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Supplementary Material for “Industrial Technology
Boundary, Product Quality Choice, and Market

Segmentation”

Haoxing MA∗

This supplementary material is organized as follows. Section 1 summarizes the best

responses of firm 0 and firm 1. Section 2 provides supplementary details for Lemma

1, and a complete proof for the existence of a unique pure-strategy Nash equilibrium

in Lemma 1 (1) when ∆s ∈ (0,∆) and a unique pure-strategy Nash equilibrium in

Lemma 1 (3) when ∆s ∈ (∆, 2t).

Note that the demand system is:

D0(p0, p1) =



D00
0 (p0, p1) = 1 if p1 − p0 ∈ [t,∞),

D0B
0 (p0, p1) =

1
2
x̂L(p0, p1) +

1
2

if p1 − p0 ∈ [t−∆s, t), (1)

DBB
0 (p0, p1) =

1
2
x̂H(p0, p1) +

1
2
x̂L(p0, p1) if p1 − p0 ∈ (−t, t−∆s), (2)

DB1
0 (p0, p1) =

1
2
x̂H(p0, p1) if p1 − p0 ∈ (−t−∆s,−t], (3)

D11
0 (p0, p1) = 0 if p1 − p0 ∈ (−∞,−t−∆s],

and D1(p0, p1) = 1−D0(p0, p1).

∗Email: haoxing.ma@gmail.com
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The locations of indifferent consumer for type-L and type-H consumers are:

x̂L(p0, p1) =
p1 − p0 + t

2t
; x̂H(p0, p1) =

p1 − p0 + t+∆s

2t

1 Best Response

1.1 Best Response of Firm 0

In the first case when D00
0 (p0, p1) = 1, firm 0’s profit D00

0 (p0, p1) · p0 = p0 is strictly

increasing in p0, so it is optimal for firm 0 to set p0(p1) = p1 − t. The last case when

D11
0 (p0, p1) = 0 is never optimal for firm 0 since it always gets 0 profit. Next I focus

on the three cases in between denoted as (1), (2) and (3).

To solve for the best response of firm 0, I consider the following profit-maximization

problems of firm 0 in each of the three cases.

1. Case (1):

max
p0

D0B
0 (p0, p1) · p0 =

1

2
(x̂L(p0, p1) + 1) · p0 =

1

2
p0(1 +

p1 − p0 + t

2t
)

subject to p0 ∈ (p1 − t, p1 − t+∆s],

p0 ≥ 0.

First, I derive the interior solution by solving the first-order condition and

obtain p0B0 (p1) =
1
2
(p1 + 3t), which exists when p1 ∈ (5t − 2∆s, 5t). To derive

the corner solutions when p1 /∈ (5t − 2∆s, 5t), I re-write the condition of case

(1), p1−p0 ∈ [t−∆s, t), as the condition on p0, which is, p0 ∈ [p1−t, p1−t+∆s).
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Thus, by p1 ≥ 0, I summarize the candidates of best response under case (1),

p0(p1) =


p1 − t+∆s if p1 ∈ [0, 5t− 2∆s],

p0B0 (p1) =
1
2
(p1 + 3t) if p1 ∈ (5t− 2∆s, 5t),

p1 − t if p1 ∈ [5t,+∞).

2. Case (2):

max
p0

DBB
0 (p0, p1) · p0 =

1

2
(x̂L(p0, p1) + x̂H(p0, p1)) · p0 =

1

2
p0(

p1 − p0 + t

2t
+

p1 − p0 + t+∆s

2t
)

subject to p0 ∈ (p1 − t+∆s, p1 + t),

p0 ≥ 0.

Similarly, I can obtain interior solution pBB
0 (p1) =

1
4
(2p1 +2t+∆s) solving the

first-order condition. This interior solution exists when p1 ∈ (−t + 1
2
∆s, 3t −

3
2
∆s). Then I derive the corner solutions by the condition on p0, p0 ∈ (p1 − t+

∆s, p1 + t). Thus, I summarize the candidates of best response under case (2),

p0(p1) =


p1 + t if p1 ∈ [0,−t+ 1

2
∆s],

pBB
0 (p1) =

1
2
(p1 + t+ 1

2
∆s) if p1 ∈ (−t+ 1

2
∆s, 3t− 3

2
∆s),

p1 − t+∆s if p1 ∈ [3t− 3
2
∆s,+∞).

By p1 ≥ 0 and my assumption that 0 < ∆s < 2t, the candidates reduce to:

p0(p1) =

pBB
0 (p1) =

1
2
(p1 + t+ 1

2
∆s) if p1 ∈ [0, 3t− 3

2
∆s),

p1 − t+∆s if p1 ∈ [3t− 3
2
∆s,+∞).
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3. Case (3):

max
p0

DB1
0 (p0, p1) · p0 =

1

2
x̂H(p0, p1) · p0 =

1

2
p0 ·

p1 − p0 + t

2t

subject to p0 ∈ [p1 + t, p1 + t+∆s),

p0 ≥ 0.

