to be analyzed in both the
conventional and new methods were measured. In this study, two types of mixture samples
were used, and the dGMP, dTMP ratios in each sample were dGMP:dTMP=3:1 (750 uM dGMP
and 250 pM dTMP) and dGMP:dTMP=1:3 (250 uM dGMP and 750 uM dTMP), respectively.
PDMS wells were installed in the nano-gap device to contain the solutions. The nano-gap

distances used for the measurements were 0.58, 0.56, and 0.54 nm.

After the single-molecule measurement was completed, machine learning was used to identify
the two molecules. Each of the 830 pulse signals was trained and classified using supervised
machine learning with a random forest (RF) classifier in scikit-learn version 0.24.2. For
validation, a 10-fold CV was performed and the mean and standard deviation values provided
the classification rate and error. In the mixed solution assay, the RF supervised machine
learning classifier was trained with 1000 dGMP and dTMP signals each. Signals with Ip > 20
pA and t4 > 1 ms were analyzed. The signals in the mixture were classified one by one using
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the trained classifiers. The analysis was performed using Python 3.10.4. The UUC and
weighting KDE source code was written by hand using Python 3.10.4. The 1000 signals and
features from the mixture are the same as in the traditional method. A Gaussian kernel is

adopted, and the bandwidth is determined by Silverman's rule.

6.3 Results
6.3.1 Conventional Single-Molecule Discrimination

Conventional methods predict the mixing ratio of a mixture based on data trained with
measurements from solutions containing only the target molecule. Therefore, the two target
molecules were first measured in pure solutions containing only the target molecules. A
tunneling current pulse occurs when a single molecule passes between nano-gap electrodes, as
shown in Figure 6.3. Figure 6.4 shows a histogram of the maximum current (Ip). The average
maximum current for dGMP and dTMP was 32 pA and 25 pA, respectively. As reported in
previous studies, Figures 6.3, 6.4 show that dGMP has higher current levels than dTMP. The
reason for the difference in conductance between the two molecules is that the HOMO level of
dGMP is closer to the Fermi level of Au, the conduction pathway, than the HOMO level of
dTMP. Although there is a difference in the average conductance between the two molecules,
a histogram of the actual current values shows some overlap. In the histograms of both target
molecules, a low current signal was observed at the 20 pA level. This low current signal is
caused by the bridge structure between the nano-gap electrodes and the single-molecule charge
transport, wherein electron transport through the lower molecular orbitals of the ribose sugar
is responsible for this low current.!'® This is why we observed a large overlap in the maximum
current histograms of the two molecules, and why histogram-based analysis methods that rely
on Ip alone do not achieve accurate discrimination. Therefore, machine learning was

introduced as an additional statistical analysis method.

In the conventional method, a machine learning classifier is trained using individual single-
molecule current pulses obtained by measuring pure solutions for each single target molecule.
Each solution is used as training data along with a molecular name (label). The classifier learns

the current signal pattern based on the molecule name and uses it to discriminate the current
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signal of the molecule in the separately measured mixed solution and to predict the mixing
ratio. The discrimination results for the two molecules measured in pure solutions of each
target were 0.75 for dGMP and 0.82 for dTMP, as shown in the Confusion Matrix in Figure 6.5.
This approach demonstrates the ability of a machine learning classifier trained on data
measured in a solution containing only a single chemical species to discriminate between
molecules. To verify the classification ability of the machine learning classifier, we predicted
the mixing ratios of the target molecules using the classifier trained on the current signals of
each molecule in the previous step. Figure 6.6 shows the histograms of Ip measured in two
mixtures with dGMP:dTMP=3:1 and dGMP:dTMP=1:3, respectively. Comparing the two
histograms, the dGMP:dTMP=3:1 solution shows a higher conductance because it contains
more dGMP, which has a relatively high conductance. Figure 6.7 shows the process of
discriminating the mixtures using a machine learning classifier trained on each of the pure
target solutions measured and analyzed in the previous step. The signals from the two mixture
solutions were analyzed and discriminated to predict a mixture ratio of 64:36 for
dGMP:dTMP=3:1 and 39:61 for dGMP:dTMP=1:3. As the discrimination results in Figure 6.7
show, the discrimination accuracy of each nucleotide target molecule varies individually, which
may underestimate the predicted ratio of abundant nucleotides. In the next part, the same data

as the mixture solution data used in this part will be used to predict the mixing ratio.
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Figure 6.3 Individual current pulses of (a) dGMP and (b) dTMP.
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Figure 6.4 Histograms of the maximum current (/) for (a) dGMP and (b) dTMP.
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Figure 6.5 [, histograms measured in two mixture solutions, dGMP:dTMP=3:1 and
dGMP:dTMP=1:3.
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Figure 6.7 The results of predicting the mixing ratio of mixtures based on trained data.

