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Chapter 1. General Introduction 

 

1.1 Introduction to Single-Molecule Measurement 

Single-molecule measurement offers a unique approach to delve into the distinctive 

characteristics of individual molecules, steering away from the conventional practice of 

averaging data from ensembles. This technique allows for the examination of the unique 

properties of individual molecules, departing from traditional ensemble averaging methods. 

The junction of a molecule with a metal electrode measures the molecule electrically and 

provides insight into charge transport at the single-molecule level.1–9  

An early stage of research using single-molecule measurement is the field of molecular 

electronics, which applies individual molecules to study electronic devices such as 

transistors4,10, switches11,12, and diodes13–16. Moreover, the application of this experimental 

technique provides an opportunity to explore the chemical and physical phenomena at the 

single-molecule level. The field of single-molecule measurement is expected to lead to 

significant discoveries across various fields and play a pivotal role in the advancement of 

science and technology. 

The proposal of electrically measuring individual molecules originated in 1974 with A. 

Aviram and M. A. Ratner, who attempted to construct a rectifier utilizing a single molecule.17 

Since the introduction of this concept, efforts have been made to develop new techniques to 

measure individual molecules, and today there are many different ways to measure a single 

molecule. Among these various measurement methods, the break junction approach is most 

commonly used for connecting individual molecules to metal electrodes.  

Break junction refers to a device comprising two metal wires separated by a nanometer-scale 

gap. There are several platforms for break junction, with Mechanically Controllable Break 

Junction (MCBJ) and Scanning Tunneling Microscope-Break Junction (STM-BJ) approaches 

being the most widely utilized. The following sections describe these two break junction 
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platforms. 

 

1.1.1 Mechanically Controllable Break Junction (MCBJ) 

The MCBJ method, initially devised by J. Moreland, J. W. Ekin in 198518, and improved by 

C. Muller, et al. in 199219,20, offers mechanically-stable electrodes with an adjustable gap. This 

enables the characterization of single-molecules using uncontaminated atomic nanoelectrodes. 

MCBJ is one of the most prominent platforms for molecular measurements and can be used to 

investigate the conducting properties, interactions, and charge transport of molecules. MCBJ 

is a technique used to precisely manipulate nano-gap by mechanically breaking metal wire 

bridges, typically composed of materials such as gold or platinum. Figure 1a shows an MCBJ 

system in its initial state, with a piezoelectrically driven push rod underneath the substrate. As 

in Figure 1b, when the push rod moves upward, the substrate, anchored in place by the counter 

supports, undergoes a three-point bend. As the substrate bends increasingly, the metal wire 

bridge gradually stretches until it eventually breaks, forming a nano-gap. The newly formed 

nano-gap electrodes are clean, and the nano-gap distance between the electrodes can be 

controlled by further bending or relaxing the substrate. The distance between the nano-gap 

electrodes is precisely controlled by the piezo element. The tips of both electrodes can be 

connected by molecules in the solution to form a molecular junction. This molecular junction 

is typically formed by the interaction of the molecule's linker groups with the metal electrode. 

In molecular conductance measurements, the inherent conductance of a molecule is traced by 

repeatedly forming and breaking molecular junctions. There is also a method for measuring the 

conductance when molecules freely diffusing in the solution are captured within the nano-gap. 

 

1.1.2 Scanning Tunneling Microscope-Break Junction (STM-BJ) 

STM-BJ is a technique that utilizes the nano-space-forming capabilities of a break junction 

along with a scanning tunneling microscope (STM) to measure the conductance properties of 

single molecules. The technique, shown in Figure 1.1c, was first reported by Xu and Tao in 

2003 and has been in continuous use since then, playing an important role in the field of single-
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molecule measurement.21 

In STM-BJ experiments, the STM tip is precisely controlled on the metal substrate at the 

angstrom level to form a metal nanocontact. Then, the tip is inserted until only a short chain of 

gold atoms remains. During this process, the conductance of the gold contact formed between 

the tip and the metal substrate exhibits a stepwise decrease at integer multiples of G0 (=2e2/h) 

as the tip moves away from the substrate. If the metal contact is broken in the presence of 

molecules in solution, the molecules can fill the gap between the tip and the substrate. The 

formation of a stable molecular junction between the tip and the substrate results in the 

observation of characteristic conductance. Conversely, in the absence of molecules in the 

solution, no characteristic conductance is observed. This behavior underscores the sensitivity 

and specificity of the STM-BJ technique in detecting molecular interactions within nanoscale 

gaps. 

 

 

Figure 1.1 Schematics of MCBJ and STM-BJ systems. (a), (b) illustrate MCBJ, and (c) 

illustrate STM-BJ. (a) The initial state of the MCBJ system, where the pushing rod is at the 

origin and there is no bending of the substrate. (b) The substrate is bent due to three-point 

bending caused by the elevation of the pushrod. The nano-wire is broken and a nano-gap is 

formed. 
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1.2 Investigation of Chemical/Physical Phenomena 

In the preceding section, the potential of single-molecule measurements and the 

experimental techniques were explored. Single-molecule measurement is a technique utilizing 

metal nano-gap electrodes to measure individual molecules and analyze their electrical 

conductance.1–9 This section describes the chemical and physical process investigated by 

single-molecule measurements. The observation and understanding of molecular behavior at 

the single-molecule level contribute significantly to the exploration of chemical, physical 

events at the nanoscale, with these measurements playing a key role.22–27 This section covers 

the importance of single-molecule measurements with an introduction to some studies. 

A. C. Aragones, et al. reported that electrostatic effects can influence chemical reactions. 

This study provided experimental evidence demonstrating the acceleration of chemical reaction 

in the presence of electric fields.28 During experiments with STM-BJ, the accelerated formation 

of carbon-carbon bonds under the influence of an electric field was confirmed in the Diels-

Alder reaction. These findings hold the potential to open avenues for innovative approaches to 

chemical catalysis. C. Yang, et al. reported identifying the actual mechanism among the two 

anticipated mechanisms for the Suzuki-Miyaura cross-coupling reaction using a high-

resolution single-molecule detection platform.29 The study employed the platform to elucidate 

the entire reaction pathway, providing detailed insights. By detecting the electrical signals 

associated with oxidative addition/ligand exchange and metal transfer, the researchers clarified 

the metal exchange mechanism. This was accomplished using a single-molecule Pd catalyst 

integrated on a nano-gap graphene point electrode. Additionally, the study determined the 

kinetic constants for each step and the overall catalytic time scale. 

Additionally, single-molecule measurement experiments employing a variety of molecules 

have provided insights into diverse physical events within molecules. M. Taniguchi, et al. used 

a naphthalenedithiol to investigate changes in the conductance of molecular junctions based on 

molecular symmetry.30 The 1,4-symmetric molecular junction, in comparison to its 2,7-

symmetric counterpart, exhibited conductance 110 times higher, offering a detailed theoretical 

and experimental understanding of the impact of molecular symmetry on conductance. These 

findings showed the potential to design high-conductance molecular systems through the 

control of molecular symmetry. 
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The deep understanding of chemical and physical events through single-molecule 

measurements has shown the potential of measurements at the molecular scale in exploring 

new science and technology. The field of single-molecule measurement is expected to provide 

new insights in various fields such as medicine and biology. 

 

1.3 Application to Bio-Molecular Analysis 

In addition to the research areas discussed in Section 1.2, several other significant fields have 

been explored using single-molecule measurements. Outstandingly among various fields, the 

analysis of biomolecules receives notable attention. Single-molecule measurements enable 

direct detection of molecules, obviating the need for sample processing and allowing for simple 

and rapid analysis. Moreover, theoretically capable of detecting a molecule, it possesses the 

potential for analysis at extremely low concentrations. Using the advantages of single-molecule 

measurements, diverse analytical methods for biomolecules, including RNA/DNA31–36, amino 

acids37, peptides37,38, proteins39–41, neurotransmitters42, sugars43. 

Polymerase chain reaction (PCR) is a molecular biology technique for replicating and 

amplifying desired portions of DNA. It is currently the most widely used technique for DNA 

sequencing, but it requires DNA amplification, which is inherently time-consuming and 

expensive. The ultimate method of DNA/RNA sequencing is to read each nucleotide group 

from a single piece of DNA/RNA and analyze the sequence simultaneously. The 

conceptualization of these technologies began in 2008 with a theoretical proposal by Di Ventra 

group for DNA/RNA sequencing via single-molecule measurements.44–46 Figure 1.2 represents 

their proposed concept of direct DNA/RNA sequencing. The principle of this sequencing 

technique is that when DNA is passed between appropriately spaced electrodes, each nucleotide 

generates a unique current signal due to the unique chemical structure of the base. Therefore, 

by passing DNA between electrodes and analyzing the current generated over time, its 

sequence can be determined. Following the theoretical confirmation of the feasibility of single-

molecule DNA/RNA sequencing, there has been a significant increase in research interest 

focused on analyzing DNA/RNA at the single-molecule level. 

H. Tanaka and T. Kawai accomplished a breakthrough in DNA sequencing on a copper 
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surface utilizing a Scanning Tunneling Microscope (STM).47 By employing an oblique pulse-

injection method to deposit molecules onto the surface, they overcame challenges associated 

with preparing samples of long-chain DNA molecules. The study revealed a distinct electronic 

state of guanine bases, enabling the sequencing of individual guanines. Through high-

resolution scanning tunneling microscope imaging and spectroscopy, the researchers identified 

the 'electronic fingerprint' of guanine bases in the DNA molecule, demonstrating the possibility 

of sequencing individual guanine bases in real long-chain DNA molecules. This work 

represents a significant advancement beyond the mere visualization of DNA and showcases the 

potential to distinguish and sequence individual DNA nucleobases. 

T. Ohshiro, et al. reported a groundbreaking single-molecule electro-randomized sequencing 

of DNA and RNA, employing tunneling current and randomized sequencing.34 As shown in 

Figure 1.3, individual DNA bases in aqueous solution were measured and analyzed by MCBJ. 

This approach facilitated the identification of different combinations of DNA oligomers, 

yielding conductance-time profiles. These profiles were then employed to distinguish the base 

molecules within each oligomeric configuration, enabling the resequencing of various DNA 

oligomers and miRNAs, as reported. These studies represent significant strides in DNA/RNA 

sequencing techniques at the single-molecule level. 

Single-molecule measurements can directly measure a target molecule without additional 

sample processing steps. This advantage facilitates faster and more sensitive analysis and 

detection of various molecules. Given its high potential for biomolecular analysis, single-

molecule level biomolecular analysis has been applied across a diverse range of biomolecule 

families, including proteins/peptides, amino acids, neurotransmitters, and more. In the pursuit 

of developing peptide sequencing techniques, T. Ohshiro, et al. conducted measurements and 

discrimination of amino acids.37 As Figure 1.4 shows, this study attempted to discriminate 

between amino acid molecules using the current properties of duration and conductance. This 

data indicates that while some amino acids are discriminable, accurate discrimination is not 

easy due to similarities in current properties.  

The overlap in current properties originates from the similarity in electronic structure, and 

these molecules may possess similar molecular structures. Therefore, in the field of single-

molecule measurement, discriminating between molecules with similar current properties 
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poses a significant challenge. Since histogram-based analysis methods only provide statistical 

conductance information, molecular discrimination becomes difficult when histograms overlap. 

In particular, currents from single-molecule measurements have large variations, so histogram-

based analysis may not be an appropriate method for molecular discrimination. To overcome 

these limitations and improve the accuracy of molecular discrimination, a machine learning-

based approach has been applied to analyze individual current pulses through single-molecule 

measurements. The upcoming section will cover the utilization of machine learning. In the 

following section, the application of machine learning is discussed in detail. 

 

 

 

 

 

 

Figure 1.2 Schematic illustration of sequencing for DNA (or RNA) passing through nano-gap 

electrodes. The colors of each DNA strand represent the four nucleotides, and the color does 

not signify a specific molecule. As the DNA passes between the nano-gap electrodes, a current 

is generated by each nucleotide in the DNA. Each nucleotide exhibits distinct electrical 

characteristics based on its specific chemical structure. Therefore, by analyzing the current over 

time, DNA/RNA can be sequenced. 
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Figure 1.3 Conductance histograms for the four deoxynucleotides of DNA, each containing 

1000 maximum current values for the signal of every measured molecule. The blue, red, purple, 

and green lines represent the single-molecule conductance of dGMP, dAMP, dCMP, and dTMP, 

respectively. The color code of each line corresponds to the Gaussian fit of the histogram. 

Figure reprinted from “Single-Molecule Electrical Random Resequencing of DNA and RNA” 

by T. Ohshiro, et al., 2012, Article, 2(1), 501, Copyright 2012 by Springer Nature. 

 

 

Figure 1.4 The two-dimensional scatter plot of conductance and duration from single-molecule 

measurements of amino acids diffusing in solution. Each data point represents Aspartic acid 

(D), leucine (L), histidine (H), proline (P), glutamic acid (E), isoleucine (I), lysine (K), cysteine 

(C), methionine (M). Figure reprinted from “Detection of post-translational modifications in 

single peptides using electron tunnelling currents” by T. Ohshiro, et al., 2014, Letters, 9(10), 

835-840, Copyright 2014 by Springer Nature, and used with permission. 
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1.4 Application of Machine Learning 

In the field of single-molecule measurement, histograms have traditionally been used as the 

primary tool for analyzing measured data and determining the conductance of molecules. 