Again, I first obtain the interior solution pB1
0 (p1) =

1
2
(p1 + t + ∆s) by solving

the first-order condition, and it exists when p1 ∈ (−t−∆s,−t+∆s].

Since −t+∆s > −t+ 1
2
∆s, the ranges of conditions on p1 in cases (2) and (3)

overlap. Therefore, when p1 ∈ (−t+ 1
2
,−t+∆s), firm 0 has to choose between

the two functions in case (2) and case (3). To determine which function is firm

0’s best response when p1 ∈ (−t+ 1
2
,−t+∆s), I compare firm 0’s profits under

case (2) and case (3): π
(2)
0 |p0= 1

4
(2p1+2t+∆s) =

(2p1+t+∆s)2

32t
and π

(3)
0 |p0= 1

2
(p0+t+∆s) =

(p1+t+∆s)2

16t
.

By comparing the profits π
(2)
0 and π

(3)
0 , I know that when ∆s ∈ (0,

√
2t], π

(2)
0 ≥

π
(3)
0 for any p1 ≥ 0; when ∆s ∈ (

√
2t, 2t], π

(2)
0 ≥ π

(3)
0 if p1 ≥ −t + 1√

2
∆s. Note

that −t + 1√
2
∆s > −t + 1

2
∆s, where −t + 1

2
∆s is the lower bound of case (2).

Hence, firm 0 always obtains higher profit in case (2) than in case (3).

By p1 ≥ 0 and my assumption that 0 < ∆s < 2t, −t+ 1
2
∆s < 0, and hence, firm 0’s

best response is 1
4
(2p1 + 2t +∆s) if p1 ∈ (0, 3t − 3

2
∆s]. Therefore, I obtain the best

response functions of firm 0:

BR0(p1) =



pBB
0 (p1) =

1
2
(p1 + t+ 1

2
∆s) if p1 ∈ [0, 3t− 3

2
∆s],

p1 − t+∆s, if p1 ∈ (3t− 3
2
∆s, 5t− 2∆s]

p0B0 (p1) =
1
2
(p1 + 3t) if p1 ∈ (5t− 2∆s, 5t],

p1 − t if p1 ∈ (5t,+∞).
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1.2 Best Response of Firm 1

The first case when D1(p0, p1) = 1−D00
0 (p0, p1) = 0 is never optimal for firm 0 since

it always gets 0 profit. In the last case when D1(p0, p1) = 1 − D11
0 (p0, p1) = 1 firm

0’s profit 1 · p1 = p1 is strictly increasing in p1, so it is optimal for firm 1 to set

p1(p0) = p0 − t−∆s.

Now, I solve the following profit-maximization problems of firm 1 under the three

cases (1), (2) and (3).

1. Case (1):

max
p1

D0B
1 (p0, p1) · p1 =

1

2
(1− x̂L(p0, p1)) · p1 =

1

2
p1(1−

p1 − p0 + t

2t
)

subject to p1 ∈ (p0 + t−∆s, p0 + t],

p1 ≥ 0.

First, I derive the interior solution by solving the first-order condition and

obtain p0B1 (p0) = 1
2
(p0 + t), which exists when (−t,−t + 2∆s]. To derive the

corner solutions when p1 /∈ (−t,−t+ 2∆s], I re-write the condition of case (1),

p1 − p0 ∈ [t−∆s, t), as the condition on p1, which is, p1 ∈ [p0 + t−∆s, p0 + t).

By p1 ≥ 0 and my assumption that t ∈ (0, 1), I summarize the candidates of

best response under case (1),

p0(p1) =

p0B1 (p0) =
1
2
(p0 + t) if p0 ∈ [0,−t+ 2∆s]

p0 + t−∆s if p1 ∈ [−t+ 2∆s,+∞).
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2. Case (2):

max
p1

DBB
1 (p0, p1) · p1 = [1− 1

2
(x̂L(p0, p1)−

1

2
x̂H(p0, p1)] · p1 = p1(1 +

1

2

∆s

2t
)

subject to p1 ∈ (p0 − t, p0 + t−∆s),

p1 ≥ 0.

Next, I derive the interior solution by solving the first-order condition and

obtain p0B1 (p0) = 1
4
(2p0 + 2t − ∆s), which exists when (−t + 3

2
∆s, 3t − 1

2
∆s].

To derive the corner solutions when p1 /∈ (−t + 3
2
∆s, 3t − 1

2
∆s], I re-write the

condition of case (2), p1 − p0 ∈ (−t, t −∆s), as the condition on p1, which is,

p1 ∈ [p0−t, p0+t−∆s). By p1 ≥ 0 and my assumption that t > 0, I summarize

the candidates of best response under case (2),

p0(p1) =


p0 + t−∆s if p1 ∈ [0,−t+ 3

2
∆s]

pBB
1 (p0) =

1
2
(p0 + t− 1

2
∆s) if p1 ∈ (−t+ 3

2
∆s, 3t− 1

2
∆s]

p0 − t if p1 ∈ (3t− 1
2
∆s,+∞).

