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Abstract

Various visual explanation methods, such as CAM and Grad-CAM, have been pro-
posed to visualize and interpret predictions made by CNNs. Recent efforts go beyond
mere visual interpretability, aiming to enhance CNN performance through the uti-
lization of these generated visual explanations. In this work, we propose MANet
(Mixed Attention Network)—a network architecture that advances the stability of
visual explanations through an adaptive feature refinement mechanism via a mixed
attention module. Concurrently, the generated attention maps are harnessed to bolster
network performance in image recognition tasks. Experimental findings underscore
the efficacy of MANet, demonstrating improved visual stability and consistency. The
proposed architecture not only surpasses baseline models in image classification and
object detection tasks but also establishes a novel paradigm for synergizing visual
interpretability and network performance enhancement.

Keywords CNN - Attention mechanism - Mixed attention - Visual explanation

1 Introduction

Given the remarkable achievements of Convolutional Neural Network (CNN) mod-
els across diverse computer vision tasks [1-7], the problem of comprehending and
interpreting CNNs has much attention recently. To address this, visual explanation
methods, including CAM [8], Grad-CAM [9], Grad-CAM++ [10], and ABN [11],
have been extensively adopted for a variety of recognition tasks for this purpose.
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Fig. 1 Network structure of mixed attention network. The intermediate feature map is adaptively refined
through the mixed attention module and generates a more consistent and stable attention map in the Attention
Branch. @ in the Attention Mechanism indicates element-wise summation, and ® indicates element-wise
multiplication

These aforementioned methods can be generally classified as either gradient-based
explanations or response-based explanations.

Gradient-based methods, exemplified by methods like Grad-CAM [9] and Grad-
CAM-++ [10], excel in capturing the significance of specific regions within the input
image for predictive output. However, as it requires extra backpropagation to derive the
gradients from the output class to the input, it fails to provide a visual explanation in the
forward pass. In contrast, response-based visual explanation methods like CAM [8]
can generate the class activation maps (CAM) by projecting the weight matrix onto
the channel-wise averaged feature maps. Notably, CAM replaces the conventional
fully connected layer with Global Average Pooling (GAP) [12]. While this facilitates
interpretability, it also introduces architecture sensitivity [9], potentially leading to
model performance degradation [10, 11].

Inspired by response-based methods, Attention Branch Network (ABN) [11] is in
some sense considered not only as a visual explanation method, but also improves
the network performance through the incorporation of an attention-mechanism-based
branch structure. Nevertheless, it has been observed in several experiments that ABN
tends to produce unstable attention maps and hence leads to a decrease in classifi-
cation accuracy. To tackle this concern, we present a network structure that extends
the foundations of ABN, denoted as the Mixed Attention Network (MANet), which
contains a mixed attention module that extracts informative features by combining
cross-channel and spatial information, and then generates a more stable attention map
using the “refined” feature during the inference process.

MANEet, our novel network, which shares a structural resemblance with ABN, is
composed of three parts: the feature extractor, the attention branch, and the perception
branch, as shown in Fig. 1. The feature extractor is constructed with multiple convo-
lutional layers, serving to extract feature maps from an input image. The attention
branch, composed of a mixed attention module, adaptively refines the feature maps
and generates a more reliable attention map, as illustrated in Fig. 2. Concurrently, the
perception branch outputs the probability of a certain class through an attention mech-
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Fig. 2 Overview of mixed attention module. The module has two sequential sub-modules: channel and
spatial

anism using the feature map from the feature extractor and the produced attention
map.

Given that convolutional operations inherently capture informative information
through the amalgamation of cross-channel and spatial features, our innovative mixed
attention module is designed to emphasize significant information along these dimen-
sions: the channel and spatial axes. This is accomplished by a sequential arrangement
of channel and spatial attention modules, shown in Figs.2 and 3. This sequential
approach enables each submodule to discern ‘what’ and ‘where’ to allocate attention
within the channel and spatial dimensions, respectively.

MANet can be effectively trained in an end-to-end manner and has demonstrated
remarkable performance within image recognition tasks during our experiments. In
the image classification experiment, we observed accuracy improvement from various
existing networks using the ImageNet(1k) dataset. Additionally, we also validated the
heightened performance of object detection task using the MS COCO dataset, thereby
substantiating the efficacy of MANet. Lastly, we showed some illustrative examples of
the attention maps generated by CAM, Grad-CAM, ABN, and our proposed method
MANet, revealing MANet’s propensity to allocate attention more accurately towards
target objects compared to other methods. Additionally, the stability evaluation test
shows that MANet always generates more stable and consistent attention maps than
those produced by ABN.