However, as discussed in the preceding section, single-molecule currents exhibit significant 

variability, posing challenges when attempting to discriminate between molecules. The 

experiments in this thesis, molecules of different orientations are measured as they diffuse 

freely in solution, without chemically bonding to nano-gap electrodes, thereby introducing 

even greater variability into the data. Figure 1.4 in the previous section shows single-molecule 

measurement data depicting various orientations of an amino acid molecule diffusing freely in 

solution, with error bars on each data point representing the variability in single-molecule 

conductance. This means discriminating between different molecules becomes challenging 

when their current properties overlap. While it may be possible, in some instances, to 

discriminate based solely on conductance-time data if the molecules exhibit clear differences 

in current characteristics, molecules of high discrimination importance often share similar 

current characteristics due to structural similarities.  

The application of machine learning has been proposed as an alternative to address the 

limitations associated with traditional analysis methods. Traditional analysis methods, such as 

the histogram and maximum current and duration scatter plot in the previous section, do not 

include detailed information about individual current pulses. Recent advances in machine 

learning have highlighted its potential applications in various fields such as chemistry and 

nanoscience.48–51 Machine learning has also been applied to the field of single-molecule 

measurements, where it has proven effective in analyzing the current properties of single 

molecules.42,45,52–59 For instance, Y. Komoto, et al. conducted measurements on three 

neurotransmitter molecules and applied machine learning to analyze individual current signals 

for discriminating the target molecules.42 Figure 1.5a schematically illustrates the measurement 

of molecules using nano-gap electrodes. Figure 1.5b displays the structures of the three 

molecules, while Figure 1.5c presents the confusion matrix representing the discrimination 

accuracy of these molecules. In the confusion matrix, the true sample axis pertains to the target 

sample actually measured, and the predicted sample axis reflects the degree of prediction for 

each target molecule by machine learning. This study underscores that the discrimination 
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accuracy of molecules can be significantly enhanced by employing machine learning for 

multidimensional analysis of individual single-molecule current data. 

The approach of analyzing individual single-molecule current signals through machine 

learning, capable of handling multidimensional data, represents a novel strategy for 

discriminating molecules that prove challenging for traditional analysis methods. This method 

marks a substantial milestone in the advancement of molecular discrimination technology and 

is expected to broaden the applicability of single-molecule measurements. 

 

 

Figure 1.5 Machine learning discrimination results from single-molecule measurement data of 

three molecules. (a) Schematic of single-molecule measurement. (b) Three target molecules. 

(c) Confusion matrix showing discrimination results. True sample axis refers to the actual 

measured sample, Predicted sample axis refers to the molecules predicted by machine learning. 

DA, NE, and 5-HT stand for dopamine, norepinephrine, and serotonin, respectively. Figure 

reprinted from “time‑resolved neurotransmitter detection in mouse brain tissue using an 

artificial intelligence‑nanogap” by Y. Komoto, et al., 2020, Article, 10(1), 11244, Copyright 

2020 by Springer Nature. 
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1.5 To broaden the Application Scope of Single-Molecule Measurement 

In the previous sections, the various scientific discoveries and potential applications of single-

molecule measurements across a wide range of fields were discussed. A notable aspect is the 

enhancement of the potential of single-molecule measurements due to the application of 

machine learning. In the case of molecular discrimination, machine learning classifiers are 

trained on measurement data of pure target molecules and then applied to the analysis of actual 

samples. Therefore, the improvement of single-molecule discrimination accuracy is strongly 

required for the practical application of molecular discrimination. Many molecules that are 

important to discriminate have similar molecular and electronic structures, resulting in similar 

current properties, making discrimination difficult. To address these issues, my main goal in 

this thesis is to develop a novel approach to improve the discrimination accuracy of molecules 

that are difficult to discriminate by conventional methods due to their similarity in molecular 

structure. I will also present and experimentally validate an innovative approach to apply 

single-molecule measurement-based molecular discrimination methods to a wider range of 

molecules. 

In this thesis, I propose two approaches to improve molecular discrimination accuracy. The 

first approach involves modifying nano-gap electrodes with molecules. By utilizing suitable 

modifying molecules, it is anticipated to interact with the target molecules, inducing a change 

in its current properties. These interaction differences can be a factor in effectively improving 

molecular discrimination accuracy. The second approach induces behavioral differences in 

target molecules through changes in chemical environment. Molecules with similar current 

properties under normal conditions may exhibit different behaviors under chemical 

environment changes, which can improve the accuracy of molecular discrimination. These 

experiments are also expected to provide insight into the unique properties of single-molecules 

by observing differences in molecular behavior in response to changes in the chemical warfare 

environment. As a result, these two methodologies will lay the foundation for new approaches 

that can significantly improve the discrimination accuracy of various molecule. 

In addition, I propose a new analytical method that can further broaden the application of 

single-molecule measurements. Considering the practical application of single-molecule 

measurement for the detection of specific molecules, it is probably not easy to prepare and train 
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pure solutions for all molecules in a sample. Therefore, the development of a method that can 

discriminate molecules directly in a mixed sample may represent a major advance in the field 

of single-molecule measurement. These advances in molecular discrimination approaches are 

expected to greatly accelerate the adoption of single-molecule measurements in a variety of 

applications. 
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Chapter 2. Fundamentals 

The advancement of single-molecule measurement techniques has led to a profound 

exploration of chemical and physical processes at the molecular level, contributing 

significantly to gaining innovative scientific insights across various fields. While electron 

transport through molecules between nano-gap electrodes is easily conceivable, a precise 

understanding of this phenomenon remains unclear. Nevertheless, previous research has 

proposed models and established some concepts and techniques to elucidate charge transport 

through molecules. Additionally, this study applies machine learning to analyze single-

molecule measurement data, departing from traditional histogram-based methods. This chapter 

delves into the models elucidating the movement of electrons through single molecules and 

provides details about the machine learning algorithms employed in this research. 

 

2.1 Models for Describing Transmission through Molecule  

The tunneling phenomenon is a quantum mechanical effect wherein quantum particles, such 

as electrons, can traverse barriers even at low energies, defying classical mechanics' prediction 

of their inability to pass through. In classical mechanics, it is considered impossible for a 

particle to surpass a barrier with higher energy than the particle itself. However, in the 

microscopic realm governed by quantum mechanics, particles like electrons exhibit tunneling 

through barriers, a phenomenon attributed to the wave nature of matter. The probability of 

transmission through tunneling can significantly vary based on conditions such as the height 

and width of the barrier and the mass of the particle. This study focuses on single-molecules, 

presenting a model to elucidate electron transport through individual molecules. 

In 1957, R. Landauer proposed a formula for transmission in cases where the size of system 

becomes sufficiently small, necessitating the consideration of the wave nature of electrons.60 

According to Landauer, determining the conductance in a system involves identifying the 

intrinsic modes through which current flows, calculating transmission values, and aggregating 

their contributions. This process is mathematically summarized by the Landauer formula as 
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follows. 

𝐺 =
2𝑒2

ℎ
∑ 𝑇𝑛                                          𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.1

𝑁

𝑛=1

 

Where electrical conductance (G) signifies the overall capacity for electrical conduction, 

while e²/h represents the quantum unit of conductance determined by the electron charge (e) 

and the Planck constant (h). Tn refers to the transmission of an individual transition mode. In 

this context, G0=2e2/h represents the fundamental unit for quantifying conductance, 

emphasizing the quantum nature of electrons and playing a crucial role in explaining the 

behavior of electrons in extremely small systems. The Landauer formula underscores the 

quantum characteristics of electrons in minimized systems through the introduction of this 

foundational conductance unit, G0. 

As elucidated by the Landauer formula, electron transmission in highly restricted spaces 

delves into the realm of quantum mechanics. Specifically, the phenomenon of electrons 

tunneling through potential energy barriers in quantum mechanics exerts a substantial influence 

on conductance, akin to the conceptualization of electrons effectively penetrating energy 

barriers. A pivotal feature of the Landauer formula is its depiction of conductance (G) through 

transmission rates (Tₙ). Transmission rate is construed as the probability of electron 

transmission in a specific transition mode. Consequently, electron transmission in small spaces 

involves tunneling through various transition modes, with each mode's transmission rate 

contributing to the overall conductance. These quantum mechanical attributes play a critical 

role in determining the comprehensive characteristics of electron transmission. Notably, the 

structure of the system, potential energy barriers, and molecular-level intricacies affect the 

tunneling probability of electrons. When a molecule is introduced between metal nano-gap 

electrodes, the transmission of electrons can be assessed using the Breit-Wigner formula.61 This 

formula is intended to model the efficiency of the electron transmission process at specific 

energy levels. 

𝑇(𝐸) =
4𝛤𝐿𝛤𝑅

[𝐸−𝐸0]2+[𝛤𝐿+𝛤𝑅]2              Equation 2.2 

 

Where Γ denotes the coupling strength between the molecule and the metal, while L and R 
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represent the coupling interactions with the left and right electrodes, respectively. E represents 

the energy of the tunneling electron, and E0 indicates the energy level of the molecular orbital. 

According to the Breit-Wigner formula, the transport of electrons through the molecule is 

influenced by the alignment of molecular conduction orbitals interacting with the electrodes 

through coupling constants ΓL and ΓR. In simple terms, the Breit-Wigner formula suggests that 

charge transport through a molecule is more efficient when the energy levels of the molecular 

orbitals closely match the Fermi energy and when the bond between the molecule and the 

electrode is stronger. Figure 2.1 shows a model of the energy level of an electrode at zero bias. 

When a bias voltage is applied, the anode moves energy downward and the cathode moves 

energy upward. Then, the potential difference between the two electrodes allows current to 

flow. The Breit-Wigner curve between the two electrodes represents the molecular orbital level 

and indicates the probability of electron transport through the molecule. As the conduction band 

levels of the molecule approach the Fermi level of the electrode, transmission becomes 

dominant, and the transmission probability correlates with the area under the curve. This region 

symmetrically envelops the Fermi energy level, with its breadth modulated by the applied bias 

voltage. The Breit-Wigner formula underscores that the transmission efficiency in a single-

molecule system is not a fixed value but can vary based on factors such as the molecular 

structure, the strength of coupling between the molecule and electrodes, and the applied voltage.  

 

 

Figure 2.1 Energy level (E) model for describing the Breit-Wigner formula in single-molecule 

measurements. The symbols are based on the Breit-Wigner formula (Equation 2.2). E0 

represents the energy level of conduction orbital, EF represents Fermi level of metal electrode, 

Γ represents the coupling strength between molecular and electrodes. 
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2.2 Machine Learning Algorithms for Classification 

The integration of nanotechnology and data science has facilitated an in-depth 

comprehension of molecular behavior through precise electrical measurements at the single-

molecule level, coupled with meticulous data analysis. In this research, individual molecules 

in solution underwent electrical measurements as they traversed between gold nano-gap 

electrodes. The resulting data underwent analysis employing machine learning techniques to 

discern between distinctive current signals. The machine learning classifier was trained using 

features, numerical attributes extracted from the current characteristics of a molecule based on 

user-defined criteria, and subsequently utilized the training data for classification on new data. 

This chapter delves into the discussion of the Random Forest and XGBoost algorithms applied 

in this study. 

 

2.2.1 Random Forest 

Random Forest was initially proposed by L. Breiman and A. Cutler in 2001.62 Known as an 

ensemble learning method, Random Forest generates multiple decision trees, combining them 

to reduce overfitting and create a stable predictive model. Each decision tree is created using 

different subsets of data and randomly selected features. While each tree operates 

independently, Random Forest performs predictions collectively, leveraging their combination 

for enhanced predictive capabilities. This contributes to improving model stability and 

effectively overcoming overfitting issues. 

In Random Forest, the GINI index is employed to partition the data. When a single node is 

split, it may not distinctly separate all data based on the node's conditions. The degree of non-

separation at this node is referred to as impurity. The increase in impurity at each node in the 

decision tree results in less purity, potentially leading to overfitting to the training data and a 

decrease in predictive performance on new data. In Random Forest, the GINI index represented 

by Equation 2.3 is used for data partitioning. This GINI index serves as a metric to measure 

impurity in each node's data split. 
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𝐺𝐼𝑁𝐼 𝑖𝑛𝑑𝑒𝑥 = 1 − ∑(𝑝𝑖)
2

𝑛

𝑖=1

= 1 − [𝑃+
2 + 𝑃−

2]                    𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.3 

 

where P+ represents the probability of a positive class, and P- signifies the probability of a 

negative class. Random Forest splits the nodes of each tree in a way that minimizes the GINI 

index, aiming to form a robust predictive model by combining the predictions of each tree. 

Each tree is constructed using a combination of bootstrapped sampling and random feature 

selection, fostering the creation of diverse trees. Bootstrapped sampling, which allows for the 

selection of data with replacement, ensures that each tree employs a distinct subset of data. 

Random feature selection involves considering only a subset of features at each node, 

encouraging each tree to focus on different features and thereby increasing diversity. These 

elements secure diversity in each tree, enhancing the model's predictive performance and 

addressing overfitting effectively.  

Random Forest employs a combination of bootstrapped sampling and random feature 

selection to form diverse trees. The predictions of all generated decision trees are then 

aggregated, utilizing a majority voting approach. The Random Forest algorithm illustrated in 

Figure 2.2 showcases robust predictive performance and stability, making it widely applicable 

in various fields, particularly excelling in handling high-dimensional data and diverse features. 

The effectiveness of Random Forest in high-dimensional data can be attributed to its flexible 

variable selection in such datasets, where numerous features may be present. 

Firstly, Random Forest exhibits flexibility in variable selection in high-dimensional data. 

Randomly selecting features during the construction of each decision tree allows the algorithm 

to focus on different features for each tree. This concentration on diverse features aids in 

emphasizing important characteristics while disregarding unnecessary ones, thereby enhancing 

the model's performance. Secondly, Random Forest enhances diversity using bootstrapped 

sampling and random feature selection. Bootstrapped sampling ensures that each tree operates 

on a different subset of data, contributing to increased model diversity. Random feature 

selection, considering only a subset of features at each node, aids in forming decision trees that 

account for various features. These features enable Random Forest to effectively capture 

diverse and intricate interactions present in high-dimensional data, resulting in stable and 
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robust performance. 