3. Case (3):

max
p1

DB1
1 (p0, p1) · p1 = [1− 1

2
x̂H(p0, p1)] · p1 = p1 · (1−

1

2
· p1 − p0 + t+∆s

2t
)

subject to p1 ∈ (p0 − t−∆s, p0 − t],

p1 ≥ 0.

Now I derive the interior solution by solving the first-order condition and obtain

pB1
1 (p0) =

1
2
(p0 + 3t−∆s), which exists when (5t−∆s, 5t+∆s]. To derive the

corner solutions when p1 /∈ (5t−∆s, 5t+∆s], I re-write the condition of case (3),

p1−p0 ∈ (−t−∆s,−t], as the condition on p1, which is, p1 ∈ (p0−t−∆s, p0−t].
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By p1 ≥ 0, I summarize the candidates of best response under case (1),

p0(p1) =


p0 − t if p1 ∈ [0, 5t−∆s]

pB1
1 (p0) =

1
2
(p0 + 3t−∆s) if p1 ∈ (5t−∆s, 5t+∆s]

p0 − t−∆s if p1 ∈ (5t+∆s,+∞).

Since −t + 2∆s > −t + 3
2
∆s, conditions on p0 in case (1) and case (2) overlap.

When p0 ∈ (−t+ 3
2
∆s,−t+ 2∆s), it is optimal for firm 1 to set the price in case (1)

because π
(1)
1 |p1= 1

2
(p0+t) =

(p0+t)2

16t
> (∆s−2p0−2t)2

32t
= π

(2)
1 |p1= 1

4
(2p0+2t−∆s) for any t ∈ (0, 1),

∆s ∈ (0, 2t) and p0 ≥ 0. Also note that, by my assumption that 0 < ∆s < 2t, I must

have 3t − 1
2
∆s < 5t − ∆s. Thus, I summarize the following best response of firm

1:

BR1(p0) =



p0B1 (p0) =
1
2
(p0 + t) if p0 ∈ [0,−t+ 2∆s],

pBB
1 (p0) =

1
2
(p0 + t− 1

2
∆s) if p0 ∈ (−t+ 2∆s, 3t− 1

2
∆s],

p0 − t if p0 ∈ (3t− 1
2
∆s, 5t−∆s],

pB1
1 (p0) =

1
2
(p0 + 3t−∆s) if p0 ∈ (5t−∆s, 5t+∆s],

p0 − t−∆s if p0 ∈ (5t+∆s,+∞).

2 Supplementary Details for Lemma 1

Based on indicators h, l, which denote whether group H,L is supplied by firm 0 and

firm 1, there are 16 equilibrium candidates: NN , 0N , N0, 1N , N1, NB, BN , 1B,

B0, 10, B1, 00, 11, 01, BB, and 0B. Candidates NN , 0N , N0, 1N , N1, NB and

BN do not exist because I assumed both consumer groups are always fully covered.

Now I show that candidates 1B, B0, 10, B1, 00, 11, 01 do not exist either.
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[1B]: The 1B equilibrium requires that x̂H(p0, p1) ≤ 0 and x̂L(p0, p1) ∈ (0, 1), which

respectively implies that p1 − p0 ∈ (−∞,−t − ∆s] and p1 − p0 ∈ (−t, t). However,

p1 − p0 ∈ (−∞,−t−∆s] ∩ (−t, t) = ∅.

[B0]: The B0 equilibrium requires that x̂H(p0, p1) ∈ (0, 1) and x̂L(p0, p1) ≥ 1, which

respectively implies that p1 − p0 ∈ (−t−∆s, t−∆s) and p1 − p0 ∈ [t,∞). However,

p1 − p0 ∈ (−t−∆s, t−∆s) ∩ [t,∞) = ∅.

[10]: The 10 equilibrium requires that x̂H(p0, p1) ≤ 0 and x̂L(p0, p1) ≥ 1, which

respectively implies that p1−p0 ∈ (−∞,−t−∆s] and p1−p0 ∈ [t,∞) = ∅. However,

p1 − p0 ∈ (−∞,−t−∆s] ∩ [t,∞) = ∅.

[B1]: The B1 equilibrium requires that x̂H(p0, p1) ∈ (0, 1) and x̂L(p0, p1) ≤ 0, which

respectively implies that p1 − p0 ∈ (−t−∆s, t−∆s) and p1 − p0 ∈ (−∞,−t]. Then

I have p1 − p0 ∈ (−t−∆s, t−∆s) ∩ (−∞,−t]. Therefore, the firms solve

maxp0 π
B1
0 (p0, p1) =

1

2
x̂H(p0, p1)p0, max

p1
πB1
1 (p0, p1) =

(
1

2
(1− x̂H(p0, p1)) +

1

2

)
p1

subject to p1 − p0 ∈ (−t−∆s, t−∆s) ∩ (−∞,−t].