Our contributions can be outlined as follows:

1. Innovative Architecture.
We propose a novel architecture, known as MANet, for image recognition and
visual explanation by integrating a mixed attention module for adaptive feature
refinement. The incorporation of this mixed attention module sets MANet apart
from existing models, enhancing its capabilities in both accurate recognition and
effective visual explanation.

2. Validation of Mixed Attention Module.
We thoroughly validate the efficacy of our proposed mixed attention mod-
ule through comprehensive ablation studies. These experiments systematically
demonstrate the impact of various architectural choices and design elements on
the overall performance of MANet. By iteratively evaluating different configura-
tions, we provide empirical evidence of the module’s effectiveness in enhancing
network capabilities.

3. Simultaneous Enhancement of Performance and Explanation.
Another noteworthy contribution of our work is the integration of the attention
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mechanism within the MANet architecture. This strategic integration facilitates
the dual objectives of enhancing network performance while concurrently gen-
erating visual explanations that are more reliable, coherent, and consistent. This
simultaneous achievement is a distinctive feature of MANet, signifying its potential
to cater to both accuracy and interpretability demands within a single framework.

2 Related Work
2.1 Attention Branch Network

Attention Branch Network (ABN) [11] was introduced not only to enhance network
performance, but also to concurrently generate better visual explanations within the
forward pass. The ABN architecture consists of three components: the feature extrac-
tor, the attention branch, and the perception branch.

Within the attention branch of ABN, an overlapping 1x 1 convolution scheme is
employed to integrate and compress the feature map across the channel axes, and
subsequently, the attention map is generated through a sigmoid function. Nonetheless,
this process, while straightforward, proves to be rudimentary. As illustrated in the
experiment below (Fig. 5), visual explanations generated in this way sometimes exhibit
inconsistencies and instability. This can be attributed to the inherent limitations of
the 1x1 convolution operation, which primarily reduces channel dimensions while
inadequately extracting feature significance and contextual information along channel
and spatial axes. Consequently, this inadequacy in coherent information extraction
during the overlapping convolution process leads to a heightened degree of freedom,
resulting in a decrease in network performance.

2.2 Attention Mechanism

The attention mechanism is a data processing technique widely employed in various
machine learning tasks such as natural language processing [13—15], image recogni-
tion [16-19], and speech recognition [20-22]. The attention mechanism can help a
model assign distinct weights to each part of input data and extract critical and relevant
information to facilitate more accurate predictions. Additionally, it is achieved with-
out significantly increasing computational or storage overheads, contributing to the
widespread adoption of the attention mechanism. In recent years, most of the research
works on the combination of deep learning and visual attention mechanisms have
focused on the use of masks to form attention. The principle of the mask is to identify
the key features in input image data through another layer of new weights. Through
learning and training, a deep neural network with attention layers learns where to
emphasize or suppress, and thus forms attention.

Certain notable works, such as [16, 17], employ spatial transformations on input
data to extract essential information. These studies generate masks for spatial domains
and assign weights. While spatial-wise attention focuses solely on spatial information
and neglects channel-along information, treating input features within each channel
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uniformly, it confines spatial domain transformation to the initial and shallow feature
extraction phases, limiting the interpretability in deeper neural network layers. Con-
versely, channel-wise attention mechanisms, like [3], adaptively learn the importance
of individual feature channels. However, their utilization of global average-pooled
features for channel-wise attention computation somehow proves suboptimal for fine-
grained channel attention inference. To address this, we advocate for the integration of
max-pooled features as another effective alternative. Considering the remarkable per-
formance of spatial-wise attention in directing focus, our MANet leverages both spatial
and channel-wise attention by a novel mixed attention module. Through empirical val-
idation in Sect. 4, we demonstrated the superior efficacy of exploiting both forms of
attention rather than relying solely on one. Furthermore, our study includes a detailed
exploration into the optimal configuration and arrangement of these two attention
modules, with comprehensive details available in Sect. 4 for further elucidation.

3 Proposal Method

In this section, we introduce the network architecture of MANet. As previously indi-
cated, MANet is composed of three components: the feature extractor, the attention
branch, and the perception branch, as illustrated in Fig. 1.

The feature extractor comprises multiple convolution layers designed to extract
informative feature maps from input data. Notably distinct from the attention branch
of the ABN framework, MANet introduces a novel mixed attention module. This
particular module, situated within the attention branch, serves a dual role in enhancing
both the network’s comprehension of feature significance and the stability of attention
maps.