Random Forest proves to be an excellent choice for handling high-dimensional data and 

diverse features. In this study, given the transformation of measured individual single-molecule 

current pulses into a 13-dimensional feature space, Random Forest was adopted as an algorithm 

capable of managing high-dimensional data. 

 

 

Figure 2.2 The illustration of Random Forest Algorithm. 

 

2.2.2 XGBoost 

XGBoost, short for Extreme Gradient Boosting, is a powerful machine learning algorithm 

widely employed in recent data science applications. XGBoost was introduced by T. Chen in 

2016 and is part of the family of gradient-boosted decision trees (ensembles), offering enhanced 

performance and speed via a sequential decision tree-based machine learning approach.63 It 

offers parallel tree boosting capabilities and can be applied to various machine learning 

problems such as regression, classification, and ranking. Particularly well-suited for large 

datasets and complex prediction tasks, XGBoost is frequently utilized due to its accuracy and 

execution speed. 
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Key features of XGBoost include the Gradient Boosting technique and a regularization 

approach. Boosting is an ensemble learning technique that combines weak learners to create a 

strong learner. Weak learners are either randomly selected or weighted based on the errors of 

previous learners. Boosting involves sequentially training multiple weak learners, allowing 

each model to correct the errors of the previous model. Among boosting techniques, Gradient 

Boosting utilizes Gradient information, meaning each model is trained using Gradient 

information related to the errors of the previous model. This helps the model reduce the 

prediction errors of the previous model, enhancing predictive capabilities. 

One crucial fundamental concept used in XGBoost is CART (Classification and Regression 

Trees). CART is a tree-based learning algorithm for solving classification and regression 

problems. It constructs a tree using a recursive split approach based on features at each node, 

and the resulting tree is used to predict classes at each leaf node. XGBoost leverages CART as 

the foundation to form a robust predictive model. XGBoost trains the model by optimizing the 

objective function, represented by Equation 2.x. This objective function comprises a loss 

function and a regularization term, enhancing the model's predictive ability and preventing 

overfitting. 

𝑜𝑏𝑗(𝜃) = ∑ 𝑙(𝑦𝑖, ŷ𝑖) +

𝑛

𝑖

∑ Ω(𝑓𝑘)                           𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.4

𝑘

𝑘=1

 

 

Where ŷ is the model's predicted value, y is the model's true value, Ω is the regularization 

term, and fk is each individual tree. In XGBoost, the objective function (θ) consists of a function 

that calculates the loss between the actual values and the model's predictions for each individual 

data point i, along with a regularization term imposing complexity on each individual tree. 

Consequently, through the objective function, XGBoost prevents overfitting and enables more 

generalized predictions. Figure 2.3 illustrates a schematic representation of XGBoost. 

Particularly, XGBoost exhibits excellent performance in high-dimensional data analysis, 

attributed to several aspects. Firstly, it demonstrates flexibility in variable selection. In high-

dimensional data, numerous features may be present. XGBoost calculates the importance of 

each feature when constructing each tree, focusing on significant features to form the tree. This 
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enables the model to ignore unnecessary features, reducing complexity. Secondly, the objective 

function of XGBoost includes a regularization term controlling the complexity of each tree, 

preventing an excessive reliance on specific features. This regularization is particularly 

beneficial for enhancing the generalization performance of the model in high-dimensional data. 

Thirdly, XGBoost possesses the robustness of Gradient Boosting. Each tree is trained to correct 

the prediction errors of the previous tree, allowing XGBoost to capture complex patterns or 

interactions prevalent in high-dimensional data. Lastly, XGBoost allows parallel processing 

and optimization, efficiently operating on large datasets, especially suited for handling 

substantial processing in high-dimensional data. These features collectively empower 

XGBoost to demonstrate outstanding predictive performance in high-dimensional data. 

 

 

Figure 2.3 The illustration of XGBoost Algorithm. 

 

2.2.3 F-measure in Machine Learning Classification 

The F-measure, or F-score, is a crucial metric employed in evaluating the performance of 

machine learning models. It is calculated as the harmonic mean of precision and recall, 

providing an overall assessment of the model's performance, particularly valuable in scenarios 

with imbalanced class distributions. Precision represents the proportion of instances predicted 
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as positive by the model that are indeed positive and is calculated by the formula below. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
                𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.5 

 

Precision measures the accuracy of predictions for all classes, but it may not be an appropriate 

evaluation metric in cases of severe class imbalance. Recall, as expressed by the formula below, 

represents the proportion of actual positives that the model accurately predicts as positive.. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
              𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.6 

 

A high recall implies that the model effectively detects true positives without missing them. 

However, as recall increases, precision may decrease, illustrating a tradeoff relationship with 

precision, which represents the proportion of accurately predicted positives. This suggests the 

difficulty of simultaneously improving precision and recall. Elevating precision enhances the 

ratio of correctly predicted positive samples but increases the number of missed positive 

samples, leading to reduced recall. Conversely, increasing recall identifies more positive 

instances but can result in decreased precision. 

Due to the trade-off relationship between precision and recall, evaluating performance with a 

single metric can be challenging. To address this challenge, the F-measure is introduced. The 

F-measure, calculated as the harmonic mean of precision and recall, serves as an evaluation 

metric providing a balanced assessment between the two metrics and is computed as follows. 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                    𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.7 

 

The F-measure provides a comprehensive evaluation of the predictive capability of the 

positive class, assessing how well the model identifies and accurately predicts positive samples. 

In essence, the F-measure is a valuable metric that goes beyond accuracy, enabling a more 

holistic understanding of the model's predictive capabilities. 
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Chapter 3. Methods 

 

In this study, gold nano-gap electrodes formed through MCBJ were utilized for the electrical 

measurement of single molecules. Subsequently, the obtained data were employed to train a 

machine learning classifier, enabling the prediction of the mixing ratio of compounds. This 

chapter covers the fabrication process of the nano-gap device, formation of the nano-gap, 

measurement process of single molecules, and the data analysis procedure utilizing machine 

learning. 

 

3.1 Fabrication of Nano-gap Device 

In this study, MCBJs were used as a platform to form nano-gap electrodes and measure single 

molecules. To form nano-gap electrodes using the MCBJ system, a flexible substrate-based 

device with metal nano-wires is required. The nano-gap device used in this study was fabricated 

via micro/nano fabrication. 

This section describes the fabrication process of the MCBJ nano-gap device used in this study. 

Figure 3.1 shows a schematic of the fabrication process of the nano-gap device. First, polyimide 

is spin-coated as an insulating layer on a flexible Si substrate with a thickness of about 100 μm 

and baked. Then, the electrodes of the MCBJ measurement device, the connecting pad of the 

nano-gap device, and other relatively large-sized electrodes are formed using photolithography 

on the polyimide. At this time, the center part of the nano-gap device was not lithographed. The 

next step was to form tens of nanometer-wide gold nanowire in the center of the substrate using 

electron beam lithography. Then, SiO2 was deposited using chemical vapor deposition to 

passivate the exposed areas of the gold electrode for low-noise tunnelling current 

measurements for single-molecule detection in an electrolyte solution using insulator-protected 

nanoelectrodes.64,65 Figure 3.2 shows the actual fabricated nano-gap device and the SEM image 

of the sensing part in the center. 

In this study, single-molecules are measured in solution, so the nano-gap device needs a 
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separate device to contain the solution. As shown in figure 3.3a, a polydimethylsiloxane 

(PDMS) well was fabricated and attached to the top of the chip to contain the sample solution. 

The junction of the MCBJ chip and the PDMS well was then treated in O2 plasma for 10 

seconds and then placed in a vacuum oven at 90°C for 60 minutes. Evaporation of the solvent 

will change the concentration of the sample, so to prevent this, immediately after the sample 

was injected into the PSMS well, Kapton tape was applied to seal the sample from the outside 

environment, as shown in Figure 3.3b. 

 

 

 

Figure 3.1 Schematic of the fabrication process for MCBJ nano-gap devices. The Si substrate 

is flexible and about 100 um thick. The polyimide was cured at 250°C. After each lithography, 

5 nm Cr is deposited as a step prior to gold deposition. This illustration depicts the side view 

of the long edge, revealing the cross-section cut from the center of the short side. 
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Figure 3.2 Images and SEM image of nano-gap device for MCBJ. (a) Top image of the nano-

gap device. (b) side view image of a bent nano-gap device with a PDMS well attached. (c) 

SEM image of the sensing part of the nano-gap device. The ribbon-shaped part in the center is 

broken to create a nano-gap. 

 

 

 

 

Figure 3.3 Images of the MCBJ device chip with PDMS well attached. (a) Top and side images. 

Circled holes in the square PDMS sheet. Thickness is approximately 5 mm. (b) Solution 

injected into PDMS wells and closed with Kapton tape. 
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3.2 Process of Single-Molecule Measurement 

Upon injection of the sample into the nano-gap device and completion of all measurement 

preparations, the chip is inserted into the MCBJ measurement device for analysis. Key 

components of the MCBJ measurement system comprise a PC (NI-PXIe), picoammeter 

(K6487), MCBJ box, control box, and piezo driver. In Figure 3.4, the interconnectedness and 

nomenclature of these components are depicted schematically. The PC assumes overall control 

responsibilities, while the control box, tethered to the PC, regulates the entire system, 

encompassing the stepping motor and piezo driver. The latter is instrumental in manipulating 

the nano-gap distance by actuating the pushing rod for nano-gap bending control. The 

picoammeter, integrated with the control box, facilitates requisite current measurements. It 

monitors current flow throughout the nano-gap system during all experimental phases, from 

setup to actual data collection. With a resolution of 0.01 pA, the picoammeter can measure 

currents up to 20 mA. 

Principal experimental apparatus is housed within the Faraday box, the locus of all 

experimental operations. Herein lies a DC power source that furnishes low-noise voltage during 

data collection, alongside relays that manage system configurations across different stages. 

Additionally, the Faraday box incorporates a stepping motor and a piezo motor, employed for 

nano-gap chip manipulation through varying step sizes. Centrally positioned within the 

Faraday cage is a jig, designed to secure the nano-gap device in place. 

Figure 3.5a is an image of the device actually used in the experiment. The nano-gap device 

is inserted into the jig within the Faraday box shown in figure 3.5b. Figure 3.5c shows the 

nano-gap device inserted into the jig, and Figure 3.5d shows the jig covered. The lid of the jig 

has electrodes that can contact the pads on either side of the nano-gap device. The lid also has 

counter supports on either side of the lid to hold the nano-gap device in place. Figure 3.5e 

shows an image of the nano-gap device in a bent state with three-point bending by a pushing 

rod.  

After preparing the nano-gap device, the measurement procedure begins by inserting it into 

the Faraday box. In the first step, the nano-gap formation step, the piezo controlled pushing rod 

is slowly raised to a set height. As the nano-gap device is subjected to three-point bending by 
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the pushing rod, the nano-wire continues to become thinner, which reduces the current value. 

After repeated bending, the nano-wire mechanically breaks, causing the current value to drop 

sharply, confirming the formation of a nano-gap. With these steps, one nano-gap formation is 

completed, and the reproducibility of two additional nano-gap formations is checked. If the 

nano-wire does not break at the initially set height, continue to observe the formation of the 

nano-gap while gradually increasing the maximum height of the pushing rod.  

After confirming the formation of the nano-gap, single-molecule measurement was 

performed after various checks and training procedures between the pushing rod and the nano-

gap electrodes. After the nano-gap was formed, a series of training procedures were performed 

to properly control the nano-gap distance by the voltage of the piezo drive. The process 

involves training the cut and reconnect positions by repeatedly raising and lowering the pushing 

rod. Next, we go through the cut mode to make a clean and pointed nano-gap, and finally, we 

apply various types of bias voltage to see the current rise. Next, set the nano-gap distance and 

measurement time to start the measurement. Figure 3.6 is a schematic diagram of the 

experimental steps and current changes, including mechanical breaking of the nano-wire, 

formation of a nano-gap, and current generation when a molecule passes through the nano-gap. 

During the measurement, the gap distance must be kept below the set nanometer length. To 

keep this constant, the piezo-controlled pushing rod must be adjusted in real time and precisely 

controlled while measuring the current. The electrode-to-electrode distance is estimated using 

the current equation for direct tunneling current. 

𝐼 = 𝑐𝑜𝑛𝑠𝑡 exp (−
4𝜋

ℎ
√2𝑚𝑤𝑙)                     𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.1  

 

In this equation, h, n, w, and l are Planck's constant, the mass of the electron, the work function 

of Au, and the separation distance, respectively. In this study, the mass of the electron, m, is 

used as 9.1 ×10-31 kg, and the work function of Au(111), w, is used as 5.25 eV. In this study, 

the effective mass and work function of the Au(111) surface were used instead of the gold nano-

gap for ease of calculation. Here, the work function of gold in aqueous solution may be lower 

than the actual one, and the widening of the inelastic gold gap immediately after the breaking 

of atomic bonds after the formation of the nano-gap is not considered, so the nano-gap distance 

applied in the measurement may be larger than the set value. 
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Figure 3.4 A simplified schematic representation of the MCBJ device system. 

 

 

 

Figure 3.5 Images of the MCBJ measurement system. (a) Image of set up. (b) Faraday box. (

b) MCBJ device chip inserted into the jig inside the Faraday box. (c) Image with cover on j

ig. (c) Image showing the MCBJ device chip inside the jig bent due to the pushing r

od rising. 
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Figure 3.6 Schematic representation of the process of a single-molecule measurement. A 

sharp decrease in current when mechanically broken from a nano-wire state to a nano-gap. 