By solving the maximization problem, I have (p∗B1
0 , p∗B1

1 ) = (5t+∆s

3
, 7t−∆s

3
), and

(π∗B1
0 , π∗B1

1 ) = ( (5t+∆s)2

36t
, (7t−∆s)2

36t
). Substituting p∗B1

1 and p∗B1
0 into the constraint

p1 − p0 ∈ (−t−∆s, t−∆s) ∩ (−∞,−t], I have ∆s ∈ (−5t, t) ∩ [5t
2
,∞) = ∅.

[00]: The 00 equilibrium requires that x̂H(p0, p1) ≥ 1 and x̂L(p0, p1) ≥ 1, from which

I have p1 − p0 ∈ [t −∆s,∞) ∩ [t,∞) = [t,∞). Suppose on the contrary there exist

equilibrium prices {p∗000 , p∗001 } constituting the 00 equilibrium. Then, firm 0 must

have set the highest possible price under the constraint p1 − p0 ∈ [t,∞) given the
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rival’s equilibrium price, i.e., p∗000 = p∗001 − t. At this equilibrium, π∗00
1 = 0. However,

given p∗000 = p∗001 − t, firm 1 can always obtain a positive profit by deviating to

set price p′001 = p∗001 − ϵ, where ϵ is an infinitesimally small positive integer1, which

contradicts to p∗001 being the equilibrium price.

[11]: The 11 equilibrium requires that x̂H(p0, p1) ≤ 0 and x̂L(p0, p1) ≤ 0, from which

I have p1 − p0 ∈ (−∞,−t −∆s] ∩ (−∞,−t] = (−∞,−t −∆s]. Suppose there exist

prices {p∗110 , p∗111 } constituting the 00 equilibrium. Then, firm 1 must have set the

highest possible price under the constraint p1 − p0 ∈ (−∞,−t−∆s] given the rival’s

equilibrium price, i.e., p∗111 = p∗110 − t−∆s. At this equilibrium, π∗11
0 = 0. However,

given p∗111 = p∗110 − t−∆s, firm 0 can always obtain a positive profit by deviating to

set price p′110 = p∗110 − ϵ, where ϵ is an infinitesimally small positive integer2, which

is a contradiction.

[01]: The 01 equilibrium requires that x̂H(p0, p1) ≥ 1 and x̂L(p0, p1) ≤ 0, from which

I have p1−p0 ∈ [t−∆s,∞)∩(−∞,−t] = [t−∆s,−t]. Suppose there exist {p∗010 , p∗011 }

constituting the 01 equilibrium. Then, firm 1 must have set the highest possible price

under the constraint p1 − p0 ∈ [t − ∆s,−t] given the rival’s equilibrium price, i.e.,

p∗011 = p∗010 − t. However, given p∗011 = p∗010 − t, firm 0 can always obtain a higher

profit by deviating to set p′010 = p∗010 + ϵ, where ϵ is an infinitesimally small positive

integer3, which is a contradiction.

1In this deviation, firm 1’s demand becomes positive because x̂L(p∗000 , p′001 ) = 1
2 + t−ϵ

2t < 1
2In this deviation, firm 0’s demand becomes positive because x̂H(p′110 , p∗111 ) = 1

2 − t−ϵ
2t > 0.

3Since p∗011 − p′010 = −t− ϵ ∈ [t−∆s,−t], this deviation does not change the demand faced by

firm 0. Therefore, firm 0’s profit increases by ϵ upon deviation.
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2.1 Supplementary Details for Lemma 1 (1)

In the BB equilibrium, firms solve

maxp0 π
BB
0 (p0, p1) =

(
1

2
x̂H(p0, p1) +

1

2
x̂L(p0, p1)

)
p0,

maxp1 π
BB
1 (p0, p1) =

(
1

2
(1− x̂H(p0, p1)) +

1

2
(1− x̂L(p0, p1))

)
p1

subject to p∗BB
1 − p∗BB

0 ∈ (−t, t − ∆s). Solving the above two maximization prob-

lems, I have (p∗BB
0 , p∗BB

1 ) = (6t+∆s

6
, 6t−∆s

6
) and (π∗BB

0 , π∗BB
1 ) = ( (6t+∆s)2

72t
, (6t−∆s)2

72t
).

Substituting (p∗BB
0 , p∗BB

1 ) into the constraint yields

0 ≤ ∆s <
3

2
t (existence condition).

2.1.1 Firm 0’s deviation incentives:

[11]: Firm 0 will never deviate by inducing 11; otherwise, its profit becomes zero.

[0B]: Given p1 = p∗BB
1 , if firm 0 deviates by inducing 0B, it chooses the deviation

price p′0B0 by solving

maxp0 π
0B
0 (p0, p

∗BB
1 ) =

(
1

2
+

1

2
x̂L(p0, p

∗BB
1 )

)
p0

s.t. t−∆s ≤ p∗BB
1 − p0 < t ⇐⇒ −∆s

6
< p0 ≤

5∆s

6
.

From the first-order condition, I have the deviation price and profit

p′0B0 =
24t−∆s

12
, π′0B

0 =
(24t−∆s)2

576t
.