The mixed attention module enables the network to acquire a thorough understand-
ing of the order of importance given to individual feature maps through the efficient
manipulation of channel and spatial dimensions. This combination of mixed attention
empowers the network with the capacity to comprehensively evaluate the intrinsic
relevance of each feature map to the final decision-making process. Consequently,
the generated attention maps exhibit an elevated level of consistency and reliability,
enhancing the network’s interpretability and predictive accuracy.

The perception branch predicts a class by exploiting the attention mechanism
implemented upon the feature maps derived from the feature extractor, as well as
the adaptively generated attention map. This collaboration results in a comprehensive
decision-making process that takes advantage of the network’s ability to intelligently
emphasize relevant information guided by attention indications.

The entire network architecture is built upon a baseline model like ResNet [2].
Furthermore, the attention branch appears as a lightweight module that can be inte-
grated into the baseline model after a specific layer. This incorporation then divides
the baseline model into two parts: the feature extractor, responsible for information
abstraction, and the perception branch, tasked with making accurate predictions. The
next sections will go into great detail about each of these branches, and especially
provide an extensive explanation of the mixed attention module’s internal functions.
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Fig.3 Diagram of each attention sub-module. As illustrated, the channel-wise attention module utilizes both
max-pooling outputs and average-pooling outputs with a shared MLP; the spatial-wise attention module
utilizes similar two outputs that are pooled along the channel axis and forward them to a convolution layer

3.1 Mixed Attention Module

Provided a feature map F € RE*H*Wag input to the mixed attention module, it
sequentially computes a channel-wise attention map M, € R¢*!*! and a spatial-wise
attention map My € RIXHXW ot first, where [C, H, W] format denotes the [channels,
height, width] format of the provided feature map(as in color). Then the attention
maps are multiplied by the input feature map for adaptive feature refinement. The
entire process is illustrated in Fig. 3, which gives a visual overview of how the mixed
attention module operates. In summary, the mixed attention module takes a feature map
as input, calculates attention maps to emphasize important features, and then adjusts
the original feature map accordingly for better feature representation, as summarized
below:

F'=M(F)®F,
F" = MS(F,) Q F’,

where ® indicates element-wise multiplication, M.(F) and M (F’) respectively
denote the corresponding attention maps calculated by each attention submodule given
F and F’ as input. As a result, F” is the final refined feature map computed by the
mixed attention module.

This module is actually made up of two submodules working together. The first
one, called the channel-wise attention module, focuses on identifying “what” is impor-
tant by looking at each channel of the feature map. The second submodule, known as
the spatial-wise attention module, concentrates on pinpointing “where” the significant
parts are by examining different positions on the spatial dimensions. These two sub-
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modules collaborate to help the network better understand both the crucial elements
in each channel and the important positions in the spatial dimensions.

In the subsequent sections, we describe the specifics of each attention submodule,
explaining how they work and how they contribute to the overall enhancement of the
feature map.

3.1.1 Channel-Wise Attention Module

Since each channel in the feature map acts like a specialized detector for specific fea-
tures [23], channel attention helps identify the “what” that holds significance when
given an input image. Therefore, we generate a channel-wise attention map by exam-
ining the relationships between different channels of the feature map. To do this, we
integrate and compress the spatial dimension of the input feature map.

Average pooling has been widely employed to aggregate spatial information.
Besides, we suggest that max pooling, which highlights the most distinctive features
of inputs, also provides important information for better channel attention. Thus, we
combine the outputs of both average pooling and max pooling. We demonstrated empir-
ically that combining both forms of pooled features results in significantly improved
network representation capabilities as compared to employing them separately. (as
elaborated in Sect.4.1). Further details on how channel attention is computed are
explained below.

We perform both average pooling and max pooling along the spatial axis of the
feature map, placing them in a parallel manner to aggregate spatial information as
optimally as possible, as illustrated in the upper part of Fig. 3. After the pooling opera-
tions, we obtain the average-pooled feature and the max-pooled feature. These features
are then directed into a shared multi-layer perception (MLP) with one hidden layer.
Note that the hidden activation size of MLP is defined as R€/"*1x1 where r signifies
the reduction ratio. In our work, we set r to 16 based on insights gained from a com-
prehensive ablation study conducted by [3]. Consequently, we get the corresponding
feature vectors Fg,, o and Fy, . . These feature vectors encapsulate valuable information
about the importance of different features within each channel. Finally, the channel
attention M, is calculated by their element-wise sum. The entire procedure can be
summarized as follows:

M. = o (MLP(AvgPool(F)) + MLP(MaxPool(F)))
= G(Flgvg + Flslax)’

where function AvgPool refers to average pooling operation and similarly function
MaxPool refers to max pooling operation as described above. Function MLP refers to
a shared multi-layer perception (MLP) with one hidden layer. o indicates the sigmoid
function. The attention channel M, is then element-wise multiplied with the input
feature F to get channel-wise refined feature map F’, which is sequentially forwarded
to the spatial attention module.

