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マクロ系の摩擦則の包括的な解明 

 

岩下 航 

大阪大学 大学院基礎工学研究科 

 

1．はじめに 

摩擦は最も身近な物理現象の 1 つである。靴

底と地面の接触面、機械のブレーキや軸受、地震

が発生する大陸プレートなど、様々な場面で摩擦

が発生する。そのため、摩擦現象の解明は科学技

術の発展のために重要である。近年の計算機性能

の著しい向上により、従来はできなかった数値計

算でのアプローチの研究が可能になってきた。 

固体間摩擦についてはアモントン-クーロン則

と呼ばれる摩擦係数が圧力や系の形状、速度によ

らないことを意味する法則が経験的に古くから

知られている。しかしながら、これは準静的な外

力のかかったミクロな系で成立する空間一様性

を暗に仮定しており、応力場などの非一様性が顕

著となるマクロな系ではアモントン-クーロン則

が破れることもある[1-5]。 

これまでの我々の研究では、基板に接する直方

体ブロックにおいて、圧力、系のサイズ・アスペ

クト比に対する静止摩擦の依存性が示されてき

た[3]。しかしながら、現実的には、圧力、系のサ

イズ・アスペクトが固定しながら摩擦を制御する

必要がある状況も想定されるが、その方法は示さ

れていない。さらには、有限速度下での摩擦、摩

擦がある多体系のふるまいについても未解明で

ある。したがって、本研究では、物体の溝の設計

による静止摩擦の制御、粘弾性体の有限速度の接

触で生じるヒステリシス摩擦、摩擦のある多体系

の典型例である粉体のふるまいを、大規模な数値

解析によって調べた。 

 

2．溝付き物体の静止摩擦 

2.1 手法 

有限要素法を用いた数値シミュレーションに

よって、図 1 に示すような剛体基板上の溝付き粘

弾性ブロックの滑り運動を調べた [6]。ここで、

粘弾性モデルは、一般に固体の計算で用いられる、

弾性要素と粘性要素が並列に接続された Kelvin-

Voigt モデルを用いた。本解析は、50 万節点、数

十億タイムステップの大規模な計算を要する。こ

れには、In-house の Fortran プログラムコードを

Intel コンパイラでコンパイルして、1,700MPI プ

ロセスを用いた空間分割による並列計算で、50時

間程度かかる。 

摩擦力は局所でアモントン-クーロン則が成り

立つと仮定して与える。そこでは、局所の摩擦応

力と局所の圧力の比を局所摩擦係数と定義し、局

所摩擦係数を局所滑り速度の関数として与える。

ここで、局所の静摩擦係数と動摩擦係数をそれぞ

れ𝜇ୗと𝜇୏、特性速度を𝑣ୡとする。静止状態の場合、

局所摩擦係数は𝜇ୗ以下で静止状態を保つように

与えられる。滑り状態の場合、局所摩擦係数は、

局所滑り速度が𝑣ୡ以下で、局所滑り速度の増加に

よって𝜇ୗから𝜇୏に減少し、滑り速度が𝑣ୡ以上で、

𝜇୏となる。 

粘弾性体は側面または上面を準静的に駆動さ

図 1：基板上の溝付きブロック [6] 
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せる。このとき、粘弾性体は、静止状態と勢い良