I confirm that p′0B0 > 5∆s

6
, meaning that π0B

0 (p0, p
∗BB
1 ) increases in p0 for p0 ∈

(∆
s

6
, 5∆

s

6
]. Therefore, firm 0’s optimal deviation profit is π0B

0 (5∆
s

6
, p∗BB

1 ) = 5∆s(4t−∆s)
24t

,
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which is always weakly less than π∗BB
0 . Therefore, firm 0 never deviates to induce

0B.

[B1]: Given p1 = p∗BB
1 , if firm 0 deviates by inducing B1, it chooses the deviation

price p′B1
0 by solving

maxp0 π
B1
0 (p0, p

∗BB
1 ) =

1

2
x̂H(p0, p

∗BB
1 )p0

s.t. − t−∆s < p∗BB
1 − p0 ≤ −t ⇐⇒ 12t−∆s

6
≤ p0 <

12t+ 5∆s

6
.

From the first-order condition, I have the deviation price and profit

p′B1
0 =

12t+ 5∆s

12
, π′B1

0 =
(12t+ 5∆s)2

576t
.

I confirm that p′B1
0 < 12t+5∆s

6
always holds. Moreover, p′B1

0 ≥ 12t−∆s

6
if ∆s ≥ 12t

7
.

Then, the optimization system has an interior solution p0 = p′B1
0 when ∆s ∈ [12t

7
, 2t),

which leads to a deviation profit π′B1
0 strictly less than π∗BB

0 . Moreover, when ∆s ∈

[0, 12t
7
), since p′B1

0 < 12t−∆s

6
, πB1

0 (p0, p
∗BB
1 ) decreases in p0 when p0 ∈ [12t−∆s

6
, 12t+5∆s

6
).

Then, firm 0’s optimal deviation profit is πB1
0 (12t−∆s

6
, p∗BB

1 ) = ∆s(12t−∆s)
24t

, which is

strictly less than π∗BB
0 . Therefore, firm 0 never deviates to induce B1.

[00]: Given p1 = p∗BB
1 , if firm 0 deviates by inducing 00, it chooses the deviation

price p′000 such that the following condition is satisfied:

p∗BB
1 − p′000 ∈ [t,∞) ⇐⇒ p′000 ≤ −∆s

6
.

Since the price must be nonnegative, firm 0 never deviates to induce 00.

2.1.2 Firm 1’s deviation incentives:

[00]: Firm 1 will never deviate by inducing 00; otherwise, its profit becomes zero.

11



[0B]: Given p0 = p∗BB
0 , if firm 1 deviates by inducing 0B, it chooses the deviation

price p′0B1 by solving

maxp1 π
0B
1 (p∗BB

0 , p1) =
1

2

(
1− x̂L(p∗BB

0 , p1)
)
p1

s.t. t−∆s ≤ p1 − p∗BB
0 < t ⇐⇒ 12t− 5∆s

6
≤ p1 <

12t+∆s

6
.

From the first-order condition, I have the deviation price and profit

p′0B1 =
12t+∆s

12
, π′0B

1 =
(12t+∆s)2

576t
.

I confirm that p′0B1 < 12t+∆s

6
always holds. Moreover, p′0B1 ≥ 12t−5∆s

6
if ∆s ≥ 12t

11
.

Then, the optimization system has an interior solution p1 = p′0B1 when ∆s ∈ [12t
11
, 2t),

which leads to a deviation profit π′0B
1 strictly less than π∗BB

1 . Moreover, when ∆s ∈

[0, 12t
11
), since p′0B1 < 12t−5∆s

6
, π0B

1 (p∗BB
0 , p1) decreases in p1 for p1 ∈ [12t−5∆s

6
, 12t+∆s

6
).

Then, firm 1’s optimal deviation profit is π0B
1 (p∗0B0 , 12t−5∆s

6
) = ∆s(12t−5∆s)

24t
, which is

Iakly less than π∗BB
1 if

0 ≤ ∆s ≤ ∆. (no-deviation condition)

[B1]: Given p0 = p∗BB
0 , if firm 1 deviates by inducing B1, it chooses the deviation

price p′B1
1 by solving

maxp1 π
B1
1 (p∗BB

0 , p1) =

(
1

2
(1− x̂H(p0, p

∗BB
1 )) +

1

2

)
p1

s.t. − t−∆s < p1 − p∗BB
0 ≤ −t ⇐⇒ −5∆s

6
< p1 ≤

∆s

6
.

From the first-order condition, I have the deviation price and profit

p′B1
1 =

24t− 5∆s

12
, π′B1

1 =
(24t− 5∆s)2

576t
.

12



I can confirm that p′B1
1 > ∆s

6
always holds. Therefore, πB1

1 (p∗BB
0 , p1) increases in p1 for

p1 ∈ (−5∆s

6
, ∆

s

6
]. Then, firm 1’s optimal deviation profit is πB1

1 (p∗BB
0 , ∆

s

6
) = ∆s(4t−∆s)

24t
,

which is strictly less than π∗BB
1 . Therefore, firm 1 never deviates to induce B1.