The tunneling current (red line) that occurs when a molecule passes through the nano-gap 

state. 

 

3.3 Machine Learning Data Analysis 

This research involves not only measuring single-molecules, but also discriminating 

molecules by analyzing individual signals from single-molecules with machine learning. The 

individual current signals are not labeled in advance and are extracted as features. After the 

single-molecule measurements described in Section 3.2, a baseline was estimated from raw 

data to extract individual current signals. In the process of extracting signals, the first step 

involves estimating the baseline level, which represents the underlying trend or average 

intensity of the signal. Following this, the noise level is estimated by calculating the standard 

deviation of data points within a specified region of the signal, capturing its inherent variability. 

The threshold of current intensity is set by multiplying the noise level by six times its value, 

creating a clear distinction between the desired signal and background noise. This process 

enables accurate identification and extraction of the target signal from the input data. 

All extracted individual current signals were subjected to feature extraction for application 

in machine learning classification. The machine learning classifiers applied were random forest 

and XGBoost, as mentioned in Chapter 2, and the process described below is common to both. 

As shown in Figure 3.7, in this study, individual single-molecule current signals are extracted 



29 

 

 

by 13 factors consisting of maximum current (Ip), average current (Iavg.), duration (td), and a 

10-dimensional normalized current factor, resulting in a 13-dimensional feature. Here, the 10-

dimentional current factor is defined as the difference between the maximum current and the 

average current in each interval, dividing the individual signal into 10 parts along the time axis. 

This can be an indicator of the current variability in that bin. A larger difference between the 

two in each bin may indicate that the current in that bin is fluctuating unstably. This could 

indicate, for example, that a large current peak has occurred in the section during a certain time, 

or conversely that a number of current values below the average current level have been 

measured. This allows for a more detailed analysis of the current characteristics over the entire 

time period. 

The features extracted in this way are used to train and test the machine learning classifier. 

Figure 3.8 shows the process of extracting features from individual signals and training and 

testing a machine learning classifier. To evaluate the performance of the trained model, we used 

K-fold Validation, which divides the data into multiple subsets (folds) and validates the model 

using each fold as a test set once. Figure 3.9 shows 10-fold validation, where the entire data 

was divided into 10 folds and evaluated. This method utilizes all of the data and allows for an 

objective assessment of the model's ability to generalize. 

 

 

Figure 3.7 Single-molecule individual current pulse (Green solid line) and definitions of the 

features. The blue, red, and pink solid lines represent Ip, td, and Iavg., respectively. The black 

dashed lines show the area of the current pulse divided into ten parts along the time axis. 
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Figure 3.8 A flowchart of training a machine learning classifier through training and testing. 

Features includes factors such as peak current (Ip), duration (td), average current (Iavg.), and 10-

dimensional normalized current for each pulse signal. 

 

 

 

 

Figure 3.9 Schematic of 10-fold cross validation. 10-fold cross validation randomly divides 

the dataset into 10 equal-sized subsets. In each fold, one subset is held out as the test set, while 

the remaining 9 subsets are used for training. This process is repeated 10 times, with each 

subset used once for validation.  
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Chapter 4. Molecular Modification of Nano-gap 

Electrodes 

 

This chapter discusses the first of several approaches to improving the discrimination 

accuracy of two molecules in single-molecule measurements where the discrimination 

accuracy is not high due to similarities in current characteristics. The introduction of machine 

learning to analyze single-molecule measurement data has improved molecular discrimination 

accuracy. However, it is not easy to discriminate molecules with high accuracy with current 

data from molecules that do not have discriminating factors. Therefore, this chapter discusses 

molecular modification approaches to improve molecular discrimination accuracy. 

 

4.1 Introduction 

Structurally similar molecules also have similar current properties, so molecules with similar 

structures measured in a bare nano-gap show similar current characteristics, which makes it 

difficult to improve single-molecule discrimination accuracy. A new approach to measurement 

is needed to discriminate these molecules with high accuracy. Therefore, I proposed a method 

to discriminate two molecules with similar molecular structures through molecular 

modification of nano-gap electrodes. As shown in Figure 4.1a,b, the two target molecules with 

similar structures to be discriminated in this study are Aspartic acid (Asp) and Leucine (Leu). 

Both target molecules belong to the amino acid group, which is one of the most important 

groups of molecules that make up the building blocks of life. Amino acids are used in the body 

for the biosynthesis of proteins, enzymes, peptides hormones, and some neurotransmitters. In 

addition to building biomaterials, amino acids are involved in many important metabolic 

processes in the body. In particular, there are 20 amino acids that make up proteins/peptides, 

and hundreds of metabolites. For this reason, the accurate discrimination of amino acids is 

important as a means to further understand the metabolic process of living organisms. 

Techniques for analyzing amino acids have evolved steadily since Gordon, et al. first 
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separated and studied protein components using distributive chromatography in 1943.66  

Raman spectroscopy offers a number of analytical advantages, but unlike the constituent 

nucleobases of DNA, there is no way to amplify amino acids, making analysis difficult at low 

concentrations.67–69 In the case of molecular imaging, the number of applicable molecules is 

limited because the probe must be prepared to match the target molecule.70 T. Ohshiro, et al. 

measured the conductance of single molecules of amino acids passing through the nano-gap 

and analyzed their current characteristics for discrimination.37 The current signals of the 

measured amino acid molecules were statistically analyzed using two characteristics, 

maximum current and duration, respectively. Figure 1.4, mentioned in Chapter 1, shows the 

amino acids classified from the Ip, td of several measured amino acid molecules. Some amino 

acids can be discriminated by both parameters, while others are difficult to discriminate due to 

the overlap of current characteristics. Despite the importance of amino acid analysis, the results 

of this study suggest that it is not easy to discriminate amino acids. It also suggests the 

importance of incorporating machine learning into molecular discrimination techniques. 

As mentioned in Chapter 2, single-molecule conductance is related to the superposition of 

molecular orbitals. Therefore, chemical modification of nano-gap electrodes with appropriate 

molecules can optimize the molecular orbitals and thus improve the level of current. In a study 

to understand electron transport from one molecule to another, T. Nishino, et al. reported that 

hydrogen bonding by two -COOHs conducts electrons better than covalent σ bonds.71 Based 

on these findings, I proposed to modify mercaptoacetic acid (MAA) molecules on nano-gap 

electrodes as a way to discriminate two target molecules with high accuracy, and to 

discriminate molecules that were not discriminated by conventional methods through machine 

learning-based time series analysis. As shown in Figure 4.1c, the MAA molecule has a -SH 

group and a -COOH group. The -SH group interacts strongly with the nano-gap electrodes 

made of Au.72–78 If MAA is successfully bonded to the tips of both electrodes, these MAA-

modified nano-gap electrodes are converted into electrodes with both tips composed of -COOH. 

Using this concept, it is expected to be possible to detect quantum tunneling enhancement 

through intermolecular hydrogen bonding interactions via -COOH groups. 
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Figure 4.1 Molecular structures of the target molecule and the modified molecule. (a) L-

aspartic acid. (b) L-leucine. (c) Mercaptoacetic acid. The light green caption shows the carboxy 

group of each molecule. 

 

4.2 Methods 

In this study, I compared the measurement results of two target molecules on bare gold nano-

gap electrodes and the newly proposed molecularly modified nano-gap electrodes in this study. 

The two target molecules L-aspartic acid (Tokyo Chemical Industry Co., Ltd, Japan), L-leucine 

(Kanto chemical Co., Inc., Japan), and the modified molecule Mercaptoacetic acid (FUJIFILM 

Wako Pure Chemical Co., Japan) were used without any purification process using Milli-Q 

water as solvent. For the determination of pure target samples, an aqueous solution sample of 

1 mM of each target chemical species was used. In this case, the pH of the pure solution of Asp 

and Leu at 1 mM concentration was 3.7 and 6.1, respectively. For all measurements where the 

nanogap electrode was modified with MAA, a 20 μM aqueous solution of MAA was used as 

the solvent. For the measurement of the Asp:Leu=3:1 mixture, a solution containing 750 μM 

of Asp and 250 μM of Leu was used, and for the measurement of the Asp:Leu=1:3 mixture, a 

solution containing 250 μM of Asp and 750 μM of Leu was used. 

Each sample solution was prepared and used immediately prior to the measurement. A 

PDMS well about 5-6 mm thick was attached to the nano-gap device to contain the sample 

solution in the sensing part of the nano-gap device. Then, 15 μL of each sample solution was 

injected into the PDMS well, and Kapton tape was applied to prevent evaporation of the 

solution. The nano-gap device was inserted into the MCBJ measurement device and the nano-

wire was mechanically broken to form a nano-gap as described in Chapter 3. The gap distances 
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of the nano-gap electrodes used for the measurements were set to 0.56 and 0.54 nm. 

Measurements were set to run for 5 minutes each at each gap distance and then repeated. Prior 

to all measurement steps, a blank solution was measured, excluding the target molecule. After 

completion of all measurement steps, the device was cleaned by injecting ethanol into the 

PDMS wells several times. 

 

4.3 Results 

4.3.1 Measurements with Bare Nano-Gap Electrodes 

Pure Asp and Leu samples were measured using bare nano-gap electrodes. Before all 

measurements, the nano-gap device was filled with Milli-Q water as a blank measurement. 

Figure 4.2 illustrates the results of the blank measurement, presenting a current histogram and 

a current-duration 2D histogram. Both datasets indicate minimal current generation in Milli-Q 

water. Figure 4.3 depicts an idealized representation of two target molecules passing between 

gold nano-gap electrodes. However, in reality, they traverse the nano-gap electrodes in different 

orientations. As discussed in Chapter 3, the actual nano-gap distance is expected to be wider 

than the set value. Therefore, it is crucial to establish the appropriate nano-gap distance before 

the measurement. Starting from 0.66 nm, the approximate length of the target molecule, and 

gradually decreasing the setting by 0.02 nm, the frequency of signal generation by the molecule 

was considered. If the nano-gap distance becomes too small, the level of tunneling current 

between the gold nano-gap electrodes increases, and the single-molecule current is masked by 

noise. The goal of this study is to measure as many signals from different orientations of the 

molecules as possible and discriminate them through machine learning analysis. Therefore, the 

optimized nano-gap distance was set to obtain signals of sufficient quality for this analysis and 

to acquire many signals per unit time, with values set at 0.56 nm and 0.54 nm. 

Figure 4.4 display selected three individual single-current pulses of Asp and Leu measured 

with bare nano-gap electrodes. The single-molecule signals generated by both target molecules 

exhibited akin current levels, and the overall shape of the signals did not possess distinctive 

features for discerning between the two molecules. The single-molecule currents measured in 

this study were numerous, and statistical analysis was employed to scrutinize the current 
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characteristics, given the diversity of currents originating from various molecular orientations. 

Figures 4.6a, b represent Ip histograms of single-molecule current signals for Asp and Leu, 

respectively. The current histograms for both target molecules are highly comparable. The Ip 

averages for Asp and Leu both showed a level of 19 pA, indicating that distinguishing between 

the two molecules based on Ip levels alone is not feasible. Figures 4.7a, b illustrate the current-

duration 2D histogram. Both histograms suggest that distinguishing between the two molecules 

based solely on factors of current and duration is not clear. The measurement results of target 

molecules on bare nano-gap electrodes align with expectations, as the similarity in molecular 

structures did not exhibit sufficient differences in electron transport characteristics to 

distinguish between the current characteristics of the two molecules. 

 

 

Figure 4.2 Measurement results in blank solutions(Milli-Q water). (a) Histogram of current 

measured from Milli-Q water. Frequency histogram of individual pulses according to the 

intensity of the current. (b) Histogram of current intensity by duration of current pulse. 

 

 

Figure 4.3 Measurement results in blank solutions(Milli-Q water). (a) Histogram of current 

measured from Milli-Q water. Frequency histogram of individual pulses according to the 

intensity of the current. (b) Histogram of current intensity by duration of current pulse. 
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Figure 4.4 Individual current pulses measured in bare nano-gap electrodes. (a) Asp. (b) Leu. 

(a), (b) each represent three separate signals.  

 

 

Figure 4.5 Histogram of the maximum current (Ip) measured in the MAA modified nano-gap. 

(a) Asp, (b) Leu. 

 

 

Figure 4.6 2-D Histograms of the current magnitude versus the duration of the current pulse. 

(a) Asp, (b) Leu. 
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4.3.2 Measurements with MAA modified Nano-Gap Electrodes 

In this section, the results of measuring Asp and Leu molecules by modifying MAA 

molecules on nano-gap electrodes are discussed. As assumed in Section 4.1, the current level 

can be enhanced if the MAA-modified gold nano-gap electrodes are capable of hydrogen 

bonding interactions with the target molecules. MAA molecules have -SH groups that interact 

strongly with the Au electrodes and -COOH groups that can interact with target molecules via 

hydrogen bonding. Therefore, it was expected that Asp and Leu would interact with the -COOH 

group of MAA on both sides to different degrees when the molecule passes through the MAA 

modified nano-gap electrodes, as shown in Figure 4.7. Since the Asp molecule has -COOH 

groups on both terminals, it is expected to interact hydrogen bonding with both MAA modified 

nano-gap electrodes through the -COOH groups. The leu molecule, on the other hand, has a -

COOH group on only one terminal, so it can only interact with one side. Therefore, for Asp, an 

enhancement of the current level due to hydrogen bonding interactions on both sides is 

expected. 