@ Springer



New Generation Computing

3.1.2 Spatial-Wise Attention Module

While channel attention is about identifying “what” features are significant, spatial
attention is focused on figuring out “where” the informative parts are. Therefore, we
construct a spatial attention map by leveraging the relationships between different
spatial positions in the feature map. To do this, we integrate and compress the channel
dimension of the input feature map this time.

We first perform average pooling and max pooling operations along the channel
axis of the feature map. Then we concatenate the outputs of these pooling operations,
F /i;vg and F]f,[ax, to form a single, more informative intermediate feature descriptor, as
shown in the bottom half of Fig. 3. Finally, a convolution layer is applied to generate
the spatial attention M which highlights informative regions on the input feature. The
entire procedure can be summarized as follows:

M, =c (Conv7X7([AVgPool(F); MaxPool(F)]))

— TxT s .S

=0 (conv ([FAVg, FMaX])) ,
where ¢ indicates the sigmoid function, and function conv’*7 refers to convolution
operation with the kernel size set to 7 [24], which is confirmed to be decent and
effective by ablation study in Sect. 4.1.

In summary, we use the inter-spatial relationships between features to create a

spatial attention map that tells the network where to pay attention. This complements

the channel attention, creating a more comprehensive understanding of both “what”
and “where” to focus on within the feature map.

3.1.3 Attention Branch

As the mixed attention module significantly contributes to the network’s ability to
identify what and where to emphasize or suppress, we get an adaptively refined feature
F” that can localize the discriminative region more precisely. To generate an attention
map in the training process, the attention branch constructs a top layer based on CAM
[8], replacing the fully connected layer with a K x 1 x 1 convolution layer, as shown in
Fig. 1. This operation yields a K x H x W feature map, which in turn, is employed to
create an initial attention map. To further consolidate the individual feature maps (K
in total), they are collectively convoluted using a 1 x 1 x 1 convolution layer, which
results in the generation of a 1 x H x W feature map. To refine this feature map into a
reliable attention map, we apply normalization using the sigmoid function and finally
get the attention map M € RI>*H>W,

3.2 Perception Branch
The perception branch outputs the probability of a certain class using the feature maps

from the feature extractor, which are subjected to an attention mechanism. As shown
in Fig. 1, the attention map M generated from the attention branch is applied to the
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intermediate feature map F via the following attention mechanism:
F'=(1+M)QF.

In this manner, the perception branch employs the attention map to guide the feature
map toward identifying and emphasizing relevant features for accurate class prediction.
The attention mechanism we used has a bypass structure so that it can efficiently
improve the network performance by highlighting the feature map at the location with
a higher value of the attention map while preventing the lower value region of the
attention map from degrading to zero.

3.3 Training

The training process of MANet is conducted in an end-to-end manner, with the train-
ing loss calculated as a combination of the Softmax function and cross-entropy at the
perception branch, specifically in the context of the image classification task. Impor-
tantly, the optimization of the mixed attention module is intrinsically associated with
the attention mechanism for the perception branch. This incorporation ensures that the
mixed attention module improves the network’s classification performance without the
need for an additional loss function.

Furthermore, MANet’s adaptability extends beyond image classification. When
applied to different image recognition tasks, the architecture demonstrates adaptability
in terms of its training loss. This adaptability lies in the fact that the training loss
can flexibly adapt to the underlying properties of the chosen baseline model. By
dynamically adjusting the training loss according to the baseline model’s attributes,
MANet effectively optimizes itself for a wide range of image recognition tasks. This
characteristic shows the flexibility and applicability of MANet across diverse domains
of image analysis and interpretation.

In the forthcoming two sections, we hope to verify the efficacy and superiority
of the proposed model through a two-stage experiment. Initially, detailed in Sect. 4,
we verified the contributions and impacts of individual components within the mixed
attention module described above and the optimal way of combining them through
some ablation experiments. Subsequently, in Sect. 5, we presented a comparative
analysis between MANet and established benchmarks across diverse image recogni-
tion tasks. This comparison serves to validate MANet’s efficacy in improving network
accuracy while substantiating the reliability and consistency of the visual explanations
generated by MANet, fostering a comprehensive discussion on their stability.