[11]: Given p0 = p∗BB
0 , if firm 1 deviates by inducing 11, it chooses the deviation

price p′111 such that the following condition is satisfied:

p′111 − p∗BB
0 ∈ (−∞,−t−∆s] ⇐⇒ p′111 ≤ −5∆s

6
.

Since the price must be nonnegative, firm 1 never deviates to induce 11.

Summary of Lemma 1 (1): If the existence condition and no-deviation condition

are simultaneously satisfied, i.e., 0 ≤ ∆s ≤ ∆, then the BB equilibrium exists.

2.2 Supplementary Details for Lemma 1 (3)

In the 0B equilibrium, firms solve

maxp0 π
0B
0 (p0, p1) =

(
1

2
+

1

2
x̂L(p0, p1)

)
p0,

maxp1 π
0B
0 (p0, p1) =

1

2
(1− x̂L(p0, p1))p1

subject to p∗0B1 − p∗0B0 ∈ [t −∆s, t). By solving the problems, I have (p∗0B0 , p∗0B1 ) =

(
7t

3
,∆), and (π∗0B

0 , π∗0B
1 ) = (

49t

36
,
25t

36
). Substituting (p∗0B0 , p∗0B1 ) into the constraint

yields

∆ ≤ ∆s < 2t (existence condition).

2.2.1 Firm 0’s deviation incentives:

[11]: Firm 0 will never deviate by inducing 11; otherwise, its profit becomes zero.
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[BB]: Given p1 = p∗0B1 , if firm 0 deviates by inducing BB, it chooses the deviation

price p′BB
0 by solving

maxp0 π
BB
0 (p0, p

∗0B
1 ) =

(
1

2
x̂H(p0, p

∗0B
1 ) +

1

2
x̂L(p0, p

∗0B
1 )

)
p0

s.t. − t < p∗0B1 − p0 < t−∆s ⇐⇒ 2t+ 3∆s

3
< p0 <

8t

3
and ∆s < 2t.

From the first-order condition, I have the deviation price and profit

p′BB
0 =

16t+ 3∆s

12
, π′BB

0 =
(16t+ 3∆s)2

288t
.

I can confirm that p′BB
0 < 8t

3
always holds. Moreover, p′BB

0 > 2t+3∆s

3
if ∆s < 8t

9
. Then,

the optimization system has an interior solution p0 = p′0B0 when ∆s < 8t
9
, which leads

to a deviation profit π′BB
0 strictly less than π∗0B

0 . Moreover, when ∆s ≥ 8t
9
, since

p′BB
0 ≤ 2t+3∆s

3
, πBB

0 (p0, p
∗0B
1 ) decreases in p0 for p0 ∈ (2t+3∆s

3
, 8t
3
). Then, firm 0’s

optimal deviation profit is strictly less than π0B
0 (2t+3∆s

3
, p∗0B1 ), is strictly less than

π∗0B
0 .4 Therefore, firm 0 never deviates to induce BB.

[01]: Notice first that this case exists if and only if xH(p0, p1) ≥ 0 and xL(p0, p1) ≤ 1,

from which I have p1 − p0 ∈ [t − ∆s,−t]. Since I have assumed 0 ≤ ∆s < 2t, this

deviation never happens.

[B1]: Given p1 = p∗0B1 , if firm 0 deviates to B1, it chooses the deviation price p′B1
0

by solving

maxp0 π
B1
0 (p0, p

∗BB
1 ) =

1

2
x̂H(p0, p

∗BB
1 )p0

s.t. − t−∆s < p∗0B1 − p0 ≤ −t ⇐⇒ 8t

3
≤ p0 <

8t+ 3∆s

3
.

From the first-order condition, I have the deviation price and profit

p′B1
0 =

8t+ 3∆s

6
, π′B1

0 =
(8t+ 3∆s)2

144t
.

4At p0 = 2t+3∆s

3 , x̂H = 1. Then, this deviation case coincides with 0B.
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I can confirm that p′B1
0 < 8t

3
always holds, meaning that πB1

0 (p0, p
∗0B
1 ) decreases in p0

for p0 ∈ [8t
3
, 8t+3∆s

3
). Then, firm 0’s optimal deviation profit is πB1

0 (8t
3
, p∗0B1 ) = 2∆s

3
,

which is strictly less than π∗0B
0 . Therefore, firm 0 never deviates to induce B1.

[00]: Given p1 = p∗0B1 , if firm 0 deviates by inducing 00, it chooses the deviation

price p′000 such that the following condition is satisfied:

p∗0B1 − p′000 ∈ [t,∞) ⇐⇒ p′000 ≤ 2t
3
.

Its optimal deviation profit is π′00
0 = 2t

3
, which is strictly less than π∗0B

0 . Therefore,

firm 0 never deviates to induce 00.

2.2.2 Firm 1’s deviation incentives:

[00]: Firm 1 will never deviate by inducing 00; otherwise, its profit becomes zero.