Figure 4.8 shows the individual single-molecule signals of Asp and Leu measured on MAA-

modified electrodes. Comparing these results to the case of bare nano-gap electrodes, the effect 

of MAA modification is clearly observed. In particular, the current pulses of Asp measured on 

MAA-modified nano-gap electrodes often exhibit a rectangular shape, unlike those in the other 

measurements. The Ip histogram in Figure 4.9 indicates that the current Asp level is higher than 

Leu. Compared to the measurements on the bare nano-gap electrodes, where the average of the 

Ip for both molecules was 19 nA, the average current for Asp increased to 23 pA and for Leu 

decreased to 16 pA.  

As mentioned in Chapter 2, conductance of single-molecule depends on two competitive 

effects of tunneling distance and coupling strength between molecule and electrodes. The 

longer the tunneling distance offers the lower the single-molecule conductance.79,80 Higher 

bonding energy leads to higher single-molecule conductance.81 Asp molecule can form two 

stronger H-bond on both sides, whereas Leu can only form a stronger H-bonding via −COOH 

groups on either side. Additionally, te DFT calculations shown in Figure 4.10 explain that the 

interaction between -NH2 and -COOH is weaker than the hydrogen bond between the two -

COOH groups. Therefore, for Asp, interaction with the two -COOHs of both MAAs results in 
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current enhancement. This explains the stable current pulses shown in Figure 4.8a, where 

measurements on MAA-modified electrodes show that the current level of the single-molecule 

electrical signal of Asp is higher than that measured on bare nano-gap electrodes. The single-

molecule current signals of Leu had relatively low current levels, but showed greater variability.  

In addition to the interaction of MAA with Asp and Leu, we further investigated the effect 

of the dimer of MAA-MAA. Figure 4.11 shows the results of our investigation of MAA-MAA 

dimer formation. This is a measurement of a sample containing only MAA as a blank 

measurement for the measurement of the target molecule containing MAA. The three data in 

Figure 4.11 show that the measurement in MAA solution resulted in very few current pulses 

being observed. In principle, MAA-MAA dimers can form, but the incidence is very low due 

to the measurement conditions. The MCBJ instrument uses current feedback to control the gap 

distance. If a stable MAA dimer forms on the Au electrode, the base current is enhanced. 

Therefore, when MAA-MAA dimers are formed, the current feedback causes the electrode to 

contract. Therefore, even if dimers are formed, little current signal is observed. 

The current pulses of Asp and Leu measured in the MAA modified nano-gap shown in 

Figures 4.8 and 4.9 show differences in the stability of the current signal and the current level. 

In the case of Asp, there are many current pulses with a rectangular shape, which indicates the 

stability of the current signal. To statistically analyze the signal stability of the measured current 

pulses, I normalized the current pulses in each measurement with Ip equal to 1. The four data 

in Figure 4.12 show 2D histograms of the normalized current-duration of all current pulses of 

Asp and Leu measured on bare nano-gap electrodes and MAA modified electrodes. The data 

to the right of each histogram shows the distribution of the normalized currents. Unlike the 

other three cases, only Asp measured at the MAA modified electrode shows a narrow 

distribution of current levels. The normalized average current values in the histogram are 0.84 

and 0.80 for Asp and Leu, respectively, for the bare nano-gap. For MAA modified nano-gap 

electrodes, Asp and Leu are 0.90 and 0.82, respectively, with Asp showing the largest 

normalized current among the four measurements. The higher and narrower distribution of 

normalized currents indicates that the Asp molecule has a stable conductance with relatively 

little variability as it moves between the MAA modified nano-gap electrodes.  

Amino acids are known to exhibit a wide range of single-molecule conductance due to 



39 

 

 

ionization in aqueous solution, and the Ip histograms show the variability of these measured 

currents well38,82. Here, I assumed that the hydrogen bonding between Asp and MAA via the -

COOH group imparted a well-defined structure to the amino acid, which contributed to the 

fluctuations in the current levels of the Asp molecule measured at the MAA-modified nano-

gap electrodes. It is important to note here that this study was conducted in aqueous solution 

for ease and potential use in molecular detection. In general, H2O, a polar protonated solvent, 

inhibits hydrogen bonding. For example, CH3COOH is known to form dimers by hydrogen 

bonding in the gas phase and in crystals, but not in aqueous solution.83,84 In previous studies, it 

has been reported that the single-molecule conductance through DNA base pairs in H2O is less 

than that of other non-protonated solvents85, but in this study, single-molecule currents occur 

only when the target is positioned on the electrode or when the modified molecule is positioned 

on the electrode. Thus, the target molecule interacts with the electrode even when its structure 

is not in its most stable state. Other previous study has reported hydrogen bonding in aqueous 

solution environments.86 In this study, the -COOH groups were shown to interact with each 

other and form transient H-bonds when Asp approached the -COOH groups of MAA as it 

passed through the gap of MAA-modified nano-gap electrodes. These results suggest that, 

unlike in the case of ensemble measurements, it is possible to observe localized minimum 

energy states that single-molecule measurements cannot reliably capture. 

 

 

 

Figure 4.7 Schematic representation of Asp and Leu as they pass through an MAA-modified 

nano-gap. (a) Asp interacts with both MAAs via -COOH on both sides. (b) Leu interacts with 

the MAA with only one -COOH on each side. 
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Figure 4.8 Individual current pulses measured in the MAA modified nano-gap. (a) Asp, (b) 

Leu. 

 

 

Figure 4.9 Histogram of the maximum current (Ip) measured in the MAA modified nano-gap. 

(a) Asp, (b) Leu. 

 

 

Figure 4.10 Schematic of calculated Leu and MAA hydrogen bonding (a) -COOH in Leu and 

-COOH in MAA. (b) -NH2 in Leu and -COOH in MAA. DFT calculation method is B3LYP/6-

31G(d,p) . Gaussian 09 were used. Optimization provided COOH-COOH bonding (a) and NH2-

COOH structures (b) as shown in Fig. S6. The bonding energy is 83 kJ/mol and 64 kJ/mol for 

(a) and (b), respectively. 
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Figure 4.11 Results in MAA solution measurement. (a) Current profile of MCBJ measurement 

in MAA solution. (b), (c) Histograms analyzing the currents measured from 20 µM MAA 

solution. (a) Frequency histogram of individual pulses according to the intensity of the current. 

(b) Histogram of current intensity by duration of current pulse. 

 

 

Figure 4.12 Histograms of normalized current and time for Asp and Leu at bare Au and MAA-

modified nano-gap. The histograms present the results for (a) Asp at bare electrode, (b) Asp at 

MAA-modified electrode, (c) Leu at bare electrode, and (d) Leu at MAA-modified electrode. 

The right-hand side of each histogram shows a histogram of normalized current intensity. 
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4.3.3 Molecular Discrimination with Machine Learning 

In the previous section, I measured Asp and Leu in two environments: bare nano-gap and 

MAA modified nano-gap electrodes, and observed and analyzed the current characteristics of 

each. Unlike the case of bare nano-gap, Asp and Leu measured in MAA modified nano-gap 

electrodes showed differences in current characteristics. As mentioned in Chapter 3, the 

measured data is used to train machine learning and discriminate molecules. The trained 

classifier predicts the proportions of the mixture from the measured data of a sample of the 

mixture. 

In this study, the XGBoost machine learning classifier was used for molecular discrimination 

to classify the single-molecule currents of pure Asp and Leu samples measured on bare nano-

gap electrodes and MAA modified nano-gap electrodes. Figure 4.13 shows the process of 

training the machine learning classifier. Here, 2,680 current pulses of each Asp,Leu measured 

on bare nano-gap electrodes and 1,180 current pulses each on MAA modified nano-gap 

electrodes were trained and tested by the classifier. As described in Chapter 3, the features used 

were maximum current (Ip), average current (Iavg.), duration (td), and 10-D normalized current 

factor, and training and testing were performed with 10-fold validation. 

Figure 4.14 is a confusion matrix showing the results of machine learning classification of 

single-molecule current data of pure Asp and Leu samples measured on bare nano-gap 

electrodes. The prediction accuracies for Asp and Leu were 0.59 and 0.51, respectively. This 

result shows that machine learning discrimination of Asp and Leu is not accurate because their 

signal characteristics are similar. Therefore, the measurement method using a bare nano-gap 

electrode is not a suitable method for discriminating Asp and Leu. Figure 4.15 shows the 

machine learning classification results of Asp, Leu measured on MAA modified nano-gap 

electrodes. For MAA modified nano-gap electrodes, the accuracy of Asp and Leu was 0.80 and 

0.78, respectively. As Figure 4.16 shows, if the discrimination accuracy using one signal is 0.77, 

the accuracy of statistical analysis using 13 signals is more than 99%. The modification of the 

nano-gap electrodes by MAA resulted in high accuracy classification of the single-molecule 

signals of Asp and Leu, which could not be distinguished by the measurement of bare nano-

gap electrodes. 
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 To verify that the method is effective in practice, the current signals obtained from single-

molecule measurements of mixed solutions of Asp and Leu were analyzed to predict the mixing 

ratio. Two mixture solutions were used for validation: Asp:Leu=3:1 (750 uM: 250 uM) and 

Asp:Leu=1:3 (250 uM: 750 uM). The machine learning classifier was trained with the 

measured results of the mixture solutions on both bare and MAA modified nano-gap electrodes. 

After training, the single-molecule currents of the mixed solutions were discriminated 

individually, as shown in Figure 4.17. The mixing ratio is expressed as the fraction of the total 

signal that is counted as the predicted molecule. Figure 4.18 shows the predicted mixing ratio 

of a mixed solution measured on bare nano-gap electrodes based on training results from pure 

target samples measured on bare nano-gap electrodes. For Asp:Leu=3:1, Asp:Leu=0.52:0.48 

was predicted, and for Asp:Leu=1:3, Asp:Leu=0.49:0.51 was predicted.  

For the bare nano-gap electrodes, the two amino acids were not correctly classified in the 

mixed solution, as was the signal classification for the pure target solution. On the other hand, 

as shown in Figure 4.22, predicting the mixture ratio from the measured data on the MAA 

modified nano-gap electrodes predicted a ratio of 0.75:0.25 for Asp:Leu=3:1 and 0.23:0.77 for 

Asp:Leu=1:3. Figure 4.23 shows the current profile of Asp:Leu=1:3 measured on MAA 

modified nano-gap electrodes. The red and blue peaks represent the current pulses predicted 

by Asp and Leu, respectively, while the gray color indicates that neither is predicted. In 

summary, these results show that in single-molecule measurements using nano-gap electrodes 

modified with MAA molecules, hydrogen bonding can affect the single-molecule conductance 

properties. 

 

 

Figure 4.13 Training and prediction process for machine learning classifier using single-

molecule individual current pulses.  
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Figure 4.14 Confusion matrix of molecular prediction from a machine learning classifier 

trained on Asp and Leu single molecule current signals measured at bare nano-gap electrode. 

The F-measure is 0.55. 

 

 

 

 

 

Figure 4.15 Confusion matrix of Asp and Leu predictions measured with MAA-modified nano-

gap. The F-measure is 0.79. 
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Figure 4.16 Correlation between the accurate predictability by majority vote and the number 

of signals. 

 

 

 

Figure 4.17 Flowchart of machine learning analysis for mixing-ratio prediction. 
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Figure 4.18 The predicted mixing ratios of Asp and Leu mixtures measured with bare nano-

gap electrode. The upper row shows Asp:Leu=3:1 and the lower row shows Asp:Leu=1:3. 

 

 

 

 

Figure 4.19 Prediction result of the mixing ratio of solutions from the ratio of mixtures Asp:Leu 

=1:3 (upper) and Asp:Leu = 1:3 (bottom). (c) Current profile measured in Asp:Leu=1:3 solution. 

The red, blue and gray signals represent Asp, Leu and invalid signals respectively. 

 

 

 

 



47 

 

 

4.5 Conclusion 

For The results of this study demonstrate that the convergence of measurement methods to 

modify molecules suitable for nano-gap electrodes and machine learning-based data analysis 

is an effective way to discriminate between molecules with similar structures. Asp with two -

COOH groups on both terminals showed a stable and high level of single-molecule current due 

to the hydrogen bonding interaction with MAA bound to the nano-gap electrodes. On the other 

hand, Leu, which has a -COOH group on only one terminal, can only hydrogen bond with 

MAA on one side. For this reason, Leu could not fully interact with both MAA molecules, 

which eventually led to an increase in the tunneling distance, which was lower than that 

measured in bare nano-gap electrodes. 

This study demonstrated that differences in molecular behavior under certain conditions can 

be exploited to improve the discrimination accuracy of molecules. Interestingly, the interaction 

effect between the -COOH groups of MAA and Asp was observed even in aqueous solutions, 

where hydrogen bonding is typically known to be disrupted. This suggests that 

localized/transient interactions due to hydrogen bonding between molecules in aqueous 

solution can be monitored by single-molecule measurements. Subtle changes in single-

molecule current behavior were detected and used to distinguish between two amino acids that 

were barely distinguishable by conventional methods and machine learning analysis. This 

concept is expected to enable the analysis of a wide variety of molecules in the future and is an 

important concept for the development of protein/peptide sequencing technology based on 

single-molecule measurements. 
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Chapter 5. Molecular Discrimination through 

Chemical Environment Changes 

 

In Chapter 4, a novel approach to improving molecular discrimination accuracy by 

modifying nano-gap electrodes with appropriate molecules was discussed. Although this 

approach improved the accuracy of molecular discrimination, it can only be applied when there 

is a clear chemical difference between the target molecules, and appropriate modification 

molecules are required. Therefore, the application of molecular modification methods may be 

limited. Considering this limitation, I focused on the difference in behavioral changes of 

molecules due to changes in chemical environment. Molecules show behavioral changes due 

to changes in chemical environment. However, under the same chemical environment change, 

molecules will exhibit different behavioral changes. In this chapter, I propose an approach to 

molecular discrimination through differences in the behavior of single-molecules. This 

approach will also provide an opportunity to explore how changes in the chemical environment 

affect the behavior of molecules. 