4 Ablation Studies

In this section, we perform several ablation studies to demonstrate the effectiveness
of our proposed design paradigm in mixed attention module. First, we present the
experiment setup for our ablation studies. We use the ImageNet(1k) dataset for image
classification task and ResNet50 as the baseline model. The dataset utilized in this

@ Springer



New Generation Computing

Table 1 Ablation study on the structure of the channel-wise attention module

Top-1 error (%) Top-5 error (%)
ResNet50 (baseline) 24.56 7.50
ResNet50 + AvgPool(SE [3]) 23.14 6.70
ResNet50 + MaxPool 23.20 6.83
ResNet50 + AvgPool & MaxPool 22.80 6.52

We can observe that our proposed arrangement of the channel-wise attention module outperforms the SE
[3] module
Bold values indicate that our model outperforms the other comparative models in this experiment

ablation study (also utilized in the following image classification experiment, see Sect.
5.1), namely ImageNet(1k), comprises a substantial training set of 1.2 million images
and a validation subset (used as the testing dataset) encompassing 50,000 images.
These images are annotated across a diverse spectrum of 1000 distinct object classes.

For the data augmentation, a two-step process is undertaken. Initially, the images
are resized to dimensions of 256 x 256 pixels, following which they undergo a random
cropping procedure to attain a final dimension of 224 x 224. The optimization of our
network is executed via the stochastic gradient descent (SGD) algorithm. Commencing
with an initial learning rate of 0.1, a decay is introduced at the culmination of every
30 epochs. The training regimen spans a total of 90 epochs, with a designated batch
size of 256.

Since the mixed attention module is split into channel attention submodule and
spatial attention submodule, here our process of designing modules is consequently
structured into three phases: an exploration of an efficient methodology for computing
channel-wise attention, followed by a similar investigation into spatial-wise attention
and lastly, the combination of two submodules. See the subsequent subsections for the
details.

4.1 Arrangement of Channel-Wise Attention

We incorporate both average pooling and max pooling within the channel-wise atten-
tion submodule to extract more refined feature information. To verify the rationale
behind this configuration, we contrast three different approaches for computing chan-
nel attention: exclusive utilization of average pooling, exclusive utilization of max
pooling, and the concurrent implementation of both pooling strategies, as initially
conceptualized.

Table 1 presents the experimental results across the above pooling methodologies.
We find that max-pooling just captures the informative information as average pooling
compared to the baseline model. In addition, it is noteworthy that the channel attention
module involving only average pooling aligns with the SE [3] module. Pertinently, the
max-pooled feature encapsulates the most prominent information of the input feature
map, whereas average pooling engenders a smoother feature representation that retains
the essence of the features in the input. Consequently, the simultaneous employment
of both pooling yields enhanced performance.
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Fig.4 Detail of the arrangement of spatial-wise attention module, where r is the same reduction ratio with
the MLP in channel-wise attention module (see 3.1.1) for simplicity. Given the channel-wise refined feature,
we conduct two different ways of extracting channel information and evaluate the influence of kernel size
at the following convolution layer

Table 2 Ablation study on the structure of the spatial-wise attention module

Top-1 error (%) Top-5 error (%)
ResNet50 + Channel 22.80 6.52
ResNet50 + Channel + Spatial (avg & max, k = 3) 22.68 6.41
ResNet50 + Channel + Spatial (avg & max, k =7) 22.66 6.31
ResNet50 + Channel + Spatial (1 x 1conv, k = 3) 22.96 6.64
ResNet50 + Channel + Spatial (1 x 1conv, k =7) 22.90 6.47

We can observe that it performs better when employing the proposed average-and-max pooling along the
channel axis, followed by the convolution operation with a larger kernel size of 7
Bold values indicate that our model outperforms the other comparative models in this experiment

4.2 Arrangement of Spatial-Wise Attention

As the spatial-wise attention module produces a 2D spatial attention map to emphasize
or suppress features in different spatial locations, we adopt a symmetric methodology
to compute the spatial-wise attention. We first apply channel-along average and max
poolings, thereby establishing inter-spatial relationships among features. These pooled
outputs are subsequently concatenated and convolved by a 7 x 7 convolution, ultimately
obtaining the spatial attention map.