[BB]: Given p0 = p∗0B0 , if firm 1 deviates by inducing BB, it chooses the deviation

price p′BB
1 by solving

maxp1 π
BB
1 (p∗0B0 , p1) =

(
1

2
(1− x̂H(p∗0B0 , p1)) +

1

2
(1− x̂L(p∗0B0 , p1))

)
p1

s.t. − t < p1 − p∗0B0 < t−∆s ⇐⇒ 4t

3
< p1 <

10t− 3∆s

3
.

From the first-order condition, I have the deviation price and profit

p′BB
1 =

20t− 3∆s

12
, π′BB

1 =
(20t− 3∆s)2

288t
.

Here, −t < p′BB
1 − p∗0B0 < t −∆s ⇔ −t < 20t−3∆s

12
− 7t

3
< t −∆s ⇔ ∆s < 4t

3
, which

does not satisfies the existence condition ∆ ≤ ∆s < 2t. Therefore, firm 1 never

deviates to induce BB.
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[01]: Notice first that this case exists if and only if xH(p0, p1) ≥ 0 and xL(p0, p1) ≤ 1,

from which I have p1 − p0 ∈ [t − ∆s,−t]. Since I have assumed 0 ≤ ∆s < 2t, this

deviation never happens.

[B1]: Given p0 = p∗0B0 , if firm 1 deviates by inducing B1, it chooses the deviation

price p′B1
1 by solving

maxp1 π
B1
1 (p∗0B0 , p1) =

(
1

2
(1− x̂H(p∗0B0 , p1)) +

1

2

)
p1

s.t. − t−∆s < p1 − p∗0B0 ≤ −t ⇐⇒ 4t− 3∆s

3
< p1 ≤

4t

3
.

From the first-order condition, I have the deviation price and profit are

p′B1
1 =

16t− 3∆s

6
, π′B1

1 =
(16t− 3∆s)2

144t
.

Here, since −t−∆s < p′B1
1 −p∗0B0 < −t ⇔ −t−∆s < 1

3
t− 1

2
∆s− 7

3
t < −t ⇔< ∆s > 2t,

which does not satisfies my assumption that 0 < ∆s < 2t. Therefore, firm 1 never

deviates to induce B1.

[11]: Given p0 = p∗0B0 , if firm 1 deviates by inducing 11, it chooses the deviation

price p′111 such that the following condition is satisfied:

p′111 − p∗0B0 ∈ (−∞,−t−∆s] ⇐⇒ p′111 ≤ 4t− 3∆s

3
.

Its optimal deviation profit is π′11
o = 4t−3∆s

3
, which is weakly less than π∗0B

1 if

23t

36
≤ ∆s < 2t,

which always satisfies under the existence condition ∆ < ∆s < 2t. Therefore, firm 1

never deviates to induce 11.

Summary of Lemma 1 (3): If the existence condition ∆s ∈ [∆, 2t) is satisfied,

then the 0B equilibrium exists.
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2.3 Supplementary Details for Section 4 Discussion

2.3.1 Marginal Costs

Let c0 − c1 = ϵ.

By solving for the stage-2 game, the results in Lemma 1 still hold and now be-

come:

(1) When ∆s ∈ (0, 4(
√
2−1)(c0−c1+3t)

1+2
√
2

), there exists a unique pure-strategy Nash equilib-

rium in which the status BB prevails. In this equilibrium, (p∗BB
0 , p∗BB

1 ) = (6t+∆s

6
+ 2

3
c0

+1
3
c1,

6t−∆s

6
+ 1

3
c0 +

2
3
c1).

(2) When ∆s ∈
(

4(
√
2−1)(3t+c0−c1)

1+2
√
2

, 1
3
(5t+ c0 − c1)

)
, there exists a mixed-strategy

Nash equilibrium in which both the status BB and 0B could prevail with a posi-

tive probability. In this equilibrium, firm 0 chooses pmix
0 = t(6+β)+(1−β)∆s

3(2−β)
+ 2

3
c0+

1
3
c1,

and firm 1 chooses pmix
1 = 2t(6−β)+(1−β)∆s

6(2−β)
+ 1

3
c0 +

2
3
c1 with probability β and pmix

1
=

4t(6−β)−(4−β)∆s

12(2−β)
+ 1

3
c0 +

2
3
c1 with probability 1− β, where

β = 2(−3+3
√
2−c0+

√
2c0−c1+

√
2c1+6t−6

√
2t+∆s)

3−3
√
2+c0−

√
2c0+c1−

√
2c1−2t+2

√
2t+

√
2∆s .

(3) When ∆s ∈
[
1
3
(5t+ c0 − c1), 2t

)
, there exists a unique pure-strategy Nash equilib-

rium in which firm 0 monopolizes type-H consumers, and both firms supply to type-L

consumers (0B). In this equilibrium, (p∗0B0 , p∗0B1 ) =
(
7t
3
+ 2

3
c0 +

1
3
c1,∆+ 1

3
c0 +

2
3
c1
)
.