6.3.2 New Concept of Single-Molecule Discrimination

In the previous section, we saw that when predicting the mixing ratio of a mixture, the more
abundant of the two molecules in the mixture tends to be underestimated. This can limit the
performance of the classifier because, as mentioned in the introduction, the measurement
environment of the pure target sample may be different from that of the real sample. Therefore,
as a way to minimize this effect, this part presents a method and results for predicting the
mixing ratio of a mixed solution directly using only the mixture solution. Figure 6.8 illustrates

the process of predicting a miscibility ratio from a mixture solution.

Given the data of a mixed solution of two molecules, the discriminative boundary of the two
molecules must be determined in order to discriminate between the two unlabeled molecules.
This was estimated directly from the data obtained from the two mixtures using Unlabeled data
and Unlabeled data Classification (UUC) with Kernel Density Estimation (KDE).!!* Figure 6.9
shows a conceptual diagram of UUC, a method for determining discriminant boundaries from
data from mixed solutions in which two classes (each molecule in this study) are present in
different concentrations. In Figure 6.9, the red and blue colors represent mixtures with different
mixing ratios, and the triangles and circles represent classes. Each mixture solution contains
different concentrations of the two classes, and the classes are not known in advance. The main
goal of UUC is to discriminate between the two classes based on which class is more abundant
in this solution. Figure 6.10 illustrates the concept of KDE, which is a nonparametric statistical

technique that estimates a probability density function directly from observed data.
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Nonparametric statistics are methods that perform statistical tests by calculating probabilities
directly from the given data, regardless of the characteristics of the population being sampled.
So, intuitively, KDE calculates the probability density by adding a Gaussian kernel obtained
from each observed data point, similar to how a histogram is generated by adding data points.
The advantage of this method is that a smoother probability density distribution can be obtained
with less data than a histogram. Therefore, by using KDE, a smoother representation of the
probability distribution can be obtained, which allows for a more accurate distribution with less
data. In this study, the Gaussian kernel was centered on directly measured data points. The
UUC was determined by calibrating the probability density distributions of the two classes with
KDE. However, since the proposed method is based on the principle of higher probability
density in regions of higher concentration, it can also be applied when the concentration

relationship of two unlabeled data mixtures is known.

To compare the conventional method with this new concept, a discrimination task was
performed using the same features extracted from the same data as in the previous part. The
UUC machine learning classifier was trained to predict the molecules using only the signals in
the mixture, and Figure 6.11 shows the results of predicting the mixing ratio of the mixed
solution. For dGMP and dTMP ratios of 3:1 and 1:3, the corresponding signals were predicted
to be 76:24 and 22:78, respectively. Figure 6.12 shows the comparison of the discrimination

results of the new concept with the results of the traditional method.

The electronic structure of the electrode affects the electrical transport properties of a single
molecule, i.e., when a molecule is adsorbed on the surface of the electrode or the shape of the
electrode changes, the electronic structure changes, and these changes can affect the signal of
the single molecule.!'>'® In recent years, various machine learning methods have been
developed, and these methods are used to analyze and model data. Unsupervised learning can
be used to discriminate data without explicit labels, and it is used in conjunction with
supervised learning. In other words, unsupervised learning is a learning method that does not
require labels to discriminate patterns in the data. This unsupervised machine learning analysis
was used to discriminate I-z traces in single-molecule measurement data.>* However, as Figure
6.13 shows, traditional unsupervised machine learning methods cannot adequately discriminate

data measured in two mixed solutions. The new UUC method applied in this study is able to
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discriminate between the two molecules from data measuring only the mixture. In particular,
the method avoids errors caused by changes in the environment and classifies single-molecules

with higher accuracy than conventional methods.