For the ablation study in the arrangement of spatial-wise attention module, we
discuss two different ways to squeeze and extract channel information respectively:
channel-along average-and-max pooling (see the top half of Fig.4) and standard 1 x 1
convolution to integrate and compress the feature map across the channel axis (see the
bottom half of Fig.4). Furthermore, acknowledging the established significance of a
broader receptive field in effectively leveraging contextual information and helping
the network learn where the important spatial locations are, we extend our scrutiny to
the subsequent convolutional layer, examining the impact of kernel sizes - specifically,
those of 3 x 3and 7 x 7.

Table 2 presents the experimental results across the above discussion. Note that
in the spatial-wise attention ablation study, we position the spatial-wise attention
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Table 3 Ablation study on the arrangement of two attention submodules

Top-1 error (%) Top-5 error (%)
ResNet50 (baseline) 24.56 7.50
ResNet50 + Channel + Spatial 22.66 6.31
ResNet50 + Spatial + Channel 22.78 6.42
ResNet50 + Channel & Spatial in parallel 22.95 6.59

We can observe that it performs best when using both two attention submodules and arranging them
sequentially with the channel-wise attention going first
Bold values indicate that our model outperforms the other comparative models in this experiment

module subsequent to the earlier designed channel-wise attention module. For the
comparison of different spatial attention approaches, it is shown that channel-along
average-and-max pooling outperforms 1 x 1 convolution. For the comparison of dif-
ferent convolution kernel sizes, it can be observed that a larger kernel size provides
higher accuracy in both cases, which supports the fact stated above: a larger receptive
field implies greater certainty about discriminative spatial locations. What’s more,
from the experimental result, we can also find that choosing the suitable spatial atten-
tion module can improve the accuracy more than using only channel-wise attention
module, which implies the necessity of applying both attention submodules. Putting it
all together, we apply the channel-along average-and-max pooling followed by 7 x 7
convolutional layer as spatial-wise attention module.

4.3 Arrangement of Attention Modules

In this part of the ablation study, we evaluate sequential channel-spatial, sequential
spatial-channel, and parallel implementation of both attention modules as three dif-
ferent arrangements of the channel and spatial attention submodules. Considering
that different combinations may have an impact on the fineness of the final extracted
features, we chose the above three arrangements.

As for the way of parallel implementation, since the two attention maps are different
in size, we first expand them to R€*#*W and then combine them by element-wise
summation. Finally, a sigmoid function is used to compute the overall attention map
and then element-wisely multiplied by the input feature map F to get the refined feature
map F’. The whole process can be described as:

F=(1+MQ®F
= +o(M.® M;))QF,

where o is a sigmoid function, @ indicates element-wise summation, and the two
attention maps are resized to R *#*W before element-wise summation.

Table 3 presents the experimental results across the above arrangements. It is shown
that arranging the attention modules sequentially can produce higher accuracy than
putting them in parallel. Especially, the sequential channel-spatial manner yields a
slightly better performance compared to the reverse sequence.
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Table 4 Comparison of top-1 ResNet50 ResNet101 ResNetl52
errors on ImageNet(1k) dataset
Original 24.56 22.38 22.24
SENet 23.14 22.35 21.57
ABN 23.14 22.11 21.82
MANet 22.66 21.84 21.95

We can observe that our MANet basically outperforms the previous
works, especially when applying ResNet50 as the baseline model
Bold values indicate that our model outperforms the other comparative
models in this experiment

4.4 Final Model Design

In a brief conclusion, we verified the structure and arrangement of the optimal channel-
wise and spatial-wise attention modules through a series of ablation studies. Our final
module is shown in Fig.3. We use both average pooling and max pooling to extract
spatial/channel information, and convolution with a kernel size of 7 in the spatial-
wise attention module to obtain the contextual information. Finally, we arrange the
two modules in a channel-spatial order, and experiments show that this design and
combination greatly improve the accuracy compared to the baseline model and the
related work SENet [3].

5 Experiments

In this section, we present several experimental results to evaluate the performance of
our proposed MANet and show its effectiveness.

The following image recognition experiments are based on two standard datasets:
ImageNet-1K for the image classification task(Sect. 5.1) and MS COCO for the object
detection task(Sect. 5.2). To ensure a comprehensive and fair comparison, we took the
initiative to reproduce all the networks [2, 3, 11] under examination within the PyTorch
framework [25].

We also qualitatively evaluate our proposed MANet through visual explanation on
ImageNet(1k) dataset(Sect. 5.3), and quantitatively validate the stability and consis-
tency of those visualization generated by MANet(Sect. 5.3.1).