 

5.1 Introduction 

One of the factors that determines the current properties of a molecule is its electronic 

structure, which is derived from its molecular structure. The structure of a molecule can be 

changed by changes in the chemical environment. For example, protonation/deprotonation of 

functional groups or intramolecular reactions due to changes in pH can cause changes in 

molecular behavior. Changes in the current properties of molecules due to 

protonation/deprotonation of functional groups by changes in pH have been reported by 

previous studies. 

F. Chen, et al. observed differences in the behavior of chemical linker groups, -NH2 and -

COOH groups, due to changes in pH condition.81 Figure 5.1 shows the conductance histograms 
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of diamine butane and dicarboxylic acid butane molecules measured at different pH 

environment, respectively. Diamine butane showed a characteristic conductance peak with the 

highest number of counts at pH 13, while the pH 10 condition showed fewer counts than pH 

13. This is a result of the increasing proportion of -NH3
+ as the pH decreases from 13 to 10. 

For pH 1, no characteristic peak was observed, which is interpreted to be due to the fact that 

the nitrogen atom of -NH3
+, which is dominant at pH 1, does not have a lone pair and therefore 

cannot interact with the electrode. On the other hand, dicarboxylic acid butane showed a 

different behavior: dicarboxylic acid butane exhibited the highest characteristic conductance 

count at pH 13, and a lower level at pH 5. On the other hand, unlike diamine butane, 

dicarboxylic acid butane showed a peak at pH 1. This is because the oxygen atoms of -COOH 

have lone pairs, which allows it to interact with the electrode. Based on the results of this study, 

molecules with different types of functional groups are expected to show different behavioral 

changes in response to changes in the chemical environment. 

A neurotransmitter, dopamine (DA) and its precursor L-DOPA were chosen as target 

molecules in this study. Neurotransmitters are essential for maintaining brain function and 

regulating emotions, and are strongly associated with many psychiatric and behavioral 

disorders. Detecting and monitoring neurotransmitters is therefore critical to understanding and 

treating many brain-related diseases. In particular, among DA-induced diseases, Parkinson's 

disease is the second most common psychiatric disorder after Alzheimer's disease, and is 

reported to affect more than 10 million people worldwide. The cause of Parkinson's disease is 

not yet clearly understood, but it is believed to be caused by a lack of DA in the brain.87–89 DA 

is unable to cross the Blood-Brain Barrier (BBB) into the brain. Therefore, patients with 

Parkinson's disease are prescribed L-DOPA, a precursor of DA that can cross the BBB. 

L-DOPA is a common treatment for Parkinson's disease because it effectively increases DA 

levels in the brain.90,91 However, over time, the short half-life of L-DOPA leads to DA loss, 

which prevents sustained symptomatic relief. However, high doses of L-DOPA used to 

compensate for DA loss can lead to side effects such as dyskinesia, hypotension, and 

psychosis.92 Therefore, it is important to continuously monitor L-DOPA and DA to ensure 

effective dosing of L-DOPA and assessment of the patient's condition. 

Several analytical methods for simultaneous monitoring of L-DOPA and DA have been 
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developed in the various areas of electrophoresis93–95, spectrophotometry96–98, and 

electrochemical detection99–108. Electrochemical methods are the preferred platform for the 

detection of catecholamines, but distinguishing between the two molecules in solutions 

containing both DA and L-DOPA has been an issue in the field for decades. As the biosynthetic 

pathway in Figure 5.2 illustrates, the two molecules have similar chemical structures, which 

makes them difficult to discriminate due to their shared electrochemical oxidation potential. 

Single-molecule measurements can detect small changes in the behavior of individual 

molecules. In addition, the application of machine learning to single-molecule current data 

analysis has greatly enhanced its potential for molecular discrimination.42,45,52–59 In this study, 

I propose a novel approach to molecular discrimination using single-molecule measurements. 

The method exploits differences in the current behavior of molecules due to pH changes to 

induce changes in the current properties of the molecules. Machine learning techniques are 

then used to effectively discriminate between two molecules. 

 

 

Figure 5.1 Conductance histograms of diamine butane and dicarboxylic-acid butane. (a) 

Diamine butane measured at pH 1 (green), 10 (red), and 13 (blue). (b) Dicarboxylic-acid butane 

measured at pH 1 (green), 5 (red), and 13 (blue). Figure adapted from “Effect of Anchoring 

Groups on Single-Molecule Conductance:  Comparative Study of Thiol-, Amine-, and 

Carboxylic-Acid-Terminated Molecules” by F. Chen, et al., 2006, Article, 128(49), 15874-

15881, Copyright 2006 by ACS Publications, and used with permission. 
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Figure 5.2 The metabolism pathway of dopamine (DA). L-DOPA is a precursor to dopamine. 

 

5.2 Methods 

The goal of this study is to measure two target molecules that are difficult to discriminate 

under neutral conditions and observe the difference in their behavior under acidic conditions. 

Therefore, the two target molecules were measured under different acidic conditions.  

First, the MCBJ was used to measure each target molecule in neutral and acidic conditions. 

The target molecules L-DOPA (Sigma-Aldrich) and dopamine hydrochloride (Sigma-Aldrich) 

were used without purification. The two solvents used for the measurements were pH 7.6 Milli-

Q water and pH 3, 0.001 M HCl aqueous solution. L-DOPA and DA were dissolved in both 

solvents at a concentration of 10 μM, so that a total of four solutions were used for each 

measurement. 

After the measurement of the pure target solution was completed, two mixture solutions of 

different mixing ratios were prepared and measured. The two mixtures utilized solutions with 

the target solution dissolved in aqueous solutions of pH 7.6 Milli-Q water and 0.001 M HCl in 
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the ratios of DA:L-DOPA=3:1 and DA:L-DOPA=1:3, respectively. Among the ratios of the 

mixture solutions, 1 means 250 μM and 3 means 750 μM, and four sets of solutions were used 

for the measurement of this mixture. 

To prevent evaporation of the solvent during the measurement, nano-gap device equipped 

with a PDMS well in solution was used, as described in Chapter 3. The PDMS wells were filled 

with 12 μL of the sample solution, and Kapton tape was attached to the top of the PDMS wells 

to prevent evaporation. The nano-gap distances set in the measurement were 0.58, 0.56, and 

0.54 nm, and the bias voltage was 100 mV. The same machine learning algorithm used in 

Chapter 4, XGBoost, was applied to analyze the measurement data. 

 

5.3 Results 

5.3.1 Measurements under Neutral Conditions 

Figure 5.3 shows the maximum current (Ip) histograms and 2D histograms of current-

duration for L-DOPA and DA molecules measured at pH 7.6. The histograms of the two 

molecules show similar current levels, and the 2D histograms also show no differences to 

discriminate between the two target molecules. For a numerical comparison of the current 

values of the two molecules, the average value of Ip was analyzed, which was 19.5 pA for L-

DOPA and 19.1 pA for DA. The analyzed data shows that the current properties of the two 

molecules are similar at pH 7.6, which suggests the possibility of similar electronic structures. 

After analyzing the current properties through histograms, the current data from the two 

molecules were discriminated using XGBoost. The confusion matrix in Figure 5.4 shows the 

discrimination results of the two molecules, and the machine learning classifier discriminated 

DA with 53% accuracy and L-DOPA with 56% accuracy. These accuracies mean that the two 

molecules are almost indistinguishable from each other. As described in Chapter 3, the machine 

learning classifier has a good ability to discriminate between different current properties 

because it analyzes the current pulses of individual molecules based on the factors of maximum 

current (Ip), average current (Iavg.), duration (td), and 10-D normalized current. Therefore, the 

low discrimination results suggest a significant similarity in the current properties of the two 
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molecules measured at pH 7.6. 

In the next step, the mixture ratio was predicted from the measured data of the mixture 

solutions using the machine learning classifier from the previous step. The ratios for the two 

mixed solutions were DA:L-DOPA=3:1 and DA:L-DOPA=1:3, respectively. The individual 

current signals measured in each mixed solution are predicted by the classifier as one target 

molecule. Therefore, the total ratio of the individual mixture measurement data predicted by 

each target molecule represents the mixture ratio of the sample. Figure 5.5 shows the results of 

the mixture ratio prediction for a mixture solution. The predicted mixing ratio for each solution 

was 39:61 for DA:L-DOPA=3:1 and 51:39 for DA:L-DOPA=1:3. The predicted mixing ratio 

was significantly different from the actual mixing ratio of the solution. 

 As a result, the single-molecule discrimination results at pH 7.6 indicate that the current 

properties of the two molecules are very similar and that they are difficult to discriminate. This 

shows that pH 7.6 is not an appropriate condition for discriminating between the two molecules. 

 

 

Figure 5.3 Histograms of maximum current (Ip) and 2D histograms of current-duration for two 

target molecules measured in pure solution at pH 7.6. (a), (b) show the case of L-DOPA, (c), 

(d) show the case of DA. 
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Figure 5.4 Discrimination results at pH 7.6 measured on pure solutions of L-DOPA (LD) and 

dopamine (DA). 

 

 

Figure 5.5 Mixing ratio prediction results for a mixture of L-DOPA (LD) and dopamine (DA) 

measured at pH 7.6. 

 

5.3.2 Measurements under Acidic Conditions 

In this section, the single-molecule measurements of DA and L-DOPA in acidic conditions 

are compared to the measurements in neutral conditions in the previous section. Figure 5.6 

shows the maximum current (Ip) histograms and 2D histograms of current-duration for L-

DOPA and DA molecules measured at pH 3. The histograms show that the current properties 

at pH 3 are different from those at pH 7.6. Unlike pH 7.6, the Ip histogram shows a clear 
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increase in current level for L-DOPA at pH 3. On the other hand, for DA, the current level 

seems to decrease at pH 3. Analyzing the average Ip levels at pH 3, we found 29 pA for L-

DOPA and 16 pA for dopamine. Compared to the results at pH 7.6, there is an increase in 

current for L-DOPA and a decrease in current for DA. This suggests that the behavior of DA 

and L-DOPA is clearly different under acidic conditions. In particular, the large increase in 

current level for L-DOPA is noteworthy. 

Figure 5.7 shows the discrimination results of the two molecules using XGBoost. DA and 

L-DOPA showed 81% and 86% accuracy, respectively, which is a significant improvement 

compared to the discrimination results at pH 7.6. The high accuracy of molecular 

discrimination at pH 3 indicates that the difference in current behavior between the two 

molecules is clear. From the mixed solution measurement data at pH 3 shown in Figure 5.8, 

the predicted mixing ratio was 82:18 for DA:L-DOPA=3:1 and 33:67 for DA:L-DOPA=1:3. 

Although the predicted mixing ratio is slightly different from the actual mixing ratio of the 

solution, it shows a high prediction accuracy compared to the case of pH 7.6. As a result, it 

indicates that the discrimination of DA and L-DOPA is more favorable in the pH 3 condition 

compared to the pH 7.6 condition. 

 

Figure 5.6 Histograms of maximum current (Ip) and 2D histograms of current-duration for two 

target molecules measured in pure solution at pH 3. (a), (b) show the case of L-DOPA, (c), (d) 

show the case of DA. 
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Figure 5.7 Discrimination results at pH 3 measured on pure solutions of L-DOPA (LD) and 

dopamine (DA). 

 

 

Figure 5.8 Mixing ratio prediction results for a mixture of L-DOPA (LD) and dopamine (DA) 

measured at pH 7.6. 

 

5.6 Discussion of current behavior in Acidic Condition 

The results in the previous section show that acidic conditions are more appropriate for 

discriminating between DA and L-DOPA than neutral conditions. At pH 3, the current level of 

L-DOPA increased, while the current level of dopamine decreased. From these results, it is 

expected that the change in pH affected the electronic structure of DA and L-DOPA. To further 

investigate the changes in the behavior of the molecules with changes in pH, we discriminated 

the same molecule at each pH condition. Figure 5.10a, c shows the Ip histograms of the same 
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molecule at each pH. The two histograms are an overlay of the Ip histograms presented in the 

previous section for each pH condition. Figure 5.10b, d shows the results of discriminating L-

DOPA and DA measured at each pH from each other. The discrimination of L-DOPA shows 

75% accuracy at pH 3 and 72% accuracy at pH 7.6. DA has 63% accuracy at pH 3 and 68% 

accuracy at pH 7.6. This discrimination result confirms that pH changes have a significant 

effect on the current behavior of DA and L-DOPA. Here, I inferred that L-DOPA has a higher 

discrimination accuracy than DA because its current behavior is more sensitive to pH changes. 

These results suggest that single-molecule measurements can detect changes in the behavior of 

molecules in response to changes in their chemical environment. 

As a next step, I explored the factors that influence the change in the current behavior of 

both molecules in response to pH changes. One of the expected factors is the difference in the 

behavior of -COOH and -NH2 under acidic conditions, which was introduced in Section 5.1. 

Except for the two -OHs on the benzene ring common to both molecules, DA has a -NH2 group, 

while L-DOPA has both -NH2 and -COOH. Therefore, as with diamine butane in Figure 5.1a, 

it is possible that the interaction of the molecule with the electrode was limited under acidic 

conditions due to the influence of -NH3
+, resulting in a decrease in the current level. At pH 3, 

L-DOPA showed a significant increase in current. As shown in Figure 5.1b, the number of 

conductances generated by dicarboxylic acid butane at pH 1 is high. However, the level of 

conductance was lower at pH 1. Therefore, this result is not sufficient to explain the increase 

in current levels with L-DOPA. 