In conclusion, this method has the potential to provide more reliable and accurate
classification under a variety of conditions. Figure 6.14 shows the molecular prediction results
obtained using UUC from the current profile of a dGMP:dTMP=3:1 mixed solution. The red
and blue signals are the signals of dGMP and dTMP, respectively, predicted by UUC. This
means that the signals of single-molecules from a mixture measurement can be individually
differentiated. Figure 6.15 shows current profile images of measurements with each solution,
including the blank solution (Milli-Q water). Figure 6.15 Current profiles of pure solution
measurements of dGMP and dTMP, represented by a and b, show that dGMP has many current
pulses with relatively higher current values than dTMP. For Figure 6.15 c, d, which shows the
currents profiles in two mixture solutions of dGMP:dTMP=3:1 and dGMP:dTMP=1:3, it shows
that there are many current pulses with higher values in solution ¢, which contains more dGMP.
Figure 6.15¢ shows a measurement in Milli-Q water, showing that no current signal was
generated. Figure 6.16 shows a duration histogram of the single-molecule current pulses from

each solution.
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Train
dGMP:dTMP
=1:3

Figure 6.8 Process of training and identifying with data from mixtures only.
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Feature 1

Figure 6.9 Schematic image of UUC. The red and blue colors represent two types of mixtures
with different concentrations of the two classes. The circles and triangles represent each class.
The UUC method determines the orange curve, which represents the boundary between two

classes.
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Figure 6.10 Schematic image of the KDE for estimating the probability density function in the
feature space. The red and blue dots and dashed lines indicate the data points and their Gaussian
kernel, respectively. The solid curves represent the sum of the dashed lines, which represents

the kernel density estimate.
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Figure 6.11 The result of predicting the mixing ratio of two mixtures with data trained on the

mixture only.
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Figure 6.12 Comparison of the performance of the new and old methods with respect to the
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Figure 6.13 Discrimination results with unsupervised machine learning. (a-c) Discrimination
results without PCA and (d-f) with PCA. The clustering algorithms are (a d) k-means clustering,
(b, e) spectral clustering, and (c, f) GMM clustering.
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Figure 6.14 The current profile resulting from identifying the signal of each single molecule

individually (in dGMP:dTMP=3:1 solution).
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Figure 6.15 The current profiles of each measurement. (a) dGMP solution, (b) dTMP solution,
(¢) dGMP:dTMP=3:1 solution, (d) dGMP:dTMP=1:3 solution, (¢) Milli-Q water as the blank

solution. All solutions used in the measurements were prepared using deionized Milli-Q water.
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Figure 6.16 Histograms of the duration of the current pulse for each measurement. (a) dGMP

solution, (b) dTMP solution, (¢) dGMP:dTMP=3:1 solution, (d) dGMP:dTMP=1:3 solution.
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6.4 Discussion

The current histograms of dGMP and dTMP in Figure 6.6 show that dGMP levels higher
currents than dTMP. However, when focusing on the individual current signals rather than the
histogram, dGMP did not always show a higher current than dTMP. The machine learning
algorithm used in this study discriminates between the molecules' signals based on the level of
current and the shape of the pulse. Figure 6.17 shows I, histograms representing the
discrimination results of signals obtained from solutions with dGMP:dTMP ratios of 3:1 and
1:3. In both histograms, the pink bars represent the histogram of the current predicted by dGMP
and the blue bars represent the histogram of the current predicted by dTMP. The two Ip
histograms show that relatively high current data is predicted by dGMP and relatively low
current data is predicted by dTMP. The histograms show that the UUC method predicts the
mixing ratio of the molecules and that dGMP has a higher conductance than dTMP, which is
in the same trend as the pure solution measurements. In particular, the new method determines
the concentration ratio from the mixed solution measurement of two molecules whose
concentration ratio is unknown. This new method can be applied to a variety of molecular
detection methods. For example, the technique can be applied to determine the concentration
ratio of a foreign substance in a biological sample by comparing it to a normal sample and a
positive/negative sample with a control that promotes or inhibits the molecule of interest. In
addition, the concentration of the molecule of interest can be determined by comparing a

sample with an unknown concentration to a sample to which a reference sample has been added.
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Figure 6.17 [, histograms based on the identification results of the (a) dGMP:dTMP=3:1 and
(b) dGMP:dTMP=1:3 solutions, respectively. The red and blue bars represent the histograms
predicted as dGMP and dTMP, respectively. The solid lines represent the sum of the two
histograms.
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6.6 Conclusion