5.1 Image Classification

Firstly, we conducted image classification experiments on ImageNet(1k) dataset to
thoroughly validate our model. We followed the same experimental setting described
in Sect. 4 and verified our MANet in various network architectures. Specifically,
we adopted the ResNet50, ResNet101, and ResNetl152 as the baseline models for
comparison. The experimental result of the top-1 errors on ImageNet(1k) is shown in
Table 4.
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We compare the accuracy of the original ResNet model, SENet [3], ABN [11], and
MANEet. As shown in the table, by introducing both channel and spatial attention maps,
the top-1 errors of MANet on the ImageNet(1k) dataset are reduced by 1.9%, 0.54%
and 0.29% compared to the baseline models. Moreover, compared to conventional
models such as SENet or ABN, our proposed model reduces the top-1 error more
significantly, especially when adopting ResNet50 as the baseline model, indicating
the effectiveness of the mixed attention module.

However, while using ResNet152 as the baseline architecture, things become a little
different. Although MANet has improved performance over the baseline model, it is
still less accurate than either SENet or ABN. We speculate that this is caused because
of the model complexity of ResNet152, which may lead to the non-convergence issue,
making it difficult to achieve the expected accuracy.

5.2 Object Detection

Second, We conducted object detection on the Microsoft COCO dataset. This dataset
involves 80k training images (designated as “2014 train”) and 40k validation images
(labeled as “2014 val”). We used the training set as well as the subset of the validation
set for training, holding out about 5000 images for testing. In quantifying the perfor-
mance of our object detection experiment, we employed a well-accepted evaluation
metric, nAP@.5, which is the mean average precision over /oUreshold = 0.5. The
equation is provided below:

—1 rl
Y Jy P(RYR
N 9
TP TP
R=—cy P=——,
TP + EN TP + FP

mAP =

where N denotes the total number of classes present within the dataset, R indicates the
recall and P indicates the precision. Further delving into the equation, TP indicates
the number of positive samples that have been correctly identified as positive, while
FN indicates the number of positive samples that have been inaccurately identified
as negative. On the other hand, FP indicates the number of negative samples that
have been incorrectly predicted as positive. In the field of object detection, precision
and recall are two important measurements used to evaluate the efficacy of detection
algorithms. What’s more, Average Precision, or AP, quantifies the area encompassed
by the Precision-Recall (PR) curve in relation to the coordinate axes. A higher AP
value is indicative of a more accurate target detection for a specific category.

Moreover, the notion of mean Average Precision (mAP) denotes the average value
of the individual AP scores across various categories. A greater mAP value signifies
a superior performance in object detection across the multitude of categories under
consideration.

We adopted Faster-RCNN [6] as the detection method, which has proven to be
robust and effective in object detection tasks. Furthermore, we utilized ImageNet pre-
trained ResNet50 and ResNet101 as baseline models. The results of our experiments
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.rrr?AbIPe @5 - SOfrJ;i(k:ltedl\e/[thtCig)% o Backbone Detector mAP@.5

validation set ResNet50 Faster-RCNN 46.2
MANEet(ResNet50) Faster-RCNN 48.2
ResNet101 Faster-RCNN 48.4
MANet(ResNet101) Faster-RCNN 50.5

We adopted the Faster R-CNN [6] detection framework and imple-
mented our model based on various baseline networks

Bold values indicate that our model outperforms the other comparative
models in this experiment

GradCAM ABN MANet

Fig.5 Visual explanation results of various methods on ImageNet. Notably, the MANet always highlights
the true class object correctly and in a more focused manner

are detailed in Table 5, where we showcase the outcomes of integrating MANet with the
Faster R-CNN framework using the aforementioned baseline networks. Notably, our
findings reveal a noteworthy improvement over the baseline models, indicative of the
substantial performance enhancements brought forth by the incorporation of MANet.
This empirical evidence attests to the efficacy and potential of our proposed approach
in advancing object detection capabilities within the Faster R-CNN framework.

5.3 Visual Explanation

To comprehensively assess the quality of the generated visual explanations, we con-
ducted a qualitative comparison among different visual explanation methods: CAM,
Grad-CAM, ABN, and our proposed MANet. For this analysis, we utilized ResNet152
as the baseline model. Figure 5 shows the attention maps produced by each of these
models using the ImageNet dataset.
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While CAM, Grad-CAM, ABN, and MANet all exhibit a degree of similarity in
terms of the regions they highlight, it is evident that MANet offers some notable
advantages.