く滑る状態を交互に繰り返す、周期的なスティッ

クスリップ運動をする。勢いよく滑る状態の直前

に系全体の摩擦力は最大値を取り、その値と垂直

抗力の比をマクロな静摩擦係数𝜇୑と定義する。

溝の深さ𝑑と溝の幅に比例する摩擦面の面積減少

率𝜙の 2 つの溝のパラメータを変化させたときの

静止摩擦係数𝜇୑の挙動を調べた。 

2.2 側面を駆動する系 

本節では、図 1 のような、物体の側面を剛体プ

レートによって押したときの結果 [5]を示す。図

2 に、様々な摩擦面の減少率𝜙での溝の深さ𝑑に対

する静止摩擦係数𝜇୑の結果を示す。𝜇୑は、𝜙と𝑑

の減少関数であることが明らかになった。 

また、図 3 に示すように、系全体が滑る前に発

生する準静的に伝搬する局所滑りが確認された。

局所滑りは臨界長さに達すると、急速に伝搬し系

全体の滑りが発生する。この臨界長さが静止摩擦

係数𝜇୑と正の相関があることが示された。 

我々は、これらのシミュレーション結果から、

理論モデルを構築して解析を行った。その結果、

局所滑りの臨界長さが粘性の増加関数となるこ

とが示された。溝を形成することによって、系の

剛性が減少し、実効的な粘性も減少するため、臨

界長さが減少する。さらに、静止摩擦係数𝜇୑が臨

界長さの増加関数となるため、図 3 のように、𝜇୑

が溝のサイズの減少関数となる。 

2.3 上面を駆動する系 

2.2 節では、側面駆動によって、せん断応力の

非一様性が発生するため、局所滑りが発生してい

た。そのため、その結果が、一般的な上面駆動さ

せた一様せん断の系に適応できるかは不明であ

る。そこで、図 4a のような、𝑥, 𝑦方向に周期境

界条件を持つ物体について上面を駆動させたと

きの摩擦を調べた [7]。ここでは、2.2 節と同様の

溝に加えて、一様せん断系で局所滑りを発生させ

るために、図 4b のように、摩擦面のうねりを取

り入れ、その最大振幅𝐴を物体形状のパラメータ

の 1 つとした。 

図 5a, b にそれぞれ、𝜙 ൌ 0.5での様々な𝐴に対

する規格化した圧力分布と静止摩擦係数𝜇୑の結

果を示す。圧力分布の最小値と𝜇୑は𝐴の減少関数

となる。圧力分布の最小値が小さいほど、局所滑

りの開始と成長が早く、臨界値に早く到達するた

め、𝜇୑が減少する。 

図 5d に、異なる摩擦面の減少率𝜙で、規格化し

た圧力の空間分布が同じになるように𝐴を設定

した場合の静止摩擦係数𝜇୑を示す。𝜇୑は𝜙の減

少関数となっており、これは 2.2 節の結果と同様

である。溝のサイズが大きいほど、局所滑りの臨

界面積が減少するため、𝜇୑も減少する。 

図 2：様々な摩擦面の減少率𝜙での溝の深さ𝑑に

対する静止摩擦係数𝜇୑ [6] 

 

図 3：摩擦面における滑りの空間分布 [6]。青が

静止状態、黄緑が滑り状態を表す。 

図 4：上面駆動の系の設定 [7]。(a) 剛体基板上

の移動するプレートによって駆動される粘弾

性ブロック。(b) 𝑧方向に拡大した摩擦界面。 
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以上の結果より、上面駆動の系での摩擦制御の

ための指針が得られた。溝の有無に依らず、うね

りの振幅を小さくすることで、大きい静止摩擦係

数が得られ、大きなサイズの溝とある程度の大き

さの振幅のうねりを設定することで、小さい静止

摩擦係数が得られる。 

 