Another factor in the expected change in current behavior is the intramolecular cyclization 

reaction of L-DOPA on the gold surface at pH 3. In a study to functionalize gold nanoparticles, 

N. Kalcec, et al. reported the behavior of L-DOPA and DA on the surface of gold nanoparticles 

at pH 3.109 At pH 3, L-DOPA on the surface of gold nanoparticles undergoes intramolecular 

cyclization to form dopachrome. In contrast, DA stops at dopaminequinone and does not 

undergo intramolecular cyclization. Figure 5.11 shows a simplified reaction mechanism for L-

DOPA and DA molecules at pH 3 proposed by N. Kalcec. 

The nano-gap electrodes used for single-molecule measurements in this study are also made 

of gold, which means that they may have similar surface conditions to gold nanoparticles. I 

assumed that each reaction of DA and L-DOPA actually occurred on the surface of the Au nano-
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gap electrodes, and investigated the changes in current behavior of the respective reactants and 

product molecules L-DOPA, DA, dopachrome, and dopaminquinone. According to the Breit-

Wigner formula described in Chapter 2, the conductance increases as the HOMO level of the 

molecule approaches the Fermi level of the metal electrode. 

To investigate this effect, the HOMO levels of the molecules were calculated and compared 

using Density Functional Theory (DFT). The DFT calculation method used is B3LYP/6-31G(d, 

p) utilizing Gaussian 09 software. Figure 5.12 shows the energy diagram of the Fermi level of 

Au and the calculated HOMO level of each molecule. According to the DFT calculations, the 

HOMO levels of L-DOPA and DA molecules were -8.60 eV and -8.53 eV, respectively. The 

calculated HOMO levels explain the similar current properties of the two target molecules 

under neutral conditions. Furthermore, the calculated HOMO levels of dopachrome and 

dopaminequinone were found to be significantly different. The calculated value was -6.19 eV 

for dopachrome and -9.49 eV for dopaminequinone. While dopachrome is closer to the Fermi 

level of gold, dopaminequinone is further away from the Fermi level of gold. The HOMO level 

calculations support the pH-dependent current properties of each molecule. 

Further validation was performed to determine the current level based on the HOMO level 

according to the molecular structure. The molecule used for verification is hydroxyindole-2-

carboxylic acid (HICA), which is one of the molecules similar in structure to dopachrome. DFT 

calculations of HICA showed a HOMO level of -5.62 eV. I measured HICA under neutral 

conditions and compared it to the current value of dopachrome. As Figure 5.12 shows, 

measuring HICA under neutral conditions resulted in an Ip of 26 pA. If we were to compare 

simply by HOMO level, the current level of HICA should be higher than that of dopachrome, 

but in reality, there are many factors other than HOMO level that determine the conductance 

of a single molecule. However, the fact that two similar molecules exhibit significantly higher 

current levels, as described by the Breit-Wigner formula, emphasizes the influence of the 

HOMO level of these molecules on the current level.  
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Figure 5.9 Mixing ratio prediction results for a mixture of L-DOPA (LD) and dopamine (DA) 

measured at pH 3. XGBoost was used as the classifier. 

 

 

 

Figure 5.10 A simplified reaction mechanism for L-DOPA (a) and DA (b) molecules at pH 

3 near gold structure proposed by N. Kalcec. 
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Figure 5.11 The results of HOMO level calculations. 

 

 

 

 

Figure 5.12 The results of 5-hydroxyindole-2-carboxylic acid. (a) The molecular structure 

of 5-hydroxyindole-2carboxylic acid. (b) Ip histogram of 5-hydroxyindole-2carboxylic acid. (c) 

2D histogram of current and duration.  
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5.7 Conclusion 

In this study, I proposed and validated an approach to differentiate molecules based on the 

differences in their behavioral responses to chemical environments. This methodology offers a 

simple yet effective means of distinguishing molecules with similar chemical structures and 

characteristics. Moreover, the target molecules of this research, DA and L-DOPA, hold various 

analytical and chemical implications. It is anticipated that this approach will prove beneficial 

for the analysis and discrimination of other significant molecules. Furthermore, this study 

demonstrates the ability to detect the impact of chemical environmental changes on molecular 

behavior through single-molecule measurements. This underscores the utility of single-

molecule measurement techniques in exploring and comprehending the diversity of chemical 

events. These findings accentuate the significance of research and technological advancements 

at the single-molecule level across various domains. 
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Chapter 6. Direct Single-Molecule Discrimination 

without Pre-Training 

 

Chapters 4 and 5 described strategies for distinguishing between two molecules with similar 

structures by modifying the nano-gap in the molecules or changing the chemical environment. 

The single-molecule measurement and machine learning data analysis methods described in 

the previous two chapters require classifiers to be trained with measurement data from pure 

target samples before analyzing real samples. However, it is difficult to apply this training 

process to all target molecules. In addition, due to the transformation of molecules by chemical 

equilibrium, accurate training data may not be accumulated, which can lead to errors in real 

sample analysis. Therefore, this chapter proposes a new algorithmic machine learning classifier 

that can immediately predict the composition of a sample without prior training. A training-

free single-molecule discrimination method will enable single-molecule measurements to 

become a widely used chemical analysis tool. 

 

6.1 Introduction 

A method that can predict molecular composition by directly measuring samples containing 

multiple target molecules would minimize pretreatment and sample loss. In addition, the ability 

to analyze multiple targets simultaneously will significantly reduce time and cost. So far, the 

target molecules for single-molecule measurement and analysis are not limited to DNA/RNA31–

36, but have been expanded to a variety of biomolecules such as sugars43, amino acids110, 

proteins/peptides37–41, and neurotransmitters42. It has been demonstrated that this technique can 

be applied not only to biomolecules but also to the analysis of various environmental molecules, 

such as explosives detection111. 

Many studies have measured a variety of single molecules, and the conductance of single 

molecules has a large variation. Therefore, statistical methods have been indispensable as a 

way to improve the accuracy of molecular discrimination, and conductance histograms have 
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been used as a traditional and common method. However, this only provides statistical 

information about single-molecule conductance. To overcome this limitation, machine learning 

analysis of single-molecule measurement data has been introduced, which has improved the 

discrimination accuracy of single-molecules.42,45,52–59 

Conventional machine learning analysis methods require training data from pure sample 

solution measurements that contain only the molecule to be analyzed. However, considering 

the practical application of single-molecule measurements for specific molecule detection, it is 

not easy to prepare pure solutions for all expected impurity molecules in a sample. Rather, it 

may be relatively easier to prepare samples with varying concentrations of the target molecule 

in solutions containing various impurities. An example of such a method is the detection of a 

target molecule by manipulating the environment required for its release from a biological 

sample, either by promoting or inhibiting its release. This allows you to control the 

concentration or measurement signal of the target molecule and obtain accurate analysis results. 

Alternatively, a solution containing a reference molecule can be used to detect or measure the 

target molecule. However, even if it is possible to measure a solution containing only a specific 

target molecule, a machine learning classifier trained on that measurement data may not be 

applicable to real samples. This is because the measurement environment of the data used as 

training data may be different from the environment of the actual sample, i.e., environmental 

conditions, experimental conditions, presence of impurities, etc. may affect the measurement 

results, and these differences may limit the performance of the classifier. 

For these reasons, the development of methods that can directly discriminate individual target 

molecules in mixed samples represents an important advance in the field of single-molecule 

measurement and discrimination. For example, such a method would allow for the 

discrimination of each target molecule in a mixed solution, without the need for a sample 

containing only a single species of target molecule. Therefore, this method has great potential 

for detecting and analyzing a variety of targets in complex environments such as practical 

biological samples, which will show promise for applications in a variety of fields. Therefore, 

the goal of this research is to develop a method for discriminating molecules that works with 

mixed solutions and does not require a single species target sample. Figure 6.1 graphically 

depicts the process of the conventional method and the new method. The substances targeted 
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in this study are deoxyguanosine monophosphate (dGMP) and thymidine monophosphate 

(dTMP), and Figure 6.2 shows the structures of the two molecules. Both dGMP and dTMP can 

be identified by single-molecule measurement and have been previously reported as target 

molecules in various studies.31,46,112 In this study, the two target molecules were chosen in terms 

of discrimination of single-molecule signals by a novel machine learning model rather than in 

terms of the discriminability of each molecule in a mixture of the two molecules. In this study, 

I developed a novel analytical method to discriminate between the molecules utilizing single-

molecule measurement data of only mixed solutions of dGMP and dTMP and compared it to 

conventional methods. 

 

 

Figure 6.1 Flow chart of single-molecule classification. For single-molecule current 

measurements, the sample solutions were injected into a PDMS well, and the chips were bent 

with a finely controlled push bar with a piezoelectric device to form a nano-gap, after which 

the current was measured. The green box represents the conventional method, while the orange 

box represents the new concepts. The solid lines show the process for each individual sample, 

and the dashed lines show the process for the mixture. 

 

 

 

 



65 

 

 

 

Figure 6.2 The molecular structures of dGMP and dTMP. 

 

6.2 Methods 

The goal of this study is to discriminate between the two target molecules using the 

conventional method and the new method, and to determine whether the new concept is 

effective in molecular discrimination. Therefore, dGMP and dTMP solutions were first 

prepared for the conventional method and measured by MCBJ. dGMP (Sigma-Aldrich) and 

dGTP (Sigma-Aldrich) were diluted in Milli-Q water without further purification. The 

concentration of each solution of dGMP and dTMP used in the measurement was 10 μM. After 

measuring pure target sample solutions, mixtures of the two species to be analyzed in both the 

conventional and new methods were measured. In this study, two types of mixture samples 

were used, and the dGMP, dTMP ratios in each sample were dGMP:dTMP=3:1 (750 μM dGMP 

and 250 μM dTMP) and dGMP:dTMP=1:3 (250 μM dGMP and 750 μM dTMP), respectively. 

PDMS wells were installed in the nano-gap device to contain the solutions. The nano-gap 

distances used for the measurements were 0.58, 0.56, and 0.54 nm. 

After the single-molecule measurement was completed, machine learning was used to identify 

the two molecules. Each of the 830 pulse signals was trained and classified using supervised 

machine learning with a random forest (RF) classifier in scikit-learn version 0.24.2. For 

validation, a 10-fold CV was performed and the mean and standard deviation values provided 

the classification rate and error. In the mixed solution assay, the RF supervised machine 

learning classifier was trained with 1000 dGMP and dTMP signals each. Signals with Ip > 20 

pA and td > 1 ms were analyzed. The signals in the mixture were classified one by one using 
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the trained classifiers. The analysis was performed using Python 3.10.4. The UUC and 

weighting KDE source code was written by hand using Python 3.10.4. The 1000 signals and 

features from the mixture are the same as in the traditional method. A Gaussian kernel is 

adopted, and the bandwidth is determined by Silverman's rule. 

 

6.3 Results 

6.3.1 Conventional Single-Molecule Discrimination 

Conventional methods predict the mixing ratio of a mixture based on data trained with 

measurements from solutions containing only the target molecule. Therefore, the two target 

molecules were first measured in pure solutions containing only the target molecules. A 

tunneling current pulse occurs when a single molecule passes between nano-gap electrodes, as 

shown in Figure 6.3. Figure 6.4 shows a histogram of the maximum current (Ip). The average 

maximum current for dGMP and dTMP was 32 pA and 25 pA, respectively. As reported in 

previous studies, Figures 6.3, 6.4 show that dGMP has higher current levels than dTMP. The 

reason for the difference in conductance between the two molecules is that the HOMO level of 

dGMP is closer to the Fermi level of Au, the conduction pathway, than the HOMO level of 

dTMP. Although there is a difference in the average conductance between the two molecules, 

a histogram of the actual current values shows some overlap. In the histograms of both target 

molecules, a low current signal was observed at the 20 pA level. This low current signal is 

caused by the bridge structure between the nano-gap electrodes and the single-molecule charge 

transport, wherein electron transport through the lower molecular orbitals of the ribose sugar 

is responsible for this low current.113 This is why we observed a large overlap in the maximum 

current histograms of the two molecules, and why histogram-based analysis methods that rely 

on Ip alone do not achieve accurate discrimination. Therefore, machine learning was 

introduced as an additional statistical analysis method. 

In the conventional method, a machine learning classifier is trained using individual single-

molecule current pulses obtained by measuring pure solutions for each single target molecule. 

Each solution is used as training data along with a molecular name (label). The classifier learns 

the current signal pattern based on the molecule name and uses it to discriminate the current 
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signal of the molecule in the separately measured mixed solution and to predict the mixing 

ratio.  The discrimination results for the two molecules measured in pure solutions of each 

target were 0.75 for dGMP and 0.82 for dTMP, as shown in the Confusion Matrix in Figure 6.5. 

This approach demonstrates the ability of a machine learning classifier trained on data 

measured in a solution containing only a single chemical species to discriminate between 

molecules. To verify the classification ability of the machine learning classifier, we predicted 

the mixing ratios of the target molecules using the classifier trained on the current signals of 

each molecule in the previous step. Figure 6.6 shows the histograms of Ip measured in two 

mixtures with dGMP:dTMP=3:1 and dGMP:dTMP=1:3, respectively. Comparing the two 

histograms, the dGMP:dTMP=3:1 solution shows a higher conductance because it contains 

more dGMP, which has a relatively high conductance. Figure 6.7 shows the process of 

discriminating the mixtures using a machine learning classifier trained on each of the pure 

target solutions measured and analyzed in the previous step. The signals from the two mixture 

solutions were analyzed and discriminated to predict a mixture ratio of 64:36 for 

dGMP:dTMP=3:1 and 39:61 for dGMP:dTMP=1:3. As the discrimination results in Figure 6.7 

show, the discrimination accuracy of each nucleotide target molecule varies individually, which 

may underestimate the predicted ratio of abundant nucleotides. In the next part, the same data 

as the mixture solution data used in this part will be used to predict the mixing ratio. 