Equilibrium profits are:

(1) (π∗BB
0 , π∗BB

1 ) =
(

(6t+∆s−2c0+2c1)2

72t
, (6t+∆s−2c1+2c0)2

72t

)
;

(2) π∗mix
0 = (8t−∆s)(−2c0+2

√
2c0+2c1−2

√
2c1−2t+2

√
2t−

√
2∆s)2

8(1−
√
2)t(−4c0+4

√
2c0+4c1−4

√
2c1−4t+4

√
2t−2∆s−

√
2∆s)

,

π∗mix
1 = (3+

√
2)(∆s)2

32t
;
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(3) (π∗0B
0 , π∗0B

1 ) =
(

(7t−c0+c1)2

36t
, (5t−c1+c0)2

36t

)
.

Solving π∗BB
1

∣∣
∆s=0

= π∗mix
1 |∆s=∆ , I have ∆ = 4

√
3− 2

√
2. Note that this is identical

to the threshold in Proposition 2.

When marginal costs of the two firms are the same, i.e., c0 = c1 ≡ c,

(1) (p∗BB
0 , p∗BB

1 ) =
(
6t+∆s

6
+ c, 6t−∆s

6
+ c
)
;

(2) pmix
0 = t(6+β)+(1−β)∆s

6−3β
+ c,

pmix
1 = 2t(6−β)+(1−β)∆s

6(2−β)
+ c,

pmix
1

= 4t(6−β)−(4−β)∆s

12(2−β)
+ c;

(3) (p∗0B0 , p∗0B1 ) =
(
7t
3
+ c,∆+ c

)
.

2.3.2 Fixed Costs

I prove that status 0B (∆ ≤ ∆s < 2t) can be achieved as an equilibrium out-

come.

Since both π∗0B
0 and π∗0B

1 is independent of s0 and s1, both Π∗0B
0 and Π∗0B

1 decreases in

s0 and s1, respectively. Then, firm 1 would choose s∗0B1 = 0 and firm 0 would choose

s∗0B1 = ∆ such that status 0B is possible. We, therefore, obtain firms’ equilibrium

profits as follows:

Π∗0B
0 =

t(49− 50t)

36
, Π∗0B

1 =
25t

36
.

Next, I confirm whether firms would deviate by triggering the mix of statuses BB and

0B. If such deviation happens, ∆s must satisfy ∆ < ∆s < ∆. Since πmix
1 increases in

∆s, Πmix
1 decreases in s1. Then, given s∗0B1 , firm 1 would never deviate from s∗0B1 = 0.

Next, given s∗0B1 = 0, suppose firm 0 deviates by letting ∆ < ∆s < ∆, its optimal
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deviation quality is obtained by s′0 = argmaxs0 Π
mix
0 , and the optimal profit is Π′

0.

Since πmix
0 increases in ∆s ∈ (∆,∆), we have

Π
′
0 < πmix

0 |∆s=∆ − s20
2

∣∣∣
s0=∆

=
t(−17689 + 5586

√
2− 17044992t+ 12063168

√
2t)

1764(−1 +
√
2)(−22 + 7

√
2)

,

which is strictly less than Π∗0B
0 for any t > 0.

Next, I confirm whether firms would deviate by triggering status BB. If such deviation

happens, ∆s must satisfy 0 ≤ ∆s ≤ ∆. Given s1 = 0, suppose firm 0 deviates by

letting 0 ≤ ∆s ≤ ∆, its optimal deviation quality is obtained by solving

max
s0

Π∗BB
0

∣∣
s1=0

, s.t. 0 ≤ s0 ≤ ∆,

from which I obtain an interior solution s0 = 6t
35

with a profit 18t2

35
. Notice that

the restriction condition is always satisfied. The profit under the interior solution is

weakly less than Π∗0B
0 if

0 < t <
1715

2398
≈ 0.715. (1)

Suppose now firm 1 deviates. Then, given s0 = ∆, its optimal deviation quality is

obtained by solving

max
s1

Π∗BB
1

∣∣
s0=∆

, s.t.
108

√
2− 145)t

21
≤ s1 ≤ ∆,

from which I obtain the corner solution s1 = 108
√
2−145)t
21

with a profit 2
63
(11 −

9
√
2)(68 − 45

√
2)t2. The profit under the corner solution is weakly less than Π∗0B

1

if

0 < t <
175

−12464 + 8856
√
2
≈ 2.903.

To summarize, the 0B status constitutes an SPNE when Condition (1) holds.
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2.3.3 Spillovers

With spillovers, results that are parallel to Proposition 2 are as follows:

(1) when ∆ ∈

[
0,

(
4
√

3−2
√
2

)
t

(1−θ)

]
, there exists an SPNE outcome in which both firms

choose the highest quality s+∆;

(2) when ∆ ∈

((
4
√

3−2
√
2

)
t

(1−θ)
, 2t
(1−θ)

)
, there exists an SPNE outcome in which firm 0

chooses the highest quality s+∆ whereas firm 1 chooses the lowest quality s.
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