3．有限速度下での摩擦 

3.1 手法 

有限要素法を用いた数値シミュレーションに

よって、図 6a に示すように、移動する 2 次元の

Kelvin-Voigt モデルの粘弾性体（密度𝜌、ヤング率

𝐸、粘性係数𝜂、高さ𝐻）と接触する剛体圧子にか

かる抵抗力を調べた。粘弾性体は周期境界を持ち、

境界の影響がない程度に十分に大きな周期の長

さを設定した。本解析は、50 万節点、数億タイム

ステップの大規模な計算を要する。これには、In-

house の Fortran プログラムコードを Intel コンパ

イラでコンパイルして、1,000MPI プロセスを用

いた空間分割による並列計算で、10 時間程度か

かる。 

粘弾性体と剛体圧子の間には、凝着摩擦を入れ

ずに、圧力のみがかかる設定とした。物体間に相

対速度を与えて滑りを発生させると、物体の局所

的な粘弾性緩和の影響で接触面の前後に圧力差

が生じ、それが一種の摩擦抵抗力として働く。こ

の粘弾性による由来する摩擦力はヒステリシス

摩擦と呼ばれている。本研究では、特にヒステリ

シス摩擦の駆動速度𝑉に対する依存性を調べた 

[8]。 

3.2 ヒステリシス摩擦の速度と粘性に対する依

存性 

圧子にかかる水平方向の力と鉛直方向の力の

比で表される摩擦係数𝜇が、図 6b のように、ある

速度でピークを持ち、そのピークの位置が粘性係

数𝜂によって変化することを確認した。この結果

は、駆動速度𝑉と粘性係数𝜂に応じた粘弾性体の

変形が摩擦係数𝜇を変化させたと解釈できる。 

ピークの位置の粘性係数𝜂による変化は、同様

の系での低次元のモデルを用いた先行研究と一

致している [5]。一方で、𝑉が弾性波速度を超えた

図 5：規格化した圧力の空間分布と静止摩擦係

数𝜇୑ [7]。𝜙 ൌ 0.5での様々なうねりの振幅𝐴に

対する (a) 規格化した圧力の空間分布と (b) 

静止摩擦係数𝜇୑。異なる𝜙で、(c) 規格化した圧

力の空間分布が同じになるように𝐴を設定した

場合の (d) 静止摩擦係数𝜇୑。 

図 6：(a) 移動する粘弾性体に接触する剛体圧子と (b) 摩擦係数𝜇の駆動速度𝑉に対する依存性 [8] 
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領域で、粘性係数𝜂が異なる摩擦係数𝜇の結果と

近づく現象は、弾性波の影響が考慮されない先行

研究のモデルでは確認されておらず、連続体特有

の現象であることが示唆される。 

また、同様の系でのゲルを用いた実験とは摩擦

係数𝜇や変形状態の駆動速度𝑉に対する依存性が

異なる [4]ため、今後は異なる粘弾性モデルの採

用も検討する。 

 

4．多体系（粉体）の摩擦 

4.1 粉体を移動する物体の抵抗則 

離散要素法を用いた数値シミュレーションに

よって、図 7 に示すような粒子間に摩擦のある粉

体中を移動する物体の抵抗を調べた [9]。本解析

は、4 万粒子の大規模な計算を、In-house の Fortran

プログラムコードを Intel コンパイラでコンパイ

ルして、MPI 空間分割による並列計算で行った。 

物体のサイズ、移動速度・方向、粉体の圧力に

対する物体にかかる抵抗力の依存性を調べた。物

体の移動に伴う粒子の移動や応力場の解析に

よって、抵抗則の理論を示した。 

4.2 平板間の粉体の流れ 

離散要素法を用いた数値シミュレーションに

よって、図 8 に示すような平板間の粒子間に摩擦

のある粉体の流れを調べた [10]。本解析は、2 千

程度の粒子数の計算を、In-house の Fortran プロ

グラムコードを Intel コンパイラでコンパイルし

て行った。シミュレーションと理論解析によって、

外力に対する流れ場や流量の依存性を解明した。 

5．おわりに 

2 節では、静止摩擦係数の界面の溝形状やうね

り形状に対する依存性が、大規模シミュレーショ

ンと理論解析によって示された。この結果は、摩

擦制御のための物体形状設計の指針となり、工学

的な応用も期待される。3 節では、ヒステリシス

摩擦の速度と粘性に対する依存性が示された。特

に弾性波速度付近の高速で滑る物体間の摩擦の

解析の例は少なく、その新たな知見を得るために

も、本研究の発展が期待される。4 節では、粉体

内を移動する物体の抵抗則と平板間の粉体の流

れを調べた。この他にも、粉体の偏析現象や粉体

の圧縮時の抵抗力の解析用のシミュレーション

も開発した。このような摩擦を持つ物体が多体に

なったときに見られる数多くの興味深い現象の

理論も今後の研究で明らかにしていく。 
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図 7：粉体中を移動する直径𝐷の物体 [9] 

図 8：平板間の粉体の流れ [10] 
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