 

 

Figure 6.3 Individual current pulses of (a) dGMP and (b) dTMP.  
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Figure 6.4 Histograms of the maximum current (Ip) for (a) dGMP and (b) dTMP. 

 

 

Figure 6.5 Ip histograms measured in two mixture solutions, dGMP:dTMP=3:1 and 

dGMP:dTMP=1:3. 

 

 

Figure 6.6 Ip histograms measured in two mixture solutions, dGMP:dTMP=3:1 and 

dGMP:dTMP=1:3, 
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Figure 6.7 The results of predicting the mixing ratio of mixtures based on trained data. 

 

6.3.2 New Concept of Single-Molecule Discrimination 

In the previous section, we saw that when predicting the mixing ratio of a mixture, the more 

abundant of the two molecules in the mixture tends to be underestimated. This can limit the 

performance of the classifier because, as mentioned in the introduction, the measurement 

environment of the pure target sample may be different from that of the real sample. Therefore, 

as a way to minimize this effect, this part presents a method and results for predicting the 

mixing ratio of a mixed solution directly using only the mixture solution. Figure 6.8 illustrates 

the process of predicting a miscibility ratio from a mixture solution. 

Given the data of a mixed solution of two molecules, the discriminative boundary of the two 

molecules must be determined in order to discriminate between the two unlabeled molecules. 

This was estimated directly from the data obtained from the two mixtures using Unlabeled data 

and Unlabeled data Classification (UUC) with Kernel Density Estimation (KDE).114 Figure 6.9 

shows a conceptual diagram of UUC, a method for determining discriminant boundaries from 

data from mixed solutions in which two classes (each molecule in this study) are present in 

different concentrations. In Figure 6.9, the red and blue colors represent mixtures with different 

mixing ratios, and the triangles and circles represent classes. Each mixture solution contains 

different concentrations of the two classes, and the classes are not known in advance. The main 

goal of UUC is to discriminate between the two classes based on which class is more abundant 

in this solution. Figure 6.10 illustrates the concept of KDE, which is a nonparametric statistical 

technique that estimates a probability density function directly from observed data. 
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Nonparametric statistics are methods that perform statistical tests by calculating probabilities 

directly from the given data, regardless of the characteristics of the population being sampled. 

So, intuitively, KDE calculates the probability density by adding a Gaussian kernel obtained 

from each observed data point, similar to how a histogram is generated by adding data points. 

The advantage of this method is that a smoother probability density distribution can be obtained 

with less data than a histogram. Therefore, by using KDE, a smoother representation of the 

probability distribution can be obtained, which allows for a more accurate distribution with less 

data. In this study, the Gaussian kernel was centered on directly measured data points. The 

UUC was determined by calibrating the probability density distributions of the two classes with 

KDE. However, since the proposed method is based on the principle of higher probability 

density in regions of higher concentration, it can also be applied when the concentration 

relationship of two unlabeled data mixtures is known. 

To compare the conventional method with this new concept, a discrimination task was 

performed using the same features extracted from the same data as in the previous part. The 

UUC machine learning classifier was trained to predict the molecules using only the signals in 

the mixture, and Figure 6.11 shows the results of predicting the mixing ratio of the mixed 

solution. For dGMP and dTMP ratios of 3:1 and 1:3, the corresponding signals were predicted 

to be 76:24 and 22:78, respectively. Figure 6.12 shows the comparison of the discrimination 

results of the new concept with the results of the traditional method. 

The electronic structure of the electrode affects the electrical transport properties of a single 

molecule, i.e., when a molecule is adsorbed on the surface of the electrode or the shape of the 

electrode changes, the electronic structure changes, and these changes can affect the signal of 

the single molecule.115–118 In recent years, various machine learning methods have been 

developed, and these methods are used to analyze and model data. Unsupervised learning can 

be used to discriminate data without explicit labels, and it is used in conjunction with 

supervised learning. In other words, unsupervised learning is a learning method that does not 

require labels to discriminate patterns in the data. This unsupervised machine learning analysis 

was used to discriminate I-z traces in single-molecule measurement data.54 However, as Figure 

6.13 shows, traditional unsupervised machine learning methods cannot adequately discriminate 

data measured in two mixed solutions. The new UUC method applied in this study is able to 



71 

 

 

discriminate between the two molecules from data measuring only the mixture. In particular, 

the method avoids errors caused by changes in the environment and classifies single-molecules 

with higher accuracy than conventional methods. 

In conclusion, this method has the potential to provide more reliable and accurate 

classification under a variety of conditions. Figure 6.14 shows the molecular prediction results 

obtained using UUC from the current profile of a dGMP:dTMP=3:1 mixed solution. The red 

and blue signals are the signals of dGMP and dTMP, respectively, predicted by UUC. This 

means that the signals of single-molecules from a mixture measurement can be individually 

differentiated. Figure 6.15 shows current profile images of measurements with each solution, 

including the blank solution (Milli-Q water). Figure 6.15 Current profiles of pure solution 

measurements of dGMP and dTMP, represented by a and b, show that dGMP has many current 

pulses with relatively higher current values than dTMP. For Figure 6.15 c, d, which shows the 

currents profiles in two mixture solutions of dGMP:dTMP=3:1 and dGMP:dTMP=1:3, it shows 

that there are many current pulses with higher values in solution c, which contains more dGMP. 

Figure 6.15e shows a measurement in Milli-Q water, showing that no current signal was 

generated. Figure 6.16 shows a duration histogram of the single-molecule current pulses from 

each solution. 

 

 

Figure 6.8 Process of training and identifying with data from mixtures only. 
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Figure 6.9 Schematic image of UUC. The red and blue colors represent two types of mixtures 

with different concentrations of the two classes. The circles and triangles represent each class. 

The UUC method determines the orange curve, which represents the boundary between two 

classes. 

 

 

 

Figure 6.10 Schematic image of the KDE for estimating the probability density function in the 

feature space. The red and blue dots and dashed lines indicate the data points and their Gaussian 

kernel, respectively. The solid curves represent the sum of the dashed lines, which represents 

the kernel density estimate. 
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Figure 6.11 The result of predicting the mixing ratio of two mixtures with data trained on the 

mixture only. 

 

 

 

 

 

Figure 6.12 Comparison of the performance of the new and old methods with respect to the 

prediction ratio. 
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Figure 6.13 Discrimination results with unsupervised machine learning. (a-c) Discrimination 

results without PCA and (d-f) with PCA. The clustering algorithms are (a d) k-means clustering, 

(b, e) spectral clustering, and (c, f) GMM clustering. 

 

 

 

 

Figure 6.14 The current profile resulting from identifying the signal of each single molecule 

individually (in dGMP:dTMP=3:1 solution). 
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Figure 6.15 The current profiles of each measurement. (a) dGMP solution, (b) dTMP solution, 

(c) dGMP:dTMP=3:1 solution, (d) dGMP:dTMP=1:3 solution, (e) Milli-Q water as the blank 

solution. All solutions used in the measurements were prepared using deionized Milli-Q water. 

 

 

Figure 6.16 Histograms of the duration of the current pulse for each measurement. (a) dGMP 

solution, (b) dTMP solution, (c) dGMP:dTMP=3:1 solution, (d) dGMP:dTMP=1:3 solution. 
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6.4 Discussion 

The current histograms of dGMP and dTMP in Figure 6.6 show that dGMP levels higher 

currents than dTMP. However, when focusing on the individual current signals rather than the 

histogram, dGMP did not always show a higher current than dTMP. The machine learning 

algorithm used in this study discriminates between the molecules' signals based on the level of 

current and the shape of the pulse. Figure 6.17 shows Ip histograms representing the 

discrimination results of signals obtained from solutions with dGMP:dTMP ratios of 3:1 and 

1:3. In both histograms, the pink bars represent the histogram of the current predicted by dGMP 

and the blue bars represent the histogram of the current predicted by dTMP. The two Ip 

histograms show that relatively high current data is predicted by dGMP and relatively low 

current data is predicted by dTMP. The histograms show that the UUC method predicts the 

mixing ratio of the molecules and that dGMP has a higher conductance than dTMP, which is 

in the same trend as the pure solution measurements. In particular, the new method determines 

the concentration ratio from the mixed solution measurement of two molecules whose 

concentration ratio is unknown. This new method can be applied to a variety of molecular 

detection methods. For example, the technique can be applied to determine the concentration 

ratio of a foreign substance in a biological sample by comparing it to a normal sample and a 

positive/negative sample with a control that promotes or inhibits the molecule of interest. In 

addition, the concentration of the molecule of interest can be determined by comparing a 

sample with an unknown concentration to a sample to which a reference sample has been added. 

 

Figure 6.17 Ip histograms based on the identification results of the (a) dGMP:dTMP=3:1 and 

(b) dGMP:dTMP=1:3 solutions, respectively. The red and blue bars represent the histograms 

predicted as dGMP and dTMP, respectively. The solid lines represent the sum of the two 

histograms. 
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6.6 Conclusion 

In this study, I proposed and demonstrated the feasibility of a new method for discriminating 

molecules using only single-molecule measurement data in mixture solutions, which 

complemented conventional single-molecule discrimination methods. The new method 

discriminated well between molecules without their respective labels from measurement data 

in mixture solutions without any pre-training on pure solutions of the target molecules, which 

was achieved by applying the UUC algorithm based on KDE. The main method of this goal 

was to develop a new method and evaluate its performance. For the molecular discrimination 

of the target molecules dGMP and dTMP in this study, compared with the conventional method, 

the new method showed improved accuracy in predicting the composition of the mixed solution. 

The technique for discrimination of target molecules in mixed solutions developed in this study 

is expected to be utilized in various fields for various molecules without individual sample 

training. 
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Chapter 7. Conclusions 

 

In this thesis, I proposed approaches to expand the scope of single-molecule measurement 

applications, aiming to enhance its potential for diverse fields. The methodology employed 

involves measuring single molecules freely diffusing in solution, deviating from the 

conventional approach of chemically bonding molecules to electrodes. Applying this technique 

to various molecular analytical methods poses a significant challenge and goal for future 

research. 

The primary focus of this study was categorized into two key areas. First, it introduced new 

measurement approaches to discern molecules that were challenging to differentiate due to 

structural similarities. Second, it explored analytical methods to streamline conventional 

discrimination techniques. 

 In Chapter 4, the approach of modifying the nano-gap electrodes with appropriate molecules 

to improve the discrimination accuracy of difficult-to-discriminate molecules was discussed. 

In this study, the target molecules Asp and Leu were discriminated by the change in current 

properties due to the difference in interaction with MAA molecules modified on the nano-gap 

electrodes. Compared to the measurement results using bare nano-gap electrodes, the 

discrimination accuracy of the two target molecules was significantly improved in the case of 

molecular modification. In this study, I proposed and achieved a method to discriminate 

molecules that are difficult to discriminate under normal conditions with high accuracy by 

modifying nano-gap electrodes with appropriate molecules. 

In Chapter 5, an approach to improve the accuracy of molecular discrimination through 

differences in the behavior of molecules due to changes in the chemical environment was 

discussed. In this study, molecules were discriminated by the difference in behavior of two 

target molecules due to changes in pH. The target molecules in this study, L-DOPA and 

dopamine, showed similar current characteristics due to their similar molecular structures 
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under neutral conditions at pH 7.6, making discrimination difficult. In the acidic condition of 

pH 3.0, the current characteristics of the two molecules were significantly different, resulting 

in improved discrimination accuracy. This study demonstrated that molecules that are difficult 

to discriminate under normal conditions can be discriminated through differences in molecular 

behavior by changing the chemical environment. 

 In Chapter 6, a novel approach was discussed that addresses the potential drawbacks of the 

conventional single-molecule discrimination method and allows for broader application of 

single-molecule measurements. The conventional method requires training from measured data 

of samples containing only the target molecule before analyzing practical samples. Since this 

training process can sometimes limit the analysis of samples, a new method was developed that 

utilizes the UUC algorithm based on KDE to analyze the molecular composition of samples 

directly from data of mixed solutions only. It is expected that this method can be developed 

into a technology that can accurately predict the composition of a solution even in a solution 

containing a variety of molecules. 

This thesis demonstrates the potential for advancing the field of single-molecule 

discrimination and expanding single-molecule measurement into various fields in the future. 

For example, applications to the analysis of biomolecules and complex chemical mixtures are 

expected to revolutionize various fields such as disease diagnosis, environmental monitoring, 

and drug discovery. To cultivate these valuable and innovative fields, it is crucial to validate 

the methodology developed in this study under diverse environmental conditions, 

demonstrating its efficiency and universality. Further research, including diversification of 

experimental conditions and real-world applications, will be necessary. In addition, the 

accuracy and efficiency of data analysis can be improved through the improvement and 

optimization of machine learning algorithms. This is poised to significantly impact various 

scientific and industrial fields where precise molecular-level analysis is crucial. It is also 

important to develop the methodology of this study in an affordable and easy-to-use form.  

In conclusion, the research presented in this thesis paves the way for new developments in 

molecular analytical methods, and the results are expected to make a significant contribution 

to the future development of this field along with the advancement of single-molecule 

measurement techniques. In particular, the approach and results of this research pave the way 
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for further research towards practical and real-world applications, and suggest new pathways 

for scientific inquiry and technological innovation. 
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