For a single object, the attention maps generated by MANet are tighter and focus
on the salient features of the true class compared to any other methods. For example,
in the case of the spoonbill in the third row, MANet distinctly emphasizes its defining
characteristics, notably the long, paddle-shaped beak and its deep red wings and tail,
acknowledged as pivotal and discriminative traits. Correspondingly, in the fourth row’s
sea snake, MANet also highlights the most discernable parts of the target object area
in a less noisy and more focused manner, thereby enhancing its interpretability.

For multiple objects, MANet always shows better performance in locating the most
distinguishable region of the target object. For instance, in the second row, the dog in
the front of the image and the sled in the back are highlighted prominently because
the model classifies this input image as "dogsled". As for the example in the first row,
while ABN produces unreliable attention maps that inaccurately highlight unrelated
grassy regions, MANet adeptly pinpoints the crucial features guiding its classification
of the image as a ’tiger cat’, specifically highlighting the striped cat occupying the
main body of the image in front.

However, the notably constrained attention map produced by MANet in this instance
prompts inquiries regarding unattended elements, such as the cat in the background,
raising pertinent questions regarding holistic recognition. We address this phenomenon
as “class discriminative visualization”, albeit acknowledging potential limitations in
its conclusive explanatory power. Notably, the MANet model is optimized not only
by learning the feature importance but also by enhancing the backbone feature repre-
sentation to focus more on important features to make decision for the input image.
That is, in this case, by compressing and extracting the features, MANet focuses on
primary influential features while disregarding secondary, albeit non-irrelevant ones.
Consequently, the explanations derived from MANet remain equitable, task-aligned,
and broadly compelling. Nevertheless, acknowledging the qualitative nature of our
analysis, subjectivity and situational contexts may influence these outcomes. There-
fore, a nuanced discussion and contextual analysis are recommended across various
tasks and scenarios to provide comprehensive insights.

To conclude, this qualitative comparison substantiates that MANet provides
enhanced performance and precision in generating visual explanations, thus enhanc-
ing its potential applicability in interpretability tasks within the domain of computer
vision.

5.3.1 Stability Evaluation of Visual Explanation

In the previous section, we have shown several visual explanations generated by dif-
ferent models, and a simple comparison gave us an idea of how faithful the different
visual explanations are to the detected target. Somehow, some tangible measurements
are still preferred for real-world applicability. In this section, we try to provide a more
convincing evaluation of the stability and consistency of these visual explanations. To
do this, we introduce the following IoU-based measurement.
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Fig. 6 Stability evaluation of visual explanation. We can observe that our MANet always generates stable
and consistent visual explanations in contrast to previous work such as ABN

We first used ABN [11] as a comparison and did six independent training sessions
for each of these models. Each session employed a different learning rate which is
randomly sampled in the interval of [0.05, 0.11]. The baseline model used for stability
evaluation is ResNet50 and the datasets on which we train the models individually and
generate visual explanations are the ImageNet(1k) dataset and the CIFAR10 dataset.
For the fully trained 6 models, we chose the one with the highest classification accuracy
as the baseline model and calculated the IoU (Intersection of Union) between the visual
explanations produced by the other five models with the baseline model. The threshold
for computing the IoU value was empirically set to be > 127 [10].

As shown in Fig.6, our MANet shows great stability and consistency on both
datasets. For the ImageNet(1k) dataset which consists of more object classes, MANet
indicates a better high-attention-area coverage, as shown in Fig. 5. As for the stability
of the generated visual explanation, MANet performs well on both datasets compared
to ABN.

6 Conclusions

In this paper, we introduced the Mixed Attention Network(MANet), an innovative
network architecture incorporating a mixed attention module, which is trainable in an
end-to-end manner and able to generate improved visual explanations. Notably, the
mixed attention module embedded within the attention branch significantly enhances
the network’s capacity to represent complex features, resulting in the production of
more reliable attention maps through the utilization of mixed attention-based refined
features.
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To thoroughly evaluate the effectiveness of MANet, extensive experiments were
conducted across image classification and object detection tasks. The experimental
results demonstrated the superior performance of MANet when compared to various
baseline models. Additionally, we also showed that the visualization explanations
generated by MANet are more consistent, reliable, and in a more focused manner.

Our future research endeavors will encompass extending the application of MANet
to diverse tasks, including fine-grained recognition, semantic segmentation, and multi-
task learning. These upcoming explorations are aimed at further demonstrating the
versatility and potency of MANet within the realm of computer vision, and subse-
quently contributing to the advancement of interpretability and performance in various
real-world applications.
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