In this study, I proposed and demonstrated the feasibility of a new method for discriminating
molecules using only single-molecule measurement data in mixture solutions, which
complemented conventional single-molecule discrimination methods. The new method
discriminated well between molecules without their respective labels from measurement data
in mixture solutions without any pre-training on pure solutions of the target molecules, which
was achieved by applying the UUC algorithm based on KDE. The main method of this goal
was to develop a new method and evaluate its performance. For the molecular discrimination
of'the target molecules dGMP and dTMP in this study, compared with the conventional method,
the new method showed improved accuracy in predicting the composition of the mixed solution.
The technique for discrimination of target molecules in mixed solutions developed in this study
is expected to be utilized in various fields for various molecules without individual sample

training.
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Chapter 7. Conclusions

In this thesis, I proposed approaches to expand the scope of single-molecule measurement
applications, aiming to enhance its potential for diverse fields. The methodology employed
involves measuring single molecules freely diffusing in solution, deviating from the
conventional approach of chemically bonding molecules to electrodes. Applying this technique
to various molecular analytical methods poses a significant challenge and goal for future

research.

The primary focus of this study was categorized into two key areas. First, it introduced new
measurement approaches to discern molecules that were challenging to differentiate due to
structural similarities. Second, it explored analytical methods to streamline conventional

discrimination techniques.

In Chapter 4, the approach of modifying the nano-gap electrodes with appropriate molecules
to improve the discrimination accuracy of difficult-to-discriminate molecules was discussed.
In this study, the target molecules Asp and Leu were discriminated by the change in current
properties due to the difference in interaction with MAA molecules modified on the nano-gap
electrodes. Compared to the measurement results using bare nano-gap electrodes, the
discrimination accuracy of the two target molecules was significantly improved in the case of
molecular modification. In this study, I proposed and achieved a method to discriminate
molecules that are difficult to discriminate under normal conditions with high accuracy by

modifying nano-gap electrodes with appropriate molecules.

In Chapter 5, an approach to improve the accuracy of molecular discrimination through
differences in the behavior of molecules due to changes in the chemical environment was
discussed. In this study, molecules were discriminated by the difference in behavior of two
target molecules due to changes in pH. The target molecules in this study, L-DOPA and

dopamine, showed similar current characteristics due to their similar molecular structures
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under neutral conditions at pH 7.6, making discrimination difficult. In the acidic condition of
pH 3.0, the current characteristics of the two molecules were significantly different, resulting
in improved discrimination accuracy. This study demonstrated that molecules that are difficult
to discriminate under normal conditions can be discriminated through differences in molecular

behavior by changing the chemical environment.

In Chapter 6, a novel approach was discussed that addresses the potential drawbacks of the
conventional single-molecule discrimination method and allows for broader application of
single-molecule measurements. The conventional method requires training from measured data
of samples containing only the target molecule before analyzing practical samples. Since this
training process can sometimes limit the analysis of samples, a new method was developed that
utilizes the UUC algorithm based on KDE to analyze the molecular composition of samples
directly from data of mixed solutions only. It is expected that this method can be developed
into a technology that can accurately predict the composition of a solution even in a solution

containing a variety of molecules.

This thesis demonstrates the potential for advancing the field of single-molecule
discrimination and expanding single-molecule measurement into various fields in the future.
For example, applications to the analysis of biomolecules and complex chemical mixtures are
expected to revolutionize various fields such as disease diagnosis, environmental monitoring,
and drug discovery. To cultivate these valuable and innovative fields, it is crucial to validate
the methodology developed in this study under diverse environmental conditions,
demonstrating its efficiency and universality. Further research, including diversification of
experimental conditions and real-world applications, will be necessary. In addition, the
accuracy and efficiency of data analysis can be improved through the improvement and
optimization of machine learning algorithms. This is poised to significantly impact various
scientific and industrial fields where precise molecular-level analysis is crucial. It is also

important to develop the methodology of this study in an affordable and easy-to-use form.

In conclusion, the research presented in this thesis paves the way for new developments in
molecular analytical methods, and the results are expected to make a significant contribution
to the future development of this field along with the advancement of single-molecule

measurement techniques. In particular, the approach and results of this research pave the way
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for further research towards practical and real-world applications, and suggest new pathways

for scientific inquiry and technological innovation.
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